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ABSTRACT

This research examines the passivity preserving frequency weighted model order reduction

(MOR) techniques for linear time invariant (LTI) systems. In this research different single

and double sided passivity preserving techniques for MOR are presented. Different combi-

nations of Lyapunov and arithmetic Riccati equations (ARE’s) are used to deduce the con-

trollability and observability Gramians from frequency weighted and un-weighted systems.

First of all, augmented system (a system with both input and output frequency weights) is

transformed into a new system using two different transformations. Then by using the same

transformations, weighted controllability and observability Gramians (which are obtained

from weighted ARE’s) are transformed into new weighted controllability and observability

Gramians.

For double sided passivity preserving, three schemes are presented in which both control-

lability and observability Gramians are weighted. In first scheme, an ARE based transformed

weighted controllability Gramian and a Lyapunov based weighted observability Gramian

and vice versa are used for balancing the system. In second scheme, an ARE based trans-

formed weighted controllability Gramian and an ARE based weighted observability Gramian

and vice versa are used to balance the system. In third scheme, an ARE based transformed

weighted controllability Gramian and an ARE based transformed weighted observability

Gramian are used for balancing purpose.

For single sided passivity preserving, five schemes are presented in which either a con-

trollability Gramian is weighted and an observability Gramian is un-weighted or a control-

lability Gramian is un-weighted and an observability Gramian is weighted. In first scheme,

an ARE based un-weighted controllability Gramian and a Lyapunov based weighted ob-

servability Gramian and vice versa are used to balance the system. In second scheme, an

ARE based weighted controllability Gramian and an ARE based un-weighted observability

Gramian and vice versa are used for balancing. In third scheme, an ARE based transformed

weighted controllability Gramian and an ARE based un-weighted observability Gramian

and vice versa are used for balancing purpose. In fourth scheme, an ARE based trans-

formed weighted controllability Gramian and a Lyapunov based un-weighted observability

Gramian and vice versa are used for balancing the system. In fifth scheme, an ARE based

transformed weighted controllability Gramian and an ARE based un-weighted observability

Gramian and vice versa are used for balancing. Several practical examples using different

weighting functions are given to show the effectiveness of the proposed schemes.
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Chapter 1

Introduction

1.1 Model Order Reduction Overview

Mathematical modeling of a physical system is considered to be an important tool for the de-

sign and analysis purpose in control engineering. Many physical systems have very large and

complex mathematical models. Deriving a reasonable mathematical model is fundamental

to the study and design of a dynamic system in control engineering. A large scale and a fairly

complex model of a dynamic system can be obtained but its analysis and design can be dif-

ficult due to its complexity. However, analysis and design of a dynamic system is easier if a

lower order model from a higher order model is derived. The process in which a lower order

model is obtained from a higher order model is known as model order reduction (MOR). To

approximate the large and complex mathematical models, different techniques for MOR are

used. The main goal of MOR techniques is to approximate a reduced order model (ROM)

which should have low approximation error and should also preserve stability and passivity

like an original system. In the last four decades, different MOR techniques got considerable

attention and have been widely used in control engineering [1]- [6], [17, 18], [22]- [24]

1.2 Summary of Model Order Reduction Techniques

In this section, a brief summary of some techniques for stable and passive ROM’s in the

presence of frequency weights is discussed.

1.2.1 Frequency Weighted Model Reduction

Balanced truncation (BT) [1] is the most famous and widely used MOR technique. BT [1]

not only preserves stability of the ROM but also gives simple error bound formula. Enns’ [2]

modified the BT method [1] to include input and output frequency weights. The main reason

behind the idea of using frequency weights in MOR techniques was to get a ROM with small

error in a particular frequency range [2]. Enns’ method [2] works well for the single sided

weighting scenario but it may yield unstable ROMs when double sided weights are used. To

address the stability issue of [2], many other techniques [3]- [6], [22] for MOR have been
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offered in literature.

In [3] Lin and Chiu have shown that a guaranteed stable ROM can be obtained for strictly

proper two sided weights unlike the method of [2] which produces stable ROM in the pres-

ence of single sided weighting only. The technique of [2] was also modified by Wang et

al. [4] which yields stable ROM even in the presence of double sided weights by making

the indefinite matrices positive semi definite. An a priori error bound formula for frequency

weighted MOR is also given in [4]. The concept of similar kind of an effect on all the eigen-

values of indefinite matrices and an error bound formula is also given in [5]. For a specific

subclass of positive real (PR) systems, a modified PR balancing method along with an error

bound formula is proposed in [6].

1.2.2 Passivity Preserving Model Order Reduction

Phillips et al. [7] presented a family of algorithms for passive ROM which are similar to the

well-known BT method [1] for stable ROM. In [7] controllability and observability Grami-

ans are deduced from Lur’e equations without using frequency weights. Although, the algo-

rithms presented in [7] give passive ROM but these algorithms do not address the passivity

issue in a particular frequency range. Muda et al. [8] extended the methods of [2]- [4] for

RLC systems to ensure passivity while taking into account the effect of frequency weights,

since [2]- [4] only yield stable ROM. Conditions for guaranteed passive ROM’s are also

discussed by [8] for the three extended techniques.

Heydari and Pedram claimed in [9] that their technique produces guaranteed passive ROM

for double sided frequency weighted case, and the spectrally-weighted error bound is also

available. The technique of [9] produces passive ROMs for the single sided weighting case

similar to [2] which produces stable ROM for the case when only one sided weighting is

used. In [10] it has been proved that the technique proposed in [9] may yields non-passive

ROM for the passive original system in case of double sided frequency weighting. [10]

also proved that the method of [9] can preserve passivity only when one sided weighting is

present.

1.3 Problem Summary

Existing techniques [7]- [9] are studied so far and it has been observed that the problem of

preserving passivity, in the presence of double sided frequency weights is yet to be an open
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challenge.

1.4 Summary of Contributions

Different passivity preserving algorithms are proposed in [7] which yield passive ROM with-

out using frequency weighting. Heydari and Pedram [9] used frequency weights in their

techniques but later on it was proved incorrect by [10], although, the technique presented

in [9] preserves passivity for single sided frequency weighting and also gives an error bound

formula.

1.5 Objective of the Research

The objective of this thesis (research) is summarized as,

• To produce such techniques which ensure the stability as well as passivity of the ROM.

• To explore such techniques which produce guaranteed passive ROM when both input

and output frequency weights are used in MOR.

1.6 Outline of the Thesis

This thesis is split into five chapters:

• Chapter 1: In this chapter the summary of existing stability and passivity preserving

MOR techniques is described.

• Chapter 2: This chapter includes existing stability and passivity preserving MOR tech-

niques in detail.

• Chapter 3: This chapter incorporates different proposed schemes for computing a

guaranteed passive ROM in case of single and double sided weights.

• Chapter 4: In this chapter numerical examples and simulation results are presented.

• Chapter 5: This chapter is about future work and conclusion.
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Chapter 2

Frequency Weighted Model Reduction: A Review

2.1 Introduction

Control engineering mainly focuses on implementation of dynamic systems which are de-

rived by mathematical modeling of a diverse range of physical systems. A large number of

physical systems exist in the real world. Ordinary differential equations (ODEs) and partial

differential equations (PDEs) are used to describe the dynamic behavior of a physical sys-

tem. In most of the cases, the system architecture or the dimension of the system is too large

and complex and we get a higher order mathematical model of a dynamic system. Differ-

ent MOR techniques are used to reduce the size and complexity of these large and complex

models for the ease of analysis, design and simulation (see Figure 2.1).

Figure 2.1: Importance of model order reduction

Several model order reduction (MOR) techniques have been proposed in literature since

last four decades [1]- [9], [11, 15, 29]. These techniques can be classified into three broader

categories known as Singular Value Decomposition (SVD), Moment Matching (MM), and

the combination of SVD and MM. Methods based on SVD approximate the ROM according

to their roots in the SVD. A famous technique which is known as balanced truncation (BT) or

truncated balanced realization (TBR) [1] proposed by Moore was based on SVD approach.

Moore transformed the original system into a balanced system in which every state was

likewise controllable and observable. The ROM is obtained by directly truncating the low
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energy states from a balanced realization. The techniques which are based on SVD are very

popular in control engineering because of the guaranteed stability of the ROM and easily

computable error bounds [3, 4].

Techniques based on MM have the property of retaining some parameters of the original

system in the ROM like time moments and Markov parameters. As the system performance

depends upon the dominant poles so the main idea of MM is to remove those poles which

do not play significant role in system performance. MM approximate a ROM by matching

its poles to the moments of the original system. This method uses either explicit or implicit

MM. Numerically the explicit MM is an unstable method, so implicit MM is widely studied

in last few years [11,26]. MM is computationally efficient and it can be used for the reduction

of a very large system but the main disadvantage of this method is if the order of a ROM is

very small compared to the original system, the error between original system and the ROM

will be very large.

To combine the advantages of SVD and MM, hybrid methods were established which were

the outcome of the combination of the two methods discussed above. For example passive

reduced-order interconnect macro modeling algorithm (PRIMA) [12] is used as a first stage

of reduction and SVD is used as a second stage of reduction while preserving passivity as

well as retaining error bound in the ROM [7]. For increasing the computational efficiency in

solving the Lur’e and Lyapunov equations, another technique of combination [13] uses the

SVD methods and projection based methods in these hybrid techniques.

In this chapter, we first review the BT method [1]. In BT method, the frequency response

of the ROM follow the frequency response of the original system at infinite frequency. Then

frequency weighted and passivity preserving MOR problem will be discussed. Next the

review of frequency weighted MOR [2]- [5], [18, 22, 24] and passivity preserving frequency

weighted MOR [7]- [9] will be explored.

2.2 Preliminaries

Since the proposed techniques in this thesis are mainly based on balanced realization [1], so

first we discuss a brief summary of balanced realization/BT and its applications.
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2.2.1 Balanced Truncation [1]

LetG(s) = D+C(sI−A)−1B be the nth order original stable system, where the realization

{A,B,C,D} is a state space realization ofG(s), andA ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n and

D ∈ Rp×m. Controllability Gramian PBT and observability Gramian QBT corresponding to

G(s) can be obtained by solving the following set of Lyapunov equations.

APBT + PBTA
T +BBT = 0 (2.1a)

ATQBT +QBTA+ CTC = 0 (2.1b)

In (2.1a) PBT , and in (2.1b) QBT , both matrices are symmetric and positive definite i.e

PBT > 0 and QBT > 0. Let T be the contragradient transformation which is attained by

simultaneously diagonalizing the controllability Gramian PBT and observability Gramian

QBT such that:

T−1PBTT
−T = T TQBTT = diag{σ1, σ2, ..., σn}

where σi are the Hankel Singular Values (HSV’s) and σi ≥ σi+1, for i = 1, 2, ..., n− 1. The

balanced realization {Ab, Bb, Cb, Db} is obtained as follows:

 Ab Bb

Cb Db

 =

 TAT−1 T−1B

CT D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.2)

The ROM {A11, B1, C1} is obtained by truncating the low energy states in (2.2), where

A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r and D ∈ Rp×m, and r is the order of the ROM

(r < n).

Remark 1 The ROM obtained by BT method [1] does not address the stability issue in the

presence of frequency weights.

2.2.2 Properties of Balanced Truncation [1]

Following are the properties of BT [1]:
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1. A state space realization {A,B,C,D} can be transformed to a balanced realization

{Ab, Bb, Cb, Db} if and only if it is minimal and asymptotically stable.

2. A subsystem {Aii, Bi, Ci, D} where, i = 1, 2, which is obtained from the original

system {A,B,C,D} is stable as well as internally balanced if no diagonal entries

between two subsystems are common [14], i.e σk 6= σl where, k = 1, ..., r, (where r

is the order of the ROM) and l = r + 1, ..., n, (where n is the order of the original

system).

3. The error bound can be obtained as follows

||G(s)−Gr(s)||∞ 6 2
n∑

i=r+1

σi

where σi are the HSV’s.

2.3 Motivation and Problem Formulation

Proposed techniques discussed in next chapter consider both stable as well as passive sys-

tems. So in this chapter, the problem of passivity preserving in MOR will be discussed, and

then extension of the frequency weighting case will be elaborated.

2.3.1 Interconnect Network of RLC Circuit

Operating frequencies in communication systems are increasing with every day passing, as a

result the size of circuit equations of high-frequency microwave subnetworks and intercon-

nects are becoming large and large [15]. An interconnect network is modeled by a number

of RLC elements which increases network complexity with increasing circuit elements.

Figure 2.2: A simple lumped RLC circuit of an interconnect line

MOR can be one of the solutions to tackle large scale interconnect networks. The algorithm

given in [12] generate guaranteed passive ROM for large scale interconnect models which

7



are described by RLC type networks. A simple lumped RLC interconnect circuit is shown

in Figure 2.2, and an RC interconnect line is shown in Figure 2.3.

Figure 2.3: A resistive-capacitive interconnect line

2.3.2 Importance and Properties of Passivity Preserving Model Order Reduction

Passivity of a complex transfer function G(s) is implied by its positive-realness for many

electrical systems of interest [7]. G(s) is called positive real (PR) if it is unable to generate

energy internally, like an RLC circuit. A passive system always lies entirely in the right half

of the complex plan called Nyquist plot, while non passive system lies in the left half of the

complex plan (see Figure 2.4). For positive-realness, G(s) must always satisfy the following

PR condition

R[G(s)] > 0 if R(s) > 0

where s = σ + jω. So the PR condition can be written as

R[G(s)] > 0 if σ > 0

and there is no constraint on I(s). Consider an nth order PR system

G(s) = D + C(sI − A)−1B (2.3)

8
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Figure 2.4: Passive and non passive systems - Nyquist diagram

where the state space realization {A,B,C,D} is a minimal realization of G(s). Because of

the unique stability properties of PR systems, they are of special interest in the analysis and

design of control system. Passivity is considered to be one of the very important properties

of an RLC system. Since passive system is always stable but vice versa is not true [8]. So it

is necessary for a ROM Gr(s) = D+Cr(sI−Ar)
−1Br to preserve passivity like an original

system. A passive system always satisfies the following set of Lur’e equations

APRE + PREA
T = −KiK

T
i (2.4a)

PREC
T −B = −KiW

T
i (2.4b)

WiW
T
i = D −DT (2.4c)

ATQRE +QREA = −KT
o Ko (2.5a)

QREB − CT = −KT
o Wo (2.5b)

W T
o Wo = D −DT (2.5c)

where, PRE > 0 is the controllability Gramian and QRE > 0 is the observability Gramian of

the passive system, respectively. The above Lur’e equations can be solved for PRE and QRE

by using the following algebraic Riccati equations (AREs) [16].
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APRE + PREA
T + (PREC

T −B)(D +DT )−1(CPRE −BT ) = 0 (2.6)

ATQRE +QREA+ (QREB − CT )(D +DT )−1(BTQRE − C) = 0 (2.7)

2.3.3 A Review of Passivity Preserving Model Order Reduction

Phillips et al. [7] presented a family of algorithms for passive ROM’s which are similar

to the well-known BT method [1] for stable ROM. In [7] controllability and observability

Gramians are obtained from Lur’e equations without using frequency weights. Muda et

al. [8] extended the methods of [2]- [4] for RLC systems to ensure passivity, since [2]- [4]

only yield stable ROMs. Conditions for guaranteed passivity are also given in [8] for the

three extended techniques.

Heydari and Pedram claimed in [9] that their technique produces guaranteed passive ROM

for the double sided frequency weighting case, and the spectrally-weighted error bound is

also available. The technique of [9] produces passive ROM for the single sided weighting

case similar to [2] which produces stable ROM for the case when only one sided weighting

is used. In [10] it has been proved that the technique of [9] may yields non-passive ROM for

the passive original system in case of double-sided frequency weighting. It is also proved

in [10] that the method of [9] can preserves passivity only when one sided weighting is

present.

2.4 Frequency Weighted Model Order Reduction

Let an nth order stable original system G(s) has state space realization as {A,B,C,D}.

Let vth order stable input weight Gi(s) and wth order stable output weight Go(s) have cor-

responding state space realizations as {Ai, Bi, Ci, Di} and {Ao, Bo, Co, Do} respectively,

where Ai ∈ Rv×v, Bi ∈ Rv×m, Ci ∈ Rp×v, and Di ∈ Rp×m, and Ao ∈ Rw×w, Bo ∈ Rw×m,

Co ∈ Rp×w, and Do ∈ Rp×m. v and w represent the number of states of input and output

frequency weights respectively.

Figure 2.5: Un-weighted MOR problem
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The objective of MOR is to find an rth order stable ROM having state space minimal

realization {Ar,Br,Cr,Dr}, such that the error between G(s) and Gr(s) is made as small as

possible, i.e min||Go(s)(G(s)−Gr(s))Gi(s)||∞. This problem is so called the double sided

frequency weighted MOR problem (see Figure 2.6).

Figure 2.6: Double sided frequency weighted MOR problem

The problem is called single sided frequency weighted MOR problem if one of the either

weights is identity. In this scenario, the objective is to minimize the error between G(s) and

Gr(s), i.e in case of only input weight, min||(G(s) − Gr(s))Gi(s)||∞ (see Figure 2.7), and

in case of only output weight, min||Go(s)(G(s)−Gr(s))||∞ (see Figure 2.8).

Figure 2.7: Input frequency weighted MOR problem

Figure 2.8: Output frequency weighted MOR problem

2.4.1 The Technique of Enns’ [2]

Enns’ [2] was the first to introduced frequency weights for MOR. This technique gives stable

ROM for single sided frequency weighting case only. When double sided weights are used,

this technique may produce unstable ROM [17]. Consider a stable original system G(s) as

given in (2.3). Let Gi(s) and Go(s) be the input and output frequency weights

Gi(s) = Di + Ci(sI − Ai)
−1Bi (2.8a)

Go(s) = Do + Co(sI − Ao)
−1Bo (2.8b)
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where, {Ai, Bi, Ci, Di} is the state space realization of input frequency weight and

{Ao, Bo, Co, Do} is the state space realization of output frequency weight. The input aug-

mented systemG(s)Gi(s) and the output augmented systemGo(s)G(s) are given as follows:

G(s)Gi(s) =

 Āi B̄i

C̄i D̄i

 =


A BCi BDi

0 Ai Bi

C DCi DDi

 (2.9a)

Go(s)G(s) =

 Āo B̄o

C̄o D̄o

 =


A 0 B

BoC Ao BoD

DoC Co DoD

 (2.9b)

where, {Āi, B̄i, C̄i, D̄i} is the state space realization of input augmented system and

{Āo, B̄o, C̄o, D̄o} is the state space realizations of output augmented system. Let P̄E and

Q̄E satisfy the following Lyapunov equations.

ĀiP̄E + P̄EĀ
T
i + B̄iB̄

T
i = 0 (2.10a)

ĀT
o Q̄E + Q̄EĀo + C̄T

o C̄o = 0 (2.10b)

where

P̄E =

 Pv P12

P T
12 Pi

 (2.11a)

Q̄E =

 Qo Q12

QT
12 Qw

 (2.11b)

Remark 2 P̄E and Q̄E obtained from above Lyapunov equations are symmetric and also

P̄E > 0 and Q̄E > 0.
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Expanding the (1,1) block of (2.10a) and (2,2) block of (2.10b), we obtain:

APv + PvA
T +X = 0 (2.12a)

ATQw +QwA+ Y = 0 (2.12b)

where

X = BCiP
T
12 + P12C

T
i B

T +BDiD
T
i B

T (2.13a)

Y = CTBT
o Q

T
12 +Q12BoC + CTDT

oDoC (2.13b)

The matrices X and Y are generally indefinite [4], and this is the main reason of instability

of a ROM in case of double sided frequency weighting. Balancing transformation matrix T

which is used to diagonalize the weighted Gramians Pv and Qw such that T−1PvT
−T =

T TQwT = diag{σ1, σ2, ..., σn} where σn are the HSV’s and σi ≥ σi+1 for i = 1, 2, ..., n− 1.

Then the ROM {Ar, Br, Cr} = {A11, B1, C1} can be obtained as follows [2].

 Ar Br

Cr Dr

 =

 TAT−1 TB

CT−1 D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.14)

Remark 3 The ROM obtained by [2] in the presence of double sided frequency weights may

not stable but for single sided frequency weighting it will guaranteed to be stable [17].

Wang et al. [4] , Varga and Anderson [18], Ghafoor and Sreeram [17], and Imran et al. [5]

modified Enns’ technique [2] to tackle the stability issue in case of double sided frequency

weights.

2.4.2 The Technique of Lin and Chiu [3]

Lin and Chiu [3] modified Enns’ technique [2] to tackle the stability issue for the case when

double sided frequency weights are used. Their technique first defines X̄ = P12P
−1
i and
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Ȳ = Q−1o QT
12. Let

T̃i =

 I X̄

0 I

 (2.15a)

T̃o =

 I −Ȳ

0 I

 (2.15b)

be the transformations applied to the input and output augmented realizations {Āi, B̄i, C̄i, D̄i}

and {Āo, B̄o, C̄o, D̄o} respectively,

 Ãi B̃i

C̃i D̃i

 =

 T̃−1i ĀiT̃i T̃−1i B̄i

C̄iT̃i D̄i

 =


A Ai12 Bi11

0 Ai Bi

C Ci12 DDi

 (2.16)

and

 Ão B̃o

C̃o D̃o

 =

 T̃−1o ĀoT̃o T̃−1o B̄o

C̄oT̃o D̄o

 =


Ao Ao12 B

0 A Bo21

Co11 Co DoD

 (2.17)

where

Ai12 = AP12P
−1
i +BCi − P12P

−1
i Ai (2.18a)

Bi11 = BDi − P12P
−1
i Bi (2.18b)

Ci12 = CP12Pi +DCi (2.18c)

Ao12 = Q−1o QT
12A+BoC − AoQ

−1
o QT

12 (2.18d)

Bo21 = BoD +Q−1o QT
12B (2.18e)

Co11 = DoC − CoQ
−1
o QT

12 (2.18f)
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Let the following Gramians be defined as

P̃LC = T̃−1i PT̃−Ti =

 Pn 0

0 Pi

 (2.19a)

Q̃LC = T̃ T
o QT̃o =

 Qo 0

0 Qn

 (2.19b)

where Pn = Pv−P12P
−1
i P T

12 andQn = Qw−Q12Q
−1
o QT

12. Let P̃LC and Q̃LC be the solutions

of the following Lyapunov equations

ÃiP̃LC + P̃LCÃ
T
i + B̃iB̃

T
i = 0 (2.20a)

ÃT
o Q̃LC + Q̃LCÃo + C̃T

o C̃o = 0 (2.20b)

Expanding the (1,1) and (2,2) blocks of (2.20a) and (2.20b) respectively, we obtain

APn + PnA
T +Bi11B

T
i11 = 0 (2.21a)

ATQn +QnA+ CT
o11Co11 = 0 (2.21b)

Simultaneously diagonalizing the weighted controllability and observability Gramians Pn

and Qn respectively,

T−1LCPnT
−T
LC = T T

LCQnTLC = diag{σ1, σ2, ..., σn}

where σn are the HSV’s and σi ≥ σi+1, for i = 1, 2, ..., n− 1.

Remark 4 The ROM {Ar, Br, Cr} = {A11, B1, C1} is obtained in a same way as obtained

in Enns’ method [2] by truncating the low energy states in (2.14).

Remark 5 The realization {A,Bi11, Co11} is minimal and the ROM {Ar, Br, Cr} =

{A11, B1, C1} is stable [17].

15



2.4.3 The Technique of Wang et al. [4]

Wang et al. [4] tackle the stability issue of [2] by making indefinite matrices X and Y in

(2.12a) and (2.12b) positive semi-definite using eigenvalue decomposition. As we know that

the matrices X and Y are symmetric matrices so we can also write X and Y in the form of

eigenvalue decomposition

X = USUT

Y = V ZV T

where S = diag{s1, s2, ..., sn} and Z = diag{z1, z2, ..., zn}. Symmetric matrices X and Y

are replaced by XW and YW such that

XW = U |S|UT

YW = V |Z|V T

where |S| = diag(|s1|, |s2|, ..., |sn|), |Z| = diag(|z1|, |z2|, ..., |zn|), |s1| ≥ |s2| ≥ ... ≥

|sn| ≥ 0 and |z1| ≥ |z2| ≥ ... ≥ |zn| ≥ 0. The new controllability Gramian PW and

observability Gramian QW are obtained from the following Lyapunov equations

APW + PWA
T +BWB

T
W = 0 (2.22a)

ATQW +QWA+ CT
WCW = 0 (2.22b)

where the fictitious input and output matricesBW andCW , respectively, are defined asBW =

U |S| 12 and CW = |Z| 12V . The new Gramians PW and QW are diagonalized by TW such that

T−1W PWT
−T
W = T T

WQWTW = diag{σ1, σ2, ..., σn}

where σn are the HSV’s and σi ≥ σi+1, for i = 1, 2, ..., n− 1.

Remark 6 The realization {A,BW , CW} is minimal and the ROM {Ar, Br, Cr} =

{A11, B1, C1} is obtained by truncating the low energy states in (2.14) and guaranteed

to be stable.

16



2.5 Passivity Preserving Model Order Reduction

Passivity preserving MOR is supposed to be an extension of balanced realization, which

deals with both frequency weighted and un-weighted cases. Due to certain factors such as the

importance of passivity preserving in MOR techniques and to limit the computational cost

in SVD based methods, so for reasonable work has been done on passivity preserving MOR

[8,10], [19]- [21]. In this section, a review some of the passivity preserving MOR techniques

available in literature related to both frequency weighted and un-weighted scenarios will be

presented.

2.5.1 The Technique of Phillips et al. [7]

Phillips et al. [7] presented a family of algorithms for passive ROMs which are similar to the

well-known BT method [1] for stable ROMs. The main difference between two techniques is

the way controllability Gramian and observability Gramian are computed. In BT [1] control-

lability Gramian and observability Gramian are computed by using the Lyapunov equations

without using frequency weights, while Phillips et al. [7] computed the controllability and

observability Gramians from the Lur’e equations without using frequency weights. By us-

ing BT [1] stable ROMs are obtained, while using the technique of Phillips et al. [7] passive

ROMs are obtained. Positive real truncated balanced realization (PR-TBR) algorithm pre-

sented in [7] gives guaranteed passive ROM for the system G(s) = D + C(sI − A)−1B.

Controllability Gramian PP and observability Gramian QP are the solutions of following

Lure equations

APP + PPA
T = −KiK

T
i (2.23a)

PPC
T −B = −KiW

T
i (2.23b)

WiW
T
i = D +DT (2.23c)

ATQP +QPA = −KT
o Ko (2.24a)

QPB − CT = −KT
o Wo (2.24b)

W T
o Wo = D +DT (2.24c)
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The above Lur’e equations can also be transformed into the following ARE’s [16].

APP + PPA
T + (PPC

T −B)(D +DT )−1(CPP −BT ) = 0 (2.25a)

ATQP +QPA+ (QPB − CT )(D +DT )−1(BTQP − C) = 0 (2.25b)

Algorithm 2 in [7] computes similarity transformation matrix TP which is used to diago-

nalize PP and QP such that T−1P PPT
−T
P = T T

P QPTP = diag{σ1, σ2, ..., σn} where σi are the

HSV’s and σi ≥ σi+1 for i = 1, 2, ..., n − 1. Desired ROM {A11, B1, C1} is obtained from

the following balanced realization.

 Â B̂

Ĉ D̂

 =

 T−1P ATP T−1P B

CTP D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.26)

Remark 7 When the system G(s) is PR then the ROM obtained by using algorithm 3 of [7]

is guaranteed to be passive.

2.5.2 Techniques of Muda et al. [8]

In [8] Muda et al. extended three famous techniques [2]- [4] to preserve passivity of the

ROM. Consider the input and output weighting functions in (2.8a) and (2.8b) respectively,

and input and output augmented systems in (2.9a) and (2.9b), respectively. Let P̄i and Q̄o be

the solution of the following Lur’e equations:

ĀiP̄i + P̄iĀ
T
i = −K̄iK̄

T
i (2.27a)

P̄iC̄
T
i − B̄i = −K̄iW̄

T
i (2.27b)

W̄iW̄
T
i = D̄i + D̄T

i (2.27c)
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ĀT
o Q̄o + Q̄oĀo = −K̄T

o K̄o (2.28a)

Q̄oB̄o − C̄T
o = −K̄T

o W̄o (2.28b)

W̄ T
o W̄o = D̄o + D̄T

o (2.28c)

where

W̄i = (D̄i + D̄T
i )

1
2V (2.29a)

W̄o = U(D̄o + D̄T
o )

1
2 (2.29b)

K̄i = (B̄i − P̄iC̄
T
i )(D̄i + D̄T

i )−
1
2V (2.30a)

K̄o = U(D̄o + D̄T
o )−

1
2 (C̄o − B̄T

o Q̄o) (2.30b)

where V and U are arbitrary orthogonal matrices i.e UUT = V V T = I . K̄i and K̄o can be

sub-divided as

K̄i =

 Ki1

Ki2

 , K̄o =
[
Ko1 Ko2

]

The Lur’e equations in (2.27a),(2.27b),(2.27c) and (2.28a),(2.28b),(2.28c) can also be writ-

ten as the following ARE’s

ĀiP̄i + P̄iĀ
T
i + (P̄iC̄

T
i − B̄i)(D̄i + D̄T

i )−1(C̄iP̄i − B̄T
i ) = 0 (2.31a)

ĀT
o Q̄o + Q̄oĀo + (Q̄oB̄o − C̄T

o )(D̄o + D̄T
o )−1(B̄T

o Q̄o − C̄o) = 0 (2.31b)

where

P̄i =

 P11 P12

P T
12 P22

 (2.32a)
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Q̄o =

 Q11 Q12

QT
12 Q22

 (2.32b)

Expanding (1,1) block of (2.27a),(2.27b),(2.27c) and (2.28a),(2.28b),(2.28c), we get

AP11 + P11A
T = −X̌ (2.33a)

P11C
T − B̌ = −Ki1W

T
i (2.33b)

WiW
T
i = D̄i + D̄T

i (2.33c)

ATQ11 +Q11A = −Y̌ (2.34a)

Q11B − ČT = −KT
o1Wo (2.34b)

W T
o Wo = D̄o + D̄T

o (2.34c)

where

X̌ = BCiP
T
12 + P12C

T
i B

T +Ki1K
T
i1 (2.35a)

Y̌ = CTBT
o Q

T
12 +Q12BoC +KT

o1Ko1 (2.35b)

B̌ = BDi − P12C
T
i D

T and Č = DoC − DTBT
o Q

T
12. The difference between Muda’s

extended techniques [8] is that the way frequency weighted controllability and observability

Gramians are computed.

The Modified Enns’ Technique [8]

Rewriting (2.35a) and (2.35b) as

X̌ = Ψ +Ki1K
T
i1 (2.36a)

Y̌ = Φ +KT
o1Ko1 (2.36b)

where Ψ = BCiP
T + P12C

T
i B

T and Φ = CTBT
o Q

T
12 + Q12BoC. The modified Enns’

technique [8] is very similar to the standard Enns’ technique [2]. In standard Enns’ technique
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[2], the indefinite matrices X and Y in (2.12a) and (2.12b) are the reason of instability in

case of double sided weighting. Similarly, in modified Enns’ technique [8], the indefinite

matrices Ψ and Φ in (2.36a) and (2.36b) are the reason of not ensuring passivity for double

sided frequency weights.

Remark 8 The ROM obtained from modified Enns’ technique [8] is passive only when the

matrices Ψ and Φ are positive semi-definite. If the matrices Ψ and Φ in (2.36a) and (2.36b)

are indefinite, then this technique may yields non passive ROM for double sided frequency

weights.

Remark 9 The weighted Gramians P11 andQ11 are used to obtained transformation matrix

TE which is then used to balance the original system.

The Modified Wang et al.’s Technique [8]

The matrices X̌ and Y̌ given in (2.36a) and (2.36b) are generally indefinite [4]. Inspiring

from [4], the indefinite matrices X̌ and Y̌ can be made positive semi definite by taking the ab-

solute of the eigenvalues of matrices X̌ and Y̌ by using eigenvalue decomposition such that

X̌ = ∆S∆T and Y̌ = ΛZΛT where, S = diag{s1, s2, ..., sn}, and Z = diag{z1, z2, ..., zn}.

Now we shall replace X̌ and Y̌ by K̄i1K̄
T
i1 and K̄T

o1K̄o1 such that, K̄i1K̄
T
i1 = ∆|S|∆T and

K̄T
o1K̄o1 = Λ|Z|ΛT where, |s1| ≥ |s2| ≥ ... ≥ |sn| ≥ 0 and |z1| ≥ |z2| ≥ ... ≥ |zn| ≥ 0.

Now we can write (2.33a), (2.33b), (2.33c) and (2.34a), (2.34b), (2.34c) as

APw1 + Pw1A
T = −K̄i1K̄

T
i1 (2.37a)

Pw1C
T − B̂ = −K̄i1W̄

T
i (2.37b)

W̄iW̄
T
i = D̄i + D̄T

i (2.37c)

ATQw1 +Qw1A = −K̄T
o1K̄o1 (2.38a)

Qw1B − ĈT = −K̄T
o1W̄o (2.38b)

W̄ T
o W̄o = D̄o + D̄T

o (2.38c)

where B̂ = Pw1C
T + K̄i1W̄

T
i and Ĉ = BTQw1 + CT + W̄ T

o K̄o1
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Remark 10 If the matrices X̌ and Y̌ in (2.33a) and (2.34a) respectively, are already positive

semi-definite then, both modified Enns’ and modified Wang et al. methods are same and

guaranteed to be passive. In this case eigenvalue decomposition of X̌ and Y̌ is not required.

Remark 11 The state space realization {A, B̂, Ĉ} is minimal and the ROM {Ar, Br, Cr} =

{A11, B1, C1} is obtained by truncating the low energy states as obtained from (2.14) and

guaranteed to be passive.

The Modified Lin and Chiu’s Technique [8]

This modified technique is similar to Lin and Chiu’s technique discussed in [3]. In this tech-

nique controllability and observability Gramians of input and output augmented systems

respectively, are transformed into a block diagonal form to compute the frequency weighted

controllability and observability Gramians of the original system using the following trans-

formation matrices

Ti =

 I X̄i

0 I

 (2.39a)

To =

 I 0

−Ȳo I

 (2.39b)

where X̄i = P12P
−1
22 and Ȳo = Q−122 Q

T
12. The Gramians Pi and Qo are obtained by trans-

forming P̄i and Q̄o as follows

Pi = T−1i P̄iT
−T
i =

 P̂ 0

0 P22

 (2.40a)

Qo = T T
o Q̄oTo =

 Q̂ 0

0 Q22

 (2.40b)

where P̂ = P11−P12P
−1
22 P

T
12 and Q̂ = Q11−Q12Q

−1
22 Q

T
12. The transformed input and output

augmented realizations {Ãi,B̃i,C̃i,D̃i} and {Ão,B̃o,C̃o,D̃o} respectively, are as follows:
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 Ãi B̃i

C̃i D̃i

 =

 T−1i ĀiTi T−1i B̄i

C̄iTi D̄i

 =


A Ai12 Bi11

0 Ai Bi

C Ci12 D̄i

 (2.41)

 Ão B̃o

C̃o D̃o

 =

 T−1o ĀoTo T−1o B̄o

C̄oTo D̄o

 =


A 0 B

Ao21 Ao Bo21

Co11 Co D̄o

 (2.42)

where

Ai12 = AX̄i +BCi −XiAi (2.43a)

Bi11 = BDi − X̄iBi (2.43b)

Ci12 = CX̄i +DCi (2.43c)

Ao21 = ȲoA+BoC − AoȲo (2.43d)

Bo21 = ȲoB +BoD (2.43e)

Co11 = DoC − CoȲo (2.43f)

The augmented realizations satisfy the following ARE’s:

ÃiPi + PiÃ
T
i + (PiC̃

T
i − B̃i)(D̃i + D̃T

i )−1(C̃iPi − B̃T
i ) = 0 (2.44a)

ÃT
oQo +QoÃo + (QoB̃o − C̃T

o )(D̃o + D̃T
o )−1(B̃T

o Qo − C̃o) = 0 (2.44b)

Expanding the (1,1) blocks of (2.44a) and (2.44b) yield

AP̂ + P̂AT + (P̂CT −Bi11)(D̄i + D̄T
i )−1(CP̂ −BT

i11) = 0 (2.45a)

AT Q̂+ Q̂A+ (Q̂B − CT
o11)(D̄o + D̄T

o )−1(BT Q̂− Co11) = 0 (2.45b)

Remark 12 As the frequency weighted Gramians P̂ and Q̂ satisfy the above ARE’s, these

Gramians also satisfy the corresponding Lur’e equation so, the ROM obtained from modified
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Lin and Chiu’s technique [8] is guaranteed to be passive.

Remark 13 The realization {A,Bi11, Co11} is minimal, and the ROM is obtained by bal-

ancing and partitioning this minimal realization.

2.5.3 The Technique of Heydari and Pedram [9]

The technique of Heydari and Pedram [9] is the extension of Phillips et al.’s technique [7]

to include the effect of frequency weights in MOR. Let Gi(s) and Go(s) be the PR input

and output frequency weights respectively, as given in (2.8a) and (2.8b) with state space

realizations {Ai, Bi, Ci, Di} and {Ao, Bo, Co, Do}. Let the augmented systems G(s)Gi(s)

and Go(s)G(s) as defined in (2.9a) and (2.9b) respectively. Let P̄ and Q̄ are obtained from

the following AREs

ĀiP̄ + P̄ Āi
T

+ (P̄ C̄i
T − B̄i)(D̄i + D̄i

T
)−1(C̄iP̄ − B̄i

T
) = 0 (2.46a)

Āo
T
Q̄+ Q̄Āo + (Q̄B̄o − C̄o

T
)(D̄o + D̄o

T
)−1(B̄o

T
Q̄− C̄o) = 0 (2.46b)

where

P̄ =

 P11 P12

P T
12 P22

 (2.47a)

Q̄ =

 Q11 Q12

QT
12 Q22

 (2.47b)

Expanding the (1,1) block of (2.46a) and (2.46b) yields

AP11 + P11A
T +BCiP

T
12 + P12C

T
i B

T︸ ︷︷ ︸+(P11C
T + P12C

T
i D

T︸ ︷︷ ︸−BDi)(DDi +DT
i D

T )−1

(CP11 +DCiP
T
12︸ ︷︷ ︸−DT

i B
T ) = 0 (2.48a)

ATQ11 +Q11A+ CTBT
o Q

T
12 +Q12BoC︸ ︷︷ ︸+(Q11B +Q12BoD︸ ︷︷ ︸−CTDT

o )(DoD +DTDT
o )−1

(BTQ11 +DTBT
o Q

T
12︸ ︷︷ ︸−DoC) = 0 (2.48b)
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In (2.48a) and (2.48b), we define the combined effect of under braced terms as X̄ and Ȳ

respectively, where

X̄ = BCiP
T
12 + P12C

T
i B

T + P11C
T (DDi +DT

i D
T )−1DCiP

T
12 + P12C

T
i D

T (DDi +

DT
i D

T )−1CP11 + P12C
T
i D

T (DDi +DT
i D

T )−1DCiP
T
12 − P12C

T
i D

T (DDi +DT
i D

T )−1

DT
i B

T −BDi(DDi +DT
i D

T )−1DCiP
T
12 (2.49a)

Ȳ = CTBT
o Q

T
12 +Q12BoC +Q11B(DoD +DTDT

o )−1DTBT
o Q

T
12 + Q12BoD(DoD +

DTDT
o )−1BTQ11 +Q12BoD(DoD +DTDT

o )−1DTBT
o Q

T
12 −Q12BoD(DoD +DTDT

o )−1

DoC − CTDT
o (DoD +DTDT

o )−1DTBT
o Q

T
12 (2.49b)

Similar to the technique of [4] for stable ROMs, Heydari and Pedram [9] made generally

indefinite symmetric matrices X̄ and Ȳ in (2.49a) and (2.49b) positive semi definite by

taking absolute of the eigenvalues of X̄ and Ȳ using eigenvalue decomposition such that

X̄ = USUT and Ȳ = V ZV T , where S = diag{s1, s2, ..., sn}, Z = diag{z1, z2, ..., zn},

|s1| ≥ |s2| ≥ ... ≥ |sn| ≥ 0 and |z1| ≥ |z2| ≥ ... ≥ |zn| ≥ 0.

Balancing transformation matrix TH which is used to diagonalize the weighted Gramians

PH = P11 and QH = Q11 such that T−1H PHT
−T
H = T T

HQHTH = diag{σh1, σh2, ..., σhn}

where σhi are the HSV’s and σhi ≥ σhi+1 for i = 1, 2, ..., n − 1. Then the ROM

{Ar, Br, Cr} = {A11, B1, C1} can be obtained as follows [9].

 Ab Bb

Cb Db

 =

 THAT
−1
H THB

CT−1H D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.50)

2.6 Muda et al.’s Comment on Heydari and Pedram’s Technique [10]

Muda et al. [10] proved that the technique of Heydari and Pedram [9] neither yields passive

nor stable ROM in the case of double sided frequency weights. And passivity is guaranteed

only for the case of single sided weighting. Let Gi(s) and Go(s) be the input and output

frequency weights as given in (2.8a) and (2.8b). Let the input and output augmented systems
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G(s)Gi(s) and Go(s)G(s) respectively, as defined in (2.9a) and (2.9b).

Let the controllability Gramian P̄i and observability Gramian Q̄o be the solutions of the

Lur’e equations in (2.27a), (2.27b), (2.27c) and (2.28a), (2.28b), (2.28c), respectively. If

D = 0, then the Lur’e equations in (2.27a), (2.27b), (2.27c) and (2.28a), (2.28b), (2.28c)

reduces to

ĀiP̄i + P̄iĀ
T
i = −K̄iK̄

T
i (2.51a)

P̄iC̄
T
i = B̄i (2.51b)

ĀT
o Q̄o + Q̄oĀo = −K̄T

o K̄o (2.52a)

Q̄oB̄o = C̄T
o (2.52b)

where

P̄i =

 P11 P12

P T
12 P22

 (2.53a)

Q̄o =

 Q11 Q12

QT
12 Q22

 (2.53b)

and

K̄i =

 Ki1

Ki2

 , K̄o =
[
Ko1 Ko2

]
(2.54)

Remark 14 For D = 0 the solution of the Lur’e equations is not as simple as when D 6= 0.

For D = 0, Lur’e equations can be solved by the method of [16].
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Expanding the (1,1) block of (2.51a), (2.51b) and (2.52a), (2.52b) yield

AP11 + P11A
T = −X̌ (2.55a)

P11C
T = BDi (2.55b)

ATQ11 +Q11A = −Y̌ (2.56a)

Q11B = CTDT
o (2.56b)

where X̌ and Y̌ are same as defined in (2.35a) and (2.35b). The matrices X̌ and Y̌ are

generally indefinite. To ensure passivity, these matrices should be positive semi-definite.

This can be accomplished by eigenvalue decomposition such that X̌ = ∆S∆T and Y̌ =

ΛZΛT where, S = diag{s1, s2, ..., sn}, and Z = diag{z1, z2, ..., zn}. Now we shall replace

X̌ and Y̌ by K̄i1K̄
T
i1 and K̄T

o1K̄o1 such that, K̄i1K̄
T
i1 = ∆|S|∆T and K̄T

o1K̄o1 = Λ|Z|ΛT

where, |s1| ≥ |s2| ≥ ... ≥ |sn| ≥ 0 and |z1| ≥ |z2| ≥ ... ≥ |zn| ≥ 0.

Now we can write (2.55a), (2.55b) and (2.56a), (2.56b) as

APh + PhA
T = −K̄i1K̄

T
i1 (2.57a)

PhC
T = B̂ (2.57b)

ATQh +QhA = −K̄T
o1K̄o1 (2.58a)

QhB = ĈT (2.58b)

Transformation matrix T̂ is used for diagonalizing the Gramians Ph and Qh, i.e;

T̂−1PhT̂
−T = T̂ TQhT̂ = diag{σ1, σ2, ..., σn} where σi are the HSV’s and σi ≥ σi+1

for i = 1, 2, ..., n − 1. Then the ROM {A11, B1, C1} can be obtained from the following

balanced realization.
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 Ab Bb

Cb Db

 =

 T̂AT̂−1 T̂B

CT̂−1 D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.59)

Remark 15 The ROM obtained from Heydari and Pedram [9] is not passive because

(2.57a), (2.57b) and (2.58a), (2.58b do not correspond to the same system but two differ-

ent systems {A, B̂, C} and {A,B, Ĉ}, respectively.

Remark 16 The transformation matrix T̂ , which is obtained by diagonalizing the Gramians

of two different systems {A, B̂, C} and {A,B, Ĉ}, applied to the original system {A,B,C}

does not produce passive ROM.

2.7 Summary

The existing techniques discussed in this chapter are summarized as:

The ROM obtained from BT [1] is guaranteed stable but without the presence of frequency

weights. Enn’s technique [2] does not yield guaranteed stable ROM in case of double sided

frequency weights. The techniques of Lin and Chiu [3] and Wang et al. [4] produce guar-

anteed stable ROM’s when double sided frequency weights are used. Although, The Lin

and Chiu’s method [3] produces guaranteed stable ROM but due to pole-zero cancellation

of the controller with the frequency weights, this technique can not be used in the controller

reduction applications. Wang et al.’s method [4] gives frequency response error bound as

well.

The technique of Phillips et al. [7] gives passive ROM without the presence of frequency

weights while the technique of Muda et al. [8] gives passive ROM in the presence of fre-

quency weights. Heydari and Pedram’s [9] technique does not guarantee passivity in case of

double sided weights [10].

2.8 Conclusion

First of all we discussed the important properties of BT and frequency weighted MOR. Then

we formulated together frequency weighted and passivity preserving MOR problem and also

discussed the important properties of frequency weighted passivity preserving MOR. Several

frequency weighted and un-weighted MOR techniques were discussed and their important
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characteristics were also presented. We can conclude that, like un-weighted MOR, preserv-

ing stability and passivity of the ROM as well as low approximation error are also desirable

in the frequency weighted MOR.
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Chapter 3

Development of New Passivity-Preserving Model Order Reduction

Schemes

3.1 Introduction

Phillips et al. [7] presented a family of algorithms for passive ROM which are similar to

the well-known BT method [1] for stable ROMs. In [7] controllability and observability

Gramians are obtained by solving the Lur’e equations without using frequency weights.

Muda et al. [8] extended the methods of [2]- [4] for RLC systems to ensure passivity, since

[2]- [4] yield only stable ROMs. Conditions for guaranteed passivity are also given in [8] for

the three extended techniques. A relationship between the Lur’e equations and the algebraic

Riccati equations (ARE’s) is also given in [8]. For D = 0 in a state space realization

{A,B,C,D}, the solution of an ARE is not straight forward. Both cases, for D = 0 and

D 6= 0, are discussed in detail in [16]. Some frequency weighted passivity preserving MOR

techniques appear in [19], [20], [21].

Heydari and Pedram claimed in [9] that their technique produces guaranteed passive ROM

for the double sided frequency weighting case, and the spectrally-weighted error bounds are

also available. The technique of [9] produces passive ROM for the single sided weighting

case similar to [2] which produces stable ROM for the case when only one sided weighting

is used. In [10] it has been proved that the technique of [9] may yields non-passive ROM

for the passive original system in case of double-sided weighting. [10] also proved that the

method of [9] can preserve passivity only when one sided weighting is present. In this

chapter, a family of frequency weighted passivity preserving MOR algorithms are proposed

which ensure stability and passivity of the ROM for both single and double sided weighting

case.

3.2 Preliminaries

Let a passive system G(s) has state space realization {A,B,C,D}. Let the input weight

Gi(s) and output weightGo(s) have corresponding state space realizations as {Ai,Bi,Ci,Di}
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and {Ao,Bo,Co,Do} respectively. Let the augmented system Go(s)G(s)Gi(s) has the corre-

sponding state space realization {Ā, B̄, C̄, D̄} , where

Go(s)G(s)Gi(s) =

 Ā B̄

C̄ D̄

 =



Ao BoC BoDCi BoDDi

0 A BCi BDi

0 0 Ai Bi

Co DoC DoDCi DoDDi


(3.1)

Let the transformations Ti and To be defined as

T̄i =


I Xi

1
2
XiYi

0 I Yi

0 0 I

 (3.2a)

T̄o =


I Xo XoYo

0 I Yo

0 0 I

 (3.2b)

where

Yi = P23P
−1
33 (3.3a)

Xi = (P12 − P13Y
T
i )(P22 −

1

2
YiP

T
23 − P23Y

T
i +

1

2
YiP33Y

T
i )−1 (3.3b)

Xo = −Q−111 Q12 (3.3c)

Yo = −(
1

2
XT

o Q11Xo +
1

2
QT

12Xo +XT
o Q12 +Q22)

−1(XT
o Q13 +Q23) (3.3d)

The transformed input and output augmented realizations {Āi,B̄i,C̄i,D̄i} and {Āo,B̄o,C̄o,D̄o}

respectively, are as follows:
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 Āi B̄i

C̄i D̄i

 =

 T̄−1i ĀT̄i T̄−1i B̄

C̄T̄i D̄

 =



Ao Ai12 Ai13 Bi11

0 A Ai23 Bi21

0 0 Ai Bi

Co Ci12 Ci13 Di


(3.4)

 Āo B̄o

C̄o D̄o

 =

 T̄−1o ĀT̄o T̄−1o B̄

C̄T̄o D̄

 =



Ao Ao12 Ao13 Bo11

0 A Ao23 Bo21

0 0 Ai Bo

Co Co12 Co13 Do


(3.5)

where

Ai12 = AoXi +BoC −XiA (3.6a)

Ai13 =
1

2
AoXiYi +BoCYi −XiAYi +BoDCi −XiBCi +

1

2
XiYiAi (3.6b)

Ai23 = AYi +BCi − YiAi (3.6c)

Bi11 = BoDDi −XiBDi +
1

2
XiYiBi (3.6d)

Bi21 = BDi − YiBi (3.6e)

Ci12 = CoXi +DoC (3.6f)

Ci13 =
1

2
CoXiYi +DoCYi +DoDCi (3.6g)

Ao12 = AoXo +BoC −XoA (3.6h)

Ao13 = AoXoYo +BoCYo −XoAYo +BoDCi −XoBCi (3.6i)

Ao23 = AYo +BCi − YoAi (3.6j)

Bo11 = BoDDi −XoBDi (3.6k)

Bo21 = BDi − YoBi (3.6l)

Co12 = CoXo +DoC (3.6m)

Co13 = CoXoYo +DoCYo +DoDCi (3.6n)

Let the un-weighted Lyapunov based controllability and observability Gramians PUL and
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QUL respectively, corresponding to G(s), be defined as:

APUL + PULA
T +BBT = 0 (3.7a)

ATQUL +QULA+ CTC = 0 (3.7b)

while the weighted Lyapunov based controllability and observability Gramians P̄WL and

Q̄WL respectively, corresponding to (3.1), be defined as:

ĀP̄WL + P̄WLĀ
T + B̄B̄T = 0 (3.8a)

ĀT Q̄WL + Q̄WLĀ+ C̄T C̄ = 0 (3.8b)

where

P̄WL =


PL11 PL12 PL13

P T
L12 PL22 PL23

P T
L13 P T

L23 PL33

 (3.9a)

Q̄WL =


QL11 QL12 QL13

QT
L12 QL22 QL23

QT
L13 QT

L23 QL33

 (3.9b)

3.3 Main Result

Expanding the (2,2) blocks of (3.8a) and (3.8b) yield

APL22 + PL22A
T +BDiD

T
i B

T +BCiP
T
L23 + PL23C

T
i B

T︸ ︷︷ ︸ = 0 (3.10a)

ATQL22 +QL22A+ CTDT
oDoC + CTBT

o QL12 +QT
L12BoC︸ ︷︷ ︸ = 0 (3.10b)

Moreover, let the un-weighted ARE based controllability and observability Gramians PUA
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and QUA respectively, corresponding to G(s), be defined as:

APUA + PUAA
T + (PUAC

T −B)(D +DT )−1(CPUA −BT ) = 0 (3.11a)

ATQUA +QUAA+ (QUAB − CT )(D +DT )−1(BTQUA − C) = 0 (3.11b)

while the weighted ARE based controllability and observability Gramians P̄WA and Q̄WA

respectively, corresponding to (3.1), be defined as:

ĀP̄WA + P̄WAĀ
T + (P̄WAC̄

T − B̄)(D̄ + D̄T )−1(C̄P̄WA − B̄T ) = 0 (3.12a)

ĀT Q̄WA + Q̄WAĀ+ (Q̄WAB̄ − C̄T )(D̄ + D̄T )−1(B̄T Q̄WA − C̄) = 0 (3.12b)

where

P̄WA =


P11 P12 P13

P T
12 P22 P23

P T
13 P T

23 P33

 (3.13a)

Q̄WA =


Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33

 (3.13b)

Expanding the (2,2) blocks of (3.12a) and (3.12b) yield

AP22+P22A
T +BCiP

T
23+P23C

T
i B

T︸ ︷︷ ︸+(P22C
TDT

o −BDi+P
T
12C

T
o +P23C

T
i D

TDT
o︸ ︷︷ ︸)

(DoDDi+D
T
i D

TDT
o )−1(DoCP22−DT

i B+CoP12+DoDCiP
T
23︸ ︷︷ ︸)=0 (3.14a)

ATQ22+Q22A+CTBT
o Q12+QT

12BoC︸ ︷︷ ︸+(Q22BDi−CTDT
o +QT

12BoDDi+Q23Bi︸ ︷︷ ︸)
(DoDDi+D

T
i D

TDT
o )−1(DT

i BQ22−DoC+DT
i D

TBT
o Q12+BiQ

T
23︸ ︷︷ ︸)=0 (3.14b)

Let the Gramians P̄i and Q̄o, corresponding to the transformed augmented realizations in
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(3.4) and (3.5), respectively. satisfy the following ARE’s

ĀiP̄i + P̄iĀ
T
i + (P̄iC̄

T
i − B̄i)(D̄i + D̄T

i )−1(C̄iP̄i − B̄T
i ) = 0 (3.15a)

ĀT
o Q̄o + Q̄oĀo + (Q̄oB̄o − C̄T

o )(D̄o + D̄T
o )−1(B̄T

o Q̄o − C̄o) = 0 (3.15b)

where P̄i and Q̄o are obtained by transforming P̄ and Q̄ using transformation matrices T̄i

and T̄o respectively, as follows

P̄i = T̄−1i P̄ T̄−Ti

=


I −Xi

1
2
XiYi

0 I −Yi

0 0 I



P11 P12 P13

P T
12 P22 P23

P T
13 P

T
23 P33



I −Xi

1
2
XiYi

0 I −Yi

0 0 I


T

=


Pi11 0 Pi13

0 Pi22 0

P T
i13 0 Pi33


(3.16)

Q̄o = T̄ T
o Q̄T̄o

=


I Xo XoYo

0 I Yo

0 0 I


T 

Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 Q

T
23 Q33



I Xo XoYo

0 I Yo

0 0 I

 =


Qo11 0 Qo13

0 Qo22 0

QT
o13 0 Qo33


(3.17)

where
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Pi11 = P11 −XiP
T
12 +

1

2
XiYiP

T
13 + (P12 −XiP22 +

1

2
XiYiP

T
23)(−XT

i ) + (P13−

XiP23 +
1

2
XiYiP33)(

1

2
Y T
i X

T
i ) (3.18a)

Pi12 = P12 −XiP22 +
1

2
XiYiP

T
23 − (P13 −XiP23 +

1

2
XiYiP33)(Y

T
i ) (3.18b)

Pi13 = P13 −XiP23 +
1

2
XiYiP33 (3.18c)

Pi21 = P T
12 − YiP T

13 + (P22 − Yi(P T
23)(−XT

i ) + (P23 − YiP33)(
1

2
Y T
i X

T
i ) (3.18d)

Pi22 = P22 − YiP T
23 − (P23 − YiP33)Y

T
i (3.18e)

Pi23 = P23 − YiP33 (3.18f)

Pi31 = P T
13 − P T

23X
T
i + P33(

1

2
Y T
i X

T
i ) (3.18g)

Pi32 = P T
23 − P33Y

T
i (3.18h)

Pi33 = P33 (3.18i)

Qo11 = Q11 (3.18j)

Qo12 = Q11Xo +Q12 (3.18k)

Qo13 = Q11XoYo +Q12Yo +Q13 (3.18l)

Qo21 = XT
o Q11 +QT

12 (3.18m)

Qo22 = (XT
o Q11 +QT

12)(Xo) +XT
o Q12 +Q22 (3.18n)

Qo23 = (XT
o Q11 +QT

12)(XoYo) + (XT
o Q12 +Q22)(Yo) + (XT

o Q13 +Q23) (3.18o)

Qo31 = Y T
o X

T
o Q11 + Y T

o Q
T
12 +QT

13 (3.18p)

Qo32 = (Y T
o X

T
o Q11 + Y T

o Q
T
12 +QT

13)(Xo) + Y T
o X

T
o Q12 + Y T

o Q22 +QT
23 (3.18q)

Qo33 = (Y T
o X

T
o Q11 + Y T

o Q
T
12 +QT

13)(XoYo) + (Y T
o X

T
o Q12 + Y T

o Q22 +QT
23)(Yo)+

Y T
o X

T
o Q13 + Y T

o Q23 +QT
33 (3.18r)

Expanding the (2,2) block of (3.15a) and (3.15b) yield

APi22 + Pi22A
T + (Pi22C

T
i12 −Bi21)(Di +DT

i )−1(Ci12Pi22 −BT
i21) = 0 (3.19a)

ATQo22+Qo22A+(Qo22Bo21− CT
o12)(Do +DT

o )−1(BT
o21Qo22 − Co12)=0 (3.19b)
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Let Pi ∈{P1 =PUL, P2 =PL22, P3 =PUA, P4 =P22, P5 =Pi22} and Qj ∈{Q1 =QUL, Q2 =

QL22, Q3 =QUA, Q4 =Q22, Q5 =Qo22}, where, i=1, 2, ..., 5, and j=1, 2, ..., 5, and Ti,j be a

balancing transformation, such that:

T−1i,j PiT
−T
i,j = T T

i,jQjTi,j = diag{σ1, ..., σr, σr+1, ..., σn}

where r is the order of the ROM and n is the order of the original system. Let Bl ∈ {B1 =

B,B2 = Bi21}, and Cm ∈ {C1 = C,C2 = Co12} where, l = 1, 2 and m = 1, 2. Balanced

realization {Ab, Bb, Cb, Db} is obtained using Ti,j as follows:

 Ab Bb

Cb Db

 =

 Ti,jAT
−1
i,j T−1i,j Bl

CmTi,j D

 =


A11 A12 B11

A21 A22 B21

C11 C12 D

 (3.20)

3.4 Discussion

The ROM {A11, B11, C11} is obtained by truncating the low energy states in (3.20). The

properties of ROM are summarized in Tabel 3.1, which shows three schemes (five arrange-

ments) for double sided passivity preserving, five schemes (ten arrangements) for single

sided passivity preserving and two schemes (three arrangements) for un-weighted passivity

preserving schemes. The arrangement (5,5), is a Phillips et al. technique [7] of un-weighted

passivity preserving.

For double sided passivity preserving, three schemes are presented in which both control-

lability and observability Gramians are weighted. In first scheme, an ARE based transformed

weighted controllability Gramian and a Lyapunov based weighted observability Gramian

(arrangement (10,3)) and vice versa (arrangement (3,10)) are used for balancing the sys-

tem. In second scheme, an ARE based transformed weighted controllability Gramian and an

ARE based weighted observability Gramian (arrangement (10,7)) and vice versa (arrange-

ment (7,10)) are used to balance the system. In third scheme, an ARE based transformed

weighted controllability Gramian and an ARE based transformed weighted observability

Gramian (arrangement (10,10)) are used for balancing purpose.

For single sided passivity preserving, five schemes are presented in which either a control-
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lability Gramian is weighted and observability Gramian is un-weighted or a controllability

Gramian is un-weighted and observability Gramian is weighted. In first scheme, an ARE

based un-weighted controllability Gramian and a Lyapunov based weighted observability

Gramian (arrangement (5,3)) and vice versa (arrangement (3,5)) are used to balance the sys-

tem. In second scheme, an ARE based weighted controllability Gramian and an ARE based

un-weighted observability Gramian (arrangement (7,5)) and vice versa (arrangement (5,7))

are used for balancing. In third scheme, an ARE based transformed weighted controllabil-

ity Gramian and an ARE based un-weighted observability Gramian (arrangement (9,5)) and

vice versa (arrangement (5,9)) are used for balancing purpose. In fourth scheme, an ARE

based transformed weighted controllability Gramian and a Lyapunov based un-weighted ob-

servability Gramian (arrangement (10,1)) and vice versa (arrangement (1,10)) are used for

balancing the system. In fifth scheme, an ARE based transformed weighted controllability

Gramian and an ARE based un-weighted observability Gramian (arrangement (10,5)) and

vice versa (arrangement (5,10)) are used for balancing.

Also, there are eleven schemes (twenty two arrangements) for single sided stability pre-

serving and five schemes (ten arrangements) for un-weighted stability preserving. Out of

these arrangements, the (1,1) arrangement is Moore’s technique [1], (1,3) and (3,1) arrange-

ments are Enns’ techniques [2] for single sided weighting, and (3,3) arrangement is Enns’

technique [2] for double sided weights.

Table 3.1: Summary of Single and Double Sided Frequency Weighted Passivity Preserving MOR:
S→ Stable, P→ Passive, S?→ Stability not always guaranteed

Ti,j ∈ Q1 Q2 Q3 Q4 Q5

{Pi, Qj} m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 index

P1
l = 1 S S S S S,P S S S S S,P 1
l = 2 S S S S S S S S S S 2

P2
l = 1 S S S? S? S,P S? S? S? S? S,P 3
l = 2 S S S? S? S? S? S? S? S? S? 4

P3
l = 1 S,P S S,P S? S,P S? S,P S? S,P S,P 5
l = 2 S S S? S? S? S? S? S? S? S? 6

P4
l = 1 S S S? S? S,P S? S? S? S? S,P 7
l = 2 S S S? S? S? S? S? S? S? S? 8

P5
l = 1 S S S? S? S,P S? S? S? S? S? 9
l = 2 S,P S S,P S? S,P S? S,P S? S? S,P 10
index 1 2 3 4 5 6 7 8 9 10
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3.5 Conclusion

First of all an augmented system and transformation matrices are defined. Then using

the same transformations, input and output augmented system are transformed. Different

Gramians are computed using different combinations of un-weighted Lyapunov equations

and ARE’s and weighted Lyapunov equations and ARE’s. Same transformation matrices

are used to compute a specific form of controllability and observability Gramians. These

Gramians are the main contribution to obtain a passive ROM in case of single and double

sided frequency weights. All passivity preserving techniques are then summarized in Table

3.1.
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Chapter 4

Numerical Examples

4.1 Introduction

In this chapter, different single and double sided frequency weighted numerical examples are

presented to show the effectiveness of the schemes proposed in chapter 3. Simulations are

performed using MATLAB 2016 on the system intel core i3, having 4 GB RAM and 2.20

GHz processor. Comparison between proposed schemes and existing frequency weighted

technique [9] is also presented.

Example 1: Consider a two-port lumped RLC circuit (see Figure.3 of [15]), with parameters

Ri = 0.2Ω, Ci = 0.02F , and Li = 0.09H . Let

Gi(s) =
s+ 5

s+ 2
, Go(s) =

s+ 3

s+ 6

be the input and output weighting functions, respectively. The original system of order

n = 41 is reduced to the order r = 1. In Figure 4.1 and Figure 4.2 the Nyquist and the

eigenvalue plots of original system, Heydari and Pedram’s technique [9], and the proposed

schemes for double sided weights are shown. It can be seen in Figure 4.1 that the 1st order

ROM obtained from Heydari and Pedram’s technique [9] is non-passive, because the Nyquist

plot of Heydari and Pedram’s technique [9] extends to the left half of complex plane, while

the Nyquist plot of the proposed schemes lies completely in the right half of the complex

plane. In Figure 4.2, when the frequency is less than 10 rad/s, the eigenvalues of the 1st

order ROM of Heydari and Pedram’s technique [9] are negative while the the eigenvalues of

the proposed schemes of same ROM are positive, which indicate that the proposed schemes

are passive.

In Figure 4.3, the Nyquist plot of single sided frequency weighted proposed schemes

(only output weight Go(s) = s+5
s+4

is used in this case) as well as Heydari and Pedram’s

technique [9] is shown, which indicates that 1st order ROM of the proposed schemes and
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Figure 4.1: Passivity behaviour via Nyquist plot for double sided weights
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Figure 4.2: Passivity behaviour via eigenvalue plot for double sided weights

Heydari and Pedram’s technique [9] are passive because their Nyquist plot lies completely

in the right half of complex plane in case of single sided weighting. Also, it can be seen

in Figure 4.4, the eigenvalues of the 1st order ROM of Heydari and Pedram’s technique [9]

and the proposed schemes are positive for the given frequency interval which confirms the

passivity of the Heydari and Pedram’s technique [9] and the proposed schemes in case of

single sided weighting.
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Figure 4.3: Passivity behaviour via Nyquist plot for single sided weight
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Figure 4.4: Passivity behaviour via eigenvalue plot for single sided weight

Example 2: Consider a 6th order passive system

A =



0 0 0 100 −100 0

0 0 0 0 100 0

0 0 −110 0 0 −100

−100 0 0 −10 0 100

100 −100 0 0 −10 0

0 0 100 −100 0 0


, B =



0

0

100

0

0

0


C =

[
0 0 10 0 0 0

]
, D = 1

Let

Gi(s) =
s+ 0.1

s+ 3
, Go(s) =

s+ 0.36

s+ 2

be the input and output weighting functions. 1st order ROM obtained from Heydari and

Pedram’s technique [9] in case of double sided frequency weights is non passive, while the

same ROM obtained from proposed schemes is passive. The Nyquist and the eigenvalue

plots of 1st order ROM verify the results in Figure 4.5 and in Figure 4.6, respectively.

In Figure 4.7 and in Figure 4.8, the Nyquist and eigenvalue plots respectively, of proposed

schemes as well as Heydari and Pedram’s technique [9] for single sided weighting (only

input weight is used in this case) are shown, which clearly indicate that 1st order ROM

obtained from proposed schemes and Heydari and Pedram’s technique [9] is passive in case

of single sided weighting.
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Figure 4.5: Passivity behaviour via Nyquist plot for double sided weights

Frequency[rad/s]
10-5 100 105

R
ea

l(G
(s

))

-2

0

2

4

6

8

10

12
Original
Arrangement (10,3)
Arrangement (10,7)
Arrangement (10,10)
Heydari & Pedram

Figure 4.6: Passivity behaviour via eigenvalue plot for double sided weights
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Figure 4.7: Passivity behaviour via Nyquist plot for single sided weight
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Figure 4.8: Passivity behaviour via eigenvalue plot for single sided weight

Example 3: Consider a 4th order PR system given in [10]

A =


−110 0 −100 0

0 −10 100 −100

100 −100 0 0

0 100 0 0


, B =


100

0

0

0



C =
[

1 0 0 0
]
, D = 0

Let

Gi(s) =
s+ 5

s+ 0.1
, Go(s) =

s+ 0.2

s+ 4

be the input and output weighting functions, respectively. In Figure 4.9 and Figure 4.10 the

Nyquist and the eigenvalue plots of the original system, Heydari and Pedram’s technique [9],

and the proposed schemes are shown, which show that the 2nd order ROM obtained from

Heydari and Pedram’s technique [9] is non-passive, while the same 2nd order ROM obtained

from proposed schemes is passive.

Example 4: Consider a 7th order passive system
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Figure 4.9: Passivity behaviour via Nyquist plot for double sided weights
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Figure 4.10: Passivity behaviour via eigenvalue plot for double sided weights

A =



0 −0.05 0 0 0 0.05 0

0.076923 −0.0076923 −0.076923 0 0 0 0

0 0.083333 0 0 −0.083333 0 0

0 0 0 0 0 −0.10000 0.10000

0 0 0.25000 0 −1.2500 0 0

−1.2500 0 0 1.2500 0 −0.25000 0

0 0 0 −5.0000 0 0 −50



B =
[

0 0 0 0 0 0 5
]T
, C =

[
0 0 0 0 0 0 1

]
, D = 0

Let

Gi(s) = Go(s) =
s+ 4

s+ 0.7
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be the input and output weighting functions. 2nd order ROM obtained from Heydari and

Pedram’s technique [9] in case of double sided frequency weights is non passive, while the

same ROM obtained from proposed schemes is passive. The Nyquist and the eigenvalue

plots of 2nd order ROM verify the results in Figure 4.11 and in Figure 4.12, respectively.
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Figure 4.11: Passivity behaviour via Nyquist plot for double sided weights
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Figure 4.12: Passivity behaviour via eigenvalue plot for double sided weights

In Figure 4.13 and in Figure 4.14, the Nyquist and eigenvalue plots respectively, of pro-

posed schemes as well as Heydari and Pedram’s technique [9] for single sided weighting

(only input weight is used in this case) are shown, which clearly indicate that 2nd order

ROM of Heydari and Pedram’s technique [9] as well as proposed schemes is passive in case

of single sided weighting.

Example 5: Consider a two port network, with parameters R = 2Ω, Ci = 0.1F , and

Li = 0.1H .

Let
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Figure 4.13: Passivity behaviour via Nyquist plot for single sided weight
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Figure 4.14: Passivity behaviour via eigenvalue plot for single sided weight

Gi(s) = Go(s) =
s+ 0.1

s+ 2

be the input and output weighting functions. 4th order ROM obtained from Heydari and

Pedram’s technique [9] in case of double sided frequency weights is non passive, while the

same ROM obtained from proposed schemes is passive. The Nyquist and the eigenvalue

plots of 4th order ROM verify the results in Figure 4.15 and Figure 4.16, respectively.

In Figure 4.17 and in Figure 4.18, the Nyquist and eigenvalue plots respectively, of pro-

posed schemes as well as Heydari and Pedram’s technique [9] for single sided weighting

(only input weight is used in this case) are shown, which clearly indicate that 2nd order

ROM of Heydari and Pedram’s technique [9] as well as proposed schemes is passive in case

of single sided weighting.

Example 6: Consider a 5th order PR system represented by
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Figure 4.15: Passivity behaviour via Nyquist plot for double sided weights
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Figure 4.16: Passivity behaviour via eigenvalue plot for double sided weights
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Figure 4.17: Passivity behaviour via Nyquist plot for single sided weight
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Figure 4.18: Passivity behaviour via eigenvalue plot for single sided weight

A =



−20 −10 0 0 0

10 0 −10 0 0

0 10 0 −10 0

0 0 10 0 −10

0 0 0 10 −2


, B =



0

0

0

0

20


C =

[
0 0 0 0 5

]
, D = 1

Let

Gi(s) =
s+ 0.01

s+ 3
, Go(s) =

s+ 0.36

s+ 2

be the input and output frequency weights, respectively. In Figure 4.19 and Figure 4.20 the

Nyquist and the eigenvalue plots respectively, of the original system, Heydari and Pedram’s

technique [9], and the proposed techniques are shown. It is shown in Figure 4.19 and in

Figure 4.20 that the 1st order ROM obtained from Heydari and Pedram’s technique [9] is

non-passive, while the same ROM obtained from proposed schemes is passive.

In Figure 4.21 and Figure 4.22, the Nyquist and eigenvalue plots of proposed schemes as

well as Heydari and Pedram’s technique [9] for single sided weighting (only input weight

is used in this case) are shown, which clearly indicate that 1st order ROM of Heydari and

Pedram’s technique [9] is also passive in case of single sided weighting.
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Figure 4.19: Passivity behaviour via Nyquist plot for double sided weights
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Figure 4.20: Passivity behaviour via Eigenvalue plot for double sided weights
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Figure 4.21: Passivity behaviour via Nyquist plot for single sided weight
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Figure 4.22: Passivity behaviour via eigenvalue plot for single sided weight

4.2 Conclusion

In this chapter, both single and double sided passivity preserving frequency weighted MOR

techniques are presented and compared with the existing passivity preserving technique [9].

Simulation results show that some of the proposed techniques preserve passivity of a ROM

in the desired frequency range in case of single sided frequency weight and some of the

proposed techniques preserve passivity of a ROM in the desired frequency range in case of

double sided frequency weights.
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Chapter 5

Conclusion and Future Prospects

5.1 Overview of the Thesis

This thesis has explored the problem of passivity preserving for frequency weighted MOR.

Both stability and passivity preserving techniques were studied.

In chapter 2, a brief analysis of existing MOR techniques was presented which takes

account of both stability and passivity preserving problems for frequency weighted and un-

weighted cases. Several valuable remarks about the techniques discussed in this chapter

were also given.

In chapter 3, a family of techniques were proposed which preserve passivity in the pres-

ence of double sided weights. Some techniques preserve only stability while some tech-

niques do not preserve stability as well as passivity. All the proposed techniques were

critically examined and several remarks were presented about their behavior whether they

preserve or do not preserve basic properties of a system like stability and passivity etc.

In chapter 4, numerical examples with double sided frequency weights were presented to

show the usefulness of the proposed schemes discussed in chapter 3. Simulation results and

mathematical equations/derivations show that the proposed techniques serve the purpose.

Simulation results were also compared with one of the existing techniques which clearly

indicated the proposed techniques have an edge over the existing technique in terms of pre-

serving passivity.

5.2 Conclusion

In this thesis, a family of MOR techniques based on passivity preserving for single and

double sided frequency weights are presented and compared with the existing technique [9].

Simulation results show that some of the proposed techniques preserve passivity of a ROM

in the desired frequency range in case of single sided frequency weight and some of the

proposed techniques preserve passivity of a ROM in the desired frequency range in case of

double sided frequency weights.
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5.3 Future Work

In this section, we suggest/recommend that this research can be further enhanced to a level

where one can desire. For future directions it is recommended:

• The derivation of an error bound is still an open area for passivity preserving MOR.

Proposed techniques as well as the techniques discussed in [8] do not give an error

bound formula, although the technique of [7] gives error bound but this valid only for

un-weighted MOR. So further research about an error bound expression for double

sided passivity preserving frequency weighted techniques may be conducted in future.

• Lyapunov stability criteria and Lur’e/ARE passivity criteria are not necessary to yield

stable and passive ROM’s, respectively. This area is also open to yield efficient stable

and passive ROM’s in case of double sided frequency weights.

• The computational cost/memory of the proposed techniques in terms of Lyapunov

equations and ARE’s/Lure equations can be improved by using new efficient algo-

rithms.

• As the proposed techniques are realization dependent and it is unknown that which

new realization produces less approximation error, so it is also an open question and

needs further research.

• Selection of frequency weights for least approximation error need more investigation

because different frequency weights yield different approximation errors/results.
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