
SECURITY ANALYSIS OF KLEPTOGRAPHIC

ALGORITHMS

By

Anum Sajjad

A thesis submitted to the faculty of Information Security Department,
Military College of Signals, National University of Sciences and Technology,

Islamabad, Pakistan, in partial fulfillment of the requirements for the degree of MS in
Information Security

jan 2018

ii

ABSTRACT

Kleptography is the study of stealing the secure data secretly and subliminally. It is the

subdivision of crypto-virology. The concept of inserting backdoors was introduced two

decades ago by Young and Yung but still it is a serious threat for modern cryptography.

The attacker uses asymmetric cryptographic techniques to build the backdoor and later uses

his own private key to reconstruct the secret key of the user. Different researches proved

that exploiting implementation weakness of cryptographic algorithm needs less effort as

compared to attacking its mathematical structure.

The SETUP (Secretly Embedded Trapdoor with Universal Protection) attack modifies the

standard methods of generating public and private key pairs in such a way that the public

information is meaningful for the attacker. Also, calculation of private key of the user in

polynomial time is no more a hard problem for the attacker. The information leakage using

backdoor does not require separate communication channel for the transmission of secret

data. In present days, cryptography is using against the security of cryptosystems instead

of protecting it. The user is not able to distinguish the output of an honest or a malicious

cryptosystem.

This research presented the brief description of the history of backdoor attacks in practical

cryptographic systems. Elliptic curve cryptographic concepts are discussed in this research.

Then the term Kleptography was introduced, followed by the definition of weak, regular

and strong SETUP attacks. It also presents the proposed kleptographic attack strategy on

a cryptographic algorithm based on elliptic curves algorithms i.e. Edwards-curve Digital

Signature Algorithm, Elliptic curve Diffie-Hellman key exchange scheme, Elliptic curve

Digital Signature Algorithm, Elliptic curve Integrated Encryption Scheme, Elliptic curve

Menezes-Qu-Vanstone and Elliptic curve Qu-Vanstone implicit certificate scheme. In order

to increase the security, the complexity of cryptographic algorithm’s implementation is also

enhanced. This makes extremely hard for the user to detect such malicious codes especially

when they are introduced, in the code, very innocently. Finally, the strategy of running time

analysis is presented in order to detect the presence of such kinds of backdoor attacks. The

experimental results shows the successful detection of malicious code in an elliptic curve

based protocols. The future work concludes the research work.

iii

DEDICATION

This thesis is dedicated to

MY FAMILY, TEACHERS AND BELOVED COUNTRY PAKISTAN

for their love and endless support

iv

ACKNOWLEDGMENTS

”In the name of Allah the Most Beneficial and the Most Merciful ”

I am very grateful to God Almighty who gave me the strength to accomplish this thesis

without His consent I could not have indulged myself in this task.

Secondly, i am very thankful to my supervisor, Dr.MehreenAfzal, for her support, useful

discussion, suggestions and professional advice during my research. Her encouraging com-

ments helped me in successfully completing my research work. She stayed a great source

of inspiration for me all along and helped me grow into a better professional. I am really

grateful for her worthless contributions in this research. I am also very thankful to my guid-

ance committee members; Dr. Faisal Amjad and Mian Muhammad Waseem Iqbal for their

support and corporation. I am grateful to my teachers; Dr.Abdul Ghafoor, Dr. Haider Ab-

bas, Dr.Imran Rashid, Narmeen Shafqat, Dr.Rabia Latif and Waleed Bin Shahid for their

support in my course work. Specially, I am very grateful to my best cryptography teachers

Dr.Mehreen Afzal and Dr.Naveed Riaz.

I am very thankful to my parents and siblings for supporting me during my education. They

have always stood by my dreams and ambition. Finally, i am very thankful to Military

College of Signals.

Anum Sajjad

v

TABLE OF CONTENTS

ABSTRACT iii

DEDICATION iv

ACKNOWLEDGMENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

ACRONYMS x

1 INTRODUCTION 1

1.1 Problem Statement and Objectives . 2

1.2 Contributions . 2

1.3 Motivation . 3

1.4 Thesis Outline . 4

2 HISTORY OF BACKDOORS 6

2.1 What are backdoors? . 6

2.2 The History of Backdoors . 7

2.2.1 Clipper Chip . 7

2.2.2 Lotus Notes . 9

2.2.3 Dual EC DRBG . 10

2.2.4 Debian OpenSSL PRNG . 12

2.2.5 Heartbleed . 12

2.2.6 Juniper Firewall . 12

2.2.7 WhatsApp Backdoor . 13

2.2.8 Bitcoin Wallet Backdoor . 14

2.3 The Term ’Kleptography’ . 14

2.4 Literature Review . 16

3 ELLIPTIC CURVE CRYPTOGRAPHY 19

3.1 Elliptic curves . 19

vi

3.1.1 Group Law . 20

3.2 Elliptic Curve Discrete Logarithm Problem 23

3.2.1 Edwards Curve Digital Signature Algorithm 24

3.2.2 Elliptic Curve Diffie Hellman Key Exchange Scheme 27

3.2.3 Elliptic Curve Digital Signature Algorithm 29

3.2.4 Elliptic Curve Integrated Encryption Scheme 31

3.2.5 Elliptic Curve Qu-Vanstone Implicit Certificate 33

3.2.6 Elliptic Curve ElGamal Encryption Scheme 35

3.3 Application of Elliptic curve Cryptography 36

4 PROPOSED KLEPTOGRAPHIC ATTACKS 38

4.1 Proposed Kleptographic Attack on Elliptic Curve Cryptography 38

4.1.1 Edwards Curve Digital Signature Algorithm 38

4.1.2 Elliptic Curve Diffie Hellman Key Exchange Scheme 40

4.1.3 Elliptic Curve Digital Signature Algorithm 41

4.1.4 Elliptic Curve Integrated Encryption Scheme 43

4.1.5 Elliptic Curve Qu-Vanstone Implicit Certificate 44

4.1.6 Elliptic Curve ElGamal Encryption Scheme 46

5 TEST METHODOLOGY WITH RESULTS 48

5.1 Test Methodology . 48

5.1.1 Experimental Setup . 50

5.2 Experimental Results . 51

6 CONCLUSION and FUTURE WORK DIRECTIONS 60

6.1 Conclusion . 60

BIBLIOGRAPHY 61

vii

LIST OF FIGURES

2.1 MYK-78 ”Clipper Chip” . 8

2.2 Key Establishment in Clipper Chip . 9

2.3 Example of Lotus Notes . 10

2.4 Dual Elliptic Curve Deterministic Random Bit Generator schematic diagram 10

2.5 Malicious Dual Elliptic Curve Deterministic Random Bit Generator 11

2.6 Juniper Hard-coded Password . 13

5.1 Flow chart of Test Methodology . 51

5.2 Experimental Results of Edward Digital Signature Algorithm 52

5.3 Experimental Results of Elliptic curve Diffie Hellman key exchange protocol 53

5.4 Experimental Results of Elliptic curve Integrated Encryption Scheme . . . 55

5.5 Experimental Results of Elliptic curve Digital Signature Algorithm 56

5.6 Experimental Results of Elliptic curve Qu-Vanstone Implicit Certificate . . 57

5.7 Experimental Results of Elliptic curve ElGamal Encryption Scheme 58

viii

LIST OF TABLES

3.1 Double and Add algorithm to compute : 13P 24

5.1 Data set . 49

5.2 Coefficient of variance of EdDSA . 52

5.3 Results of Original implementation of EdDSA 52

5.4 Results of Malicious implementation of EdDSA 53

5.5 Coefficient of variance of ECDHKE . 54

5.6 Results of Original implementation of ECDHKE 54

5.7 Results of Malicious implementation of ECDHKE 54

5.8 Results of Original implementation of ECIKE 54

5.9 Results of Malicious implementation of ECIKE 55

5.10 Coefficient of variance of ECDSA . 56

5.11 Results of Original implementation of ECDSA 57

5.12 Results of Malicious implementation of ECDSA 57

5.13 Results of Original implementation of ECQVIC 58

5.14 Results of Malicious implementation of ECQVIC 58

5.15 Results of Original implementation of ECEES 58

5.16 Results of Malicious implementation of ECEES 59

ix

ACRONYMS

Advance Encryption Standard AES

American National Standards Institute ANSI

Dual Elliptic curve Deterministic Random Bit Generator Dual-ECDRBG

Digital Signature Algorithm DSA

Elliptic curve Diffie Hellman Key Exchange ECDHKE

Elliptic curve Diffie Hellman problem ECDHP

Elliptic curve Discrete Logarithmic Problem ECDLP

Elliptic curve Digital Signature Algorithm ECDSA

Elliptic curve ElGamal Encryption Scheme ECEES

Elliptic curve Integrated Encryption Scheme ECIES

Elliptic curve Qu-Vanstone Implicit Certificate ECQVIC

Edward curve Digital Signature Algorithm EdDSA

Federal Information Processing Standard FIPS

International Electrical and Electronics Engineering IEEE

International Organization for Standard ISO

Key Derivation Function KDF

Menezes Okamota Vanstone MOV

Message Authentication Code MAC

National Institute of Standards and Technology NIST

National Security Agency NSA

Pseudo-Random Number Generator PRNG

Rivest Shamir Aldeman RSA

Secretly Embedded Trapdoor with Universal Protection SETUP

Secure Shell SSH

Secure Sockets Layer SSL

Transport Layer Security TLS

Virtual Private Network VPN

x

Chapter 1

INTRODUCTION

In September, 2013 [1], an article has been published by ProPublica, The New York Times

and The Guardian, that reveal the secret documents belong to National Security Agency

about an encryption project i.e. SIGINT Enabling project [2], with the code name of

Bullrun. The aim of project is to weaken the encryption standards adopted by the world in

oder to get the secret information about the web searches, emails, calls and messages.

NSA is spending billions of dollars to insert backdoors in cryptosystems to ensure surveil-

lance. They inserted malicious codes inside the devices by requesting politely, through se-

cret orders, by force or making compulsory for the government and private sector organiza-

tions [3]. Edward Snowden reveals that NSA paid RSA $10m to use malicious Dual Elliptic

curve Deterministic Random Bit Generator in their cryptographic tools to bypass the secu-

rity of secure devices [4]. They are playing the role of big brother to know the secrets of

every state.

A system is always just as secure as the weakest link in the chain. So how much one can relay

on properly implemented strong cryptosystems against Kleptographic attacks. Defending a

cryptographic system is more difficult than attacking. It is a fact that the attackers does not

publish each and every thing related to their research about the new types of possible crypt-

analysis attacks against cryptographic devices. The defender of a cryptographic device only

implements the security measures against known academic attacks. But resistance against

the known cryptanalytical attacks are not enough to ensure the security of the cryptographic

devices. NSA has more than 300 minds of best mathematicians and they are working to

solve the puzzle of encryption,just imagine up to what extend they can go [4]. According to

Filiol [4]:

”Why would USA present a secure encryption algorithm (Advance Encryption Standard)

without any form of control”

1

1.1 Problem Statement and Objectives

Revelations over the past couple of years highlight the importance of understanding mali-

cious and surreptitious weakening of cryptographic systems. Few research is done on the

techniques of detection of cryptographic backdoors that are a serious threat for the security.

In this thesis, an efficient way of detecting the presence of backdoors in elliptic curve based

cryptographic algorithms is proposed.

Objectives of this thesis are:

• To give a firm, comprehensible detail of the Kleptographic attacks, threats and as-

sociated vulnerabilities, with an emphasis on the Secretly Embedded Trapdoor with

Universal Protection attacks on very well-known elliptic curve based cryptosystems.

• To analyze the security of EdDSA signature algorithm against kleptographic attacks.

• To develop a detection strategy using Timing analysis technique against such types of

attacks.

1.2 Contributions

The contributions of this thesis are summarized as,

• The Kleptographic attack technique is presented against elliptic curve based crypto-

graphic protocols.

• Detection mechanism of the presence of cryptographic backdoor, on the bases of run-

ning time analysis of an honest and malicious implementation, is presented.

The high-level overview of proposed techniques is given here, their details are given in

chapters to follow.

Trap door inserting mechanism is very attractive research topic in present days. With the

increase in the size of key bits, the effort of encryption and decryption of data increases while

the work of cryptanalyst is increased too. So instead of performing cryptanalysis techniques,

it is easy for the attacker to insert backdoors in order to minimize the effort of finding secret

key. US National Security Agency is putting effort to sabotage cryptographic standards.

Products have showed that this type of attacks constitutes a real threat especially for military

and defense agencies, and effective countermeasures are needed to protect security classified

2

information. In this untrusted world the user should always be suspicious if the internal

system is secure or not. The trapdoor, which is used for government surveillance purpose,

can be exploited by the criminals having bad intension because no one knows how to build

them reliably.

The Chapter 2, presents the history of backdoor, how the backdoors are exploited by the

attackers and the definition of term Kleptography along with literature review. The basic

concepts of the mathematics involved in cryptography are presented in the Chapter 3, along

with the introduction to elliptic curve cryptography and the complex mathematical concepts

of point addition and multiplication. In olden days the cryptography is used to secure the

communication channel against threats and world would trust blindly on the implementation

of cryptographic algorithms. But now trusting the manufacturer is the most difficult task.

The Secretly Embedded Trapdoor with Universal Protection attack mechanism is presented

in Chapter 4. The manufacturer uses the asymmetric cryptography to insert the backdoor.

The public key of the attacker is inserted inside the victim’s device. The private key of the

user is calculated by using the public key of the attacker. Later, the backdoor information

enables the attacker to rebuild the secret key of the user. In a tamper proof cryptosystem if

the malicious code is inserted in an efficient way then it is nearly impossible for the user to

detect the presence of backdoor by only observing the output of the cryptosystem.

The idea of running time analysis, of both an honest and malicious implementation, is used

to detect the presence of backdoor in elliptic curve based cryptographic algorithms. The

test methodology is presented in Chapter 5. The running time of malicious and an honest

implementation of elliptic curve based algorithms is observed and finally the coefficient of

variance is calculated to analyzed the deviation of time. The Chapter 6 concludes the thesis

along with the future research directions and countermeasures against backdoor techniques.

1.3 Motivation

In olden days cryptography is used to secure the communication against threats and world

trust blindly on the implementation of cryptographic algorithms and different protocols in

the cryptosystem. But now it is a big challenge to make sure whether the cryptosystem ,one

is using to secure the communication, is trust able or not. In under developing country,

IT industry is not very well developed so it is not possible for them to design their own

3

blackbox cryptosystems for secure communication. It is important for us to study different

malicious ways of leaking key bits so that we can build appropriate trust level on the foreign

cryptographic devices after analyzing the device against such threats. In present, we have to

trust on the providers and vendors. But the least we can do is to make sure that the blackbox

we are using is actually secure after testing that system. Cyber security pointed out the

serious threat related to the insertion of backdoors that bypass the encryption security and

are exploited by the criminals or state hackers. A system is always just as secure as the

weakest link in the chain. So it is important to get awareness of such attacks to prevent

the most secure systems from this type of threats. Foreign security agencies are very active

in research and practical implementations of such types of attacks. Such backdoors helps

them to covertly get secret key to exploit the confidentiality and for other offensive aims.

Kleptography and its defenses will become more significant in future because now more

organizations are searching hidden ways to exploit the security of their enemy instead of

wasting their time, money, resources and effort on traditional cryptanalysis techniques.

1.4 Thesis Outline

This thesis is divided into six chapters:

• Chapter 1: This chapter contains the introduction, objectives and motivation of thesis.

It also explains the overview of the contributions we have made in this thesis report

that includes the proposed kleptographic attack on elliptic curve based protocols and

timing analysis techniques for detection of such backdoors.

• Chapter 2: This chapter contains the brief history of backdoor, the way they are ex-

ploited by the attackers in practical scenarios and the literature review of the thesis. It

also includes introduction of the term Kleptography and Secretly Embedded Trapdoor

with Universal Protection (SETUP) attack.

• Chapter 3: In this chapter, review of literature related to an elliptic curve cryptography

and background mathematics is given along with the introduction of elliptic curves

protocols and its mathematical explanation.

• Chapter 4: This chapter deals with the brief description of proposed backdoor inserting

technique in an elliptic curve based algorithms.

4

• Chapter 5: In this chapter the test methodology used in our research was proposed

along with the experimental results of the detection of backdoors in an elliptic curve

based cryptographic algorithms.

• Chapter 6: This chapter concludes the report and future work is proposed along with

the countermeasures against kleptographic attacks.

5

Chapter 2

HISTORY OF BACKDOORS

Introduction

This chapter gives the history of backdoors present in hardware or software. In section 2.1,

the introduction of backdoors along with its types are discussed. In section 2.2, the brief

description of historical backdoors present in different devices are presented. In section 2.3,

the introduction of the term Kleptography is discussed along with the definition of regular,

weak and strong SETUP attack. In section 2.4, the literature review is presented.

2.1 What are backdoors?

According to Edward Snowden, our secure hardware and software can be used against us

in order to leak our private information. In 2013, the Edward Snowden reveals about the

US campaign of inserting backdoors in cryptographic devices. The security agencies are

spending years to identify the methods of detecting the presence of backdoor in a crypto-

graphic devices. It is important for the security analyst to analyze the mathematical model

of the cryptographic algorithm against inserting trapdoors attack [5]. It is hard to detect the

presence of backdoors in practical systems if the backdoor is inserted carefully [4].

Backdoor is a malicious way of bypassing the encryption or authentication mechanism of a

system. Mostly the backdoors are inserted, by the attackers, as a hidden code to get unau-

thorized access and to compromise a system. Backdoors are created in the secure system

by inserting some special credentials that are hard coded in the device or by changing the

security parameters. Major types of backdoors are:

• System Backdoor

• Application Backdoor

• Cryptographic Backdoor

6

System backdoors mostly allow the unauthorized access of the data at system level. In ap-

plication backdoor, the attacker modifies the application or a software to bypass the security

controls. The cryptographic backdoor aims the creation of cryptographic weakness in an

algorithm that can be easily exploited by the attacker to get the public and private keys of

the user [6].

2.2 The History of Backdoors

The word ”backdoor” has a long history. In old age, the backdoors are created in the castles

to ensure the security and safe exit during wars. In 1330 AD, the designers of Nottingham

castle build a secret tunnel inside the castle as a secure and safe exit in case of attack [7].

That backdoor was later used by the attackers to destroy the castle. Also in Maginot Line

Fortifications, the secret passage was created that helps them in war times. Similarly people

insert the backdoor inside the cryptographic codes that leaks the secret data for the attacker

without being noticed [7].

In 1980’s, the secret accounts were created that allow unauthorized remote access to the

system. In 1990’s the government proposed a fair cryptosystem i.e. the key escrow proposal

in which it is decided that the government and all other private companies save the copy

of their private keys that are used to decrypt the data. Later on any authorized third party

can access those keys for the justified reason. The information related to the private key is

only given to the authorized third party when the court orders are presented. Some of the

examples from the history are discussed here in which presence of backdoor in different

hardware and software products is detected [8] .

2.2.1 Clipper Chip

Clipper chip, officially known as MYK-78, is the voice and data encryptor device of

1990’s [9]. It was proposed by NSA, implemented for cryptographic phone and other secure

equipments. The users save the copy of the private keys in the database of the government

according to key escrow project. Such implementation permits the security agencies to get

the copy of the secret key and decrypt any traffic of their choice. The Clipper Chip is shown

in Fig.2.1.

The cryptographic algorithm used for encryption of data in the device is Skipjack (proposed

7

Figure 2.1: MYK-78 ”Clipper Chip”

by NSA) while key establishment takes place by using Diffie-Hellman key exchange pro-

tocol. The Skipjack algorithm was made public in 1998, it uses 80 bit length of key and

a symmetric algorithm for encryption. They manufacture it as a blackbox device in which

secret keys are inserted inside the device and a copy of that key is also saved in escrow.

In order to avoid misuse of the private keys by the security agencies the key is stored after

splitting it. Each security agency has one part of the key and to build the whole key the other

part is also required. So it is necessary to access the database of other agencies to recover

the encrypted data. The 80 bit secret key is build by XORing the other part of that key.

The Session key is established by using Diffie-Hellman key exchange protocol. The security

agencies need 128 bit key in order to rebuild the private key used for decryption of data. To

decrypt the message using clipper chip it is necessary to have a valid hash code of session

key. This 128 bit key is stored in the following manner. First the 128 bit key is divided into

parts and then each security agency stores one part in the database, this will avoid the misuse

of the key. When ever the security agency wants to retrieve the key they made the request to

access the databases of other agencies to get the other part. All the parts of the key are then

XORed to establish the original 128 bit key. Fig 2.2 shows the process of establishment of

128 bit key.

According to the Law enforcement agencies this helps to increase the security. This project

fails because of the development of other alternative cryptographic packages like PGP, Nau-

tilus etc. According to the cryptographers, if the best cryptographic algorithms are freely

8

Skipjack Encryp-
tion Algorithm

Hash of Ran-
dom Number

Session Key

HashEncrypted KeyKey ID

128 bit key (Key ID | | Encrypted Key | | Hash)

32 bits 80 bits 16 bits

Figure 2.2: Key Establishment in Clipper Chip

available then the use of clipper chip can be avoided [10]. In April, 1993 the project of

Clipper chip was announced. Then in July, 1993 NIST publish the review report to support

the project. In 1994, FIPS 185 approved the use of Escrowed Encryption Standard [11].

2.2.2 Lotus Notes

In 1990’s, the US government introduces the backdoor feature in Lotus Notes, called dif-

ferential cryptography. Because of the presence of backdoor, the effective key length of an

algorithm reduced to 40 bits. The device contains the public key of NSA in it. Commonly

the device is named as ”MiniTruth” or also called Big Brother.

The basic idea of the backdoor feature is that, when ever the device encrypts the plaintext,

24 bits out of 64 bits of the symmetric key used to encrypt the plaintext is encrypted with the

public key of the NSA. Now the final ciphertext comprises of the ciphertext of the plaintext

along with the ciphertext of the encryption key. The decryption on the other side will fails if

the ciphertext contain wrong ciphertext of the key part calculated using NSA public key. The

fact about the Lotus notes is public and mostly the users are aware of this weakness. Now

the NSA or the owner of the public key have to brute force for 40 bits only rather than full

64 bits of key in order to recover the plaintext [12]. It is difficult for the adversary to exploit

the backdoor if they don’t have the knowledge of the private key required to decrypt the 24

bits of key part. NSA requested Lotus to intentionally weaken the encryption system so that

the security agencies can easily decrypt the documents, emails, messages, secret chats etc.

Fig 2.3 describes the process of encryption carried out in Lotus Notes.

9

Encryption
Algorithm

RSA
Encryption

Symmetric Key

Ciphertext 2Ciphertext 1

Plaintext
data

NSA
Public key

Ciphertext 1 | | Ciphertext 2

24 bits of symmetric key

Figure 2.3: Example of Lotus Notes

2.2.3 Dual EC DRBG

Dual EC-DRBG was a Federal Institute of Processing Standards (FIPS) standard up till

2014. Dual elliptic curve Deterministic Random Bit Generator contain a cryptographic back-

door that is only accessible to the creator of the algorithm i.e.NSA. This include a specific

selection of elliptic curve points that later leaks the information of random bits generated

using that device [13]. Moreover this random number generator is very slow and the output

is biased. After 2007, the mathematicians indicates the presence of backdoor that leaks the

random bit information and the flaw was made public. It was a surprise that the algorithm

who faces a lot of criticism was included in the list of approved random number genera-

tor. According to [14], NSA paid 10 million dollars to use this backdoored random number

generator as a default in BSafe project. The process of random number generation in Dual

EC-DRBG is shown in Fig. 2.4.

a0 a1 a2

n1 n2

a1 = f(a0) a2 = f(a1)

n1 = g(a1) n2 = g(a2)

Figure 2.4: Dual Elliptic Curve Deterministic Random Bit Generator schematic diagram

10

In the Fig. 2.4, the f and g functions are elliptic curve point multiplications. When ever a

random number is generated the internal state of the EC-DRBG is updated i.e. form a0 to

a1. The updated value is calculated by using the elliptic curve point multiplication function

f and g. If the attacker learn the internal state at any instant then he can easily predict

the stream of random numbers generated by the EC-DRBG. NSA inserted a backdoored g

function that enables the attacker to learn the internal states and then calculate the bits of

generated random number.

According to NIST’s standard elliptic curve, the malicious elliptic curve points P and Q

are generated in such a way that P = dQ. These two points are preselected points and

knowledge of d opens a backdoor for the attacker. The f and g functions return only the x

coordinate of the elliptic curve point. Fig. 2.5 describes the malicious generation of random

bits using Dual EC-DRBG.

a0 a1 a2

n1 n2

a1 = (a0P)x a2 = (a1P)x

n1 = (a1Q)x n2 = (a2Q)x

Figure 2.5: Malicious Dual Elliptic Curve Deterministic Random Bit Generator

Now from n1 16 most significant bits are removed and remaining 30 bits are generated as

random stream. So the attacker can easily know the 30 bits of the generated random data

from the channel [15]. 16 bits can be easily brute force to recalculate the corresponding

y coordinate of n1 i.e. N = (n1x, n1y). Attacker knowns the secret value of d, so he can

calculate the next internal state by using the following Equations 2.1, 2.2 .

N = (a1Q) (2.1)

dN = d(a1Q) = a1dQ = a1P = a2 (2.2)

11

2.2.4 Debian OpenSSL PRNG

In 2006 [16], the non standard memory manipulation vulnerability was identified in Debian

OpenSSL PRNG. The keys are generated in a malicious way that enables the attacker to

recover TLS or SSH communication keys.

A pseudo random number generator takes the random seed as an input to introduce the

randomness in the output stream. If the seed is same then the output bits of the pseudo

random number generator is same. To introduce the randomness in OpenSSL, the processor

ID i.e. OpenSSL function RAND Bytes and some part of memory i.e. OpenSSL function

RAND add are used as the seed. In 2006, two lines of the source code were commented to

fix the warnings generated by a security tool. This results in the decreasing the space of seed

to 32,767 possible values [16]. Now the keys generated using OpenSSL is not random and

can be easily predictable because the randomness is created by the processor ID only. The

following code is commented form the md rand.c file [17].

MD Update(& m,buf,j);
[....]
MD Update(&m,buf,j); /* purify complains */

2.2.5 Heartbleed

In 2014, the vulnerability was introduced in Heartbleed. It enable the adversary to read

the protected memory of the system if vulnerable version of OpenSSL software was used

[18]. The problem is in the OpenSSL cryptographic library used in the implementation of

TLS or SSL. This malicious implementation lacks the capability of handling the Heartbeat

Extension packets that cause buffer over read and the attacker can read the protected memory

of the system.

2.2.6 Juniper Firewall

In 2015, the Juniper disclosed that in the result of an attack someone added a malicious code

in the operating system of NetScreen VPN routers. As the result of this malicious code two

vulnerabilities are created i.e. First, the attacker can bypass the authentication mechanism

to get remote access and secondly, the attacker can decrypt the VPN data [19]. The Fig.2.6

shows the administrative password i.e. <<< %s(un =′ %s′) = %u , to gain remote access.

12

Figure 2.6: Juniper Hard-coded Password

The second vulnerability is because of the backdoor present in Dual EC-DRBG. The attacker

inserts the Q i.e. the elliptic curve point, of his own choice that enables him to guess the

generated random bit stream and then to decrypt the VPN traffic. In 2013, the updated

version of Dual EC-DRBG was introduced that closes the backdoor for the attacker, but

the Juniper was still using the older version of the Dual EC-DRBG at the time of attack.

According to Langley [20]:

”In short, they used a backdoored RNG but changed the locks. Then this attack might be

explained by saying that someone broke in and changed the locks again”

2.2.7 WhatsApp Backdoor

In 2016, WhatsApp introduces an end to end encryption service. According to the security

experts it also introduces a backdoor that can be exploited by an attacker or the security

agencies [21]. This backdoor enables the attacker to intercepts and read messages. When

Alice sends the message to bob she has the public key of Bob. The message is encrypted by

the private key of Alice and then the public key of Bob. Now on the other side first Bob uses

his private key then the public key of Alice to read the message as shown below:

Alice Bob

S = EpubB(EpriA(message))

Sends(S)−−−−−−→

message = EpubA(EpriB(S))

If Bob is off line and Alice sends the message to Bob and before he receives the message,

let he reconfigure his WhatsApp account. As a result Bob regenerate new pair of public and

13

private keys. When he becomes on line he will receive the message send by Alice. The

message is re encrypted automatically by using the new keys generated by Bob. Now if

the attacker sends his own key to Alice then the message for Bob is now encrypted by the

attacker’s key. The attacker can easily read the message that is originally meant for Bob.

2.2.8 Bitcoin Wallet Backdoor

The digital currency like Bitcoins are stored securely in wallets. But if the backdoor is

inserted in the wallet the attacker can easily get the information related to private key of

the user. According to Berlin [22], the attack is successful if the attacker only watches the

blockchain until two malicious signatures of victim comes. The signature algorithm used in

the Bitcoin protocol is Elliptic curve digital signature algorithm. According to [22], if the

malicious version of signature algorithm is used then the attacker can easily construct the

private key and nobody other than the attacker can exploit the backdoor to rebuild the secret

key.

From past three years the Underhanded Crypto Contest is being organized and its theme

is to design the crypto backdoors in practical implementations that are difficult to detect [23].

In 2014, the winner of contest designs a backdoor for AES implemented in Internet of Thing

devices. In 2015, the contest includes the discussion on GunPG and Password hashing. In

2016, the winner of the contest designs Backdoor for cryptocurrency that produces a valid

signature for an invalid transaction.

Some other software and hardware backdoor includes the vulnerabilities in Back Ori-

fice [24], DSL gateway made of Sercomm hardware [25], PGP full disk encryption [26],

WordPress plug in [27], Joomla plug in [28], borland interbase [29], tcpdump [30], Cow-

erSnail [31], facebook server [32], NetSarang’s server management software [33], Android

smart phone [34], Factoring as a service project [35], Backdoor in SAT [36], DES [37, 38],

Monkey cipher [39] and many more. After Snowden revelations, the cryptographic research

community has begun to admit that we are facing more strong adversary and they have more

resources and computing power.

2.3 The Term ’Kleptography’

In today’s modern world, Cryptography plays an important role in achieving security. It

is very hard to design a cryptosystem that ensures proper implementation of cryptographic

14

protocol. In past, the cryptographic softwares and devices enable the users to gain advantage

of cryptographic security without facing the trust issues but now the correctness of the cryp-

tographic algorithm’s implementation is itself a question mark. In blackbox cryptosystem

the code is inaccessible to the user and inputs/outputs are the only things that are controlled

by the user of that device. It is impossible to differentiate the output of an honest device

from the output of a malicious device. So, blackbox cryptography can easily exploit the

cryptographic device without being noticed.

A SETUP is a secure mechanism of inserting a trapdoor in a cryptosystem. The attacker

uses public key cryptography to change the code in such a way that attacker’s public key

is inserted inside the cryptographic algorithm that is used to compute the private key of an

honest user, while the private key of the attacker is used to derive the private key of the user.

The SETUP attacks are of three types i.e. regular, weak and strong SETUP attack. Following

are the features of regular, weak and strong SETUP attack in 2.3.1, 2.3.2, 2.3.3.

Definition 2.3.1. Let’s suppose C is a tamper proof cryptosystem whose public parameters

are known to adversary. In a regular SETUP attack the algorithm C s is changed to make it

C” so that the following properties are satisfied.

• The input parameters of an altered algorithm C” and an honest algorithm C, are same.

• Attacker’s public key, which resides with in the cryptosystem, is used in the calculation

of parameters that are changed in C”.

• Attacker’s private key is known only to the attacker and it does not exist with in the

cryptosystem C”.

• The cipher text produced by C” fulfills the public specifications of the output of an

algorithm C. The cipher text must contain the meaning full data about the secret key

of the user which can be easily derived by the attacker.

• The output of C and C” is computationally indistinguishable in polynomial time for

the adversary except for the attacker.

• If the presence of backdoor is exposed by the reverse engineer even then the adversary

is unable to use that backdoor information to find the past and future keys, except the

attacker.

15

Definition 2.3.2. A weak SETUP attack fulfills all the conditions of regular SETUP attack

except that the output of C and C”is computationally indistinguishable in polynomial time

not only for the attacker but also for the owner of the device.

The weak SETUP attack is useful when the controller of the device is interested to leak his

own private key and after that he can securely communicate using that channel. He is aware

of the presence of the backdoor but except attacker and owner of device, no one else can

compromise the device or use that information to derive the private key of the cryptosystem.

In strong SETUP attack, we assume that in the cryptosystem the SETUP code is applied

with 50% probability and with 50% probability the cryptosystem runs an honest code for

generating the output. It is strong type of attack compared to regular SETUP. As in this

attack if the output is given to the user still he is unable to guess whether or not the output is

meaningful.

Definition 2.3.3. A strong SETUP attack fulfills all the conditions of regular SETUP attack

along with an additional notion. We assume that the cryptosystem is in access of the user

and he can reverse engineer that device any time but still he is unable to get the knowledge

of past and future keys also he cannot guess by only seeing the output that the SETUP code

is applied or not.

In SETUP attack, the information leakage using backdoor does not require separate commu-

nication channel for the transmission of secret key. In the presence of backdoor, the private

key of the user can be calculated by the attacker in a polynomial time. The reverse engineer

can only detect the presence of the backdoor but he is unable to use that trapdoor information

to reconstruct the future or past private key of the user.

2.4 Literature Review

Kleptography is the study of stealing secure data secretly and subliminally. It is the sub-

field of cryptovirology [73]. The concept of getting information without actually breaking

the cryptosystem was introduced by Adam Young and Moti Yung two decades ago [74]. In

present, still the stealing of information in an unnoticeable way is a serious threat for the

modern cryptography. Strength of the cryptosystem was defined by analyzing it’s security

against cryptanalysis attacks that takes an average of 2128 operations [75] for the key size

16

of 128 bits. Different researches proved that exploiting the implementation errors of crypto-

graphic algorithm needs less efforts as compared to attacking its mathematical structure.

In 1996 [74], Young and Yung introduces the mechanism of inserting trapdoor inside the

blackbox cryptosystem. The backdoor is only useful for the manufacturer or the attacker and

no one else from the adversary can exploit that backdoor to derive the private key informa-

tion. They proposed the Secretly Embedded Trapdoor with Universal Protection (SETUP)

for RSA, ElGamal, DSA, and Kerberos. They also proved that the blackbox implementation

of cryptosystem in no more secure.

In 1997 [76], the definition of weak, strong, regular SETUP attack along with the m out

of n leakage bandwidth was introduced. They also presented the SETUP attack against the

algorithms based on discrete logarithm problem. They implemented the proposed SETUP

attack strategy against diffie hellman key exchange protocol. They also improved the strong

SETUP attack against RSA public key algorithm. In 1997 [77], strong SETUP attack against

ElGamal, DSA, Schnorr signature algorithm. Menezes Vanstone, MTI two pass protocol and

Girault key agreement protocol was presented. They also introduced the term Kleptogram.

In 2001 [78], a new attack methodology was presented in which the attacker knows one part

of the information from which the private key of the user is easily derived. They imple-

mented the proposed attack against ElGamal and DSA. In 2003 [79], they presented four

schemes of inserting backdoor in RSA key generation method. In three schemes the p and q

are generated using standard manner but d and e are generated in such a way that they only

appear to be random but in real they can easily be factorized by the attacker or the manufac-

turer. While in the last scheme half bits of p are represented in n that makes the factorization

possible using Coppersmith’s method.

In 2003 [80], the backdoor inserting mechanism in symmetric key ciphers is discussed. The

Monkey cipher leaks the information related to the symmetric key of the user. The attacker

only needs sufficient amount of ciphertext of unknown plaintext encrypted using same sym-

metric key to get the knowledge of secret key. In 2005 [81], strength of inserting backdoors

is explained against RSA key generation algorithm. They also highlight the importance

of analyzing the security of code as well as it’s implementation for securing the overall

cryptosystem instead of trusting the manufacturer of the cryptosystem. In 2005 [82], the

implementation of trapdoor in RSA key generation is proposed that reduces the subliminal

17

channel. The proposed method is a lightweight solution so it can easily implemented in

hardware or software.

In 2006 [83], they present the backdoor inserting mechanism against elliptic curve cryp-

tosystem that is based on factorization problem i.e. elliptic curve version of RSA encryption

and signature algorithm. In 2010 [84], an improved version of SETUP attack against RSA

using elliptic curve was proposed using a new primitive i.e. covert key exchange. They used

small bandwidth while the error probability is also very small. In 2015 [85], the stateless al-

gorithm substitution is introduced. The technique is used to introduce symmetric backdoors

in encryption algorithms that helps in mass surveillance. In 2016 [86], the subversion model

was presented along with different kleptographic attack models.

Conclusion

In this chapter, the history of backdoor attacks is discussed along with the method to exploit

such types of attacks. Introduction to the term Kleptography is also presented along with the

definition of regular, weak and strong SETUP attack. This chapter also includes the review

of the literature related to the concept of kleptography.

18

Chapter 3

ELLIPTIC CURVE CRYPTOGRAPHY

Introduction

This chapter gives the basic introduction of Elliptic curve cryptography. The section 3.1,

describes the basic mathematics of an elliptic curves. In section 3.2, the cryptographic pro-

tocols based on an an elliptic curves are discussed. Finally, in section 3.3, some applications

of an elliptic curve cryptography are presented.

3.1 Elliptic curves

Elliptic curve is an algebraic curve defined over a non singular Equation 3.1. This type of

equation is called Weierstrass Equation [40]. It is an important field of number theory. Many

applications of elliptic curves are present in the field of cryptography [41].

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (3.1)

Where a1, a2, a3, a4, a6 are real numbers and E is the elliptic curve defined over the field F.

The equation is non singular if its discriminant is non zero.

Definition 3.1.1. If α is the root of the polynomial than the discriminant of a polynomial

defined as:

M=
∏

i 6=j(αi − αj)

Definition 3.1.2. If F is the field of the polynomial than the characteristics of field is the

smallest positive integer s such that s× 1 = 0 where 1 is multiplicative identity of the field.

The non singularity of an elliptic curve ensures that it does not have self intersecting points.

The equation 3.1 can be simplified on the bases of characteristics of the underlying field [40].

If the characteristic of the field is 6= 2 or 3, then the equation 3.1 can be transformed in

Equation3.2.

y2 = x3 + ax+ b (3.2)

19

Where a,b are real numbers. So the M= −16(4a3+27b2). If characteristics of the underlying

field is 2 then there are two possible cases:

• The curve is non supersingular and it has the equation of the form:

y2 + xy = x3 + ax2 + b (3.3)

where a,b are real numbers and its discriminant is b

• The curve is supersingular and it has the equation of the form:

y2 + cy = x3 + ax2 + b (3.4)

where a,b,c are real numbers and its discriminant is c4.

3.1.1 Group Law

An elliptic curve supports the addition and multiplication of two points in order to find

the third point residing on the curve. Let W = (x1, y1) and Z = (x1, y1) are two points

on an elliptic curve having characteristic 6= 2 or 3, then the sum of these two points i.e.

W + Z = (x3, y3) and w 6= ±Z, can calculated by using the Equation 3.5 3.6 [40].

x3 = (
y2 − y1
x2 − x1

)2 − x1 − x2 (3.5)

y3 = (
y2 − y1
x2 − x1

)(x1 − x3)− y1 (3.6)

If an Elliptic curve is supersingular then Equation 3.7 3.8 is used for the addition of two

points i.e. W + Z = (x3, y3) [40].

x3 = (
y1 + y2
x1 + x2

)2 + x1 + x2 (3.7)

y3 = (
y1 + y2
x1 + x2

)(x1 + x3) + y1 + c (3.8)

If an elliptic curve is non supersingular then Equation 3.9 3.10 is used for the addition of

two points i.e. W + Z = (x3, y3) [40].

x3 = (
y1 + y2
x1 + x2

)2 + (
y1 + y2
x1 + x2

) + x1 + x2 + a (3.9)

y3 = (
y1 + y2
x1 + x2

)(x1 + x3) + x3 + y1 (3.10)

To add a point to itself i.e. If W = (x1, y1) then W +W = 2W = (x3, y3) can be calculated

using the Equation 3.11 if the characteristics is 6= 2 or 3. 3.12 [40].

20

x3 = (
3x21 + a

2y1
)2 − 2x1 (3.11)

y3 = (
3x21 + a

2y1
)(x1 − x3)− y1 (3.12)

If an Elliptic curve is supersingular then Equation 3.13 3.16 is used for the point doubling

i.e. W +W = (x3, y3) [40].

x3 = (
x21 + a

c
)2 (3.13)

y3 = (
x21 + a

c
)(x1 + x3) + y1 + c (3.14)

If an Elliptic curve is non supersingular then Equation 3.15 3.14 is used for the point dou-

bling i.e. W +W = (x3, y3) [40].

x3 = (
x1 + y1
x1

)2 + (
x1 + y1
x1

) + a (3.15)

y3 = x21 + (
x1 + y1
x1

)(x3) + x3 (3.16)

If the point W = (x1, y1) then negative of the point is : −W = (x1,−y1). When the point is

added to its negative then the result is the point of infinity i.e. W + (−W) = 0, where 0 is

the additive identity of Elliptic curve [41].

The points on an elliptic curve must have a primitive element that is used to generate the

entire group elements. The group having a generator or the primitive element of the group

is called the cyclic group. Some other properties of the group are:

Definition 3.1.3. A Group is a set of elements G along with the operation ∗ on G such that

the following properties should hold:

• The group operation ∗ is closed, such that if the operation is performed on an elements

that belong to group G then the result is also in G i.e. for all x, y ε G,x * y = zε G.

• The group operation ∗ is associative for all elements that belong to G i.e. for all x, y, z

ε G, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

• There exists an identity element 1ε G such that for all xε G, x ∗ 1 = 1 ∗ x.

• There exists an inverse of an element that belong toG such that for all x ε G, x∗x−1 =

x−1 ∗ x = 1.

• The group is commutative under operation ∗ i.e. for all x, y ε G, x ∗ y = y ∗ x.

21

If the group satisfy all the properties, then the group is abelian under the operation ∗. In

cryptography both ,the additive in which the group operation ∗ denotes addition and multi-

plicative groups in which the group operation ∗ denotes multiplication, are used [42].

Total number of points on an elliptic curve defines the order of the group. Following example

shows the procedure to find the total number of points on an elliptic curve.

For example: E : y2 = x3 + x+ 3 mod 7 ,and the primitive point is W = (x1, y1) = (4, 1)

• 2W= W+W = (4,1)+(4,1) = (x3, y3) = (6,6)

x3 = (
3(4)2 + 1

2(1)
)2 − 2(4) mod 7 y3 = (

3(4)2 + 1

2(1)
)(4− 6)− (1) mod 7

x3 = ((3(4)2 + 1)(4))2 − 2(4) mod 7 y3 = ((3(4)2 + 1)(4))(4− 6)− (1) mod 7
x3 = ((49)(4))2 − (8) mod 7 y3 = (49)(4)(−2)− (1) mod 7
x3 = ((0)− (8) mod 7 y3 = (0)− (1) mod 7
x3 = 6 y3 = 6

• 3W= 2W+W = (6,6)+(4,1) = (x3, y3) = (5,0)

x3 = (
1− 6

4− 6
)2 − (6)− (4) mod 7 y3 = (

1− 6

4− 6
)(6− 5)− (6) mod 7

x3 = ((5)(4))2 − (6)− (4) mod 7 y3 = (5)(4)(6− 5)− (6) mod 7
x3 = (20)2 − (10) mod 7 y3 = (20)(1)− (6) mod 7
x3 = ((36)− (3) mod 7 y3 = ((6)− (6) mod 7
x3 = 5 y3 = 0

• 4W= 2W+2W = (6,6)+(6,6) = (x3, y3) = (6,1)

x3 = (
3(6)2 + 1

2(6)
)2 − 2(6) mod 7 y3 = (

3(6)2 + 1

2(6)
)(6− 6)− (6) mod 7

x3 = ((3(6)2 + 1)(3))2 − 2(6) mod 7 y3 = ((3(6)2 + 1)(3))(6− 6)− (6) mod 7
x3 = ((109)(3))2 − (12) mod 7 y3 = (109)(3)(0)− (6) mod 7
x3 = ((25)− (12) mod 7 y3 = ((0)− (6) mod 7
x3 = 6 y3 = 1

• 5W= 4W+W = (6,1)+(4,1) = (x3, y3) = (4,6)

x3 = (
1− 1

4− 6
)2 − (6)− (4) mod 7 y3 = (

1− 1

4− 6
)(4− 6)− (1) mod 7

x3 = ((0)(−2))2 − (6)− (4) mod 7 y3 = (0)(−2)(4− 6)− (1) mod 7
x3 = ((0)(3))2 − (6)− (4) mod 7 y3 = (0)(−2)(−2)− (1) mod 7
x3 = ((0)− (10) mod 7 y3 = ((0)− (1) mod 7
x3 = 4 y3 = 6

Now finally, for finding 6W ,we add 3W and 3W in the following way:

22

• 6W= 3W+3W = (5,0)+(5,0) = (x3, y3) = (O)

x3 = (
3(5)2 + 1

2(0)
)2 − 2(5) mod 7 y3 = (

3(5)2 + 1

2(0)
)(∝ −6)− (0) mod 7

x3 = ((3(5)2 + 1)(∝))2 − 2(5) mod 7 y3 = ((3(5)2 + 1)(∝))(0− 6)− (0) mod 7
x3 = O y3 = O

So the order of the group is 6 as six points lie on the curve. The Hasse’s theorem 3.1.1 can

also be used to find the approximate number of points on an elliptic curve.

Theorem 3.1.1. If E mod n, is an elliptic curve then the number of points on an elliptic curve

is defined in the following range:

n+ 1− 2
√
n ≤ no of points ≤ n+ 1 + 2

√
n

3.2 Elliptic Curve Discrete Logarithm Problem

In 1985, Neal Koblitz and Victor S.Miller introduced the use of elliptic curves in cryptog-

raphy [43]. In an elliptic curve the public key cryptography was based on Elliptic Curve

Discrete Logarithm Problem (ECDLP) 3.2.1.

Definition 3.2.1. If E is an elliptic curve defined over finite field. So, given the points of an

elliptic curve i.e. P and G, discrete logarithm problem is to find x such that xP = G.

The x is the private key information in elliptic curve cryptosystem [44], where as P and G

are the points of an elliptic curve. So the adversary needs to find how many times P is added

to itself to get G. If the attacker is able to solve the Elliptic curve discrete logarithm problem

then he can successfully break the elliptic curve based public key cryptosystem.

Elliptic curve discrete logarithm problem is stronger than the discrete logarithm problem

of finite fields. Under certain conditions, exponential time algorithm was the only algo-

rithm that reduces the complexity of solving elliptic curve discrete logarithm problem until

1990 [45]. While, many algorithms exists to solve the discrete logarithm problem i.e. baby

step giant step algorithm [46], Pollard’s rho method [47], index calculating method [48]etc.

Later in 1993, Menezes, Okamoto and Vanstone (MOV) method was introduced by Albert

Menezes, Tatsuaki Okamoto and Scott Vanstone to reduce the complexity of solving elliptic

curve discrete logarithm problem but it only works for supersingular elliptic curves [49].

23

The point G can be found by performing point multiplication of x and p. In elliptic curve the

point multiplication is similar to exponentiation function. An efficient method to compute

xP is Double and Add algorithm. The working of double and add algorithm is explained

in Algorithm1.

Algorithm 1 Double and Add Algorithm
1: procedure DOUBLE AND ADD

2: Input: An elliptic curve E, an elliptic curve point P and an integer x.
3: Initialization: P=G and D= O
4: While x > 0
5: If x = 1 mod 2 , D= D+ G
6: G = 2G and x = bx

2
c

7: If x > 0, go to step 4
8: Return
9: R

10: Output: R = G = xP .

For example : Let an elliptic curve is E: y2 = x3 +14x+19 mod 3623. If P= (6,730). Find

13P?

Table 3.1: Double and Add algorithm to compute : 13P
Step i x G= 2i P D
0 13 (6,730) O
1 6 (2521,3601) (6,730)
2 3 (2277,502) (6,730)
3 1 (3375,535) (2398,3047)
4 0 (1610,1851) (1330,144)

So 13 P = (1330,144). There are many elliptic curves based protocols that are used to encrypt

messages, to sign message, to establish shared key among two or parties and to generate

random numbers. Some Elliptic curve based protocols are described in the following section.

3.2.1 Edwards Curve Digital Signature Algorithm

Edwards Curve digital signature algorithm was developed in 2012 based on Twisted curves

[50]. It is a variant of Digital Schnorr’s signature. It runs faster than other existing signature

algorithm while avoiding security issues. Following are some of the features of Edward

curve Digital signature algorithm (EdDSA).

• The algorithm for verification of single signature works very fast.

24

• The algorithm used for the verification of a batch of signatures takes less time as

compare to existing signature verification algorithms.

• The signature algorithm also runs very fast.

• The public and private key generation algorithm is also very fast.

• The security level is equivalent to the security level provided by th existing algorithms

.i.e.2128.

• The key generation require random numbers but new signatures are deterministic. It

has fool proof generation of session keys.

• Collision of hash function does not compromise the security of the signature algo-

rithm.

• It produces small size signatures and also uses small key for signature .i.e 64 byte

signature and 32 bytes key.

In EdDSA the twisted Edward curves are used instead of weierstrass curves [51]. If f is non

zero constant and e=1, then twisted Edward curve is described in Definition 3.2.2.

Definition 3.2.2. Suppose EEe,f
is a twisted elliptic curve over a finite field having charac-

teristic 6= 2, then it is defined by the following equation:

EEe,f
: ex2 + y2 = 1 + fx2y2

Let (x1, y1) and (x2, y2) be any two points on an elliptic curve then the addition of the points

i.e. (x1, y1)+ (x2, y2)= (x3, y3), on EEe,f
is calculated by using the Equation 3.17

(x3, y3) = (
x1y2 + y1x2

1 + fx1x2y1y2
,
y1y2 − ex1x2
1− fx1x2y1y2

) (3.17)

In twisted Edward curves, if P = (x1, y1) is a point on the curve then the negative of the

point P is (−x1, y1). Point doubling or multiplication function of the point i.e. 2(x1, y1) =

(x3, y3), is performed by using the Equation3.18.

(x3, y3) = (
2x1y1
ex21 + y21

,
y21 − ex21

2− ex21 − y21
) (3.18)

25

The security of the EdDSA strongly depends on the selection of an elliptic curve parameters

that were selected to sign the message. Edward Digital Signature algorithm has the following

parameters:

• An integer b such that 2b−1 > q and it defines the number of bits of public key.

• A one way hash function Hash that gives the output value of 2b bits.

• An odd prime power q that defines the finite field for the elliptic curve while (0,1) is

the neutral element of the group.

• The (b-1) bit encoding Enc of an elements of finite field.

• A non-square element d from the finite field.

• A large prime l such that l[G] = 0 and the generator of a group is G [52].

The 2b bit string of (Enc(R), Enc(Sig)) is send as the signature of the message msg using

the secret key k of b bits. Let Hash of secret key k is:

Hash(k) = (h0, h1,h2b−1)

If a is the private key of the user than a is calculated as :

a = 2b−2 +
∑

3≤i≤b−2 2
ihi

A = a[G] is the public key of the user. The symbol a[G] represents the elliptic curve point

multiplication. r is the one time key, unique for every message is calculated as:

r = Hash((hb,h2b−1),msg)

In EdDSA r must be kept secret and random for each message. In the calculation of r, msg

is different so it introduce randomness while (hb,h2b−1) is same because it is one of

the half of secret key k. It is noted that if same r is used for two different messages then

attacker can recover the private key information [50] that is further misused to create a valid

signature of a fake message. The Enc is a b bit little endian encoding function. Little and

Big endian encoding is just the way of representing the numbers in bytes. In this convention

the least significant bytes comes first. Last three bits of the signature are 0 because mod l fits

26

the signature in b-3 bits. In order to forge the signature the attacker must wanted to gain the

knowledge of a and for this he have to solve the elliptic curve discrete logarithm problem.

The signature of message msg and verification process of that signature is described as

follows:

Sender Verifier

A = a[G]

R = r[G]

x = Hash(Enc(R), Enc(A),msg)

Sig = (r + (x)a)modl

(Enc(R),Enc(Sig))−−−−−−−−−−−−→

8Sig[G] = (x1, y1)

x = Hash(Enc(R), Enc(A),msg)

8R+ 8xAmodl = (x2, y2)

V erified

If : (x1, y1) = (x2, y2)

3.2.2 Elliptic Curve Diffie Hellman Key Exchange Scheme

Elliptic curve diffie hellman key exchange protocol is an anonymous key exchange protocol

that enables two honest parties to build the shared secret using their public and private key

information in order to communicate over an insecure channel.

In Elliptic curve diffie hellman (ECDH) key exchange protocol, both sender and receiver

first agreed on the domain parameters. The domain parameters of ECDH are: E is an elliptic

curve define over a finite field, G is an elliptic curve point also called the generator of the

group. An integerKsen is the private key whileA = Ksen[G] ε {1, 2,, n−1} is the public

key of the sender that is calculated by multiplying Ksen by a elliptic curve point G similarly

an integer Krec ε {1, 2,, n − 1} is the private key while B = Krec[G] is the public key

of the receiver. n is the order of the group. Key is the final shared secret key between two

parties that is used for communication. The key exchange protocol is explained below:

27

Sender Receiver

Choose : Ksenε{1,n− 1} Choose : Krecε{1,n− 1}

A = Ksen[G] B = Krec[G]

A

B

Key = Ksen[B] = KsenKrec[G] Key = Krec[A] = KrecKsen[G]

For example: If E: y2 = x3 + 2x + 2 mod 17, total no of points on an elliptic curve are 19

and G=(5,1). Let the sender’s private key is Ksen = 5 and receiver’s private key is Krec = 9.

Then the protocol works in the following way:

Sender Receiver

Choose : Ksen = 5 Choose : Ksen = 9

A = 5(5, 1) = (9, 16) B = 9(5, 1) = (7, 6)

A

B

Key = 5(7, 6) = (0, 6) Key = 9(9, 16) = (0, 6)

The adversary only has the knowledge of public keys of sender and receiver. So, one can not

calculate the final shared key from public key information only. The adversary can find the

secret key if he has the algorithm to solve elliptic curve diffie hellman problem in polynomial

time [53]. The diffie hellman problem (ECDHP) is explained in Definition 3.2.3.

Definition 3.2.3. Suppose the adversary has the knowledge of an elliptic curveE define over

the finite field, the elliptic curve pointG, the public keys of sender and receiverA = ksen[G],

28

B = Krec[G] for some unknown values of ksen, Krec. Then elliptic curve diffie hellman

problem is to find an elliptic curve point Key = ksenKrec[G] in a polynomial time.

If one can find any algorithm that can solve elliptic curve discrete logarithm problem then

that algorithm can definitely solve elliptic curve diffie hellman problem. So ECDLP is as

hard as the solving ECDHP. The diffie hellman key exchange protocol is secure as long as

ECDHP is a hard problem in polynomial time.

3.2.3 Elliptic Curve Digital Signature Algorithm

Elliptic curve digital signature algorithm (ECDSA) is an elliptic curve version of digital

signature algorithm [54]. ECDSA used small key size as compare to DSA but provides

same security level. In 1998, American National Standards Institute (ANSI) uses ECDSA as

their standard algorithm for signature [55]. Conceptually the ECDSA resembles with DSA

but computationally both are very different.

Ifmsg is the message and e = Hash(msg), then Elliptic curve digital signature is calculated

in the following way:

Signer Verifier

(x1, y1) = k[G]

r = x1modn(r 6= 0)

Sig = k−1(ze + rda)modn(Sig 6= 0)

msg, (r, Sig)

w = Sig−1modn

u1 = zewmodn

u2 = rwmodn

(x1, y1) = u1[G] + u2[Qa]

If : r = x1modn

Return : True

Initially both the sender and receiver agreed on the specific elliptic curve parameters: an

29

elliptic curve E define over finite a field, an elliptic curve point G also called the base point

or the generator of the group. The order of the group is n such that n[G] = 0. Signer

choses his private key da ε {1, 2,, n − 1}, while Qa = da[G] is his public key. If ln

is the bit length of n then ze = ln leftmost bits of e. Hash is one way hash function. k

is cryptographically secure random number unique for every signature otherwise one can

easily calculate the private key of the sender by using the Equation 3.20. So while signing

the message using an elliptic curve digital signature algorithm, the sender should be ensure

that the k is randomly selected. The receiver receives the Signature, first he will verify that

if the r, Sigε{1, 2,, n− 1}. Then perform the verification steps.

For example: Let E is an elliptic curve defined over a finite field having equation: y2 =

x3+2x+2 mod 17, the order of the group is n = 19. The base point is G =(5,1), the private

key of the sender is da = 7 while his public key Qa = 7(5,1)=(0,6). Let hash of msg = e =

26 while k = 10 then signature of the message is calculated below:

Signer Verifier

(x1, y1) = 10(5, 1) = (7, 11)

r = x1modn(r 6= 0)

Sig = 10−1(26 + 7× 7)mod19 = 17

msg, (r, Sig)

r, Sigε{1, 2,, n− 1}

w = 17−1mod19 = 9

u1 = 9× 26mod19 = 6

u2 = 9× 7mod19 = 6

(x1, y1) = 6(5, 1) + 6(0, 6)

(x1, y1) = (7, 11)

If : 7 = 7mod19

Return : True

30

Let (r, Sig) and (r, Sig′) are two signatures of messages msg and msg′, signed by same

k. So, attacker calculates k = by using Equation 3.19. The value of ze and z′e can be easily

calculated by the attacker as the message is known to him while Sig and Sig′ can be captured

through channel. Now putting the values in Equation 3.20, the attacker can get the private

key information of the sender.

k =
ze − z′e

Sig − Sig′
(3.19)

da =
Sig × k − ze

r
(3.20)

3.2.4 Elliptic Curve Integrated Encryption Scheme

Elliptic curve Integrated Encryption scheme is one of the best schemes used in different cryp-

tographic standards [56]. ECIES was developed in 2001 by Victor Shoup and was adopted as

a standard in American National Standards Institute (ANSI), Institute of Electrical and Elec-

tronics Engineers (IEEE), International Organization for Standardization (ISO) etc [57, 56].

ECIES hides data as well as the symmetric key, used to encrypt or decrypt the data, using an

asymmetric key [58]. If msg is the desired message then the encryption and decryption is

performed in the following way:

Sender Receiver

R = rs[G]

P = (px, py) = rs[Qa]

kenc||km = KDF (px||S1)

ct = Encrypt(kenc,msg)

tag =MAC(kmac, ct||S2)

R||ct||tag

P = (px, py) = ka[R]

kenc||kmac = KDF (px||S1)

tag =MAC(kmac, ct||S2)

msg = Encrypt−1(kenc, ct)

31

In order to send the message to the receiver, first both parties agreed on the following domain

parameters: any standard Key Derivation Function (KDF), Message Authentication Code

(MAC) and a symmetric encryption scheme. KDF is a function that can build one or more

secret keys using a master key, passphrase or a password [59]. MAC is a piece of data used

to ensure authentication of message while symmetric encryption scheme is a mechanism in

which same key is used for encryption and decryption.

E is an elliptic curve defined over a finite field, G is an elliptic curve point also called base

point, n is the order of the group, Qa = ka[G] is the public key of the sender while ka ε

{1, ...n− 1} is his private key. Qa = ka[G] represents an elliptic curve point multiplication.

rsε {1, ...n−1} is a random number. kenc is the key used for symmetric encryption function,

kmac is the key for MAC function. S1 and S2 is the pre-shared information and its optional

[60]. || notation is used as a symbol of concatenation of two values. Encrypt is a symmetric

key encryption function. px is the x coordinate of an elliptic curve point.

The security of elliptic curve integrated encryption scheme depends on the hardness of ellip-

tic curve diffie hellman problem. It provides security against chosen plaintext and ciphertext

attack [60].

A lot of attacks against elliptic curve integrated encryption schemes are presented but they

are only based on theoretical assumptions [61]. The most important practical attack against

elliptic curve integrated encryption scheme is Benign malleability. This vulnerability arises

when the public key of sender R is not included in the KDF function instead only its x

coordinate is included. This can cause a successful chosen ciphertext attack. So far no

practical attack has been launched that exploit this vulnerability but it is important to avoid

such mistakes [57].

Solved example of elliptic curve based integrated encryption scheme is presented below.

For example: Let Eis an elliptic curve defined over a finite field having equation: y2 =

x3 + 2x + 2 mod 17, the order of the group is n = 19. The base point is G =(5,1), the

private key of the sender is rs = 3 while his public key R = 3(5,1)=(10,6).The private key

of the receiver is ka=5 while his public key is Qa = ka[G] =5(5,1)=(9,16). Let S1 =1 and

S2 =2.Let msg =10 then signature of the message is calculated below:

32

Sender Receiver

P = 3(9, 16) = (3, 16), S = 3

kenc||km = KDF (3||1) = 4||5

ct = Encrypt(4, 10) = 9

tag =MAC(5, 9||2) = 8

((10, 6)||9||8)

P = 5(10, 6) = (3, 16), S = 3

kenc||kmac = KDF (3||1) = 4||5

tag =MAC(5, 9||2) = 8

msg = Encrypt−1(4, 9) = 10

3.2.5 Elliptic Curve Qu-Vanstone Implicit Certificate

In cryptography, the public key certificates are used to verify the ownership of the public key

information present in the certificate. The Implicit certificates are used as the replacement of

traditional public key certificates. This technique is suitable for highly constrained environ-

ments. Implicit certificates enables the person to derive the public key and the private key

is known to the party whose identity is associated with the certificate, there is no rule that

nobody knows the private key [62]. Elliptic curve Qu-Vanstone (ECQV) is a kind of implicit

certificate. The certificate is generated in the following way [63]:

In order to request the CA to generate the certificate first it is necessary to agree upon the

domain parameters. E is an elliptic curve defined over a finite field where as n is the order

of the group. G, the generator, is an elliptic curve point. Cca = c[G] is the public key

of certificate authority (CA) while c is his private key. c[G] represents the elliptic curve

point multiplication. IDa is the identity of the user. ENCode is an encoding function

while Hash is one way hash function. The user generate a random number a ε{1, ...n− 1}

while b ε{1, ...n− 1} is the random number generated by the certificate authority(CA). The

generation of public and private key pair is shown below: [63]

33

Alice Certificate Authority

A = a[G]

A, IDa

D = A+ b[G]

certificate = ENCode(D, IDa)

E = Hash(certificate)

R = Eb+ cmodn

R, certificate

Ppub = E[D] + Cca

Ppri = Ea+Rmodn

Implicit certificates contain the information like ID, public key and the digital signatures

but the certificate is very small in size [62]. Certificate Authority’s (CA) signature are not

required if the implicit certificates are in use. The user extract the public key and perform

the verification operation, if the certificate is expired the operation will fail.

In traditional public key certificate the certificate authority signs the certificate and the user

knows the public and private key but in implicit certificate it is very easy to generate a

certificate with out knowing the private key. So this will create the possibility of denial of

service attack. As according to the protocol, the attacker does not know the value of the

private key associated with the fake public key. The knowledge of the private key is only

possible if the attacker knows the private key of the certificate authority.

For example: Let E is an elliptic curve defined over a finite field having equation: y2 =

x3 + 2x + 2 mod 17, the order of the group is n = 19. The base point is G = (5,1),

Alice generates a random number a = 4 and the random number selected by certificate

authority is b =2. The private key of the certificate authority is cs = 3 while his public key

is Cca = c[G] = 3(5,1) = (10,6). The public and private keys for Alice using elliptic curve

Qu-Vanstone implicit certificate is calculated below:

34

Alice Certificate Authority

A = 4(5, 1) = (3, 1)

(3, 1), 2

D(3, 1) + 2(5, 1) = (16, 13)

certificate = ENCode((16, 13), 2)

certificate = 13

E = H(13) = 12

R = 12× 2 + 3mod19 = 8

8, 13

Ppub = 12(16, 13) + (10, 6) = (5, 16)

Ppri = 12× 4 + 8mod19 = 18

3.2.6 Elliptic Curve ElGamal Encryption Scheme

ElGamal encryption scheme was proposed by Taher ElGamal in 1985 [64]. Elliptic curve

based ElGamal encryption scheme was based on the hardness of elliptic curve discrete log-

arithm problem. This is an asymmetric encryption scheme that provides an extra layer of

security by encrypting the key. The encryption of the message msg is performed in the

following way:

Sender Receiver

c1 = a[G]

c2 = msg + a[R]

c1, c2

msg = c2 − r[c1]

LetE is an elliptic curve define over a finite field. G is an elliptic curve base point where as n

35

is the order of the group. The public key of the receiver is R = r[G] where r ε {1,n− 1},

is his private key. r[G] represents the elliptic curve point multiplication. aε {1,n− 1} is

the random number chosen by the sender.

For example:Let Eis an elliptic curve defined over a finite field having equation: y2 =

x3 + 2x + 2 mod 17, the order of the group is n = 19. The base point is G = (5,1),Sender

generates a random number a = 3. The private key of the receiver is r=5 while his public

key is R = r[G] =5(5,1) = (9,16). The message is msg = (11,10) and the encryption is

performed in the following way:

Sender Receiver

c1 = 3(5, 1) = (10, 6)

c2 = (11, 2) + 3(9, 16)

c2 = (11, 10) + (3, 16) = (11, 7)

c1, c2

msg = (11, 7)− 5(10, 6)

msg = (11, 7)− (3, 16) = (11, 10)

Any one can calculate c2 if he knows the value of msg so it is compulsory to select differ-

ent and unique random number a for every message in order to improve the security. The

ElGamal encryption scheme is vulnerable to chosen ciphertext attack so specified measures

should be taken to reduce the possibility of chosen ciphertext attack [65].

3.3 Application of Elliptic curve Cryptography

The elliptic curve cryptography is widely used in the world to perform encryption, signature,

secure key agreements and generating random numbers [66,64]. Elliptic curve cryptography

is famous for its small key size, fast implementation of encryption or signature functions and

better security as compared to other public key cryptosystems. In 1999, NIST recommended

15 safe elliptic curves [67]. In 2007, some backdoors are introduced in an elliptic curves

[68], so the safecurve project was started to introduce the elliptic curves that are secure and

36

easy to implement and have less chances of the presence of backdoors [69].

No known algorithm can solve the elliptic curve discrete logarithm problem or elliptic curve

diffie hellman problem in polynomial time, so it is secure to use elliptic curve cryptogra-

phy. They consumes less storage space while encryption, so they perform efficiently in

constrained environments. Hyperelliptic curves used more smaller key size as compared to

elliptic curves. Mathematics involved in elliptic curves is little bit difficult so its hard to

implement and explain the mathematical concepts to public. Elliptic curve cryptography is

vulnerable to quantum attacks but supersingular isogeny curves are secure for post quantum

era [43].

Some challenges are also associated with an elliptic curve cryptography. Selection of elliptic

curve parameters, that provide the required level of security, is a big challenge. Interoper-

ability is also a big issue that can be solved by using standard elliptic curve parameters [70].

Most of the time, cryptosystem using elliptic curve cryptography is vulnerable to side chan-

nel attacks [71]. Here is a list of algorithm or platforms where elliptic curves are used [72].

Conclusion

This chapter describes the concept of an elliptic curve cryptography along with the basic

mathematics of an elliptic curve. The brief description of an elliptic curve based crypto-

graphic protocols is also given. This chapter also discussed the importance of an elliptic

curve cryptography along with its practical application.

37

Chapter 4

PROPOSED KLEPTOGRAPHIC ATTACKS

Introduction

This chapter gives the basic knowledge of the procedure of inserting backdoor mechanism.

In section 4.1, proposed implementation strategy of inserting backdoors in protocols based

on an elliptic curves is discussed along with the key recovery mechanism. Following are

the protocols along with their relevant sections: Edward curve digital signature algorithm

in 4.1.1, Elliptic curve diffie hellman key exchange algorithm in 4.1.2, Elliptic curve digital

signature algorithm in 4.1.3, Elliptic curve integrated encryption scheme in 4.1.4, Elliptic

curve qu-vanstone implicit certificate in 4.1.5 and Elliptic curve elgamal encryption scheme

in 4.1.6 section.

4.1 Proposed Kleptographic Attack on Elliptic Curve Cryptography

As it is discussed that the by inserting malicious code in an honest device, the attacker or the

controller of the device can easily get the secret key information. It is important for the crypto

security analyst to be aware of various types of malicious code inserting mechanism that are

discussed in the different literature and academics. To detect the presence of backdoor one

should be expert of analyzing the code, at least, against known kleptographic attacks.

In this section, kleptographic attacks on an elliptic curve based signatures and encryption

algorithms have been presented. To explain the SETUP attack on an elliptic cure based cryp-

tographic algorithms, both an honest and malicious versions of an algorithm are presented

along with the attacker’s key recovery mechanism.

4.1.1 Edwards Curve Digital Signature Algorithm

The details of Edward curve digital signature algorithm is explained in Section 3.2.1. Here

the Algorithm 2 is presented, that describes an honest method of signing message ′msg′

using Edward curve digital signature algorithm.

38

Algorithm 2 Edward-curve Digital Signature Algorithm
1: procedure SIGNATURE OF MESSAGE : (R, Sig)
2: Hash(k) = (h0, h1, · · · · ·, h2b−1)
3: a = 2b−2 +

∑
3≤i≤b−2 2

ihi
4: A = a[G]
5: r = Hash(hb, · · · · ·, h2b−1,msg)
6: R = rG
7: Sig = (r +Hash(Enc(R), Enc(A),msg)a)mod l
8: return (R, Sig)

Suppose the private key of the attacker is v, and the corresponding public key of the attacker

is V such that V = v[G] where v[G] represents an elliptic curve point multiplication. G

is the same base point that is used in the signature algorithm of an honest device. k is the

original secret key of the user. A is known to the attacker as it is a public parameter. The

Algorithm 3, describes the procedure of calculating malicious signature of the messagemsg.

H(Zx) represents the hash of x coordinate of an elliptic curve point Z. The (R′, Sig′) is the

required malicious signature.

Algorithm 3 Malicious Edward-curve Digital Signature Algorithm
1: procedure MALICIOUS SIGNATURE OF MESSAGE: (R′, Sig′)
2: Hash(k) = (h0, h1, · · · · ·, h2b−1)
3: a = 2b−2 +

∑
3≤i≤b−2 2

ihi
4: A = a[G]
5: Z ′ = H(Zx) where Z = a[V] = av[G]
6: r′ = Hash(Z ′,msg)
7: R′ = r′[G]
8: Sig′ = (r′ +Hash(Enc(R′), Enc(A),msg)a)mod l
9: return (R′, Sig′)

The attacker can recover the private key ′a′ of an honest user by using the backdoor

information. The attacker can capture (R′, Sig′) from the channel and can easily find

(Enc(R′), Enc(A). A is a publicly known parameter and ′msg′ is also known. The pro-

cedure of key recovery is shown in Algorithm 4.

Algorithm 4 Recover Key information (EdDSA)
1: procedure PRIVATE KEY RECOVERY:(a)
2: Z ′ = H(Zx) where Z = v[A] = va[G]
3: r′ = Hash(Z ′,msg)
4: a = (Sig′ − r′) [(Hash(Enc(R′), Enc(A),msg))mod l]−1
5: return a

39

4.1.2 Elliptic Curve Diffie Hellman Key Exchange Scheme

The details of Elliptic curve diffie hellman key exchange scheme is explained in Section

3.2.2.Here the Algorithm 5 is presented that describes an honest method of establishing a

symmetric key using an elliptic curve diffie hellman key exchange scheme.

Algorithm 5 Elliptic-curve Diffie Hellman Key Exchange Algorithm
1: procedure KEY GENERATION : (Key)
2: Ksen ε{1, · · ··, n− 1}
3: A = Ksen[G], send to receiver
4: Krec ε{1, · · ··, n− 1}
5: B = Krec[G], send to sender
6: key = Krec[A] = KrecKsen[G], is receiver’s Key
7: key = Ksen[B] = KsenKrec[G], is sender’s Key.
8: return (Key)

Let Y = x[G] is the public key of the attacker while x is his private key. Hash is a cryp-

tographic secure one way function. w is a fixed odd integer, t ε {0,1} and a, b are fixed

constants. The fixed constants known to attacker w, a, b are just to introduce some random-

ness in z that makes hard for owner of the device to distinguish between the outputs of an

honest device and the outputs of a malicious device [87]. Hash(zx) represents the hash of

the x coordinate of an elliptic curve point z. The malicious key generation is performed by

the Algorithm 6. Keymal is the required malicious shared secret key.

Algorithm 6 Malicious Elliptic-curve Diffie Hellman Key Exchange Algorithm
1: procedure MALICIOUS KEY GENERATION : (Keymal)
2: K1 ε{1, · · ··, n− 1}
3: M1 = K1[G], store K1 in memory
4: Now for second usage
5: z = (K1 − wt)[G] + (−aK1 − b)[Y]
6: K2 = Hash(zx)
7: M2 = K2[G], send to receiver
8: Krec ε{1, · · ··, n− 1}
9: B = Krec[G], send to sender

10: Keymal = Krec[M2] = KrecK2[G], is receiver’Key
11: Keymal = K2[B] = K2Krec[G], is sender’Key
12: return (Keymal)

The attacker captures M1 and M2 from the channel. They are used to find key K2. So

the attacker implements Algorithm 7 to recover the key information and to reconstruct the

shared key between two users. Hash(z1x) represents x coordinate of z1.

40

Algorithm 7 Recover Key information (ECDHKEA)
1: procedure PRIVATE KEY RECOVERY:(k2)
2: rmal = a[M1] + b[G]
3: z1 =M1 − x[rmal]
4: If M2 = (Hash(z1x)[G]
5: return Hash(z1x)
6: z2 = z1 − w[G]
7: If M2 = (Hash(z2x))[G]
8: return Hash(z2x)

4.1.3 Elliptic Curve Digital Signature Algorithm

The details of Elliptic curve digital signature algorithm is explained in Section 3.2.3. Here

the Algorithm 8 is presented that describes an honest method of signing the message msg

using an elliptic curve digital signature algorithm.

Algorithm 8 Elliptic-curve Digital Signature Algorithm
1: procedure SIGNATURE OF MESSAGE : (r, Sig)
2: e = Hash(msg)
3: Let ln is the bit length of n then ze = ln leftmost bits of e
4: k ε{1, · · ··, n− 1}
5: (x1, y1) = k[G]
6: If r = x1mod n = 0, go to step 4
7: Sig = k−1(ze + rda)mod n , where Sig 6= 0
8: return (r, Sig)

The Algorithm 9 is used to verify the signature of the message msg.

Algorithm 9 Signature Verification of ECDSA
1: procedure SIGNATURE VERIFICATION OF MESSAGE (T/F)
2: Qa is a valid curve point and nQa = 0 where 0 is identity element
3: r, Sig ε{1, · · ··, n− 1}
4: e = Hash(msg)
5: ze = ln leftmost bits of e
6: w = Sig−1mod n
7: u1 = zewmod n and u2 = rwmod n
8: (x1, y1) = u1[G] + u2[Qa]
9: If (x1, y1) = 0

10: return False
11: If r = x1mod n
12: return True

The signature verification algorithm is valid for both an honest as well as the malicious

signature scheme. Let x is the attacker’s private key while Y is his public key such that

Y = x[G]. The private key of the signer is da. Hash(zx) represents the x coordinate

41

of an elliptic curve point. w, a, b, t are fixed odd constants known to the attacker, where

tε{0, 1}. These constants introduced randomness in malicious key selection. The malicious

implementation of an elliptic curve digital signature algorithm is given in Algorithm 10. The

required signature is (r2, Sig2).

Algorithm 10 Malicious Elliptic-curve Digital Signature Algorithm
1: procedure MALICIOUS SIGNATURE OF MESSAGE: (r2, Sig2)
2: K1 ε{1, · · ··, n− 1}, store K1 in memory.
3: e1 = Hash(msg1)
4: ze1 = ln leftmost of e1.
5: (x1, y1) = K1[G]
6: If r1 = x1mod n = 0, go to step 2
7: Sig1 = K−11 (ze1 + r1da)mod n , where Sig1 6= 0
8: Signature is : (r1, Sig1)
9: now for second usage

10: e2 = Hash(msg2)
11: ze2 = ln leftmost of e2.
12: z = (K1 − wt)[G] + (−aK1 − b)[Y]
13: K2 = Hash(zx).
14: (x2, y2) = K2[G]
15: If r2 = x2mod n = 0 , go to step 13
16: Sig2 = K−12 (ze2 + r2da)mod n , where Sig2 6= 0
17: return (r2, Sig2)

The attacker captures r1 and r2 from the channel to recover the value of K2.The attacker use

Algorithm 11 to recover the key information.

Algorithm 11 Recover Key information (ECDSA)
1: procedure PRIVATE KEY RECOVERY:(k2)
2: Using r1 and r2 find their ordinate, (x1, y1) and (x2, y2)
3: z1 = (x1, y1)− x[(a(x1, y1) + b[G])]
4: If (x2, y2) = Hash(x2)G
5: return Hash(x2)
6: z2 = z1 − w[G]
7: If (x2, y2) = Hash(x2)[G]
8: return Hash(x2)

Now the attacker knows the value of K2 so the calculation of da is carried out by using

Equation 4.1. Sig2 should not be 0.

da =
Sig2k2 − ze2

r2
(4.1)

42

4.1.4 Elliptic Curve Integrated Encryption Scheme

The elliptic curve integrated encryption scheme is a hybrid encryption scheme. The details

of an Elliptic curve integrated encryption scheme is explained in Section 3.2.4. Here the

Algorithm 12 is presented that describes an honest method of encrypting the message msg

using an elliptic curve integrated encryption scheme. rs[G] represents an elliptic curve point

multiplication.

Algorithm 12 Elliptic curve Integrated Encryption Scheme
1: procedure ENCRYPTION OF MESSAGE:(R||ct||tag)
2: R = rs[G]
3: P = (px, py) = rs[Qa]
4: S = px, the abscissa of P
5: Kenc||Kmac = KDF (S||S1).
6: ct = Encrypt(Kenc,msg)
7: tag =MAC(Kmac, ct||S2)
8: return R||ct||tag

The decryption Algorithm 13 of an elliptic curve integrated encryption scheme is used to

recover the message msg on the other side of the communication network. The receiver

receives (R||ct||tag) form the sender.

Algorithm 13 Decryption of message in ECIES
1: procedure DECRYPTION OF MESSAGE:(msg)
2: Calculate P = (px, py) = Ka[R]
3: S = px, the abscissa of P
4: Kenc||Kmac = KDF (S||S1).
5: tag =MAC(Kmac, ct||S2)
6: msg = Encrpt−1(Kenc, ct)
7: return msg

The attacker wants to knows the symmetric encryption key as well as the key used in MAC.

If x is the private key of the attacker while Y is his public key such that Y = x[G] and x[G]

represents an elliptic curve point multiplication. Let w, a, b, t are some fixed odd constants

known to the attacker, where tε{0, 1}. These constants are used to introduce randomness.

S1 is a preshared value and it is optional [60], so we can ignore this value. K1 is selected in

an honest way as rs was chosen in Algorithm 12. The malicious encryption of the message

msg is performed using the Algorithm 14.

43

The Algorithm 15 is used to recover the key information K2. For this the attacker needs

R1 and R2, that he can capture from the communication channel, to recover the values of

Kenc, Kmac. The attacker first reconstruct S that is further user to recalculate the values

of Kenc, Kmac. For t=0 K2 is the Hash(z1x), where Hash(z1x) means x coordinate of an

elliptic curve point z. For t=1 K2 is the Hash(z2x).

Algorithm 14 Malicious Elliptic curve Integrated Encryption Scheme
1: procedure MALICIOUS ENCRYPTION OF MESSAGE:(R2||ct2||tag2)
2: R1 = K1[G], store K1 in memory
3: P = (px, py) = K1[Qa], S = px abscissa of P
4: Kenc||Kmac = KDF (S)
5: ct1 = Encrypt(Kenc,msg)
6: tag1 =MAC(Kmac, ct1||S2).
7: return R1||ct1||tag1
8: For second time R2 is calculated in a malicious way
9: z = (K1 − wt)[G] + (−aK1 − b)[Y]

10: K2 = Hash(zx)
11: R2 = K2[G]
12: S = px from P = (px, py) = K2[Qa]
13: Kenc||Kmac = KDF (S)
14: ct2 = Encrypt(Kenc,msg)
15: tag2 =MAC(Kmac, ct2||S2)
16: return R2||ct2||tag2

Algorithm 15 Recover Key information (ECIES)
1: procedure PRIVATE KEY RECOVERY:(K2)
2: rmal = a[R1] + b[G]
3: z1 = R1 − x[rmal]
4: If R2 = Hash(z1x)[G]
5: return Hash(z1x)
6: z2 = z1 − w[G]
7: If R2 = Hash(z2x)[G]
8: return Hash(z2x)

4.1.5 Elliptic Curve Qu-Vanstone Implicit Certificate

The details of Elliptic curve Qu-Vanstone Implicit Certificate is explained in Section 3.2.5.

The certificates are used to generate the secure public and private keys through an honest

third party. Here the Algorithm 16 is presented that describes the honest method of generat-

ing the public and private keys of the user.

44

Algorithm 16 Elliptic curve Qu-Vanstone Implicit Certificate
1: procedure PRIVATE KEY GENERATION:(ppri, Ppub)
2: User finds A = a[G], and send A, IDa to CA
3: CA performs the next calculations
4: B = b[G]
5: D = A+B
6: certificate = ENCode(D, IDa)
7: E = Hash(certificate)
8: R = Eb+ c mod n
9: Certificate authority sends (R, certificate) to the user

10: Ppub = E[D] + Cca, public key of the user
11: ppri = Ea+R mod n, private key of the user
12: return ppri, Ppub

The Algorithm 17 is used to generate malicious key pairs. Let the private key of the attacker

is x and the corresponding public key is Y , such that Y = x[G]. In this method the third

party i.e. the Certificate Authority, is an honest party. The malicious code is inserted on the

user’s side who requests for the key pairs.

Algorithm 17 Malicious Elliptic curve Qu-Vanstone Implicit Certificate
1: procedure MALICIOUS KEY GENERATION:(pmal pri, Pmal pub)
2: The user generates a random number a1 and stored in the memory
3: A1 = a1[G], sends A1, IDa to CA.
4: CA is honest and sends (R, certificate)
5: For the second time the random number is generated using malicious way.
6: z = (a1 − wt)[G] + (−aa1 − b)[Y]
7: a2 = Hash(zx)
8: A2 = a2[G]
9: CA performs the next calculations

10: CA selects a random number b and finds B = b[G]
11: D = A2 +B
12: certificate = ENCode(D, IDa)
13: E = Hash(certificate).
14: R = Eb+ cmod n
15: Certificate authority sends (R, certificate) to the user
16: Pmal pub = ED + Cca, public key of the user
17: pmal pri = Ea2 +Rmod n, private key of the user
18: return pmal pri, Pmal pub

The attacker uses Algorithm 18 to recover the secret key information.The attacker gets the

value of A1 and A2 from the communication channel and his aim is to recover the value of

the key i.e. a2.

45

Algorithm 18 Recover Key information (ECQIC)
1: procedure KEY RECOVERY:(K2)
2: rmal = a[A1] + b[G].
3: z1 = A1 − rmal[x]
4: If A2 = Hash(z1x)[G]
5: return Hash(z1x)
6: z2 = z1 − w[G]
7: If A2 = Hash(z2x)[G]
8: return Hash(z2x)

4.1.6 Elliptic Curve ElGamal Encryption Scheme

The details of Elliptic curve ElGamal encryption scheme is explained in Section 3.2.6. Here

the Algorithm 19 is presented that describes the honest method of encrypting the message

msg using elliptic curve ElGamal encryption scheme.

Algorithm 19 Elliptic curve ElGamal Encryption Scheme
1: procedure ENCRYPTION OF MESSAGE:(c2, c1)
2: c1 = a[G]
3: c2 =Msg + a[R] , where R = r[G]
4: c2, c1 is send to the receiver

Let the private key of the attacker is x, while his corresponding public key is Y such that

Y = x[G]. x[G] represents an elliptic curve point multiplication operation. The malicious

code, inserted by the attacker, is described in an Algorithm 20. To decrypt the message the

attacker needs the private key of the receiver i.e. r. The sender is an honest party while the

receiver is malicious.

Algorithm 20 Malicious Elliptic curve ElGamal Encryption Scheme
1: procedure MALICIOUS ENCRYPTION IN ECEES:(cmal1, cmal2)
2: Store r1 in the memory
3: Sender calculates and sends (c1, c2) to receiver
4: For the second time R2 is calculated using malicious code
5: z = (r1 − wt)[G] + (−ar1 − b)[Y]
6: r2 = Hash(zx)
7: R2 = r2G
8: Sender perform honest calculations
9: c1 = a2[G], a2 is random number chosen by sender

10: c2 =Msg + a2[R2]
11: The sender sends cmal2, cmal1 to the receiver
12: return cmal2, cmal1

In Algorithm 20, r1 is the private key of the receiver that is generated in an honest way

46

while r2 is generated in a malicious way. w, a, b are fixed odd constants known to the at-

tacker, while tε{0, 1}. All these constants are used to introduce randomness in malicious

key generation. Hash(zx) represents the x coordinate of z.

The Algorithm 21 is used to recover the key information using R1, R2.

Algorithm 21 Recover Key information (ECEES)
1: procedure KEY RECOVERY:(r2)
2: r = a[R1] + b[G].
3: z1 = R1 − r[x]
4: If R2 = Hash(z1x)[G]
5: return Hash(z1x)
6: z2 = z1 − w[G]
7: If R2 = Hash(z2x)[G]
8: return Hash(z2x)

Conclusion

This chapter presents the proposed mechanism of inserting backdoor malicious code in an

honest elliptic curve based cryptographic protocols. The public key of the attacker is inserted

in the device of the user. The private key of the user is calculated on the basis of public key

of the attacker. The private key of an attacker is used to generate the private key of the user.

The reverse engineer only detects the presence of the backdoor but can not calculate the

public key information of the attacker to get the private key of the user. Only the person in

possession of the private key of an attacker can get the advantage of a backdoor information.

Both an honest and malicious versions of an algorithms are presented. The key recovery

mechanism, that is used by the attacker to recover private key information, is also given.

47

Chapter 5

TEST METHODOLOGY WITH RESULTS

Introduction

This chapter gives the brief description of test methodology along with the results. The

section 5.1, describes the detail explanation of the methodology of testing technique im-

plemented in this thesis research in order to detect the backdoor presence. In section 5.2,

the experimental results of detection of backdoor in an elliptic curve based algorithms are

presented.

5.1 Test Methodology

Detection of the presence of backdoors is very difficult process. As discussed previously, the

reverse engineer can only detect the presence of backdoor but reverse engineering itself is

very hard procedure. So detection of kleptographic implementation in a device is a complex

task and very few researches can be found in this direction.

Analysis of the deviation of running time of an honest algorithm and malicious algorithm is

identified as a possible way of detecting kleptographic implementations. In [88], the author

discuss the run time analysis technique and provides the experimental results for ElGamal,

DSS, Diffie Hellman and RSA protocol based on discrete logarithm problem.

The deviation of running time analysis technique along with coefficient of variance is used

to detect the presence of kleptographic backdoor in an elliptic curve based protocols.

In probability theory and statistics, the term coefficient of variance is defined as the measure

of variation from the mean value. It is also called relative standard deviation [89]. It is

commonly used in the field of probability i.e. renewal theory, reliability theory etc. It is

expressed as a ratio of standard deviation and the mean value. If SD is the standard deviation

then the coefficient of variance i.e. CoV is calculated by using the Equations 5.1.

CoV =
SD

Mean
(5.1)

48

Let f is the frequency of occurrence then the standard deviation SD is calculated by Equa-

tion 5.2.

SD =

√∑
(fx2)∑
f
− (

∑
fx)2

(
∑
f)2

(5.2)

The mean of a sample x1 + x2 + x3 + · · ·xn is calculated as:

Mean =
x1 + x2 + x3 + · · ·xn

n
(5.3)

For example: The data set is shown in Table 5.1 then the coefficient of variance is calculated

as:

Marks 13 14 15 16 17
No of students 4 10 28 7 3

Table 5.1: Data set

Using the above mentioned formulas the coefficient of variance is calculated as:

Marks (X) No of students (F) X2 FX2 FX
13 4 169 676 52
14 10 196 1960 140
15 28 225 6300 420
16 7 256 1792 112
17 3 289 867 51∑

F= 52
∑
X2=1135

∑
FX2=11595

∑
FX=775

Now Standard deviation is :

SD =
√∑

FX2∑
F
− (

∑
FX)2

(
∑

F)2

SD =
√

11591
52
− (775)2

(52)2

SD =
√
222.98− 222.12

SD = 0.925

Mean value is:

Mean = X =
∑

FX∑
F

X = 775
52

X = 14.903

49

Now finally the Coefficient of variance is :

CoV = SD
Mean

CoV = 0.925
14.903

= 0.066%

It is useful to calculate the coefficient of variance because it is the ratio of two terms having

same unit so it is independent of the unit, or in other words, the ratio does not depend on the

efficiency of the measurement setup [89]. So it is a suitable parameter that compare two data

sets independent of the measuring unit. The test methodology is explained in Figure 5.1.

According to the flow chart there are two implementations of a cryptographic algorithm i.e.

first an honest implementation while second one is malicious. Same plaintext dataset and

keys are given to an honest as well as a malicious implementation. Both algorithms returns

a ciphertext and the running time of an algorithm. It is observed that ciphertext of an honest

implementation is different from the output of the malicious implementation because of the

presence of kleptographic code. Running time of both algorithms is also different for every

input plaintext. Finally, the amount of deviation is calculated between the running time of an

honest and malicious implementation of the cryptographic code by measuring the coefficient

of variance.

5.1.1 Experimental Setup

To differentiate the malicious algorithm from an honest one, we implemented both i.e. ma-

licious and an honest, versions of Edwards curve digital signature algorithm, Elliptic curve

Diffie Hellman key exchange, Elliptic curve digital signature, Elliptic curve integrated en-

cryption, Elliptic curve qu Vanstone and Elliptic curve Elgamal encryption schemes in Java

using Eclipse Integrated Development Environment. MATLAB-9.2 is used to analyze the re-

sults of running time of an algorithm by representing the data in a graph form. The tests were

conducted on Linux operating system on personal computer core i7, 16GB memory. For the

analysis 1,00,000 random plaintext are generated using secure random number generator li-

brary in Java. These random numbers are given as an input to an honest and a malicious

algorithms, while a random key is selected and that fixed key is used every time. Running

time of an algorithm is measured in milliseconds.

50

Figure 5.1: Flow chart of Test Methodology

5.2 Experimental Results

This section shows the experimental results for each analysis. The Figure5.2 shows the curve

of an honest and malicious implementation of Edwards curve digital signature algorithm. As

it is shown that the peaks of both graph is almost similar. So, in Edward curve digital sig-

nature algorithm the backdoor code does not require extra computation time to run. The

malicious code is inserted in such a way that it take very less extra computation for gener-

ating a valid signature of the given message. Inserting a backdoor perform an extra elliptic

curve multiplication operation.

Theoretically, by inserting one extra elliptic curve point multiplication the difference be-

tween the coefficient of variances of an honest algorithm and malicious algorithm must be

approximately 0.58. In Table 5.3 the value of coefficient of variance is shown that is cal-

culated by using the data shown in Table 5.3, 5.4. The difference of coefficient variance is

approximately equal to the theoretical value of coefficient of variance presented above i.e.

5.8. Table 5.3 shows the data of running time of an honest implementation while Table5.3

shows the data of malicious implementation of Edward digital signature algorithm.

51

Figure 5.2: Experimental Results of Edward Digital Signature Algorithm

Table 5.2: Coefficient of variance of EdDSA

CoV of honest implementation 0.70
CoV of malicious implementation 0.060

Table 5.3: Results of Original implementation of EdDSA
Computation Time 15 16 17 18 19 20 21
Number of Tests 0 674 26130 40874 20346 5205 3017

Computation Time 22 23 24 25 26 27 28 29 30
Number of Tests 2905 407 422 17 1 1 1 0 0

The Figure 5.3 shows the results of the running time of an honest and a malicious imple-

mentation of an Elliptic curve Diffie Hellman Key Exchange protocol. As shown, the curve

plotted against the malicious implementation shows small peak at its peak time, as compared

to the curve that represent the running time of an honest implementation. The reason of this

small peak at its peak time is very simple. The malicious implementation of the algorithm

has two parts, first part of the code of malicious implementation is similar to the implemen-

52

Table 5.4: Results of Malicious implementation of EdDSA
Computation Time 15 16 17 18 19 20 21
Number of Tests 0 1701 9537 25574 40815 13553 4302

Computation Time 22 23 24 25 26 27 28 29 30
Number of Tests 3296 1075 75 68 2 1 1 0 0

tation of an honest algorithm, but the other part of the code is repeated every second time in

malicious implementation only. So, the first part is shown in the small curve as it takes less

time to run, while the disproportion between curves of malicious implementation shows that

the device is running second part of the code repeatedly after every second call to generate

the backdoor information for the attacker.

Figure 5.3: Experimental Results of Elliptic curve Diffie Hellman key exchange protocol

In an elliptic curve diffie hellman key exchange protocol, the malicious implementation in-

volves three elliptic curve multiplication operation while in an honest protocol, only one

elliptic curve multiplication operation is required for creating single key. So, the theoretical

difference between the coefficient of variance of an honest and a malicious implementation

should be approximately 1.73.

The Table 5.5 shows the coefficient of variance calculated by the data given in Table 5.6,5.7.

53

Table 5.5: Coefficient of variance of ECDHKE

CoV of honest implementation 0.04
CoV of malicious implementation 0.136

Table 5.6: Results of Original implementation of ECDHKE
Computation Time 14 15 16 17 18 19 20
Number of Tests 32 1095 32057 28030 19804 8546 6005

The difference between them is 1.45 that is approximately equal to the value calculated the-

oretically. The Table 5.6,5.7 represents the result of the computation time taken by an honest

and malicious implementation of an elliptic curve diffie hellman key exchange protocol.

Computation Time 21 22 23 24 25 26 27 28 29 30
Number of Tests 3807 509 37 33 27 7 7 2 1 1

Table 5.7: Results of Malicious implementation of ECDHKE
Computation Time 14 15 16 17 18 19 20 21 22
Number of Tests 0 0 1 1294 1849 389 68 420 9530

Computation Time 23 24 25 26 27 28 29 30
Number of Tests 18753 21963 24674 14994 3827 1364 874 0

The Figure 5.4 shows the experimental results of an honest and a malicious implementation

of an Elliptic curve Integrated Encryption Scheme. The graph shows that the behavior of an

honest implementation of an Elliptic curve Integrated Encryption Scheme is similar to the

behavior of an elliptic curve diffie hellman key exchange protocol. The curve of an honest

implementation has smaller peak at its peak point. In malicious implementation two extra

elliptic curve point multiplications are involved that results in the formation of second peak.

That malicious part of the code is called at every second instance.

Table 5.8: Results of Original implementation of ECIKE
Computation Time 8 9 10 11 12
Number of Tests 28 97 106 4589 54358

54

Figure 5.4: Experimental Results of Elliptic curve Integrated Encryption Scheme

Computation Time 13 14 15 16 17 18 19 20
Number of Tests 30636 10177 2 2 2 1 1 1

The theoretically observed value of the difference between the coefficients of variation is

0.58 for one time encryption. The difference of the coefficient of variance, calculated by

the data recorded in Table 5.8,5.9, gives the value of 0.43 that is close to the desired value.

Table 5.8 contain the data of the calculated running time of an honest algorithm while Table

5.9 contain the data of the calculated running time of a malicious implementation of an

algorithm.

Table 5.9: Results of Malicious implementation of ECIKE
Computation Time 12 13 14 15 16 17
Number of Tests 1 2284 2494 485 89 1028

Computation Time 18 19 20 21 22 23
Number of Tests 28341 34384 20385 8493 1533 483

The Figure 5.5 shows the graphical representation of the experimental results of malicious

and an honest implementation of Elliptic curve Digital Signature Algorithm. The honest im-

plementation involve two elliptic curve point multiplication while the malicious implemen-

55

Figure 5.5: Experimental Results of Elliptic curve Digital Signature Algorithm

tation involve an additional point multiplications. The curve shows small peak just because

the malicious implementation does not runs every time when the digital signatures are per-

formed. Instead the malicious code runs at every second call of signature. This behavior is

shown in the graph in the form of two peaks of different sizes.

Table 5.10: Coefficient of variance of ECDSA

CoV of honest implementation 0.4091
CoV of malicious implementation 0.0691

The theoretically observed value of the difference between the coefficients of variance is 0.58

that is approximately equal to the value calculated by using the data of Table 5.11,5.12. The

Table5.11 gives the experimental results of the computation time of an honest implementa-

tion of a code while Table 5.12 gives the computation time of the malicious implementation

of an elliptic curve digital signature algorithm.

Figure 5.6 presents the graphical representation of an Elliptic curve Qu-Vanstone Implicit

Certificate. The Table 5.13 represents the measured data of an honest implementation while

56

Table 5.11: Results of Original implementation of ECDSA
Computation Time 6 7 8 9 10 11 12 13 14 15
Number of Tests 409 4995 16057 39030 29974 5345 2205 1507 474 4

Table 5.12: Results of Malicious implementation of ECDSA
Computation Time 7 8 9 10 11 12 13 14
Number of Tests 0 1958 1294 17 38 1986 23390 29495

Table5.14 represents the data of a malicious implementation of an elliptic curve qu-vanstone

implicit certificate. The theoretically calculated value of difference between the coefficient

of variance is 0.58 while the coefficient of variance that is calculated using the measured

data in Tables 5.13 5.14 is 0.38.

Figure 5.6: Experimental Results of Elliptic curve Qu-Vanstone Implicit Certificate

The Figure 5.7 shows the graphical representation of the results of timing analysis of an hon-

est and a malicious code implementation of an Elliptic curve ElGamal Encryption Scheme.

The Table 5.15 shows the computational results of an honest implementation of the code

while Table 5.16 shows the computational results of the malicious implementation of an El-

liptic curve Elgamal encryption scheme. The practically calculated value of the coefficient

of variance is 0.401 while, the theoretically calculated value of the coefficient of variance is

57

Computation Time 15 16 17 18 19 20
Number of Tests 24052 9298 5361 1086 734 7

Table 5.13: Results of Original implementation of ECQVIC
Computation Time 9 10 11 12 13 14
Number of Tests 0 63 169 2096 23476 40847

Computation Time 15 16 17 18 19 20 21 22
Number of Tests 27486 3096 2148 597 17 3 1 1

Table 5.14: Results of Malicious implementation of ECQVIC
Computation Time 10 11 12 13 14 15 16 17 18
Number of Tests 0 194 251 1242 1832 1204 128 112 3883

Computation Time 19 20 21 22 23 24 25 26
Number of Tests 14484 26392 24352 15374 8864 1436 168 84

0.58.

Figure 5.7: Experimental Results of Elliptic curve ElGamal Encryption Scheme

Table 5.15: Results of Original implementation of ECEES
Computation Time 5 6 7 8 9 10
Number of Tests 0 592 10038 39830 19485 14302

58

Computation Time 11 12 13 14 15 16 17 18
Number of Tests 9547 4205 1958 40 1 1 1 0

Table 5.16: Results of Malicious implementation of ECEES
Computation Time 5 8 9 10 14 15 16 17
Number of Tests 374 1274 2443 1523 367 685 940 9303

Computation Time 18 19 20 21 22 23 24
Number of Tests 24903 27392 18610 7503 4621 61 1

Conclusion

This chapter presents describes the proposed mechanism for the detection of malicious code

in an elliptic curve based cryptographic protocols. Difference between the running time of

an honest and malicious algorithms is calculated. It is observed that the malicious code

takes more time to run as compared to the an honest algorithm. So, careful analysis of

running time can help the security analyst to detect the presence of malicious code in the

cryptographic device. The reverse engineering of the code needs more effort to detect the

presence of malicious code as compare to analyzing the running time of an algorithm. This

chapter also presents the practical results of running time of an algorithm.

59

Chapter 6

CONCLUSION and FUTURE WORK DIRECTIONS

6.1 Conclusion

A simple and efficient technique of backdoor detection in an elliptic curve based cryptog-

raphy is proposed. In this thesis, it is shown that by simple analysis of running time of

an honest and a malicious implementation of code, the presence of kleptographic backdoor

can be detected in an elliptic curve based cryptographic protocols. It is observed that, as the

number of tests increased the result of timing analysis become more accurate. Total 1,00,000

plaintexts are taken for the analysis of running time and this number is very less as compared

to the plaintext ciphertext pairs needed to break the mathematical structure of an algorithm

using modern cryptanalysis attack. It can be seen that an attacker can easily implement the

successful SETUP attack in the cryptographic devices. So, it is important to test the crypto-

graphic code as well as the correct implementation of the an algorithm to ensure the security

of the device. Blackbox cryptographic devices are no more secure because they are more

vulnerable against kleptographic attacks. Reverse engineering the device detects the pres-

ence of the backdoor but the process itself is very difficult and mostly infeasible. The reveres

engineer can use the backdoor information to get the knowledge of the secret key.

Some measures are proposed in different researches to prevent the kleptographic attacks like

to avoid the use of black box devices, the critical security parameters should be chosen by

the crypto officer/ user of the device instead of using default parameters. Code walk through

activity should be conducted. Use several cryptosystems designed by different manufacturer

and divide the task to avoid the possibility of attack. It is good to use indigenous crypto-

graphic algorithm, along with any standard encryption algorithm, to add an extra step of

security. The source code should be made public. Finally check the integrity and authenti-

cation of the cryptographic algorithm

For future directions, it is recommended to search the possible solution for the problems:

• In crypto-currency, ECDSA is used as a signature algorithm so one can implement the

60

backdoor attack in the protocol that helps to produce the valid signature and change

the bitcoin amount in a malicious way.

• The other possible way to detect the presence of kleptographic backdoor can be pro-

posed i.e. by analyzing the number of operation performed in an honest and malicious

implementation of an algorithm.

• To build a integrity check mechanism that ensure the correct implementation of an

algorithm in a cryptographic device.

• To proposed the detection mechanism for the practical cryptographic devices using

side channel techniques.

• To propose some prevention measures to avoid the kleptographic attack.

To conclude, there are many other directions to work in the field of Kleptography. It is

important to test the blackbox device against such contemporary attacks before trusting the

system. Now a days, it is very easy to hide the mini backdoored processor inside the parent

processor to exploit the security of a cryptosystems.

61

Bibliography

[1] “Revealed: The nsa’s secret campaign to crack, un-
dermine propublica,” https://www.propublica.org/article/
the-nsas-secret-campaign-to-crack-undermine-internet-encryption, (Accessed on
02/21/2018).

[2] “Sigint enabling project,” https://www.documentcloud.org/documents/
784285-sigint-enabling-project, (Accessed on 02/21/2018).

[3] “Prism — us-news — the guardian,” https://www.theguardian.com/us-news/prism,
(Accessed on 2/21/2018).

[4] “We need to talk about mathematical backdoors in encryption algorithms the register,”
https://www.theregister.co.uk/2017/12/15/crypto mathematical backdoors/, (Accessed
on 02/20/2018).

[5] “A tour of cryptographic backdoors,” https://cohney.info/backdoors/, (Accessed on
04/3/2018).

[6] C. Wysopal and C. Eng, “Static detection of application backdoors,” Black Hat, 2007.

[7] “Backdoors.pdf,” https://www.cs.bu.edu/∼reyzin/teaching/f14cs538/Backdoors.pdf,
(Accessed on 02/29/2018).

[8] B. Schneier, M. Fredrikson, T. Kohno, and T. Ristenpart, “Surreptitiously weakening
cryptographic systems.” IACR Cryptology ePrint Archive, vol. 2015, p. 97, 2015.

[9] “A history of backdoors a few thoughts on cryptographic engineering,” https://
blog.cryptographyengineering.com/2015/07/20/a-history-of-backdoors/, (Accessed on
02/20/2018).

[10] “Clipper chip,” http://www.cryptomuseum.com/crypto/usa/clipper.htm, (Accessed on
04/02/2018).

[11] “The clipper chip,” https://www.epic.org/crypto/clipper/, (Accessed on 04/02/2018).

[12] “Nsa backdoor key from lotus-notes,” http://www.cypherspace.org/adam/hacks/
lotus-nsa-key.html, (Accessed on 02/20/2018).

[13] “Dual ec drbg - wikipedia,” https://en.wikipedia.org/wiki/Dual EC DRBG, (Accessed
on 02/20/2018).

[14] “Exclusive: Secret contract tied nsa and security indus-
try pioneer,” https://www.reuters.com/article/us-usa-security-rsa/
exclusive-secret-contract-tied-nsa-and-security-industry-pioneer-idUSBRE9BJ1C220131220,
(Accessed on 04/02/2018).

[15] D. J. Bernstein, T. Lange, and R. Niederhagen, “Dual ec: A standardized back door,”
in The New Codebreakers. Springer, 2016, pp. 256–281.

62

https://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
https://www.propublica.org/article/the-nsas-secret-campaign-to-crack-undermine-internet-encryption
https://www.documentcloud.org/documents/784285-sigint-enabling-project
https://www.documentcloud.org/documents/784285-sigint-enabling-project
https://www.theguardian.com/us-news/prism
https://www.theregister.co.uk/2017/12/15/crypto_mathematical_backdoors/
https://cohney.info/backdoors/
https://www.cs.bu.edu/~reyzin/teaching/f14cs538/Backdoors.pdf
https://blog.cryptographyengineering.com/2015/07/20/a-history-of-backdoors/
https://blog.cryptographyengineering.com/2015/07/20/a-history-of-backdoors/
http://www.cryptomuseum.com/crypto/usa/clipper.htm
https://www.epic.org/crypto/clipper/
http://www.cypherspace.org/adam/hacks/lotus-nsa-key.html
http://www.cypherspace.org/adam/hacks/lotus-nsa-key.html
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://www.reuters.com/article/us-usa-security-rsa/exclusive-secret-contract-tied-nsa-and-security-industry-pioneer-idUSBRE9BJ1C220131220
https://www.reuters.com/article/us-usa-security-rsa/exclusive-secret-contract-tied-nsa-and-security-industry-pioneer-idUSBRE9BJ1C220131220

[16] “The debian openssl bug: Backdoor or security accident?” https://freedom-to-tinker.
com/2013/09/20/software-transparency-debian-openssl-bug/, (Accessed on
02/20/2018).

[17] “Github - g0tmi1k/debian-ssh: Debian openssl predictable prng (cve-2008-0166),”
https://github.com/g0tmi1k/debian-ssh, (Accessed on 04/02/2018).

[18] “Heartbleed - schneier on security,” https://www.schneier.com/blog/archives/2014/04/
heartbleed.html, (Accessed on 02/20/2018).

[19] S. Checkoway, J. Maskiewicz, C. Garman, J. Fried, S. Cohney, M. Green, N. Heninger,
R.-P. Weinmann, E. Rescorla, and H. Shacham, “A systematic analysis of the juniper
dual ec incident,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 468–479.

[20] “Juniper firewall backdoor password found in 6 hours — securityweek.com,”
https://www.securityweek.com/juniper-firewall-backdoor-password-found-6-hours,
(Accessed on 04/02/2018).

[21] “Whatsapp messages can be easily read by anyone, wikileaks’ cia files show —
the independent,” https://www.independent.co.uk/life-style/gadgets-and-tech/news/
whatsapp-messages-wikileaks-cia-files-not-encrypted-hacking-julian-assange-vault-7-a7616576.
html, (Accessed on 04/02/2018).

[22] “Research: Hackers could install backdoor in bitcoin cold storage,” https://www.
coindesk.com/research-hackers-install-backdoor-bitcoin-cold-storage/, (Accessed on
04/02/2018).

[23] “The 2016 backdoored cryptocurrency contest winner under-
handed crypto contest,” https://underhandedcrypto.com/2016/08/17/
the-2016-backdoored-cryptocurrency-contest-winner/, (Accessed on 04/02/2018).

[24] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. Stolfo, “Detecting malicious software
by monitoring anomalous windows registry accesses,” in International Workshop on
Recent Advances in Intrusion Detection. Springer, 2002, pp. 36–53.

[25] “The 12 biggest, baddest, boldest software backdoors of all time
— infoworld,” https://www.infoworld.com/article/2606776/hacking/
155947-Biggest-baddest-boldest-software-backdoors-of-all-time.html#slide3, (Ac-
cessed on 02/20/2018).

[26] S. Lowman, “The effect of file and disk encryption on computer forensics,”
http://lowmanio. co. uk/. Acesso em, vol. 7, no. 05, p. 2011, 2010.

[27] “Five reasons you should not use pirated wordpress plugins - wpstarters,” https:
//www.wpstarters.com/five-reasons-not-use-pirated-wordpress-plugins/, (Accessed on
02/20/2018).

[28] T. Canavan, CMS Security Handbook: The Comprehensive Guide for WordPress,
Joomla, Drupal, and Plone. John Wiley and Sons, 2011.

[29] K. Poulsen, “Borland interbase backdoor exposed,” The Register, http://www. theregis-
ter. co. uk/2001/01/12/borland interbase backdoor exposed, 2001.

63

https://freedom-to-tinker.com/2013/09/20/software-transparency-debian-openssl-bug/
https://freedom-to-tinker.com/2013/09/20/software-transparency-debian-openssl-bug/
https://github.com/g0tmi1k/debian-ssh
https://www.schneier.com/blog/archives/2014/04/heartbleed.html
https://www.schneier.com/blog/archives/2014/04/heartbleed.html
https://www.securityweek.com/juniper-firewall-backdoor-password-found-6-hours
https://www.independent.co.uk/life-style/gadgets-and-tech/news/whatsapp-messages-wikileaks-cia-files-not-encrypted-hacking-julian-assange-vault-7-a7616576.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/whatsapp-messages-wikileaks-cia-files-not-encrypted-hacking-julian-assange-vault-7-a7616576.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/whatsapp-messages-wikileaks-cia-files-not-encrypted-hacking-julian-assange-vault-7-a7616576.html
https://www.coindesk.com/research-hackers-install-backdoor-bitcoin-cold-storage/
https://www.coindesk.com/research-hackers-install-backdoor-bitcoin-cold-storage/
https://underhandedcrypto.com/2016/08/17/the-2016-backdoored-cryptocurrency-contest-winner/
https://underhandedcrypto.com/2016/08/17/the-2016-backdoored-cryptocurrency-contest-winner/
https://www.infoworld.com/article/2606776/hacking/155947-Biggest-baddest-boldest-software-backdoors-of-all-time.html#slide3
https://www.infoworld.com/article/2606776/hacking/155947-Biggest-baddest-boldest-software-backdoors-of-all-time.html#slide3
https://www.wpstarters.com/five-reasons-not-use-pirated-wordpress-plugins/
https://www.wpstarters.com/five-reasons-not-use-pirated-wordpress-plugins/

[30] Y. Zhang and V. Paxson, “Detecting backdoors.” in USENIX Security Symposium,
2000.

[31] “Cowersnail windows backdoor from the creators of sambacry linux mal-
ware,” https://thehackernews.com/2017/07/cowersnail-windows-backdoor.html, (Ac-
cessed on 02/20/2018).

[32] “Hacker installed a secret backdoor on facebook server to steal passwords,” https://
thehackernews.com/2016/04/hack-facebook-account.html, (Accessed on 02/20/2018).

[33] “Creepy backdoor found in netsarang server management software the reg-
ister,” https://www.theregister.co.uk/2017/08/15/netsarang software backdoor/, (Ac-
cessed on 02/2/2018).

[34] “Pre-installed backdoor on 700 million android phones sending users’ data to china,”
https://thehackernews.com/2016/11/hacking-android-smartphone.html, (Accessed on
02/2/2018).

[35] L. Valenta, S. Cohney, A. Liao, J. Fried, S. Bodduluri, and N. Heninger, “Factoring as
a service,” Cryptology ePrint Archive, Report 2015/1000, 2015, https://eprint.iacr.org/
2015/1000.

[36] A. Semenov, O. Zaikin, I. Otpuschennikov, S. Kochemazov, and A. Ignatiev, “On cryp-
tographic attacks using backdoors for sat,” arXiv preprint arXiv:1803.04646, 2018.

[37] D. R. Stinson, Cryptography: theory and practice. CRC press, 2005.

[38] B. Schneider, Applied cryptography: protocols, algorithms, and source code in C.
John Wiley & Sons, 1996.

[39] “bh-us-05-young-update.pdf,” https://www.blackhat.com/presentations/bh-usa-05/
bh-us-05-young-update.pdf, (Accessed on 04/3/2018).

[40] A. Kahate, Cryptography and network security. Tata McGraw-Hill Education, 2013.

[41] “Elliptic curve - wikipedia,” https://en.wikipedia.org/wiki/Elliptic curve, (Accessed on
02/10/2018).

[42] H. C. Martin and G. F. Carey, Introduction to finite element analysis: Theory and
application. McGraw-Hill College, 1973.

[43] “Elliptic-curve cryptography - wikipedia,” https://en.wikipedia.org/wiki/
Elliptic-curve cryptography, (Accessed on 02/17/2018).

[44] W. Stallings, Cryptography and network security: principles and practices. Pearson
Education India, 2006.

[45] “Microsoft word - haraksingh.doc,” https://ocw.mit.edu/courses/mathematics/
18-704-seminar-in-algebra-and-number-theory-rational-points-on-elliptic-curves-fall-2004/
projects/haraksingh.pdf, (Accessed on 02/18/2018).

[46] J. S. Coron, D. Lefranc, and G. Poupard, “A new baby-step giant-step algorithm
and some applications to cryptanalysis,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2005, pp. 47–60.

64

https://thehackernews.com/2017/07/cowersnail-windows-backdoor.html
https://thehackernews.com/2016/04/hack-facebook-account.html
https://thehackernews.com/2016/04/hack-facebook-account.html
https://www.theregister.co.uk/2017/08/15/netsarang_software_backdoor/
https://thehackernews.com/2016/11/hacking-android-smartphone.html
https://eprint.iacr.org/2015/1000
https://eprint.iacr.org/2015/1000
https://www.blackhat.com/presentations/bh-usa-05/bh-us-05-young-update.pdf
https://www.blackhat.com/presentations/bh-usa-05/bh-us-05-young-update.pdf
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://ocw.mit.edu/courses/mathematics/18-704-seminar-in-algebra-and-number-theory-rational-points-on-elliptic-curves-fall-2004/projects/haraksingh.pdf
https://ocw.mit.edu/courses/mathematics/18-704-seminar-in-algebra-and-number-theory-rational-points-on-elliptic-curves-fall-2004/projects/haraksingh.pdf
https://ocw.mit.edu/courses/mathematics/18-704-seminar-in-algebra-and-number-theory-rational-points-on-elliptic-curves-fall-2004/projects/haraksingh.pdf

[47] E. Bach, “Toward a theory of pollard’s rho method,” Information and Computation,
vol. 90, no. 2, pp. 139–155, 1991.

[48] V. S. Miller, “Use of elliptic curves in cryptography,” in Conference on the theory and
application of cryptographic techniques. Springer, 1985, pp. 417–426.

[49] I. Blake, G. Seroussi, and N. Smart, Elliptic curves in cryptography. Cambridge
university press, 1999, vol. 265.

[50] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-
security signatures,” Journal of Cryptographic Engineering, vol. 2, no. 2, pp. 77–89,
2012.

[51] “Twisted edwards curve - wikipedia,” https://en.wikipedia.org/wiki/Twisted Edwards
curve, (Accessed on 02/17/2018).

[52] S. Josefsson and I. Liusvaara, “Edwards-curve digital signature algorithm (eddsa),”
Tech. Rep., 2017.

[53] “Elliptic curve diffie-hellman — math programming,” https://jeremykun.com/2014/
03/31/elliptic-curve-diffie-hellman/, (Accessed on 02/18/2018).

[54] D. W. Kravitz, “Digital signature algorithm,” Jul. 27 1993, uS Patent 5,231,668.

[55] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and practi-
tioners. Springer Science & Business Media, 2009.

[56] V. G. Martı́nez, L. H. Encinas et al., “A comparison of the standardized versions of
ecies,” in Information Assurance and Security (IAS), 2010 Sixth International Confer-
ence on. IEEE, 2010, pp. 1–4.

[57] V. Shoup, “A proposal for an iso standard for public key encryption (version 2.1),”
IACR E-Print Archive, vol. 112, 2001.

[58] “Elliptic curve integrated encryption scheme - crypto++ wiki,” https://www.cryptopp.
com/wiki/Elliptic Curve Integrated Encryption Scheme, (Accessed on 02/19/2018).

[59] “Key derivation function - wikipedia,” https://en.wikipedia.org/wiki/Key derivation
function, (Accessed on 02/19/2018).

[60] “Integrated encryption scheme - wikipedia,” https://en.wikipedia.org/wiki/Integrated
Encryption Scheme, (Accessed on 02/19/2018).

[61] V. Gayoso Martı́nez, L. Hernández Encinas, and A. Queiruga Dios, “Security and
practical considerations when implementing the elliptic curve integrated encryption
scheme,” Cryptologia, vol. 39, no. 3, pp. 244–269, 2015.

[62] “Implicit certificate - wikipedia,” https://en.wikipedia.org/wiki/Implicit certificate,
(Accessed on 02/19/2018).

[63] D. Brown, “Standards for efficient cryptography, sec 1: elliptic curve cryptography,”
Released Standard Version, vol. 1, 2009.

[64] R. Sunuwar and S. K. Samal, “Elgamal encryption using elliptic curve cryptography,”
Cryptography and Computer Security, University of Nebraska, Lincoln, 2015.

65

https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://en.wikipedia.org/wiki/Twisted_Edwards_curve
https://jeremykun.com/2014/03/31/elliptic-curve-diffie-hellman/
https://jeremykun.com/2014/03/31/elliptic-curve-diffie-hellman/
https://www.cryptopp.com/wiki/Elliptic_Curve_Integrated_Encryption_Scheme
https://www.cryptopp.com/wiki/Elliptic_Curve_Integrated_Encryption_Scheme
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
https://en.wikipedia.org/wiki/Implicit_certificate

[65] “Elgamal encryption - wikipedia,” https://en.wikipedia.org/wiki/ElGamal encryption,
(Accessed on 02/20/2018).

[66] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve cryptography.
Springer Science & Business Media, 2006.

[67] P. FIPS, “186-3,” Digital signature standard (DSS), 2009.

[68] B. Schneier, “Did nsa put a secret backdoor in new encryption stan-
dard?” URL: http://www. wired. com/politics/security/commentary/securitymat-
ters/2007/11/securitymatters, vol. 1115, p. 2007, 2007.

[69] D. J. Bernstein, T. Lange et al., “Safecurves: choosing safe curves for elliptic-curve
cryptography,” URL: http://safecurves. cr. yp. to, 2013.

[70] P. G. Shah, X. Huang, and D. Sharma, “Analytical study of implementation issues of
elliptical curve cryptography for wireless sensor networks,” in Advanced Information
Networking and Applications Workshops (WAINA), 2010 IEEE 24th International Con-
ference on. IEEE, 2010, pp. 589–592.

[71] “Why are elliptic curves used in cryptography,” http://www.umsl.edu/∼siegelj/
information theory/projects/EllipticCurveEncyiption.pdf, (Accessed on 05/06/2018).

[72] “Things that use ed25519,” https://ianix.com/pub/ed25519-deployment.html, (Ac-
cessed on 02/20/2018).

[73] A. Young and M. Yung, Malicious cryptography: Exposing cryptovirology. John
Wiley & Sons, 2004.

[74] ——, “The dark side of black-box cryptography or: Should we trust capstone?” in
Annual International Cryptology Conference. Springer, 1996, pp. 89–103.

[75] K. Thissen and T. Lange, “Klepto for post-quantum signatures,” 2016.

[76] A. Young and M. Yung, “Kleptography: Using cryptography against cryptography,”
in International Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1997, pp. 62–74.

[77] ——, “The prevalence of kleptographic attacks on discrete-log based cryptosystems,”
in Annual International Cryptology Conference. Springer, 1997, pp. 264–276.

[78] ——, “Bandwidth-optimal kleptographic attacks,” in International Workshop on Cryp-
tographic Hardware and Embedded Systems. Springer, 2001, pp. 235–250.

[79] ——, “Backdoor attacks on black-box ciphers exploiting low-entropy plaintexts,” in
Australasian Conference on Information Security and Privacy. Springer, 2003, pp.
297–311.

[80] C. Crépeau and A. Slakmon, “Simple backdoors for rsa key generation,” in Cryptogra-
phers Track at the RSA Conference. Springer, 2003, pp. 403–416.

[81] A. Young and M. Yung, “Malicious cryptography: Kleptographic aspects,” in Cryptog-
raphers Track at the RSA Conference. Springer, 2005, pp. 7–18.

66

https://en.wikipedia.org/wiki/ElGamal_encryption
http://www.umsl.edu/~siegelj/information_theory/projects/EllipticCurveEncyiption.pdf
http://www.umsl.edu/~siegelj/information_theory/projects/EllipticCurveEncyiption.pdf
https://ianix.com/pub/ed25519-deployment.html

[82] A. L. Young and M. M. Yung, “Yygen: A backdoor-resistant rsa key generator,” 2005.

[83] A. Young and M. Yung, “A space efficient backdoor in rsa and its applications,” in
International Workshop on Selected Areas in Cryptography. Springer, 2005, pp. 128–
143.

[84] ——, “Kleptography from standard assumptions and applications,” in International
Conference on Security and Cryptography for Networks. Springer, 2010, pp. 271–
290.

[85] M. Bellare, J. Jaeger, and D. Kane, “Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015, pp. 1431–1440.

[86] A. Russell, Q. Tang, M. Yung, and H.-S. Zhou, “Cliptography: Clipping the power of
kleptographic attacks,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2016, pp. 34–64.

[87] M. Antheunisse, “Kleptography cryptography with backdoors,” Ph.D. dissertation,
Masters thesis, Eindhoven University of Technology, 2015. http://repository. tue.
nl/801620.

[88] D. Kucner and M. Kutylowski, “Stochastic kleptography detection,” in Public-Key
Cryptography and Computational Number Theory, 2001, pp. 137–149.

[89] “Coefficient of variation - wikipedia,” https://en.wikipedia.org/wiki/Coefficient of
variation, (Accessed on 02/2/2018).

67

https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Coefficient_of_variation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS
	INTRODUCTION
	Problem Statement and Objectives
	Contributions
	Motivation
	Thesis Outline

	HISTORY OF BACKDOORS
	What are backdoors?
	The History of Backdoors
	Clipper Chip
	Lotus Notes
	Dual EC DRBG
	Debian OpenSSL PRNG
	Heartbleed
	Juniper Firewall
	WhatsApp Backdoor
	Bitcoin Wallet Backdoor

	The Term 'Kleptography'
	Literature Review

	ELLIPTIC CURVE CRYPTOGRAPHY
	Elliptic curves
	Group Law

	Elliptic Curve Discrete Logarithm Problem
	Edwards Curve Digital Signature Algorithm
	Elliptic Curve Diffie Hellman Key Exchange Scheme
	Elliptic Curve Digital Signature Algorithm
	Elliptic Curve Integrated Encryption Scheme
	Elliptic Curve Qu-Vanstone Implicit Certificate
	Elliptic Curve ElGamal Encryption Scheme

	Application of Elliptic curve Cryptography

	PROPOSED KLEPTOGRAPHIC ATTACKS
	Proposed Kleptographic Attack on Elliptic Curve Cryptography
	Edwards Curve Digital Signature Algorithm
	Elliptic Curve Diffie Hellman Key Exchange Scheme
	Elliptic Curve Digital Signature Algorithm
	Elliptic Curve Integrated Encryption Scheme
	Elliptic Curve Qu-Vanstone Implicit Certificate
	Elliptic Curve ElGamal Encryption Scheme

	TEST METHODOLOGY WITH RESULTS
	Test Methodology
	Experimental Setup

	Experimental Results

	CONCLUSION and FUTURE WORK DIRECTIONS
	Conclusion

	BIBLIOGRAPHY

