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ABSTRACT

Model order reduction (MOR) is a technique developed in the area of control system theory,
which reduces the complexity of higher order systems by reducing the order of the system
while retaining the key features of original system. These models are represented by par-
tial differential equations, ordinary differential equations. MOR approximates higher-order
original models by relatively lower-order models to give simplicity in design, modeling and
simulation for huge complicated systems. The analysis of large scale models is difficult
or even sometimes impossible to perform due to different constraints like storage, cost and
computation. Therefore MOR techniques are developed. The Balanced truncation(BT) [1]
is one of the most frequently used MOR technique because reduced order models (ROMs)
obtained using this technique are not only stable but also have quantifiable error bounds. In
BT [1] MOR technique lower energy states are truncated and higher energy states are re-
tained to get ROM having similar characteristics as original system. Considerable amount
of research has been done on different features of MOR. Existing techniques have the draw-
backs of lacking properties like stability, passivity and large approximation error produced
in ROMs etc. Ideally BT [1]] technique approximates the higher order system by relatively
lower order system having low approximation error for entire time interval. Though, in some
applications approximation error is required to be small for specific time interval rather than
for the entire time range. Therefore time limited MOR techniques are developed in which
controllability and observability Gramians are defined over finite time interval. The goal is
to achieve a stable ROM having the same response characteristics as the original system and
low approximation error.

This thesis includes Time Limited Gramians based model order reduction (TLMOR) tech-
niques for standard continuous time systems . The proposed techniques produce less approx-
imation error as contrast to existing techniques. Numerical examples are also illustrated to
exhibit the compatibility and effectiveness of the proposed techniques to the existing ones.

Some of practical applications of MOR are
e Fabrication industries
e Missiles analysis and launching
e Industrial real time applications

e Radio frequency micro electro-mechanical systems (RF MEMS)
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Chapter 1

Introduction

1.1 Overveiw of Model Order Reduction

Each physical system can be represented as a mathematical model. Manifestation of physi-
cal systems produce complex higher order mathematical models. These higher order models
produce complex differential condition that are difficult to analyze, design , mimic and store,
and also take much memory for capacity. To address these issues, a strategy is required to
bring down the computational cost by reducing the order of the system that retains the basic
parameters of the original system like input output behaviour, stability and lower approxima-
tion error of original systems. The process of reducing the order of the system to get a lower
order mathematical model is known as Model order reduction (MOR) which contributes an

important part in control system theory analysis and design.

1.2 A brief overview of MOR Techniques

In this section, different stability preserving MOR techniques (BT [1]], frequency weighted
model order reduction (FWMOR), frequency limited model order reduction (FLMOR) and

time limited model order reduction (TLMOR)) are discussed.

1.2.1 Balanced truncation

BT [1] is one of the popular techniques used in MOR. The idea of BT [I|] was given
by Moore. In BT [1] the original system is approximated as a ROM over the entire fre-
quency/time interval where the original system realization is transformed into an internally
balanced realization using a contragradient transformation 7" and then ROM is achieved by

diminishing the least controllable and least observable states of the balanced realization.

1.2.2 Frequency weighted model order reduction

Most of the physical systems work on a limited frequency interval and the response of the
systems outside this range is not very important. This is true for the case, when ROMs are

used in feedback control design [2,3]]. This leads the concept of using frequency weights in



MOR procedure. Enns [2] extended the BT [1]] technique by introducing frequency weights
on the input and output side of the system. Enns [2] technique produces stable ROM when
weights are applied only on one side. But when frequency weights are applied on both input
and output side of the system the ROM may become unstable [4]]. To overcome this issue
of instability many authors presented different techniques in literature [5]- [[6]. To conquer
Enns method [2] disadvantages, Lin and Chiu [7] has proposed an alternate procedure that
gives the assurance of stability of ROM when two sided weightings are available. In any
case, their strategy has a confinement that can work just when entirely appropriate weight-
ing capacity is utilized as a part of and no pole, zero cancelation happens while shaping the
augumented system. These shortcomings of Lin and Chui [7] method were later adjusted by
Sreeram et al [[8] and Varga and Anderson (VA) [6], where [8|] summed up [7] to incorporate
weights, while [6] holds the dependability of the system not withstanding when shaft zero
cancelation happen. VA [6] produces an indistinguishable outcomes from Enns [2] particu-
larly in controller reduction applications. So far controller reduction issue, if Enns system [2]]
produces unstable ROMs, so does by VA [6] method.

Wang et al’s method [9]] has likewise solve the stability issue of Enns [2], which not just give
stable ROMs within the presence of two sided weightings additionally yield error bound.
The approximation error of Wang et al method [9] was later enhanced by VA [6] as com-
mented by Sreeram [10]. This system and its adjustment by VA [6] are realization indepen-
dent. This implies for a similar unique system , diverse models can be attained from various

realizations.

1.2.3 Frequency limited model order reduction

FLMOR is a technique in which frequency weights are not used but Gramians are defined
over a limited frequency interval. Gawronski and Juang (GJ) [[11] gave the idea of frequency
limited Gramians in MOR. GJ [11]] technique produces less approximation error but does
not ensure the stability of ROM. In addition , there are no error bounds. Many authors
presented different techniques to conquer the issue of instability including Gugercin and
Antoulas (GA) [12]], Ghafoor and Sreeram (GS) [4]], Imran and Ghafoor (IG) [13]], Imran,
Ghafoor and Imran (IGI) [[14], Shafiq, Ghafoor and Imran [[15]] and Zulfigar, Imran and
Ghafoor [16]. GA [12] modified the GJ [11] technique by making the symmetric matarices



positive definite. GA [[12] technique ensures the stablity of the ROM. GS [4] exhibited
another alteration to GJ [11] system to give stable ROMs. It also carries frequency response
error bound to satisfy rank conditions. IG [13] presented a technique which produces stable
ROM also give frequency response error bound. IGI [14] presented multiple techniques to
conquer the issue of stability in GJ [[11]. 1IGI [14] techniques provides less approximation

error as compared to existing techniques and also produce frequency response error bound.

1.2.4 Time limited model order reduction

GJ [[11]] also presented a technique in which Gramians are defined over a limited time inter-
val known as time limited model order reduction technique (TLMOR). GJ [11] technique of
TLMOR likewise does not guarantee to produce stable ROMs and does not have frequency
response error bound. (GA) [12] modified the GJ [11] TLMOR technique to conquer the
issue of instability and presented a technique of TLMOR which yields stable ROMs but this
technique give large approximation error. Muhammad Imran (MI) [17] presented two tech-
niques of TLMOR. Both techniques produces stable ROM. Model reduction of large scale
descriptor systems using TLMOR technique appear in [18]]. Kumar, Jazlan and Sreeram [|19]
presented a TLMOR technique to rectify the problem of instability of ROM. In this thesis
two TLMOR techniques are presented. Both techniques ensure the stability of ROM and also
give least approximation error as compared to the existing TLMOR techniques. Numerical
examples are also illustrated to show the effectiveness of the proposed techniques. TLMOR
is widely used in electrical circuit recreation and small scale electro-mechanical framework,
parameter evaluation with a particular attention to real-time computing in biomedical engi-
neering and computational physics, the study of high-dimensional problems in state space,
physical space. MOR are widely used in prediction of real world systems like climate or the

human cardiovascular system where large complex mathematical models are used.

1.3 Problem Summary

Existing TLMOR techniques may yeild unstable ROMs, and yield more estimation error.

1.4 Contributions

The summary of the thesis is stated as,



e In this thesis two TLMOR techniques are proposed which guarantee the stability of
ROM.

e Proposed techniques deliver less approximation error when contrasted with existing

TLMOR techniques.

1.5 Thesis Outline

This thesis is separated into five parts:

e Chapter 1: In this chapter, a brief introduction of different MOR techniques (BT,
FWMOR, FLMOR, TLMOR) is illustrated.

e Chapter 2: This chapter incorporates all the existing FWMOR, FLMOR and TLMOR

methods.

e Chapter 3: This chapter incorporates the proposed stability preserving TLMOR meth-

ods.

e Chapter 4: In this chapter numerical examples and their results are discussed to show

the efficacy of the proposed TLMOR techniques.

e Chapter 5: Future work and Conclusion are presented in this section



Chapter 2

Existing Techniques

In this chapter existing techniques of MOR are discussed. BT [1] is one of the most popular
techniques used for MOR that preserves stability in ROMs. Enns [2] extended BT [1]] and
introduced frequency weights in MOR. But Enns [2] technique produce unstable ROM in
case of double sided weighting [20]. Different authors proposed different techniques to con-
quer this instability issue. GJ [11] proposed a MOR technique in which frequency weights
are not defined but he approximated the original system in a limited frequency interval by
producing less approximation error. But GJ [11] technique do not ensures the stability of
ROMS [12]. Many authors presented different techniques to overcome this issue of instabil-
ity. GJ [11] also presented an idea of TLMOR. GJ [11] technique of TLMOR likewise does
not ensures the stability of ROM. GA [12] extended the GJ [11] technique of TLMOR to
ensures the stability of ROM but ROM obtained using GA [12] leads to large approximation
error. MI [17] presented two techniques of TLMOR. Both techniques produces stable ROM

but leads to large error.

2.1 Preliminaries

Let a n'" order stable system G(s) = C(sI — A)"'B + D since A € R™", B € R"™",
C € RP*", D € RP*™ where inputs and outputs are defined as m and p respectively. A

MOR problem is to find
Gii(s) = Ci(sI — An)"'By+ Dy 2.1)

which approximates the original system (in the time range [t1, t2],t2 > t1) in that case A;; €
REXE By € RF*m Oy € RP*F, D, € RP*™, k < n. Let P; and @, are controlability and
observibility Gramians respectively, satisfying following Lyapunov equations:

to
P = / ATBBTeA T dr (2.2)

t1

to
Q, = / eATCTCeATdr (2.3)

t1



The controlability and observibility Gramians F; and (), are the solution of the following

Lyapunov equations.

AP, + PAT+ BBT = 0 (2.4)

ATQ, +Q,A+CTC = 0 (2.5)

2.2 Balanced Truncation

BT []1] is the most utilized technique for MOR. In BT [1]] the realization of original system
is transformed into a internally balanced realization using a contragradient transformation
matrix 7. ROM is obtained by segregating the least controllable and observable states of
system realization. This makes the estimation error smaller in utilizing BT [1] system, which
is viewed as a decent execution of ROMs. Other than BT [1]], other such plans, for example,
Hankel ideal estimate [21]], Pade apprximation [22] , Krylov technique [23]] and so on are
valuable for limiting MOR disadvantages. BT []1] is a good option for higher frequencies as

it produces good results. Let the original n'" order system is
G(s)=C(s[ —A)'B+D (2.6)

where {A, B, C, D} is its n'* order minimal realization. Let P, and @, be the controllability

and the observability Gramians satisfying these Lyapunov equations:

AP, + PAT+ BBT = 0 2.7)

ATQ,+Q,A+CTC = 0 (2.8)

In order to find a stable ROM of order k&, where k£ < n the system realization is transformed
into a balanced realization using the contragradient transformation 73 and then is truncated
by deleting the least controllable and least observable states. Let contragradient transforma-

tion T}, is obtained such that

2 O
0 >,

TIQT, =T, 'PT; " =



where ), = diag{oy, 09, ...,04}, sz = diag{oks1, .., On},0; > 01,0 = 1,2, ...,n—1,

o > 011 Applying the contragradient transformation 7 to the original system

All A12 Bl
4| B, TVAT, | T7'B
= - A21 A22 BQ (29)
Cy | Dy CT, D
C, Cy | D

The ROM is obtained by truncating the balanced realization
Gkk(S) = Cl(S[ — AH)ilBl -+ D1

where {A11, By, C1, Dy} is the k' (k < n) order minimal realization.

2.3 Frequency Weighted Model Order Reduction

Enns [2]] extended BT [1]] method by introducing frequency weights in MOR. Ideally BT [1]]
technique approximates the higher order system by relatively lower order system having
low approximation error for entire fequency/time interval. Though, in some applications
approximation error is required to be small for specific frequency/time interval rather than for
the entire frequency/time range. This motivates the use of frequency weights in MOR. Enns
[2] used frequency weights on input side, output side or both sides. When weighting function
is used only on one side either on input or output side, stability of ROM is guaranteed. But
when both input and output weighting functions are used this technique may yield unstable

ROM. Given the original full order stable system
G(s) = C(sI-—A)'B+D (2.10)

The stable input weighting system V;,(s) and stable output weighting system W, (s) are
respectively

Vin(s) = Cin(sI — Ay) ' Biy + Diy, (2.11)

Wou(s) = Cou(sI — Apw) ' Bow + Dou, (2.12)

Where {A7 Ba C7 D}» {A'mv Bin7 Cin; Dm} and {Aom Botu COU7 Dou} are the nth’ pth’ qth or-

der minimal realization of original system, input weighting system and output weighting



system respectively. The objective of FWMOR is to find a lower order stable system
Gkk(S) = Cl (SI — All)ilBl + D1 (213)

where {A,1, By, Cy, Dy} is the k' (k < n) order minimal realization. The input augmented

system and output augmented systems are given by

G(5)Vin(s) = Cu(sI — Ay) ' Bui + D (2.14)
Wou(8)G(8) = Cuo(s] — Ago) ' Bao + Dao (2.15)
where
A BC,, BD,,
{Aats Bui, Cui Dai} = , | ¢ DG, | DDy 216)
Aao BaOC BaoD
{AamBam Caoy Dao} = ’ ) |: an DaOC i| 7DaoD (217)
0 A B
Let
Pai _ Pe P12
| PL P
an = QOU ?2
L Q12 Qe

be the Gramians satisfying the following Lyapunov equations.

AaiPai + PaiAZ;‘ + BaiB(Z; =0 (218)
AZoan + anAao + Cg;oao =0 (219)

By expanding (1, 1) and (2, 2) block of the above equations, we get the following Lyapunov

equations

AP, + PAT+X.,. = 0 (2.20)

ATQ+ QA+ Yy = 0 (2.21)



where X,,,, and Y., are

Xons = BCy,PL+ P,CIBT + BD,;,,DI B” (2.22)
Yons = COTBI QY +QB,.C+C"D! D,,C (2.23)

T, is the contradient transformation obtained by using P, and (), as

- oo 0 ... 0 ]
T Q. T, = T,'PT, " = 0 o3 ... O
i 0 0 ... o, |
where 0; > 011, 7 = 1,2,...,n — 1, and 0}, > 041 The realization of original stable

system is transformed into an internally balanced realization by using the contragradient

transformation matrix 7} as

All A12 Bl
Ay | By belATb belB
= = A21 A22 B2 (224)
Cy | Dy CcTy D
C, Cy | D

ROM is obtained by truncating the least controllable and observable states of balanced real-

ization. The ROM obtained is given by
Gkk(S) = Cl(SI — AH)Bl + D
where A eRF*F

Remark 1 For input weighting case only, the contragradient transformation matrix Ty is
obtained using P, and (),. Similarly, for output weighting case only, the contragradient
transformation matrix Ty, is obtained using P; and ()., where P; and (), are the unweighed

Gramians enumerated as:

AP, + PAT+X.,. = 0

ATQ@ + QCA + }/;ns =0

Remark 2 The technique does not give the assurance of the stability of ROMs in double-

sided weighting case because it is not guaranteed to ensure X.,; > 0 and Y.,s > O.



The main drawback of this technique is that it gives unstable ROM in case of double sided
weighting. To tackle with this issue of instability many authors have proposed different tech-
niques related to FWMOR. To conquer Enns method [2] disadvantages, Lin and Chiu [/7]
has proposed an alternate procedure that guarantees stability when two sided weighting are
available. In any case, their strategy has a confinement that can work just when entirely
appropriate weighting capacity is utilized as a part of and no pole, zero cancelation happens
while shaping the augmented system.

These shortcomings of Lin and Chui [[7] method were later adjusted by Sreeram et al [8] and
VA [6]], where [8] summed up [7] to incorporate weights, while [[6] holds the dependability
of the system not withstanding when shaft zero cancelation happen. VA [6] produces an
indistinguishable outcomes from Enns [2] particularly in controller reduction applications.
So far controller reduction issue, if Enns [2] system [2]] produces unstable ROMs, so does
by VA [6] method.

Wang et al’s method [9]] has likewise solve the stability issue of Enns [2]], which not just give
stable ROMs within the sight of two sided weighting additionally inferred error bound. The
approximation error of Wang et al method [9] was later enhanced by VA [6] as pointed out
by Sreeram [10]. This system and its adjustment by VA [6] are realization independent. This
implies for a similar unique system , diverse models can be obtained from various acknowl-
edge. 1G [24]] proposed a frequency weighted model order reduction technique which not
only provides stable ROM but also give frequency response error bound. In this technique
the matrices X, and Y, are made positive definite by subtracting the smallest value from all

eigenvalues.

2.4 Frequency Limited Model Order Reduction

2.4.1 Gawronski and Juang’s FLMOR technique

GJ [11] proposed a FLMOR technique in which frequency weights are not used but ap-

proximation is considered in a limited frequency interval [w;,ws]. GJ [11] introduced

the frequency limited controllability Py, = P(ws) — Pf(w,) and observability Q)s,, =

10



Qf(ws) — Q¢(wy) Gramians satisfying :

AP, + A"Pi, + X4, = 0 (2.25)
ATQfGJ + QfGJA + YfGJ =0 (2.26)
where
Xjo, = (Ef(wy) — Ef(w1))BB" + BB (E}(w;) — Ej(wy)) (2.27)
Vi, = (Ep(ws) — Ef(w))C"C + CTC(Ej(wz) — Ef(wy)) (2.28)
Eflw) = ;—W In((jwl + A)(—jwl + A)~) (2.29)
Sy 0 Ry 0
X, =U|" Ul Y, =V | V7 (2.30)
0 SQ 0 R2
Sl = diag(sih Si?) T Sil)? 52 = diag(sil-‘rla Sil-‘,—?a e 787:71)’
Ry = diag(riy,rig, -+ ,7ig), Re = diag(rigs1,Tigre, -+ ,7rin). | < nand k < n are the

number of positive eigenvalues of Xy, and Y}, respectively. Let

01 0 0
_ _ 0 o9 ... 0

T]?QfGJTf = Tf 1PfGJTf T=
O 0 ... o,

T' is a contragredient transformation matrix which is used to transform the original system

realization into an internally balanced realization. where o5, > op1, h = 1,2,..

Calculation of ROMs are done by segregating the transformed realiation.

n— 1.

Remark 3 For approximation, multiple frequency intervals can be considered. For exam-

ple, for two intervals [wy,ws] and [ws, wy] , w1 < we, w3 < Wy.

Remark 4 Since the symmetric matrices Xy, and Yy, may becomes indefinite, the ROMs

obtained by GJ may not be stable [|12)].

11



2.4.2 Gugercin and Antoulas’s FLMOR technique

The stability issue of GJ [11] was highlighted by GA [12]]. GA [12] introduced the frequency
limited controllability P, = Pf(w2)—Pr(w;) and observability Q. , = Q¢(w2)—Q ¢(wn)
Gramians satisfying the following Lyapunov equations :

APpoy+ A Proy + Xpgy = 0 (2.31)

ATQpon + QroaA+Yy,, = 0 (2.32)

The matrices By, and C,, are the updated input and output matrices respectively defined

as:

BfGA = UfGAlstA|§ (2.33)

Cron = |Rsaal2VE, (2.34)

The expressions Uy, ,, St,.» Vi, and Ry, are obtained as

XfGJ = UfGASfGA U};A (2.35)
YfGJ = VfGA RfGA Vng (2.36)
where ~ - _ -
Siy 0 0 iy 0 0
0 s, ... 0 0 7y 0
SfGA = ) 7RfGA =

where si; > sig > - -+ > si,, and ri; > rig > --- > ri,. Let

01 0 e 0
_ _ 0 Oy ... 0

T QpenTy = T; ' Py T T =
0O 0 ... o,

To transform the original model to ROMs, T is a contragradient transformation matrix
where o}, > 041, h =1,2,...,n— 1. T} is a transformation used to transform the original
system realization into an internally balanced realization. Calculation of ROMs are done by

segregating the transformed realiation.

12



Remark 5 In this case X;,, < Bj,,B7}

fea

> 0,Yy,, < CT

faa

Ctoa = 0,Ppg, >
0andQy.,, > 0, the minimality and stability of {A, By, ,,Cy,,} is guaranteed. Moreover

this technique additionally produce frequency response error bounds

2.4.3 Ghafoor and Sreeram FLMOR technique

GS [4]] likewise addresses the stability issue of GJ [11] method. GS [4] ensured the pos-
itive definiteness of the symmetric matrices by retaining the positive eigenvalues of the
symmetric matrices Xy, and Yy, and truncating the negative eigenvalues. GS [4] in-

troduced the frequency limited controllability Py, = P(ws) — Py(w) and observability

Qs = Qf(ws) — Qr(w) Gramians satisfying :

APj.  + ATPi o + Xpy = 0 (2.37)

ATQst + QfGSA + YfGS =0 (2.38)

The matrices By, and C, are the updated input and output matrices respectively described

as:
Byos = UfGS‘SfGS’§ (2.39)
Ofcs = |Rfcs|gvf:gs (2.40)
[ SGS1 0 Ug;Sl
Xjor = | Uas, Uss, | (241)
| O SGSZ Ugsz
[ Rgs, 0 Vs,
Yioa = [ Vs, Vas, } (2.42)
L O RG52 Vgs2
where
Sgs, O Rgs, O
@5 = diag{siy, Sia, ..., Sin}, @5 = diag{riy, ris,rig,...,rip}
0 SGSQ 0 RGSZ

§t1 > Sty > Sty > ... > Slp, Tl > Tlyg > T3> ... 2> T
Sas, = diag{s1, S2, 83, .., Se }, Ras, = diag{riy, rig, riz, ..., 7.}

§11 > Slg 2> Sty 2> ... 2 Sl > 0,710 2> 7119 2> 103 2> ... 271, > 0

13



Let

01 0 0
_ _ 0 09 0

T]‘TQfGSTf = Tf 1PfGSTf T=
o 0 ... o,

Original stable system is transformed into an internally balanced realization by using con-
tragredient transformation matrix 7y where o; > 041, j = 1,2,...,n — 1. Calculation
of ROMs is done by segregating the least controllable and least observable states of the

transformed realization.

Remark 6 In this case X;,, < Bj.,B%

fas

> O,YfGJ < C%GSCfGS > O7Pst > 0 and

Qfos > 0, the minimality and stability of {A, By, Cy.s} is guaranteed. Moreover this

technique also give frequency response error bounds

2.4.4 Imran and Ghafoor’s FLMOR technique

In GA technique [12] , the symmteric matrices X, and Y}, , are guaranteed positive defi-
nite/semipositive definite respectively by taking the square root of absolutes values estima-
tions of the eigenvalues by eigenvalue decomposition (EVD) of symmetric Xy, and Y}, .
This occasionally prompts to a substantial change in some eigenvalues and may not impact
other eigen values. Then again , GS [4] guarantees positive definitness of the matrices Xy,
and Y7, , by effecting just positive eigenvalues and by replacing negative eigenvalues with
zeros. This system likewise doesnot have comparative impact on all eigenvalues. In IG [|13]]
a technique is proposed where exertion is to similarly affect all eigenvalues of uncertain ma-
trices Xy, and Y}, . The ROMs got are ensured to be stable . Additionally, it has error
bounds and enhanced frequency response error. Take new controlability Py, and Observ-
ability ()f,., Gramians respectively, are determined by resolving the following Lyapunov

equations:

APy + P AT+ Xp,, = 0 (2.43)

ATQfIG + QfIGA + YfIG =0 (2.44)
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The matrices By, and C/,, are new updated input and output matrices respectively defined

as :

Ut (St — sinl)Y? for si, <0

B = e (2.45)
UteS 1 for si,, >0
Ry, —rin))Y?VE  for r, <0
Clro = (R Ve (2.46)
R{2VE for i, > 0.
The terms Uy,, St,o, Vi, and Ry, , are solved as
XfGJ = UfIGSfIG U;{;G (2.47)
Yie, = ViaReVig (2.48)
where ) ) 3 _
Si1 O O Til 0 0
0 Sig o 0 0 Ty 0
SfIG - . 7Rf1(; -
O O e Sin O 0 e T‘in
where siy > sig > -+ > Si,, and riy > riy > --- > ri,. A consideration is made that to

transform a original system into an internally balanced realization. Transformation matrix

T} is obtained using the controllability Gramian P, , and observability Gramians (), as

Let _ -
g1 0 0
_ _ 0 02 0
TJTQfIGTf = Tf 1meTf T=
0 O On

Determination of ROMs is carried out by segregating the transformed realization where o, >

Oh+1, h:1,2,3,...,n—1,0'1 > O)41-

Remark 7 Since XfGJ < BfIGB};G, YfGJ < C]z;GCfIG’ BfIGBJY‘;G > 0, C};GCJCIG > 0,
Pr,c > 0and Qy,, > 0. Consequently, the realization (A, By, ,, Cy,.,) is minimal and also

this technique gives the assurance of the stability of ROMs.

Theorem 1 In IG [I3|] technique, the following error bound formula holds provided that
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fia

the following rank conditions rank [By,, B] = rank|By,,] and rank =
C
rank [Cy,.| (which follows from [25]]) are satisfied
1G(s) = Gra(9)lloo < 20 L M1 E sl D on
h=1+1
where
CVs (Ry,.. —ringd)~Y2 for ri, <0
e = fIG( 7f11/c; ) fe (2.49)
CVio Byl for ri, >0
Se . —sin))"Y2UL,B  for si, <0
KfIG _ ( fia ) B f (2.50)
SELDUITGB for si, >0
. CfIG
Proof: Since rank [By,, B] = rank|[By,,| and rank = rank [Cy,.], the
C

relationships B = By, Ky, and C = Ly, Cy,, hold. By partitioning By,
BfIG1 .
Che = szc;1 szc2 and substituting B; = Bf1c1 Ky, C1 = szcofzcl

B fra,
respectively produces

1G(s) = Gr(s)lloo = [C(sT=A)'B=C1(sI = A1) "' Billoo
=1LsoCriq(sI — A)_leIGKfIG - LfIGCfIGl (s — All)_leIGleIGHOO
= ||Lf;6(Crg(sl — A)_leIG - CfIG1 (sI — All)_leIGl)KfIGHOO

< ||LfIG||||(CfIG(SI - A)ileIG - Cfm1 (sl — All)ileIGl)HOOHKfIGH

If {A11, By, Cfy, } is ROM obtained by segregating a balanced realization { A, By, ., C,. },

we have from [2]]

n
1(Cfre(sT = A) ' By o= Chyg (ST = A1) "By )|00<2) o
h=l+1

Therefore,

1G(s) = Gun(s)lloo < 20 Lsiall1 Kpigll Y on

h=I+1
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Remark 8 When the matrices are symmetric Xy,, > 0 and Yy, > 0, therefore Py, =
Py, and Qy,, = Qy,,. Otherwise Py, < Py, and Qy,, < Qy,,. In addition, Hankel

singular values satisfies: (\;[Pa,Q e, )" < (N[PreQ eV

2.5 Time Limited Model Order Reduction

Many real MOR problems are naturally time dependent. Mostly the response of the system is
more important in a particular time interval rather than over the whole time range. TLMOR
found their nearness in various applications which incorporate semidiscretization of frac-
tional differential conditions, multibody elements with requirements, electrical circuit recre-
ation and small scale electro-mechanical framework, parameter evaluation with a particular
attention to real-time computing in biomedical engineering and computational physics, the
study of high-dimensional problems in state space, physical space. In order to conquer these
real world problems, GJ [11]] presented a TLMOR technique in which the new controllability
and observability Gramains are defined over a limited time interval. But the disadvantage of
GJ [[11]] technique is that the stability of ROM is not ensured [12]. GA [12] proposed a TL-
MOR technique in which he addressed the instability issue. ROM obtained using GA [12]
technique is stable but it leads to large approximation error. In TLMOR the system response
is measured in the time interval T = [t1, t5], 5 > t; > 0. The time limited Gramians are
defined over the time interval T" = [t1,t5]. GJ [11] produced less approximation error but
ROM obtained using this technique is unstable. MI [[17] presented two TLMOR techniques.
Both techniques produces stable ROM but yields large error. Additionally MI [17] also gives

error bound.

2.5.1 Gawronski and Juang’s TLMOR technique

GJ [[11] proposed a TLMOR technique, which estimates the original system (in the limited
time interval, [t1, 2], [t > 1] . GJ [11] defined the time limited controllability P, and

observability ();.,, Gramians satisfying :

APy, + P, A"+ X, = 0 (2.51)

ATQi,, + Qi , A+ Yy, = 0 (2.52)
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These time limited Gramians are defined as

to
P, = / e "BBTeA T dr

t1

to
Qre, = / A TCTCeAdr

t1

These Gramians are determined by the following equations

PtGJ = PC(tl) - PC(t2)

QtGJ = Qo(tl)_Qo(t2)

where

P(t) = Sas(t)PSE,(t)
Qo(t) = Scu(t)" QSau(t)

SGJ(t) = eAT

The equations (2.55)) and (2.56)) are determined as follows.

Let
t T
9@](25) = /eATBBTeAT
0

As given in Kailath [26]]

Ocs(t) = P — Sas(t)PSEL,(t)

= P— P.t)
As P, can be written as
P, = Ocs(ti) —0cs(t)
By putting equation (2.62) in equation (2.63)) we get

P, = Pt1) — Pu(t2)

18

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)
(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)



Similarly we can obtain

QtGJ

Denote

Qo(t1) — Qo(t2)

Sas(t)BBTSE, (1)

S&;()CTCSay(t)

Symmetric matrices can be calculated using given relationship as

XtGJ
}/;GJ Yt)(tl) - Y;J(tQ)
Xig, = e*BBTeA™
}/;GJ — eATt1 CTC(eAtl
S1
XtGJ - |: Ul U2 ]
i 0
R1
Yie, = [ V1l V2 ]
i 0
S1 0 0
0 S92 0
Sl - 752 =
0 0 S]
T1 0 0
0 T2 0
Rl - 7R2 -
0O O Tm

Xc{tl) - XC(t2)

o eAtQ BBTeATtQ
_ eATtQ CTCeAtQ
o 1 [or
so | | o7
o ||vr
R || v
Si+1 0
0 142
0 0
T'm+1 0
0 Tm+2
0 0

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

where [ < n and m < n are the number of positive eigenvalues of the symmetric matrices

Xy, and Y;, respectively. The contradient transformation matrix 7} is determined using
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the time limited controllability and observability Gramians P, , and (), respectively as

01 0 e 0

0O o9 ... O
T7Qi,To = T, Py T T = i

o 0 ... o,

The realization of original stable system is transformed into an internally balanced realiza-

tion by using the contragradient transformation matrix 7} as

All A12 Bl
Ay | By T MAT, | T7'B
- A21 A22 BQ (274)
Cy | Dy CT, D
Ci Cy | D

ROM is obtained by segregating the least controllable and observable states of balanced

realization. The ROM obtained is given by
Gtkk (S) = Cl(SI — All)Bl + D

where A eRF*F

Remark 9 The symmetric matrices X, , and Y, , are not guaranteed to be positive definite,

the ROM obtained using GJ [ 11|] technique may not be stable [|12)].

2.5.2 Gugercin and Antoulas’s TLMOR technique [12]

GA [12] highlighted the stability issue of GJ [[11]. GA [12] introduced the time limited
controllability and observability Gramians P, , and (), fulfilling the following Lyapunov

equations :

APy, + P AT+ Xiey = 0 (2.75)

ATQiy + Qi A+ Y, = 0 (2.76)

In GJ [11] technique the matrices X;,, and Y;,, may become indefinite, this is the main
reason of instability of the ROM obtained by GJ [11]]. GA [12] ensured the positive defini-

tiveness by taking the absolute of the eigenvalues of the matrices X; ,, and Y;, ,. The updated

20



input and output matrices B, and C;,, are defined as

BtGA = UtcA ’StGA|% (2.77)

Cion = |Rigal?VE, (2.78)

where Uy, ,, Sty 4> Viea and Ry, are the terms obtained from the singular value decompo-

sition of X, and Y}, as

XtGJ - UtGAStGAUtj(;A (279)
Yie, = VtGARtGAV;:gA (2.80)

The updated symmetric matrices X, and Y, , is obtained from equ (2.77) and (2.78).

Xiga = BiouBi,, (2.81)
Yiea = CL Cioa (2.82)
where
-51 0...0- -7“1 0...()-
S = 0 s 0 R 0 r 0
_O 0o ... sn_ _O 0o ... rn_

|s1] > |s2] > ... > |sy| > 0and |rq| > |r2| > ... > |r,| > 0. The contradient transformation
matrix 7; is determined using the new controllability and observability Gramians F;,, and

Q. , respectively such that

01 0 0

0 g9 0
TtTQtGATt - Tt_IPtGATt_T =

0 O On
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The realization of original stable system is transformed into an internally balanced realiza-

tion by using the contragradient transformation matrix 7; as

Ay A | B
Ay | By T 'AT, | T7'B
- = | A1 A | B (2.83)
Cy | Dy CT, D
C, Cy|D

ROM is obtained by segregating the least controllable and observable states of balanced

realization. The ROM obtained is given by
Gtkk (S) = Ol(S] - AH)Bl + D

where A eRF*F

Remark 10 In this case X,., < By.,BL

tca

> 0,Y,,, < CF

tca

Ciea = 0, P, > 0and
Qi > 0, it is guaranteed that {A, By, C.,, } is minimal and stable. GA [12]] also give

[frequency response error bounds.

2.5.3 Imran TLMOR technique I [17]

Motivated from GS [4]], MI [[17] modified the GJ [11] to obtain stable ROM. In this technique
the symmetric matrices X,,, and Y;,, are made positive definitive by accomplishing the
EVD. The positive eigenvalues of the symmetric matrices X;,, and Y, are retained and
the negative eigenvalues are truncated. Let new controllability P, , and observability (),

Gramians satisfying:

AP, + P AT+ B, B = 0 (2.84)

ATQus + QA+ CLC,, = 0 (2.85)
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The updated input and output matrices B, and C,, are defined as:

( 1/2
S 0
Ut t for s, < 0
B, =9 0 0
L UtG(StG)l/Q for Sn Z 0
R 0
o R} for r,, < 0
Cic = 0 0
| (Ri)'?ViE for r, >0

(2.86)

(2.87)

The expressions U, Sy, R:, and V}, are determined by the SVD of the symmetric matrices

Xi,, and Yy, as

XtGJ = Utc Stc; UL

ta

Xt(;] = ‘/;G RtG ‘/;Z

where
S; 0
UtG = |: UtGl UtG i| 7StG “
0 S,
0
tGl
VtG:[V;fGl V;fGQ ]’ te —
0 R,
where
s, 0 0
Sig, 0 0 s, 0
0 S,
0 0 S,
T 0 0
Ry, 0 0 7y 0
0 Ry,
0 0 ... 7y,
Stc;l - diag(5917 Sgos 891)7 St62 = diag(sgurl? Sgipor 7Tgn)

23



RtG1 = diag(rg,;Tgys " ,7g), RtGQ = dzag(%zﬂ? Tgiyer " ' Tgn)

where s,, > s,, > ... > s, andr,, > 1., > ... >, Let the contragradient transformation
matrix 7;, be obtained using the new controllability and observability Gramians F;, and

Q. respectively.

(o] 0 0
_ _ 0 09 0

7—;57(; QtGﬂG = nglRij—‘tGT =
0O 0 ... o,

where 0; > 041,57 = 1,2,3,...,n — 1. Contragradient transformation 7}, is applied to the

original system to get an internally balanced realization.

A A | B
Ay| By T.'AT,, | T,,' B
- = | Aa1 A | By (2.88)
Cy | Dy CT,, D
C, Cy | D

ROM is achieved by segregating the least controllable and least observable states of the

balanced realization.

Gkk(S) = Cl(SI — AH)ilBl -+ D1 (289)

where {A11, By, C1, Dy} is the k' (k < n) order minimal realization.

Remark 11 Since X,,, < By, B, < By, B[, and the

tga’

YtGJ < CtGOt:g < CtGAOT

tga

realization { A, By, Cy, } is minimal, therefore the ROM obtained is stable.

Theorem 2 [In this technique the following error bound formula holds provided that the

C
following rank conditions rank [B,, B] = rank |[B,,| and rank = rank [Ce]

C
(which follows from [25]]) are satisfied

1G(8) = Gin(s)lloe < 2/ Lig M1 Eeoll Y om

m=I+1

where Ly, = CViy, R,)* and K, = S;/*UL. B

tey G1 tey
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Proof: Since rank [B,, B| = rank[B.]| and rank = rank [C},,], the relation-
C

tGl

By,

ships B = B, K, and C' = L,,C,, hold. By partitioning B;, = ,Cry =

thl CtG2 and substituting B; = Btc1 K., Cy = Ly, Otc1 respectively produces

1G(5) = Grn(s)lloo = [C(sT = A)T'B=C1 (s = A11) ™' Bil|oo
= | L Crg (8] — A)ilBthtG - LtGthl (sI — A11>71BtG1KtGHOO
= | Lig(Cig (sT = A) ™' Big — Cig (s — A1) ™' Big, ) Kigloo

< || Lig I (Crg (s = A) ™' By — gy, (I = A11) ™' By, )oK |

If {A11, Big, Cig, } is ROM achieved by segregating a balanced system {4, By, Ci }, we
have [2]].
H(th; (SI - A)_lBtG_thl (SI - All)_lBtcl)Hoo§2 Z Om.
m=l+1
Therefore,

1G(s) = Gan($) oo < 20 Leg I Krgll D om

m=[+1

2.5.4 Imran TLMOR technique II [17]

MI [17] proposed another TLMOR technique (Motivated from [13]]). In this technique ex-
ertion is to similarly affect all eigenvalues of uncertain matrices X;,, and Y;.,. In this
technique positive definiteness is ensured by subtracting the smallest eigenvalue value from
all eigenvalues of the matrices X, and Y;,,. The stability of the ROM obtained is en-
sured to be stable. Furthermore frequency response error bound is also provided. Let new

controllability F;, and observability ();, Gramians satisfying:

AP, + P, A"+ B, Bl = 0 (2.90)

ATQ + QA+ CLC, = 0 (2.91)
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The updated input and output matrices B;, and Cy, respectivelys are defined as:

Ut1<StI — SnI)l/Q
Ut1<5t1)1/2
(Rtj - Tn])1/2‘/;f?
(Ri,)?V/T

for s, <0

for s, > 0

for r, <0

for r,, > 0.

(2.92)

(2.93)

The expressions Uy, Sy,, R;, and V;, are determined by the SVD of the symmetric matrices

Xy, and Yy, as

Uy, Sy, UL

}/;/GJ = VtIRtIV;fIT

where
Ut] |: Utll UtIQ :| s Mitr
Vi, = [ Vth ‘/;‘,12 ] 7Rt1
where
Si1
St11 0 0
0 StIQ
0
7‘1'1
thl 0 0
0 R%
0

Sty = diag(si,, siy,

Ry, = diag(riy, Tiy, - -

26

) Sil>7 St12 = dzag<sil+17

’ Til)’ Rt12 - dlag<ril+17 Til+27 o

Sy 0
0 S,
t11 0
0 Ry, |
0O ... 0
Siq 0
0 Sip,
0 0
Tig 0
0 el Ty
8i[+27 e 782n>
9 r%)

(2.94)

(2.95)



where s;, > s;, > ... > s;, and r;; > 1, > ... > 1;, Let the contragradient transformation

matrix 7}, be obtained using the new controllability and observability Gramians F;, and (),

respectively. i )
01 0 0
_ B 0 (o)) 0
E?Qtlﬂl - iz—;f] l‘Pth—;f]T -
0O O On

where 0; > 011,57 = 1,2,3,...,n — 1. Contragradient transformation 7}, is applied to the

original system to get an internally balanced realization.

A A | B
Ay | By T,,'AT, | T,'B
- = | Aar A | By (2.96)
Cy | Dy cT, | D
C, Cy|D

ROM is achieved by segregating the least controllable and least observable states of the

balanced realization.

Gre(s) = Ci(sl — A11)_IB1 + D

(2.97)
where { A1, By, Cy, D} is the k™" (k < n) order minimal realization.
Remark 12 Since X,,, < By, B!, < BB, Yi,, < C,Cl < Cy,,CL. | and the

realization { A, By,, Cy, } is minimal, therefore the ROM obtained is stable.

Theorem 3 In this technique the following error bound formula holds provided that the

C
following rank conditions rank [B;, B] = rank [By,| and rank "

= rank [C},]
C

(which follows from [25]]) are satisfied

1G(s) = Gra($)lloo < 20 Le, 1Kol Y o

m=[+1
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where

CV, (R, — r,I)~1/? or r, <0
L, = (B ) 4 (2.98)
CV;, (R, )~1/? for r,, >0
S, — s, 1)"YV2UTB or s, <0
Ktl — ( tI ) t[ f (2'99)
(S,) VUL B for s, > 0.
. Ct] . .
Proof: Since rank [B;, B| = rank [By,]| and rank = rank [C},], the relationships
C
e . Bt}
B = By, K,, and C = L;,Cy, hold. By partitioning B, = LGy = [ Ctzl Ct12 ]
By,

and substituting B; = Btzl Ky, Cy = L, C, I respectively produces

1G(s) = Gra(8)[loo = |C(sT—=A) ' B—C1(sI— A1)~ ' Billoo
= || L4, Cry (sT — A~ By, Kiy — L, Cry (sT — A1) ' By, Koy [l
= |[Lt;(Cey (sT = A) ™' By, — Ciyy (T = Anr) ™' By ) Koy [loo

<L, I1(Cry (sT = A) ™' By, — Gy, (sI = A1) ™' By, lloo | K, |

If {An, By, ,Cy, } is ROM achieved by segregating a balanced system realization
{A, By,,C}, }, we have [2].

I(Cy (sT = A) "' By,—=Cyy (sT = A1) "' Biy )|o0<2 ) o

m=[l+1

Therefore,

1G(s) = Grn(s)lloo < 20 Le, I | Y o

m=Il+1
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Chapter 3

Proposed Techniques

3.1 Proposed Techniques

In this chapter proposed TLMOR techniques are discussed. Existing techniques have issues
of stability and large approximation error. GJ [11] technique produces less approximation
error but it leads to unstable ROMs. The reason of instability of ROMs is that the symmetric
matrices X, , and Y;,, may become indefinite. GA [[12] gave an idea of making the matrices
Xy, and Y, positive definite. GA [12] technique ensures the stability of ROM but the
drawback of this technique is large approximation error. In GA [12] technique the matrices
Xy, and Y, are made positive definite by taking the absolute of the eigenvalues of the
symmetric matrices. This causes a large change in some of the eigenvalues and little effect
on rest of eigenvalues. MI I [[17] made certain the positive definiteness of the matrices X,
and Y;_, by taking only positive eigenvalues and replacing negative eigenvalues with zeros.
The drawback of this technique is that it also have the non-similar effect by only affecting
the negative eigenvalues. MI II [[17] ensured the positive definiteness of the matrices X,
and Y;,, by subtracting the smallest eigenvalue from all eigenvalues of the matrices X,
and Y} . The drawback of this technique is that last eigenvalue becomes zero which causes
large error.

Proposed techniques overcome the issue of stability and large approximation error. It ensures
the stability of the ROM and also gives least approximation error as compared to the existing

TLMOR techniques.

3.1.1 Proposed Technique I

This Proposed technique I give stable ROM and produce less approximation error. In this
technique the symmetric matrices X, and Y3, are made positive definitive by subtracting

the smallest negative eigenvalue of X;_, and Y;_, from S., and R,, respectively. Let new
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controllability Ps, and observability ()5, Gramians satisfying:

AP51+P51AT+BSlB§1 = 0

ATQs + Qs A+CLCs, = 0

The updated input and output matrices Bg, and C's, respectively are defined as;

Bg, =

1

Cs, =

( 1/2
S.. 0
Us, for s, <0
0 Seg - SnI(n—l)*(n—l)
L U51<SSI)1/2 for Sn > 0
( 1/2
R, 0
' 17 for r, < 0

0 R€2 - Tn[(nfk)*(nfk)

| (Rs,)'?V for r,, > 0.

3.1
(3.2)

(3.3)

(3.4)

The expressions Ug, , Sg,, Rs, and Vg, are determined by the SVD of the symmetric matrices

Xi,, and Yy, as

where

Xi,, = UsSs, U,

SftGJ = VSI RSI VS{

Us, [ Ue, U, } ;S8 SOEI SO
el e[
€2
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where

Sey O 0
S., 0 0 se, 0
0 S,
0 O Se,,
Te, 0 0
R., 0 0 7o, 0
0 R,
0 O Te,
Sel = diag(se1a S ) 861)7 Sez = diag(sel_,_l) Sel+2a Ty Sen)
Rey = diag(re,;Teys 1 7¢,), Rey = diag(reurl’rww? e Te,)

where s, > ¢, > ... > S, and 1., > 1., > ... > 1, Let the contragradient transformation
matrix 7, be obtained using the updated controllability and observability Gramians Fg, and

(s, respectively.

g1 0 0

0 02 0
TE Qs Ts, = Ts‘llPslTsTlT =

O 0 ... o,

where 0; > 041,57 = 1,2,3,...,n — 1. Contragradient transformation 7', is applied to the

original system to get an internally balanced realization.

A, | B T=1ATs, | T-'B e
b b S
1 1 _ S1 1 S1 _ A21 A22 BQ (3.5)
Cbl l)bl CTSl D
i, Cy | D

ROM is achieved by segregating the least controllable and least observable states of the

balanced realization.
Gur,(s) = Ci(sI —Ay)'By + D, (3.6)

where {A,1, By, Cy, Dy} is the k™ (k < n) order minimal realization.
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Remark 13 Since X, < Bg,B{ < By,, Bl >0, Y, < C5C§ < Cy,,CL, >0

and the realization { A, Bg,, Cs, } is minimal, therefore the ROM obtained is stable.

Theorem 4 For proposed technique I the following error bound formula holds provided that

Csy
the following rank conditions rank [Bs, B] = rank [Bg,] and rank | = rank [Cs,]
C

(which follows from [25]]) are satisfied

1G(s) = Gri(9)lloo < 20 L, (1K, || Y 0w

w=Il+1

CVs, (Rypa) /2 or T, < 0
L51 - 51( pd) f (37)
CVs, (Rg, )~/ for r, >0
Sund) V2UL B or s, <0
K51 _ ( Pd) S1 f (3.8)
(Ss,)"2UL B for s, > 0.
where
R., 0 Se, 0
Rupd = aSupd =
0 Seg - Snl(n—l)*(n—l)

0 Reg - rnI(n—k)*(n—k)

= rank [Cg,], the relation-

Proof: Since rank [Bs, B| = rank [Bg,] and rank
C

ships B = Bg, Kg, and C' = Lg,Cg, hold. By partitioning Bg, = o ,Cs, =
B.,

[ C., C., ] and substituting B, = B,, Kg,, C1 = Lg, C,, respectively produces

1G(s) = Gri(8)[loo = [C(sT = A) ' B—C1(sI —A11) ' Billoo
= ”L5105'1 (SI - A)_lleKsl - LS1C€1 (SI - A11>_1B€1K51||OO

= ||LS1 (051 (SI - A)_lle - 061(51 - All)_lBel)KS1||OO

< [|1Ls [1(Csy (s — A) ™ Bs, = Ce, (sI = A11) ™' Bey )|l K, |
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If {Ay1,Be,,Ce,} is ROM achieved by segregating a balanced system realization

{4, Bs,, Cs, }, we have from [2].

[(Cs, (sI — A)ilBSl_Ca(SI - A11)71361)||oo§2 Zaw'
w=I+1

Therefore,

1G(5) = Gun(s) oo < 20 Ls, [ Ksll Y 0w

w=Il+1

3.1.2 Proposed Technique II

This technique also produces stable ROM and also give less approximation error. In this

technique the succeeding eigenvalue is subtracted from the prior eigenvalue of respective

Xy, and Y}, matrices. Let new controllability Pg, and observability ()s, Gramians satis-

fying:

APs, + Ps, A" + Bs, B¢,

ATQs, + Qs, A+ CLCs,

The updated input and output matrices Bg, and C, are defined as

USQ(StS”z)l/Q for s, <0
Bg, =
Usi(Ss)'* for 5,20
(RASQ)IQVSY; for r,, <0
052 ==
(RS2)1/2VSC’; for r, > 0.
where _ .
S, 0 0
. 0 3, 0 R .
SSQ = . »Shy = ShiyShirg = Sg1yn_1
0 0 Shn,
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(3.9)

(3.10)

(3.11)

(3.12)

~ Shitq



T, 0 0

1

. 0 7y, 0 . .

Rg, = . yTht = ThisThivw = Thiqu—1 = Thiyy
0 0 ... 7p,

q=1,2,...n—1,u=1,2, ....,n —1The expressions Ug,, Ss,, g, and Vg, are determined
by the SVD of the symmetric matrices X;., and Y;,, as
Xy, = Us,Ss,UL

Y;fGJ = VSzRSQVSZ;

where
Sy 0
USQ - [ Uhl Uh2 i| 7552 -
0 S,
Ry, 0
VSQ - |: Vhl Vh2 ] 7RSQ
0 R,
where
Shy 0 0
Sh1 0 0 Shy -« - 0
0 S
0 0 Shy,
Thy 0 ce 0
Rh1 0 0 They .. 0
0 R
0 0 oo Th,
Shl = diag(shl, Shay " Shz)) Shz = diag(Shl+1, Shiyar " s Shn)
Rhl = diag(rhla rhz? e 7rhl)7 ha == diag(rhl+17rhl+27 Tt 77nhn)
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where s;, > s, > ... > sp, and 1y, > 15, > ... > 13, Let the contragradient transformation

matrix 7’s, be obtained using the new controllability and observability Gramians Ps, and (s,

respectively. ) )
01 0 0
0 (o)) 0
T§,Qs,Ts, = Tg, Ps, T =
0 O On

where 0; > 041, = 1,2,3,...,n — 1. Contragradient transformation 7T, is applied to the

original system to get an internally balanced realization.

A, | B T AT, | TZ'B Au i) B
b b S
2 2 _ S 2 Sa _ A21 A22 B2 (3.13)
O(,Q Db2 CT52 D
Cy Cy | D

ROM is achieved by segregating the least controllable and least observable states of the

balanced realization.
Grry(s) = Ci(sI — Ay)'By + Dy (3.14)

where { A1, By, Cy, D} is the k™" (k < n) order minimal realization.

Remark 14 Since X,,, < Bs,B§, < By, Bl >0, X, < Cs,C§ < Gy, ,CL >0

lga =

and the realization { A, Bg,, Cs, } is minimal, therefore the ROM obtained is stable.

Theorem 5 For proposed technique Il the following error bound formula holds provided

Cs,
that the following rank conditions rank[Bs, B| = rank[Bs,| and rank ° =

C
rank [Cs,| (which follows from [25]]) are satisfied

1G(s) = Gin(8)lloe < 2l[Ls, 1Kl Y 0w

w=Il+1
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CVs,(Rs,) /2 for r, <0

Ls, = (3.15)
CVs,(Rs,) /2 for r, >0
Ss,)"V2UL B or s, < 0
Ks, = (55)75, 4 (3.16)
(SSQ)_I/QUg;B for s, > 0.
5p, 0 0
. 0 én ... 0 | )
SSQ = ) yShy — Sh178h1+q = Sh1+q—1 — Sh1+q
0 0 4
Tn, 0O 0
. 0 #ny ... 0 | )
Rg, = . Phy = This Thyre = Thigu-r — Thite
0 0 P

q=12,..n—1Lu=1,2,...n—1

Proof: Since rank [Bs, B| = rank [Bg,] and rank % | = rank [Cs,], the relation-
C
. e . Bhl
ships B = Bg,Kg, and C = Lg,Cs, hold. By partitioning Bg, = ,Cs, =
By,

[ Cp, Ch, ] and substituting B, = By, Kg,, C1 = Lg,C}, respectively produces

1G(5) = Gi(s)lloo = [|C(sI—A)T'B=C1(sI— A11) " Billso
= ||Ls,Cs,(sI — A) ' Bs,Ks, — Ls,Cpy (sI — A11) "By, K, ||
= ||Ls,(Cs,(sI — A)"'Bg, — Ch, (sI — A11) "' Bp, ) Ksy ||oo

< [|1Ls, [1(Cs, (s — A) ™ Bs, — Chy (sI — A11) ™ By ) ool K s |

If {Ay1,By,,Cr,} is ROM achieved by segregating a balanced system realization
{4, Bg,, Cs, }, we have from [2].

1(Cs, (sT = A) ™" Bg,=Ch, (sI = A11) "' By, )[|00<2 Y _ 0.
w=Il+1
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Therefore,

1G(s) = Gun(s) oo < 20 L, | Ksall Y 0w

w=I+1
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Chapter 4

Results and Discussion

In this chapter some numerical examples are presented to show the effectiveness of proposed

techniques when compared with existing TLMOR techniques.

4.1 Numerical Examples

Example 1: Consider a linear time invariant stable 6'* order system with the following state

space representation

0 0 O 1 0 0 0
0 0 0 0 1 0 00
0 0 0 0 0 1 0
A: ’B:
-5454.54 0 -0.05 0.04 O 0.09
10 -21 11 0.1 -0.21 0.11 0.4
| 0 5565 0 005 —0.06] |05

C=l2 -2 300 0],D=O

The 1% order ROM obtained by GJ [11] is unstable with pole s = 0.0413 while the ROM
obtained by proposed techniques are stable within the desired time interval [t;,t5] = [0, 7]

sec as shown in Table no 4.1.

Example 2: Consider a linear time invariant (LTT) stable system of order 8 with the following

Table 4.1: Poles location of the reduced order systems

Techniques Pole location
GJ [11] 0.0413
GA [12] —0.0032
MI 1 [17] —0.0039
MI 1T [|[17] —0.0040
Proposed Technique 1 —0.0034
Proposed Technique 11 —0.0033
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state space representation.

—-10.23—-10.19 0 0 3460 0 O
10.19 0 0 0 0346 0 O
—10.23 28.04 —0.83—11.15 0 0 3.46 O

0 0 11.15 O 0 0 0 346

A =
-3.46 0 0 0 0 0 0 O
0 -346 O 0 0 0 0 O
0 0 —-346 0 0 0 0 O
0 0 0 =346 0 0 0 O

11 0 11 0 0 0 0 O

C = [—0.20 0.57 —0.01 0.02 0 0 O O
=0

Step Response Error

0.6 T

hd GJ[11]
GA[12]
MI1[17]
04l - — = MII17] i
[RIR) — — — Proposed Technique |
— — — Proposed Technique I

T~

w T

Amplitude

-0.8 1 1 1 1 1 ! !
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

Figure 4.1: Step Response error

Fig illustrates the plot of the response error of the 5 order ROM obtained by the
techniques GJ [L1]], GA [12]], MI I [17]], MI II [[17], Proposed technique I and Proposed
technique I in the desired time interval [y, t5] = [0, 20]sec. Fig[4.1|shows that both proposed
techniques give least approximation error as compared to the existing techniques GJ [11],
GA [12], MI T and MI II [17]].

Fig illustrates the plot of the impulse response error of the of the 5" order ROM
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Amplitude

Amplitude

Impulse Response Error

T T T T

T T

GJ[11]
GA[12]
MI1[17]
— = MII[17]
»———Proposed Technique |

Proposed Technique Il [

1}
1
1
o
15k I! i
1
-2 i
-25F -
-3 Il Il Il Il Il Il Il
0 6 8 10 12 14 16 18 20
Time (sec)
Figure 4.2: Impulse Response error
Impulse Response
4 T T T T T T T
Original
GJ[11]
GA[12]
3 MII[17] .
— = MII1T7]
»———XProposed Technique |
Proposed Technique Il
2 i
-3 | | | | | | |
0 6 8 10 12 14 16 18 20
Time (sec)

Figure 4.3: Impulse response
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obtained by the techniques GJ [[11]], GA [[12], MI I [17]], MI II [17]], Proposed technique I

and Proposed technique II in the desired time interval [t, t5] = [0, 20]sec. Fig|4.3|illustrates

the plot of the impulse response of the original system and impulse response of the 5

order ROM obtained by the techniques GJ [11], GA [12], MI T [[17], MI II [17], Proposed

technique I and Proposed technique II in the desired time interval [¢,%s] = [0, 20]sec. It

is observed from Fig that proposed techniques yield less step and impulse response

error when compared with existing TLMOR techniques.

Example 3: Consider a LTI stable system of order 12 with the following state space repre-

sentation.
[ 126-317 0 0 0O 0 6700 0 0 0
317 0 0 0 0 0 06700 0 0
0 45.36-0.92-851 0 0 0 06700 0
0O 0 81 0 0 0 0 0 06700
0 0 0 1692-0.33-11.60 0 0 0 0 6.70
L | 0o 0o 0o 0ome 0o 000006
670 0 0 0O 0 0 0 0 0 0 0
0 670 0 0 0 0 0 0 0 0 0
0O 0 670 0 0 0 0 0 0 0 0
0O 0 0 6700 0 0 0 0 0 0
0O 0 0 0 —670 0 0 0 0 0 0
O 0 0 0 0 —6700 0 0 0 0

T
1200000000000}

02[000000.01000000]
0

o o o o o O 4 ©o o o o o©<©

0

Fig illustrates the plot of the response error of the 6 order ROM obtained by the

techniques GJ [11], GA [12],MI I [17], MI II [17], Proposed technique I and Proposed

technique II in the desired time interval [t1, ¢5] = [10,27|sec. Fig{4.4|shows that both the
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Step Response Error

0.1 .
GJ[11]
GA[12]
MI1[17]
— = M7
Proposed Technique |
Proposed Technique Il

Amplitude

“10 12 14 16 18 20 22 24 26
Time (sec)

Figure 4.4: Step Response error

proposed techniques give least approximation error as compared to the existing techniques

GJ [11]], GA [12]], M1 1 [[17] and MI II [[7].

Fig illustrates the plot of the impulse response error of the of the 6! order ROM
obtained by the techniques GJ [[11]], GA [12], MI I [[17], MI II [17]], Proposed technique I
and Proposed technique II in the desired time interval [t1,t5] = [10,27]sec. Fig {4.6|illus-
trates the plot of the impulse response of the original system and impulse response of the 6"
order ROM obtained by the techniques GJ [11]], GA [12], MI I [17], MI II [17]], Proposed
technique I and Proposed technique II in the desired time interval [¢q,%s] = [10,27]sec. It
is observed from Fig [4.4}{4.6] that proposed techniques yield less step and impulse response

error when compared with existing TLMOR techniques.

Example 4: Consider an analogue chebyshev type 1 bandpass filter of 30th order with pass-
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Amplitude

Amplitude

Impulse Response Error

1.5 T
GJ[11]
GA[12]
MI1[L7]
— = MII[T]
1 Proposed Technique | [

Proposed Technique II

! ! ! !

-1.5 1 1 1
5 10 15 20 25 30 35 40 45 50
Time (sec)
Figure 4.5: Impulse Response error
Impulse Response
2 T
Original
GJ[11]
GA[12]
15 MII[17] .
— = MII[AT7]
Proposed Technique |
Proposed Technique Il
1 -
0.5 8

50

-0.5 -
-1 i
-1.5 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45
Time (sec)

Figure 4.6: Impulse response
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band ripple of 7 dB.

—1.155e7 14529 — 4.093¢7 12528 — 5.639¢ 1527 — 9.313e 9520 —
9.127¢ 78525 — 1.24e 552 — 8.965¢ 2523 — 0.010745%? — 0.0615252 —
6.5520 — 29.5519 — 249658 — 1024057 — 80281656 + 3.047e10510 —
1.887¢8s1* — 5.033e8513 — 3.168¢19512 — 7.14e10511 — 4.123¢12510—
7.49e125% — 3.958e!4s® — 5.629¢1457 — 2.702¢1655 — 2.815¢1655 —
1.279¢'®s% — 8.332e17s% — 3.632¢!95% — 1.146€'9s — 4.658¢20

530 4+ 3.06552% + 3380528 4 9635527 + 5.245e55%6 4 1.382e752° + 4.956¢"5%4 4 1.2¢10523 +
3.188¢e125%% + 7.031e125%! + 1.478e155%0 + 2.944e155' + 5.103e175'® 4+ 9.076e' 7517+

1.336e%0516 1 2.094e20515 4 2.671e2251 4 3.631e22513 + 4.083e24512 + 4.7124s11 -

47320510 + 4.5¢%05% + 4.081e?85% + 3.071e®s" + 2.538¢3V50 + 1.416€305°+

1.074e32s* + 3.946€31s3 + 2.769¢335% + 5.022¢325 4 3.277e34

Step Response Error

0.7

GJ[11]
GA[12]

MI1[17]

— = MII7)

Proposed Technique |
Proposed Technique Il

Z

Amplitude

Time (sec)

Figure 4.7: Step Response error

Fig illustrates the plot of the response error of the 15 order ROM obtained by the

techniques GJ [11]], GA [12], MI I [17], MI II [17], Proposed technique I and Proposed
technique II in the desired time interval [t1, ;] = [0, 10]sec. Fig shows that both the
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proposed techniques give least approximation error as compared to the existing techniques

GJ [TT]l, GA [T2], MI I [T7] and MI II [T7].

Impulse Response Error

15 T
GJ[11]
GA[12]

MI1[17]

— = MII[AT7]
Proposed Technique | [
Proposed Technique Il

Amplitude

15 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Figure 4.8: Impulse Response error

Fig illustrates the plot of the impulse response error of the of the 15 order ROM
obtained by the techniques GJ [11]], GA [12], MI I [17], MI II [17]], Proposed technique I

and Proposed technique II in the desired time interval [t;, 2] = [0, 10]sec.

Fig [4.9] illustrates the plot of the impulse response of the original system and impulse
response of the 15" order ROM obtained by the techniques GJ , GA , MI 1 ,
MI 1I [[17], Proposed technique I and Proposed technique II in the desired time interval
[t1,12] = [0, 10]sec. It is observed from Fig . 7H4.9] that proposed techniques yield less step

and impulse response error when compared with existing TLMOR techniques.

Example 5:Consider an analogue chebyshev type 1 bandpass filter of 16" order with pass-
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Impulse Response

15

I
Original
GJ[11]
GA[12]
MI1[17]
1k — = M7 -
Proposed Technique |
Proposed Technique Il

0.5

d‘
l”w‘w’Ahww*'mW‘MA-M LY R4 br e A sl oot

Amplitude
o

S L """"" M W l'J J'M"‘L;}M;;gwi;ﬁ.@m@w@“r;,ga;w.;:,:c,,;Lw‘..uu.;\»wz:‘.s";.».;.»ﬂ:ﬁ.zw,
‘ JM
-0.5f w 4
-1t 4
-15 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Figure 4.9: Impulse response

band ripple of 20 dB.

2.22¢ 15615 _ 9 974713614 1 1.137¢ 12513 — 1.455¢ 10612 4 1,746 1011 —
2.235¢ 8510 4 1.024e 85 + 3.376€%s8 + 6.557e~"s7 — 0.0001221s5+

(5 8.583¢765° — 0.0026865* + 6.104e 553 — 0.02637s% + 0.0003052s — 0.09961
G(s)=

s10 4+ 0.771551° 4 648.3s1 + 427.7513 4+ 1.605e°s12+
8.686e%s 4+ 1.928¢7 510 + 8.094€05% + 1.199¢9s8 + 3.642¢8s+
3.905¢10s% + 7.915€95° + 6.582¢e11s* + 7.893¢19s3 + 5.383¢!25% 4 2.883¢l1s

Fig[4.10]and Fig[d.11]illustrates the unmagnified and magnified veiw respectively of plot
of the response error of the 5" order ROM obtained by the techniques GJ , GA ,
MI I [17], MI II [17]], Proposed technique I and Proposed technique II in the desired time
interval [t1, t5] = [0, 16]sec. Fig and Fig shows that both proposed techniques give
least approximation error as compared to the existing techniques GJ [11]], GA [12], MI 1
and MI II [[17].

Fig illustrates the plot of the impulse response error of the of the 5* order ROM
obtained by the techniques GJ [[11]], GA [12], MI I [[17], MI II [17]], Proposed technique I
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Figure 4.10: Step Response error
Step Response Error
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Proposed Technique |
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Figure 4.11: Zoom view of Step Response error
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Impulse Response Error

0.6 T

GJ[11]
GA[12]
MI1[17]
— = M7 |
Proposed Technique |
Proposed Technique Il

Amplitude

-0.6 - -

1 1 1 1 1
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Time (sec)

Figure 4.12: Impulse Response error

and Proposed technique II in the desired time interval [¢;, 5] = [0, 16]sec.

Fig illustrates the plot of the impulse response of the original system and impulse
response of the 5th order ROM obtained by the techniques GJ , GA , MI I ||
MI 1II [[17], Proposed technique I and Proposed technique II in the desired time interval
[t1,t2] = [0, 16]sec. It is observed from Fig that proposed techniques yield less

step and impulse response error when compared with existing TLMOR techniques.
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Chapter 5

Conclusion

5.1 Conclusion

In this thesis two new TLMOR techniques have been proposed that not only preserve sta-
bility in ROMs but also carries error bounds. Moreover, proposed techniques yield least
approximation error as compared to existing TLMOR techniques. It is observed from nu-
merical results that GJ [[11]] TLMOR technique yield less approximation error but it may
sometime yield unstable ROM. Proposed techniques yield less approximation error as com-

pared to existing stability preserving TLMOR techniques.

5.2 Future Directions

A lots of work has been done in FWMOR and FLMOR but in TLMOR there are still many

open areas for research. Some improvements are needed in this area, that are given below:

e Existing techniques like wang et al’s, VA [6], GA [12], GS [4] and IG [13] and pro-
posed techniques are realization dependant, where original system realization pro-

duces lower approximation error and tight error bounds needs attention.
e Existing techniques may be extended and applied in time weighted MOR.

e TLMOR techniques are not relavent for non-linear systems. So, in future TLMOR

techniques with some suitable improvisations may be applied in non-linear systems.

e In this thesis first order systems are used. In future TLMOR techniques could be

applied in second order systems.

e TLMOR techniques use BT []1] . Different other MOR techniques like Krylov, Hankel

norm, Pade approximation techniques could be used in future.

e Stability of the ROM in GJ’s FLMOR and TLMOR technique is not ensured. This

will remain an open area for future research.
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