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ABSTRACT

The design of any system e.g. network systems and telecommunication systems contain
mathematical model which are complex and require lot of computational power for
analysis and simulation. For such scenarios, to make the analysis and design of these
systems easier, model order reduction (MOR) is used which reduce the complexity of
these models by reducing their order. It takes less computational power and simulation
time when models with reduced orders are used. MOR methods are very useful when
it comes to analyze large and complex systems such as space systems, state estimation
in UAVs and high voltage systems etc.

In feedback control systems theory, the major contribution of balanced truncation is
its application in model reduction which gives the stable reduced models and an error
bound within certain frequency limit. This is also known as frequency weighted MOR
problem. For a given transfer function there are almost infinite state space realizations
but a particular realization has been proved useful in control systems theory which is
called internally balanced realization. It indicates the dominant system states and it is
the minimal realization which is also asymptotically stable.

The most wanted property in some systems is passivity which can be implied if the
system’s transfer function is positive real. When the model is reduced to rth ROM
using MOR it is desired to preserve the important features such as passivity, stability
and input output behavior etc. Since passive systems are also stable systems and not
vice versa, it is very important in MOR algorithms to preserve passivity.

A lot of work has been done on passivity preserving model order reduction tech-
niques in case of continuous time (CT) systems whereas no work is done in case of
discrete time (DT) systems. Performance of a system can be enhanced by sampling
and also the computational cost can be relatively reduced in this case.

This research focuses on passivity preserving model order reduction (MOR) tech-
nique for discrete time systems. Balanced truncation along with extended Enns’ and
Umair et al. technique proposed for continuous time systems are modified for dis-
crete time systems. The proposed technique preserves passivity and yields reasonable
approximation error.
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Chapter 1

Introduction

1.1 Overview of Model order reduction

Mathematical modeling is critical in design, simulation, analysis and development of

systems. Mathematical models (representing original systems) are often very complex

which motivates the use of model order reduction (MOR) schemes which reduces com-

plexity of systems by yielding reduced order model (ROMs) [1,2]. Good MOR schemes

preserve original system’s key properties like stability, passivity and input-output be-

havior in ROM with less approximation error [3, 4, 5, 6, 7]. Approximation error is one

of important factors in MOR which is computed from the difference between output

of original system and ROM for a given input. Certain numerical properties such as

accuracy, computational speed play important role in determining efficiency of MOR

techniques.

1.2 Summary of Model order reduction techniques

Some of the stability and passivity preserving techniques are summarized in this section

in case of frequency weightings.

1.2.1 Frequency Weighted Model Reduction

Balanced truncation (BT) was proposed in [1] to compute low-order approximation of

a given model by neglecting states that moderately affects the overall model response.

Error bound formula is also available for BT.

In ideal case the approximation error should be minimal for all frequencies but often

approximation in certain frequency range is more important than others e.g controller

reduction [8]. This motivates use of frequency weights in MOR and is reffered to as

frequency weighted MOR (FWMOR) [9].

FWMOR was first proposed by Enns’ by extending balanced truncation [1] to in-

clude frequency weightings. Enns’ method ensures stability only in case of single
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sided weightings [28]. Lin and Chiu presented modified Enns’ technique which guar-

antees stability in case of double sided frequency weightings [10]. However, this tech-

nique can’t be used in controller reduction application because of pole zero cancella-

tion. In [11] Enns’ technique was modified which guarantees stability in case of double

sided weightings. Enns’ technique was further modified in [12, 13] for continuous and

discrete time systems respectively, to ensure stability in case of double sides weightings

along with error bounds.

1.2.2 Passivity Preserving Model order reduction

Passivity is widely adapted tool which is used for the analysis of stability of inter-

connection of dynamical systems [14] and also it is used as analysis tool for mechan-

ical and electrical systems and other domains of engineering. In particular passiv-

ity plays important role in robotics as it provides key concept for stability analysis

of human-machine interaction [15], to study about the robustness of force feedback

controllers, [16, 17] and to analyze the stability of tele-manipulation [18]. Passivity is

often considered as a primary design constraint in the development of robotic manipu-

lator controllers [19,20,21,22]. The aim of MOR is to preserve fundamental properties

of original system like input output behaviour, stability and passivity in ROM with less

approximation error [23]. Since passive systems are also stable systems and not vice

versa [24], it is of vital importance in MOR algorithms to preserve passivity. Another

extension of balanced truncation [1] was introduced by Phillips et al. [25]. This method

preserves passivity along with original system’s stability for continuous time systems.

In [26] spectrally weighted BT technique is explained which claims that ROM is

guaranteed to be passive. Error bounds equations are derived which are also spectrally

weighted. For large scale RLC systems passivity preserving FWMOR are also dis-

cussed in [27]. Stability preserving techniques discussed in [28], [10] and [9] are also

modified for passive reduced models under certain derived conditions in [27]. It has

been proved in [29] that spectrally weighted BTR used in [26] fails to produce stable

let alone passive ROM when it contains both input and output weights and also that this

technique only works for single sided weighted case. In [24] a FW passivity preserving
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technique is proposed for balanced MOR. This technique produces passive ROM in

case of double sided weights. In [30], a new passivity preserving frequency weighted

balanced MOR technique is proposed. It also preserves passivity in case of double

sided weights.

1.3 Problem Summary

To the best of author’s knowledge, there is no work done on passivity preserving fre-

quency weighted model reduction of DT systems although work on linear time varying

macro-models for unweighted case appear in [31]. In this work passivity preserving

MOR techniques are proposed for unweighted and frequency weightings case.

1.4 Objectives of Research

Following are the main objectives of this research: spacing

* To develop such techniques that ensures passivity of ROM for DT systems.

* To develop an expression for error bound.

1.5 Outline of Thesis

This thesis is divided into following five chapters:

* Chapter 1: This chapter discusses the summary of existing FWMOR techniques.

Chapter 2: This chapter discusses existing FWMOR techniques in detail.

** Chapter 3: This chapter deals with proposed techniques for generating guaran-

teed passive ROM.

* Chapter 4: Several numerical examples and simulations are presented in this

chapter to support the proposed methodology.

* Chapter 5: This chapters explains about future work that can be done to better

the proposed techniques and conclusion.
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Chapter 2

Frequency Weighted Model Reduction: A Review

2.1 Introduction

The main focus of control engineering is to implement dynamic systems derived by

the mathematical modeling of physical systems. There exist huge number of physical

system in world. While performing mathematical modeling, partial differential equa-

tions (PDEs) and ordinary differential equations (ODEs) are often used to model the

dynamic behavior of physical system. In case of complex systems we may get high

order mathematical model of dynamic system. Different MOR techniques available

in literature, are used to reduce the complexity of these model to make the analysis

and design easier (see Fig 2.1). Because of the fast development of digital computers

Figure 2.1: Significance of model order reduction

and their usage in control system, the importance of reduced order modeling methods

also increased for DT systems. Digital control systems are often preferred because of

compact size, flexibility and less susceptibility to noise. Many airborne systems con-

tain digital controllers that holds thousands of discrete elements and takes space no

larger than a regular book. Discrete time (DT) control is often desirable because better
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performance can be achieved by sampling. The computational cost is comparatively

less than that of continuous control systems [31]. Discrete time passivity has numer-

ous practical applications e.g design and control of haptic interface [15, 32], adaptive

windowing for velocity estimation [33], analysis of haptic interaction stability with de-

formable objects [34]. Therefore passivity in discrete time systems is as important as it

is in continuous time (CT) systems. In this chapter we will first review BT method for

both CT and DT systems. In this method the fequency response of ROM follows that

of original system over an infinite frequency range. After that, frequency weighted pas-

sivity preserving MOR techniques will be discussed for CT systems only, since there is

no work done on DT systems.

2.2 Preliminaries

Since the techniques proposed in this thesis are based on balanced truncation [1] so it

will be discussed first.

2.2.1 Balanced Truncation

Let G(s) be the nth order original stable system given by G(s) = D+C(sI −A)−1B,

where {A,B,C,D} is state space realization of G(s), and A ∈ <n×n, B ∈ <n×m,

C ∈ <p×n and D ∈ <p×m. The controllability and observability Gramians, Pd and Qd

respectively, can be computed using following CT Lyapunov equations.

APd + PdA
T +BBT = 0 (2.1a)

ATQd +QdA+ CTC = 0 (2.1b)

Both Pd and Qd are symmetric and positive definite matrices i.e Pd, Qd > 0. Let T

be the contra-gradient transformation computed by diagonalizing Gramian Pd and Qd

simultaneously such that:

T−1PdT
T = T TQdT = Σd = diag{σ1, σ2, ..., σn} (2.2)

where σi are Hankel Singular Values (HSV’s) and σi ≥ σi+1 for i = 1, 2, ..., n−1. The

balanced realization Ab, Bb, Cb, Db is computed as follows:
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 Ab Bb

Cb Db

 =

 TAT−1 T−1B

CT D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.3a)

Gr(s) = C1(sI − A11)−1B1 +D1 (2.3b)

The ROM {A11.B1, C1, D} is obtained by truncating the low energy states in (2.3)

where A11 ∈ <r×r, B1 ∈ <r×m, C ∈ <p×r and D ∈ <p×m, and r is the order of the

ROM (r < n).

2.2.2 Properties of Balanced truncation

The properties of discrete time Balanced truncation is given beolw:

1. If the realization {A,B,C,D} is asymptotically stable and minimal only then it

can be transformed to balanced realization {Ab, Bb, Cb, Db}.

2. A subsystem {Aii, Bi, Ci, D}where, i = 1, 2, which is obtained from the original

system {A,B,C,D} is stable as well as internally balanced if no diagonal entries

between two subsystems are common, i.e σk 6= σl where, k = 1, ..., r,. (where r

is the order of the ROM) and l = r+1, ...., n, (where n is the order of the original

system).

3. The error bound is expressed below:

||G(s)−Gr(s)||∞ ≤ 2Σn
i=r+1σi

where σi are the HSV’s.

2.3 Motivation and Problem Formulation

Since passive systems are also stable systems whereas stability doesn’t imply passiv-

ity [24], it is of vital importance in MOR algorithms to preserve passivity. Discrete

time (DT) control is often desirable because better performance can be achieved by

sampling. The computational cost is comparatively less than that of continuous con-

trol systems [31]. Discrete time passivity has numerous practical applications e.g de-
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sign and control of haptic interface [15, 32], adaptive windowing for velocity estima-

tion [33], analysis of haptic interaction stability with deformable objects [34]. There-

fore passivity in discrete time systems is as important as it is in continuous time (CT)

systems. Proposed techniques discussed in next chapter consider both stable as well as

passive systems. So in this chapter, the problem of passivity preserving in MOR will

be discussed, and then extension of the frequency weighting case will be elaborated.

2.3.1 Importance and Properties of Passivity Preserving Model Order Reduction

Passivity of complex transfer functionG(s) is implied by its positive-realness for many

electrical systems of interest. G(s) is called positive real (PR) if it is unable to generate

energy internally, like an RLC circuit. A passive system always lies entirely in the

right half of the complex plan called Nyquist plot, while non passive system lies in the

left half of the complex plan (see Figure 2.2). For positive-realness, G(s) must always

Figure 2.2: Passive and non passive systems- Nyquist Diagram

satisfy the following PR condition

<|G(s)| > 0 if <(s) > 0

7



where s = σ + jω. So the PR condition can be written as

<|G(s)| > 0 if σ > 0

and there is no constraint on =(s). Consider an nth order PR system.

G(s) = D + C(sI − A)−1B (2.4)

where the state space realization {A,B,C,D} is a minimal realization of G(s). Be-

cause of the unique stability properties of PR systems, they are of special interest in

the analysis and design of control system. Passivity is considered to be one of the very

important properties of an RLC system. Since passive system is always stable but vice

versa is not true [24]. So it is necessary for a ROM Gr(s) = D + Cr(sI − Ar)−1Br

to preserve passivity like an original system. A passive system always satisfies the

following set of Lur’e equations

APRE + PREA
T = −KiK

T
i (2.5a)

PREC
T −B = −KiW

T
i (2.5b)

WiW
T
i = D +DT (2.5c)

ATQRE +QREA = −KT
o Ko (2.6a)

QREB − CT = −KT
o Wo (2.6b)

W T
o Wo = D +DT (2.6c)

where, PRE > 0 is the controllability Gramian and QRE > 0 is the observability

Gramian of the passive system, respectively. The above Lur’e equations can be solved

for PRE and QRE by using the following algebraic Riccati equations (AREs) [35].

APRE + PREA
T + (PREC

T −B)(D +DT )−1(CPRE −BT ) = 0 (2.7)

ATQRE +QREA+ (QREB − CT )(D +DT )−1(BTQRE − C) = 0 (2.8)
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2.3.2 A Review of Passivity Preserving Model order Reduction

Phillips et al. [25] presented a family of algorithms for passive ROM’s which are similar

to the well-known BT method [1] for stable ROM. In [25] controllability and observ-

ability Gramians are obtained from Lur’e equations without using frequency weights.

Muda et al. [27] extended the methods of [9, 28,10] for RLC systems to ensure passiv-

ity, since these only yield stable ROMs. Conditions for guaranteed passivity are also

given in [27] for the three extended techniques. Heydari and Pedram claimed in [26]

that their technique produces guaranteed passive ROM for the double sided frequency

weighting case, and the spectrally-weighted error bound is also available. The tech-

nique of [26] produces passive ROM for the single sided weighting case similar to [27]

which produces stable ROM for the case when only one sided weighting is used. In [29]

it has been proved that the technique of [26] may yields non-passive ROM for the pas-

sive original system in case of double-sided frequency weighting. It is also proved

in [24] that the method of [26] can preserves passivity only when one sided weighting

is present.

2.4 Frequency Weighted Model Order Reduction

Let an nth order stable original systemG(s) has state space realization as {A,B,C,D}.

Let vth order stable input weight Gi(s) and wth order stable output weight Go(s)

have corresponding state space realizations as {Ai, Bi, Ci, Di} and {Ao, Bo, Co, Do}

respectively, where Ai ∈ <v×v,Bi ∈ <v×m,Ci ∈ <p×v and Di ∈ <p×m, and

Ao ∈ <w×w,Bo ∈ <w×m,Co ∈ <p×w, and Do ∈ <p×m. v and w represent the

number of states of input and output frequency weights respectively. The objective

Figure 2.3: Unweighted MOR problem

of MOR is to find an rth order stable ROM having state space minimal realization

{Ar, Br, Cr, Dr}, such that the error between G(s) and Gr(s) is made as small as pos-

sible, i.e min||Go(s)(G(s) − Gr(s))Gi(s)||∞. This problem is so called the double

9



sided frequency weighted MOR problem (see Figure 2.4). The problem is called single

Figure 2.4: Double sided frequency weighted MOR problem

sided frequency weighted MOR problem if one of the either weights is identity. In this

scenario, the objective is to minimize the error between G(s) and Gr(s), i.e in case of

only input weight, min||(G(s)−Gr(s))Gi(s)||∞ (see Figure 2.5), and in case of only

output weight, min||Go(s)(G(s)−Gr(s))||∞ (see Figure 2.6).

Figure 2.5: Input frequency weighted MOR problem

Figure 2.6: Output frequency weighted MOR problem

2.4.1 The technique of Enns’

Enns’ [9] was the first to introduced frequency weights for MOR. This technique

gives stable ROM for single sided frequency weighting case only. When double sided

weights are used, this technique may produce unstable ROM [23]. Consider a stable

original system G(s) as given in (2.4). Let Gi(s) and Go(s) be the input and output

frequency weights

Gi(s) = Di + Ci(sI − Ai)
−1Bi (2.9a)

Go(s) = Do + Co(sI − Ao)
−1Bo (2.9b)

where, {Ai, Bi, Ci, Di} is the state space realization of input frequency weight and

{Ao, Bo, Co, Do} is the state space realization of output frequency weight. The input
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augmented system G(s)Gi(s) and the output augmented system Go(s)G(s) are given

as follows:

G(s)Gi(s) =

 Āi B̄i

C̄i D̄i

 =


A BCi BDi

0 Ai Bi

C DCi DDi

 (2.10a)

Go(s)G(s) =

 Āo B̄o

C̄o D̄o

 =


A 0 B

BoC Ao BoD

DoC Co DoD

 (2.10b)

where, {Āi, B̄i, C̄i, D̄i} is the state space realization of input augmented system and

{Āo, B̄o, C̄o, D̄o} is the state space realizations of output augmented system. Let P̄E

and Q̄E satisfy the following Lyapunov equations.

ĀiP̄E + P̄EĀ
T
i + B̄iB̄

T
i = 0 (2.11a)

ĀT
o Q̄E + Q̄EĀo + C̄T

o C̄o = 0 (2.11b)

where

P̄E =

 Pv P12

P T
12 Pi

 (2.12a)

Q̄E =

 Qo Q12

QT
12 Qw

 (2.12b)

Remark 1 P̄E and Q̄E obtained from above Lyapunov equations are symmetric and

also P̄E > 0 and Q̄E > 0

Expanding the (1,1) block of (2.11a) and (2,2) block of (2.11b) we obtain:

APb + PvA
T +X = 0 (2.13a)

ATQw +QwA+ Y = 0 (2.13b)
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where

X = BCiP
T
12 + P12CiB

T +BDiD
T
i B

T (2.14a)

Y = CTBT
o Q

T
12 +Q12BoC + CTDT

oDoC (2.14b)

The matrices X and Y are generally indefinite [28], and this is the main reason of

instability of a ROM in case of double sided frequency weighting. Balancing trans-

formation matrix T which is used to diagonalize the weighted Gramians Pv and Qw

such that T−1PvT
−T = T TQwT = diag{σ1, σ2, ..., σn}where σn are the HSV’s and

σi ≥ σi+1 for i = 1, 2, ..., n− 1. Then the ROM {Ar, Br, Cr} = {A11, B1, C1} can be

obtained as follows.

 Ar Br

Cr Dr

 =

 TAT−1 T−1B

CT D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.15)

Remark 2 The ROM obtained by (2.15) in the presence of double sided frequency

weightings may not be stable but for single sided frequency weighting it will be guar-

anteed to be stable [28].

Wang et al. [28] , Varga and Anderson [8], Ghafoor and Sreeram [23], and Imran et

al. [13] modified Enns’ technique [9] to tackle the stability issue in case of double

sided frequency weights.

2.4.2 The technique of Lin and Chiu

Lin and Chiu [10] modifies Enns’ technique [9] to tackle the stability issue for the

case when double sided frequency weights are used. Their technique first defines X̄ =

12



P12P
−1
i and Ȳ = Q−1

o QT
12. Let

T̄i =

 I X̄

0 I

 (2.16a)

T̄o =

 I −Ȳ

0 I

 (2.16b)

(2.16c)

be the transformations applied to the input and output augmented realizations

{Āi, B̄i, C̄i, D̄i} and {Āo, B̄o, C̄o, D̄o} respectively.

 Āi B̄i

C̄i D̄i

 =

 T̄−1
i ĀiT̄i T̄−1

i B̄i

C̄iT̄i D̄i

 =


A Ai12 Bi11

0 Ai Bi

C Ci12 DDi

 (2.17)

and

 Āo B̄o

C̄o D̄o

 =

 T̄−1
o ĀoT̄i T̄−1

o B̄o

C̄oT̄o D̄o

 =


A Ao12 B

0 Ao Bo21

Co11 Co DoD

 (2.18)

where

Ai12 = AP12P
−1
i +BCi − P12P

−1
i Ai (2.19a)

Bi11 = BDi − P12P
−1
i Bi (2.19b)

Ci12 = CP12Pi +DCi (2.19c)

Ao12 = Q−1
o QT

12A+BoC − AoQ
−1
o QT

12 (2.19d)

Bo12 = BoD +Q−1
o QT

12B (2.19e)

Co11 = DoC − CoQ
−1
o QT

12 (2.19f)
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Let the following Gramians be defined as:

P̄LC = T̄−1
i PT̄−Ti =

 Pn 0

0 Pi

 (2.20a)

Q̄LC = T̄ T
o QT̄o =

 Qo 0

0 Qn

 (2.20b)

where Pn = Pv − P12P
−1
i P T

12 and Qn = Qw − Q12Q
−1
o QT

12. Let P̄LC and Q̄LC be the

solutions of the following Lyapunov equations

ĀiP̄LC + P̄LCĀ
T
i + B̄iB̄

T
i = 0 (2.21a)

ĀT
o Q̄LC + Q̄LCĀo + C̄T

o C̄o = 0 (2.21b)

Expanding the (1,1) and (2,2) block of (2.21a) and (2.1b) respectively, we obtain

APn + PnA
T +Bi11B

T
i11 = 0 (2.22a)

ATQn +QnA+ CT
o11Co11 = 0 (2.22b)

Simultaneously diagonalizing the weighted controllability and observability Gramians

Pn and Qn respectively,

T−1
LCPnT

−T
LC = T T

LCQnTLC = diag{σ1, σ2, ..., σn}

where σn are the HSV’s and σi ≥ σi+1m for i = 1, 2, ..., n− 1.

Remark 3 The ROM {Ar, Br, Cr} = {A11, B11, C1} is obtained in a same way as

obtained in Enns’ method [9] by truncating the low energy states in (2.15).

Remark 4 The realization {A,Bi11, Co11} is minimal and the ROM {Ar, Br, Cr} =

{A11, B1, C1} is stable. [10].

2.4.3 The Technique of Wang et al.

Wang et al. [28] tackle the stability issue of [9] by making indefinite matrices X and

Y in (2.14a) and (2.14b) positive semi-definite using eigenvalue decomposition. As we

know that the matrices X and Y are symmetric matrices so we can also write X and Y

14



in the form of eigenvalue decomposition

X = USUT

Y = V ZV T

where S = diag{s1, s2, ..., sn} and Z = diag{z1, z2, ..., zn}. Symmetric matrices X

and Y are replaced by XW and YW such that

XW = U |S|UT

YW = V |Z|V T

where |Z| = diag{|z1|, |z2|, ..., |zn|} with |z1| ≥ |z2| ≥ ... ≥ |zn| ≥ 0 and |S| =

diag{|s1|, |s2|, ..., |sn|} with |s1| ≥ |s2| ≥ ... ≥ |sn| ≥ 0 and . The new controllability

Gramian PW and observability Gramian QW are obtained from following Lyapunov

equations

APW + PWA
T +BWB

T
W = 0 (2.23a)

ATQW +QWA+ CT
WCW = 0 (2.23b)

where the fictitious input and output matrices BW and CW , respectively, are defined as

BW = U |S| 12 and CW = |Z| 12V . The new Gramians PW and QW are diagonalized by

TW such that

T−1
W PWT

−1
W = T T

WQWTW = diag{σ1, σ2, ..., σn}

where σn are the HSV’s and σi ≥ sigmai+1 for i = 1, 2, ..., n− 1.

Remark 5 The realization {A,BW , CW} is minimal and the ROM {Ar, Br, Cr} =

{A11, B1, C1} is obtained by truncating the low energy states in (2.15) and guaranteed

to be stable.

2.5 Passivity Preserving Model Order Reduction

Passivity preserving MOR is supposed to be an extension of balanced realization, which

deals with both frequency weighted and un-weighted cases. Due to certain factors

such as the importance of passivity preserving in MOR techniques and to limit the
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computational cost in SVD based methods, so for reasonable work has been done on

passivity preserving MOR [25,30,24,36,27,29,26]. In this section, a review some of the

passivity preserving MOR techniques available in literature related to both frequency

weighted and un-weighted scenarios will be presented.

2.5.1 The Technique of Phillips et al.

Phillips et al. [25] presented a family of algorithms for passive ROMs which are similar

to the well-known BT method [1] for stable ROMs. The main difference between two

techniques is the way controllability Gramian and observability Gramian are computed.

In BT [1] controllability Gramian and observability Gramian are computed by using the

Lyapunov equations without using frequency weights, while Phillips et al. [25] com-

puted the controllability and observability Gramians from the Lur’e equations without

using frequency weights. By using BT [1] stable ROMs are obtained, while using the

technique of Phillips et al. [25] passive ROMs are obtained. Positive real truncated

balanced realization (PR-TBR) algorithm presented in [25] gives guaranteed passive

ROM for the system G(s) = D + C(sI − A)−1B. Controllability Gramian PP and

observability Gramian QP are the solutions of following Lure equations

APP + PPA
T = −KiK

T
i (2.24a)

PPC
T −B = −KiW

T
i (2.24b)

WiW
T
i = D +DT (2.24c)

ATQP +QPA = −KT
o Ko (2.25a)

QPB − CT = −KT
o Wo (2.25b)

W T
o Wo = D +DT (2.25c)

The above Lur’e equations can also be transformed into following ARE’s

APP + PPA
T + (PPC

T −B)(D +DT )−1(CPP −BT ) = 0 (2.26a)

ATQP +QPA+ (QPB − CT )(D +DT )−1(BTQP − C) = 0 (2.26b)
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Algorithm 2 in [35] computes similarity transformation TP which is used to diagonal-

ized PP and QP such that T−1
P PPT

−T
P = T T

P QPTP = diag{σ1, σ2, ..., σn} where σn

are the HSV’s and σi ≥ σi+1 for i = 1, 2, ..., n − 1. Desired ROM {A11, B1, C1} ia

obtained from the following balanced realization

 Â B̂

Ĉ D̂

 =

 T−1
P ATP T−1

P B

CTP D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.27)

2.5.2 Techniques of Muda et al.

In [27] Muda et al. extended three famous techniques [9, 28, 10] to preserve passivity

of the ROM. Consider the input and output weighting functions in (3.13a) and (3.13b)

respectively, and input and output augmented systems in (3.14) and (3.15), respectively.

Let P̄ i and Q̄o be the solution of the following Lur’e equations:

ĀiP̄i + P̄iĀ
T
i = −K̄iK̄

T
i (2.28a)

P̄iC̄
T
i − B̄i = K̄iW̄

T
i (2.28b)

W̄iW̄
T
i = D̄i + D̄T

i (2.28c)

ĀT
o Q̄o + Q̄oĀo = −K̄T

o K̄o (2.29a)

Q̄oB̄o − C̄T
o = −K̄T

o W̄o (2.29b)

W̄ T
o W̄o = D̄o + D̄T

o (2.29c)

where

W̄i = (D̄i + D̄T
i )

1
2V (2.30a)

W̄o = U(D̄i + D̄T
i )

1
2 (2.30b)

K̄i = (B̄i − P̄iC̄
T
i )(D̄i + D̄T

i )−
1
2V (2.31a)

K̄o = U(D̄i + D̄T
i )−

1
2 (C̄o − B̄T

o Q̄o) (2.31b)
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where V and U are arbitrary orthognal matrices i-e. UUT = V V T = I .K̄i and K̄o can

be sub-divided as

K̄i =

 Ki1

Ki2

 , K̄o =
[
Ko1 Ko2

]
The Lur’e equations in (2.28) and (2.29) are equivalent to the following ARE’s

ĀiP̄i + P̄iĀ
T
i + (P̄iC̄

T
i − B̄i)(D̄i + D̄T

i )−1(C̄iP̄i − B̄T
i ) = 0 (2.32a)

ĀT
o Q̄o + Q̄oĀo + (Q̄oB̄o − C̄T

o )(D̄o + D̄T
o )−1(B̄T

o Q̄o − C̄o) = 0 (2.32b)

where

P̄i =

 P11 P12

P T
12 P22

 (2.33a)

Q̄o =

 Q11 Q12

QT
12 Q22

 (2.33b)

Expanding (1,1) block of (2.28) and (2.29) we get

AP11 + P11A
T = −X̂ (2.34a)

P11C
T − B̃ = −Ki1W

T
i (2.34b)

WiW
T
i = D̄i + D̄T

i (2.34c)

ATQ11 +Q11A = Ŷ (2.35a)

Q11B − C̃T = −KT
o1Wo (2.35b)

W T
o Wo = D̄o + D̄T

o (2.35c)

where

X̂ = BCiP
T
12 + P12C

T
i B

T +Ki1K
T
i1 (2.36a)

Ŷ = CTBT
o Q

T
12 +Q12BoC +KT

o1Ko1 (2.36b)

B̃ = BDi − P12C
T
i D

T and C̃ = DoC − DTBT
o Q

T
12. The difference between Muda’s

extended techniques [27] is that the way frequency weighted controllability and ob-
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servability Gramians are computed.

2.5.3 The Modified Enns’ Technique

Rewriting (2.36a) and (2.36b) as

X̂ = ψ +Ki1K
T
i1 (2.37a)

Ŷ = φ+KT
o1Ko1 (2.37b)

where ψ = BCiP
T + P12C

T
i B

T and φ = CTBT
o Q

T
12 + Q12BoC. The modified Enns’

technique [27] is very similar to the standard Enns’ technique [9]. In standard Enns’

technique [9], the indefinite matrices X and Y in (2.14a) and (2.14b) are the reason

of instability in case of double sided weighting. Similarly, in modified Enns’ tech-

nique [27], the indefinite matrices ψ and φ in (2.37a) and (2.37b) are the reason of not

ensuring passivity for double sided frequency weights.

Remark 6 The ROM obtained from modified Enns’ technique [27] is passive only

when the matrices ψ and φ are positive semi-definite. If the matrices ψ and φ in (2.37a)

and (2.37b) are indefinite, then this technique may yields non passive ROM for double

sided frequency weights.

Remark 7 The weighted Gramians P11 and Q11 are used to obtained transformation

matrix TE which is then used to balance the original system.

2.5.4 The Modified Wang et al. Technique

The matrices X̂ and Ŷ given in (2.36a) and (2.36b) are generally indefinite [27]. In-

spiring from [28], the indefinite matrices X̂ and Ŷ can be made positive semi definite

by taking the absolute of eigenvalues of matrices X̂ and Ŷ by using eigenvalue decom-

position such that X̂ = ∆S∆T and Ŷ = δZδT where, Z = diag{z1, z2, ..., zn} and

S = diag{s1, s2, ..., sn} . Now we shall replace X̂ and Ŷ by K̄i1K̄
T
i1 and K̄T

o1K̄o1

such that K̄i1K̄
T
i1 = ∆|S|∆T , where |S| = |s1| ≥ |s2| ≥ ... ≥ |sn| ≥ 0 and

K̄T
o1K̄o1 = δ|Z|δT where |Z| = |z1| ≥ |z2| ≥ ... ≥ |zn| ≥ 0. Now we can rewrite
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(2.34) and (2.35) as

APw1 + Pw1A
T = −K̄i1K̄

T
i1 (2.38a)

Pw1C
T − B̂ = −K̄i1W̄

T
i (2.38b)

W̄iW̄
T
i = D̄i + D̄i (2.38c)

ATQw1 +Qw1A = −K̄T
o1K̄o1 (2.39a)

Qw1B − ĈT = K̄T
o1W̄o (2.39b)

W̄ T
o W̄o = D̄o + D̄o (2.39c)

where B̂ = Pw1C
T + K̄i1W̄

T
i and Ĉ = BTQw1 + CT + W̄ T

o K̄o1

Remark 8 If the matrices X̂ and Ŷ in (2.36a) and (2.36b) respectively, are already

positive semi-definite then, both modified Enns’ and modified Wang et al. methods are

same and guaranteed to be passive. In this case eigenvalue decomposition of X̂ and Ŷ

is not required.

Remark 9 The state space realization {A, B̂, Ĉ} is minimal and the ROM

{Ar, Br, Cr} = {A11, B1, C1} is obtained by truncating the low energy states as

obtained from (2.15) and guaranteed to be passive.

2.5.5 The Modified Lin and Chiu’s Technique

This modified technique is similar to Lin and Chiu’s technique discussed in [10]. In this

technique controllability and observability Gramians of input and output augmented

systems respectively, are block diagonally transformed to compute the FW original

system’s controllability and observability Gramians using the following transformation
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matrices

Ti =

 I X̄i

0 I

 (2.40a)

To =

 I −Ȳo

0 I

 (2.40b)

(2.40c)

where X̂i = P12P
−1
22 and Ŷo = Q−1

22 Q
T
12. The Gramians Pi and Qo are obtained by

transforming P̄i and Q̄o as follows:

Pi = T−1
i P̄iT

−T
i =

 P̂ 0

0 P22

 (2.41a)

Qo = T T
o Q̄oTo =

 Q̂ 0

0 Q22

 (2.41b)

where P̂ = P11 − P12P
−1
22 P

T
12 and Q̂ = Q11 −Q12Q

−1
22 Q

T
12. The transformed input and

output augmented realizations {Ãi, B̃i, C̃i, D̃i} and {Ão, B̃o, C̃o, D̃o} respectively, are

as follows:

 Ãi B̃i

C̃i D̃i

 =

 T−1
i ĀiTi T−1

i B̄i

C̄iTi D̄i

 =


A Ai12 Bi11

0 Ai Bi

C Ci12 D̄i

 (2.42)

and

 Ão B̃o

C̃o D̃o

 =

 T−1
o ĀoTo T−1

o B̄o

C̄oTo D̄o

 =


A Ao12 B

0 Ao Bo21

Co11 Co D̄

 (2.43)
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where

Ai12 = AX̂i +BCi − X̂Ai (2.44a)

Bi11 = BDi − X̂iBi (2.44b)

Ci12 = CX̂i +DCi (2.44c)

Ao12 = ŶoA+BoC − AoŶo (2.44d)

Bo12 = BoD + ŶoB (2.44e)

Co11 = DoC − CoŶo (2.44f)

The augmented realizations satisfy the following ARE’s:

ÃiPi + PiÃ
T
i + (PiC̃

T
i − B̃i)(D̃i + D̃T

i )−1(C̃iPi − B̃T
i ) = 0 (2.45a)

ÃT
oQo +QoÃo + (QiB̃o − C̃T

o )(D̃o + D̃T
o )−1(B̃T

o Qo − C̃o) = 0 (2.45b)

Expanding the (1,1) block of (2.45a) and (2.45b) yield

AP̂ + P̂AT + (P̂CT −Bi11)(D̄i + D̄T
i )−1(CP̂ −BT

i11) = 0 (2.46a)

AT Q̂+ Q̂A+ (Q̂B − CT
o11)(D̄o + D̄T

o )−1(BT Q̂− Co11) = 0 (2.46b)

Remark 10 As the FW Gramians P̂ and Q̂ satisfy above ARE’s these Gramians also

satisfy the corresponding Lur’e equation so, the ROM obtained from modified technique

of Lin and Chiu’s [27] is claimed to preserve passivity of ROM.

Remark 11 The realization {A,Bi11, Co11} is minimal, and the ROM is obtained by

balancing and partitioning this minimal realization.

2.5.6 The Technique of Heydari and Pedram

The technique of Heydari and Pedram [26] is the extension of Phillips et al.’s technique

[25] to include the effect of frequency weights in MOR. Let Gi(s) and Go(s) be the

PR input and output frequency weights respectively, as given in (3.13a) and (3.13b)

with state space realizations {Ai, Bi, Ci, Di} and {Ao, Bo, Co, Do}. Let the augmented

systems G(s)Gi(s) and Go(s)G(s) as defined in (3.14) and (3.15) respectively. Let P̄
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and Q̄ are obtained from the following AREs

ĀiP̄ + P̄ ĀT
i + (P̄ C̄T

i − B̄i)(D̄i + D̄T
i )−1(C̄iP̄ − B̄T

i ) = 0 (2.47a)

ĀT
o Q̄+ Q̄Āo + (Q̄B̄o − C̄T

o )(D̄o + D̄T
o )−1(B̄T

o Q̄− C̄o) = 0 (2.47b)

where

P̄ =

 P11 P12

P T
12 P22

 (2.48a)

Q̄ =

 Q11 Q12

QT
12 Q22

 (2.48b)

Expanding the (1,1) block of (2.47a) and (2.47b) yields

AP11+P11A
T+BCiP

T
12 + P12C

T
i B

T︸ ︷︷ ︸+(P11C
T+P12C

T
i D

T︸ ︷︷ ︸−BDi)(DDi+D
T
i D

T )−1

(CP11 +DCiP
T
12︸ ︷︷ ︸−DT

i B
T ) = 0 (2.49a)

ATQ11+Q11A+CTBT
o Q

T
12 +Q12BoC︸ ︷︷ ︸+(Q11B+Q12BoD︸ ︷︷ ︸−CTDT

o )(CoD+DTDT
o )−1

(BTQ11 +DTBT
o Q

T
12︸ ︷︷ ︸−DoC) = 0 (2.49b)

In (2.47a) and (2.47b), we define the combined effect of under braced terms as X̄ and

Ȳ respectively, where

X̄ = BCiP
T
12 + P12C

T
i B

T + P11C
T (DDi +DT

i D
T )−1DCiP

T
12+

P12C
T
i D

T (DDi +DT
i D

T )−1CP11 + P12C
T
i D

T (DDi +DT
i D

T )−1DCiP
T
12−

P12C
T
i D

T (DDi +DT
i D

T )−1DT
i B

T −BDi(DDi +DT
i D

T )−1DCiP
T
12 (2.50a)

Ȳ = CTBT
o Q

T
12 +Q12BoC +Q11B(DoD +DTDT

o )−1DTBT
o Q

T
12+

Q12BoD(DoD +DTDT
o )−1BTQ11 +Q12BoD(DoD +DTDT

o )DTBT
o Q

T
12−

Q12BoD(DoD +DTDT
o )−1DoC − CTDT

o (DoD +DTDT
o )−1DTBT

o Q
T
12 (2.50b)
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Similar to the technique of [9] for stable ROMs, Heydari and Pedram [26] made gener-

ally indefinite symmetric matrices X̄ and Ȳ in (2.50a) and (2.50b) positive semi definite

by taking absolute of the eigenvalues of X̄ and Ȳ using eigenvalue decomposition such

that X̄ = USUT and Y = V ZV T , where S = diag{s1, s2, ..., sn} with |s1| ≥ |s2| ≥

... ≥ |sn| ≥ 0 and Z = diag{z1, z2, ..., zn}, with |z1| ≥ |z2| ≥ ... ≥ |zn| ≥ 0. Bal-

ancing transformation matrix TH which is used to diagonalize the weighted Gramians

PH = P11 andQH = Q11 such that T−1
H PHT

−T
H = T T

HQHTH = diga{σh1, σh2, ..., σhn}

where σhn are the HSV’s and σhi ≥ σhi+1 for i = 1, 2, ..., n − 1. Then the ROM

{Ar, Br, Cr} = {A11, B1, C1} can be obtained as follows:

 Ab Bb

Cb Db

 =

 THAT
−1
H THB

CT−1
H D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.51)

2.6 Muda et al.’s Comment on Heydari and Pedram’s Technique

Muda et al. [29] proved that the technique of Heydari and Pedram [26] neither yields

passive nor stable ROM in the case of double sided frequency weights. And passivity

is guaranteed only for the case of single sided weighting. Let Gi(s) and Go(s) be the

input and output frequency weights as given in (3.13a) and (3.13b). Let the input and

output augmented systems G(s)Gi(s) and Go(s)G(s) respectively, as defined in (3.14)

and (3.15). Let the controllability Gramian Pi and observability Gramian Qo be the

solutions of the Lur’e equations in (2.28) and (2.29), respectively. If D = 0, then the

Lur’e equations in (2.28) and (2.29) reduces to

ĀiP̄i + P̄iĀ
T
i = −K̄iK̄

T
i (2.52a)

P̄iC̄
T
i = B̄i (2.52b)

ĀT
o Q̄o + Q̄oĀo = −K̄T

o K̄o (2.53a)

Q̄oB̄o = C̄T
o (2.53b)
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where

P̄i =

 P11 P12

P T
12 P22

 (2.54a)

Q̄o =

 Q11 Q12

QT
12 Q22

 (2.54b)

and

K̄i =

 Ki1

Ki2

 , K̄o =
[
Ko1 Ko2

]
(2.55)

Remark 12 For D = 0 the solution of the Lur’e equations is not as simple as when

D 6= 0. For D = 0, Lur’e equations can be solved by the method of [35].

Expanding the (1,1) block of (2.52) and (2.53) yield

AP11 + P11A
T = −X̂ (2.56a)

P11C
T = BDi (2.56b)

ATQ11 +Q11A = −Ŷ (2.57a)

Q11B = CTDT
o (2.57b)

where X̂ and Ŷ are same as defined in (2.36a) and (2.36b). The matrices X̂ and Ŷ

are generally indefinite. To ensure passivity, these matrices should be positive semi-

definite. This can be accomplished by eigenvalue decomposition such that X̂ = ∆S∆T

and Y = δZδT where, Z = diag{z1, z2, ..., zn} and S = diag{s1, s2, ..., sn}. Now we

shall replace X̂ and Ŷ by K̄i1K̄
T
i1 and K̄T

o1K̄o1 such that K̄i1K̄
T
i1 = ∆|S|∆T where

where |S| = |s1| ≥ |s2| ≥ ... ≥ |sn| ≥ 0 and K̄T
o1K̄o1 = δ|Z|δT where Z = |z1| ≥

|z2| ≥ ... ≥ |zn| ≥ 0 . Now we can rewrite (2.56) and (2.57) as

APh + PhA
T = K̄i1K̄

T
i1 (2.58a)

PhC
T = B̂ (2.58b)

25



ATQh +QhA = K̄T
o1K̄o1 (2.59a)

QhB = ĈT (2.59b)

Transformation matrix T̂ is used for diagonalizing the Gramians Ph and Qh, i.e.

T̂−1PhT̂
−T = T̂ TQhT̂ = diag{σ1, σ2, ..., sigman} where σn are the HSV’s and

σi ≥ σi+1 for i = 1, 2, ..., n − 1. Then the ROM {A11, B1, C1} can be obtained from

the following balanced realization.

 Ab Bb

Cb Db

 =

 T̂−1AT T̂−1B

CT̂ D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.60)

Remark 13 The ROM obtained from Heydari and Pedram [26] is not passive because

(2.58a),(2.58b) and (2.59a),(2.59b) don’t correspond to the same system but two differ-

ent systems {A, B̂, C} and {A,B, Ĉ} respectively.

Remark 14 The transformation matrix T̂ , which is obtained by diagonalizing the

Gramians of two different systems {A, B̂, C} and {A,B, Ĉ}, applied to the original

system {A,B,C} does not produce passive ROM.

2.7 Summary

The existing techniques discussed in this chapter are summarized as: The ROM ob-

tained from BT [1] is guaranteed stable but without the presence of frequency weights.

Enn’s technique [9] does not yield guaranteed stable ROM in case of double sided fre-

quency weights. The techniques of Lin and Chiu [10] and Wang et al. [28] produce

guaranteed stable ROM’s when double sided frequency weights are used. Although,

Lin and Chiu’s method [10] produces guaranteed stable ROM but due to pole-zero can-

cellation of the controller with the frequency weights, this technique can not be used

in the controller reduction applications. Wang et al.’s method [28] gives frequency re-

sponse error bound as well. The technique of Phillips et al. [25] gives passive ROM
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without the presence of frequency weights while the technique of Muda et al. [27]

gives passive ROM in the presence of frequency weights. Heydari and Pedram’s [26]

technique does not guarantee passivity in case of double sided weights [29].

2.8 Conclusion

First of all we discussed the important properties of BT and frequency weighted MOR.

Then we formulated together frequency weighted and passivity preserving MOR prob-

lem and also discussed the important properties of frequency weighted passivity pre-

serving MOR. Several frequency weighted and un-weighted MOR techniques were

discussed and their important characteristics were also presented. We can conclude

that, like un-weighted MOR, preserving stability and passivity of the ROM as well as

low approximation error are also desirable in the frequency weighted MOR.
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Chapter 3

Development of New Passivity-Preserving Model Order Reduction

Schemes

3.1 Introduction

The design of any system e.g. network and telecommunication systems contain mathe-

matical model which are complex and require lot of computational power for analysis

and simulation. For such scenarios, to make the analysis and design of such systems

easier, MOR is used which reduce the complexity of such models by reducing their

order [23]. It takes less computational power and simulation time when models with

reduced orders are used. MOR methods are very useful when it comes to analyze large

and complex systems such as space systems, state estimation in UAVs and high voltage

systems etc.

In feedback control systems theory, the major contribution of balanced truncation

is its application in MOR which gives the stable reduced models and an error bound

within certain frequency limit [28]. This is also known as frequency weighted MOR

problem. For a given transfer function there are almost infinite state space realizations

but a particular realization has been proved useful in control systems theory which is

called internally balanced realization. It indicates the dominant system states and it is

the minimal realization which is also asymptotically stable.

The most wanted property in some systems is passivity which can be implied if the

transfer function is positive real. And when the model is reduced to rth ROM using

MOR it is desired to preserve the important features such as passivity, stability and

error. Since passive systems are also stable systems and not vice versa, it is of vital

importance in MOR algorithms to preserve passivity [24].

Phillips et al. [25] presented a family of algorithms for passive ROM which are sim-

ilar to the well-known BT method [1] for stable ROMs. In [25] controllability and
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observability Gramians are obtained by solving the Lur’e equations without using fre-

quency weights. Muda et al. [27] extended the methods of [28], [10] and [9] for RLC

systems to ensure passivity, since [28], [10], [9] yield only stable ROMs. Conditions

for guaranteed passivity are also given in [27] for the three extended techniques. A

relationship between the Lur’e equations and the algebraic Riccati equations (ARE’s)

is also given in [35]. For D = 0 in a state space realization {A,B,C,D} the solution

of an ARE is not straight forward. Both cases, for D = 0 and D 6= 0, are discussed in

detail in [35].

Heydari and Pedram claimed in [26] that their technique produces guaranteed passive

ROM for the double sided frequency weighting case, and the spectrally-weighted error

bounds are also available. The technique of [26] produces passive ROM for the single

sided weighting case similar to [9] which produces stable ROM for the case when only

one sided weighting is used. In [29] it has been proved that the technique of [26]

may yields non-passive ROM for the passive original system in case of double-sided

weighting. [26] also proved that the method of [26] can preserve passivity only when

one sided weighting is present.

After that, a lot of work has been done on preserving passivity in case of double

sided frequency weightings [24], [30], [36] for CT time systems. But currently there

hasn’t been any work done for passivity preserving schemes for DT linear time invariant

systems. However, [31] proposed MOR scheme for DT linear time variant macro-

models. In this chapter a family of schemes are proposed for passivity preserving for

LTI DT systems. Error bounds are also derived to prove the efficiency of the proposed

techniques.

3.2 Preliminaries

Consider a linear time invariant discrete time (DT) passive system:

x [n+ 1] = Ax [n] +Bu [n] (3.1a)

y [n] = Cx [n] +Du [n] (3.1b)
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where A ∈ <n×n, B ∈ <n×m, C ∈ <k×n and D ∈ <k×m are the state space represen-

tation of the discrete system. The transfer function form is given as:

H(z) = C(zI − A)−1B +D (3.2)

Let the system satisfy following DT Lyapunov equations [12]

APUA
T − PU +BBT = 0 (3.3)

ATQUA−QU + CTC = 0 (3.4)

and Lur’e equations [37]:

APLUA
T − PLU = −HHT (3.5a)

APLUC
T −B = −HJT (3.5b)

D +DT − CPLUC
T = JJT (3.5c)

ATQLUA−QLU = −KTK (3.6a)

ATQLUB − CT = −KTL (3.6b)

D +DT −BTQLUB = LTL (3.6c)

The matrices PLU ∈ <n×n and QLU ∈ <n×n can also be computed [38] using discrete

algebraic Riccati equations (DAREs):

APLUA
T −PLU + (B−APLUC

T )(D+DT −CPLUC
T )−1(BT −CPLUA

T ) = 0

ATQLUA−QLU +(CT −ATQLUB)(D+DT −BTQLUB)−1(C−BTQLUA) = 0

3.3 Unweighted Model Reduction

Let Pi = {PU , PLU} and Qj = {QU , QLU} and the transformation matrix Tij can be

computed by diagonalizing Pi and Qi as:

T−1
ij PiT

−T
ij = T T

ijQjTij = Σd = diag{σ1, σ2, ..., σn} (3.7)
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where i = 1, 2 and j = 1, 2. Let the original system is transformed as following:

 T−1
ij ATij TijB

CTij D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (3.8)

The reduced order model is {A11, B1, C1, D}.

Theorem 1 For the case when {i, j} = {1, 2}, {2, 1}, {2, 2} the ROM obtained from

(3.8) is passive.

Proof: For case when {i, j} = {2, 2}, let Σd from (3.7) can be partitioned as:

Σd =

 Σd1 0

0 Σd2


After similar partition of K =

[
Kd1 Kd2

]
and expanding (1,1) block of (3.6) we

get:

AT
11Σd1A11 − Σd1 + AT

21Σd2A21 = −KT
d1
Kd1 (3.9a)

AT
11Σd1B1 + A21Σd2B2 − CT

1 = −KT
d1
L (3.9b)

D +DT −BT
1 Σd1B1 −BT

2 Σd2B2 = LTL (3.9c)

In CT case due to the structure of Lur’e equation we don’t have extra terms like

AT
21Σd2A21 and AT

21Σd2B2 as in DT case, and the sub-block expansion readily satisfies

the standard equation’s format. But analogous to lemma 2.2 and theorem 2.1 of [39]

we can show that these extra terms don’t affect the passivity of ROM. Let Σ′ be the

observability Gramian of ROM that satisfy following equations, we have Σ′ ≥ 0.

AT
11Σ′A11 − Σ′ = −KT

d1
Kd1 (3.10a)

AT
11Σ′B1 − CT

1 = −KT
d1
L (3.10b)

D +DT −BT
1 Σ′B1 = LTL (3.10c)
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By linear system DT positive real lemma there exists a matrix Ω ≥ 0 such that

AT
11ΩA11 − Ω = −AT

21Σd2A21 (3.11a)

AT
11ΩB1 = −AT

21Σd2B2 (3.11b)

−BT
1 ΩB1 = BT

2 Σd2B2 (3.11c)

Subtraction of (3.10) from (3.9) yields (3.11), where Σd1 − Σ′ = Ω ≥ 0 and

AT
21Σd2A21 ≥ 0. The equivalent DARE is given as:

AT
11ΩA11 − Ω + AT

11ΩB1(−BT
1 ΩB1)−1BT

1 ΩA11 = 0 (3.12)

It can also be shown for dual set of Lur’e equations.

For case {i, j} = {1, 2} the ROM is passive due to existence of Ω ≥ 0 in (3.11) and

(3.12).

Similarly for case {i, j} = {2, 1} same property for ROM holds.

Remark 15 In [29], it is discussed for CT frequency weighted case that [26] doesn’t

generate passive ROM because in equations (18) and (19) of [29] there are extra terms

which may not be positive definite, however in proposed DT unweighted scheme these

extra terms are positive definite, hence passivity is preserved.

Remark 16 For case {i, j} = {1, 1} the ROM is stable [1].

3.4 Frequency Weighted Model Reduction

Consider a DT transfer function as in (3.2) and the weighting functions

V (z) = Cv(zI − Av)
−1Bv +Dv (3.13a)

W (z) = Cw(zI − Aw)−1Bw +Dw (3.13b)

where Av, Bv, Cv, Dv and Aw, Bw, Cw, Dw are their pth and qth order minimal real-

izations, respectively. Let the input augmented system be given by:

H(z)V (z) =

 Āv B̄v

C̄v D̄v

 =


A BCv BDv

0 Av Bv

C DCv DDv

 (3.14)
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and the output augmented matrix :

W (z)H(z) =

 Āw B̄w

C̄w D̄w

 =


A 0 B

BwC Aw BwD

DwC Cw DwD

 (3.15)

Let the augmented systems satisfy following DT Lyapunov Equations:

ĀvP̄ Ā
T
v − P̄ + B̄vB̄

T
v = 0 (3.16a)

ĀT
wQ̄Āw − Q̄+ C̄T

w C̄
T
w = 0 (3.16b)

and DT Lur’e equations

ĀvP̂ Ā
T
v − P̂ = −ĤĤT (3.17a)

ĀvP̂ C̄
T
v − B̄v = −ĤĴT (3.17b)

D̄v + D̄T
v − C̄vP̂ C̄

T
v = Ĵ ĴT (3.17c)

ĀT
wQ̂Āw − Q̂ = −K̂T K̂ (3.18a)

ĀT
wQ̂B̄w − C̄T

w = −K̂T L̂ (3.18b)

D̄w + D̄T
w − B̄T

wQ̂B̄w = L̂T L̂ (3.18c)

The matrices P̂ and Q̂ can also be computed [38] using the DAREs:

ĀvP̂ Ā
T
v − P̂ + (B̄v − ĀvP̂ C̄

T
v )(D̄v + D̄T

v − C̄vP̂ C̄
T
v )−1(B̄T

v − C̄vP̂ Ā
T
v ) = 0 (3.19)

ĀT
wQ̂Āw − Q̂ + (C̄T

w − ĀT
wQ̂B̄w)(D̄w + D̄T

w − B̄T
wQ̂B̄w)−1(C̄w − B̄T

wQ̂Āw) = 0

(3.20)
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Let matrices P̄ , P̂ , Ĥ and Q̄, Q̂, K̂ can be subdivided as follows:

P̄ =

 P̄11 P̄12

P̄ T
12 P̄22

 , Q̄ =

 Q̄11 Q̄T
12

Q̄12 Q̄22

 (3.21a)

P̂ =

 P̂11 P̂12

P̂ T
12 P̂22

 , Q̂ =

 Q̂11 Q̂12

Q̂T
12 Q̂22

 (3.21b)

and

Ĥ =

 H1

H2

 , K̂ =
[
K1 K2

]
(3.22)

Expanding the (1,1) block of (3.16)

AP̄11A
T − P̄11 + AP̄12C

T
v B

T + BCvP̄
T
12A

T + BCvP̄22C
T
v B

T + BDvD
T
v B

T = 0

AT Q̄11A− Q̄11 +CTBT
wQ̄

T
12A+AT Q̄12BwC+CTBT

wQ̄22BwC+CTDT
wDwC = 0

Similarly expanding (1,1) blocks of (3.17) and (3.18) yields

AP̂11A
T − P̂11 = −XL (3.23a)

AP̂11C
T −Bp = −H1Ĵ

T (3.23b)

D̄v + D̄v − C̄vP̂ C̄
T
v = Ĵ ĴT (3.23c)

AT Q̂11A− Q̂11 = −YL (3.24a)

AT Q̂11B − CT
p = −KT

1 L̂ (3.24b)

D̄w + D̄w − B̄T
wQ̂B̄w = L̂T L̂ (3.24c)

where
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XL = BCvP̂
T
12A

T + AP̂12C
T
v B

T +BCvP̂22C
T
v B

T +H1H
T
1 (3.25a)

YL = CTBT
wQ̂

T
12A+ AT Q̂12BwC + CTBT

wQ̂22BwC +KT
1 K1 (3.25b)

Bp = BDv −BCvP̂
T
12C

T − AP̂12C
T
v D

T −BCvP̂22C
T
v D

T (3.25c)

Cp = DwC −BT Q̂12BwC −DTBT
wQ̂

T
12A−DTBT

wQ̂
T
22BwC (3.25d)

Let P̃î = {PU , P̄11, PLU , P̂11} and Q̃ĵ = {QU , Q̄11, QLU , Q̂11} and the transformation

matrix T̂îĵ can be found by diagonalizing P̃î and Q̃ĵ as follows:

T̂−1

îĵ
P̃îT̂

−T
îĵ

= T̂ T
îĵ
Q̃ĵT̂îĵ = Σ̄ = diag{σ̄1, σ̄2, ..., σ̄n} (3.26)

where î = 1, 2, 3, 4 and ĵ = 1, 2, 3, 4. Let the original system is transformed as follow-

ing:  T̂−1

îĵ
AT̂îĵ T̂îĵB

CT̂îĵ D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (3.27)

The reduced order model is represented by {A11, B1, C1, D}. The properties of ROM

Table 3.1: Properties of Model reduction schemes

P̃î

Q̃ĵ QU Q̄11 QLU Q̂11

PU S S P S

P̄11 S S? P S?

PLU P P P P

P̂11 S S? P S?

schemes are summarized in Table 3.1 where S, P , S? respectively represent stability,

passivity and stability not guaranteed.

Remark 17 For the case when {̂i, ĵ} = {1, 1}, {3, 3} the MOR schemes are un-

weighted. When {̂i, ĵ} = {2, 2}, {2, 4}, {4, 2}{4, 4} the MOR schemes are double

sided frequency weighted whereas for other cases when {̂i, ĵ} = {1, 2}, {2, 1}, {1, 3}, {3, 1},
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{1, 4}, {4, 1}, {2, 3}, {3, 2},{3, 4}, {4, 3} the MOR schemes are single sided frequency

weighted.

Theorem 2 For the case when {̂i, ĵ} = {1, 3}, {3, 1}, {2, 3}, {3, 2}, {3, 3}, {3, 4}, {4, 3}

the ROM obtained from (3.27) is passive.

Proof: For the cases when {̂i, ĵ} = {1, 3}, {3, 1}, {3, 3} proof is already given in

theorem 1. For {̂i, ĵ} = {2, 3}, {3, 2}, {3, 4}, {4, 3}, since on one side the Gramian is

computed using weighted Lur’e equations, the passivity is preserved in ROM.

Remark 18 For the case when {̂i, ĵ} = {2, 2}, {2, 4}, {4, 2}, {4, 4} the ROMs ob-

tained using (3.27) are not guaranteed to be stable.

3.5 Proposed Scheme for Double Sided Frequency Weightings

In order preserve passivity in case of double sided frequency weightings, a scheme

is suggested that divides the double sided FW problem into succession of two single

sided weighted ones. At 1st stage, least energy states are truncated within the frequency

region that are dominated by input frequency weight and then the least energy states

are truncated within frequency region that are dominated by output frequency weight

in the 2nd stage. The main advantage of this staging concept is that the ROM obtained

is guaranteed to be passive because single sided frequency weights always generate

passive ROM.

The controllability and observability Gramians are calculated from input and aug-

mented systems respectfully which means that the passivity of ROM is depen-

dent on the passivity of augmented system. If the augmented system is non-

passive it fails to produce passive ROM, which is exactly like the cases {̂i, ĵ} =

{2, 2}, {2, 4}, {4, 2}, {4, 4} . Inspired by Umair et. al. [36] a scheme is suggested

to compute the FW Gramians from discrete time Lyapunov equations and unweighted

Gramian like matrices using the discrete time Lur’e equations. This methods removes

the passivity condition for augmented system.

The Gramian Pci of input augmented system H(z)V (z) mentioned in (3.14), is called

as controllability Gramian and is obtained as a solution of following DT Lyapunov
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equation:

AiPciA
T
i − Pci +BiB

T
i = 0 (3.28)

Pci can be partitioned as:

Pci =

 P11 P12

P T
12 P22


Expanding (1,1) block of equation (3.28) we get:

AP11A
T − P11 +X1 = 0 (3.29)

where

X1 = BCV P
T
12A

T + AP12C
T
VB

T +BCV P22C
T
VB

T +BDVD
T
VB

T

The Gramian Ph, called as FW controllability Gramian, is obtained as a solution of

following DT Lyapunov equation:

APhA
T − Ph +BhB

T
h = 0 (3.30)

where Bh = Ū1S̄1

1
2 and matrices Ū1 and S̄1 are results of eigenvalue decomposition of

X1.

X1 = Ū S̄ŪT =
[
Ū1 Ū2

] S̄1 0

0 S̄2

 ŪT
1

ŪT
2


where S1 = diag{s̄1, s̄2, ..., s̄l}, s̄1 ≥ s̄2 ≥ ...s̄l > 0 and l being the number of positive

eigenvalues of X1. Let Y1 = KTK where the matrix K is defined in (3.6a). Then

disintegration of eigenvalues of Y1 as Y1 = V̄ R̄V̄ T where the matrix R̄ is expressed as

R̄ = diag{r̄1, r̄2, ..., r̄n}. The fictitious output matrix Cf is defined as Cf = R̄
1
2 V̄ T .

Q as mentioned in equation (3.6a) is written as a solution of following DT Lyapunov

equation:

ATQA−Q+ CT
f Cf = 0 (3.31)

Q and Ph are the observability and controllability Gramian respectively of system

{A,Bh, Cf , D}. The transformation matrix T1 is calculated such that T T
1 QT1 =

T−1
1 PhT

−T = Σ̄ = diag{σ̄1, σ̄2, ..., σ̄n} and σ̄1 ≥ σ̄2 ≥ ... ≥ σ̄n. The transformed
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system expressed as {Ā, B̄, C̄, D̄} = {T−1
1 AT1, T

−1
1 B,CT1, D} is then given by

 T−1
1 AT1 T−1

1 B

CT1 D

 =


Ar1 A12 Br1

A21 A22 B2

Cr1 C2 D

 (3.32)

Then Hr1(z) = Cr1(zI − A−1
r1

)Br1 + D is the rth1 (r1 < r) order ROM such that

Ar1 ∈ <r1×r1 , Br1 ∈ <r1×m and Cr1 ∈ <m×r1 .

Theorem 3 The following is a priori error bound that holds for this stage of reduction

if rank [Bh B] =rank [Bh] and rank

 Cf

C

 = rank [Cf ]:

||(H(z)−Hr1(z)V (z))||∞ ≤ 2||L1||∞||K1V (z)||∞
n∑

k=r1+1

σ̄k

where

L1 = CV̄ diag{r̄−
1
2

1 , r̄
− 1

2
2 , ..., r̄

− 1
2

j̄
, 0, ..., 0}

K1 = diag{s̄−
1
2

1 , s̄
− 1

2
2 , ..., s̄

− 1
2

ī
, 0, ..., 0}ŪTB

j̄ = rank [Y1] and ī = rank [X1].

Proof: If rank [Bh B] =rank [Bh] then we can write following:

B = BhK1 (3.33)

Furthermore, lets assume that ζ = {K2|B = BhK3} then

||K1V (z)||∞ = min ||K3V (z)||∞, K3 ∈ ζ

Since rank [Bh B] =rank [Bh] then we can parameterize solutions of B = BhK3 by

following

K3 = B+
h B + (I −B+

h Bh)Z (3.34)

where B+
h is pseudo-inverse of Bh and Z is free parameter. Since

B+
h = diag{s̄−

1
2

1 , s̄
− 1

2
2 , ..., s̄

− 1
2

ī
, 0, ..., 0}ŪT

K1 is solution of B = BhK2 when Z = 0 and B = BhK1. After putting expressions
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of Bh and B+
h in (3.34) we get

K3 = B+
h B + (I −B+

h Bh)Z

= diag{s̄−
1
2

1 , s̄
− 1

2
2 , ..., s̄

− 1
2

ī
, 0, ..., 0}ŪTB + (I − diag(1, ..., 1, 0, ..., 0))Z

= diag{s̄−
1
2

1 , s̄
− 1

2
2 , ..., s̄

− 1
2

ī
, 0, ..., 0}ŪTB + diag(0, ...0, 1, ...1)Z. (3.35)

As we have seen in previous equations that term with free matrix Z is zero, we obtain

||K1V (z)||∞ ≤ ||K3V (z)||∞ for any free matrix Z which also implies that

||K1V (z)||∞ = min ||K3V (z)||∞, K3 ∈ ζ.

Similarly we can prove for C = L1Cf .

Proposition 1: ROM {Ar1 , Br1 , Cr1 , D} is passive.

Proof: We can prove that the ROM {Ā, B̄, C̄, D̄} is because it is obtained by the simi-

larity transformation of {A,B,C,D} and hence, it satisfies the following discrete time

Lur’e equation provided Σ̄ ≥ 0.

ĀT Σ̄Ā− Σ̄ = −K̄T K̄ (3.36a)

ĀT Σ̄B̄ − C̄T = −K̄T L̄ (3.36b)

D̄ + D̄T − B̄T Σ̄B̄ = L̄T L̄ (3.36c)

Σ̄ is divided as diag{Σr1 ,Σ(n−r1)} where Σr1 can be expressed as Σr1 = diag{σ̄1 ≥

σ̄2... ≥ σ̄r1}. Expanding (1,1) block of equations (3.36a-3.36c) we get:

AT
r1

Σr1Ar1 − Σr1 + AT
21Σ(n−r1)A21 = −KT

1 K1 (3.37a)

AT
r1

Σr1Br1 + AT
21Σ(n−r1)B2 − CT

r1
= −KT

1 L (3.37b)

D +DT − B̄T Σ̄B̄ = L̄T L̄ (3.37c)

Rest of proof is same as that of Theorem 1.
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Consider the output augmented system W (z)Hr1(z) which is represented as:

W (z)H(z) =

 Ão B̃o

C̃o D̃o

 =


Ar1 0 Br1

BwCr1 Aw BwD

DwCr1 Cw DwD


The Gramian Qoo of output augmented system W (z)Hr1(z) is called as observability

Gramian and is obtained as a solution of following DT Lyapunov equation:

ÃT
oQooÃo −Qoo + C̃T

o C̃o = 0 (3.38)

Qoo can be partitioned as:

Qoo =

 Q11 Q12

QT
12 Q22


Expanding (1,1) block of equation (3.38) we get:

AT
r1
Q11Ar1 −Q11 + Y2 = 0 (3.39)

where

Y2 = CT
r1
BT

wQ
T
12Ar1 + AT

r1
Q12BwCr1 + CT

r1
BT

wQ22BwCr1 + CT
r1
DT

wDwCr1 = 0

The weighted Gramian Qh called as observability Gramian, is obtained as a solution of

following DT Lyapunov equation:

AT
r1
QhAr1 −Qh+ CT

h Ch = 0 (3.40)

where Ch = R̄
1
2
1 V̄

T
1 . R̄1 and V̄1 are obtained using eigenvalue disintegration of sym-

metric indefinite matrix Y 2.

Y2 = V̄ R̄V̄ T =
[
V̄1 V̄2

] R̄1 0

0 R̄2

 V̄ T
1

V̄ T
2


where R1 is expressed as R1 = diag{r̄1, r̄2, ..., r̄l̄}, r̄1 ≥ r̄2 ≥ ...r̄l̄ > 0 and number of

positive eigenvalues of Y2 is denoted by l̄.The controllability Gramian like matrix P̃a
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of system Hr1(z) is solution of following DT Lur’e equation:

Ar1P̃aA
T
r1
− P̃a = −H̃H̃T (3.41a)

Ar1P̃aC
T
r1
−Br1 = −H̃J̃T (3.41b)

D +DT − Cr1P̃C
T
r1

= J̃ J̃T (3.41c)

Similar to previous stage, let X2 = H̃H̃T . Then the eigenvalue disintegration of X2 is

X2 = Ũ S̃ŨT where S̃ = diag{s̃1, s̃2, ...s̃n}. The input fictitious matrix Bf is defined

as Bf = Ũ S̃
1
2 . P̃a mentioned in (3.41a) can also be written as solution of following

discrete time Lyapunov equation:

Ar1P̃aA
T
r1
− P̃a +BfB

T
f = 0 (3.42)

The transformation matrix T2 is computed so that T T
2 QhT2 = T−1

2 P̃aT
−T
2 = Σ̃ =

diag{σ̃1, σ̃2, ..., σ̃r1} and σ̃1 ≥ σ̃2 ≥ ... ≥ σ̃r1 . After applying transformation we can

express transformed system as {Ã, B̃, C̃, D̃} = {T−1
2 Ar1T2, T

−1
2 Br1 , Cr1T2, D} which

is then given by:

 T−1
2 Ar1T2 T−1

2 Br1

Cr1T2 D

 =


Ar Ar12 Br

Ar21 Ar22 Br2

Cr1 Cr2 D

 . (3.43)

Then Hr(z) = Cr(zI − A−1
r )Br +D is the rth order ROM such that Ar ∈ <r×r, Br ∈

<r×m and Cr ∈ <m×r. The following error bound holds for this stage of reduction if

rank [Bf Br1 ] =rank [Bf ] and rank

 Ch

Cr1

 = rank [Ch]:

||W (z)(Hr1(z)−Hr(z))||∞ ≤ 2||W (z)L2||∞||K2||∞
n∑

k=r1+1

σ̃k

where

L2 = Cr1Ṽ diag{r̃
− 1

2
1 , r̃

− 1
2

2 , ..., r̃
− 1

2

j̃
, 0, ..., 0}

K2 = diag{s̃−
1
2

1 , s̃
− 1

2
2 , ..., s̃

− 1
2

ĩ
, 0, ..., 0}ŨTBr1

j̃ = rank [Y2] and ĩ = rank [X2] .
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The error bound for whole system is expressed as:

||W (z)(H(z)−Hr(z))V (z)||∞ = ||W (z)(H(z)−Hr1(z)+

Hr1(z)−Hr(z))V (z)||∞ ≤ ||W (z)||∞||(H(z)−Hr1(z))V (z)||∞+

||W (z)(Hr1(z)−Hr(z))||∞||V (z)||∞ ≤ 2||W (z)||∞||L1||∞||K1V (z)||∞
n∑

k=r1+1

σ̃k

+ 2||V (z)||∞||W (z)L2||∞||K2||∞
r1∑

k1=r+1

σ̃k1

Theorem 4 The ROM {Ar, Br, Cr, D} is guaranteed to be passive.

Proof: The proof of above theorem is already mentioned in that of Proposition 1.

Algorithm 1: Step by Step procedure to calculate ROM {Ar, Br, Cr, D}

1. Calculate Q and Ph using (3.28-3.30) and (3.6a-3.6c) respectively.

2. Compute Cholesky factor Rh of Ph i-e. Ph = RT
hRh.

3. Compute SVDs of RhQR
T
h such that RhQR

T
h = UhΣ̄2UT

h .

4. Compute T1 as T1 = RT
hUhΣ̄−

1
2 .

5. Hr1(z) is obtained using (3.32).

6. Compute P̃a and Qh using (3.41) and (3.38-3.40) respectively.

7. Find the Cholesky factorization R̃a of P̃a i-e. P̃a = R̃T
a R̃a.

8. Compute the SVDs of R̃aQhR̃
T
a such that R̃aQhR̃

T
a = ŨaΣ̄

2ŨT
a .

9. Compute T2 as T2 = R̃T
a ŨaΣ̄

− 1
2 .

10. The rth order ROM is obtained using (3.43).

Remark 19 The succession of stages could be exchanged i-e. 1st being the output-

weighted stage and the 2nd one being the input-weighted stage or vice versa.

Remark 20 ROMs generated using this technique are not exclusive. Hence, the pa-

rameter r1(r < r1 < n) can be altered to accomplish better approximations.
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Chapter 4

Numerical Examples

4.1 Introduction

In this chapter, different single and double sided frequency weighted numerical ex-

amples are presented to show the effectiveness of the schemes proposed in chapter 3.

Simulations are performed using MATLAB 2018a on the computer system intel core

i3, having 4 GB RAM and 2.20 GHz processor.

Figure 4.1: ROMs for {̂i, ĵ} = (1,1),(1,3),(3,1),(3,3) of example 1

Example 1: Consider a 3rd order passive DT original system given as:

H(z) =
0.01713z3 + 0.008051z2 − 0.004368 + 0.0001233

z3 + 0.871z2 + 0.6471z + 0.057

with input weights

V (z) =
0.1z

z − 0.54
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and output weight

W (z) =
0.1z3 − 0.006z2 + 8× 10−5z

z3 − 0.19z2 − 0.1794z − 0.005184

Figure 4.2: Zoomed portion for Fig. 4.1

reduced to 1st order using different arrangements from Table 3.1. Fig. 4.1

shows Nyquist diagram of ROMs obtained using unweighted Gramians ({̂i, ĵ} =

{1, 1}, {1, 3}, {3, 1}, {3, 3}). These Gramians were calculated using unweighted

Lyapunov and Lur’e equations. It can be seen that Nyquist plot of these ROMs

lie entirely in right half plane which shows their passivity. The Gramians obtained

from unweighted Lyapunov equations ({̂i, ĵ} = {1, 1}) don’t guarantee passivity al-

though in this example it generates passive ROM. However, passivity is guaranteed

for ROMs obtained from unweighted Lur’e equations. Fig. 4.2 represents close-

up view of Fig. 4.1. Fig. 4.3 shows Nyquist diagram of ROMs obtained using

double sided frequency weighted Gramians ({̂i, ĵ} = {2, 2}, {2, 4}, {4, 2}, {4, 4})

and proposed technique. It can be seen that some part of Nyquist plot of these

ROMs (except the one obtained from proposed technique) lie in left half plane
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which shows that they are non-passive whereas the Nyquist plot of proposed tech-

nique lies entirely in right half plane which shows its passivity. The arrangements

{̂i, ĵ} = {2, 2}, {2, 4}, {4, 2}, {4, 4} generate non passive, however stable ROMs hav-

ing poles at z = −0.193105,−0.201718,−0.194259,−0.201715. Note that in these

scenarios generally stability is also not guaranteed.

Figure 4.3: ROMs for {̂i, ĵ} = (2,2),(2,4),(4,2),(4,4) of example 1

Example 2: Consider a 100th order RLC network with parameters RL = RC =

1Ω, L = 0.1H and C = 0.01F discretized using ZOH and sampling time Ts = 0.01s

with input and output weightings as:

V (z) = W (z) =
0.01713z

z − 0.7754

reduced to 5th order using different arrangements from Table 3.1.

Fig.4.4 shows Nyquist diagram of ROMs obtained using unweighted Gramians

({̂i, ĵ} = {1, 1}, {1, 3}, {3, 1}, {3, 3}). These Gramians were calculated using un-

weighted Lyapunov and Lur’e equations. It can be seen that Nyquist plot of these
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Figure 4.4: ROMs for {̂i, ĵ} = (1,1),(1,3),(3,1),(3,3) of example 2

Figure 4.5: ROMs for {̂i, ĵ} = (1,2),(1,4),(2,3),(3,4) of example 2

ROMs lie entirely in right half plane which shows their passivity. The Grami-

ans obtained from unweighted Lyapunov equations ({̂i, ĵ} = {1, 1}) don’t guaran-

tee passivity although in this example it generates passive ROM. However, passiv-

ity is guaranteed for ROMs obtained from unweighted Lur’e equations. Fig. 4.5
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Figure 4.6: ROMs for {̂i, ĵ} = (2,1),(4,1),(3,2),(4,3) of example 2

Figure 4.7: ROMs for {̂i, ĵ} = (2,2),(2,4),(4,2),(4,4) of example 2

and Fig. 4.6 shows Nyquist diagram of ROMs obtained using single sided fre-

quency weighted Gramians ({̂i, ĵ} = {1, 2}, {1, 4}, {2, 3}, {3, 4}) and their duals

({̂i, ĵ} = {2, 1}, {4, 1}, {3, 2}, {4, 3}) respectively. It can be seen that Nyquist plot

of these ROMs also lie entirely in right half plane which shows their passivity. The
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Gramians obtained from single sided frequency weighted Lyapunov equations don’t

guarantee passivity although in this example it generated passive ROM. However, pas-

sivity is guaranteed for the cases {̂i, ĵ} = {4, 1}, {3, 2}, {4, 3}, {4, 1}, {3, 2}, {4, 3}.

Fig. 4.7 shows Nyquist diagram of ROMs obtained using double sided frequency

weighted Gramians ({̂i, ĵ} = {2, 2}, {2, 4}, {4, 2}, {4, 4}) and proposed technique. It

can be seen that some part of Nyquist plot of these ROMs lie entirely in right half plane

which shows that they are passive. However, passivity in this case is not generally

guaranteed (although in this example it generates passive ROMs). It can also be seen

in Fig. 4.8 that approximation error between the ROM and original system is smallest

in the proposed scheme than the arrangements (2,2),(2,4),(4,2),(4,4). Numerical values

of error are also presented in Table 4.1. The advantage of proposed technique is that it

guarantees passivity in case of double sided weightings and also generates less error.

Figure 4.8: Error comparison plots for example 2
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Table 4.1: Frequency Weighted Error Comparison of ROMs obtained in Example 2

î, ĵ = (2,2) 6.97 ×10−6

î, ĵ = (2,4) 7.78 ×10−6

î, ĵ = (4,2) 7.78 ×10−6

î, ĵ = (4,4) 8.71 ×10−6

Proposed 4.41 ×10−6

Example 3: Consider a 10th order passive DT original system given as:

H(z) = (z10−9.154z9+37.86z8−93.16z7+151z6−168.5z5+131.1z4−70.23z3+24.78z2−

5.201z+0.493)×(z10−8.525z9+32.72z8−74.39z7+110.9z6−113.1z5+79.86z4−38.48z3+

12.08z2 − 2.225z + 0.1819)−1

with input and output weights

V (z) = W (z) =
0.1713z

z − 0.77544

reduced to 1st order using different arrangements from Table 3.1. Fig.4.9

shows Nyquist diagram of ROMs obtained using unweighted Gramians ({̂i, ĵ} =

{1, 1}, {1, 3}, {3, 1}, {3, 3}). These Gramians were calculated using unweighted

Lyapunov and Lur’e equations. It can be seen that Nyquist plot of these ROMs

lie entirely in right half plane which shows their passivity. The Gramians ob-

tained from unweighted Lyapunov equations ({̂i, ĵ} = {1, 1}) don’t guarantee pas-

sivity although in this example it generates passive ROM. However, passivity is

guaranteed for ROMs obtained from unweighted Lur’e equations. Fig. 4.10

and Fig. 4.11 shows Nyquist diagram of ROMs obtained using single sided fre-

quency weighted Gramians ({̂i, ĵ} = {1, 2}, {1, 4}, {2, 3}, {3, 4}) and their duals

({̂i, ĵ} = {2, 1}, {4, 1}, {3, 2}, {4, 3}) respectively. It can be seen that Nyquist plot

of these ROMs also lie entirely in right half plane which shows their passivity. The

Gramians obtained from single sided frequency weighted Lyapunov equations don’t
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Figure 4.9: ROMs for {̂i, ĵ} = (1,1),(1,3),(3,1),(3,3) of example 3

Figure 4.10: ROMs for {̂i, ĵ} = (1,2),(1,4),(2,3),(3,4) of example 3

guarantee passivity although in this example it generated passive ROM. However, pas-

sivity is guaranteed for the cases {̂i, ĵ} = {4, 1}, {3, 2}, {4, 3}, {4, 1}, {3, 2}, {4, 3}.

Fig. 4.12 shows Nyquist diagram of ROMs obtained using double sided frequency

weighted Gramians ({̂i, ĵ} = {2, 2}, {2, 4}, {4, 2}, {4, 4}) and proposed technique. It
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Figure 4.11: ROMs for {̂i, ĵ} = (2,1),(4,1),(3,2),(4,3) of example 3

Figure 4.12: ROMs for {̂i, ĵ} = (2,2),(2,4),(4,2),(4,4) of example 3

can be seen that some part of Nyquist plot of these ROMs lie entirely in right half plane

which shows that they are passive. However, passivity in this case is not generally

guaranteed (although in this example it generates passive ROMs). It can also be seen

in Fig. 4.13 that approximation error between the ROM and original system is smallest
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Table 4.2: Frequency Weighted Error Comparison of ROMs obtained in Example 3

î, ĵ = (2,2) 2.07 ×10−5

î, ĵ = (2,4) 2.41 ×10−5

î, ĵ = (4,2) 2.41 ×10−5

î, ĵ = (4,4) 2.85 ×10−5

Proposed 1.36 ×10−5

in the proposed scheme than the arrangements (2,2),(2,4),(4,2),(4,4). Numerical values

of error are also presented in Table 4.2. The advantage of proposed technique is that it

guarantees passivity in case of double sided weightings and also generates less error.

Figure 4.13: Error comparison plots for example 3

Example 4: Consider a 8th order passive DT original system represented with follow-
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ing state space:

A =



0.9587 0.0000 0.0000 0.0108 −0.0001 −0.0000 0.0155 −0.0212

0.0000 0.9558 0.0100 0.0108 0.0234 −0.0212 0.0000 0.0001

0.0000 0.0100 0.7686 0.0000 0.0001 0.0209 0.0000 0.0000

0.0108 0.0108 0.0000 0.9558 −0.0212 −0.0001 0.0001 0.0234

0.0032 −0.9345 −0.0034 0.8490 0.8919 0.0105 0.0000 0.0105

0.0000 0.8492 −0.8376 0.0032 0.0105 0.8927 0.0000 0.0000

−0.6186 −0.0000 −0.0000 −0.0029 0.0000 0.0000 0.3614 0.0080

0.8496 −0.0036 −0.0000 −0.9345 0.0105 0.0000 0.0080 0.8919



B =



0.0091

0.0000

0.0000

0.0000

0.0000

0.0000

0.6296

0.0029



, C =
[

0 0 0 0 0 0 −1 0
]
, D = 1

with input and output weights

V (z) = W (z) =
z2 + 0.2z + 0.324

z2 + 0.354z + 0.22

reduced to 1st order using different arrangements from Table 3.1. Fig.4.14

shows Nyquist diagram of ROMs obtained using unweighted Gramians ({̂i, ĵ} =

{1, 1}, {1, 3}, {3, 1}, {3, 3}). These Gramians were calculated using unweighted Lya-

punov and Lur’e equations. It can be seen that Nyquist plot of these ROMs lie en-

tirely in right half plane which shows their passivity. The Gramians obtained from

unweighted Lyapunov equations ({̂i, ĵ} = {1, 1}) don’t guarantee passivity although

in this example it generates passive ROM. However, passivity is guaranteed for ROMs

obtained from unweighted Lur’e equations.

Fig. 4.15 and Fig. 4.16 shows Nyquist diagram of ROMs obtained using single sided
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Figure 4.14: ROMs for {̂i, ĵ} = (1,1),(1,3),(3,1),(3,3) of example 4

Figure 4.15: ROMs for {̂i, ĵ} = (1,2),(1,4),(2,3),(3,4) of example 4

frequency weighted Gramians ({̂i, ĵ} = {1, 2}, {1, 4}, {2, 3}, {3, 4}) and their duals

({̂i, ĵ} = {2, 1}, {4, 1}, {3, 2}, {4, 3}) respectively. It can be seen that Nyquist plot

of these ROMs also lie entirely in right half plane which shows their passivity. The

Gramians obtained from single sided frequency weighted Lyapunov equations don’t
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Figure 4.16: ROMs for {̂i, ĵ} = (2,1),(4,1),(3,2),(4,3) of example 4

Figure 4.17: ROMs for {̂i, ĵ} = (2,2),(2,4),(4,2),(4,4) of example 4

guarantee passivity although in this example it generated passive ROM. However, pas-

sivity is guaranteed for the cases {̂i, ĵ} = {4, 1}, {3, 2}, {4, 3}, {4, 1}, {3, 2}, {4, 3}.

Fig. 4.17 shows Nyquist diagram of ROMs obtained using double sided frequency

weighted Gramians ({̂i, ĵ} = {2, 2}, {2, 4}, {4, 2}, {4, 4}) and proposed technique. It
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Figure 4.18: Error comparison plots for example 4

can be seen that some part of Nyquist plot of these ROMs lie entirely in right half plane

which shows that they are passive. However, passivity in this case is not generally

guaranteed (although in this example it generates passive ROMs). The approximation

error can be seen in Fig. 4.18 between the ROM and original system. Numerical

values of error are also presented in Table 4.3. We can see that arrangement (2,2)

generates less error in this example but it doesn’t guarantees passivity in case of double

sided frequency weightings. The advantage of proposed technique is that it guarantees

passivity in case of double sided weightings and also generates comparatively less error.

Table 4.3: Frequency Weighted Error Comparison of ROMs obtained in Example 4

î, ĵ = (2,2) 0.2725

î, ĵ = (2,4) 0.5536

î, ĵ = (4,2) 0.5536

î, ĵ = (4,4) 1.1041

Proposed 0.5471
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4.2 Conclusion

In this chapter several numerical examples have been presented which show the effec-

tiveness of proposed schemes. The passivity is always preserved in case of single side

frequency weightings whereas it is not guaranteed in case of double sided weightings.

Therefore scheme was proposed to preserve passivity in case of double sided weight-

ings for discrete time systems. Approximation errors of the proposed technique is less

than that obtained from cases {i, j} = {2, 2}, {2, 4}, {4, 2}, {4, 4}.
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Chapter 5

Conclusion and future work

5.1 Overview of the Thesis

This thesis has explored the problem of passivity preserving for frequency weighted

MOR for DT systems. Both stability and passivity preserving techniques were studied.

In chapter 2, a brief analysis of existing MOR techniques was presented which takes

account of both stability and passivity preserving problems for frequency weighted and

unweighted cases. In chapter 3, a family of technique were proposed to preserve pas-

sivity in DT systems. Some techniques preserve only stability while other techniques

do not preserve stability as well as passivity. All the proposed techniques were criti-

cally examined and several remarks were presented about their behavior whether they

preserve or do not preserve basic properties of a system like stability and passivity etc.

In chapter 4, numerical examples with double sided frequency weights were presented

to show the usefulness of the proposed schemes discussed in chapter 3. Simulation re-

sults and mathematical equations/derivations show that the proposed techniques serve

the purpose.

5.2 Conclusion

In this thesis, a family of MOR techniques based on passivity preserving for single

and double sided frequency weights are presented. Simulation results show that the

proposed techniques preserve passivity of a ROM in the desired frequency range in

case of single sided frequency weight and some of the proposed techniques preserve

passivity of a ROM in the desired frequency range in case of double sided frequency

weights.

5.3 Future Work

In this section, we suggest/recommend that this research can be further enhanced to a

level where one can desire. For future directions it is recommended: spcaing
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* The optimization technique can be applied to error bound for better approxima-

tions.

* Lyapunov stability criteria and Lur’e/ARE passivity criteria are not necessary to

yield stable and passive ROM’s, respectively. This area is also open to yield

efficient stable and passive ROM’s in case of double sided frequency weights.

* The computational cost/memory of the proposed techniques in terms of Lya-

punov equations and ARE’s/Lure equations can be improved by using new effi-

cient algorithms.

* As the proposed techniques are realization dependent and it is unknown that

which new realization produces less approximation error, so it is also an open

question and needs further research.

* Selection of frequency weights for least approximation error need more inves-

tigation because different frequency weights yield different approximation er-

rors/results.
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