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ABSTRACT 

 
The increased reliance on images makes the significance of image 

compression more pronounced than ever. There is wide range of practical values 

for today that are dealing with the transmission of a large amount of image data 

therefore, it warrants image compression as a necessity of time for better handling. 

For last two decades, image compression is being performed more often than not 

by using most popular “Time Frequency” wavelet transformation. The Discrete 

Wavelet Transform (DWT) is a type of wavelet transform in which signal is 

transformed into discretely sampled wavelets.  A number of wavelet based image 

compression techniques like Embedded Zero-tree Wavelet (EZW) transform and 

Set Partitioning in Hierarchical Trees (SPIHT) are being used to attain better 

standards of PSNR and compression ratios. 

EZW, a computationally simple and very effective technique, is an 

embedded compression algorithm of its time that works on DWT to predict the 

absence of significant information by exploiting self-similarities across the scale. 

However, it lacked the insight about coefficient position, didn‟t cater for intra-

band correlation and its performance with single embedded file was not much 

pronounced. The improvements in EWZ were brought in with the introduction of 

SPIHT, which is again a fully embedded codec algorithm. It uses principal of 

partial ordering by magnitude, set partitioning by importance of magnitude of the 

coefficients, self-similarity across the scale and ordered bit plan transmission.  

SPIHT encodes the transformed coefficients with respect to their 

importance as compared to a given threshold. Statistical analysis have exhibited 

that the output bit-stream of SPIHT comprises of long series of zeroes which can 

be further compressed, therefore SPIHT is not recommended to be used as sole 

mean of compression. To this end, additional compression is being done by 

making use of different kinds of entropy encoding schemes. One of the entropy 
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encoding scheme which is concatenated with SPIHT for further compression is 

Huffman encoding.  

This research is motivated by the requirement of a viable solution for fast 

transmission and less storage space. This research concentrates on saving 

comparatively more number of bits without compromising the quality of the image 

by combining two encodings “Set Partitioning in Hierarchical Tree and Huffman 

coding. This is done by making deft use Huffman encoding where it yields the 

optimized results and saves more numbers of bits thereby reducing the storage 

space and increasing the transmission time. 

 

  



vi 
 

CERTIFICATE 

 It is to certify that final copy of thesis written by Mr Asim Ashfaq of 

Military College of Signals has been evaluated by me, found complete in all 

respect as per the specified format of NUST Statutes / Regulations, is free of 

plagiarism, errors and mistakes.  

 

 

 

Dated: ______________   ______________________ 

       Col Dr Imran Tauqir 

 

  



vii 
 

DECLARATION 

 No content of work presented in this thesis has been submitted in 

support of another award of qualification or degree either in this institution 

or anywhere else. 

 

  



viii 
 

ACKNOWLEDGEMENTS 

 With profound humility, I pay my gratitude to Allah Almighty for enabling 

me to achieve another astounding milestone in my literary career. I would like to 

extend my special thanks to the faculty and administration of Military College of 

Signals and NUST, for proffering a commendable research environment at the 

institute. This arduous work would have not possible without the support of my 

supervisor Col. Dr. Imran Tauqir who not only provided timely guidance, 

profound encouragement and positive criticism but also ensured that I complete 

the assigned tasks in stipulated time. His affectionate and kind consideration 

towards my research helped me to carry on with my project in odd circumstances. 

I m also very obliged to my committee members, Lt. Col. Dr. Adil Masood and Lt. 

Col. Usman Malik for their intimate help in fulfillment of this research work. 

 I am deeply indebted to my great parents, siblings and colleagues for their 

encouragement and affectionate selfless prayers. Most importantly I would like to 

thank my beloved wife for understanding the significance of this assignment and 

sharing the burden of domestic liabilities. She always infused motivation to my 

efforts and encouraged me whenever I was fatigued and tended to relax. Last but 

not the least, her invariable appreciation was a  constant source of motivation for 

me. 

  



ix 
 

LIST OF ACRONYMS 

1.  Peak Signal to Noise Ratio   PSNR 

2.  Zero Tree Root  ZTR 

3.  Isolated Zero  IZ 

4.  Compression Ratio  CR 

5.  Discrete Fourier Transform  DFT 

6.  Discrete Wavelet Transform  DWT 

7.  Dominant Pass  D 

8.  Embedded Zero-tree Wavelet  EZW 

9.  Mean Square Error  MSE 

10.  Set Partitioning In Hierarchical Trees  SPIHT 

11.  One Dimensional  1 D 

12.  Subordinate Pass  S 

13.  Two Dimensional  2 D 

14.  

15. 

16. 

17. 

18. 

19. 

Successive Approximation Quantization 

Fast Fourier Transform                                                   

 Inverse Fourier Transform 

Inverse Discrete Fourier Transform 

Positive 

Negative 

 SAQ 

FFT 

IFT 

IDWT 

Pos 

Neg 

    

 

  



x 
 

TABLE OF CONTENTS 

 

DEDICATION ..................................................................................................................................... iii 

ABSTRACT ....................................................................................................................................... ivv 

CERTIFICATE OF ORIGINALITY ................................................................................................... vi 

DECLARATION ................................................................................................................................ vii 

ACKNOWLWDGEMENTS .............................................................................................................. viii 

LIST OF ACRONYMS ....................................................................................................................... ix 

TABLE OF CONTENTS ..................................................................................................................... ix 

LIST OF FIGURES ........................................................................................................................... xiii 

LIST OF TABLES ............................................................................................................................. xiv 

Chapter 1 Introduction....................................................................................................................... 1 

1.1 Background ........................................................................................................................... 1 

1.2 Research Motivation ............................................................................................................. 2 

1.3 Research Objectives .............................................................................................................. 2 

1.4 Image Compression .............................................................................................................. 3 

1.5 Principle of Image Compression ........................................................................................... 3 

1.5.1 Statistical Redundancy: ........................................................................................................ 4 

1.5.1.1 Inter-Pixel Redundancy ........................................................................................................ 4 

1.5.1.2 Coding Redundancy ............................................................................................................. 4 

1.5.2 Psycho Visual Redundancy .................................................................................................. 5 

1.6 Image Compression Process ................................................................................................. 5 

1.7 The Outline ........................................................................................................................... 6 

Chapter-2 Wavelets Analysis ............................................................................................................. 7 

2.1 Introduction ........................................................................................................................... 7 

2.2 Wavelets ................................................................................................................................ 7 

2.3 Background ........................................................................................................................... 8 

2.4 Wavelet Transform ............................................................................................................... 9 

2.5 Wavelet Transform and its Importance` ............................................................................. 10 



xi 
 

2.6 Prefererence over Fourier Transform .................................................................................. 11 

2.7 Multi Resolution Analyses (MRA) ..................................................................................... 12 

2.8 Type of Wevelet Transform ................................................................................................ 15 

2.8.1 Continuous Wavelet Transform (CWT) ............................................................................. 15 

2.8.1.1 The Inverse Wavelet Transform ......................................................................................... 16 

2.8.2 DWT Decomposition .......................................................................................................... 17 

2.8.2.1 DWT in One Dimensional .................................................................................................. 18 

2.8.2.2 Two Dimensional DWT ..................................................................................................... 19 

Chapter 3  Embedded Zero-Tree Wavelet (EZW)Transform .................................................... 22 

3.1  Introduction ......................................................................................................................... 22 

3.2  Embedded Encoding ........................................................................................................... 22 

3.3  Zero-Tree Structure ............................................................................................................. 23 

3.4  EZW Encoding Process ...................................................................................................... 24 

3.5  Encoding Concept of EZW ................................................................................................. 27 

3.5.1  Progressive Coding ............................................................................................................. 27 

3.5.2 Significance Map Encoding ................................................................................................ 28 

3.6 The Successive Approximation Quantization (SAQ) ......................................................... 30 

3.7 The EZW Algorithm ........................................................................................................... 31 

3.8 Example .............................................................................................................................. 34 

Chapter 4  SPIHT (Set Partitioning in Hierarchical Trees) ........................................................ 37 

4.1  Introduction ......................................................................................................................... 37 

4.2 Progressive Transmission Scheme ...................................................................................... 38 

4.3 Set Partitioning Sorting Technique ..................................................................................... 40 

4.4 Spatial Orientation Tree ...................................................................................................... 41 

4.5 Set Partitioning Rules and Algorithm ................................................................................. 42 

4.6 SPIHT Encoding and Decoding .......................................................................................... 44 

4.6.1  Step-1: Initialization ........................................................................................................... 45 

4.6.2  Step-2: The Sorting Pass ..................................................................................................... 45 

4.6.3  Step-3: The Refinement Pass .............................................................................................. 45 

4.6.4 Step-4: Renewing Quantization Step Pass .......................................................................... 46 



xii 
 

4.7 Example 4.1 ........................................................................................................................ 46 

Chapter 5 Entropy Encoding (Huffman Encoding) ....................................................................... 49 

5.1  Introduction ......................................................................................................................... 49 

5.2 Huffman Coding ................................................................................................................. 49 

5.2.1 The Basic Principles ........................................................................................................... 50 

5.2.2 Huffman Coding-Flow Chart .............................................................................................. 50 

5.2.3 Example .............................................................................................................................. 51 

Chapter 6 Results and Simulations ................................................................................................. 55 

6.1  Introduction ......................................................................................................................... 55 

6.2  Analysis of Contatanation of SPIHT with Huffman ........................................................... 56 

6.3  Proposed Method ........................................................................................................... 59 

6.4  Simulations and Results ............................................................................................... 63 

Chapter 7   Conclusion and Future Work .................................................................................... 83 

7.1  Conclusion .......................................................................................................................... 83 

7.2 Future work ......................................................................................................................... 84 

References .......................................................................................................................................... 84 

 

  



xiii 
 

OF FIGURES 

Figure 1.1 Compression and Decompression Process…………………………………….6 

Figure 2.1 Mother Wavelet w(t)……………..……………… ..………………………......9 

Figure 2.2 Scaling Wavelet (a) k=1, (b) k=2 and (c) k=3… ............……..…………….. 10 

Figure 2.3 Comparison of Sine wave and Wavelet (a) sine wave (b) wavelet ..………....11 

Figure 2.4 The Relationship of Scaling and Wavelet Function Spaces ............................14 

Figure 2.5 One level filter bank for computation of 2-D DWT… ……………………....19 

Figure 2.6 Output of 2-D decomposition upto one level..…………… .………………....20 

Figure 3.1 Embedded coding Scheme……………………………………… ....…...……23 

Figure 3.2 EZW Compression Diagram…………………………………………… ..…..25 

Figure 3.3 Low bit rate image coder….…….... ................................................................30 

Figure 3.4 Flow chart to encode a significance map coefficient……………… ………...33 

Figure 3.5 (b) scanning order (Morton scan)…… ....................................………………34 

Figure 4.1 Spatial orientation tree… …………………………………………………… 42 

Figure 4.2 Data structure used in the SPIHT algorithm .………………………………...43 

Figure 5.1 Flow chart of Huffman coding……………………………………… ……….51 

Figure 5.2 Formation of sub group.………………… .………………...……………….. 52 

Figure 5.3 Huffman tree processing… ..…………………………………………………53 

Figure 6.1 Output bit performance at given bit rates for 3, 4, 5, 6 & 7 bits symbol .........66 

Figure 6.2 Bits saving capacity performance at given bit rates 3, 4, 5, 6 & 7 bits symbol ......... 67 

Figure 6.3 Elapsed timing performance at given bit rates 3, 4, 5, 6 & 7 bits symbol .......67 

Figure 6.4 PSNR performance at given bit rates 3, 4, 5, 6 & 7 bits symbol .……………68 

Figure 6.5 MSE performance at given bit rates 3, 4, 5, 6 & 7 bits symbol ...……………68 

Figure 6.6 Output bit performance at given bit rates for Lena 512x512 Image ................72 

Figure 6.7 Bits saving capacity performance at given bit rates for Lena 512x512 

image ................................................................................................................72 

Figure 6.8 PSNR performance at given bit rates for Lena 512x512 image ......................73 

Figure 6.9 MSE performance at given bit rates for Lena 512x512 image ........................73 

Figure 6.10 Output bit performance at given bit rates for Barbara 512x512 Image ...........76 

Figure 6.11 Bits saving capacity performance at given bit rates for Barbara 512x512 

image ................................................................................................................77 

Figure 6.12 PSNR performance at given bit rates for Barbara 512x512 image ..................77 

Figure 6.13 MSE performance at given bit rates for Barbra 512x512 image .....................78 

Figure 6.14 Image compression using proposed algorithm on Lena image of size 

512x512 using various rate  .........................................................……………79 

Figure 6.15 Image compression using proposed algorithm on Barbara image of size 

512x512 using various rate  .........................................................……………81  



xiv 
 

LIST OF TABLES 

Table 3.1 Quantized Coefficients & Significance Map...... …...……………….............29 

Table 3.2 (a) Data Set ....................................................................................................34 

Table 4.1 Order of coefficients in binary representation..…...…………………...........40 

Table 4.2 Set of Image Wavelet Coefficients used by example. The numbers outside 

the box indicate the set of co-ordinates used .......………………..................46 

Table 4.3 SPHIT Process..…..…………………......................................................…..47 

Table 5.1 Symbol Frequency with Table of Occurrence .................................…......…..52 

Table 5.2 Tables of Arranged Symbols in decreasing order of frequency ....................52 

Table 5.3 Assigning Code Word .........................................…………………………..53 

Table 6.1   (a) Original Matrix (b) Dwt coefficients of arbitrary data set ...................... 56 

Table 6.2 Code word Comparison Table .............................………………………….59 

Table 6.3 Performance measures at given bit rates for 3 bits symbols .......…………..64 

Table 6.4 Performance measures at given bit rates for 4 bits symbols .......…………..64 

Table 6.5 Performance measures at given bit rates for 5 bits symbols .........................65 

Table 6.6 Performance measures at given bit rates for 6 bits symbols....................…..65 

Table 6.7 Performance measures at given bit rates for 7 bits symbols....................…..66 

Table 6.8 Performance measures at given bit rates for 3 bits symbols for Lena 512x512 

image ...........................................................................................…………..69 

Table 6.9 Performance measures at given bit rates for 4 bits symbols for Lena 512x512 

image ...................................................................…………………………..70 

Table 6.10 Performance measures at given bit rates for 5 bits symbols for Lena 512x512 

image ...................................................................…………………………..70 

Table 6.11 Performance measures at given bit rates for 6 bits symbols for Lena 512x512 

image ...................................................................…………………………..71 

Table 6.12 Performance measures at given bit rates for 7 bits symbols for Lena 512x512 

image ...................................................................…………………………..71 

Table 6.13 Performance measures at given bit rates for 3 bits symbols for Barbra 

512x512 image ....................................................…………………………..74 

Table 6.14 Performance measures at given bit rates for 4 bits symbols for Barbra 

512x512 image ....................................................…………………………..74 

Table 6.15 Performance measures at given bit rates for 5 bits symbols for Barbra 

512x512 image ....................................................…………………………..75 

Table 6.16 Performance measures at given bit rates for 6 bits symbols for Barbra 

512x512 image ....................................................…………………………..75 

Table 6.17 Performance measures at given bit rates for 7 bits symbols for Barbra 

512x512 image ....................................................…………………………..76 

 

  



1 
 

Chapter-1 

Introduction  

1.1 Background  

Nowadays use of images has increased many folds. This merits efficient 

compression so as to reduce storage and bandwidth requirements.  During the last 

two to three decades, many wavelets based efficient image compression methods 

with progressive bit stream output have come up as an efficient solution [1]. With 

the emergence of Embedded Zero Tree Wavelet (EZW) Encoding algorithm, the 

wavelet based image compression has witnessed massive development. Search of 

improvements in EZW led to another better encoding technique “Set Partitioning 

in Hierarchical Tree” (SPIHT).   

 SPIHT encoding has yielded efficient compression performance than EZW. 

This has been done by making use of property of self similarity of the coefficients. 

The output of SPIHT once further fed to entropy coding, it paves the way towards 

better results. To this end, several entropy encoding schemes like Huffman, 

Arithmetic and Lempel Ziv Welch have remained prime considerations, both for 

the lossless and lossy compression, for the researcher.  

 Nevertheless, the researchers have proposed a variety of combinations to 

obtain efficient compression results yet the room for improvements still exists. 

There is a possibility that entropy coding, once used by utilizing  its best  possible 

way, may produce more efficient compression by saving extra number of bits than 

before without compromising on the quality of original image and its basic facet 

like Peak Signal to Noise Ratio (PSNR). The purpose of this research is directed to 
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work on image compression that uses set partitioning in hierarchical (SPIHT) 

along with entropy encoding with a view to bring some improvements in image 

storage capacity and transmission time by saving more number of bits.  

1.2 Research motivation 

 Since versatile information expressed graphically through images is 

considered much easier to collate, disseminate, articulate and assimilate therefore, 

utilization of digital Images has become part and parcel of every walk of life. 

Albeit, invent of smart devices have made use of images more frequent than ever 

yet this has put some extra constraint on bandwidth and storage space because 

extra bits are  needed to sustain the image quality. To this end, there is a dire need 

to tackle the above highlighted issues of bandwidth and storage space. Therefore, 

this research is motivated by the requirement of a viable solution for fast 

transmission and less storage space. This research concentrates on saving 

comparatively more number of bits without compromising the quality of the image 

by combining two encodings “Set Partitioning in Hierarchical Tree and Entropy 

coding”.   

 

1.3 Research Objectives The research work is expected to have 

following objectives:- 

1) Study embedded codec image compression techniques based on 

discreet wavelet transformation (DWT). 

2) Analysis of “Set Partitioning in Hierarchical Tree” and its variants in 

detail in order to sift out its various facets for apt utilization. 
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3) In depth analysis of entropy coding technique in order to make its 

better use to bring further improvements in image compression. 

4) Make use of both encodings, SPIHT and Entropy, by combining 

together for efficient image compression by saving more number of 

bits. 

5) Propose a better image compression model for enhanced storage and 

fast transmission. 

1.4 Image compression 

In present era, huge amount of information is stored, processed and 

transmitted digitally thereby necessitates that deft methods be adopted or devised 

to meet the requirements of storage space and address the limitations of 

bandwidth. Image compression is the reduction of size of digital image without 

compromising on the quality and is achieved by minimizing the number of bytes 

of an image file with compromising on the quality of an image to a bare minimum 

level.   

1.5 Principle of Image Compression 

An image is comprised of lot of pixels which are correlated with each other, 

which is why the neighboring pixels are very similar.  Due to this correlation, only 

a small amount of redundant information can be get rid of because if the 

information from an image is removed without de-correlating it, there are chances 

that some of the important information is also lost as result thereby affecting the 

image quality. Therefore, there is a need that image be first de-correlated before 

subjecting it to the compression.   Above in view, the digital images are first 

converted into statistically uncorrelated dataset before transmission and storage. 
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Original or approximated image can be regenerated after the decompression 

process. Image compression deals with the redundancy. It eradicates or reduces 

the redundant and irrelevant data which is duplicated in the image there by 

preserving the image quality to a level which is acceptable by human eye. Two of 

the commonly known types of redundancies are Statistical Redundancy and 

Psycho Visual Redundancy:- 

1.5.1 Statistical Redundancy  It is further classified into two types 

1.5.1.1 Inter-Pixel Redundancy  

 It has been observed that neighboring pixels have similar values. Inter-

Pixel redundancy is further divided in to Spatial, Spectral and Temporal 

redundancies. Correlation or redundancy of neighboring pixels is dealt by 

spatial redundancy. Spectral is related to different bands and color plans 

where as Temporal deals with adjacent frames in a sequence of image.  

While compressing an image, much of reliance is made on removal of 

maximum of spatial and spectral redundancies. 

1.5.1.2 Coding Redundancy 

 It is based on the principle that some pixel values are more common 

than others. It can also be related to the representation of information 

which has been expressed in the form of codes. Gray levels of an image 

are allocated more than the required number of code symbols which 

causes coding redundancy. 
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1.5.2 Psycho Visual Redundancy It has been observed after innumerable 

experiments that all visual information is not necessarily picked up 

completely by human eye with the same sensitivity rather it differentiates 

some information as more important than the other. Therefore, extraction of 

only such information which is considered important to the human eye of a 

particular user by eliminating the unimportant information, which is termed 

as psycho visual redundant, comes under Psycho Visual Redundancy ambit. 

 

1.6 Image Compression Process 

Image compression process works over three tires. Starting from de-

correlation that is done by many ways few are transformation, predictive coding 

and sub-band coding. This is followed by quantization which is to reduce the 

precision and achieve the better compression ratios. Last but not the least is the 

entropy encoding for optimizing the compression results. Compression processes 

are lossy and losses depending upon the techniques being used. Hence in general it 

can be said that there are three components in compression concatenated  closely 

as shown in the figure 1.1. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Compression and De-compression process 
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1.7 The Outline  

 This search work is comprised of seven chapters. Chapter 1 gives a prelude 

to the research incorporating background, motivation and contributions. Chapter 2 

underlines need for image compression, its principles and processes. Chapter 3 

describes about wavelet transform in general and DWT in particular. Chapter 4 

highlights the EZW transform along with its advantages and shortcomings. 

Chapter 5 explains the concept as to how SPIHT has outperformed the EZW. 

Chapter 6 enunciates about entropy encoding and its apt utilization for optimal 

results that also includes the proposed methodology in detail and finally in chapter 

7 the results along with future work have been presented. 
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Chapter-2 

Wavelet Analysis and Transform 

2.1 Introduction  

This chapter will dilate upon wavelet, its analysis and wavelet 

transformation in general and Discrete Wavelet Transform, which forms the basis 

of present embedded encoding techniques, in particular. The facts as to how the 

wavelet has outperformed its predecessors and why DWT is being preferred over 

DCT or CWT as the basis of embedded codec will also come under discussion to 

establish the a coherent relationship with the upcoming chapters.  

2.2 Wavelets 

Wavelets are small wavelike mathematical functions of varying frequency 

and limited duration [2 & 3]. A single function f(x) that generates all these 

function is called the mother wavelet. Mother wavelet function is represented by 

the equation:- 

  𝑓 𝑥 =  ∝𝑘 𝜑𝑗 ,𝑘(𝑥)

𝑘

 

Where 

𝜑
𝑗 ,𝑘(𝑥)=2

𝑗
2𝜑 2𝑗𝑥−𝑘 

 

 

Position of φj,k (x) along the x-axis is defined by K whereas j tells about 

width of the function [4]. Higher frequency wavelet corresponds to narrow width 

and lower frequency corresponds to wider width[5].  
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2.3 Background 

The signals nowadays are mostly time-domain signals in their raw format 

which once plotted, gives “Time Amplitude” representation. But then it is not the 

best method for presenting a signal as most of the distinct information is hidden in 

frequency contents. Since frequency is something that deals with the rate of 

change of that thing, therefore, if changes are rapid we say frequency is high and if 

these are slow then we say that frequency is low. Fourier Transform (FT) helps in 

measuring the frequency contents of a signal. If the Fourier Transform of a signal 

is taken in time domain, then representation of frequency amplitude of a signal is 

the outcome. It can be concluded that frequency information of a signal can be 

obtained by using Fourier Transform but it provides data about quantity of  

frequency in each signal and no information is rendered about at what time it 

existed.   

Same time there is requirement when a signal needs information both in 

frequency and time domain for its apt utilization. Albeit, FT is reversible 

transform but only one representation i.e either frequency or time is present at a 

time therefore, could not meet desired requirements.  However, with the 

introduction of wavelet transform representation of signal both in time and 

frequency became a reality. 

2.4 Wavelet Transform 

Data is converted in various frequency components with the help of 

wavelets. Out of these frequency components each one is representing to a specific 

resolution corresponding to the concerned scale [6]. The essential idea of this 

transform is to signify that any random function can be represented as a 

superposition of a basis function. Baby functions are obtained when mother 

wavelet like the one in figure 2.1 is scaled and shifted.  
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Figure-2.1:   Mother wavelet w(t) 

During the last two decades wavelet transform is being utilized in several 

fields of life like compression of an image, prediction of earthquake, turbulence 

and human vision. The analysis of wavelet creates a scale versus time plot of 

signal amicably.  All functions of a wavelet w( 2kt-m) can be obtained by utilizing 

a single mother wavelet w(t).  Whereas the mother wavelet w(t) is a pulse or short 

interval wave that exists from time t=0 to t-T.  Similarly a shifted wavelet that 

starts at t=m and terminates at t m+T is w (t-m) and w (2kT) is a scaled version 

obtained by starting mother wavelet at T=0 and terminating at t=T/2k as shown in 

figure 2.2.  Wavelet gets narrower with the increase in the scaling factor. A 

wavelet which is wide in shape and size is equivalent to low frequency sinusoid of 

Fourier transform whereas narrow wavelets are the high frequency sinusoid of 

Fourier transform. Moreover wavelets with zero inner product are called 

orthogonal to each other.  

 

 

(a) 
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(b) 

 

(c) 

Figure-2.2: Scaling wavelet (a) k=1, (b) k=2 and (c) k=3 

 

2.5  Wavelet Transform and Its Importance 

Nowadays wavelet transform has become very popular and is being 

preferred over other techniques in many areas. One of the main areas out of them 

is Data compression. In data compression, wavelet transform is given priority due 

to the reason of its ability to compress data and image at various resolutions levels 

[7] [8] [9]. Local analysis of larger signal can also be performed with the help of 

wavelets [3][8]. This characteristic of wavelets distinguishes it from the others. 

Moreover, wavelet coefficients also help in plotting the exact position of the 

discontinuity in time domain. 
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2.6 Preference over Fourier Transform 

As discussed earlier Fourier transform can provided representation either in 

time or frequency domain at a time whereas wavelets transform can express the 

properties of a signal both in time and frequency domain simultaneously.  The 

basis functions in Fourier transform are the sine waves that extends from –ve 

infinity to +ve infinity means there is no existence in a defined interval. As we 

know that sine waves are relatively predictable for being smooth as compared to 

the wavelets which are symmetric and irregular therefore, to analyze signals with 

sharp changes an irregular wavelet is a better option than a smooth sine wave. 

Same is evident from the figure 2.3. 

 

 

 

 

 

  

(a) 

 

 

 

 

 
(b) 

Figure-2.3:    Compression of Sine Wave and Wavelet (a) Sine Wave (b) Wavelet  

 

 

. . .                                                                                         . . . 
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2.7 Multi Resolution Analyses (MRA) 

 In multi resolution analysis, a series of approximations of a signal are 

produced with the help of a scaling function [10] and alteration in data between 

neighboring approximations are encoded with by using wavelet function. In 

equation 2.1 g(x) is a signal that can be studied as expansion function‟s linear 

combination 

𝑔(𝑥) =   𝛼𝑘𝜙𝑘(𝑥)

𝑘

 2.1 

 Here 𝛼𝑘 are called as real valued expansion-coefficients and 𝜙𝑘(𝑥) are 

called real valued expansion-functions. 𝜙𝑘 𝑥   are called basis functions if the 

expansion is unique.  Here V  as given under is the function space of expansion set 

{𝜙𝑘(𝑥)}  

V =  𝑠𝑝𝑎𝑛𝑘{𝜙𝑘(𝑥)} 2.2 

 And 𝑔 𝑥 ∈ 𝑉means that 𝑔 𝑥  is in the span of {𝜙𝑘(𝑥)} and can be 

written in the form of Eq. 2.3. The coefficients 𝛼𝑘  are computed by taking the 

inner products of the dual 𝜙 𝑘(𝑥)‟s and function𝑔 𝑥 . That is  

𝛼𝑘 =  𝜙 𝑘 𝑥 ,𝑓 𝑥  =  𝜙 𝑘
∗ 𝑥 𝑔 𝑥  𝑑𝑥 2.3 

 If {𝜙𝑘(𝑥)} is an orthonormal basis for V, then𝜙𝑘 𝑥 =  𝜙 𝑘 𝑥 . If 

{𝜙𝑘(𝑥)} are not orthonormal but an orthogonal basis for V, then the basis 

functions and their duals are called bi-orthogonal.  

 𝜙𝑗  𝑥 ,𝜙 𝑘 𝑥  = 𝛿𝑗𝑘 =  0     , 𝑗

≠ 𝑘                                                                     1     , 𝑗

= 𝑘                      

 

 

 

 

 

2.4 
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 Now consider the set of expansion functions {𝛟𝐣,𝐤(𝐱)}composed of 

integer translations and binary scalings of the real, square-integrable  

function 𝝓(𝒙)which is called a scaling function where 

𝜙𝑗 ,𝑘 𝑥 = 2𝑗 2  𝜙 (2𝑗𝑥 − 𝑘) 2.5 

for 𝑘 ∈ 𝑍  and 𝜙 𝑥 𝜖 𝐿2(𝑅). Because the shape of 𝜙𝑗 ,𝑘 𝑥  changes with j. We 

denote the subspace spanned over k for any j as 

𝑉𝑗 =  𝑠𝑝𝑎𝑛𝑘{𝜙𝑗 ,𝑘(𝑥)} 2.6 

 The scaling function has four fundamental requirements of multi-resolution 

analysis:- 

1) The scaling function is orthogonal to its integer translates. 

2) The subspaces spanned by the scaling function at low scales are 

nested inside those spanned at higher scales. That is 

𝑉−∞  ⊂ ⋯ ⊂ 𝑉−1 ⊂ 𝑉0 ⊂ 𝑉1 ⊂ 𝑉2 ⊂ ⋯ ⊂ 𝑉∞   

3) The only function that is common to all 𝑉𝑗 is𝑓(𝑥) = 0. That is  

𝑉−∞  =  0  

4) Any function can be represented with random precision. That is, 

𝑉∞  =  𝐿2(𝑅)  

The expansion functions of any subspace can be assembled from double-resolution 

copies of themselves. That is,  

 

𝜙 𝑥 =   𝜙 𝑛  2 𝜙 2𝑥 − 𝑛 

𝑘

 

 

2.7 
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Where ∅ 𝑛  coefficients are called as scaling function coefficients. 

 If we have a scaling function that qualifies the multi-resolution 

requirements, we can define a wavelet function 𝜓 𝑥 that covers the difference 

between any two adjacent scaling subspaces, 𝑉𝑗  𝑎𝑛𝑑 𝑉𝑗+1. We can define the 

set 𝜓𝑗 ,𝑘(𝑥) of wavelets 

𝜓𝑗 ,𝑘 𝑥 =  2𝑗 2  𝜓 (2𝑗𝑥 − 𝑘) 2.8 

 

for all kZ  that spans the space 𝑊𝑗where 

 

𝑊𝑗  =  𝑠𝑝𝑎𝑛𝑘  𝜓𝑗 ,𝑘  (𝑥) 2.9 

 

 

 

Figure-2.4: The relationship of scaling and wavelet function spaces 

 

 Scaling & wavelet functions subspaces as shown in figure 2.4 are linked by 

2 1 1 0 0 1V V W V W W    

0V
0W

1W

1 0 0V V W 
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𝑉𝑗+1  =  𝑉𝑗  ⊕  𝑊𝑗   2.10 

 Hence, space of all measurable, square-integrable function can be 

represented as 

𝐿2 𝑅 =  𝑉0  ⊕  𝑊0 ⊕  𝑊1 ⊕  𝑊2 ⊕ 2.11 

 Similar to the scaling function, the wavelet function can be stated as a 

weighted sum of shifted, double-resolution scaling functions. That is, 

𝜓 𝑥 =   𝜓 𝑛  2 𝜙 2𝑥 − 𝑛 

𝑛

 2.12 

 Where 𝜓(𝑛) are called the wavelet function coefficients. It can be shown 

that 𝜓(𝑛) is related to 𝜙(𝑛)by 

𝜓 𝑛 =   −1 𝑛  𝜙(1 − 𝑛) 2.13 

 

2.8 Types of Wavelet Transform 

 One of the most renowned time – frequency transform of the time is 

wavelet transform.  For the analysis of frequency components in time domain 

wavelet functions are used on the same lines like sine and cosine waves are 

utilized in Fourier transform to carry out the analysis of a signal. Wavelet 

transforms can be discussed under following :- 

2.8.1 Continuous Wavelet Transform (CWT) 

 The continuous wavelet transform is the natural extension of discrete 

transform. It transforms a continuous function in to a much redundant function of 
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two continuous variables which are scale and translation. The CWT offers the 

description of a signal in time and frequency domain which is kind of redundant 

but finely detailed. Problems related to signal identification and detection of  

concealed  transients ( difficult to detect  the short lived elements of signal) are 

specifically treated with the help of CWT[11]. Fourier analysis in Fourier 

transform is mathematically expressed as:- 

𝐹(𝑤)  =  𝑓(𝑡)𝑒−𝑗𝜔𝑡
∞

−∞
𝑑𝑡                      (2.13) 

The exponential ′′– jωt′′ is the superposition of real and imaginary 

components of the sinusoids and  here the CWT is mathematically defined as 

under 

C (Scale , position)  =  f t ψ (Scale , position , t)
∞

−∞
dt             (2.14) 

The result obtained will be CWT when a signal is multiplied with by a 

wavelet. Wavelet is used to define the basis functions of the wavelet transform. 

ψa,b t =  
1

 a
ψ  

t−b

a
  ;   a, bϵR1   and    a > 0                                (2.15) 

In the above equation  „a‟  is scaling factor which is used to select the width 

of a basis function and „b‟ is used for the translation of the wavelet in the time 

domain. So the continuous wavelet transform can be defined as: 

Wf a, b =   x t 
∞

−∞
ψa,b t dt                                                      (2.16) 

2.8.1.1 The inverse Wavelet Transform  

Inverse wavelet transform can be mathematically defined as: 

x t =  
1

C
  Wf a, b 

∞

−∞
ψa,b t db

da

a2

∞

0
                                  (2.17) 

Here  C =  
 ψ 2

ω

∞

−∞
dω < ∞            (2.18) 
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The Fourier transform of   the mother wavelet ѱ(t)  results in the  form of 

X(t ) and it must fulfill two conditions.  Number one, to stay away from 

singularity condition in the integral, C should be finite with X(t ) to have zero 

mean. This is called the admissibility condition and can be expressed 

mathematically as follows  

 

 𝜓 𝑡 𝑑𝑡 =   0   
∞

−∞
            (2.19) 

 

Number two,  the mother wavelet must have finite energy. 

 

  ψ t  2dt =    ∞
∞

−∞
       (2.20) 

2.8.2 DWT Decomposition  

In Fourier analysis, sinusoidal basis functions of different frequencies are 

obtained once Discrete Fourier Transform (DFT) decomposes a signal. This is a 

lossless transformation in which original signal can be completely recovered from 

its DFT representation. However, in case of wavelet analysis, the DWT 

decomposes a signal into a set of mutually orthogonal wavelet basis functions. 

These functions don‟t match with the sinusoidal basis functions. Moreover, 

wavelet functions are translated, scaled and dilated versions of mother wavelet φ. 

DWT is invertible like that of Fourier analysis, so that the original signal can be 

completely recovered. Haar wavelets and Daubechies set of wavelets are two of 

the most popular wavelets. The common properties of the two describe that 

wavelet functions are spatially localized, scaled, dilated and translated version of 

the mother wavelet. Moreover, each set of wavelet function makes an orthogonal 

set of basis functions.  
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2.8.2.1  DWT in One Dimensional 

One-dimensional DWT is a multi-resolution frequency decomposition and 

localization of a one-dimensional, discrete-time signal [11]. 

Analysis equation of orthogonal DWT for a signal that belongs to L2 ℛ   is 

defined as:- 

aj,k =   x t 2
j

2 ϕ 2jt − k dtbj,k =       x t 2
j

2 ψ 2jt − k dt    (2.21) 

Similarly for any signal that belongs to L2(ℛ)  the synthesis equation of the 

orthogonal inverse can be mathematically defined as: 

x t = 2
N

2  aN,kϕ (2N t − k)k  +   2
j

2  bj,kψ (2jt − k)k
M−1
j=N                  (2.22) 

Here ϕ t   is the scaling function which is orthogonal and aj,kis to express 

the scaling. Orthogonal wavelet function has been expressed as ψ t  and bj,k  is 

used to express wavelet coefficients.  The analysis equation of bi-orthogonal DWT 

for a signal that belongs to L2(ℛ) is written as 

a j,k =   x t 2
j

2 ϕ  2jt − k dtb j,k =       x t 2
j

2 ψ  2jt − k dt         (2.23) 

For a signal that belongs to L2 ℛ   the the synthesis equation of bi-

orthogonal IDWT is defined as : 

x(t) = 2
N

2  a N,kϕ (2N t − k)k  +   2
j

2  b j,kψ (2jt − k)k
M−1
j=N                   (2.24) 
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2.8.2.2 Two Dimensional DWT 

It is of a great utilization for the processing of images and applications 

related to computer vision. One can say that it is a kind of straight forward 

extension of the one dimensional discrete wavelet transform.. It can be  

implemented by utilizing down-samplers and digital filters.[12].  It goes without 

saying that 2-D separable wavelet transform is made when two of 1-D wavelet 

transforms are connected in series. The data is passed through the rows and then 

through the columns of the 1-D wavelet transform. A perfect 2-D DWT followed 

by IDWT reconstruction filter bank has been expressed in figure 2.5. 

 

 

 
 

Figure-2.5: One level filter bank for computation of 2-D DWT 

 

Projection of the image into basis of 2-D will result into transform 

coefficients.  When two 1-D basis are multiplied the consequence is a 2-D 

separable basis function. Therefore for the images, we have 4xbasis functions 

which have been represented in the equations from 2.25 to 2.28.  
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ϕ  u, v =  ϕ u  ϕ(v)  (2.25) 

    ψ1 u, v =  ψ u  ϕ(v)  (2.26) 

ψ2 u, v =  ϕ u  ψ v   (2.27) 

         ψ3 u, v  = ψ u  ψ v   (2.28) 

ϕ  u, v  is the scaling function of the images whereas ψ1 u, v ,ψ2 u, v and 

ψ3 u, v  represents the wavelet functions. When an image is projected into these 

basis functions, the coefficients are achieved after transformation and original 

image is decomposed into four sub-bands as under (Figure 2.6):- 

 

 LL Sub-bands ( Approximations ) 

 LH Sub-bands ( Vertical Details)  

 HL Sub-bands  ( Horizontal Details)  

 HH Sub-bands (Diagonal Details ) 

 

 
 

Figure-2.6: Output of 2-D Decomposition up to one level  



21 
 

 

 

 

 

Quantization  

By 

 Progressive  Encoding 
 

  



22 
 

Chapter-3  

Embedded Zero-Tree Wavelet (EZW) Transform 

3.1 Introduction 

 EZW is a coding algorithm which performs compression to a good extent 

with many types of images. The E of EZW is for embedded thereby depicting that 

it is a progressive coding. Z stands to represent data structure of Zero-trees which 

encodes the data and W for wavelet transform on which EZW encoders works on.   

In this chapter, EZW encoding has been discussed in detail. 

3.2  Embedded Encoding  

 The embedded coding is defined by the fact that the order of the coded bits 

is set in accordance with their significance and lower code rates are adjusted at the 

start of the bit stream. To achieve the intended bit rate specified by channel, 

progressive encoding is capable of terminating encoding process at any stage. This 

is done by maintaining the bit calculation and truncating stream of bit by encoder, 

whenever the set bit rate is attained. Albeit, EZW uses  more simple and state of 

the art progressive coding, yet  we can compare it with one, where most significant 

bit plan is the starting point for the coding and  gradually carries on with the most 

significant bit plan coming next and so forth. Reconstruction error at receiver will 

occur, if before addition of the less significant bit plan to bit stream we meet the 

target, reconstruction error is reduced at given target bit rate with the help of “ 

significant ordering” of the embedded bit stream. 

 Accordingly, compression algorithm which generates embedded code, first 

thing that should be sent on the transmission network is the coarser version of the 
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image followed by refinement details within the framework of progressive 

broadcast. 

 The diagram of an embedded image coding system is as under: 

 

 

Figure-3.1:  Embedded Coding Scheme 

3.3 Zero-Tree Structure 

Now let us see what is a zero tree, a quad-tree is termed as Zero-tree when a 

root node in a tree structure is greater than or equal to the other nodes but smaller 

than the given threshold to compare the wavelets against it.  

A quad-tree with all the nodes smaller or equal to the root is termed as 

zero- tree. A single symbol is used to code it and the decoder reconstructs it as 

quad-tree which is filled with the zeros.  A root smaller than the threshold, for 

which the coefficients are presently being measure, is required to clutter this 

definition. [13].  
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The encoder for EZW works on two basic observations, number one is that 

all natural images are low pass spectrum images. If passed through the wavelet 

transform energy in sub-bands decrease with the decrease in the scale (low scale 

means high resolution). It means that progressive encoding appear to be the best 

choice as higher bands add the details only. Number two is that the larger wavelet 

coefficients are given more importance over those of smaller ones.. 

3.4 EZW Encoding Process 

 The EZW algorithm results in a fully progressive bit streams for image 

coding [14] and the compression enactment of this technique is comparatively 

better than previously known methods. The EZW process is based on following 

major theories:  

1) Hierarchical sub-band breakdown. 

2) Zero-tree coding. 

3) Entropy coded successive-approximation quantization. 

4) A prioritization technique to define importance of coefficients 

basing on various characteristics [15]. 

5) Lossless data compression through entropy coding schemes. 

 In this algorithm encoding becomes the most important part. The test image 

undergoes the filters for DWT which yields the transform coefficients. This 

transforms results into de-correlated coefficients with as fewer dependencies 

among the samples as possible. Then the symbols are produced by quantizing 

these transformed coefficients for compression process. Here the embedded 

coding is done by using successive approximation quantization. It has been seen 

that it is the quantization phase where most of the information is lost [16]. 

Resultantly, to find the significance in quantization stage the threshold value is 
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fixed. In the final stage of encoding, the bit stream of symbols is sent for 

compression. At the decoder end, reverse process as enunciated at the encoder is 

applied. EZW algorithm has a privilege [17] that user can select bit rate as per his 

desire and encode the image according to that. Figure 3.2 explains the details as 

that how EZW coding algorithm is applied. 

 

Figure 3.2:  EZW Compression Diagram 

 

 In EZW image compression algorithm, some of the information is lost due 

to residual matrix left at transmitter end. It is because that the real images are 

made up of mostly low frequency information which is highly correlated.  

Moreover, the importance of high frequency information (such as edges) cannot be 

overlooked at the same time as it is of significance due to human perception of the 

image quality. Therefore, in high quality coding scheme it is necessary to precisely 
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signify the high frequency components. At root node the transformed coefficients 

can be measured as the tree or the trees with the lowest frequency components and 

with the children of every tree node being the spatially related coefficients in the 

next higher frequency band. It has been observed with great probability that one or 

more sub-trees will have zero or nearly zero coefficients [18].  

 In EZW, the statistical properties of the trees are used to proficiently code 

the locations of the substantial coefficients [19]. Since most of the coefficients will 

either be zero or approximately zero, the spatial locations of the significant 

coefficients consist of a large portion of the entire size of a compressed image. 

The significance of a coefficient is determined by comparing its modulus value or 

value of a node and its children in the case of a tree above with a specific 

threshold. Initially, the threshold is taken by considering the magnitude of 

maximum coefficient and then by iteratively lowering the threshold as per 

algorithm. Four kinds of different symbols [14] are used by the EZW to represent 

the wavelet coefficients:- 

 Zero-Tree Root (ZTR) 

 Isolated Zero (IZ) 

 Significant Positive (Pos) 

 Significant Negative (Neg) 

 Two binary bits are used by EZW to represent the above mentioned 

symbols. After every dominant pass, the existing threshold is updated by a factor 

of two. By scanning the trees and emitting one of the four symbols, the dominant 

pass encodes the significant coefficients which have not yet been found significant 

in previous iterations. Conditions for scanning of  the children of a coefficient is 



27 
 

either should be significant or an isolated zero. One bit ( MSB ) is produced by the 

subordinate pass for each coefficient found significant in the previous significance 

passes.  

3.5 Encoding Concept of EZW 

3.5.1 Progressive Coding 

 In EZW algorithm, bits emerge as per their importance order in a bit 

stream. It is due to this feature that the beginning of the bit streams contains all the 

low rate codes [20]. This progressive code signifies a structure of binary 

conclusions that differentiate an image from the null or all gray image. The 

encoding stops when the user set target rate or distortion metric is reached [15]. 

This implies that the embedded coder can terminate coding on user set parameter 

[21]  and offers the best representation of the image. 

 Stream which is binary coded, can comprehend progressive broadcast by 

utilizing multi- threshold EZW coding, as a result, coding rate / distortion metric 

can be restricted accurately. The coding process can be terminated either when bit 

budget is consumed [22] or compression ratio is reached. So at any given rate of 

coding, the coefficients required to represent an image will always contain the 

required information that was required at much lesser rates. Therefore, this may be 

done by choosing a target bit rate which fixed and decoder retains the option of 

terminating the decoding process at any point of time. So it is concluded that the 

decoder has the capability to interfere [23] the process of decoding at any time in 

the bit stream and still has the ability to reconstruct the image. For that reason, the 

compression technique which is progressive in nature sends the low frequency 
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information at the start. This is followed by the high frequency components i.e 

details within the framework of progressive broadcast. 

3.5.2 Significance Map Encoding 

 It is has been observed in EZW scheme that a reasonable amount of the 

overall bits strength is needed for the coding of the position information [24]. 

Therefore, a significance map can be defined as a binary function the value of 

which tells whether a coefficient is significant or insignificant. A coefficient is 

quantized to zero if it not significant. So it is known to a decoder that no further 

information is needed by the significance map about that coefficient. However, 

non-zero value is assigned to a significant coefficient. It is achieved by encoding 

the location of the zeros [14]. After lot of statistical analysis it has been 

experimentally proved that in the wavelet transform, across different scales zeros 

can be forecasted accurately. Assumption on which EZW is based stats if at coarse 

scale, a wavelet coefficient is insignificant with respect to a given scale then  at 

same spatial location at finer scales all the coefficients of  same orientation are 

also likely to be insignificant [15][18]. In the significance map, the location of 

significant and insignificant wavelet coefficients signified specifically for every 

threshold T. Zeros are used to specify the positions of insignificant coefficients 

and locations of the significant coefficients are represented by values of “one” 

[18]. A Zero-tree Representation is used to code the significance map. It permits 

that insignificant coefficients are identified and predicted accurately across the 

scales. With this technique, total cost of encoding the significance maps is reduced 

by grouping the insignificant coefficients in exponentially growing trees across the 
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scales, and by encoding these coefficients with zero-tree symbols [15]. Samples of 

a significance map and quantized coefficients are presented in the table 3.1: 

 

Table 3.1: Quantized Coefficients & Significance Map 

 

 The significance map is about location of location of non zero valued 

coefficient which are going to be transmitted and the coding of the significance is 

one of the important views of low bit rate image coding. After quantization 

followed by entropy coding, the zero symbol which occurs with the highest 

probability, should be extremely high in order to attain very low bit rates. 

Therefore, in this way a large portion of the bit budget is utilized in encoding the 

significance map. Due to this not only efficient encoding the significance map is 

achieved but also it offers a higher efficiency in compression. 

 To understand the significance of map coding in a better way, let us 

consider a encoding system with a typical transform method. There are three basic 

parts of a typical low bit-rate image coder which are shown in the figure 3.3 below 

[25].  
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Figure 3.3:  Low bit rate image coder 

3.6 The Successive Approximation Quantization (SAQ) 

 The SAQ [26] provides a vital facet to embedded compression algorithms. 

It goes without saying that symbol stream produced by these algorithms consists 

of the bit streams for all possible lower rates. An embedded code is characterized 

by J.M Shapiro by defining two properties [15]: 

1) While same data is encoded at different rates, for the level of smaller 

one the two resulting images must match exactly. This represents 

that for a given data rate a coded symbol consists of all the symbols 

for smaller data rates. As we add more symbols to them, the 

representations get more precise. 

2) For a given data rate there should be a good representation. 

 

 SAQ is applied to perform the progressive / embedded encoding which is 

linked to the bit-plan encoding of the magnitudes [27]. The SAQ applies a series 

of thresholds sequentially to check the significance of given data. The initial 

threshold To is selected in such a way that |Xj|< 2Tofor all transform coefficients. 

After  this the subsequent thresholds are selected as Ti = Ti-1/2. Two separate lists 

of wavelet coefficients are present in the process of encoding and decoding. The 

coordinates of the coefficients, not found significant so far in the same order 
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during the process of initial scan, are part of a list known as “Dominant list”. The 

sub-bands are ordered in this scan, and with each sub-band, the set of coefficients 

are well-arranged. Absolute value of significant coefficients is stored in the 

subordinate list. For each threshold the list is scanned once. 

 To govern their significance, the coefficients are compared to the threshold 

To during the dominant pass. In the next step, if a coefficient is proved to be 

significant then its sign is ascertained as positive or negative. This significance 

map is coded as zero-tree later. A coefficient is coded as Pos if it is found to be 

significant then each time its absolute value is attached to a list called subordinate 

list. The coefficient in the wavelet transform range is set to zero to prevent the 

occurrence of significant coefficient as a zero-tree on future dominant passes at 

smaller thresholds. All those values which were previously found significant will 

now be subjected to the subordinate pass. Binary „1‟ is used to code the refinement 

for every absolute value in the subordinate list. This points out that the old 

uncertainty interval contains the true value in the upper half. However, „0‟ symbol 

shows that the value is in the lower half of the old uncertainty interval. The 

entropy encoding is done to the string of the symbols that is generated from this 

from this binary alphabet during a subordinate pass. The magnitudes on the 

subordinate list are sorted in decreasing magnitude after the completion of a 

subordinate pass. The process keeps alternating between subordinate passes and 

dominant passes and the threshold is halved before each dominant pass.  

3.7 The EZW Algorithm 

 The coefficients‟ magnitude is compared by the encoder with the initially 

selected threshold. Encoder sends the signal to the decoder whether the magnitude 
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is smaller or greater than the given threshold.  For nearly precise results at the 

decoder end, encoder must also send the information about threshold value. The 

process is repeated till we find the smallest coefficient (desired to be sent) gets 

larger than the last computed threshold to obtain perfect reconstruction. 

 If the both encoder and decoder use a predefined criterion for the threshold 

instead of transmitting the threshold in each pass, then bandwidth can be saved as 

there will be no requirement of sending the threshold to the decoder. The threshold 

represents the number of bits to explain the binary value of the coefficients 

magnitude if the predefined criterion for the threshold is a serious of the powers of 

two [15].  As per Shapiro it is known as “ bit plane coding”. 

 The decoder needs information about the position of the coefficients to 

reconstruct the transmitted signal. Efficient encoders are differentiated from the 

inefficient ones with the help of coding of the positions.   

 EZW encoder uses a predetermined sequence of scanning for encoding the 

spatial position of the coefficients as shown in the figure 3.4. Using zero-trees a lot 

of positions are coded perfectly. Many orders scan can be used by the encoder 

[28], till it scans the coefficients of the lower sub-bands before scanning the 

coefficients of higher sub-bands.  
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Figure 3.4:    Flow chart to encode a significance map coefficient 

 

 The final results of compression are also affected by the order of scan. 

Initial threshold to be calculated by adopting bit plane coding by using the relation 

as under 

t0 =  2 log 2 MAX     γ  (x,y)                 (3.1) 

Where MAX (.) indicates the highest value of the wavelet coefficient γ(x, y)   
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3.8 Example 

 To illustrate the above stated algorithm we take an example shown  

in Table 3.2 and figure 3.5. 

  

(a)      (b) 

Table 3.2:   (a) data set          Figure 3.5:(b) scanning order (Morton scan) 

 

  Here the example is being explained after taking the data from table 3.2 

and running the Morton scan in figure 3.5 [15].  With initial threshold calculated 

as t0=32 the EZW algorithm generates following bit stream after one pass.   
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 With the consideration in mind that EZW algorithm will require initially      

( at least)  two bits for coding of the symbols in the alphabet { Pos, Neg, ZT, IZ} 

and another bit to code the symbol Z, therefore, a total of 33=26+7 bits were 

utilized after the first pass.  
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Chapter-4 

SPIHT (Set Partitioning in Hierarchical Trees) 

4.1 Introduction 

 Albeit, EZW was an efficient and computationally simple technique yet it 

had room for improvements which were done by Amir Said and A. Pearlman in 

1996 [32]. Their technique works the concept of ordering which is partial by the 

magnitude having an algorithm of partitioning sorting, bit planes have ordered 

transmission and self similarity is being exploited across different scales of an 

image transform. SPIHT is a modified EZW algorithm proposed by Amir Said and 

Pearlman. The transmission of the ordered coefficients, and sub-bands of 

equivalent orientation having self-similarity, which were considered as the best 

features of EZW algorithm, were also incorporated in SPIHT. SPIHT yields high 

PSNR than EZW because of a special symbol that indicates the significance of 

child nodes of significance parent, and separation of child nodes from second 

generation descendants [29][30][31].  

 SPIHT algorithm outperforms the performance of its predecessor. SPIHT 

bit stream is in possession of a distinct property of compactness. It is due to this 

characteristic that only marginal gain is obtained once the output bit stream of 

SPIHT is further passed through the entropy encoding schemes.  

 Unlike EZW no ordering information is clearly transmitted to the decoder 

and this becomes another signature of SPIHT algorithm.  Moreover, the execution 

path of the encoder is reproduced by the decoder and the ordering information is 

recovered. But then for smooth execution or recovery of the actual information the 

there is need that both the encoder and decoder posses the same execution time.   
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4.2  Progressive Transmission Scheme  

 To use partial ordering, a comparison of the magnitudes of the coefficients 

is drawn with a set of octave decreasing threshold [32]. The hierarchical sub-band 

transformation can be expressed like wavelet as under  

c = Ω(s)     (4.1) 

Here c is the output array of the transformed coefficient, which are 

produced once Ω  sub-band transformation is applied on the original image array 

s. Both the output and the original image have same dimensions of the coefficient 

array. Encoder and decoder process the coefficients as per the defined SPIHT 

algorithm. To reform an estimated image s   we need to take the inverse 

transformation from the estimated array of coefficients  c  as under  

s =  Ω (c )     (4.2) 

For reconstruction of the estimated image at the decoder end, the mean-squared 

error is calculated with the help of following  

Dmse  s − s  =
 s−s  2

N
     (4.3) 

 s−s  2

N
=  

1

N
  (sn1 ,n2

−  s n1 ,n2
)2

n2n1
   (4.4) 

Where  sn1 ,n2
  is the intensity value of the pixel at location n1, n2 of image 

having N number of pixels. Mean square error (MSE) is independent because the 

sub-band transformation is lossless.   

Dmse  s − s  = Dmse  c − c       (4.5) 

Dmse  c − c  =
1

N
  (cn1 ,n2

−  c n1 ,n2
)2

n2n1
   (4.6) 
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In the above equation, cn1 ,n2
represents the coefficient of transformation at 

the positionn1, n2. For every coefficient, c n1 ,n2
is set to zero by the decoder. If 

cn1 ,n2
is the coefficient value sent by the encoder, then mean square error is 

decreased by
(cn 1,n 2 )2

N
.This indicates that the coefficients with the larger magnitude 

have high significance in embedded bit stream encoding than those of smaller 

ones. It is because they play an important role in reducing the mean square error 

and thereby producing better reconstruction as compared to the smaller valued 

coefficients. Therefore, the coefficients are arranged with respect to their 

magnitudes in the embedded stream coding.  Whereas in EZW algorithm we 

arrange significant coefficients in the subordinate pass.  It is possible to broaden 

the concept of arranging the coefficients to the bit-planes once we order the 

coefficients in accordance with their binary representation. This can be expressed 

in general form as 

 log2 cn (k)  ≥   log2 cn (k + 1)        k = 1,2,…… . . , N  (4.7) 

In equation 4.20 cn k  represents the coefficients which have been ordered 

according to their magnitude values. 

Following example will enable us to assimilate ordering concept in a better 

way.  Here we have array of coefficients: -3, -9, 16, 5, -57, 8, 38, 2, -12, 14, -17, -

6, 25, and -7. The array of coefficients can be arranged by using above ordering 

equation as follows (Table 4.1): 
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Table 4.1:   Order of coefficients in binary representation 

 

4.3 Set Partitioning Sorting Technique  

To send the coefficients explicitly there is no need of ordering information 

for the Set partitioning technique. However, both decoder and encoder follow the 

same implementation path. If the encoder transmits the magnitude comparison 

results then the execution path helps the decoder to recover the sorting 

information.   

So it can be said that the set partitioning is devoid of explicit ordering of 

the coefficients rather the coefficient values are observed for a given n, if they 

follow the inequality  2n  ≤    cn1 ,n2
 < 2n+1 . A significant coefficient must 

follow the inequality  cn1 ,n2
 > 2n  and if it does not follow this inequality then it is 

an insignificant coefficient. The coefficient subset Tn  is examined if  

maxn1 ,n2  ∈ Tm
  cn1 ,n2

 ≥  2n     (4.8) 
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Same holds well for the subset  Tn , it stands significant or insignificant if it 

satisfies or does not satisfy the inequality respectively. We classify significant and 

insignificant subsets by portioning Tn  if it is significant. So until we come across a 

single significant coefficient we continue with the partitioning of significant 

subsets into significant and insignificant coefficients. A sub-band hierarchical 

framework is followed in set partitioning technique.  

4.4  Spatial Orientation Tree 

It has been observed that low frequency components of an image contain 

most of the energy of an image. Therefore, as we move from highest to lowest 

levels of sub-band pyramid there is a decrease in the value of the variance [32].  

Moreover, spatial similarity between the sub-bands can also be observed as sub-

bands are linked spatially with each other.  In the spatial orientation tree, the 

connection of the sub-bands is presented in figure 4.1 in the form recursively split 

four bands. The coordinates of a pixel are made use of to represent the associated 

node. The offspring, which are four in number for every node, are represented 

with likewise pixel location in the orientation pyramid of next lower level as 

explained with the help of arrows in the diagram below. The LL sub-band which 

resides at the highest level of the pyramid is exempted and does not hold any such 

relationship. It is the pixel in sub-band which forms the root and composes 

adjacent 2x2 pixels‟ group. Out of the four pixels of LL band three has offspring 

in HH, LH and HL sub-bands which are exiting in the same scale since only three 

sub-bands which decides the descendants. Whereas one pixels in LL band which is 

marked with „*‟, as displayed in figure 4.1 does not determines any descendants.  
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Figure 4.1:   Spatial orientation tree 

4.5  Set Partitioning Rules and Algorithm 

For better assimilation of the concept, few important sets of notation which 

are utilized in SPIHT algorithm need to be understood well. It is also underlined 

that some of the SPIHT algorithm rules are also derived from these notations. 

1) 𝐎 𝐧𝟏,𝐧𝟐 : O stands for the offspring and 𝐧𝟏&𝐧𝟐are the pixel 

coordinates of the offspring or it can be said that these represents the 

set of offspring of the node n1, n2 . The size can be four or zero 

depending upon the number of offspring. For example, the O 0,1  in 

the figure 4.2 has coordinates of the pixels b1, b2, b3 and b4. 

 

2) 𝐃(𝐧𝟏,𝐧𝟐) : Notation D is for the descendants whereas 𝐧𝟏&𝐧𝟐  

represents the positions of the pixels. So this represents the set of 

descendants. Descendants here include the offspring, offspring‟s 

offspring and so on depending upon the number of sub-bands. For 
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example the descendants set D(0,1) consists of the coordinates of the 

pixels b1, . . . . . . . , b4, b11 , . . . . . . . , b14  ,……  b41 , . . . . . . . , b44.  Since 

by now we know that every node may have four or no offspring 

therefore the size of this node may be either four or zero. 

3) 𝐋(𝐧𝟏,𝐧𝟐) :  This notation is used to represent the set which has the 

coordinates of a descendants at position at  n1, n2  less than the 

offspring or we can say that  𝐋(𝐧𝟏,𝐧𝟐)is the difference between 

D(n1, n2) and O(n1, n2).It may be represented as . 

L n1, n2  =  D n1, n2 − O n1, n2    (4.9) 

4) H: It is comprised of all the roots of special orientation tree which 

belongs to highest level pyramid (i.e LL Sub-band). 

 

 

                                    Figure 4.2: Data structure used in the SPIHT algorithm 
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4.6  SPIHT Encoding and Decoding 

As name states rule of set partitioning technique is observed by SPIHT. The 

good thing is that at both encoder and decoder ends similar algorithm is being run. 

Moreover, ordering information is not sent explicitly like other algorithm of 

embedded transmission which makes SPIHT algorithm more efficient than the 

others as similar algorithm for both encoder and decoder. The set of lists which are 

continuously maintained / updated during the process  are as under:- 

1) LIP- List of insignificant pixels. 

2) LSP- List of significant pixels.   

3) LIS- List of insignificant sets. 

The position of coordinates is the mean of identification for every element. 

LIP and LIS contains the elements which are individual pixels whereas, LIS has 

the sets of either as L n1, n2  orset D n1, n2 . 

From the outset every pixel and set is considered insignificant.  „n‟ is found 

with the help of the  coefficients‟ ceiling magnitude.  There are three fundamental 

passes the sorting pass, the refinement pass and the upgrading of quantization step 

pass. 

Until the encoder transmits the least significant bit, the recursive process of 

these passes continues and keeps repeating itself iteratively. It is during the sorting 

pass that insignificant pixels of LIP are ascertained whether they are significant or 

otherwise. If found significant, then they are passed to the LSP. Similarly, 

significance of the sets of LIS is ascertained and those found significant are 

partitioned. These are also taken out from the LIS. Subsets having entries more 

than one are placed in the LIS. On the same lines single pixels are adjusted in the 
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LSP or LIP keeping in view their status. With this preview encoding algorithm 

may be summarized in four steps as under:- 

4.6.1  Step-1: Initialization 
 

 Output n =   log2 max(x1,x)    cx1,x2
     

 Set the LSP =  ϕ  

 Set the LIP =  (x1 , x2)  ∈  H  and LIS=  D(x1 , x2) , (x1 , x2)  ∈  H   

4.6.2 Step-2: The Sorting Pass 

 

1) Each element of the LIP is checked for the significance. Give the 

output „1‟ or „0‟ to each entry depending upon whether it is found as 

significant or insignificant respectively.  If significant then remove it 

from the LIP and place it in the LSP. 

2) Now the significance of each set of LIS should be checked.  Output 

its sign as significance if it is found to be significant. Following rule 

2 or rule 3, partition this element depending upon the set if it 

is  L(x1 , x2) or D(x1 , x2). All the three lists i.e LIP, LSP and LIS 

be upgraded throughout the process depending upon the 

significance. 

 

4.6.3  Step-3: The Refinement Pass 

  In refinement pass,  other than the elements which were having the same 

„x‟ in the process of sorting pass and have been moved to LSP,  the most 

significant bit from all the elements of the LSP be placed  at the   xth  position. 
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4.6.4 Step-4: Renewing Quantization Step Pass 
 

 In this step  keep decreasing  „x‟  by 1 and  keep repeating the steps of 

sorting pass and refinement pass until x=0.     

 The decoder follows the exactly the same steps as those of encoder. The 

output generated by the encoder becomes the input to the decoder.  

4.7  Example 4.1 

 In this example I have applied the SPIHT algorithm, for one pass only, on 

the same example as was taken in case of EZW so that the comparison between 

the two techniques can be drawn.    For better assimilation DWT matrix of an 8x8 

image has been shown in table 4.2 at the cost of repetition. The results of 

application of one pass of SPIHT algorithm on table 4.2 have been shown in the 

table 4.3.  Table 4.3 is clearly indicating about the data coded and updating of the 

control lists.  It can be observed that after one pass SPIHT algorithm has used 29 

bits without using any other kind of entropy encoding which are 4 bits less as 

compared to EZW.  

 

Table4.2:  Set of Image Wavelet Coefficients used by example. The numbers outside the box 

indicate the set of co-ordinates used. 
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Table 4.3:SPHIT Process. 
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Entropy Encoding 

(Huffman Encoding) 
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Chapter 5 

Entropy Encoding  

5.1 Introduction 

 It has been observed that bit- stream that happens to be the output of SPIHT 

consists of a long series of zeroes which can be compressed further, thus SPIHT is 

not advocated to be used as sole mean of compression. Therefore, wavelet 

transformed images have been initially compressed by using SPIHT technique and 

to attain more compression, the output bit streams of SPIHT are then fed to 

entropy encoders; Huffman and Arithmetic encoders, for further de-correlation. 

The experimental results of these cascading demonstrate that SPIHT combined 

with Arithmetic coding yields better compression ratio as compared to SPIHT 

cascaded with Huffman coding. Whereas, SPIHT once combined with Huffman 

coding is proved to be comparatively efficient. In this research we have 

concatenated SPIHT with Huffman encoding the detailed description of which has 

been discussed in this chapter. 

5.2 Huffman Coding 

 Huffman encoding is a kind of entropy encoding which is lossless in itself. 

It works depending upon the probability of statistical data and in terms of the 

image it can be said that it is based on frequency of emergence or appearance of 

the pixels in an image. It distinct feature is that it should allocate lesser number of 

bits to encode a data that appears more number of time.  Code book is used to 

store the codes. This code book can be constructed separately for each image or a 

set of images. To enable decoding it must be ensured in all cases that the encoded 

data and the code book must be transmitted.  Huffman encoding has following 

features:- 
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1) Fixed length of symbols is allotted variable length code-words.  

2) Symbols are decoded uniquely i.e. not even a single code word 

posses the prefix of the previous code word. Flow of algorithm is 

represented in Figure 5.1. 

 

5.2.1 The Basic Principles  

 The Huffman man coding is based on few key principles which are as 

under:- 

 

1) Least number of bits is used to represent the greater probability 

symbols whereas more number of bits is required to represent the 

lesser probability symbols. To fixed group of symbols a variable 

length cod-word is assigned. 

2) While assigning code-word to the next symbol it must be ensured 

that it does not have any previous code-word as its part. This will 

make the Huffman coding a distinctively decodable scheme. 

3) Every symbol should have a unique code-word. 

 

5.2.2  Huffman Coding – Flow Chart 

 A flow chart in the Figure 5.1 has been used to express the sequence of 

algorithm. The symbols in this have been arranged keeping in view the values of 

probabilities in a decreasing order.   The by joining the symbols with least 

probabilities a subgroup is being made and a bit „1‟ is assigned to upper symbol 

and „0‟ is assigned to lower symbol.  Having done this now look for the next 

unmerged symbols if there exits any combine the two with keeping in view the 

same consideration as was done in the previous step. If there is no such symbol 

that can be combined then start generating the code-word for the symbols         

(Figure 5.1). 
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Figure 5.1:  Flowcharts for Huffman Coding 
 

 

 

5.2.3  Example-5.1 

 For detailed explanation and understanding of the  aforementioned process 

let us solve an example. Down in table 5.1 frequency of occurrences of a set of 

symbols is given along with its respective symbol. 
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Table 5.1: Symbol with Frequency of Occurrences 

Step-1:  Symbols be arranged in accordance to their  decreasing frequency of 

occurrence ( Table 5.2 )  

 
Table 5.2: Table of arranged symbols in decreasing order of frequency 

Step-2:  To make subgroups merge the symbols with least frequencies and to 

get the total value all subgroups add their occurrences (Figure 5.2) 

 

Figure 5.2: Formation of subgroups 
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Step-3:  To ensure correctness and completeness see whether any unmerged 

node is present or not (Figure 5.3). 

 

 

 

Figure 5.3: Huffman tree processing 

 

Step-4: Symbols are assigned the code-words( Table 5.3)  

 

 

Table 5.3: Assignment of code-word  
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Results and simulations 
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Chapter 6 

Results and Simulations 

6.1  Introduction 

In this section we have discussed as to how SPIHT technique has been 

concatenated with the Huffman entropy encoding scheme for further reduction in 

number of bits. This has paved the way towards saving more storage space.  In this 

portion, a comparison is drawn between existing work and our proposed method to 

exhibit as to how new method saves more number of bits without degrading the 

quality of image while PSNR remained unchange. This research work is an 

extension of SPIHT cascaded with the Huffman. In that efforts have been made to 

improve the bit saving capacity of the aforementioned concatenation by making 

apt use of Huffman entropy coding. The results of existing and proposed methods 

have been compared by using various perimeters, like bit saving capacity, elapsed 

timings, PSNR etc 

PSNR is used to compare the distortion. It has been done by using  

Peak Signal to Noise Ratio (PSNR) = 10  log 1010  
 max  f x,y   

2

MSE
   (6.1) 

 Input image is denote by equation 6.1 f x, y   and for the images of grey 

scale we usually consider 

 max f x, y   = 255     (6.2) 

 Where MSE depicts mean squared error i.e. between original image and the 

reconstructed image.  MSE can be mathematically calculated by using as 

MSE =  
f x,y − f (x,y)

X x YXY      (6.3) 



56 
 

 Here the equation 6.3 f (x, y) is the compressed image which has been 

reconstructed after application of modified SPIHT algorithm.  

6.2  Analysis of Concatenation of SPIHT with Huffman 

 Let us take the same old example 4.1 (Table 6.1(a) and 6.1(b) below), in 

that a 3-level DWT of an image is passed through the algorithm of SPIHT for one 

pass. In that case the initial threshold is going to be To = 25 due to largest 

coefficient being 63. With this, the binary output after one pass is going to be 29 

bits in all, 11100011100010000001010110000. It is evident from the binary output 

steam that there is large series of zeros that can be further compressed. Moreover, 

same has been seen in a number of statistical analyses the bit steam that comes out 

as output consists of long series of zeros that can be further compressed, therefore 

SPIHT is not advocated to be used as sole mean of compression. 

 

34.2329 22.9106 8.0819 -9.5783 2.4702 9.6024 17.4720 20.9260 

3.1444 0.0473 -10.7578 5.7983 15.2621 5.7212 -6.8773 -26.2526 

-9.4979 -7.2971 8.1126 10.0352 10.4049 3.1472 -12.044 -15.2028 

6-7.7991 1.9334 12.7445 13.1993 11.3390 6.9783 4.1331 5.5305 

12.7476 13.6053 24.2530 24.4590 21.2853 16.8028 13.9673 14.3350 

0.4514 7.7005 16.9633 23.2157 20.2790 16.1249 13.9673 14.3350 

7.9368 -4.9201 2.2329 0.4116 29.5710 22.8518 22.6126 6.1349 

 

 

0 1 2 3 4 5 6 7 

0 63 -34 49 10 7 13 -12 7 

1 -31 23 14 -13 3 4 6 -1 

2 15 14 3 -12 5 -7 3 9 

3 -9 -7 -14 8 4 -2 3 2 

4 -5 9 -1 47 4 6 -2 2 

5 3 0 -3 2 3 -2 0 4 

6 2 -3 6 -4 3 6 3 6 

7 5 11 5 6 0 3 -4 4 

 

 

Table 6.1     (a):  Original Matrix   (b): Dwt coefficients of arbitrary data set 

 

 So it is concluded that still there is a redundancy that can be further 

removed to a great extent with the help of entropy encodings. This is done by 
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cascading the output of SPIHT with the entropy encodings such that Arithmetic 

and Huffman. The experimental results of these cascading demonstrate that SPIHT 

combined with Arithmetic coding yields better compression ratio as compared to 

SPIHT cascaded with Huffman coding. Whereas, SPIHT once combined with 

Huffman coding is proved to be comparatively efficient. 

 It has been observed that the output bit stream of SPIHT algorithm contains 

a large series of zeros situation and „000‟ seems to appear with maximum 

probability somewhat like ¼. Hence if the output of SPIHT is divided every 3 bits 

each to make it a symbol then there will be a total of eight different symbols with 

respective probabilities.  Now if these symbols are entropy coded with the help of 

Huffman encoding the output of SPIHT is further compressed. This can be done in 

a following way:- 

1) Make symbols or group of 3 bits each by dividing the output stream. 

It will result in “111,000,111,000,100,000,010,101,100,00”. As 

evident there will remain zero, one or two bits after this division. 

These remaining bits will not be able to participate. To record these 

remaining number of bits for the purpose of unity and to avoid loss 

of information two bits are cost in the head of output bit stream of 

Huffman encoding to record the number of bits. These remaining 

bits come out as direct output in the end. The symbols along with the 

occurrence probabilities are shown as under:- 

Ser No Symbol Probability 

1 000 0.333 

2 010 0.111 

3 100 0.222 

4 110 0 

5 001 0 

6 011 0 

7 101 0.111 

8 111 0.222 
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2) The output stream fed to Huffman encoding for further compression 

is shown below and the codeword book that results according to the 

probabilities enunciated above, by using Huffman encoding, is as in 

Table 6.1 

 

 

 

 

 

 

 

 

 

 

Expected Codeword Length = LC 

It can be calculated a tree with minimum weight path length from the root. 

Lc = 1 + 0 .5555 + 0.2222 + 0 .4444 

LC = 2.222 

 

H = ƩPilog2Pi 

= {2× (0.1111 log20.1111) + 2× (0.2222 log2 0.2222) + 0.3333 log2 0.3333}  

+ {0.2120 +0 .2903 +0 .1590} 

0 .301 

H = 2.197   

LC ≈ H          2.222 ≈ 2.197 

10P (000) = .3333 

01   P (100) = .2222 

00P (111) = .2222 

.4444 

1 

.5555 

.2222 

110   P (010) = .1111 

111   P (101) = .1111 
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So  

LC ≤ H ≤ LC + 1 

 

Var = 2×{0.1111(3-2.222)} + 2×{0.2222 (2-2.2222)} + 0.3333} 

 

= 0.1729-0.0987-0.07399 

 

= 0.000207 

 

 

Table 6.2:   Code word Comparison Table 

 From the code book given above we can have the output stream of 

corresponding codes: 10,00,01,00,01,11,01,1001,101,11,00,. These happens to be 

25 bits in total. For the remainder bits, 10 lies in the head and appears at the start 

indicating that two bits were taken along as the remainder and these two bits are 

„00‟ that has appeared in the last of the code. It has been seen that 4 bits have been 

saved after carrying out this concatenation. Decoding can be done by adopting the 

reverse process.   

6.3 Proposed Method 

 Albeit, dividing binary output of SPIHT as 3 bit group, considering it as a 

symbol, and then passing through the Huffman coding ensures considerable 

reduction in  the redundancy by discarding extra bits yet it is not the maximum 

what can be achieved. The room for improvements is always there. It is a known 

fact that the redundancy is the difference between Huffman average code length 

and its entropy i.e 

Redundancy =  Lc - H 
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 Given the large alphabet such as a set of letters, digits and punctuations 

marked by natural language the largest symbol probability is around 15-20 %. 

Moreover, if the encoder simply writes the compressed data on a file the variance 

does not matter. A small variance Huffman code is preferable only in case where 

encoder transmit the compressed data, as its being generated over the network. In 

such case a code with large variance causes the encoder to generate bits at the rate 

that varies all the time. Code with larger variance needs larger buffer and that of 

with smaller variance needs smaller and transmit the bits with constant rate. With 

these considerations in mind several combination of  bits group as symbol were 

taken and tested for various perimeters to draw the inferences as under :-  

For 4 Bits  

 

 
 

Expected length of Code 

 

1 + .5710 + .2858 + .2858 

 

LC = 2.1432 

H = {(4× (0.1429 log20 .1429) + (0.4285 log2 .428)}  

    = .4829 + .1577 

               .301 

H= 2.128   2.1432 ≈ 2.128 
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LC ≤ H ≤ LC + 1 

 

Var = 4× [.1429× (3-2.1432)] + .4285 (1-2.1432)  

 = .4897 + (-.4899) 

 = - 0.0001612 

For 5 Bits  

 

 

Expected Codeword Length = LC = 1+.6+.4+.4 

          = 2.4 

Var = {3× (.2× (2-2.4)) + 2×(.2× (3-2.4))} 

 = 0 

Entropy = H  

H = ƩPilog2Pi 

= - [5× (0.2 log2  0.2)] 

= - [5× (0.2×-0.322)] 
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H = 2.32 

LC ≤ H ≤ LC + 1 

For 6 Bits  

11100011100010000001010110000 

111000 111000 100000 010101   10000 

     A  A                   B                   C          Remain 

6 Bits mean that will 2
6
 = 64 symbols 

 

P (11000)      = 2/4  = .5   P(A) 

P (100000)    = 1/4  = .25 P(B) 

P (010101)    = 1/4  = .25 P(C) 

 

     

 

     

        

Expected Coded length = LC 

LC  = 1+1.5 =1.5 

Entropy = H  

 = - [.5 log2 .5 + (.25 log2 .25)2] 

 = - (-.5-1)       

 H = 1.5    

Var = {1× (.5(1-1.5) +2× (.25× (2×1.5)}  

01 100000 = .25

  

00 111000 = .25

  
1 

1 010101 = .5

  .5 

      .5
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For 7 Bits 

As there will be 4 code of equal probability  

 

       

     

        

 

 

Expected Codeword Length = LC = 2  

Entropy = H  

H = -4[4× (0.25 log2   0.25)] = 2 

6.4 Simulations and Results 

 In this part, details of simulations and deduced results from the simulation 

have been included to display as to how proposed method proffers better results as 

compared to existing one. I have used MATLAB 7.11.0 (R2010b) and calculated 

some performance measures like number of bits saved, MSE, PSNR value, Bit 

Saving Capacity and Elapsed Time or Execution time for algorithm.               

Tables 6.3-6.7 exhibit the results using same 8x8 DWT matrix that has been used 

in examples to illustrate EZW and SPIHT in the previous chapters. Table 6.3 - 6.7 

enunciate a no of performance measures like output bits, MSE, PSNR, Bit saving 

capacity and elapsed timings of 8 x 8 matrix of example 4.1 at various given bit 

rates for 3, 4, 5, 6, & 7 bit symbols. Efforts have been made to show the graphical 

representation of the results in figure 6.1 – 6.5 at 0.1, 0.3, 0.6, & 0.9 bit rates.  

 

 

 

 

 

 

 Original 

Image 

 Linear 

transformation 

 Quantization 

 Encoding 

 Compressed 

image 

 Inverse Linear 

transformation 

 Dequantization 

 Decoding 

1 

 00=A .25

   

0.5 

 11=D .25 

 10=C .25 

 01=B .25

   

0.5  
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3 Bits Symbol 

S/No Rate Output 

Bits 

MSE PSNR Bit Saving 

Capacity 

Elapsed Time 

(Sec) 

1 .1 25 72.3906 29.5340 0.1379 0.390627 

2 .2 31 49.8906 31.1506 0.0606 0.351054 

3 .3 36 49.8906 31.1506 0.1000 0.374458 

4 .4 37 49.8906 31.1506 0.2292 0.362652 

5 .5 49 41.6406 31.9356 0.1250 0.413168 

6 .6 55 32.6406 32.9932 0.1129 0.391448 

7 .7 58 31.5156 33.1455 0.1077 0.420814 

8 .8 68 26.2656 33.9369 0.0811 0.386800 

9 .9 70 25.5156 34.0627 0.1026 0.364632 

10 1.0 78 24.3906 34.2586 0.0824 0.425324 

Table 6.3:    Performance measures at given bit rates for 3 bits symbols 

 

4 Bits Symbol 

S/No Rate output 

Bits 

MSE PSNR Bit Saving 

Capacity 

Elapsed Time 

(Sec) 

1 .1 18 72.3906 29.5340 0.3793 0.453431 

2 .2 21 49.8906 31.1506 0.3636 0.375059 

3 .3 25 49.8906 31.1506 0.3750 0.341746 

4 .4 30 49.8906 31.1506 0.3750 0.328439 

5 .5 40 41.6406 31.9356 0.2857 0.325473 

6 .6 49 32.6406 32.9932 0.2097 0.404674 

7 .7 51 31.5156 33.1455 0.2154 0.413081 

8 .8 59 26.2656 33.9369 0.2027 0.421750 

9 .9 63 25.5156 34.0627 0.1923 0.423469 

10 1.0 73 24.3906 34.2586 0.1412 0.413899 

Table 6.4:    Performance measures at given bit rates for 4 bits symbols 
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5 Bits Symbol 

S/No Rate output 

Bits 

MSE PSNR Bit Saving 

Capacity 

Elapsed Time 

(Sec) 

1 .1 20 72.3906 29.5340 0.3103 0.427609 

2 .2 20 49.8906 31.1506 0.3939 0.395824 

3 .3 23 49.8906 31.1506 0.4250 0.359209 

4 .4 31 49.8906 31.1506 0.3542 0.436104 

5 .5 38 41.6406 31.9356 0.3214 0.439929 

6 .6 45 32.6406 32.9932 0.2742 0.420876 

7 .7 44 31.5156 33.1455 0.3231 0.380287 

8 .8 54 26.2656 33.9369 0.2703 0.434703 

9 .9 57 25.5156 34.0627 0.2692 0.439791 

10 1.0 63 24.3906 34.2586 0.2588 0.363293 

Table 6.5:    Performance measures at given bit rates for 5 bits symbols 

 

6 Bits Symbol 

S/No Rate output 

Bits 

MSE PSNR Bit Saving 

Capacity 

Elapsed Time 

(Sec) 

1 .1 15 72.3906 29.5340 0.4828 0.493891 

2 .2 16 49.8906 31.1506 0.5152 0.502989 

3 .3 22 49.8906 31.1506 0.4500 0.477635 

4 .4 21 49.8906 31.1506 0.5625 0.435720 

5 .5 30 41.6406 31.9356 0.4643 0.504025 

6 .6 35 32.6406 32.9932 0.4355 0.497648 

7 .7 39 31.5156 33.1455 0.4000 0.484547 

8 .8 42 26.2656 33.9369 0.4324 0.498170 

9 .9 43 25.5156 34.0627 0.4487 0.442348 

10 1.0 50 24.3906 34.2586 0.4118 0.501804 

Table 6.6:    Performance measures at given bit rates for 6 bits symbols 
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7 Bits Symbol 

S/No Rate output 

Bits 

MSE PSNR Bit Saving 

Capacity 

Elapsed Time 

(Sec) 

1 .1 11 72.3906 29.5340 0.6207 0.691351 

2 .2 17 49.8906 31.1506 0.4848 0.640270 

3 .3 21 49.8906 31.1506 0.4750 0.687868 

4 .4 26 49.8906 31.1506 0.4583 0.698405 

5 .5 25 41.6406 31.9356 0.5536 0.646222 

6 .6 34 32.6406 32.9932 0.4516 0.682178 

7 .7 34 31.5156 33.1455 0.4769 0.734073 

8 .8 40 26.2656 33.9369 0.4595 0.695936 

9 .9 40 25.5156 34.0627 0.4872 0.701034 

10 1.0 45 24.3906 34.2586 0.4706 0.704051 

Table 6.7:    Performance measures at given bit rates for 7 bits symbols 

 

 

Figure 6.1:    Output bit performance at given bit rates for 3, 4, 5, 6 & 7 bits symbol 
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Figure 6.2:    Bits saving capacity performance at given bit rates 3, 4, 5, 6& 7bits symbol 

 

 

 

Figure 6.3:    Elapsed timing performance at given bit rates 3, 4, 5, 6 & 7 bits symbol 
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Figure 6.4:    PSNR performance at given bit rates 3, 4, 5, 6 & 7 bits symbol 

 

 

 

Figure 6.5:    MSE performance at given bit rates 3, 4, 5, 6 & 7 bits symbol 

2
9

.5
3

4

3
1

.1
5

0
6

3
2

.9
9

3
2

3
4

.0
6

2
7

2
9

.5
3

4

3
1

.1
5

0
6

3
2

.9
9

3
2

3
4

.0
6

2
7

2
9

.5
3

4

3
1

.1
5

0
6

3
2

.9
9

3
2

3
4

.0
6

2
7

2
9

.5
3

4

3
1

.1
5

0
6

3
2

.9
9

3
2

3
4

.0
6

2
7

2
9

.5
3

4

3
1

.1
5

0
6

3
2

.9
9

3
2

3
4

.0
6

2
7

0

10

20

30

40

50

0.1 0.3 0.6 0.9

P
SN

R

Bit Rate

Histogram for PSNR Comparison

3bits

4bits

5bits

6bits

7bits

0

10

20

30

40

50

60

70

80

90

100

0.1 0.3 0.6 0.9

M
SE

Bit Rate

Histogram for MSE comparison 

3bits

4bits

5bits

6bits

7bits



69 
 

It is evident from the results that 4 bits symbol offers improvement in 

saving more no of bits without degrading picture quality of original image (since 

PSNR and MSE remain constant). However, it has been observed there is an 

increase in the elapsed timings as we proceed further from 3 bits to 4 bits and so 

on. In order to verify the concluding statement, a lot of statistical analyses have 

been carried out by taking a number of images of various sizes and resolutions. 

Results of the few images like Lena and Barbra each of size 512x512 have been 

exhibited in ensuing tables 6.8 – 6.17. The reconstructed images at various rates 

have been shown in Figure 6.6 and 6.7. Improvements in image quality can be 

clearly witnessed with the increase in bit rate and if all the bit planes are used are 

then original images can be recovered completely with some rounding errors. 

 

3 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 10525 5.0625e+03 11.0872 0.5985 7.649042 

2 .2 21757 1.2792e+03 17.0614 0.5850 14.615299 

3 .3 32255 579.4686 20.5005 0.5899 22.183866 

4 .4 44762 254.8278 24.0683 0.5731 28.930478 

5 .5 62982 129.8626 26.9960 0.5380 37.400846 

6 .6 79625 82.2883 28.9774 0.5020 45.515919 

7 .7 110079 46.5642 31.4503 0.4401 57.005785 

8 .8 121032 39.2820 32.1889 0.4229 60.376668 

9 .9 144874 30.0629 33.3505 0.3859 69.899979 

10 1.0 171885 22.5379 34.6017 0.3443 80.952381 

Table 6.8:    Performance measures at given bit rates for 3 bits symbols for Lena 512x512 image 
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4 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 8477 5.0625e+03 11.0872 0.6766 5.658766 

2 .2 17617 1.2792e+03 17.0614 0.6640 10.550501 

3 .3 26326 579.4686 20.5005 0.6652 15.390950 

4 .4 37322 254.8278 24.0683 0.6441 20.268120 

5 .5 53661 129.8626 26.9960 0.6063 26.420480 

6 .6 69756 82.2883 28.9774 0.5638 31.871435 

7 .7 94226 46.5642 31.4503 0.5076 40.429685 

8 .8 110958 39.2820 32.1889 0.4709 44.227125 

9 .9 134795 30.0629 33.3505 0.4287 53.241057 

10 1.0 162821 22.5379 34.6017 0.3789 62.602783 

Table 6.9:    Performance measures at given bit rates for 4 bits symbols for Lena 512x512 image 

5 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 7276 5.0625e+03 11.0872 0.7224 5.096015 

2 .2 15227 1.2792e+03 17.0614 0.7096 9.804259 

3 .3 22840 579.4686 20.5005 0.7096 13.921974 

4 .4 32913 254.8278 24.0683 0.6861 18.457624 

5 .5 48310 129.8626 26.9960 0.6456 24.732657 

6 .6 64081 82.2883 28.9774 0.5993 29.489640 

7 .7 88182 46.5642 31.4503 0.5392 38.142099 

8 .8 105160 39.2820 32.1889 0.4986 41.826033 

9 .9 128829 30.0629 33.3505 0.4539 50.345653 

10 1.0 156649 22.5379 34.6017 0.4024 58.234868 

Table 6.10:    Performance measures at given bit rates for 5 bits symbols for Lena 512x512 image 
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6 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 6488 5.0625e+03 11.0872 0.7525 5.032808 

2 .2 13703 1.2792e+03 17.0614 0.7386 9.562132 

3 .3 20495 579.4686 20.5005 0.7394 13.607368 

4 .4 29862 254.8278 24.0683 0.7152 18.051060 

5 .5 44788 129.8626 26.9960 0.6714 24.263317 

6 .6 60066 82.2883 28.9774 0.6244 29.872365 

7 .7 84064 46.5642 31.4503 0.5607 39.170604 

8 .8 100875 39.2820 32.1889 0.5190 43.088888 

9 .9 124696 30.0629 33.3505 0.4715 51.767213 

10 1.0 152527 22.5379 34.6017 0.4182 61.764241 

Table 6.11:    Performance measures at given bit rates for 6 bits symbols for Lena 512x512 image 

7 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 5930 5.0625e+03 11.0872 0.7738 5.387633 

2 .2 12629 1.2792e+03 17.0614 0.7591 10.214782 

3 .3 18806 579.4686 20.5005 0.7609 14.677125 

4 .4 27760 254.8278 24.0683 0.7353 19.689444 

5 .5 42320 129.8626 26.9960 0.6895 27.119636 

6 .6 57435 82.2883 28.9774 0.6408 33.816600 

7 .7 81247 46.5642 31.4503 0.5754 45.736308 

8 .8 98237 39.2820 32.1889 0.5316 50.475944 

9 .9 121906 30.0629 33.3505 0.4833 60.489067 

10 1.0 149598 22.5379 34.6017 0.4293 73.094481 

Table 6.12:    Performance measures at given bit rates for 7 bits symbols for Lena 512x512 image 
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Figure 6.6:    Output bit performance at given bit rates for Lena 512x512 Image 

 

 

Figure 6.7:    Bits saving capacity performance at given bit rates for Lena 512x512 image 
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Figure 6.8:    PSNR performance at given bit rates for Lena 512x512 image. 

 

 

Figure 6.9:    MSE performance at given bit rates for Lena 512x512 image 
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3 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 10863 5.5360e+03 10.6988 0.5856 7.721870 

2 .2 21902 1.4318e+03 16.5720 0.5822 14.622311 

3 .3 31570 662.2012 19.9209 0.5986 21.392457 

4 .4 43523 407.6395 22.0280 0.5849 29.768435 

5 .5 59370 294.8762 23.4344 0.5470 39.137661 

6 .6 79780 228.1006 24.5495 0.4928 44.865773 

7 .7 103391 144.5186 26.5316 0.4366 53.703438 

8 .8 127482 104.6319 27.9342 0.3921 71.394344 

9 .9 155844 67.5941 29.8317 0.3394 76.300887 

10 1.0 179412 51.9995 30.9708 0.3156 80.917493 

Table 6.13:    Performance measures at given bit rates for 3 bits symbols for Barbra 512x512 image 

4 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 8725 5.5360e+03 10.6988 0.6671 5.616361 

2 .2 17647 1.4318e+03 16.5720 0.6634 10.610120 

3 .3 25254 662.2012 19.9209 0.6789 15.310136 

4 .4 35673 407.6395 22.0280 0.6598 20.098435 

5 .5 50516 294.8762 23.4344 0.6146 25.704920 

6 .6 70030 228.1006 24.5495 0.5548 33.405441 

7 .7 94161 144.5186 26.5316 0.4869 39.181772 

8 .8 118222 104.6319 27.9342 0.4363 48.466942 

9 .9 147052 67.5941 29.8317 0.3767 59.609005 

10 1.0 170747 51.9995 30.9708 0.3486 61.330953 

Table 6.14:    Performance measures at given bit rates for 4 bits symbols for Barbra 512x512 image 
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5 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 7618 5.5360e+03 10.6988 0.7094 5.270766 

2 .2 15244 1.4318e+03 16.5720 0.7092 9.713162 

3 .3 21617 662.2012 19.9209 0.7251 13.931616 

4 .4 31253 407.6395 22.0280 0.7019 18.358825 

5 .5 44981 294.8762 23.4344 0.6568 23.578007 

6 .6 64419 228.1006 24.5495 0.5904 30.695457 

7 .7 88183 144.5186 26.5316 0.5194 38.248730 

8 .8 112262 104.6319 27.9342 0.4647 44.340586 

9 .9 141221 67.5941 29.8317 0.4014 53.475114 

10 1.0 164985 51.9995 30.9708 0.3706 61.330953 

Table 6.15:    Performance measures at given bit rates for 5 bits symbols for Barbra 512x512 image 

6 Bits Symbol 

S/ 

No 

Rate Output 

Bits 
MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 6773 5.5360e+03 10.6988 0.7416 5.104215 

2 .2 13563 1.4318e+03 16.5720 0.7413 10.290315 

3 .3 19163 662.2012 19.9209 0.7563 13.919344 

4 .4 28171 407.6395 22.0280 0.7313 17.569988 

5 .5 41407 294.8762 23.4344 0.6841 22.570054 

6 .6 60430 228.1006 24.5495 0.6158 30.179148 

7 .7 84089 144.5186 26.5316 0.5417 37.240619 

8 .8 107918 104.6319 27.9342 0.4854 45.774842 

9 .9 136447 67.5941 29.8317 0.4217 56.494754 

10 1.0 160165 51.9995 30.9708 0.3890 64.347909 

Table 6.16:    Performance measures at given bit rates for 6 bits symbols for Barbra 512x512 image 
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7 Bits Symbol 

S/ 

No 

Rate Output Bits MSE PSNR Bit Saving 

Capacity 

Elapsed 

Time (Sec) 

1 .1 6208 5.5360e+03 10.6988 0.7632 5.938539 

2 .2 12445 1.4318e+03 16.5720 0.7626 10.754466 

3 .3 17433 662.2012 19.9209 0.7783 16.405365 

4 .4 25855 407.6395 22.0280 0.7534 20.880190 

5 .5 38816 294.8762 23.4344 0.7039 25.730849 

6 .6 57530 228.1006 24.5495 0.6342 34.154726 

7 .7 81083 144.5186 26.5316 0.5581 42.436615 

8 .8 104683 104.6319 27.9342 0.5008 52.922680 

9 .9 132964 67.5941 29.8317 0.4364 64.424215 

10 1.0 156885 51.9995 30.9708 0.4015 74.108488 

Table 6.17:    Performance measures at given bit rates for 7 bits symbols for Barbra 512x512 image 

 

 

Figure 6.10:    Output bit performance at given bit rates for Barbara 512x512 Image 
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Figure 6.11:    Bits saving capacity performance at given bit rates for Barbara 512x512 image 

 

 

Figure 6.12: PSNR performance at given bit rates for Barbara 512x512 image 
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Figure 6.13:    MSE performance at given bit rates for Barbra 512x512 image 

 

 
 

(a) Original image of 512x512 

 
 

(b) Reconstructed image at 0.1 bpp 
 

 

(c) Reconstructed image at 0.2 bpp 

 

 

(d) Reconstructed image at 0.3 bpp 
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(e) Reconstructed image at 0.4 bpp 

 
 

(f) Reconstructed image at 0.5 bpp 
 

 
 

(g) Reconstructed image at 0.6 bpp 

 

 
 

(h) Reconstructed image at 0.7 bpp 

 

 
 

(i) Reconstructed image at 0.8 bpp 

 

 
 

(j) Reconstructed image at 0.9 bpp 
  

Figure 6.14:   Image compression using proposed algorithm on Lena image of size 512 x 512 using 

various rates.  
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(a) Original image of 512x512 

 

 

(b) Reconstructed image at 0.1 bpp 

 

(c) Reconstructed image at 0.2 bpp 

 

(d) Reconstructed image at 0.3 bpp 

 

(e) Reconstructed image at 0.4 bpp 

 

(f) Reconstructed image at 0.5 bpp 
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(g) Reconstructed image at 0.6 bpp 

 

(h) Reconstructed image at 0.7 bpp 

 

(i) Reconstructed image at 0.8 bpp 

 

(j) Reconstructed image at 0.9 bpp 

 

 

(k) Reconstructed image at 1.0 bpp 

 

 

 

Figure 6.15:  Image compression using proposed method on Barbara image of 512 x 512 using 

various rates.  
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Conclusion and 

Future Work 
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Chapter 7 

Conclusion and Future Work 

7.1   Conclusion 

 A much simpler and fully embedded codec algorithm SPIHT has 

outperformed EZW and is widely used for the compression of wavelet 

transformed images. Since the output of SPIHT contains the redundancy therefore, 

it cannot be advocated to be used as the sole mean of compression.  Reduction in 

redundancy in SPIHT output is very much possible by concatenation of entropy 

techniques as in Huffman.  Albeit, dividing binary output of SPIHT as 3 bit and 

given as input to Huffman encoder ensures considerable reduction in the 

redundancy by discarding extra bits yet it is not the maximum what can be 

achieved. Code with large variance needs larger buffer and one with small 

variance needs smaller and transmits bits with constant rate. If encoder simply 

writes the compressed data on a file then variance of the code does not matter. But 

in case data being generated over NW, the code with large variance causes the 

encoder to generate bits at a rate that varies all the time. A small variance Huffman 

code is preferred where encoder transmit the compressed data. Dividing binary 

output of SPIHT as 4,5,6 &7  bits  and given as input to Huffman encoder  

provides smaller variance than 3 bit symbol and ensure  more  reduction in  the 

redundancy. It yields better compression ratio thereby enhance the storage space 

capacity and transmission speed without degradation of the picture quality as MSE 

and PSNR remain unchanged. 
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7.2   Future work 

The research work concentrated on reduction of storage space and fast 

transmission by saving more number of bits by preserving MSE and PSNR. The 

proposed model is based in the empirical results. Future researchers are advocated 

to take on task of reduction of bits along with improvements in the picture quality 

that can be done by optimizing the PSNR and work on the mathematical model for 

the proposed solution. 
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