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ABSTRACT

Model order reduction (MOR) is a technique developed in the area of control system theory,

which reduces the complexity of higher order systems by reducing the order of the system

while retaining the key features of original system. These models are represented by par-

tial differential equations, ordinary differential equations. MOR approximates higher-order

original models by relatively lower-order models to give simplicity in design, modeling and

simulation for huge complicated systems. The analysis of large scale models is difficult

or even sometimes impossible to perform due to different constraints like storage, cost and

computation. Therefore MOR techniques are developed. The Balanced truncation(BT) [1]

is one of the most frequently used MOR technique because reduced order models (ROMs)

obtained using this technique are not only stable but also have quantifiable error bounds. In

BT [1] MOR technique lower energy states are truncated and higher energy states are re-

tained to get ROM having similar characteristics as original system. Considerable amount

of research has been done on different features of MOR. Existing techniques have the draw-

backs of lacking properties like stability, passivity and large approximation error produced

in ROMs etc. Ideally BT [1] technique approximates the higher order system by relatively

lower order system having low approximation error for entire time interval. Though, in some

applications approximation error is required to be small for specific time interval rather than

for the entire time range. Therefore time limited MOR techniques are developed in which

controllability and observability Gramians are defined over finite time interval. The goal is

to achieve a stable ROM having the same response characteristics as the original system and

low approximation error.

This thesis includes Time Limited Gramians based model order reduction (TLMOR) tech-

niques for standard continuous time systems . The proposed techniques produce less approx-

imation error as contrast to existing techniques. Numerical examples are also illustrated to

exhibit the compatibility and effectiveness of the proposed techniques to the existing ones.

Some of practical applications of MOR are

• Fabrication industries

• Missiles analysis and launching

• Industrial real time applications

• Radio frequency micro electro-mechanical systems (RF MEMS)
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Chapter 1

Introduction

1.1 Overveiw of Model Order Reduction

Each physical system can be represented as a mathematical model. Manifestation of physi-

cal systems produce complex higher order mathematical models. These higher order models

produce complex differential condition that are difficult to analyze, design , mimic and store,

and also take much memory for capacity. To address these issues, a strategy is required to

bring down the computational cost by reducing the order of the system that retains the basic

parameters of the original system like input output behaviour, stability and lower approxima-

tion error of original systems. The process of reducing the order of the system to get a lower

order mathematical model is known as Model order reduction (MOR) which contributes an

important part in control system theory analysis and design.

1.2 A brief overview of MOR Techniques

In this section, different stability preserving MOR techniques (BT [1], frequency weighted

model order reduction (FWMOR), frequency limited model order reduction (FLMOR) and

time limited model order reduction (TLMOR)) are discussed.

1.2.1 Balanced truncation

BT [1] is one of the popular techniques used in MOR. The idea of BT [1] was given

by Moore. In BT [1] the original system is approximated as a ROM over the entire fre-

quency/time interval where the original system realization is transformed into an internally

balanced realization using a contragradient transformation T and then ROM is achieved by

diminishing the least controllable and least observable states of the balanced realization.

1.2.2 Frequency weighted model order reduction

Most of the physical systems work on a limited frequency interval and the response of the

systems outside this range is not very important. This is true for the case, when ROMs are

used in feedback control design [2, 3]. This leads the concept of using frequency weights in
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MOR procedure. Enns [2] extended the BT [1] technique by introducing frequency weights

on the input and output side of the system. Enns [2] technique produces stable ROM when

weights are applied only on one side. But when frequency weights are applied on both input

and output side of the system the ROM may become unstable [4]. To overcome this issue

of instability many authors presented different techniques in literature [5]- [6]. To conquer

Enns method [2] disadvantages, Lin and Chiu [7] has proposed an alternate procedure that

gives the assurance of stability of ROM when two sided weightings are available. In any

case, their strategy has a confinement that can work just when entirely appropriate weight-

ing capacity is utilized as a part of and no pole, zero cancelation happens while shaping the

augumented system. These shortcomings of Lin and Chui [7] method were later adjusted by

Sreeram et al [8] and Varga and Anderson (VA) [6], where [8] summed up [7] to incorporate

weights, while [6] holds the dependability of the system not withstanding when shaft zero

cancelation happen. VA [6] produces an indistinguishable outcomes from Enns [2] particu-

larly in controller reduction applications. So far controller reduction issue, if Enns system [2]

produces unstable ROMs, so does by VA [6] method.

Wang et al’s method [9] has likewise solve the stability issue of Enns [2], which not just give

stable ROMs within the presence of two sided weightings additionally yield error bound.

The approximation error of Wang et al method [9] was later enhanced by VA [6] as com-

mented by Sreeram [10]. This system and its adjustment by VA [6] are realization indepen-

dent. This implies for a similar unique system , diverse models can be attained from various

realizations.

1.2.3 Frequency limited model order reduction

FLMOR is a technique in which frequency weights are not used but Gramians are defined

over a limited frequency interval. Gawronski and Juang (GJ) [11] gave the idea of frequency

limited Gramians in MOR. GJ [11] technique produces less approximation error but does

not ensure the stability of ROM. In addition , there are no error bounds. Many authors

presented different techniques to conquer the issue of instability including Gugercin and

Antoulas (GA) [12], Ghafoor and Sreeram (GS) [4], Imran and Ghafoor (IG) [13], Imran,

Ghafoor and Imran (IGI) [14], Shafiq, Ghafoor and Imran [15] and Zulfiqar, Imran and

Ghafoor [16]. GA [12] modified the GJ [11] technique by making the symmetric matarices

2



positive definite. GA [12] technique ensures the stablity of the ROM. GS [4] exhibited

another alteration to GJ [11] system to give stable ROMs. It also carries frequency response

error bound to satisfy rank conditions. IG [13] presented a technique which produces stable

ROM also give frequency response error bound. IGI [14] presented multiple techniques to

conquer the issue of stability in GJ [11]. IGI [14] techniques provides less approximation

error as compared to existing techniques and also produce frequency response error bound.

1.2.4 Time limited model order reduction

GJ [11] also presented a technique in which Gramians are defined over a limited time inter-

val known as time limited model order reduction technique (TLMOR). GJ [11] technique of

TLMOR likewise does not guarantee to produce stable ROMs and does not have frequency

response error bound. (GA) [12] modified the GJ [11] TLMOR technique to conquer the

issue of instability and presented a technique of TLMOR which yields stable ROMs but this

technique give large approximation error. Muhammad Imran (MI) [17] presented two tech-

niques of TLMOR. Both techniques produces stable ROM. Model reduction of large scale

descriptor systems using TLMOR technique appear in [18]. Kumar, Jazlan and Sreeram [19]

presented a TLMOR technique to rectify the problem of instability of ROM. In this thesis

two TLMOR techniques are presented. Both techniques ensure the stability of ROM and also

give least approximation error as compared to the existing TLMOR techniques. Numerical

examples are also illustrated to show the effectiveness of the proposed techniques. TLMOR

is widely used in electrical circuit recreation and small scale electro-mechanical framework,

parameter evaluation with a particular attention to real-time computing in biomedical engi-

neering and computational physics, the study of high-dimensional problems in state space,

physical space. MOR are widely used in prediction of real world systems like climate or the

human cardiovascular system where large complex mathematical models are used.

1.3 Problem Summary

Existing TLMOR techniques may yeild unstable ROMs, and yield more estimation error.

1.4 Contributions

The summary of the thesis is stated as,
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• In this thesis two TLMOR techniques are proposed which guarantee the stability of

ROM.

• Proposed techniques deliver less approximation error when contrasted with existing

TLMOR techniques.

1.5 Thesis Outline

This thesis is separated into five parts:

• Chapter 1: In this chapter, a brief introduction of different MOR techniques (BT,

FWMOR, FLMOR, TLMOR) is illustrated.

• Chapter 2: This chapter incorporates all the existing FWMOR, FLMOR and TLMOR

methods.

• Chapter 3: This chapter incorporates the proposed stability preserving TLMOR meth-

ods.

• Chapter 4: In this chapter numerical examples and their results are discussed to show

the efficacy of the proposed TLMOR techniques.

• Chapter 5: Future work and Conclusion are presented in this section

4



Chapter 2

Existing Techniques

In this chapter existing techniques of MOR are discussed. BT [1] is one of the most popular

techniques used for MOR that preserves stability in ROMs. Enns [2] extended BT [1] and

introduced frequency weights in MOR. But Enns [2] technique produce unstable ROM in

case of double sided weighting [20]. Different authors proposed different techniques to con-

quer this instability issue. GJ [11] proposed a MOR technique in which frequency weights

are not defined but he approximated the original system in a limited frequency interval by

producing less approximation error. But GJ [11] technique do not ensures the stability of

ROMS [12]. Many authors presented different techniques to overcome this issue of instabil-

ity. GJ [11] also presented an idea of TLMOR. GJ [11] technique of TLMOR likewise does

not ensures the stability of ROM. GA [12] extended the GJ [11] technique of TLMOR to

ensures the stability of ROM but ROM obtained using GA [12] leads to large approximation

error. MI [17] presented two techniques of TLMOR. Both techniques produces stable ROM

but leads to large error.

2.1 Preliminaries

Let a nth order stable system G(s) = C(sI − A)−1B + D since A ∈ Rn×n, B ∈ Rn×n,

C ∈ Rp×n, D ∈ Rp×m where inputs and outputs are defined as m and p respectively. A

MOR problem is to find

Gkk(s) = C1(sI − A11)
−1B1 +D1 (2.1)

which approximates the original system (in the time range [t1, t2],t2 > t1) in that case A11 ∈

Rk×k, B1 ∈ Rk×m, C1 ∈ Rp×k, D1 ∈ Rp×m, k < n. Let Pi and Qo are controlability and

observibility Gramians respectively, satisfying following Lyapunov equations:

Pi =

∫ t2

t1

eAτBBT eA
T τdτ (2.2)

Qo =

∫ t2

t1

eA
T τCTCeAτdτ (2.3)
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The controlability and observibility Gramians Pi and Qo are the solution of the following

Lyapunov equations.

APi + PiA
T +BBT = 0 (2.4)

ATQo +QoA+ CTC = 0 (2.5)

2.2 Balanced Truncation

BT [1] is the most utilized technique for MOR. In BT [1] the realization of original system

is transformed into a internally balanced realization using a contragradient transformation

matrix T . ROM is obtained by segregating the least controllable and observable states of

system realization. This makes the estimation error smaller in utilizing BT [1] system, which

is viewed as a decent execution of ROMs. Other than BT [1], other such plans, for example,

Hankel ideal estimate [21], Pade apprximation [22] , Krylov technique [23] and so on are

valuable for limiting MOR disadvantages. BT [1] is a good option for higher frequencies as

it produces good results. Let the original nth order system is

G(s) = C(sI − A)−1B +D (2.6)

where {A,B,C,D} is its nth order minimal realization. Let Pi and Qo be the controllability

and the observability Gramians satisfying these Lyapunov equations:

APi + PiA
T +BBT = 0 (2.7)

ATQo +QoA+ CTC = 0 (2.8)

In order to find a stable ROM of order k, where k < n the system realization is transformed

into a balanced realization using the contragradient transformation Tb and then is truncated

by deleting the least controllable and least observable states. Let contragradient transforma-

tion Tb is obtained such that

T Tb QTb = T−1b PT−Tb =

 ∑
b1

0

0
∑

b2



6



where
∑

b1
= diag{σ1, σ2, ..., σk},

∑
b2
= diag{σk+1, ..., σn}, σi ≥ σi+1, i = 1, 2, ..., n−1,

σk ≥ σk+1. Applying the contragradient transformation Tb to the original system

 Ab Bb

Cb Db

 =

 T−1b ATb T−1b B

CTb D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.9)

The ROM is obtained by truncating the balanced realization

Gkk(s) = C1(sI − A11)
−1B1 +D1

where {A11, B1, C1, D1} is the kth (k < n) order minimal realization.

2.3 Frequency Weighted Model Order Reduction

Enns [2] extended BT [1] method by introducing frequency weights in MOR. Ideally BT [1]

technique approximates the higher order system by relatively lower order system having

low approximation error for entire fequency/time interval. Though, in some applications

approximation error is required to be small for specific frequency/time interval rather than for

the entire frequency/time range. This motivates the use of frequency weights in MOR. Enns

[2] used frequency weights on input side, output side or both sides. When weighting function

is used only on one side either on input or output side, stability of ROM is guaranteed. But

when both input and output weighting functions are used this technique may yield unstable

ROM. Given the original full order stable system

G(s) = C(sI − A)−1B +D (2.10)

The stable input weighting system Vin(s) and stable output weighting system Wou(s) are

respectively

Vin(s) = Cin(sI − Ain)−1Bin +Din (2.11)

Wou(s) = Cou(sI − Aou)−1Bou +Dou (2.12)

where {A,B,C,D}, {Ain, Bin, Cin, Din} and {Aou, Bou, Cou, Dou} are the nth, pth, qth or-

der minimal realization of original system, input weighting system and output weighting

7



system respectively. The objective of FWMOR is to find a lower order stable system

Gkk(s) = C1(sI − A11)
−1B1 +D1 (2.13)

where {A11, B1, C1, D1} is the kth (k < n) order minimal realization. The input augmented

system and output augmented systems are given by

G(s)Vin(s) = Cai(sI − Aai)−1Bai +Dai (2.14)

Wou(s)G(s) = Cao(sI − Aao)−1Bao +Dao (2.15)

where

{Aai, Bai, Cai, Dai} =

{ A BCin

0 Ain

 ,
 BDin

Bin

 , [ C DCin

]
, DDin

}
(2.16)

{Aao, Bao, Cao, Dao} =

{ Aao BaoC

0 A

 ,
 BaoD

B

 , [ Cao DaoC
]
, DaoD

}
(2.17)

Let

Pai =

 Pe P12

P T
12 Pin


Qao =

 Qou QT
12

Q12 Qe


be the Gramians satisfying the following Lyapunov equations.

AaiPai + PaiA
T
ai +BaiB

T
ai = 0 (2.18)

ATaoQao +QaoAao + CT
aoCao = 0 (2.19)

By expanding (1, 1) and (2, 2) block of the above equations, we get the following Lyapunov

equations

APe + PeA
T +Xens = 0 (2.20)

ATQe +QeA+ Yens = 0 (2.21)

8



where Xens and Yens are

Xens = BCinP
T
12 + P12C

T
inB

T +BDinD
T
inB

T (2.22)

Yens = CTBT
ouQ

T
12 +Q12BouC + CTDT

ouDouC (2.23)

Tb is the contradient transformation obtained by using Pe and Qe as

T Tb QeTb = T−1b PeT
−T
b =


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


where σj ≥ σj+1, j = 1, 2, ..., n − 1, and σk > σk+1 The realization of original stable

system is transformed into an internally balanced realization by using the contragradient

transformation matrix Tb as

 Ab Bb

Cb Db

 =

 T−1b ATb T−1b B

CTb D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.24)

ROM is obtained by truncating the least controllable and observable states of balanced real-

ization. The ROM obtained is given by

Gkk(s) = C1(sI − A11)B1 +D

where A11εR
k×k

Remark 1 For input weighting case only, the contragradient transformation matrix Tb is

obtained using Pe and Qo. Similarly, for output weighting case only, the contragradient

transformation matrix Tb is obtained using Pi and Qe, where Pi and Qo are the unweighed

Gramians enumerated as:

APe + PeA
T +Xens = 0

ATQe +QeA+ Yens = 0

Remark 2 The technique does not give the assurance of the stability of ROMs in double-

sided weighting case because it is not guaranteed to ensure Xens ≥ 0 and Yens ≥ 0.
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The main drawback of this technique is that it gives unstable ROM in case of double sided

weighting. To tackle with this issue of instability many authors have proposed different tech-

niques related to FWMOR. To conquer Enns method [2] disadvantages, Lin and Chiu [7]

has proposed an alternate procedure that guarantees stability when two sided weighting are

available. In any case, their strategy has a confinement that can work just when entirely

appropriate weighting capacity is utilized as a part of and no pole, zero cancelation happens

while shaping the augmented system.

These shortcomings of Lin and Chui [7] method were later adjusted by Sreeram et al [8] and

VA [6], where [8] summed up [7] to incorporate weights, while [6] holds the dependability

of the system not withstanding when shaft zero cancelation happen. VA [6] produces an

indistinguishable outcomes from Enns [2] particularly in controller reduction applications.

So far controller reduction issue, if Enns [2] system [2] produces unstable ROMs, so does

by VA [6] method.

Wang et al’s method [9] has likewise solve the stability issue of Enns [2], which not just give

stable ROMs within the sight of two sided weighting additionally inferred error bound. The

approximation error of Wang et al method [9] was later enhanced by VA [6] as pointed out

by Sreeram [10]. This system and its adjustment by VA [6] are realization independent. This

implies for a similar unique system , diverse models can be obtained from various acknowl-

edge. IG [24] proposed a frequency weighted model order reduction technique which not

only provides stable ROM but also give frequency response error bound. In this technique

the matrices Xe and Ye are made positive definite by subtracting the smallest value from all

eigenvalues.

2.4 Frequency Limited Model Order Reduction

2.4.1 Gawronski and Juang’s FLMOR technique

GJ [11] proposed a FLMOR technique in which frequency weights are not used but ap-

proximation is considered in a limited frequency interval [ω1, ω2]. GJ [11] introduced

the frequency limited controllability PfGJ
= Pf (w2) − Pf (w1) and observability QfGJ

=

10



Qf (w2)−Qf (w1) Gramians satisfying :

APfGJ
+ ATPfGJ

+XfGJ
= 0 (2.25)

ATQfGJ
+QfGJ

A+ YfGJ
= 0 (2.26)

where

XfGJ
= (Ef (w2)− Ef (w1))BB

T +BBT (E∗f (w2)− E∗f (w1)) (2.27)

YfGJ
= (Ef (w2)− Ef (w1))C

TC + CTC(E∗f (w2)− E∗f (w1)) (2.28)

Ef (w) =
j

2π
ln((jωI + A)(−jωI + A)−1) (2.29)

XfGJ
= U

 S1 0

0 S2

UT , YfGJ
= V

 R1 0

0 R2

V T (2.30)

S1 = diag(si1, si2, · · · , sil), S2 = diag(sil+1, sil+2, · · · , sin),

R1 = diag(ri1, ri2, · · · , rik), R2 = diag(rik+1, rik+2, · · · , rin). l ≤ n and k ≤ n are the

number of positive eigenvalues of XfGJ
and YfGJ

respectively. Let

T Tf QfGJ
Tf = T−1f PfGJ

T−Tf =


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


Tf is a contragredient transformation matrix which is used to transform the original system

realization into an internally balanced realization. where σh ≥ σh+1, h = 1, 2, . . . , n − 1.

Calculation of ROMs are done by segregating the transformed realiation.

Remark 3 For approximation, multiple frequency intervals can be considered. For exam-

ple, for two intervals [ω1, ω2] and [ω3, ω4] , ω1 < ω2, ω3 < ω4.

Remark 4 Since the symmetric matrices XfGJ
and YfGJ

may becomes indefinite, the ROMs

obtained by GJ may not be stable [12].
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2.4.2 Gugercin and Antoulas’s FLMOR technique

The stability issue of GJ [11] was highlighted by GA [12]. GA [12] introduced the frequency

limited controllability PfGA
= Pf (w2)−Pf (w1) and observabilityQfGA

= Qf (w2)−Qf (w1)

Gramians satisfying the following Lyapunov equations :

APfGA
+ ATPfGA

+XfGA
= 0 (2.31)

ATQfGA
+QfGA

A+ YfGA
= 0 (2.32)

The matrices BfGA
and CfGA

are the updated input and output matrices respectively defined

as:

BfGA
= UfGA

|SfGA
|
1
2 (2.33)

CfGA
= |RfGA

|
1
2V T

fGA
(2.34)

The expressions UfGA
, SfGA

, VfGA
and RfGA

are obtained as

XfGJ
= UfGA

SfGA
UT
fGA

(2.35)

YfGJ
= VfGA

RfGA
V T
fGA

(2.36)

where

SfGA
=


si1 0 . . . 0

0 si2 . . . 0

. . . . . .
. . . . . .

0 0 . . . sin


, RfGA

=


ri1 0 . . . 0

0 ri2 . . . 0

. . . . . .
. . . . . .

0 0 . . . rin


where si1 ≥ si2 ≥ · · · ≥ sin, and ri1 ≥ ri2 ≥ · · · ≥ rin. Let

T Tf QfGA
Tf = T−1f PfGA

T−Tf =


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


To transform the original model to ROMs, Tf is a contragradient transformation matrix

where σh ≥ σh+1, h = 1, 2, . . . , n− 1. Tf is a transformation used to transform the original

system realization into an internally balanced realization. Calculation of ROMs are done by

segregating the transformed realiation.
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Remark 5 In this case XfGJ
≤ BfGA

BT
fGA

≥ 0, YfGJ
≤ CT

fGA
CfGA

≥ 0, PfGA
>

0andQfGA
> 0, the minimality and stability of {A,BfGA

, CfGA
} is guaranteed. Moreover

this technique additionally produce frequency response error bounds

2.4.3 Ghafoor and Sreeram FLMOR technique

GS [4] likewise addresses the stability issue of GJ [11] method. GS [4] ensured the pos-

itive definiteness of the symmetric matrices by retaining the positive eigenvalues of the

symmetric matrices XfGJ
and YfGJ

and truncating the negative eigenvalues. GS [4] in-

troduced the frequency limited controllability PfGS
= Pf (w2) − Pf (w1) and observability

QfGS
= Qf (w2)−Qf (w1) Gramians satisfying :

APfGS
+ ATPfGS

+XfGS
= 0 (2.37)

ATQfGS
+QfGS

A+ YfGS
= 0 (2.38)

The matricesBfGS
andCfGS

are the updated input and output matrices respectively described

as:

BfGS
= UfGS

|SfGS
|
1
2 (2.39)

CfGS
= |RfGS

|
1
2V T

fGS
(2.40)

XfGJ
=

[
UGS1 UGS2

] SGS1 0

0 SGS2

 UT
GS1

UT
GS2

 (2.41)

YfGA
=

[
VGS1 VGS2

] RGS1 0

0 RGS2

 V T
GS1

V T
GS2

 (2.42)

where

 SGS1 0

0 SGS2

 = diag{si1, si2, ..., sin},

 RGS1 0

0 RGS2

 = diag{ri1, ri2, ri3, ..., rin}

si1 ≥ si2 ≥ si3 ≥ ... ≥ sin, ri1 ≥ ri2 ≥ r3 ≥ ... ≥ rn

SGS1 = diag{s1, s2, s3, ..., se}, RGS1 = diag{ri1, ri2, ri3, ..., rie}

si1 ≥ si2 ≥ si3 ≥ ... ≥ sie ≥ 0, ri1 ≥ ri2 ≥ ri3 ≥ ... ≥ rie ≥ 0

13



Let

T Tf QfGS
Tf = T−1f PfGS

T−Tf =


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


Original stable system is transformed into an internally balanced realization by using con-

tragredient transformation matrix Tf where σj ≥ σj+1, j = 1, 2, . . . , n − 1. Calculation

of ROMs is done by segregating the least controllable and least observable states of the

transformed realization.

Remark 6 In this case XfGJ
≤ BfGS

BT
fGS
≥ 0, YfGJ

≤ CT
fGS

CfGS
≥ 0, PfGS

> 0 and

QfGS
> 0, the minimality and stability of {A,BfGS

, CfGS
} is guaranteed. Moreover this

technique also give frequency response error bounds

2.4.4 Imran and Ghafoor’s FLMOR technique

In GA technique [12] , the symmteric matrices XfGJ
and YfGJ

are guaranteed positive defi-

nite/semipositive definite respectively by taking the square root of absolutes values estima-

tions of the eigenvalues by eigenvalue decomposition (EVD) of symmetric XfGJ
and YfGJ

.

This occasionally prompts to a substantial change in some eigenvalues and may not impact

other eigen values. Then again , GS [4] guarantees positive definitness of the matrices XfGJ

and YfGJ
by effecting just positive eigenvalues and by replacing negative eigenvalues with

zeros. This system likewise doesnot have comparative impact on all eigenvalues. In IG [13]

a technique is proposed where exertion is to similarly affect all eigenvalues of uncertain ma-

trices XfGJ
and YfGJ

. The ROMs got are ensured to be stable . Additionally, it has error

bounds and enhanced frequency response error. Take new controlability PfIG and Observ-

ability QfIG Gramians respectively, are determined by resolving the following Lyapunov

equations:

APfIG + PfIGA
T +XfIG = 0 (2.43)

ATQfIG +QfIGA+ YfIG = 0 (2.44)
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The matrices BfIG and CfIG are new updated input and output matrices respectively defined

as :

BfIG =

 UfIG(SfIG − sinI)1/2 for sin < 0

UfIGS
1/2
fIG

for sin ≥ 0
(2.45)

CfIG =

 (RfIG − rinI)1/2V T
fIG

for rn < 0

R
1/2
fIG
V T
fIG

for rin ≥ 0.
(2.46)

The terms UfIG , SfIG , VfIG , and RfIG are solved as

XfGJ
= UfIGSfIGU

T
fIG

(2.47)

YfGJ
= VfIGRfIGV

T
fIG

(2.48)

where

SfIG =


si1 0 . . . 0

0 si2 . . . 0

. . . . . .
. . . . . .

0 0 . . . sin


, RfIG =


ri1 0 . . . 0

0 ri1 . . . 0

. . . . . .
. . . . . .

0 0 . . . rin


where si1 ≥ si2 ≥ · · · ≥ sin, and ri1 ≥ ri2 ≥ · · · ≥ rin. A consideration is made that to

transform a original system into an internally balanced realization. Transformation matrix

Tf is obtained using the controllability Gramian PfIG and observability Gramians QfIG as

Let

T Tf QfIGTf = T−1f PfIGT
−T
f =


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


Determination of ROMs is carried out by segregating the transformed realization where σh ≥

σh+1, h = 1, 2, 3, . . . , n− 1, σl > σl+1.

Remark 7 Since XfGJ
≤ BfIGB

T
fIG

, YfGJ
≤ CT

fIG
CfIG , BfIGB

T
fIG
≥ 0, CT

fIG
CfIG ≥ 0,

PfIG > 0 and QfIG > 0. Consequently, the realization (A,BfIG , CfIG) is minimal and also

this technique gives the assurance of the stability of ROMs.

Theorem 1 In IG [13] technique, the following error bound formula holds provided that
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the following rank conditions rank [BfIG B] = rank [BfIG ] and rank

 CfIG

C

 =

rank [CfIG ] (which follows from [25]) are satisfied

‖G(s)−Gkk(s)‖∞ ≤ 2‖LfIG‖‖KfIG‖
n∑

h=l+1

σh

where

LfIG =

 CVfIG(RfIG − rinI)−1/2 for rin < 0

CVfIGR
−1/2
fIG

for rin ≥ 0
(2.49)

KfIG =

 (SfIG − sinI)−1/2UT
IGB for sin < 0

S
−1/2
fIG

UT
IGB for sin ≥ 0

(2.50)

Proof: Since rank [BfIG B] = rank [BfIG ] and rank

 CfIG

C

 = rank [CfIG ], the

relationships B = BfIGKfIG and C = LfIGCfIG hold. By partitioning BfIG = BfIG1

BfIG2

 , CfIG =
[
CfIG1

CfIG2

]
and substituting B1 = BfIG1

KfIG , C1 = LfIGCfIG1

respectively produces

‖G(s)−Gkk(s)‖∞ = ‖C(sI−A)−1B−C1(sI−A11)
−1B1‖∞

= ‖LfIGCfIG(sI −A)
−1BfIGKfIG − LfIGCfIG1

(sI −A11)
−1BfIG1

KfIG‖∞

= ‖LfIG(CfIG(sI −A)
−1BfIG − CfIG1

(sI −A11)
−1BfIG1

)KfIG‖∞

≤ ‖LfIG‖‖(CfIG(sI −A)
−1BfIG − CfIG1

(sI −A11)
−1BfIG1

)‖∞‖KfIG‖

If {A11, BfIG1
, CfIG1

} is ROM obtained by segregating a balanced realization {A,BfIG , CfIG},

we have from [2]

‖(CfIG(sI −A)
−1BfIG−CfIG1

(sI −A11)
−1BfIG1

)‖∞≤2
n∑

h=l+1

σh.

Therefore,

‖G(s)−Gkk(s)‖∞ ≤ 2‖LfIG‖‖KfIG‖
n∑

h=l+1

σh
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Remark 8 When the matrices are symmetric XfGJ
≥ 0 and YfGJ

≥ 0, therefore PfGJ
=

PfIG and QfGJ
= QfIG . Otherwise PfGJ

< PfIG and QfGJ
< QfIG . In addition, Hankel

singular values satisfies: (λj[PfGJ
QfGJ

])1/2 ≤ (λj[PfIGQfIG ])
1/2.

2.5 Time Limited Model Order Reduction

Many real MOR problems are naturally time dependent. Mostly the response of the system is

more important in a particular time interval rather than over the whole time range. TLMOR

found their nearness in various applications which incorporate semidiscretization of frac-

tional differential conditions, multibody elements with requirements, electrical circuit recre-

ation and small scale electro-mechanical framework, parameter evaluation with a particular

attention to real-time computing in biomedical engineering and computational physics, the

study of high-dimensional problems in state space, physical space. In order to conquer these

real world problems, GJ [11] presented a TLMOR technique in which the new controllability

and observability Gramains are defined over a limited time interval. But the disadvantage of

GJ [11] technique is that the stability of ROM is not ensured [12]. GA [12] proposed a TL-

MOR technique in which he addressed the instability issue. ROM obtained using GA [12]

technique is stable but it leads to large approximation error. In TLMOR the system response

is measured in the time interval T = [t1, t2], t2 > t1 ≥ 0. The time limited Gramians are

defined over the time interval T = [t1, t2]. GJ [11] produced less approximation error but

ROM obtained using this technique is unstable. MI [17] presented two TLMOR techniques.

Both techniques produces stable ROM but yields large error. Additionally MI [17] also gives

error bound.

2.5.1 Gawronski and Juang’s TLMOR technique

GJ [11] proposed a TLMOR technique, which estimates the original system (in the limited

time interval, [t1, t2], [t2 > t1] . GJ [11] defined the time limited controllability PtGJ
and

observability QtGJ
Gramians satisfying :

APtGJ
+ PtGJ

AT +XtGJ
= 0 (2.51)

ATQtGJ
+QtGJ

A+ YtGJ
= 0 (2.52)
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These time limited Gramians are defined as

PtGJ
=

∫ t2

t1

eAτBBT eA
T τdτ (2.53)

QtGJ
=

∫ t2

t1

eA
T τCTCeAτdτ (2.54)

These Gramians are determined by the following equations

PtGJ
= Pc(t1)− Pc(t2) (2.55)

QtGJ
= Qo(t1)−Qo(t2) (2.56)

where

Pc(t) = SGJ(t)PS
T
GJ(t) (2.57)

Qo(t) = SGJ(t)
TQSGJ(t) (2.58)

SGJ(t) = eAτ (2.59)

The equations (2.55) and (2.56) are determined as follows.

Let

θGJ(t) =

∫ t

0

eAτBBT eA
T τ (2.60)

As given in Kailath [26]

θGJ(t) = P − SGJ(t)PSTGJ(t) (2.61)

= P − Pc(t) (2.62)

As PtGJ
can be written as

PtGJ
= θGJ(t1)− θGJ(t2) (2.63)

By putting equation (2.62) in equation (2.63) we get

PtGJ
= Pc(t1)− Pc(t2) (2.64)

18



Similarly we can obtain

QtGJ
= Qo(t1)−Qo(t2) (2.65)

Denote

Xc(t) = SGJ(t)BB
TSTGJ(t) (2.66)

Yo(t) = STGJ(t)C
TCSGJ(t) (2.67)

Symmetric matrices can be calculated using given relationship as

XtGJ
= Xc(t1)−Xc(t2) (2.68)

YtGJ
= Yo(t1)− Yo(t2) (2.69)

XtGJ
= eAt1BBT eA

T t1 − eAt2BBT eA
T t2 (2.70)

YtGJ
= eA

T t1CTCeAt1 − eAT t2CTCeAt2 (2.71)

XtGJ
=

[
U1 U2

] S1 0

0 S2

 UT
1

UT
2

 (2.72)

YtGJ
=

[
V 1 V 2

] R1 0

0 R2

 V T
1

V T
2

 (2.73)

S1 =


s1 0 . . . 0

0 s2 . . . 0

. . . . . .
. . . . . .

0 0 . . . sl


, S2 =


sl+1 0 . . . 0

0 sl+2 . . . 0

. . . . . .
. . . . . .

0 0 . . . sn



R1 =


r1 0 . . . 0

0 r2 . . . 0

. . . . . .
. . . . . .

0 0 . . . rm


, R2 =


rm+1 0 . . . 0

0 rm+2 . . . 0

. . . . . .
. . . . . .

0 0 . . . rn


where l ≤ n and m ≤ n are the number of positive eigenvalues of the symmetric matrices

XtGJ
and YtGJ

respectively. The contradient transformation matrix Tt is determined using
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the time limited controllability and observability Gramians PtGJ
and QtGJ

respectively as

T Tt QtGJ
Tt = T−1t PtGJ

T−Tt =


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


The realization of original stable system is transformed into an internally balanced realiza-

tion by using the contragradient transformation matrix Tt as

 Ab Bb

Cb Db

 =

 T−1t ATt T−1t B

CTt D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.74)

ROM is obtained by segregating the least controllable and observable states of balanced

realization. The ROM obtained is given by

Gtkk(s) = C1(sI − A11)B1 +D

where A11εR
k×k

Remark 9 The symmetric matricesXtGJ
and YtGJ

are not guaranteed to be positive definite,

the ROM obtained using GJ [11] technique may not be stable [12].

2.5.2 Gugercin and Antoulas’s TLMOR technique [12]

GA [12] highlighted the stability issue of GJ [11]. GA [12] introduced the time limited

controllability and observability Gramians PtGA
and QtGA

fulfilling the following Lyapunov

equations :

APtGA
+ PtGA

AT +XtGA
= 0 (2.75)

ATQtGA
+QtGA

A+ YtGA
= 0 (2.76)

In GJ [11] technique the matrices XtGJ
and YtGJ

may become indefinite, this is the main

reason of instability of the ROM obtained by GJ [11]. GA [12] ensured the positive defini-

tiveness by taking the absolute of the eigenvalues of the matricesXtGJ
and YtGJ

. The updated
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input and output matrices BtGA
and CtGA

are defined as

BtGA
= UtGA

|StGA
|
1
2 (2.77)

CtGA
= |RtGA

|
1
2V T

tGA
(2.78)

where UtGA
, StGA

, VtGA
and RtGA

are the terms obtained from the singular value decompo-

sition of XtGJ
and YtGJ

as

XtGJ
= UtGA

StGA
UT
tGA

(2.79)

YtGJ
= VtGA

RtGA
V T
tGA

(2.80)

The updated symmetric matrices XtGA
and YtGA

is obtained from equ (2.77) and (2.78).

XtGA
= BtGA

BT
tGA

(2.81)

YtGA
= CT

tGA
CtGA

(2.82)

where

StGA
=


s1 0 . . . 0

0 s2 . . . 0

. . . . . .
. . . . . .

0 0 . . . sn


, RtGA

=


r1 0 . . . 0

0 r2 . . . 0

. . . . . .
. . . . . .

0 0 . . . rn


|s1| ≥ |s2| ≥ ... ≥ |sn| ≥ 0 and |r1| ≥ |r2| ≥ ... ≥ |rn| ≥ 0. The contradient transformation

matrix Tt is determined using the new controllability and observability Gramians PtGA
and

QtGA
respectively such that

T Tt QtGA
Tt = T−1t PtGA

T−Tt =


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


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The realization of original stable system is transformed into an internally balanced realiza-

tion by using the contragradient transformation matrix Tt as

 Ab Bb

Cb Db

 =

 T−1t ATt T−1t B

CTt D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.83)

ROM is obtained by segregating the least controllable and observable states of balanced

realization. The ROM obtained is given by

Gtkk(s) = C1(sI − A11)B1 +D

where A11εR
k×k

Remark 10 In this case XtGJ
≤ BtGA

BT
tGA
≥ 0, YtGJ

≤ CT
tGA

CtGA
≥ 0, PtGA

> 0 and

QtGA
> 0, it is guaranteed that {A,BtGA

, CtGA
} is minimal and stable. GA [12] also give

frequency response error bounds.

2.5.3 Imran TLMOR technique I [17]

Motivated from GS [4], MI [17] modified the GJ [11] to obtain stable ROM. In this technique

the symmetric matrices XtGJ
and YtGJ

are made positive definitive by accomplishing the

EVD. The positive eigenvalues of the symmetric matrices XtGJ
and YtGJ

are retained and

the negative eigenvalues are truncated. Let new controllability PtG and observability QtG

Gramians satisfying:

APtG + PtGA
T +BtGB

T
tG

= 0 (2.84)

ATQtG +QtGA+ CT
tG
CtG = 0 (2.85)
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The updated input and output matrices BtG and CtG are defined as:

BtG =


UtG

 StG1
0

0 0

1/2

for sn < 0

UtG(StG)
1/2 for sn ≥ 0

(2.86)

CtG =


 RtG1

0

0 0

RT
tG

for rn < 0

(RtG)
1/2V T

tG
for rn ≥ 0

(2.87)

The expressions UtG , StG ,RtG and VtG are determined by the SVD of the symmetric matrices

XtGJ
and YtGJ

as

XtGJ
= UtGStGU

T
tG

XtGJ
= VtGRtGV

T
tG

where

UtG =
[
UtG1

UtG2

]
, StG =

 StG1
0

0 StG2



VtG =
[
VtG1

VtG2

]
, RtG =

 RtG1
0

0 RtG2


where

 StG1
0

0 StG2

 =


sg1 0 . . . 0

0 sg2 . . . 0

. . . . . .
. . . . . .

0 0 . . . sgn


 RtG1

0

0 RtG2

 =


rg1 0 . . . 0

0 rg2 . . . 0

. . . . . .
. . . . . .

0 0 . . . rgn


StG1

= diag(sg1 , sg2 , · · · , sgl), StG2
= diag(sgl+1

, sgl+2
, · · · , rgn)
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RtG1
= diag(rg1 , rg2 , · · · , rgl), RtG2

= diag(rgl+1
, rgl+2

, · · · , rgn)

where sr1 ≥ sr2 ≥ ... ≥ srn and rr1 ≥ rr2 ≥ ... ≥ rrn Let the contragradient transformation

matrix TtG be obtained using the new controllability and observability Gramians PtG and

QtG respectively.

T TtGQtGTtG = T−1tG
PtGT

−T
tG

=


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


where σj ≥ σj+1, j = 1, 2, 3, ..., n − 1. Contragradient transformation TtG is applied to the

original system to get an internally balanced realization.

 Ab Bb

Cb Db

 =

 T−1tG
ATtG T−1tG

B

CTtG D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.88)

ROM is achieved by segregating the least controllable and least observable states of the

balanced realization.

Gkk(s) = C1(sI − A11)
−1B1 +D1 (2.89)

where {A11, B1, C1, D1} is the kth (k < n) order minimal realization.

Remark 11 Since XtGJ
≤ BtGB

T
tG
≤ BtGA

BT
tGA

, YtGJ
≤ CtGC

T
tG
≤ CtGA

CT
tGA

and the

realization {A,BtG , CtG} is minimal, therefore the ROM obtained is stable.

Theorem 2 In this technique the following error bound formula holds provided that the

following rank conditions rank [BtG B] = rank [BtG ] and rank

 CtG

C

 = rank [CtG ]

(which follows from [25]) are satisfied

‖G(s)−Gkk(s)‖∞ ≤ 2‖LtG‖‖KtG‖
n∑

m=l+1

σm

where LtG = CVtG1
R
−1/2
tG1

and KtG = S
−1/2
tG1

UT
tG1
B
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Proof: Since rank [BtG B] = rank [BtG ] and rank

 CtG

C

 = rank [CtG ], the relation-

ships B = BtGKtG and C = LtGCtG hold. By partitioning BtG =

 BtG1

BtG2

 , CtG =

[
CtG1

CtG2

]
and substituting B1 = BtG1

KtG , C1 = LtGCtG1
respectively produces

‖G(s)−Gkk(s)‖∞ = ‖C(sI−A)−1B−C1(sI−A11)
−1B1‖∞

= ‖LtGCtG(sI −A)
−1BtGKtG − LtGCtG1

(sI −A11)
−1BtG1

KtG‖∞

= ‖LtG(CtG(sI −A)
−1BtG − CtG1

(sI −A11)
−1BtG1

)KtG‖∞

≤ ‖LtG‖‖(CtG(sI −A)
−1BtG − CtG1

(sI −A11)
−1BtG1

)‖∞‖KtG‖

If {A11, BtG1
, CtG1

} is ROM achieved by segregating a balanced system {A,BtG , CtG}, we

have [2].

‖(CtG(sI −A)
−1BtG−CtG1

(sI −A11)
−1BtG1

)‖∞≤2
n∑

m=l+1

σm.

Therefore,

‖G(s)−Gkk(s)‖∞ ≤ 2‖LtG‖‖KtG‖
n∑

m=l+1

σm

2.5.4 Imran TLMOR technique II [17]

MI [17] proposed another TLMOR technique (Motivated from [13]). In this technique ex-

ertion is to similarly affect all eigenvalues of uncertain matrices XtGJ
and YtGJ

. In this

technique positive definiteness is ensured by subtracting the smallest eigenvalue value from

all eigenvalues of the matrices XtGJ
and YtGJ

. The stability of the ROM obtained is en-

sured to be stable. Furthermore frequency response error bound is also provided. Let new

controllability PtI and observability QtI Gramians satisfying:

APtI + PtIA
T +BtIB

T
tI

= 0 (2.90)

ATQtI +QtIA+ CT
tI
CtI = 0 (2.91)
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The updated input and output matrices BtI and CtI respectivelys are defined as:

BtI =

 UtI (StI − snI)1/2 for sn < 0

UtI (StI )
1/2 for sn ≥ 0

(2.92)

CtI =

 (RtI − rnI)1/2V T
tI

for rn < 0

(RtI )
1/2V T

tI
for rn ≥ 0.

(2.93)

The expressions UtI , StI , RtI and VtI are determined by the SVD of the symmetric matrices

XtGJ
and YtGJ

as

XtGJ
= UtIStIU

T
tI

(2.94)

YtGJ
= VtIRtIV

T
tI

(2.95)

where

UtI =
[
UtI1 UtI2

]
, StI =

 StI1 0

0 StI2



VtI =
[
VtI1 VtI2

]
, RtI =

 RtI1
0

0 RtI2


where

 StI1 0

0 StI2

 =


si1 0 . . . 0

0 si2 . . . 0

. . . . . .
. . . . . .

0 0 . . . sin



 RtI1
0

0 RtI2

 =


ri1 0 . . . 0

0 ri2 . . . 0

. . . . . .
. . . . . .

0 0 . . . rin


StI1 = diag(si1 , si2 , · · · , sil), StI2 = diag(sil+1

, sil+2
, · · · , sin)

RtI1
= diag(ri1 , ri2 , · · · , ril), RtI2

= diag(ril+1
, ril+2

, · · · , rin)
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where si1 ≥ si2 ≥ ... ≥ sin and ri1 ≥ ri2 ≥ ... ≥ rin Let the contragradient transformation

matrix TtI be obtained using the new controllability and observability Gramians PtI and QtI

respectively.

T TtIQtITtI = T−1tI
PtIT

−T
tI

=


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


where σj ≥ σj+1, j = 1, 2, 3, ..., n − 1. Contragradient transformation TtI is applied to the

original system to get an internally balanced realization.

 Ab Bb

Cb Db

 =

 T−1tI
ATtI T−1tI

B

CTtI D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (2.96)

ROM is achieved by segregating the least controllable and least observable states of the

balanced realization.

Gkk(s) = C1(sI − A11)
−1B1 +D1 (2.97)

where {A11, B1, C1, D1} is the kth (k < n) order minimal realization.

Remark 12 Since XtGJ
≤ BtIB

T
tI
≤ BtGA

BT
tGA

, YtGJ
≤ CtIC

T
tI
≤ CtGA

CT
tGA

and the

realization {A,BtI , CtI} is minimal, therefore the ROM obtained is stable.

Theorem 3 In this technique the following error bound formula holds provided that the

following rank conditions rank [BtI B] = rank [BtI ] and rank

 CtI

C

 = rank [CtI ]

(which follows from [25]) are satisfied

‖G(s)−Gkk(s)‖∞ ≤ 2‖LtI‖‖KtI‖
n∑

m=l+1

σm
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where

LtI =

 CVtI (RtI − rnI)−1/2 for rn < 0

CVtI (RtI )
−1/2 for rn ≥ 0

(2.98)

KtI =

 (StI − snI)−1/2UT
tI
B for sn < 0

(StI )
−1/2UT

tI
B for sn ≥ 0.

(2.99)

Proof: Since rank [BtI B] = rank [BtI ] and rank

 CtI

C

 = rank [CtI ], the relationships

B = BtIKtI and C = LtICtI hold. By partitioning BtI =

 BtI1

BtI2

 , CtI =
[
CtI1 CtI2

]
and substituting B1 = BtI1

KtI , C1 = LtICtI1 respectively produces

‖G(s)−Gkk(s)‖∞ = ‖C(sI−A)−1B−C1(sI−A11)
−1B1‖∞

= ‖LtICtI (sI −A)
−1BtIKtI − LtICtI1 (sI −A11)

−1BtI1KtI‖∞

= ‖LtI (CtI (sI −A)
−1BtI − CtI1 (sI −A11)

−1BtI1 )KtI‖∞

≤ ‖LtI‖‖(CtI (sI −A)
−1BtI − CtI1 (sI −A11)

−1BtI1 )‖∞‖KtI‖

If {A11, BtI1
, CtI1} is ROM achieved by segregating a balanced system realization

{A,BtI , CtI}, we have [2].

‖(CtI (sI −A)
−1BtI−CtI1 (sI −A11)

−1BtI1 )‖∞≤2
n∑

m=l+1

σm.

Therefore,

‖G(s)−Gkk(s)‖∞ ≤ 2‖LtI‖‖KtI‖
n∑

m=l+1

σm
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Chapter 3

Proposed Techniques

3.1 Proposed Techniques

In this chapter proposed TLMOR techniques are discussed. Existing techniques have issues

of stability and large approximation error. GJ [11] technique produces less approximation

error but it leads to unstable ROMs. The reason of instability of ROMs is that the symmetric

matricesXtGJ
and YtGJ

may become indefinite. GA [12] gave an idea of making the matrices

XtGJ
and YtGJ

positive definite. GA [12] technique ensures the stability of ROM but the

drawback of this technique is large approximation error. In GA [12] technique the matrices

XtGJ
and YtGJ

are made positive definite by taking the absolute of the eigenvalues of the

symmetric matrices. This causes a large change in some of the eigenvalues and little effect

on rest of eigenvalues. MI I [17] made certain the positive definiteness of the matrices XtGJ

and YtGJ
by taking only positive eigenvalues and replacing negative eigenvalues with zeros.

The drawback of this technique is that it also have the non-similar effect by only affecting

the negative eigenvalues. MI II [17] ensured the positive definiteness of the matrices XtGJ

and YtGJ
by subtracting the smallest eigenvalue from all eigenvalues of the matrices XtGJ

and YtGJ
. The drawback of this technique is that last eigenvalue becomes zero which causes

large error.

Proposed techniques overcome the issue of stability and large approximation error. It ensures

the stability of the ROM and also gives least approximation error as compared to the existing

TLMOR techniques.

3.1.1 Proposed Technique I

This Proposed technique I give stable ROM and produce less approximation error. In this

technique the symmetric matrices XtGJ
and YtGJ

are made positive definitive by subtracting

the smallest negative eigenvalue of XtGJ
and YtGJ

from Se2 and Re2 respectively. Let new
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controllability PS1 and observability QS1 Gramians satisfying:

APS1 + PS1A
T +BS1B

T
S1

= 0 (3.1)

ATQS1 +QS1A+ CT
S1
CS1 = 0 (3.2)

The updated input and output matrices BS1 and CS1 respectively are defined as;

BS1 =


US1

 Se1 0

0 Se2 − snI(n−l)∗(n−l)

1/2

for sn < 0

US1(SS1)
1/2 for sn ≥ 0

(3.3)

CS1 =



 Re1 0

0 Re2 − rnI(n−k)∗(n−k)

1/2

V T
S1

for rn < 0

(RS1)
1/2V T

S1
for rn ≥ 0.

(3.4)

The expressions US1 , SS1 ,RS1 and VS1 are determined by the SVD of the symmetric matrices

XtGJ
and YtGJ

as

XtGJ
= US1SS1U

T
S1

YtGJ
= VS1RS1V

T
S1

where

US1 =
[
Ue1 Ue2

]
, SS1 =

 Se1 0

0 Se2



VS1 =
[
Ve1 Ve2

]
, RS1 =

 Re1 0

0 Re2


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where

 Se1 0

0 Se2

 =


se1 0 . . . 0

0 se2 . . . 0

. . . . . .
. . . . . .

0 0 . . . sen


 Re1 0

0 Re2

 =


re1 0 . . . 0

0 re2 . . . 0

. . . . . .
. . . . . .

0 0 . . . ren


Se1 = diag(se1 , se2 , · · · , sel), Se2 = diag(sel+1

, sel+2
, · · · , sen)

Re1 = diag(re1 , re2 , · · · , rel), Re2 = diag(rel+1
, rel+2

, · · · , ren)

where se1 ≥ se2 ≥ ... ≥ sen and re1 ≥ re2 ≥ ... ≥ ren Let the contragradient transformation

matrix TS1 be obtained using the updated controllability and observability Gramians PS1 and

QS1 respectively.

T TS1
QS1TS1 = T−1S1

PS1T
−T
S1

=


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


where σj ≥ σj+1, j = 1, 2, 3, ..., n − 1. Contragradient transformation TS1 is applied to the

original system to get an internally balanced realization.

 Ab1 Bb1

Cb1 Db1

 =

 T−1S1
ATS1 T−1S1

B

CTS1 D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (3.5)

ROM is achieved by segregating the least controllable and least observable states of the

balanced realization.

Gkk1(s) = C1(sI − A11)
−1B1 +D1 (3.6)

where {A11, B1, C1, D1} is the kth (k < n) order minimal realization.
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Remark 13 Since XtGJ
≤ BS1B

T
S1
≤ BtGA

BT
tGA
≥ 0, YtGJ

≤ CS1C
T
S1
≤ CtGA

CT
tGA
≥ 0

and the realization {A,BS1 , CS1} is minimal, therefore the ROM obtained is stable.

Theorem 4 For proposed technique I the following error bound formula holds provided that

the following rank conditions rank [BS1 B] = rank [BS1 ] and rank

 CS1

C

 = rank [CS1 ]

(which follows from [25]) are satisfied

‖G(s)−Gkk(s)‖∞ ≤ 2‖LS1‖‖KS1‖
n∑

w=l+1

σw

LS1 =

 CVS1(Rupd)
−1/2 for rn < 0

CVS1(RS1)
−1/2 for rn ≥ 0

(3.7)

KS1 =

 (Supd)
−1/2UT

S1
B for sn < 0

(SS1)
−1/2UT

S1
B for sn ≥ 0.

(3.8)

where

Rupd =

 Re1 0

0 Re2 − rnI(n−k)∗(n−k)

 , Supd =
 Se1 0

0 Se2 − snI(n−l)∗(n−l)



Proof: Since rank [BS1 B] = rank [BS1 ] and rank

 CS1

C

 = rank [CS1 ], the relation-

ships B = BS1KS1 and C = LS1CS1 hold. By partitioning BS1 =

 Be1

Be2

 , CS1 =

[
Ce1 Ce2

]
and substituting B1 = Be1KS1 , C1 = LS1Ce1 respectively produces

‖G(s)−Gkk(s)‖∞ = ‖C(sI−A)−1B−C1(sI−A11)
−1B1‖∞

= ‖LS1CS1(sI −A)−1BS1KS1 − LS1Ce1(sI −A11)
−1Be1KS1‖∞

= ‖LS1(CS1(sI −A)−1BS1 − Ce1(sI −A11)
−1Be1)KS1‖∞

≤ ‖LS1‖‖(CS1(sI −A)−1BS1 − Ce1(sI −A11)
−1Be1)‖∞‖KS1‖
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If {A11, Be1 , Ce1} is ROM achieved by segregating a balanced system realization

{A,BS1 , CS1}, we have from [2].

‖(CS1(sI −A)−1BS1−Ce1(sI −A11)
−1Be1)‖∞≤2

n∑
w=l+1

σw.

Therefore,

‖G(s)−Gkk(s)‖∞ ≤ 2‖LS1‖‖KS1‖
n∑

w=l+1

σw

3.1.2 Proposed Technique II

This technique also produces stable ROM and also give less approximation error. In this

technique the succeeding eigenvalue is subtracted from the prior eigenvalue of respective

XtGJ
and YtGJ

matrices. Let new controllability PS2 and observability QS2 Gramians satis-

fying:

APS2 + PS2A
T +BS2B

T
S2

= 0 (3.9)

ATQS2 +QS2A+ CT
S2
CS2 = 0 (3.10)

The updated input and output matrices BS2 and CS2 are defined as

BS2 =

 US2(ŜS2)
1/2 for sn < 0

US2(SS2)
1/2 for sn ≥ 0

(3.11)

CS2 =

 (R̂S2)
1/2V T

S2
for rn < 0

(RS2)
1/2V T

S2
for rn ≥ 0.

(3.12)

where

ŜS2 =


ŝh1 0 . . . 0

0 ŝh2 . . . 0

. . . . . .
. . . . . .

0 0 . . . ŝhn


, ŝh1 = sh1 , ŝh1+q = sg1+h−1

− sh1+q
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R̂S2 =


r̂h1 0 . . . 0

0 r̂h2 . . . 0

. . . . . .
. . . . . .

0 0 . . . r̂hn


, r̂h1 = rh1 , r̂h1+u = rh1+u−1 − rh1+u

q = 1, 2, ..., n− 1, u = 1, 2, ..., n− 1 The expressions US2 , SS2 , RS2 and VS2 are determined

by the SVD of the symmetric matrices XtGJ
and YtGJ

as

XtGJ
= US2SS2U

T
S2

YtGJ
= VS2RS2V

T
S2

where

US2 =
[
Uh1 Uh2

]
, SS2 =

 Sh1 0

0 Sh2



VS2 =
[
Vh1 Vh2

]
, RS2 =

 Rh1 0

0 Rh2


where

 Sh1 0

0 Sh2

 =


sh1 0 . . . 0

0 sh2 . . . 0

. . . . . .
. . . . . .

0 0 . . . shn


 Rh1 0

0 Rh2

 =


rh1 0 . . . 0

0 rh2 . . . 0

. . . . . .
. . . . . .

0 0 . . . rhn


Sh1 = diag(sh1 , sh2 , · · · , shl), Sh2 = diag(shl+1

, shl+2
, · · · , shn)

Rh1 = diag(rh1 , rh2 , · · · , rhl), Rh2 = diag(rhl+1
, rhl+2

, · · · , rhn)
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where sh1 ≥ sh2 ≥ ... ≥ shn and rhl ≥ rh2 ≥ ... ≥ rhn Let the contragradient transformation

matrix TS2 be obtained using the new controllability and observability Gramians PS2 andQS2

respectively.

T TS2
QS2TS2 = T−1S2

PS2T
−T
S2

=


σ1 0 . . . 0

0 σ2 . . . 0

. . . . . .
. . . . . .

0 0 . . . σn


where σj ≥ σj+1, j = 1, 2, 3, ..., n − 1. Contragradient transformation TS2 is applied to the

original system to get an internally balanced realization.

 Ab2 Bb2

Cb2 Db2

 =

 T−1S2
ATS2 T−1S2

B

CTS2 D

 =


A11 A12 B1

A21 A22 B2

C1 C2 D

 (3.13)

ROM is achieved by segregating the least controllable and least observable states of the

balanced realization.

Gkk2(s) = C1(sI − A11)
−1B1 +D1 (3.14)

where {A11, B1, C1, D1} is the kth (k < n) order minimal realization.

Remark 14 Since XtGJ
≤ BS2B

T
S2
≤ BtGA

BT
tGA
≥ 0, XtGJ

≤ CS2C
T
S2
≤ CtGA

CT
tGA
≥ 0

and the realization {A,BS2 , CS2} is minimal, therefore the ROM obtained is stable.

Theorem 5 For proposed technique II the following error bound formula holds provided

that the following rank conditions rank [BS2 B] = rank [BS2 ] and rank

 CS2

C

 =

rank [CS2 ] (which follows from [25]) are satisfied

‖G(s)−Gkk(s)‖∞ ≤ 2‖LS2‖‖KS2‖
n∑

w=l+1

σw
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LS2 =

 CVS2(R̂S2)
−1/2 for rn < 0

CVS2(RS2)
−1/2 for rn ≥ 0

(3.15)

KS2 =

 (ŜS2)
−1/2UT

S2
B for sn < 0

(SS2)
−1/2UT

S2
B for sn ≥ 0.

(3.16)

ŜS2 =


ŝh1 0 . . . 0

0 ŝh2 . . . 0

. . . . . .
. . . . . .

0 0 . . . ŝhn


, ŝh1 = sh1 , ŝh1+q = sh1+q−1 − sh1+q

R̂S2 =


r̂h1 0 . . . 0

0 r̂h2 . . . 0

. . . . . .
. . . . . .

0 0 . . . r̂hn


, r̂h1 = rh1 , r̂h1+u = rh1+u−1 − rh1+u

q = 1, 2, ..., n− 1, u = 1, 2, ..., n− 1

Proof: Since rank [BS2 B] = rank [BS2 ] and rank

 CS2

C

 = rank [CS2 ], the relation-

ships B = BS2KS2 and C = LS2CS2 hold. By partitioning BS2 =

 Bh1

Bh2

 , CS2 =

[
Ch1 Ch2

]
and substituting B1 = Bh1KS2 , C1 = LS2Ch1 respectively produces

‖G(s)−Gkk(s)‖∞ = ‖C(sI−A)−1B−C1(sI−A11)
−1B1‖∞

= ‖LS2CS2(sI −A)−1BS2KS2 − LS2Ch1(sI −A11)
−1Bh1KS2‖∞

= ‖LS2(CS2(sI −A)−1BS2 − Ch1(sI −A11)
−1Bh1)KS2‖∞

≤ ‖LS2‖‖(CS2(sI −A)−1BS2 − Ch1(sI −A11)
−1Bh1)‖∞‖KS2‖

If {A11, Bh1 , Ch1} is ROM achieved by segregating a balanced system realization

{A,BS2 , CS2}, we have from [2].

‖(CS2(sI −A)−1BS2−Ch1(sI −A11)
−1Bh1)‖∞≤2

n∑
w=l+1

σw.
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Therefore,

‖G(s)−Gkk(s)‖∞ ≤ 2‖LS2‖‖KS2‖
n∑

w=l+1

σw
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Chapter 4

Results and Discussion

In this chapter some numerical examples are presented to show the effectiveness of proposed

techniques when compared with existing TLMOR techniques.

4.1 Numerical Examples

Example 1: Consider a linear time invariant stable 6th order system with the following state

space representation

A=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−5.45 4.54 0 −0.05 0.04 0

10 −21 11 0.1 −0.21 0.11

0 5.5 −6.5 0 0.05 −0.06


, B=



0

00

0

0.09

0.4

−0.5


C=

[
2 −2 3 0 0 0

]
, D=0

The 1st order ROM obtained by GJ [11] is unstable with pole s = 0.0413 while the ROM

obtained by proposed techniques are stable within the desired time interval [t1, t2] = [0, 7]

sec as shown in Table no 4.1.

Example 2: Consider a linear time invariant (LTI) stable system of order 8 with the following

Table 4.1: Poles location of the reduced order systems

Techniques Pole location
GJ [11] 0.0413

GA [12] −0.0032
MI I [17] −0.0039
MI II [17] −0.0040
Proposed Technique I −0.0034
Proposed Technique II −0.0033
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state space representation.

A =



−10.23−10.19 0 0 3.46 0 0 0

10.19 0 0 0 0 3.46 0 0

−10.23 28.04 −0.83−11.15 0 0 3.46 0

0 0 11.15 0 0 0 0 3.46

−3.46 0 0 0 0 0 0 0

0 −3.46 0 0 0 0 0 0

0 0 −3.46 0 0 0 0 0

0 0 0 −3.46 0 0 0 0


B =

[
11 0 11 0 0 0 0 0

]T
C =

[
−0.20 0.57 −0.01 0.02 0 0 0 0

]
D = 0
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Figure 4.1: Step Response error

Fig 4.1 illustrates the plot of the response error of the 5th order ROM obtained by the

techniques GJ [11], GA [12], MI I [17], MI II [17], Proposed technique I and Proposed

technique II in the desired time interval [t1, t2] = [0, 20]sec. Fig 4.1 shows that both proposed

techniques give least approximation error as compared to the existing techniques GJ [11],

GA [12], MI I [17] and MI II [17].

Fig 4.2 illustrates the plot of the impulse response error of the of the 5th order ROM
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Figure 4.2: Impulse Response error
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obtained by the techniques GJ [11], GA [12], MI I [17], MI II [17], Proposed technique I

and Proposed technique II in the desired time interval [t1, t2] = [0, 20]sec. Fig 4.3 illustrates

the plot of the impulse response of the original system and impulse response of the 5th

order ROM obtained by the techniques GJ [11], GA [12], MI I [17], MI II [17], Proposed

technique I and Proposed technique II in the desired time interval [t1, t2] = [0, 20]sec. It

is observed from Fig 4.1-4.3 that proposed techniques yield less step and impulse response

error when compared with existing TLMOR techniques.

Example 3: Consider a LTI stable system of order 12 with the following state space repre-

sentation.

A =



−1.26−3.17 0 0 0 0 6.70 0 0 0 0 0

3.17 0 0 0 0 0 0 6.70 0 0 0 0

0 45.36−0.92−8.51 0 0 0 0 6.70 0 0 0

0 0 8.51 0 0 0 0 0 0 6.70 0 0

0 0 0 16.92−0.33−11.60 0 0 0 0 6.70 0

0 0 0 0 11.60 0 0 0 0 0 0 6.70

−6.70 0 0 0 0 0 0 0 0 0 0 0

0 −6.70 0 0 0 0 0 0 0 0 0 0

0 0 −6.70 0 0 0 0 0 0 0 0 0

0 0 0 −6.70 0 0 0 0 0 0 0 0

0 0 0 0 −6.70 0 0 0 0 0 0 0

0 0 0 0 0 −6.70 0 0 0 0 0 0


B =

[
12 0 0 0 0 0 0 0 0 0 0 0

]T
C =

[
0 0 0 0 0 0.01 0 0 0 0 0 0

]
D = 0

Fig 4.4 illustrates the plot of the response error of the 6th order ROM obtained by the

techniques GJ [11], GA [12],MI I [17], MI II [17], Proposed technique I and Proposed

technique II in the desired time interval [t1, t2] = [10, 27]sec. Fig 4.4 shows that both the
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Figure 4.4: Step Response error

proposed techniques give least approximation error as compared to the existing techniques

GJ [11], GA [12], MI I [17] and MI II [17].

Fig 4.5 illustrates the plot of the impulse response error of the of the 6th order ROM

obtained by the techniques GJ [11], GA [12], MI I [17], MI II [17], Proposed technique I

and Proposed technique II in the desired time interval [t1, t2] = [10, 27]sec. Fig 4.6 illus-

trates the plot of the impulse response of the original system and impulse response of the 6th

order ROM obtained by the techniques GJ [11], GA [12], MI I [17], MI II [17], Proposed

technique I and Proposed technique II in the desired time interval [t1, t2] = [10, 27]sec. It

is observed from Fig 4.4-4.6 that proposed techniques yield less step and impulse response

error when compared with existing TLMOR techniques.

Example 4: Consider an analogue chebyshev type 1 bandpass filter of 30th order with pass-
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Figure 4.5: Impulse Response error
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Figure 4.6: Impulse response
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band ripple of 7 dB.

G(s)=

−1.155e−14s29 − 4.093e−12s28 − 5.639e−11s27 − 9.313e−9s26−

9.127e−8s25 − 1.24e−5s24 − 8.965e−5s23 − 0.01074s22 − 0.06152s21−

6.5s20 − 29.5s19 − 2496s18 − 10240s17 − 802816s16 + 3.047e10s15−

1.887e8s14 − 5.033e8s13 − 3.168e10s12 − 7.14e10s11 − 4.123e12s10−

7.49e12s9 − 3.958e14s8 − 5.629e14s7 − 2.702e16s6 − 2.815e16s5−

1.279e18s4 − 8.332e17s3 − 3.632e19s2 − 1.146e19s− 4.658e20

s30 + 3.065s29 + 3380s28 + 9635s27 + 5.245e6s26 + 1.382e7s25 + 4.956e9s24 + 1.2e10s23+

3.188e12s22 + 7.031e12s21 + 1.478e15s20 + 2.944e15s19 + 5.103e17s18 + 9.076e17s17+

1.336e20s16 + 2.094e20s15 + 2.671e22s14 + 3.631e22s13 + 4.083e24s12 + 4.71e24s11+

4.73e26s10 + 4.5e26s9 + 4.081e28s8 + 3.071e28s7 + 2.538e30s6 + 1.416e30s5+

1.074e32s4 + 3.946e31s3 + 2.769e33s2 + 5.022e32s+ 3.277e34
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Figure 4.7: Step Response error

Fig 4.7 illustrates the plot of the response error of the 15th order ROM obtained by the

techniques GJ [11], GA [12], MI I [17], MI II [17], Proposed technique I and Proposed

technique II in the desired time interval [t1, t2] = [0, 10]sec. Fig 4.7 shows that both the
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proposed techniques give least approximation error as compared to the existing techniques

GJ [11], GA [12], MI I [17] and MI II [17].
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Figure 4.8: Impulse Response error

Fig 4.8 illustrates the plot of the impulse response error of the of the 15th order ROM

obtained by the techniques GJ [11], GA [12], MI I [17], MI II [17], Proposed technique I

and Proposed technique II in the desired time interval [t1, t2] = [0, 10]sec.

Fig 4.9 illustrates the plot of the impulse response of the original system and impulse

response of the 15th order ROM obtained by the techniques GJ [11], GA [12], MI I [17],

MI II [17], Proposed technique I and Proposed technique II in the desired time interval

[t1, t2] = [0, 10]sec. It is observed from Fig 4.7-4.9 that proposed techniques yield less step

and impulse response error when compared with existing TLMOR techniques.

Example 5:Consider an analogue chebyshev type 1 bandpass filter of 16th order with pass-
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Figure 4.9: Impulse response

band ripple of 20 dB.

G(s)=

2.22e−15s15 − 2.274e−13s14 + 1.137e−12s13 − 1.455e−10s12 + 1.746e−10s11−

2.235e−8s10 + 1.024e−8s9 + 3.376e5s8 + 6.557e−7s7 − 0.0001221s6+

8.583e−6s5 − 0.002686s4 + 6.104e−5s3 − 0.02637s2 + 0.0003052s− 0.09961

s16 + 0.7715s15 + 648.3s14 + 427.7s13 + 1.605e5s12+

8.686e4s11 + 1.928e7s10 + 8.094e6s9 + 1.199e9s8 + 3.642e8s7+

3.905e10s6 + 7.915e9s5 + 6.582e11s4 + 7.893e10s3 + 5.383e12s2 + 2.883e11s

Fig 4.10 and Fig 4.11 illustrates the unmagnified and magnified veiw respectively of plot

of the response error of the 5th order ROM obtained by the techniques GJ [11], GA [12],

MI I [17], MI II [17], Proposed technique I and Proposed technique II in the desired time

interval [t1, t2] = [0, 16]sec. Fig 4.10 and Fig 4.11 shows that both proposed techniques give

least approximation error as compared to the existing techniques GJ [11], GA [12], MI I [17]

and MI II [17].

Fig 4.12 illustrates the plot of the impulse response error of the of the 5th order ROM

obtained by the techniques GJ [11], GA [12], MI I [17], MI II [17], Proposed technique I

46



0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

 

 

Step Response Error

Time (sec)

A
m

pl
itu

de

GJ [11]
GA [12]
MI I [17]
MI II [17]
Proposed Technique I
Proposed Technique II

Figure 4.10: Step Response error
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Figure 4.11: Zoom view of Step Response error
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Figure 4.12: Impulse Response error

and Proposed technique II in the desired time interval [t1, t2] = [0, 16]sec.

Fig 4.13 illustrates the plot of the impulse response of the original system and impulse

response of the 5th order ROM obtained by the techniques GJ [11], GA [12], MI I [17],

MI II [17], Proposed technique I and Proposed technique II in the desired time interval

[t1, t2] = [0, 16]sec. It is observed from Fig 4.10-4.13 that proposed techniques yield less

step and impulse response error when compared with existing TLMOR techniques.
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Chapter 5

Conclusion

5.1 Conclusion

In this thesis two new TLMOR techniques have been proposed that not only preserve sta-

bility in ROMs but also carries error bounds. Moreover, proposed techniques yield least

approximation error as compared to existing TLMOR techniques. It is observed from nu-

merical results that GJ [11] TLMOR technique yield less approximation error but it may

sometime yield unstable ROM. Proposed techniques yield less approximation error as com-

pared to existing stability preserving TLMOR techniques.

5.2 Future Directions

A lots of work has been done in FWMOR and FLMOR but in TLMOR there are still many

open areas for research. Some improvements are needed in this area, that are given below:

• Existing techniques like wang et al’s, VA [6], GA [12], GS [4] and IG [13] and pro-

posed techniques are realization dependant, where original system realization pro-

duces lower approximation error and tight error bounds needs attention.

• Existing techniques may be extended and applied in time weighted MOR.

• TLMOR techniques are not relavent for non-linear systems. So, in future TLMOR

techniques with some suitable improvisations may be applied in non-linear systems.

• In this thesis first order systems are used. In future TLMOR techniques could be

applied in second order systems.

• TLMOR techniques use BT [1] . Different other MOR techniques like Krylov, Hankel

norm, Pade approximation techniques could be used in future.

• Stability of the ROM in GJ’s FLMOR and TLMOR technique is not ensured. This

will remain an open area for future research.
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