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ABSTRACT 

Wavelet based image processing techniques do not strictly follow the conventional 

probabilistic models that are unrealistic for real world images. However, the key 

features of joint probability distributions of wavelet coefficients are well captured 

by Hidden Markov Tree model.  

This thesis presents Hidden Markov Tree model based technique consisting of 

Wavelet based Multiresolution analysis to enhance the results in image processing 

applications such as compression, classification and denoising. The proposed 

technique is applied to colored video sequences by implementing the algorithm on 

each video frame independently. A 2D-Discrete Wavelet Transform is used which 

is implemented on popular Hidden Markov Tree Model used in the framework of 

Expectation Maximization algorithm. The proposed technique can properly exploit 

the temporal dependencies of wavelet coefficients and their non-Gaussian 

performance as opposed to existing wavelet based denoising techniques which 

consider the wavelet coefficients to be jointly Gaussian or independent.  

Denoised frames are obtained by processing the wavelet coefficients inversely. 

Detailed comparison has been made with the existing state of the art 

techniques.The proposed denoising method reveals improved results in terms of 

quantitative and qualitative analysis for both additive and multiplicative noise and 

retains nearly all the structural contents of a video frames. 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

    DEDICATION 

  

I dedicate this report to my beloved parents, and my supervisor, Col. Dr. Imran Touqir for their 

prayers and encouragement.  

 

  



iv 
 

ACKNOWLEDGMENT 

  

I thank Allah who provided me with strength and caliber to bring this thesis work to its 

successful completion.   

I am deeply obliged to my supervisor, Col. Dr. Imran Tauqir, for his guidance, 

unwavering support and confidence in me throughout the course of this thesis work. His 

time and efforts were very valuable. He contributed significantly in the thesis work and 

also imparted a lot of knowledge to me. I am also grateful to my Guidance and 

Evaluation Committee, Lt. Col. Dr. Adil Masood, and Lt. Col. Dr. Adnan Rashdi for 

dedicating their time and making contributions to this thesis work. I offer my regards and 

blessings to all of those who supported me in any respect during the completion of this 

work. Alongside that, I thank the university administration, for facilitating the progress of 

work at different phases, faculty members of MCS for polishing my knowledgebase, my 

university mates and friends.   

Last but not the least; I am grateful to those people without whom I could never 

have accomplished my aim my family, especially my parents. I am grateful to them for 

their constant prayers and unfaltering support throughout this journey. May Allah bless 

them all with eternal happiness. 

 

 

 

  



v 
 

TABLE OF CONTENTS 

List of Tables  .................................................................................................................................. i  

List of Figures ................................................................................................................................. ii  

Notation........................................................................................................................................... iv  

Chapter 01  

1. Introduction .......................................................................................................................................1  

1.1 Research already carried out….…………………………………………………………………... 1  

1.2 Synopsis/ Thesis Statement……………………………………………………………………….. 2  

1.3 Objective….………………………………………………………………………………………. 3  

1.4 Methodology used………………………………………………………………………………… 3  

1.5 Advantages.……………………………………………………………………………………..… 3  

1.6 Areas of application…………………………………………………………………...………….. 4  

1.7 Outline of Thesis  .............................................................................................................................5  

Chapter 02  

2. Analysis of Signals in Time-Frequency Domain..............................................................................15 

2.1 Continuous Wavelet Transform......................................................................................................15  

2.2 Discrete Wavelet Transform...........................................................................................................16  

2.2.1 Perfect Reconstruction.................................................................................................................17  

2.2.2 Conditions for Perfect Reconstruction.........................................................................................18  

2.3 Wavelet Families………………………………………………………………………………….19 

Chapter 03  

3. Modeling Processes.......................................................................................................................... 20 

3.1 What is a model? ............................................................................................................................20  

3.2 Generative and Discriminative Models.......................................................................................... 21  

3.3 Probabilistic Graphical Model........................................................................................................ 22  

3.3.1 Types of Probabilistic Graphical Model………………………………………………...23 



vi 
 

3.3.2. Directed and Undirected Models................................................................................................. 23  

3.3.3 Representing Multivariate Distribution........................................................................................ 24  

3.3.4 Markov Networks..........................................................................................................................25  

3.3.5 Conditional Independence for Markov network............................................................................25  

3.3.6 Bayesian Networks .......................................................................................................................25  

Chapter 04  

4. Gaussian distribution......................................................................................................................... 27  

4.1. Univariate case .............................................................................................................................. 27  

4.2 Bivariate case.................................................................................................................................. 28  

4.2.1 Case 1........................................................................................................................................... 29  

4.2.2 Case 2........................................................................................................................................... 31 

4.3 Multivariate case…………………………………………………………………………………..33  

4.5. Properties of Multivariate Normal Distribution .............................................................................34  

4.6. Gaussian Mixture Model ………………………………………………………………………....34 

4.6.1 Maximum Likelihood Estimation ……………………………………………………………….40 

4.6.2 Expectation Maximization Algorithm …………………………………………………………...40 

4.6.2.1 EM algorithm for GMM………………………………………………………………………..42 

Chapter 05  

Hidden Markov Model........................................................................................................................... 44 

5.1 From observable to hidden state........................................................................................................45  

5.2. Parameters of HMM........................................................................................................................ 45  

5.3. A motivating Example.....................................................................................................................46  

5.4 Essentials of Hidden Markov Model………………………………………………………………50  

5.5 Properties of Hidden Markov Model………………………………………………………………52 

5.6   Probability Laws………………………………………………………………………………….52 

5.7   Three problems in Hidden Markov Model……………………………………………………….53 



vii 
 

5.7.1   Evaluation Problem…………………………………………………………………………….53 

5.7.2   Decoding Problem…………………………………………………………………….……….53 

5.7.3   Learning Problem……………………………………………………………………………...53 

5.8   Solution to Problems…………………………………………………………………………….54 

5.8.1    Solution to Problem 1: Forward & Backward Probability Algorithm………………………..54 

5.8.1.1 Forward Probability Algorithm……………………………………………………………….54 

5.8.1.1.1   Boundary Conditions for Forward Algorithm……………………………………………..56 

5.8.1.2   Backward Probability Algorithm…………………………………………………………….56 

5.8.1.2.1   Boundary Conditions for Backward Algorithm……………………………………………58 

5.8.2   Solution to Problem 2: Viterbi Algorithm……………………………………………………...58 

5.8.2.1   Steps in Viterbi Algorithm……………………………………………………………………63 

5.8.3 Solution to Problem 3: Baum- Welch (Forward-Backward Algorithm)………………….……...65 

5.8.3.1   Baum-Welch Illustration……………………………………………………………………...67 

5.8.3.2   Computational Complexity of Baum Welch Algorithm……………………………………...68 

Chapter 06 

Wavelet Based Statistical Signal Processing…………………………………………………………..69 

6.1 2D - DWT …………………………………………………………………………………………69 

6.2 Modelling For Video Denoising Using Hidden Markov Model…………………………………..70 

6.2.1 Capturing Non-Gaussian Densities……………………………………………………………...71 

6.2.2 Capturing Dependencies…………………………………………………………………………71 

Chapter 07 

Simulation and Results ......................................................................................................................... 72 

 7.1 Denoising Technique…………….................................................................................................. 73 

7.1.1 Noisy Wavelet Coefficients………………………………………………………………………73 

7.1.2 Model Parameters determination…………………………………………………………………73 

7.1.3 Clean Coefficients………………………………………………………………………………...74 



viii 
 

7.1.4 Reconstructed Frames…………………………………………………………………………….74 

7.2 Simulation and Results……………………………………………………………………………..75 

Chapter 08  

Conclusion ...............................................................................................................................................84 

8.1 Future Work .......................................................................................................................................85   

Bibliography ............................................................................................................................................85    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

 

LIST OF TABLES 

 

Table 5-1 Parameters of Hidden Markov Model................................................................46 

Table 5-2 (a) Probability of transition................................................................................48 

Table 5-2 (b) Probability of drawing a ball........................................................................48 

Table 5-3: Observations and States ...................................................................................49 

Table 5-4: Table of Counts ................................................................................................64 

Table 5-5: One Run Baum Welch Algorithm Example .....................................................67 

Table 7-1: Quantitative Comparison with sigma 15...........................................................78 

Table 7-2: Quantitative Comparison with different values of sigma.................................78 

Table 7-3: Quantitative results with speckle noise.............................................................80 

Table 7-4: Quantitative results with different noise levels.................................................81 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 

LIST OF FIGURES 

 

 

Figure 2.1: Three level Wavelet Decomposition…………………………………………17 

Figure 2.2: Three Level Wavelet Reconstruction……………………………….………..18 

Figure 2.3: Wavelet Families (a) Haar (b) Daucechies..……………..............………….. 19 

Figure 3.1: Representation of graphical model with 6 states..............................................22 

Figure 3.2: An example of directed (a) graph that cannot be re-expressed as undirected...24 

Figure 3.3: Example of Markov process ….....……………………................................... 25 

Figure 3.4: Example of Bayesian Network …………....…......…………………………... 26 

Figure 4.1:   Illustration of Univariate Gaussian distribution in one-dimensional space......28 

Figure 4.2: Bivariate Normal distribution 𝜎11 = 𝜎22 and 𝜌12 = 0........................................31 

Figure 4.3: Bivariate Normal distribution 𝜎11 = 𝜎22 and 𝜌12 ≠ 0.......................................33 

Figure 4.4 Multivariate Normal Distribution when 𝜎1 = 𝜎2……………………………….34 

Figure 4.5   Example of a Gaussian mixture distribution in one dimension.........................35 

Figure 4.6   Mixture of three Gaussians................................................................................35 

Figure 4.7 (a) Example of 500 points...................................................................................39 

Figure 5.1 Model parameters describing a three-state hidden Markov model.....................45 

Figure 5.2 Three Urns containing Red, Green and Blue balls..............................................47 

Figure 5.3: Diagrammatic Representation............................................................................48 

Figure 5.4: Diagrammatic Representation of Observations and State..................................51 



xi 
 

Figure 5.5: Initial Tree Diagram for Viterbi algorithm example.......................................59 

Figure 5.6 (a): Tree Diagram for Viterbi algorithm Example............................................60 

Figure 5.5 (b): Tree Diagram for Viterbi Algorithm Example ..........................................61 

Figure 5.6 (c): Tree Diagram for Viterbi Algorithm Example ..........................................62 

Figure 6.1: Three level DWT decomposition.....................................................................70 

Figure 7.1: Diagram of proposed denoising process...........................................................74 

Figure 7.2: Visual Comparison of 40 frame of the sequence FOREMAN  .......................75 

Figure 7.3: Comparison of 35 frame of MOBILE..............................................................76 

Figure 7.4: Comparison of 58 frame of BUS......................................................................77 

Figure 7.5: Qualitative Comparison of Proposed Algorithm with other techniques..........79 

Figure 7.6: Qualitative Comparison of Zoomed Lena with other techniques....................79 

Figure 7.7: Qualitative Comparison of proposed algorithm on OCT Image……………..82 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

LIST OF ACRONYMS 

    

1. Mean Square Error                                                                                                      MSE 

2. White Gaussian Noise                                                                                                 WGN 

3. Additive White Gaussian Noise                                                                                  AWGN 

4. Continuous Wavelet Transform                                                                                  CWT 

5. Discrete Wavelet Transform                                                                                        DWT 

6. Expectation Maximization                                                                                           EM 

7. Gaussian Mixture Model                                                                                              GMM 

8. Hidden Markov Model                                                                                                 HMM 

9. Probability Density Function                                                                                        Pdf 

10. Hidden Markov Tree                                                                                                     HMT 

11. Probability Mass Function                                                                                             pmf 

12. Peak Signal to Noise Ratio                                                                                            PSNR 

13. Maximum a posterior                                                                                                     MAP 

14. Inverse Discrete Wavelet Transform                                                                              IDWT 



1 
 



1 
 

CHAPTER 1 

INTRODUCTION 

Denoising can effectively enhance visual quality and considerably simplify the subsequent 

processing tasks like video compression and pattern recognition. Video denoising considers 

time-frequency data of a video signal and it is different from image denoising. It can be achieved 

by different approaches: Time-domain, Frequency-domain, and Time-Frequency combination. 

   Frequency domain methods of denoising are limited in their scope as                                                                      

these methods do not take temporal correlation between frames into account [1][2][3]. Wiener 

filter is an example of spatial filter that removes spatial noise from images and succeeded in 

achieving high gain. However this filter cannot restore edges especially in less noisy areas [4].                   

  Time domain methods consider the inter-frame correlation between frames and perform well 

for still videos without motion [5]. In case of videos having motion, these methods do not 

provide significant results. Rakhshanfar in [6] proposed a temporal filter for denoising of frames 

that provide considerably good results in noise removal process and produce less blocking 

artifacts but it causes blurring effect.  

   Yun Liu and Bing Luo in [7] introduced a method based on total variation (TV) and temporal 

filtering for image denoising. The temporal filter maintains structure and edges well but it cannot 

reduce noise. The TV algorithm is applied on a noisy frame to reduce noise but it could not 

restore structure information. 

   Time-frequency methods consider both spatial and temporal correlations between different 

frames in a video sequence and provide efficient results. Transform domain methods are example 

of Time-frequency methods and these methods exploit the sparsity of data and has good 

localization properties and multiresolution characteristics in either time domain or frequency 

domain. These properties makes it more useful to separate a useful signal from noise. Hence, 

wavelet has gained popularity for image denoising [10][11]. Wavelet transform can be 2D or 3D. 

3D transform domain methods do not perform well for denoising purpose because of long delay 

and inability to adapt to fast motions in a video sequence [12]. 
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   Di Zhigang et al. [13] proposed wavelet based threshold function to overcome the discontinuity 

of hard threshold method and soft threshold method at threshold value. 

    Probabilistic Graphical Models designed in time-frequency domain are used for denoising 

[14]. Hidden Markov Model (HMM) with 2D Discrete Wavelet Transform (DWT) is utilized to 

get efficient results. 

   Jinn and Hwang proposed image noise reduction method through the wavelet domain Bayesian 

threshold criterion coefficient of shrinkage method [15].Techniques like VBM3D [16] and E-

RF3 [17] have been the most efficient ones in denoising as they exploit DCT in their framework.  

1.1 Research already carried out  

Statistical signal processing has a wide range of applications and is taught at graduate level in 

Electrical Engineering, Applied Mathematics and Statistics. Time Frequency analysis of signal 

processing treats signals as stochastic processes, dealing with their statistical properties like 

mean, variance etc.   

Signal processing deals with the analysis of signals that are random in nature and processing 

them using some statistical techniques. Many real time signals have a structure or a component 

that is stochastic in nature. These signals are subjected to unwanted noise quite often and there is 

a need to model them in stochastic domain. For every signal that is compressed, the theory of 

compression deals it in the form of probabilistic model. The reason is that, the signal is random 

in nature and these techniques play a vital role in evaluating such signal.   

 

1.2 Thesis Statement 

Most of the existing spatio-temporal methods can effectively remove uniform noise from color 

images and video sequences but do not perform well for speckle noise. 

   In this work, a combined spatial and temporal filtering based noise removal algorithm is 

proposed that can remove Gaussian as well as speckle noise from color image and video 

sequences considerably. The proposed technique gives efficient results for de-speckling of 
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images as well. The results shows that the proposed method do not remove noise only but also 

retains almost all the structural information of a video frame. 

1.3 Objective 

The primary objective is to develop a model based on time-frequency analysis of a two 

dimensional signals. This framework allows to model non-Gaussian statistics of individual 

wavelets coefficients and exploits the dependences between these coefficients. In this model, 

efficient expectation maximization algorithm is applied to probabilistic graphical models that 

enable to achieve compression of signals. Time-frequency analysis combined in probabilistic 

graphical models; provide modeling of data for multiresolution.   

 

1.4 Methodology used 

The methodology used in this thesis is divided into two steps.  

 First step is to develop a model in wavelet domain. Initially, we will focus on achieving 

the primary properties of wavelet transform. And then this framework will be extended 

with the use of probabilistic graphical models to obtain the secondary properties of 

wavelet transform.  

 Second step will be the development of algorithm that is to achieve de-noising of two 

dimensional color video signals. 

1.5 Advantages   

 i) Efficient in terms of computational complexity.  

 ii) Due to reduction in computational complexity proposed framework will be efficient for:  

 Signal De-noising  

 Signal Classification  

 Signal Detection  

 Signal Estimation  

 Signal Compression 
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1.6 Areas of Application   

This methodology has its wide range of applications in;  

 Image Processing in computers, digital cameras and imaging systems  

 Video Processing for interpreting moving pictures  

 Speech Signal Processing for processing and interpreting spoken words  

 Audio Signal Processing for representing electrical signals as sound, such as speech or 

music  

 Array Processing for processing signals from array of sensors  

 Wireless Communications such as; waveform generation, demodulation, filtering, 

equalization  Control Systems 

 Feature Extraction like speech recognition and image understanding  

 Compression techniques such as Video Compression, Image Compression and Audio 

compression 

 

1.7 Outline of Thesis    

This thesis is based on following chapters   

Chapter 01:     

This chapter is the basic introduction of the topic, problem statement, scope and objective.  

    

Chapter 02:   

Chapter 02 will be introduction of wavelet basis and transform. This chapter will give the 

basic understanding of techniques used in statistical signal processing and their importance.   

 

Chapter 03:    

It deals with brief explanation of probabilistic models used for image modeling and 

processing. This chapter explains the structure of models and their calculations in detail.   

 

Chapter 04:   

Chapter 04 discusses the Gaussian Models and their different types. 
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Chapter 05:     

This chapter is about the Hidden Markov model and its framework in terms of Gaussian 

mixture models. 

 

Chapter 06:   

Chapter 06 discusses the Statistical Image Models in Time-Frequency Domain that helps in 

achieving the de-noising of signals.   

 

Chapter 07:   

This chapters presents different results and simulation. 

 

 

  



6 
 

CHAPTER 2 

Analysis of Signals in Time-Frequency Domain 

Time frequency analysis basically deals with the analysis of the objects at different scales of 

resolution that are small or large in size with low or high contrast. This is commonly stated as 

Multiresolution processing/analysis (MRA). Through MRA, a signal can be analyzed at different 

frequencies with different resolutions. Images are 2D arrays containing edges and smooth 

regions with different varying statistics.  

Since 1950’s the Fourier transform was the backbone of transform-based image processing but it 

is much easier to transmit, compress and analyze the two dimensional signal by using wavelet 

transform. Wavelet transform is based on wavelets (small waves) as opposed to Fourier 

transform whose basis functions are sinusoids. Unlike Fourier transform that only provide the 

frequency information of a signal, both time and frequency information of a signal is obtained by 

wavelet transform, which helps in better analysis of a signal. 

The transform is computed for different scales of wavelet and at various locations of signal, thus 

the plane of transform is filled. On carrying out the process in a continuous and smooth way (i.e., 

the position and scale is smoothly varied) such transform is called continuous wavelet transform 

(CWT). If the position and scale change discretely, the transform is called discrete wavelet 

transform (DWT). 

2.1 Continuous Wavelet Transform 

To overcome the resolution problem, an alternate approach known as continuous wavelet 

transform (CWT) was developed. CWT is similar to Short Term Fourier Transform (STFT) as in 

both the signal is multiplied by a function but unlike STFT the Fourier transform of windowed 

signal is not taken and variable size window is used for each spectral component. One illustration 

is that the negative frequencies are not computed as in the case of Fourier Transform. The 

continuous wavelet transform offers better time and frequency localization by constructing the 

time-frequency representation of a signal. 

The continuous wavelet transform of any signal z(t) is given as: 
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𝑍𝑤(𝜏, 𝑠) =
1

√𝑠
∫ 𝑧(𝑡)𝜓∗

𝜏,𝑠
(
𝑡 − 𝜏

𝑠
)

∞

−∞

𝑑𝑡                                                 (2.1) 

and 

𝜓𝜏,𝑠 =
1

√𝑠
𝜓 (
𝑡 − 𝜏

𝑠
)                                                                             (2.2) 

where tau and s are the translation and scaling parameters respectively. psi(t) is the transforming 

function and known as mother wavelet. 

 To reconstruct the original signal back, inverse CWT can be applied as: 

𝑧(𝑡) =
1

𝑀𝜓
2 ∫∫𝑍𝑤(𝜏, 𝑠)

1

𝑠2
𝜓 (
𝑡 − 𝜏

𝑠
) 𝑑𝜏 𝑑𝑠

𝜏𝑠

                                    (2.3) 

where M_psi is constant known as admissibility constant that depends on wavelet used. The 

following condition should meet for successful reconstruction: 

𝑀𝜓 = {2𝜋 ∫
|�̂�(𝜉)|

2

|𝜉|

∞

−∞
𝑑𝜉}

1

2

  < ∞                                                       (2.4)     

Morlet wavelet and the Mexican hat wavelet are the two examples of CWT. Discretized version 

of CWT gives us wavelet series and it takes much time for the highly redundant information to 

process during reconstruction of a signal. On the other hand, Discrete wavelet transform (DWT) 

has less computational complexity and it provides appropriate information for synthesis and 

analysis of actual signal. 

2.2 Discrete Wavelet Transform 

The basic idea of CWT and DWT is same which focus on time-scale representation of a digital 

signal. The CWT is computed if we change the scale of the window, shift it in time, multiply it 

by the signal, and integrate over all times. While in DWT, different filters with different cutoff 

frequencies are used for the signal analysis at different scales.                       



8 
 

             The signal to be analyzed is passed through a sequence of filters consisting of high pass 

and low pass filters to analyze the high pass and low pass frequencies respectively. The filtering 

operation will change the signal resolution and the scale will be changed by up sampling (down 

sampling) operations. Down sampling refers to omit the every other sample of a signal and in up 

sampling, sampling rate is enlarged by adding new samples to the signals.  

           

Fig 2.1 Three level Wavelet Decomposition 

In the above figure, 𝑋[𝑛] is the input signal and n is an integer. 𝐺𝑜 and 𝐻𝑜 are the low pass and 

high pass filters. At each level, the high pass filter provide detail information of the input signal; 

denoted by d[n], whereas the low pass filter is responsible for scaling function that gives 

approximations of the signal, denoted by a[n].  

The filtering process accompanied by the down sampling (decimation) continues until the 

desired level is reached. The length of the signal determines the number of levels.   

 

2.2.1 Perfect Reconstruction 

Reconstruction is opposite to the process of decomposition shown in diagram 2.2 below. The 

approximation and detail coefficients are up sampled, passed through high and low pass filters 

and added together to get the original or reconstructed signal. 𝐺1 and 𝐻1 as synthesis filters. 
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Fig. 2.2 Three Level Wavelet Reconstruction 

 

 

2.2.2 Conditions for Perfect Reconstruction 

There is a need for analysis and synthesis filters to satisfy some conditions in order to achieve 

perfect reconstruction. Let 𝐺𝑜(𝑧) denote the low pass analysis filter and 𝐺1(𝑧) as low pass 

synthesis filters whereas, 𝐻𝑜(𝑧) and 𝐻1(𝑧)  are the high pass analysis and synthesis filters 

respectively. These filters have to satisfy the following conditions given in order to get perfect 

reconstruction. 

 

𝐺𝑜(−𝑧)𝐺1(𝑧) + 𝐻𝑜(−𝑧)𝐻1(𝑧) = 0                                                (2.5) 

𝐺𝑜(𝑧)𝐺1(𝑧) + 𝐻𝑜(𝑧)𝐻1(𝑧) = 2𝑧
−𝑑                                                (2.6) 

 

The accuracy of perfect reconstruction can be checked through different parameters like Peak 

Signal to Noise Ratio (PSNR) and Structural similarity index (SSIM). Some applications do not 

require reconstruction like pattern recognition and for such applications; the above conditions 

need not be applied. 
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2.3 Wavelet Families 

The efficiency in using wavelet transform comes from the fact that right type of mother wavelet 

is chosen to encounter the details about a certain application. We can find plenty of wavelet basis 

functions used as a parent wavelet for wavelet transformation.  

             A parent wavelet is responsible for determining the characteristics of a certain wavelet 

transform as the parent wavelet results in the production of wavelet functions by dilations and 

translations.   A significant amount of contribution has been experienced by the area of wavelets 

from Daubechies. Hence, in this work Daucechies 8 wavelet has been used to perform DWT. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.3 Wavelet Families (a) Haar (b) Daubechies (c) Coiflet1 (d) Symlet2 (e) Meyer (f) Morlet (g) 

Mexican Hat 
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CHAPTER 3 

Modeling Processes 

3.1 What is a model? 

Before we entered into the details of how a model works, it is important to discuss what a model 

is. There are two different views about the meaning of model. One view is mechanistic one in 

which model interpret the mechanism by which something happens. These models are difficult to 

create often requiring year of experimental work but they are very powerful. A different view of 

models considers them as black boxes. In this approach, a model is evaluated on the basis of its 

accuracy in prediction, not by the mechanism used. To make numerically accurate and 

completely mechanistic models is rarely possible in real world task. 

When there is the need of analyzing and modelling a database of sequences, the predictions that 

can be obtained by a black-box model are somewhat limited. The models we will focus on, 

namely Hidden Markov Models, fall somewhere between the extremes of mechanistic models 

and pure black-box models. These models do not provide mechanistic explanations but they have 

an internal structure that can provide an insight into the characteristic dynamics of the modeled 

process. We can easily modify this kind of structure according to our domain knowledge in order 

to improve the model performances. 

From a general point of view, a model can be used for three main purposes: describing the details 

of a process, predicting its outcomes, or for classification purposes. All these three tasks cannot 

be performed by all the models. When there is the need of modelling processes that are 

characterized by great complexity and are affected by randomness, usually the main approach is 

to focus only on the aspects required for solving the task; in this way we can control the 

computational complexity of the models, in such a way to obtain practically useful ones. 
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3.2 Generative and Discriminative Models 

Generative models completely describe the data, while discriminative models describe only the 

differences between classes without considering the classes themselves. Given a vector of 

features y and a finite set K of classes to which this vector may belong, a discriminative model 

describes the conditional probability 𝑝(𝑘|𝑦) where 𝑘 ∈ 𝐾, while a generative model represents 

the joint probability 𝑝(𝑘, 𝑦). 

To understand the difference between those two categories it could be helpful considering a 

scenario in which we are collecting different set of sequences of system calls generated by k 

different processes. Each sequence is represented by means of a features vector y and it is 

labelled according to its class. If our objective is, for a new sequence 𝑦𝑖, to determine which 

process it belongs to (which process most probably generated it under certain assumptions), the 

natural choice is to use a discriminative model. Discriminative approach introduced a parametric 

model for the posterior probabilities, and a set of labelled training data is used to infer the values 

of parameters. From basic decision theory that says that the complete characterization of the 

solution can be explained by the set of posterior probabilities 𝑝(𝑘|𝑦𝑖). Once we find these 

probabilities, it is easy to allocate the new sequence to a particular process. In a generative 

approach we model the joint distribution 𝑝(𝑘, 𝑦𝑖) of sequences and labels. This can be achieved 

by learning prior probabilities p(k) of class and the conditional densities for each class 

𝑝(𝑦𝑖|𝑘). Afterward, applying the Bayes theorem in order to compute the posterior probabilities: 

                              

                   𝑝(𝑘|𝑦𝑖) =
𝑝(𝑦𝑖|𝑘)𝑝(𝑘)

∑ 𝑝(𝑦𝑖|𝑗)𝑝(𝑗)𝑗∈𝐾
                                                     (3.1) 

 

𝑝(𝑘|𝑦𝑖) is always possible to compute when 𝑝(𝑦𝑖|𝑘) and 𝑝(𝑘) are given by using Bayes 

Theorem. But the discriminative approach is typically better if our objective is to only 

discriminate among classes. It is in fact, difficult to model the full joint distribution of a class 

when the data is highly structured; in this case we need a lot of examples in order to characterize 

them. Apart from this drawback, discriminative models are usually very fast at assigning new 

data to a class, while generative models generally need iterative solutions. 
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3.3 Probabilistic Graphical Model 

 

Probabilistic graphical model is a tool that allows the problems of uncertainty and complexity to 

be dealt with in a natural way. These models can be seen as a merge between probability theory 

and graph theory. They are playing an increasing role in Machine Learning, because they are 

based on well-studied classical multivariate probabilistic systems, and at the same time, the 

graph theoretic side of graphical models provides both an edge by which humans are capable of 

modelling highly interacting set of variables, as well as a data structure that is well suited to 

design general-purpose algorithms. Hidden Markov Model can be seen as a special kind of 

graphical models. 

From an abstract point of view, a graphical model is a statistical model, where the joint 

distribution 𝑃𝜃 is expressed by means of an underlying graph. The nodes of graph represent 

random variables and edges represent probabilistic relationships between variables. The idea is 

to represent a complex distribution involving a (possibly) large number of random variables as a 

product of local functions, where each variable depends only on a small number of related 

variables, according to the specific independence assumptions that have been done. 

 

Fig 3.1 Representation of graphical model with 6 states 
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3.3.1. Types of Probabilistic Graphical Model 

There are basically two branches of graphical representations namely Bayesian networks and 

Markov networks. Generally, probabilistic graphical models use a representation that is graph-

based for encoding the complete distribution over a multidimensional space. This graph is 

referred as a compact representation of the group of independencies that are incorporated within 

the underlying specific distribution. Both families of graphical models cover the properties 

related to factorization and independences. The difference lies in the way they encode the 

independences and persuade factorization within the distribution. 

Whenever there is a need for modeling such variables which have conditional dependence on one 

another, Directed graphs are a suitable choice. This phenomenon is commonly known as 

progression of events that have temporal relationship. On the contrary, undirected models are 

appropriate in modeling such data in which such relationship does not exist. 

3.3.2. Directed and Undirected Models 

Directed graphs are known as Bayesian Networks, and undirected graphs are Markov Random 

Fields. They have different properties with different advantages, but the crucial difference is in 

the definition of conditional independence. Undirected graphs are really flexible because they 

allow potential functions that are not probability distributions, but they are also difficult to be 

applied to big-sized task. The reason is due to the high computational cost in computing the 

normalizing constant. Actually the only algorithms that could be used efficiently to perform this 

task are approximate ones. 

In general, directed and undirected graphs make different declarations of conditional 

independence; then we have families of probability distributions captured by a directed graph 

which are not captured by undirected graphs and vice versa. Two examples are given below. 
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Fig 3.2 An example of directed (a) graph that cannot be re-expressed as undirected graph and (b) vice versa. 

 

3.3.3 Representing Multivariate Distribution 

Probabilistic Graphical Models are mainly used to provide more intuitive tools for dealing with 

multivariate probabilistic models. Such models are represented by joint probability of its 

variables 𝑃 (𝑌1, 𝑌2, … , 𝑌𝑛). 

Probabilistic Graphical Model is to represent such joint probabilities in terms of conditional 

probabilities. It can be rewritten as: 

𝑃(𝑌1, 𝑌2, … , 𝑌𝑛) = 𝑃(𝑌1)𝑃(𝑌2|𝑌1)𝑃(𝑌3|𝑌1, 𝑌2), …… , 𝑃(𝑌𝑛|𝑌1, 𝑌𝑛−1)              (3.2) 

 

The above equation assumes no prior independency information on data. For the case of 

complete independency of models random variables, the joint probability is defined as 

 

𝑃(𝑌1, 𝑌2, … , 𝑌𝑛) = 𝑃(𝑌1)𝑃(𝑌2)𝑃(𝑌3)…𝑃(𝑌𝑛)                                    (3.3) 
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3.3.4 Markov Networks 

Markov Networks belongs to a family of Undirected Graphs. Markov networks are simplest 

model that becomes a suitable choice when there is a need to model the data termed as discrete 

process in which the future values of the system depends only on the actual state of the system 

and does not have any dependence on the past states of the system. 

Lets assume that there are two events that causes the grass to be wet: one can be sprinkler and 

second is raining. Also, suppose that whenever it is, the sprinkler is usually not turned on. 

 

Fig 3.3 Example of Markov process 

 

We can see that this graph is fully connected from one node to another. 

3.3.5 Conditional Independence for Markov network 

A node 𝑦𝑖 is conditionally independent of all other nodes in the network given its Markov Blanket 

that is the set of all the neighbors of yi. 

 3.3.6 Bayesian Networks 

A Bayesian Network (BN) is a probabilistic graphical model that represents a probability 

distribution through a directed acyclic graph (DAG) that encodes conditional dependency and 

independency relationships among variables in the model. In this specific graph structure, nodes 
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represent random variables, and each directed edge represents a dependency relationship 

between the two variables to which it connects. 

Now if we suppose that the sprinkler’s rain detection system is broken, and it can no longer tell 

when it’s raining or not. The above scenario will be changed as: 

 

 

Fig. 3.4 Example of Bayesian Network  

 

Now the sprinkler’s activation does not depend on the rain. The biggest benefit here is 

independencies encoded in Bayes network. 
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CHAPTER 4 

Gaussian distribution 

Gaussian distribution is also referred to as Normal distribution, which is symmetric, continuous 

and bell-shaped distribution of a variable. This distribution is useful because of central limit 

theorem. 

Central Limit Theorem 

Central limit theorem says that for any sequence having number of trials, the standardized 

sample mean approaches the standard normal variable as number of trial increases. 

𝑃(𝑎 ≤ 𝑍𝑛 ≤ 𝑏)  ≈  𝑃(𝑎 ≤  𝜙 ≤ 𝑏)                                            (4.1) 

 

Where 𝑍𝑛 denotes standardized sample mean and 𝜙 is standard normal distribution. 

In other words, as the number of independent random variables becomes very large say n→∞, 

they start following Normal distribution.  

4.1. Univariate case 

Gaussian distribution is bell shaped distribution and in case of single variable its pdf is written 

as, 

𝑝(𝑥) = 𝑁(𝜇, 𝜎2) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2               (−∞ < 𝑥 < ∞)                 (4.2) 
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Fig 4.1:   Illustration of Univariate Gaussian distribution in one-dimensional space. 

 

A univariate Gaussian distribution has roughly 95% of its area in the range |𝑥 − 𝜇| ≤

2𝜎.Gaussian distribution is characterized by 𝜇 which is mean and 𝜎2 is variance which shows 

deviation from the mean value. 

Where, 

   𝜇 =  𝐸(𝑥) =  ∫ 𝑥 𝑝(𝑥) 𝑑𝑥
∞

−∞

                                                (4.3) 

 

𝜎2 = 𝐸(𝑥 − 𝜇)2 = ∫ (𝑥 − 𝜇)2𝑝(𝑥)
∞

−∞

𝑑(𝑥)                            (4.4) 

 

4.2 Bivariate case 

It is easy to extend the case of one dimension to the higher dimensions with a K-dimensional 

vector variable X with mean vector μ and covariance matrix Σ. 
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For the bivariate case K=2 which means we have two random variables X1 and X2 then 𝑋 = [𝑋1
𝑋2
] , 

𝜇 = [
𝜇1
𝜇2
] and Σ = [

𝜎11 𝜎12
𝜎21 𝜎22

]. For the two dimensional vector X the bivariate takes the form: 

 

𝑝(𝑥1, 𝑥2) =
1

(2𝜋)|Σ|
1
2

𝑒
(−  

1
2
)[(
𝑥1−𝜇1
𝜎1

)
2
+ (
𝑥2−𝜇2
𝜎2

)
2
]
                             (4.5) 

 

4.2.1 Case 1 

When two variables are independent of each other 𝜎12 = 𝜎21 and 𝜎12 = 0 we have 

𝑓(𝑥1, 𝑥2) = 𝑓(𝑥1)𝑓(𝑥2)   =
1

2𝜋 𝜎12𝜎22
𝑒
−(
1
2
)[(
𝑥1−𝜇1
𝜎1

)
2
+ (
𝑥2−𝜇2
𝜎2

)
2
]
              (4.6) 

 

|Σ|  =   [
𝜎11 𝜎12
𝜎21 𝜎22

] =   [
𝜎1
2 𝜎12
𝜎21 𝜎2

2 ]  = 𝜎1
2 𝜎2

2 − 𝜎12𝜎21                   (4.7)         

  

        ∵  𝜎12=𝜎21                           

 

As we assumed 𝜎12 = 0,  

|Σ| =  𝜎1
2 𝜎2

2                                                           (4.8)  

 

If we take square root of the above equation, 

|Σ|
1

2 = (𝜎1
2𝜎2
2)
1

2                                                            (4.9)    
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Hence we can write constant part of bivariate equation as 

𝑓(𝑥1, 𝑥2 ) =
1

2𝜋
2
2 (𝜎1 

2𝜎2
2)
1
2

=
1

(2𝜋)
2
2|Σ|

1
2

                        (4.10) 

 

Exponent part can also be derived by using Exponent part of univariate Normal distribution. 

From equation 4.2 we can write: 

−
1

2
(
𝑥−𝜇

𝜎
)
2

= −
1

2
(𝑥 − 𝜇)𝑇 Σ−1 (𝑥 − 𝜇)                       (4.11)                      

 

Putting values in 4.3 we get: 

= −
1

2
[𝑥1 − 𝜇1   𝑥2 − 𝜇2 ] [

𝜎1
2 0

0 𝜎2
2]

−1

[
𝑥1 − 𝜇1
𝑥2 − 𝜇2

]                (4.12) 

 

and 

Σ−1 =

[
𝜎2
2 0

0 𝜎1
2]

𝜎1
2 𝜎2

2                                                               (4.13) 

 

Substituting Σ−1 in 4.12 we get 

= −
1

2
[𝑥1 − 𝜇1    𝑥2 − 𝜇2]

1

𝜎1
2 𝜎2

2  [
𝜎2
2 0

0 𝜎1
2] [

𝑥1 − 𝜇1
𝑥2 − 𝜇2

]                  (4.14)  

 

By solving above equation we get the exponent part of Bivariate Normal distribution as: 
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= −
1

2
[(
𝑥1 − 𝜇1
𝜎1

)
2

+ (
𝑥2 − 𝜇2
𝜎2

)
2

]                                           (4.15) 

 

where (
𝑥1−𝜇1

𝜎1
)
2

+ (
𝑥2−𝜇2

𝜎2
)
2

is the equation of ellipse. 

 

Fig 4.2 Bivariate Normal distribution 𝝈𝟏𝟏 = 𝝈𝟐𝟐 and 𝝆𝟏𝟐 = 𝟎 

 

4.2.2. Case 2: When variables are independent and  σ12 ≠ 0                      

Σ = [
𝜎1
2 𝜎12
𝜎21 𝜎2

2 ] , 𝜇 = [
𝜇1
𝜇2
] and 𝑋 = [𝑋1

𝑋2
] 

Whereas 𝜎12
2  is equal to product of co-variance and standard deviation. 

 |Σ| = 𝜎1
2 𝜎2

2 − 𝜎12
2 = 𝜎1

2𝜎2
2 − (𝜌12𝜎1𝜎2) = 𝜎1

2𝜎2 
2(1 − 𝜌12)         (4.16)  

 

Inverse of co-variance matrix is given by: 
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Σ−1 =
1

𝜎1
2𝜎2
2 − 𝜎12

2 [
𝜎1
2 −𝜎12

−𝜎12 𝜎2
2 ]                                     (4.17)    

Substituting this value in 4.12 gives: 

= −
1

2
[𝑥1 − 𝜇1    𝑥2 − 𝜇2]

1

𝜎1
2𝜎2
2−𝜎12

2 [
𝜎2
2 −𝜎12

−𝜎12 𝜎1
2 ] [

𝑥1 − 𝜇1
𝑥2 − 𝜇2

]        (4.18)  

By solving and then multiply and divide with 𝜎1
2𝜎2
2 we get, 

=  −
𝜎1
2𝜎2
2

2(𝜎1
2𝜎2
2−𝜎12

2 )
[(
𝑥1−𝜇1 

𝜎1
)
2

−
2𝜎12

𝜎1𝜎2
(
𝑥1−𝜇1

𝜎1
) (

𝑥2−𝜇2

𝜎2
) + (

𝑥2−𝜇2

𝜎2
)
2

]      (4.19)    

 

As 𝜎12 = 𝜌12𝜎1𝜎2 

= −
1

2(1−𝜌12
2 )
[(
𝑥1−𝜇1 

𝜎1
)
2

− 2𝜌12 (
𝑥1−𝜇1

𝜎1
) (

𝑥2−𝜇2

𝜎2
) + (

𝑥2−𝜇2

𝜎2
)
2

]           (4.20)             

 

where [(
(𝑥1−𝜇1)

2

𝜎1
) − 2𝜌12 (

𝑥1−𝜇1

𝜎1
) (

𝑥2−𝜇2

𝜎2
) + (𝑥2 −

𝜇2

𝜎2
)]  is the 2D equation of ellipse for Bi-

variate. 
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Fig 4.3 Bivariate Normal distribution 𝝈𝟏𝟏 = 𝝈𝟐𝟐 and 𝝆𝟏𝟐 ≠ 𝟎 

 

4.3. Multivariate case 

The multivariate Gaussian distribution for a vector x having D-dimensions is defined as:   

𝑁(𝑥| 𝜇, Σ) =
1

(2𝜋)𝐷/2
1

|Σ|1/2
  𝑒−

1

2
(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇)                           (4.21)                                   

 

Where 𝜇 is a D-dimensional mean vector, Σ is a D × D covariance matrix, which is defined as: 

 

Σ = 𝐸[(𝑥 − 𝜇𝑖)(𝑥 − 𝜇𝑖)
𝑇]                                                (4.22) 

 

 |Σ| denotes the determinant of Σ and 𝐸[. ] is mean value of random variable. 

 

 For  𝜎1 = 𝜎2  
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Fig 4.4 Multivariate Normal Distribution when 𝝈𝟏 = 𝝈𝟐 

 

4.5. Properties of Multivariate Normal Distribution 

 If 𝑋𝑃×1~ 𝑁𝑃(𝜇, Σ) then 𝑋𝑗 is 𝑁(𝜇𝑗 , 𝜎
2
𝑗) for all 𝑋𝑗, 𝑗 = 1,2, … , 𝑝. 

 If 𝑋𝑝×1~ 𝑁𝑝 (𝜇, Σ) then subset of 𝑋𝑝×1 𝑖. 𝑒 𝑋𝑞×1 is 𝑁𝑝(𝜇, Σ). 

 If 𝑋𝑝×1~ 𝑁𝑝(𝜇, Σ) then linear combinations of 𝑋𝑗, 𝑗 = 1,2, … , 𝑝 is univariate normal. 

 If 𝑋𝑝×1~ 𝑁𝑝 (𝜇, Σ) then 𝑞 linear combination of 𝑋𝑗, 𝑗 = 1,2, … , 𝑝 is multivariate normal. 

 

4.6. Gaussian Mixture Model (GMM) 

Gaussian Mixture Model is referred to as the linear super position of Gaussian components that 

is usually formed by taking linear combinations of basic distribution such as Gaussian. 

Normally the data in 1-d, 2-d, and 3-d is distributed in Gaussian form.  The reason being its 

closeness to natural distribution and it is very easy to do mathematical manipulation when we 

have Gaussian distribution. But there may be situation when distribution is not strictly Gaussian. 

In such cases data sets forms clumps in their structure as shown in figure  
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Fig-4.5   Example of a Gaussian mixture distribution in one dimension showing three Gaussians in blue and 

their sum in red. 

It becomes very difficult to characterize such data sets under single Gaussian. Such data sets can 

be better characterized by linear super position of Gaussians.  

          By using adequate number of Gaussians and adjusting their means, covariance’s as well as 

co-efficient in linear combination, we can approximate almost any continuous density to 

arbitrary accuracy. Therefore we define super position of K Gaussians densities as 

𝑝(𝑥) = ∑𝜋𝑘𝑁(𝑥|𝜇𝑘Σ𝑘)

𝐾

𝑘=1

                                                          (4.23) 

This is called mixture of Gaussians, which is shown in three dimensions as 

 

 

Fig-4.6   Mixture of three Gaussians 
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Each Gaussian density 𝑁(𝑥|𝜇𝑘Σ𝑘) is known as component of mixture and it has its own mean 

and covariance. 𝐾 is total number of Gaussians and the parameter π𝑘 is known as the mixing 

coefficients for 𝐾𝑡ℎ Gaussian (Weightage for each Gaussian distribution). If we integrate both 

sides of Eq.(4.23) with respect to x and normalizing both p(x) and individual Gaussian 

components, we obtained 

 ∑ 𝜋𝑘 = 1
𝐾
𝑘=1                                                                     (4.24) 

 

Also the requirement is that 𝑝(𝑥) ≥ 0 along with 𝑁(𝑥|𝜇𝑘Σ𝑘) ≥ 0 which implies 𝜋𝑘 ≥ 0. If we 

combine this condition with eq. (3.10) we get 

0 ≤ 𝜋𝑘 ≤ 1                                                                    (4.25) 

            If we define joint probability over observed data X and latent variables, then we can 

obtain the distribution of observed variables by marginalization. The complex marginal 

distribution over observed variable can be expressed in terms of more tractable joint distribution. 

Hence the introduction of latent variable allows us to form complicated distribution from simpler 

distributions such as Gaussian Mixture. 

Let’s introduce a K-dimensional binary random variable z having 1 out of K representation such 

that for this random variable only a particular entry 𝑧𝑘 is equal to 1, while all other elements are 

equal to 0. Therefore the values of 𝑧𝑘 satisfies 𝑧𝑘 ∈ {0,1} and ∑ 𝑧𝑘 = 1𝑘 . From this we can see 

that there are k possible states for the vector z according to which element is non-zero. 

Corresponding to fig. 4.6 we will define the joint distribution 𝑝(𝑥, 𝑧) in terms of marginal 

distribution 𝑝(𝑧) and conditional distribution 𝑝(𝑥|𝑧).  

The marginal distribution is defined in terms of mixing co-efficient or weightage co-efficient 𝜋𝑘, 

such that 

𝑝(𝑧𝑘 = 1) = 𝜋𝑘                            0 ≤  𝜋𝑘 ≤ 1               (4.27) 

Along with, 
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∑𝜋𝑘 = 1 

𝑘

                                                                    (4.28) 

 in order to be valid probabilities. As we have defined that z uses 1 out of K representation, we 

can write this distribution in the form as: 

𝑝(𝑧) =∏𝜋𝑘
𝑧𝑘

𝐾

𝑘=1

                                                         (4.29) 

In the same way, conditional distribution of X is given as: 

 

𝑝(𝑥|𝑧𝑘 = 1) =  𝑁(𝑥|𝜇𝑘, Σ𝑘)                                     (4.30) 

  

that can also be written as: 

𝑝(𝑥|𝑧𝑘 = 1) =∏𝑁(𝑥|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

𝑧𝑘

                            (4.31) 

The joint distribution is represented by 𝑝(𝑧)𝑝(𝑥|𝑧) and the marginal distribution of x can be 

obtained by summing the joint distribution over all possible states of z to give 

𝑝(𝑥) =∑𝑝(𝑧)𝑝(𝑥|𝑧) =

𝑧

∑∏(𝜋𝑘𝑁(𝑥|𝜇𝑘, Σ𝑘))

𝐾

𝑘=1

𝑧𝑘

           

𝑧

(4.32) 

Exploiting 1 out of K representation for z, and re-write the right hand side we have 

∑∏(𝜋𝑘𝑁(𝑥|𝜇𝑘, Σ𝑘))

𝐾

𝑘=1

𝐼𝑘𝑗

  

𝐾

𝑗=1

                                            (4.33) 

 where 𝐼𝑘𝑗 =1 if 𝑘 = 𝑗 and 0 otherwise. 
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Therefore, we can write  

∑𝜋𝑘𝑁(𝑥|𝜇𝑗, Σ𝑗)

𝐾

𝑗=1

                                                     (4.34) 

 

The marginal distribution is represented in form 𝑝(𝑥) = ∑ 𝑝(𝑥, 𝑧)𝑧 . Now if we have several 

observations 𝑥1, 𝑥2, … , 𝑥𝑁, it tells us that a corresponding latent variable 𝑧𝑛 is assigned to each 

observed data point 𝑥𝑛. Hence this joint distribution instead of marginal distribution will indicate 

us towards significant simplifications most remarkably through the overview of Expectation 

Maximization algorithm. 

We will also derive another important quantity that is conditional probability of z given x that 

is 𝑝(𝑧𝑘 = 1|𝑥) and 𝐸(𝑧𝑘) = 𝑝(𝑧𝑘 = 1|𝑥) For simplicity we will denote it by 𝛾(𝑧𝑘) and it is 

defined by using Bayes theorem 

𝛾(𝑧𝑘) = 𝑝(𝑧𝑘 = 1|𝑥) =
𝑝(𝑥|𝑧)𝑝(𝑧)

𝑝(𝑥)
                               (4.35) 

By putting values we get the following results 

𝛾(𝑧𝑘) =
𝜋𝑘𝑁(𝑥|𝜇𝑘, Σ𝑘)

∑ 𝜋𝑗
𝐾
𝑗=1 𝑁(𝑥|𝜇𝑗, Σ𝑗)

                                             (4.36) 

   

Where 𝜋𝑘 is the prior probability and 𝛾(𝑧𝑘) is the posterior probability. 𝛾(𝑧𝑘) can also be 

observed as the responsibility that component k takes for explaining the observation x. 

 The example of 500 points that are drawn from the mixture of 3 Gaussians is shown below in 

Fig (4.7). These samples can be depicted from the joint distribution 𝑝(𝑥, 𝑧) by plotting data 

points at the equivalent values of x and then allot them colors according to z value.           

Similarly, if we ignore the values of z shown in (b), we can obtain samples for marginal 

distribution p(x) by the joint distribution.  
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Fig 4.7 (a) 500 points drawn from Gaussian mixture by the joint distribution p(z)p(x|z). The three states of z 

represented by 3 Gaussians are depicted in red, green, and blue (b) Samples obtained by not considering the 

values of z and just plotting the values of x (c) The samples representing the value of the responsibilities 

𝜸(𝒛𝒏𝒌) for each color linked with data point 𝒙𝑵. 

This synthetic data in (b) can also be used to illustrate the responsibility by estimating the 

posterior probability for each component for every data. If  𝑥𝑁 is drawn from 𝑘𝑡ℎ component, 

𝑧𝑛𝑘 = 1  while all others are 0. We can represent the values of responsibilities 𝛾(𝑧𝑛𝑘) associated 

with data point 𝑥𝑁 by using proportions of red, blue and green colors that is given by 𝛾(𝑧𝑛𝑘) for 

k=1,2,3 respectively. Here, the point having 𝛾(𝑧𝑛1) =  1 will be colored as red whereas the one 

having 𝛾(𝑧𝑛2) = 𝛾(𝑧𝑛3) = 0.5 will be colored with equal quantities of blue and green, hence 

appeared as cyan. 

 

4.6.1 Maximum Likelihood Estimation 

One method to estimate the parameters 𝜇 and Σ is Maximum likelihood Estimation (MLE). If we 

have a data set of N observations {𝑥1, 𝑥2, … , 𝑥𝑁} and we want to model this data by utilizing the 

mixture of Gaussians. 

If we represent this data set as 𝑁 × 𝐷 matrix X and corresponding latent variables as 𝑁 × 𝐾 

matrix Z and assumed that data points are drawn from the distribution independently, then 

graphical representation of this data will be through Gaussian mixture model. From eq. (3.9), the 

log likelihood function is given by 
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ln 𝑝(𝑋|𝜇, 𝜋, Σ) = ∑ ln {∑𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

}

𝑁

𝑛=1

                             (4.37) 

                   

 Maximizing this function turns out to be more complex problem because of summation over k 

inside logarithm.  

By setting the derivatives of log likelihood to zero, we will not get a closed form solution. Hence 

we will use another technique which is known as Expectation Maximization EM. 

4.6.2 Expectation Maximization Algorithm 

Expectation maximization is a dominant method that is used for finding maximum likelihood 

solutions for model having latent variables. 

From 3.13, we have 

ln 𝑝(𝑋|𝜇, 𝜋, Σ) = ∑ ln {∑𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

}

𝑁

𝑛=1

                            (4.38) 

By taking derivative of above eq. with respect to mean 𝜇𝑘 and equate it to zero we have, 

∂

∂𝜇𝑘
(∑ ln {∑𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

}

𝑁

𝑛=1

) = 0                        (4.39) 

∑
𝜋𝑘   

𝜕
𝜕𝜇𝑘

𝑁(𝑥𝑛|𝜇𝑘 , Σ𝑘)

∑ 𝜋𝑙𝑁(𝑥𝑛|𝜇𝑙 , Σ𝑙)
𝐾
𝑙=1

= 0 

𝑁

𝑛=1

                                           (4.40) 

 

By simplifying the above eq. we get, 

∑ 𝜋𝑘

∑ 𝜋𝑙𝑁(𝑥𝑛|𝜇𝑙, Σ𝑙)𝐾
𝑙=1

× 1 2𝜋
2

2 Σ
1

2⁄ × 𝑒
− 

1

 2(𝑥−𝜇)Σ−1(𝑥−𝜇)𝑇 (−
2

2
) (𝑥𝑛 − 𝜇𝑘)(−1) = 0 

𝑁
𝑛=1      (4.41)  

and 
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∑𝛾(𝑧𝑛𝑘) ×
1

Σ𝑘

𝑁

𝑛=1

× (𝑥𝑛 − 𝜇𝑘) = 0                                     (4.42) 

∑𝛾(𝑧𝑛𝑘)𝑥𝑛 =∑(𝜇𝑘)

𝑁

𝑛=1

𝑁

𝑛=1

                                               (4.43) 

 

This gives the value of mean  

𝜇𝑘 =
1

𝑁𝑘
∑𝛾(𝑧𝑛𝑘)𝑥𝑛 

𝑁

𝑛=1

                                                      (4.44) 

 

By setting the derivatives ln 𝑝(𝑋|𝜇, 𝜋, Σ) with respect to Σ𝑘 to zero and follow the same line of 

reasoning, we obtain the following result, 

Σ𝑘 =
1

𝑁𝑘
∑𝛾(𝑧𝑛𝑘)

𝑁

𝑛=1

(𝑥𝑛 − 𝜇𝑘)(𝑥𝑛 − 𝜇𝑘)
𝑇                                  (4.45) 

At the end, we will maximize ln 𝑝(𝑋|𝜇, 𝜋, Σ) with respect to 𝜋𝑘 that is mixing coefficient and 

taking into account constraint 3.12, which requires mixing co-efficient to some to 1. It can be 

accomplished by using a Lagrange multiplier and maximizing the following quantity and equate 

it to zero 

 

ln 𝑝(𝑋|𝜇, 𝜋, Σ) + 𝜆 (∑𝜋𝑘 − 1

𝐾

𝑘=1

)                                      (4.46) 

By simplifying, 

0 = ∑
𝑁(𝑥𝑛|𝜇𝑘, Σ𝑘)

∑ 𝜋𝑙𝑁(𝑥𝑛|𝜇𝑙, Σ𝑙)
𝐾
𝑙=1

 

𝑁

𝑛=1

+ 𝜆                                    (4.47) 
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Multiplying both sides by 𝜋𝑘 we obtain: 

0 = ∑𝛾(𝑧𝑛𝑘) + 𝜆

𝑁

𝑛=1

𝜋𝑘                                                 (4.48) 

Which gives 

0 = 𝑁𝑘 − 𝑁𝜋𝑘                                                              (4.49) 

Hence, 

𝜋𝑘 =
𝑁𝑘
𝑁
                                                                            (4.50) 

 

3.6.2.1 EM algorithm for GMM 

             Given a Gaussian mixture model, goal is to maximize the likelihood function with 

respect to the parameters comprising means and covariances of components and mixing 

coefficients. 

Step-1 

Initialize the means 𝜇𝑗, covariance Σ𝑗 and mixing coefficient 𝜋𝑗. Then evaluate the initial value 

of the log likelihood where 𝑗 = 1,2,3, … , 𝑘.  

 

Step-2 

E-Step: Evaluate responsibilities using current parameter values. 

𝑌𝑘(𝑥) =
𝜋𝑘𝑁(𝑥|𝜇𝑘Σ𝑘)

∑ 𝜋𝑗
𝐾
𝑗=1 𝑁(𝑥|𝜇𝑗, Σ𝑗)

                                              (4.51) 

where 𝑌𝑘(𝑥) is latent variable for 𝑘𝑡ℎ Gaussian.  
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Step-3 

M-step: Re-calculate the parameters by using current obtained values 

𝜇𝑗 =
∑ 𝑌𝑗 (𝑥𝑛) 𝑥𝑛
𝑁
𝑛=1

∑ 𝑌𝑗
𝑁
𝑛=1 (𝑥𝑛)

                                                        (4.52) 

 

Σ𝑗 =
∑ 𝑌𝑗(𝑥𝑛) (𝑥𝑛−𝜇𝑗)(𝑥𝑛−𝜇𝑗)′
𝑁
𝑛=1

∑ 𝑌𝑗(𝑥𝑛)
𝑁
𝑛=1

                                    (4.53)                                  

 

𝜋𝑗 =
1

𝑁
∑𝑌𝑗(𝑥𝑛)

𝑁

𝑛=1

                                                          (4.54) 

Step-4 

Evaluate log-likelihood, 

ln 𝑝(𝑋|𝜇, Σ, 𝜋) = ∑ ln {∑𝜋𝑘𝑁(𝑥𝑛|𝜇𝑘, Σ𝑘)

𝐾

𝑘=1

}                          

𝑁

𝑛=1

(4.55) 

We have to find out that if these parameters truly represent data points. If this does not happen, 

go back to step-2, which will help to converge to better solution. 
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CHAPTER 5 

Hidden Markov Model 

To model the process in a way that we have a state for each of the observation on the data is a 

very powerful assumption if the real world applications are considered. Computing the 

probability distribution for each and every state is not always feasible in modeling such data. 

This is because it is quite impractical approach to estimate all the transition probabilities for the 

amount of required data set. 

                Markov chains find its extension to a well-known process that is used practically 

known as Hidden Markov Models (HMMs). These models offer the solution by introducing the 

hidden states (that are not observed) and each state can be easily estimated by generated 

observations from the given data set. 

                  In simpler Markov models (like a Markov chain) the states are known to observer, 

and therefore state transition probabilities are the only parameters. In Hidden Markov Model, 

state is not directly known but output is visible and it depends on state. Probability distribution of 

each state is present over the possible output tokens. Therefore from the sequence of these tokens 

that ae generated by HMM, we can get some information about the sequence of states. It is 

important to note at this point that the states we are referring to as hidden states are not the 

parameters of the model but they are the states of the Markov Chain when Hidden Markov 

Model is defined. 

Hidden Markov models are especially known for their application such as statistical signal 

Analysis 1-D, Image Modeling 2-D, handwriting, gesture recognition, speech, part-of-speech 

tagging, etc. 

                HMMs have a historical background mainly consisting of two parts. One has its 

relevance with Markov processes and Chains while the other part it deals with the algorithms 

necessary to define a Hidden Markov Model for solving problems in the field of computer 

sciences and other domains to serve the needs for modern sciences. 
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Fig 5.1 Model parameters describing a three-state hidden Markov model. 

 

 

5.1. From observable to hidden state 

        HMMs provide great help when there is need of modeling a process in which we do not 

have direct knowledge about the present state of system. The only direct knowledge that we have 

about the process to model is the set of observations it generates while we don’t have direct 

access to the internal structure of process. It is easier to build a model that gives good 

approximation of process, when we have specific knowledge of the domain, but, in many cases 

this problem doesn’t have easy solution and it can be task-dependent.   

 

5.2. Parameters of HMM 

       For Markov chains, the output symbols and the states are same. In other words, the 

observation is the same as the state. But in part of speech tagging, we have output symbol or 

observation known as ‘words’ and the hidden states are the part of speech tags. 

        In Hidden Markov Model we don‘t know in which state we are in. The following equation 

is guaranteed to give us the best tag sequence. 

 

�̂�𝑛
1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡𝑛1  𝑃(𝑡𝑛

1|𝑤𝑛
1)                                                    (5.1) 
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Where 𝑡𝑛
1 and 𝑤𝑛

1 represents the speech tag sequence and word sequence from 1,… , 𝑛 

respectively. To make it operational, Bayes rule is applied to transform this equation into set of 

other probabilities.  

 

�̂�𝑛
1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡𝑛1

𝑃(𝑤𝑛
1
|𝑡𝑛
1
) 𝑃(𝑡𝑛

1)

𝑃(𝑤𝑛
1)

                                                    (5.2)    

 

Length of observation sequence L 

Number of states S 

Number of observations O 

States 𝑄 = (𝑞1, 𝑞2, … , 𝑞𝑛) 
 

Possible symbols 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑚) 

Transition Probability Matrix 𝐴 = {𝑎𝑖𝑗} 

Output Probability Matrix 𝐵 = {𝑏𝑗(𝑂𝑘)} 

Initial State Vector 𝜋 

                                  

Table 5-1 Parameters of Hidden Markov Model 

 

 

5.3. A motivating Example 

 

For any non-trivial task whenever we are asked to do a task, we find that information that we 

have to work with is very much partial. In such cases we have to deal with uncertain information.  

Let’s suppose that we have three urns and each of them contain Red, Green and Blue balls as 

shown in fig. 
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Again suppose that person is picking ball from these urns and it gives us a pattern of drawing a 

ball from these urns as RRGGBRGR.                   

We have to find out the sequence of urns from which he had drawn the balls. Hence, for this 

sequence of colors of balls, we have to produce urns sequence or state sequence that is given as, 

 

{𝑈1, 𝑈2, 𝑈3, … , 𝑈𝑖}                                                                  (5.3) 

 

We have information of probability of transition from one urn to any other urn. For example if a 

person draw a ball from urn 1 and then drawing a next ball from urn 1 again is 0.1. Table shows 

the probabilities of having balls of specific color in an urn. Since we know the number of balls 

and their colors, and we are also given the probabilities of these colors. These two things are 

known to us and using these, we have to compute the most probable state sequence that is hidden 

to us. We are given 

 

Observation Sequence= RRGGBRGR 

 

   

 

 

 

 

 

 

               # of Red = 30                            # of Red = 10                               # of Red = 60 

              # of Green = 50                         # of Green = 40                            # of Green = 10 

              # of Blue = 20                           # of Blue = 50                               # of Blue = 30 

 

 

Fig.5.2 Three Urns containing Red, Green and Blue balls 

 

 

URN 1 URN 2 URN 3 
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Table 5-2 (a) Probability of transition 

 

 

 

 

 

Table 5-2 (b) Probability of drawing a ball 

 

Figure 5.3: Diagrammatic Representation 

 

 
U1 U2 U3 

U1 0.1 0.4 0.5 

U2 0.6 0.2 0.2 

U3 0.3 0.4 0.3 

 
R G B 

U1 0.3 0.5 0.2 

U2 0.1 0.4 0.5 

U3 0.6 0.1 0.3 
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Hence, based on nations used, the data can be summed up as follows 

𝑆 = {𝑈1, 𝑈2, 𝑈3} 

𝑉 = {𝑅, 𝐺, 𝐵} 

𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑛} 

𝑄 = {𝑞1, … , 𝑞𝑛} 

𝜋𝑖 = 𝑃(𝑞1 = 𝑈1)     (Initial probability that the systems starts in the initial state U1, usually this 

is taken) 

 

 

 𝑂1 𝑂2 𝑂3 𝑂4 𝑂5 𝑂6 𝑂7 𝑂8 

Observations  R  R  G  G  B  R  G  R 

States 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 

 

 

Table 5-3 Observations and States 

 

The above table shows the pattern of drawing balls as RRGGBRGR with observations 

𝑂1, 𝑂2, … , 𝑂8 and set of states 𝑆1, 𝑆2, … , 𝑆8. From the given table we can see that we have to find 

out the most probable state sequence that is hidden to us. Hence our goal is to maximize P(S | 

O), refer back to equation 4.1 that can be re-written as: 

 

 𝑆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠(𝑃(𝑆|𝑂))                                                (5.4)     

 

This process leads to efficient computation because of Markov assumption that takes those 

leaves of the tree that have highest probability. Markov assumption states that the probability of 
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a state being the state of the machine depends only on the previous state (Order 1 Markov 

assumption). Applying Markov assumption to P(S | O) leads to; 

 

𝑃(𝑆|𝑂) = 𝑃(𝑆1|𝑂)𝑃(𝑆2|𝑆1, 𝑂)𝑃(𝑆3|𝑆2, 𝑂), … , 𝑃(𝑆8|𝑆7, 𝑂)                 (5.5) 

 

These probability terms are not easily solvable as there are other cumbersome items that need to 

be processed for it. Bayes’ theorem along with Markov assumption serves the purpose in this 

regard that is discussed in the next section. 

 

5.4 Essentials of Hidden Markov Model 

 Markov Assumption + Naïve Bayes 

Bayes theorem invoked along with Markov assumption is a powerful tool for 

problem solving used in statistical artificial intelligence and machine learning. 

Applying this theorem, the State transition and observation sequence probabilities 

will be discussed below. This is discussed in reference to the above example. 

 

 State Transitions Probability 

The prior P(S) can be treated in the following way 

 

𝑃(𝑆) = 𝑃 (𝑆1−8)                                                              (5.6) 

 

𝑃(𝑆) = 𝑃(𝑆1) 𝑃(𝑆2|𝑆1) 𝑃(𝑆3|𝑆1−2)……  𝑃(𝑆8|𝑆1−7)                    (5.7) 

 

                By Markov assumption, (k=1) 

 

𝑃(𝑆) = 𝑃(𝑆1)𝑃(𝑆2|𝑆1)𝑃(𝑆3|𝑆2)……𝑃(𝑆8|𝑆7)                                (5.8) 

 

 

 Observation Sequence Probability 

The next probability component is P (O | S) which is found out to be: 
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𝑃(𝑂|𝑆) = 𝑃(𝑂1|𝑆1−8) 𝑃(𝑂2|𝑂1, 𝑆1−8) 𝑃(𝑂3|𝑂1−2, 𝑆1−8)……  𝑃(𝑂8|𝑂1−7, 𝑆1−8)    (5.9) 

 

  Assumption that the ball drawn depends only on the urn chosen 

 

𝑃(𝑂|𝑆) = 𝑃(𝑂1 | 𝑆1) 𝑃(𝑂2 | 𝑆2)𝑃(𝑂3 | 𝑆3)……𝑃(𝑂8 | 𝑆8)              (5.10) 

               

 By applying Bayes’ theorem we have, 

 

𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑃(𝑆|𝑂) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑃(𝑆) 𝑃(𝑂|𝑆)                        (5.11) 

 

Here the denominator 𝑝(𝑂) is ignored because it is independent of 𝑆 so it can be eliminated from 

consideration. Hence by putting values in 4.6 we have 

 

𝑃(𝑆|𝑂) = 𝑃(𝑆1) 𝑃(𝑆2|𝑆1) 𝑃(𝑆3|𝑆2)……𝑃(𝑆8|𝑆7) 𝑃(𝑂1|𝑆1) 𝑃(𝑂2|𝑆2) 

                                   𝑃(𝑂3|𝑆3)……𝑃(𝑂8|𝑆8)                                                                   (5.12)   

 

All these terms can be grouped together in the way shown in an equation below 

 

𝑃(𝑂𝑘|𝑆𝑘). 𝑃(𝑆𝑘+1|𝑆𝑘) = 𝑃 (𝑆𝑘
𝑂𝑘
→  𝑆𝑘+1)                               (5.13)    

 

The diagram shown below shows set of observations with corresponding states.

 

Fig 5.4: Diagrammatic Representation of Observations and State 
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5.5 Properties of Hidden Markov Model 

There are two main properties of Markov processes on which the theory of HMM rests. 

 Limited Horizon        

                It states that given previous t states, a state i is independent of the preceding 0 to 𝑡 −

𝑘 + 1  states. This means that beyond k states which come before the 𝑡𝑡ℎ  state, everything can be 

ignored. This is the limited horizon or the window property and the process is known as k 

Markov process. 

 

𝑃(𝑋𝑡 = 𝑖 | 𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋0) = 𝑃(𝑋𝑡 = 𝑖 | 𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑘)              (5.14) 

 

 Time Invariance 

 

                  The dependence of one particular state on the previous state is observed over the 

whole sequence in Markov process. This means that the conditional probability shown in the 

equation below is position invariant that is it does not change from place to place in a sequence. 

 

 

𝑃(𝑋𝑡 = 𝑖 | 𝑋𝑡−1 = 𝑗) = 𝑃(𝑋1 = 𝑖 | 𝑋0 = 𝑗) =  𝑃(𝑋𝑛 = 𝑖 | 𝑋𝑛−1 = 𝑗)        (5.15) 

 

 

5.6   Probability Laws 

          In machine learning and natural language processing, there are two essential 

probability laws. 

 

 Chain Rule 

Chain rule helps to break up the complete sequence into set of terms 

 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑘) = 𝑃(𝑋1) 𝑃(𝑋2|𝑋1) 𝑃(𝑋3|𝑋2𝑋1) 𝑃(𝑋𝑘|𝑋𝑘−1𝑋𝑘−2… 𝑋1)      (5.16) 
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 Marginalization 

 

𝑃(𝐴) = Σ 𝑃(𝐴, 𝐵1, 𝐵2, 𝐵3… 𝐵𝑛)                                                         (5.17) 

 

Where (𝐵1, 𝐵2, 𝐵3… 𝐵𝑛) takes all the possible values 

 

These two rules are a Hidden Markov Model Probability law that is extremely important in 

Maximum Likelihood, Natural Language Process and we have to make use of them in different 

times. 

 

5.7   Three problems in Hidden Markov Model 

         Three of the basic problems related to HMMs are described briefly in this section. Also, the 

solutions to these problems are also given with efficient algorithms. 

 

5.7.1   Evaluation Problem 

            Consider the model that is given and it is represented by 𝜃 = (𝐴, 𝐵, 𝜋) and a sequence of 

observations denoted by O, we have to compute the probability that a particular output sequence 

was produced by that model 𝜃.  

 

5.7.2   Decoding Problem 

           For a given model, 𝜃 = (𝐴, 𝐵, 𝜋) and an observation sequence O, we would like to find 

most probable sequence of Hidden states that has led to generation of the given set of 

observations. In other words, it means that we want to determine the hidden parts that are 

contained in the Hidden Markov Model. 

 

 

5.7.3   Learning Problem 

           Given a set of output sequences that is set of visible states 𝑂 and set of hidden states 𝑆, we 

have to find out the set of transition probabilities 𝑎𝑖𝑗 and 𝑏𝑗(𝑂𝑘).  
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5.8   Solution to Problems 

         Each of the problems mentioned above has its own solution which is discussed in the 

following sections. 

 

5.8.1    Solution to Problem 1: Forward & Backward Probability Algorithm 

 

5.8.1.1 Forward Probability Algorithm 

 

                  The forward probability 𝐹(𝑘, 𝑖) is defined as probability of being in a state 𝑆𝑖 having 

seen observations 𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑘. M being the length of sequence     

 

𝐹(𝑘, 𝑖) = 𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑘, 𝑆𝑖)                                       (5.18) 

 

                  The probability of observed sequence P (observed) is 𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑚) which is 

marginalized to obtain following equation with N being the number of states 

 

𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑚) =∑𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑚, 𝑆𝑝)

𝑁

𝑖=0

                (5.19) 

 

Hence, the final forward probability comes out to be; 

 

𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑚) =∑ 𝐹(𝑚, 𝑝)
𝑁

𝑖=0
                             (5.20) 

 

          Now, the question arises how to efficiently get this 𝐹 (𝑚, 𝑝)? For this we have to peep into 

the sequences (𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑘). We have the states and observations as shown in the figure 

below. Starting form 𝑆0 it can go to any state and state transition is 𝑆𝑝  →  𝑆𝑞 on symbol 𝑂𝑘. 
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 𝑂0        𝑂1            𝑂2            ….         𝑂𝑘−1           𝑂𝑘           𝑂𝑘+1      ….     𝑂𝑚 

 

    𝑆0→         𝑆1         𝑆2             ….                               𝑆𝑝 → 𝑆𝑞                        𝑆𝑚 

 

 

 

Hence, the forward probability is summed up as; 

 

 

𝐹(𝑘, 𝑞) = 𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑘, 𝑆𝑞)                                         (5.21) 

 

𝐹(𝑘, 𝑞) = 𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑘−1, 𝑂𝑘, 𝑆𝑞)                               (5.22) 

 

 

By Marginalization, 

 

𝐹(𝑘, 𝑞) = ∑𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑘−1, 𝑂𝑘, 𝑆𝑞)

𝑁

𝑝=0

                        (5.23) 

 

Applying chain rule, 

 

𝐹(𝑘, 𝑞) = ∑ 𝑃(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑘−1, 𝑆𝑝)
𝑁
𝑝=0 P(𝑂𝑘, 𝑆𝑞|(𝑂0, 𝑂1, 𝑂2, … , 𝑂𝑘−1, 𝑆𝑝 )      (5.24)    

𝐹(𝑘. 𝑞) = ∑𝐹(𝑘 − 1, 𝑝)𝑃(𝑂𝑘, 𝑆𝑞|𝑆𝑝)

𝑁

𝑝=0

                               (5.25) 

𝐹(𝑘. 𝑞) = ∑ 𝐹(𝑘 − 1, 𝑝) 𝑃(𝑆𝑝
𝑂𝑘
→ 𝑆𝑞)

𝑁
𝑝=0                              (5.26)   

𝐹(𝑘, 𝑞) = ∑𝐹(𝑘 − 1, 𝑝)

𝑁

𝑝=0

                                                  (5.27) 
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This equation 4.14 is the recursive expression for Forward Probability giving us a recursive 

algorithm to compute the forward probability. Complexity of forward probability calculation is 

nothing but Length of states multiplied by the length of observed sequence is |S|. |O|. The 

expression for computing 𝐹 (𝑘, 𝑞) is; 

 

𝑇𝑘 =∑𝑇𝑘−1

𝑁

𝑖=0

                                                                 (5.28) 

 

5.8.1.1.1   Boundary Conditions for Forward Algorithm 

 

               The boundary condition for Forward Algorithm is 

 

𝐹(0, 𝑞) = 𝑃𝑞                                                            (5.29) 

 

where 𝑃𝑞 is the initial probability of being in state 𝑆𝑞 that is  𝑆𝑝 → 𝑆𝑞. The forward probability 

can be computed very easily and it is not difficult to show that it can be computed in time 

proportional to length of observation sequence. So it is a linear time computation. 

 

5.8.1.2   Backward Probability Algorithm 

 

Backward probability  𝐵 (𝑘, 𝑖) is defined as seeing the symbols 𝑂𝑘, 𝑂𝑘+1, 𝑂𝑘+2, … , 𝑂𝑚 

given the state 𝑆𝑖. M being the length of sequence 

 

𝐵(𝑘, 𝑖) =  𝑃(𝑂𝑘, 𝑂𝑘+1, 𝑂𝑘+2, … , 𝑂𝑚|𝑆𝑖)                                (5.30) 

 

The probability of observed sequence P (observed) is 𝑃(𝑂0, 𝑂1, … , 𝑂𝑚) which is marginalized to 

obtain following equation with N being the number of states. The probability of the observed 

sequence is a single backward probability with the argument as 0,  
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𝑃(𝑂0, 𝑂1, … , 𝑂𝑚) =∑𝑃(𝑂0, 𝑂1, … , 𝑂𝑚 | 𝑆0)

𝑁

𝑖=0

                   (5.31) 

 

𝑃(𝑂0, 𝑂1, … , 𝑂𝑚) = 𝐵(0,0)                                                     (5.32) 

 

The backward probability is calculated same as that of forward probability. Referring to the 

diagram again, where we have state transition  𝑆𝑝 → 𝑆𝑞 over the symbol 𝑂𝑘.Backward 

probability can be expressed as follows 

 

 

          𝑂0            𝑂1            𝑂2            ….         𝑂𝑘−1       𝑂𝑘           𝑂𝑘+1      ….     𝑂𝑚 

 

      𝑆0→            𝑆1             𝑆2             ….                            𝑆𝑝 → 𝑆𝑞                        𝑆𝑚 

 

 

 

𝐵(𝑘, 𝑝) = 𝑃(𝑂𝑘, 𝑂𝑘+1, 𝑂𝑘+2  … , 𝑂𝑚| 𝑆𝑝)                                    (5.33)   

 

𝐵(𝑘, 𝑝) = 𝑃(𝑂𝑘, 𝑂𝑘+1, 𝑂𝑘+2  … , 𝑂𝑚, 𝑂𝑘 | 𝑆𝑝)                              (5.34) 

𝐵(𝑘, 𝑝) = ∑𝑃(𝑂𝑘, 𝑂𝑘+1, 𝑂𝑘+2  … , 𝑂𝑚, 𝑂𝑘, 𝑆𝑞| 𝑆𝑝)

𝑁

𝑞=0

                  (5.35) 

𝐵(𝑘, 𝑝) = ∑𝑃

𝑁

𝑞=0

(𝑂𝑘, 𝑆𝑞|𝑆𝑝) 𝑃(𝑂𝑘, 𝑂𝑘+1, 𝑂𝑘+2, … , 𝑂𝑚|𝑂𝑘, 𝑆𝑞 , 𝑆𝑝)  (5.36) 

 

𝐵(𝑘, 𝑝) = ∑𝑃(𝑂𝑘, 𝑂𝑘+1, 𝑂𝑘+2  … , 𝑂𝑚| 𝑆𝑞) . 𝑃(𝑂𝑘, 𝑆𝑞|𝑆𝑝) 

𝑁

𝑞=0

        (5.37) 

𝐵(𝑘, 𝑝) = ∑𝐵(𝑘 + 1, 𝑞)

𝑁

𝑞=0

. 𝑃 (𝑆𝑝
𝑂𝑘
→ 𝑆𝑞)                                             (5.38) 
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Backward probability is also a linear time computation as that of forward probability. For any 

observed sequence and the corresponding state sequence, we have the notion for the 𝑘𝑡ℎ  place 

and for any point in the stream we can compute the forward probability up to any point and 

backward probability from that point to the end of the observation sequence. 

 

5.8.1.2.1   Boundary Conditions for Backward Algorithm 

 

              We have seen the expression for backward algorithm (equation4.16). The term (k+1) in 

the equation goes on increasing till the end of the observation sequence. So we must have a 

boundary condition for this algorithm.   

 

              Having observed the last symbol in the whole observation sequence, the system is said 

to be in the final state. So, the transition from 𝑆𝑚 to 𝑆𝑓𝑖𝑛𝑎𝑙 with the   output symbol as 𝑂𝑚 is the 

boundary condition for backward algorithm  (𝑆𝑚
𝑂𝑚
→ 𝑆𝑓𝑖𝑛𝑎𝑙) . Hence 𝐵(𝑘, 𝑝) is obtained from the 

last symbol; where 𝑆𝑓𝑖𝑛𝑎𝑙 is one of the states of Hidden Markov Model. 

 

5.8.2   Solution to Problem 2: Viterbi Algorithm 

 

          The decoding problem of hidden markov model, which seeks to find the best (or optimal) 

state sequence associated with a given observation sequence O of a given model λ can be solved 

recursively by using Viterbi algorithm. 

           The Viterbi algorithm is a dynamic programming algorithm used to find the most likely 

sequence of hidden states known as Viterbi path that gives us a sequence of observed events, 

especially in the framework of Markov information sources and Hidden Markov models. It is 

now also commonly used in speech recognition, keyword spotting, computational linguistics, 

speech synthesis, and bioinformatics. 

Consider the example discussed above in Hidden Markov Model section, where we have three 

urns denoted by S1, S2 and S3.We have to find the state sequence when the observation 

sequence is given.  
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The Pattern of drawing a ball from these urns is given as RRGGBRGR. State sequence can be 

found using Viterbi algorithm. For this we have to calculate probabilities to find out shortest 

path. 

Where initial probability vector is [1 0 0]. 

Step 1: Our starting state is S1.So probability of S1 is 1, for S2 and S3 probabilities are zero. 

 

Fig 5.5: Initial Tree Diagram for Viterbi algorithm example 

 

 

While considering red, blue or green ball, states probabilities can be calculated generally as: 

Transition probabilities*Emission probabilities*previous probabilities 

 

Initially we will extend S1 and then we will further extend the nodes S1, S2 and S3 and then take 

the highest probabilities of S1, S2 and S3 for further extension of tree. This is the way the tree 

will grow further. Complete Tree diagram using Viterbi algorithm is given below along with 

probability for every state for given observation on below or side of that state. 

 

 

Red circle denoted maximum value chosen for states S1, S2 and S3 for given observation.                                                                                                 

Obtained by process of back tracking are our required most likely path for above 

observations. 
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Fig 5.6 (a): Tree Diagram for Viterbi algorithm example
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Fig 5.6 (b): Tree Diagram for Viterbi algorithm example 
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Fig 5.6 (c): Tree Diagram for Viterbi algorithm example 

 

 

So in the last step maximum value among values of S1, S2 and S3 is of S3. So the maximum 

probability for the observations O = R R G G B R G R is that of S3 in last step. 

So probability of most likely states which produces this observation is maximum value of S3 in 

the last step which is P* = .0000052488. 

Now by process of backtracking from S3 we get the states that are most probable for above 

observations, also highlighted in blue circles, as S1 S3 S2 S1 S3 S3 S1 S3.  
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5.8.2.1   Steps in Viterbi Algorithm: 

 

              Given: 

 

1. Hidden Markov Model 

 Initial state: 𝑆1 

 Alphabet: A={𝑎1, 𝑎2, … , 𝑎𝑝} 

 Set of States: 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛} 

 Transition Probability 𝑃(𝑆𝑖
𝑎
→ 𝑆𝑗) 

2. The Output String {𝑎1, 𝑎2, … , 𝑎𝑇} 

 

To Find: 

The most likely sequence of states 𝐶1, 𝐶2, … , 𝐶𝑇 which produces the given output 

sequence. The Data Structure for this algorithm is defined as; 

Data Structure 

 

 An N*T array called SEQSCORE to maintain the winner sequence                                                       

                      always (N= number of states, T= Length of the output sequence) 

 Another N*T array called BACKPTR to recover the path. 

 

Steps: 

                     Three basic steps in Viterbi algorithm are: 

 

 Initialization  

 Iteration  

 Sequence Identification 

 

I. Initialization: 

 

                     SEQSCORE (1, 1) = 1.0                          

                     BACKPTR (1, 1) = 0                               
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                     For (i=2 to N) do                                      

                      SEQSCORE (i, 1) = 0.0                          

                [Expressing the fact that first state is 𝑆1] 

 

Step 1 shows that S1 is the starting state and in step 2 we have that there is no state before this. 

In step 3 we defined that we make probability value 0 in all other states except S1.    

                  

II. Iteration 

 

For (t=2 to T) do                                           

For (i=1 to N) do                                           

                      𝑆𝐸𝑄𝑆𝐶𝑂𝑅𝐸(𝑖, 𝑡) = 𝑀𝑎𝑥𝑗=1,𝑁                

                     [𝑆𝐸𝑄𝑆𝐶𝑂𝑅𝐸 (𝑗, (𝑡 − 1)). 𝑃 (𝑆𝑖
𝑎𝑘
→ 𝑆𝑗)] 

                𝐵𝐴𝐶𝐾𝑃𝑇𝑅 (𝐼, 𝑡) = 𝑖𝑛𝑑𝑒𝑥 𝑗 𝑡ℎ𝑎𝑡 𝑔𝑖𝑣𝑒𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑏𝑜𝑣𝑒 

 

In first step we go of our observation sequence symbol by symbol where T is the length of 

observation sequence and for every symbol on the observation sequence. In second step we do 

iteration over the number of states so this is to record the state in which sequence is ending. In 

third step we have to make sure that we only advance k states at particular level, we do not 

advance any state whose probability value is less than the winner sequence probability value 

ending in particular state. 

Fourth step shows the multiplication of accumulated sequence probability by the transition 

probability. Last step is a way of keeping the pointer to be able to recover the state sequence. 

 

III. Sequence Identification 

 

𝐶(𝑇)= i that maximizes SEQSCORE (i, T) 

        For i from (T-1) to 1 do 

  𝐶(𝑖) = 𝐵𝐴𝐶𝐾𝑃𝑇𝑅 [𝐶(𝑖 + 1), (𝑖 + 1)] 

It shows the state sequence which has found to be the highest probability state sequence. 



56 
 

5.8.3  Solution to Problem 3: Baum- Welch (Forward-Backward Algorithm) 

 

          Baum Welch algorithm is the synthesis of both the Forward Algorithm and Backward 

Algorithm. This algorithm is used to train the Hidden Markov Model. Hidden Markov model is 

defined in a way that it represents the joint probability distribution over the set of hidden as well 

as the observed states that are random in nature. It makes an assumption that the 𝑘𝑡ℎ  hidden 

variable when (𝑘 − 1)𝑡ℎ hidden variable is given is independent to all the previous hidden 

variables. This means that the current variable that is observed only depends on the current 

hidden state and is independent of the rest. The Baum–Welch algorithm incorporates the EM 

algorithm described earlier to find the maximum likelihood estimates of the hidden Markov 

model parameters when a certain data set is given. 

       Consider the following example which will help in understanding the Baum-Welch 

algorithm. In this example Baum Welch algorithm is implemented in terms of counts. We have a 

machine having two states, q and r whereas, a and b are the symbols. 

Given the observation sequence there are a number of states that are possible by the machine. 

 

String = abb aaa bbb aaa 

Output Sequence = 𝑞
𝑎
→ 𝑟

𝑏
→ 𝑞

𝑏
→ 𝑞

𝑎
→ 𝑟

𝑎
→ 𝑞

𝑎
→ 𝑟

𝑏
→ 𝑞

𝑏
→ 𝑞

𝑏
→ 𝑞

𝑎
→ 𝑟

𝑎
→ 𝑞

𝑎
→ 𝑟  

 

 

 

 

 

 

 

 

 

 

 

Fig 5-4 Table of counts 

Source Destination Output Counts 

Q R A 5 

Q Q B 3 

R Q A 3 

R Q B 2 
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Given the table of counts, we can calculate the probabilities of transition. For example the           

 𝑞
𝑎
→ 𝑟  transition has occurred 5 times in the output sequence and the total number of transitions 

from q being source state is 8  (𝑞 → 𝑟 = 5 + 𝑞 → 𝑞 = 3).  

Hence,  

𝑃 (𝑞 
𝑎
→  𝑟) =

5

8
                                                  (5.39) 

 

Likewise, 

𝑃 (𝑞 
𝑏
→  𝑞) =

3

8
                                                 (5.40) 

This can be generalized as follows; 

 

𝑃 (𝑆𝑖  
𝑤𝑘
→ 𝑆𝑗) =

𝑐 (𝑆𝑖  
𝑤𝑘
→ 𝑆𝑗)

∑ ∑ 𝑐 (𝑆𝑖  
𝑤𝑚
→ 𝑆𝑙)𝐴

𝑚=1
𝑇
𝑙=1

                                 (5.41) 

 

The above equation shows that transition from 𝑆𝑖 to 𝑆𝑗 with 𝑤𝑘 is equal to count from 𝑆𝑖 to 𝑆𝑗 

with output 𝑤𝑘 divided by total number of counts with 𝑆𝑖 as source. Where 𝑐 (𝑆𝑖  
𝑤𝑘
→ 𝑆𝑗) can be 

obtained by the following equation; 

 

 

𝑐 (𝑆𝑖  
𝑤𝑘
→ 𝑆𝑗) = ∑ 𝑃(𝑆0,𝑛+1|𝑊0,𝑛) ∗ 𝑛 (𝑆

𝑖  
𝑤𝑘
→ 𝑆𝑗 , 𝑆0,𝑛+1,𝑊0,𝑛  )

𝑠.𝑛+1

          (5.42) 

 

The above equation shows that this method of taking the counts is valid if we have a single state 

sequence for an observation sequence. If we have multiple state sequences for an observation 

sequence, then we have to weigh the number of appearances by the probability of state sequence 

given the observation sequence 𝑃(𝑆0,𝑛+1|𝑊0,𝑛). For this we have to interplay between the two 

equations given above 4.18 and 4.19. Initially we will assume some transition probabilities and 

then the count is obtained from these probability values. We can also obtain the value of 

𝑃(𝑆0,𝑛+1|𝑊0,𝑛) from transition probabilities which is nothing but Viterbi algorithm. Now from 
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the count we obtain new transition probabilities and from the new probability value we obtain 

the new count. Eventually after sometime the algorithm terminates when we see that there is no 

appreciable change in the probability values. This algorithm is called Expectation Maximization 

because we expect a value for the count and then maximize the probability of the observation 

sequence through this.  

 

5.8.3.1   Baum-Welch Illustration 

 

               Baum Welch learns the probability values on arcs not the structure of Hidden Markov 

Model. This is a very important fact in machine learning. We will illustrate this with the help of 

example consisting of two states q and r and two symbols a and b. 

Initially we have assumed the transition probabilities and then calculate count from these 

transition probabilities. Again from this count we will calculate new transition probabilities. This 

procedure is shown in the table shown below:  

 

String: ababb 

 

Table 5-5 One Run Baum Welch Algorithm Example 
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5.8.3.2   Computational Complexity of Baum Welch Algorithm 

              The computational part of the Baum Welch Algorithm is shown below. This gives us 

the mathematical illustration of this algorithm. 

 

𝐶 (𝑠𝑖
𝑤𝑘
→ 𝑠𝑗) =

1

𝑃(𝑊1,𝑛)
[𝑃(𝑆1,𝑛+1,𝑊1,𝑛) ∗ 𝑛 (𝑠

𝑖
𝑤𝑘
→ 𝑠𝑗 , 𝑆1,𝑛+1,𝑊1,𝑛)       (5.43)  

 

𝑃(𝑆1,𝑛+1,𝑊1,𝑛) ∗ 𝑛 (𝑠
𝑖
𝑤𝑘
→ 𝑠𝑗 , 𝑆1,𝑛+1,𝑊1,𝑛) = 

 

                                          ∑ 𝑃(𝑆𝑡 = 𝑠
𝑖, 𝑆𝑡+1 = 𝑠

𝑗 ,𝑊𝑡 = 𝑊𝑘, 𝑆1,𝑛+1,𝑊1,𝑛)
𝑛
𝑡=1  

                                                                           ∑ 𝛼𝑖(𝑡)𝑃(𝑠𝑖
𝑤𝑘
→ 𝑠𝑖)

𝑛
𝑡=1 , 𝛽𝑖(𝑡 + 1)                    (5.44)   
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CHAPTER 6 

Wavelet Based Statistical Signal Processing 

Statistical signal and image processing can be best carried out by using wavelet transform that 

finds its application in estimation, detection, classification and filtering. Existing wavelet based 

techniques do not take temporal correlations between wavelet coefficients into account. In this 

work, we have taken dependencies between wavelet coefficients into account and adapt to deal 

with non-Gaussian behavior by modelling them through new wavelet-based probability models. 

 

6.1 2D - DWT  

Wavelet transform of a video frame deals with its decomposition into a number of detail or 

wavelet coefficients {𝜓𝐿𝐻 , 𝜓𝐻𝐿 , 𝜓𝐻𝐻} and one scaling coefficient 𝜙𝐿𝐿. This forms orthonormal 

basis for 𝐿2(𝑅2). An 𝑁 × N image z(t) given a J-scale DWT can be decomposed as;  

 

  𝑧(𝑡) = ∑  𝑢𝐽,𝑖𝜙𝐽,𝑖
𝐿𝐿(𝑡) + ∑ ∑ ∑ 𝑤𝑗,𝑖

𝑏  𝜓𝑗,𝑖
𝑏

𝑖∈𝑍2 (𝑡)𝐽
𝑗=1𝑏∈𝐵𝑖∈𝑍2                           (6.1) 

 

where  𝑢𝐽,𝑖 = ∫𝑥(𝑡)𝜙𝑗,𝑖(𝑡)𝑑𝑡 is the scaling coefficient and 𝑤𝑗,𝑖
𝑏 = 𝜓𝑗,𝑖

𝑏 (𝑡)𝑑𝑡 represents the (i)th 

wavelet coefficient in j scale and sub-band ℬ.   

𝜙𝐽,𝑘,𝑖
𝐿𝐿 (𝑠, 𝑡) = 2−

𝑗
2 𝜙(2−𝑗  𝑠 − 𝑘, 2−𝑗  𝑡 − 𝑖)   

 

𝜓𝐽,𝑘,𝑖
𝐿𝐿 (𝑠, 𝑡) =  2−

𝑗
2 𝜓𝐵  (2−𝑗  𝑠 − 𝑘, 2−𝑗  𝑡 − 𝑖) 



61 
 

 

Fig. 6.1 Three level DWT decomposition 

 

6.2 Modelling For Video Denoising Using Hidden Markov Model 

 

Hidden Markov Model (HMM) captures the non-Gaussian statistics and complex dependencies 

among wavelet coefficients referred to as clustering property and persistence property 

respectively. 

   The Hidden Markov Model (HMM) uses a quad tree structure and has also been successfully 

used in Bandelet domain and contourlet domain. An m-state HMM links each wavelet coefficient 

with a hidden state variable in such a way that each wavelet coefficient is characterized by an m-

dimensional state probabilities vector q and an m-dimensional standard deviation vector σ. 

 

 

)2.6(),...,,( 21

t

mqqqq   

 

)3.6(),...,,( 21

t

m   
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6.2.1 Capturing Non-Gaussian Densities 

 

The non-Gaussian density of wavelet coefficients can be captured efficiently by Gaussian 

mixture model (GMM) and a multidimensional GMM is referred to as HMT. HMT models the 

wavelet coefficients as random variables having probability density function as a mixture of zero 

mean Gaussian distributions by means of a hidden state to designate small and large coefficient. 

The pdf of wavelet coefficient C is defined as; 

)5()()()(
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where )(nps
is probability mass function (pmf), S is the hidden state variable which is invisible 

and it controls the magnitude of wavelet coefficient. 
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  is the conditional pmf given by the following eq; 
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where 
n  and 

n  are the mean and variance respectively. 

 

6.2.2 Capturing Dependencies 

 

For capturing the interscale and intrascale dependencies among wavelet coefficients, HMT uses 

the probabilistic tree to model the Markovian dependencies between hidden states. To a wavelet 

decomposition of J scale and K sub-band, an HMT model contains the following parameters: 

 

:)(nP
is

pmf for the node root node 𝑆𝑖  

:,kjA  a state transition probability matrix of k sub-band from scale j-1 to scale j  

:, ,, kjkj   Gaussian mean and standard deviation vector of wavelet coefficient in j scale and k 

sub-band. 

 

The state transition matrix shows childrenparent  state to state links between the hidden states 

that is given as; 

 

)5.6(
,,

,,

,


















vv

kj

uv

kj

vu

kj

uu

kj

kj
pp

pp
A  

 

)6.6(],,),([ ,,, kjkjkji AnSp    

       



63 
 

  where 
uu

kjp 

, or 
vv

kjp 

,  represent the probability of a wavelet coefficient to be small or large given its 

parent is small or large. All these parameters are grouped together in the form of vector θ. It is to be 

noted here that each wavelet coefficient has different variances and state transition probabilities 

which lead to greater complexity in HMT model. We can reduce this computational complexity 

by a method of tying within scale [11]. According to this method, the wavelet coefficients have 

same density within a scale. 
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CHAPTER 7 

Simulation and Results 

Hidden Markov Tree based denoising technique in the perspective of 2D Gaussian Mixture 

Models (GMM) and 2D discrete wavelet transform (DWT) is used by applying it to each video 

frame independently. Expectation-Maximization (EM) algorithm iteratively finds the maximum 

likelihood of a fundamental distribution from a given data set. Our proposed method exploits 

effectiveness of DWT and the hierarchical relationships between its sub-bands. 

7.1 Denoising Technique 

7.1.1 Noisy Wavelet Coefficients 

Let 𝑄 be a natural clean frame of a video sequence with NN  dimension and 𝑄′ be its noisy 

version such that 𝑄′ = 𝑄 + 𝐸  where 𝐸 is zero mean white Gaussian noise. By performing 

wavelet decomposition on 𝑄′ the wavelet coefficient 𝑞′ is obtained. Due to linearity of wavelet 

transform, we have; 

𝑞′ = 𝑞 + 𝑒                                                                    (7.1) 

 

where 𝑞 and 𝑒 are the wavelet coefficients of Q and E respectively. We need to estimate the q  

given 𝑞′. 

 

7.1.2 Model Parameters determination 

 

HMT model is used to find a set of parameters 𝜃𝑞′ . Initially, a two state GMM is used to 

characterize each wavelet coefficient and a noisy observation is used to initiate the HMT model. 

Then the interscale dependencies is captured by Markov tree and EM algorithm is used to obtain 

𝜃𝑞′ . According to [10], the added noise in a signal only increases its variance by leaving the other 

parameters unchanged. Hence, the noisy free observation 𝜃𝑞 can be extracted by fitting the HMT 

to the noisy observation and then subtracting the noise variance from it.  
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(𝜎(𝑗,𝑘,𝑚),𝑛
(𝑞)

)
2

=       ( (𝜎(𝑗,𝑘,𝑚),𝑛
(𝑞′)

)
2

− (𝜎(𝑗,𝑘,𝑚)
(𝑒) )

2

)
+
                                        (7.2) 

  

 

where 𝑗, 𝑘,𝑚  represent j scale, k sub-band and n state, m-th coefficient and  (𝑔)+ = 𝑔 for 𝑔 ≥ 0 

and (𝑔)+ = 0 for 𝑔 < 0. Noise variance (𝜎(𝑗,𝑘,𝑚)
(𝑒) )

2

 can be estimated by median estimator in finest 

sub-band [22]. 

 

7.1.3 Clean Coefficients 

 

Once 𝜃𝑞 is determined and state probability is given through HMT, we can get 𝐸[𝑞|𝑞′, 𝜃𝑞] by 

using Bayes estimator to get the clean coefficients;  

 

                                   𝑞 = 𝐸[𝑞|𝑞′, 𝜃𝑞] 

= ∑ 𝑝(𝑆|𝑞, 𝜃𝑞) ×
(𝜎(𝑗,𝑘,𝑚),𝑛
(𝑞)

)
2

 (𝜎(𝑗,𝑘,𝑚),𝑛
(𝑞′)

)
2

+(𝜎(𝑗,𝑘,𝑚)
(𝑒)

)
2 𝑞𝑗,𝑘,𝑚
′

𝑛                                         (7.3)    

Where 𝑗, 𝑘, 𝑚 denote the m-th coefficient in scale 𝑗 and sub-band 𝑘. 

 

7.1.4 Reconstructed Frames 

At the end, the inverse wavelet transform is applied to the obtained clean coefficients to get the 

reconstructed frames of a video sequence. 

Figure shows step wise implementation of the proposed technique. 
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Fig.7.1   Diagram of proposed denoising process 

7.2 Simulation and Results 

To illustrate the efficiency of proposed algorithm, different standard publicly available test video 

sequences are used such as BUS, MOBILE, SALESMAN, CHAIR, FOOTBALL and 

FOREMAN. Each sequence is artificially degraded with white Gaussian noise and speckle noise. 

The reconstructed frame is tested with the original one. Qualitative analysis is performed in Fig 

7.2, 7.3 and 7.4 with existing state-of-the-art methods including NLM, VBM3D and CIFIC 

[18][17][24]. The block in original frame show zoomed regions and its comparison with other 

techniques.  

 

  

 

 

 

 

 

 

 

 

 

        

(a)                                   (b)                               (c)                                   (d) 

   

(e)                                     (f) 

       

(g)                          (h)                        (i)                                                                            

     



67 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

       

(a)                             (b)                             (c)                              (d) 

     

(e)                             (f) 

     

(g)                   (h)                   (i) 

     

(j)                    (k)                   (l) 



68 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

The quantitative results are shown in Tables 7-1 to 7-4. Table 7-1 and 7-2 shows better 

performance of proposed algorithm in terms of Color PSNR (CPSNR), Mean Structural 

Similarity index (MSSIM) and Pearson’s Correlation Coefficient (PCC).  

 

 

 

 

       
                             (a)                                      (b)                                    (c)                                      (d) 

 

      
(e)                                        (f) 

 

 

     
 

(g)                  (h)                   (i) 

 

     
 

(j)                  (k)                    (l) 
 

Fig.7.4  Comparison of 58 frame of “BUS” with uniform Gaussian noise and its zoomed area shown by a block in original 

frame (a) Original image (b) Noisy image (c) NLM (d) V-BM3D (e) CIFIC (f) Proposed method (g) Zoomed area shown by 

a block in ‘a’ (h) Zoomed area of ‘b’ (i) Zoomed area of ‘c’ (j) Zoomed area of ‘d’ (k) Zoomed area of ‘e’ (l) Zoomed area 

of ‘f’  
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Table 7-1. Quantitative Comparison of NLM, V-BM3D, CIFIC and proposed with uniform Gaussian noise. All 

CPSNR values are in decibel  

Algorithm Quantitative 

Measure 

 

Video sequences 

Foreman Mobile Bus Chair Football Salesman 

NLM 

 

CPSNR 34.04 29.87 30.64 34.03 29.77 32.12 

PCC 0.896 0.854 0.886 0.954 0.951 0.950 

MSSIM index 0.678 0.713 0.810 0.801 0.543 0.884 

V-BM3D 

 

CPSNR 31.15 30.95 30.55 36.08 30.57 35.13 

PCC 0.940 0.899 0.951 0.968 0.959 0.951 

MSSIM index 0.794 0.798 0.824 0.804 0.577 0.896 

CIFIC 

 

CPSNR 32.13 31.96 33.47 36.40 31.59 35.18 

PCC 0.941 0.901 0.961 0.971 0.960 0.953 

MSSIM index 0.812 0.812 0.831 0.811 0.591 0.817 

Proposed 

Algorithm 

 

CPSNR 33.14 32.90 34.85 36.69 32.10 35.53 

PCC 0.959 0.971 0.977 0.974 0.962 0.967 

MSSIM index 0.877 0.839 0.862 0.882 0.673 0.830 

Table 7-2. Quantitative Comparison of NLM, V-BM3D, CIFIC and proposed with uniform Gaussian noise. All 

CPSNR values are in decibel 

Algorithm 
Quantitative 

Measure 

 

Video Sequences 

Foreman Mobile Bus Chair Football Salesman 

NLM 

CPSNR 33.09 28.17 27.82 31.07 27.32 29.03 

PCC 0.765 0.851 0.876 0.945 0.922 0.914 

MSSIM index 0.564 0.710 0.798 0.796 0.458 0.751 

V-BM3D 

CPSNR 30.11 29.15 27.81 33.91 27.80 32.13 

PCC 0.870 0.814 0.893 0.911 0.943 0.877 

MSSIM index 0.685 0.688 0.744 0.789 0.389 0.810 

CIFIC 

CPSNR 30.16 30.06 30.51 33.71 28.81 32.10 

PCC 0.876 0.866 0.899 0.854 0.912 0.945 

MSSIM index 0.723 0.765 0.743 0.712 0.412 0.789 

Proposed 

Algorithm 

CPSNR 32.14 31.60 31.13 33.89 29.35 33.23 

PCC 0.893 0.912 0.915 0.945 0.933 0.926 

MSSIM index 0.743 0.814 0.827 0.867 0.594 0.819 

 

15n

30,25,20n
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NLMC, CIFIC and V-BM3D do not consider speckle noise while proposed method outperforms 

the existing despeckling techniques. In Figure 7.5 and 7.6, the original frame corrupted with 

speckle noise is filtered by using different techniques including SOMA, MD, Wavelets 

[25][26][27] and proposed algorithm.   

 

 

  

 

       
                                                            (a)                                                       (b)                                                  (c) 

       
                                                            (d)                                                      (e)                                                    (f) 

 

Fig.7.5. Qualitative Comparison of Proposed Algorithm with other techniques (a) Original Image (b) Noisy image (c) 

SOMA (d) MD (e) Wavelets (f) Proposed algorithm 
 

     

                                                           (a)                                                       (b)                                                     (c) 

      

                                                            (d)                                                      (e)                                                    (f) 

 

Fig.7.6. Qualitative Comparison of Zoomed Lena with other techniques (a) Original Image (b) Noisy image (c) SOMA (d) 

MD (e) Wavelets (f) Proposed algorithm 
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   Table 7-3.Quantitative results of proposed algorithm with other techniques with Speckle noise and uniform noise level  

 

 

Algorithm Quantitative 

Measure 

Test Images 

Lena Boat Fruit Building Cameraman Couple 

SOMA  

 

PSNR 26.22 28.09 26.18 28.16 27.25 28.07 

RMSE 137.02 132.028 130.714 133.93 135.47 131.35 

PCC 0.9521 0.9723 0.8725 0.9821 0.9617 0.8983 

MSSIM index 0.7163 0.7805 0.7678 0.7782 0.7852 0.9609 

      MD 

 

PSNR 26.51 28.01 27.13 28.56 27.45 29.04 

RMSE 132.22 129.98 130.71 129.13 126.18 131.35 

PCC 0.9573 0.9745 0.9617 0.9894 0.9667 0.9941 

MSSIM index 0.7181 0.7962 0.7813 0.7890 0.7884 0.9621 

Wavelet 

Denoising         

 

PSNR 32.36 34.11 33.14 35.60 34.65 35.43 

RMSE 98.871 96.219 94.337 95.144 125.819 98.761 

PCC 0.9924 0.9933 0.9925 0.9889 0.9954 0.9981 

MSSIM index 0.9233 0.8785 0.8962 0.9045 0.8495 0.9233 

Proposed 

Algorithm 

 

PSNR 33.71 34.41 34.42 35.76 35.28 36.15 

RMSE 108.671 99.932 94.376 105.141 128.659 138.651 

PCC 0.9983 0.9964 0.9948 0.9991 0.9974 0.9987 

MSSIM index 0.9353 0.8789 0.9162 0.9154 0.8953 0.9451 

 



72 
 

 

  

Table 7-4.  Quantitative results of proposed algorithm with different noise levels, the number of input frames = 3 and 

number of wavelet decomposition levels = 3 

 

Quantitative 
Measures 

Image Set Speckle Noise 

Frame 1=0.03 

Frame 2=0.03 

Frame 3=0.03 

Frame 1=0.02 

Frame 2=0.04 

Frame 3=0.06 

Frame 1=0.06 

Frame 2=0.06 

Frame 3=0.06 

Frame 1=0.06 

Frame 2=0.08 

Frame 3=0.10 

Frame 1=0.09 

Frame 2=0.09 

Frame 3=0.09 

PSNR Lena 33.714 32.412 31.644 31.174 30.135 

Boat 34.416 34.112 32.865 31.461 31.179 

Fruit 34.423 33.145 32.617 32.071 30.561 

Building 35.763 34.441 33.091 32.982 30.143 

Cameraman 35.286 33.982 32.981 32.132 30.013 

RMSE Lena 108.671 110.081 116.284 116.887 118.093 

Boat 99.932 103.012 104.016 105.018 105.091 

Fruit 94.376 95.714 95.976 96.019 97.023 

Building 105.141 106.109 108.512 108.854 109.158 

Cameraman 128.659 129.008 129.841 130.153 130.816 

PCC Lena 0.9983 0.9895 0.9851 0.9822 0.9813 

Boat 0.9964 0.9951 0.9948 0.9941 0.9916 

Fruit 0.9948 0.9940 0.9936 0.9927 0.9918 

Building 0.9891 0.9861 0.9823 0.9819 0.9811 

Cameraman 0.9974 0.9952 0.9923 0.9896 0.9881 

MSSIM Index Lena 0.9353 0.9351 0.9344 0.9342 0.9339 

Boat 0.8789 0.8775 0.8764 0.8732 0.8713 

Fruit          0.9162           0.9158 0.9151 0.9149 0.9143 

Building          0.9154           0.9147 0.9141 0.9138 0.9131 

Cameraman          0.8953 0.8951 0.8946 0.8941 0.8940 
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Table 7-3 and 7-4 presents comparison of proposed technique for speckle noise with existing 

state of-the-art algorithms. The comparison is shown in terms of peak signal-to-noise ratio 

(PSNR), Pearson’s Correlation Coefficient (PCC), Root Mean Square Error (RMSE), and Mean 

Structural Similarity index (MSSIM). In addition, OCT image is also considered in the proposed 

algorithm and compared with wavelet as presented in Figures 5.7 and 5.8. The proposed method 

can suppress noise well as compared to other state-of-the-art algorithms and preserves edges 

efficiently.  

 

 

 

 

  

 

   

(a)                                                                                         (b) 

 

   

(c)                                                                                         (d) 

 

 

   
(e)                                          (f) 

   
(g)                                          (h) 

 

 

 

Fig. 7.7  Qualitative Comparison of proposed Denoising Algorithm on OCT Image (a) Average of human’s eye 

frames (having least possible speckle noise)   (b) a noisy frame  (c) images denoised through wavelets (d) proposed 

algorithm using three noisy frames (e) Zoomed region displayed in ‘a’ (f) Zoomed region displayed in ‘b’ (g) Zoomed 

region displayed in ‘c’ (h) Zoomed region displayed in ‘d’ 
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(a)                                                                                           (b) 

 

 

      
(c)                                                                                           (d) 

 

 

        
 (e)                                  (f) 

 

        
  (g)                                 (h) 

 
 

Fig. 7.8   Comparison on OCT Image (a) Average of pig’s eye frames (having least possible speckle noise);  (b) a noisy 

frame;  (c) image denoised by wavelets (d) image denoised by proposed algorithm using three noisy frames (e) Zoomed 

block shown in ‘a’ (f) Zoomed block shown in ‘b’ (g) Zoomed block shown in ‘c’ (h) Zoomed block shown in ‘d’ 
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CHAPTER 8 

Conclusion 

Modeling is the essential part of any statistical image processing problem and for applications 

like estimation, detection, segmentation and denoising. Wavelet-based color video denoising is 

discussed in this thesis that is based on HMT and it captures the principle aspects of image 

configuration in wavelet domain. It is used in the framework of 2D-GMM and 2D-DWT scales 

and location. The primary properties of the wavelet transform locality, multi-resolution, and 

compression have led to powerful new approaches to statistical signal processing. However, 

conventional methods usually model the wavelet coefficients as statistically independent or 

jointly Gaussian. To cater the non-Gaussian nature of wavelet coefficients, Mixture densities 

have been incorporated and statistical dependencies between coefficients are captured by using 

probabilistic graphs/Tree. 

                  We have trained HMT model using EM algorithm that provides a model that is 

flexible and has its fruitfulness in dealing with the wavelet coefficients to provide us with the 

modeling of different frames of a video sequence.  

                  Experimental results have revealed that the proposed method outperforms the existing 

state-of-the-art techniques for color video sequences both in terms of qualitative and quantitative 

analysis. This method is capable of noise reduction and edge preservation. 

 

8.1 Future Work 

 

Although the proposed approach gives the encouraging denoising results, but there is always 

room for improvement to achieve better results. We can extend this technique to Synthetic 

Aperture Radar (SAR) images or high resolution images. 

 

                   Moreover, we can add noise of different variances in different color components and 

perform joint denoising for all the color components. Motion estimation can be performed to 

denoise the static and moving regions separately. 
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                This technique can be extended to other transform domains like Bandelet, Contourlet, 

Rigdelet and Curvelet. 

               Finally it is also possible to combine this technique with other methods to achieve 

better performance and to reduce the computational complexity and running time of the system.  
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