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ABSTRACT

Access Point deployment has been a course of major study over the years and numerous
researchers have worked upon it. This thesis work focuses on an intelligent deployment
of Wireless Access Points (WAP) in an Indoor Wi-Fi Localisation System. Novel in its
regard, the work first uses Geometric Dilution of Precision and the Genetic Algorithm
to deploy Access Points, followed by a selection of Access Points with the help of
RSSI and user-to-AP Position vectors. A series of MATLAB simulations showed that
the user-to-AP position vector approach showed an improvement in localisation in the
deployment area under study. Further work includes a performance analysis in which
simulation parameters are altered to check their effect on system accuracy. Overall,
a position vector based selection of Access Points by the users have shown the best
results in the CDF plots with better accuracy.
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Chapter 1

INTRODUCTION

Accurate location estimation has been the concern of many technological solutions of

today, and finding the correct location of a mobile or stationary user has become as

inevitable as finding The Mask. Till date, a variety of location estimation techniques

and applications have been developed, in which a record of a target’s locations is kept

to determine its next incremental location or in other words, the target is localised in a

given environment.

For many years scientists and technologists have been researching upon finding

technological solutions for the objects location problem on the lines of low cost and

complexity. But as such a simple and easy to understand yet focal solution is yet to

be developed. Researches on indoor localisation systems are based uopn the usage

of short-range signals, like WiFi [4], [5], [27], Bluetooth [28], ultrasound [29], and

infrared [30].

This thesis focuses on a novel idea of position vectors which essentially addresses

the user localisation problem. In this solution the users can be viewed as cooperative

targets because of a two-step localisation process. In the first step the object is localised

using K-nearest neighbour algorithm and then in the next step the localised users’ posi-

tions calibrated using reference points on the grid map of the coverage area are fixed as

the first distance measurement points for the position vectors. The second set of points

are the Access Point locations and the position vector formation is similar to Euclidean

distance measurement.

Location systems work differently for outdoor and indoor environments, but the un-

derlying principle is the same. Wi-Fi based localisation systems best work indoors,
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i.e. they are most suited for users targeted in indoor environments where GPS uniquely

cannot provide their location precisely.

An optimization model is proposed in [1] for the deployment of additional APs in

an existing Wi-Fi IPS (or Indoor Positioning System). Past works regarding location

estimation are focused on finding suitable locations for satellites in GPS satellite lo-

cation systems, in particular asserting that the volume of the polyhedron formed by

the user-to-satellite unit vectors is related to the candidate positions of those satellites

which when selected can result in reducing error in localisation. Other works show that

the unit vectors formed from the user to the satellites are actually the coefficients of a

GDOP matrix, to be constructed later on.

The variance in user position vectors for the performance assessment of Cricket In-

door Positioning System has been studied, but the position vectors hence determined

have not been applied to improve the system efficiency. This research work combines a

Wi-Fi Access Point deployment model with an RSSI and user-to-Access Point position

vector based AP selection to reduce the error in indoor location system.

1.1 Motivation

Indoor location systems have gained popularity in recent years. These localisation

systems have provided a new layer of automation called automatic object location de-

tection. [9] There are many real-world applications depending on such automation. For

example, one can consider finding the location of products kept in a warehouse, of med-

ical personnel or equipment in a hospital, locations of firemen in a building, locating

police dogs who are trained to find explosives in a building, and keeping tags on the

maintenance tools and equipment scattered over industrial plants. During the last ten

years, the primary progress in indoor location sensing systems has been made. [9]

It is a key challenge to design an accurate indoor positioning system which can be

easily deployed on commercially available mobile devices without any hardware mod-

ification. [17] Indoor localisation using triangulation cannot predict the actual location

of a user due to disrupted line-of-sight paths between the radio transmitters and the

receiver. It is also susceptible to errors, making the technique unsuitable for congested
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indoor environments like shopping malls, universities, offices, public hospitals and air-

ports.

It is difficult to find a line-of-sight path between the transmitter and the receiver in

indoor environment. Radio propagation in these environments often suffers from mul-

tipath and shadowing. The time and angle of an arrival signal can be affected by the

multipath effect; thus the estimated location could be less accurate. There is an al-

ternative approach in which the distance of the mobile user is estimated from a set of

measuring units, using the attenuation of emitted signal strength. These signal strength

attenuation-based methods actually calculate the signal path loss due to propagation in

a cluttered indoor environment .

RSSI fingerprinting method does not require an LOS path since it records the received

signal strengths, called the Received Signal Strength Indicator (RSSI), from the Wi-Fi

Access Points (APs).The receive signal strength indicator (RSSI) is a parameter which

traditionally has a value starting from 0 to RSSImax. It is measured by the physi-

cal sublayer of the energy observed at the receiving antenna. [10] User-to-AP position

vector-based optimisation when used in conjunction with RSSI based localisation in an

indoor positioning environment can help to improve the system accuracy. A two-way

approach as such can cater for the variations in the indoor environment e.g. obstacles

of different types, moving objects and wall obstructions. The position vector-based se-

lection of APs can be used instead of RSSI in case of availability of line-of-sight path

between a user and an AP, justified by the RSSI levels exceeding a predefined thresh-

old.

Although a standard for indoor positioning systems is not available as of today, the

wireless local area network (WLAN) infrastructure already deployed in buildings is

the most extensively used indoor positioning system technology. [16]

1.2 Goals and Objectives

Following are the objectives of this research:

1. Construction of Genetic Algorithm (GA) for deployment of additional APs.

2. Selection of APs based on RSSI and user-to-AP position vectors.
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3. K-Nearest neighbour algorithm for user localisation using the APs selected based on

first the RSSI and then on position vectors.

1.3 Relevance to National needs

Indoor Positioning using GDOP is suitable wherever an accurate location estimate is

required whether it is an academic, industrial or military application. Using a novel

approach can improve the efficiency of already deployed systems.

1.4 Advantages

a) Ability to provide coordinate information instantaneously.

b) Integration with machine guidance systems.

c) Low deployment and operational costs.

d) Low complexity algorithms.

1.5 Areas of Application

a) Passenger navigation systems in airports, bus, train, and subway stations and muse-

ums.

b) Health care systems requiring a location estimate for patient mobility.

c) Academic institutes and shopping malls.

d) As a key assistance in robotics, and protecting expensive assets and vehicles from

theft, loss or unauthorised use.

e) In tracking and geo-fencing systems to ensure that machines are not taken outside of

a project or mining lease boundary.

1.6 Location System Applications

Some of the real world applications of indoor location systems include the following:

a) Path finding

Path finding is the plotting of the shortest path of radio propagation between two points.

b) Tracking

A tracking system supplies a timely ordered sequence of location data for observing

the motion of people or objects and initiates further processing.

c) Real-time locating systems (RTLS)

Real-time location systems are used to identify and track the location of objects or
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people in real time automatically, usually inside a building. Wireless RTLS tags are

worn by people or attached to objects. In most of these systems, a set of fixed reference

points receive wireless signals from tags and determine their location. These systems

are able to track automobiles, locate merchandise in a warehouse, and find medical

equipment in hospitals.

1.7 Properties of a good localisation system

A good localisation system: [11]

1. Is light enough to run locally on the phone.

2. Requires minimum effort in setting up (fingerprinting).

3. Is stable with the variation of time.

4. Is robust to changes in the environment.

5. Works equally well with any measurement device (any mobile phone).

6. Is accurate enough to predict the room the user is in.

1.8 Thesis outline

The Chapter 1, (current chapter) gives an introduction to the research conducted. The

objectives of the research are discussed in this chapter along with applications, advan-

tages and relevance to national needs.

The second chapter, Preliminaries provides the complete details of the localisation

techniques and systems developed, and level of research already carried in the field.

Chapter 3 explains the Proposed technique and System Model of the simulations. The

mathematical models and equations used in the simulation are also discussed.

Chapter 4 Results and Discussions presents the results of the simulations, and the per-

formance analysis under different scenarios and conditions.

Chapter 5 is Conclusion and Future work.

Chapter 6 is References and Bibliography.

5



Chapter 2

PRELIMINARIES

2.1 Types of Measurement

While the prime focus of this research is fingerprinting based positioning, some of

the other distance measurement (lateration) techniques are discussed in the following

sub-sections to develop a clear knowledge of the existing techniques.

2.1.1 RSS

The Recieved Signal Srength (or RSS) measurement works on the principle that the

strength of the received signal varies inversely with distance. A Wi-Fi based Indoor

Positioning System is commonly based on this type of measurement. Mapping between

measured RSS and the distance between the receiving and the transmitting node is

measured with the help of a mathematical model using Euclidean Distance, which is a

measure of the distance between an ‘online’RSS value and the ‘offline’training database

RSS records.

2.1.2 TOA

The time at which radio signal reaches from one transmitter to a remote server or re-

ceiver is called Time of Arrival (or TOA). Measurements of signal propagation delay

are used to obtain distance between a pair of nodes. Time of Arrival makes use of the

absolute time that a signal arrives at a certain base station rather than the time differ-

ence between the departure of signal from one station and arrival at the other station.

As signals travel with a known velocity, the distance can be directly calculated from the

Time of Arrival using d= v*t. At least three base stations are required to constrain the

precise position of the receiver to a single point. A number of radio-location systems

use TOA, including GPS.
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2.1.3 TDOA

Time Difference of Arrival (or TDOA) is the measurement of time difference of a ra-

dio signal between departure from one station and arrival at the remote station. TDOA

does not rely on absolute distance (as in TOA) calculated between a pair of nodes. Two

methods are used to calculate TDOA.

1) Multiple signals from synchronised anchor nodes are broadcast and the receiver mea-

sures the TDOA.

2) A reference signal is broadcast by a mobile transmitter or node and is received by a

number of fixed anchor nodes.

Synchronisation of all the anchor nodes in the network is a prerequisite for each

method. Two TDOA measurements and at least three anchors are needed to calculate

the position of a mobile node.

2.1.4 PDOA

In Phase Difference of Arrival technique a couple of continuous wave signals at fre-

quencies f1 and f2 are transmitted. Phase difference is measured at the receiving sta-

tion which is proportional to the distance and inversely related to the difference of f2

- f1. The phase estimation error is very small due to the presence of extremely small

signal bandwidth. Radar systems first made use of this technique.

2.1.5 Proximity

Proximity systems use beacons for positioning. These beacons are bluetooth units

acting as transmitters which broadcast their identifying information to nearby smart-

phones. The simplest method which defines the proximity technique is the formation

of a circle around the transmitting beacons with radius r0. The main advantage of this

method is that it does not require any additional hardware and also the time synchroni-

sation among nodes is not needed.

2.1.6 RSS and Wi-Fi Positioning

One of the main advantages of Wi-Fi based indoor positioning is the cost effective-

ness because compatible devices are localised without the installation of extra software

and no LOS requirement. [34] Wi-Fi based Indoor Positioning Systems (IPS) have
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improved efficiency in quite a number of organisations and industries. An increasing

number of companies have welcomed the new functionalities provided by Wi-Fi Indoor

Positioning Systems. There is a prominent interest for Wi-Fi IPS and Real Time Lo-

cating Systems (RTLS) in the telecommunications industry because of their potential

in creating new services from existing ones. The developers of IPS have great market

potential for companies and this is predicted to be even larger in the coming years.

Indoor wireless positioning based on received radio frequency signal strength has

become more popular for researchers in recent years. Wireless positioning is a rapidly

growing technology used both in home and business networking sites. Nowadays, wire-

less networks are profoundly set up in educational institutes, hospitals, shopping malls,

airports and so on. Wi-Fi location determination uses existing Wi-Fi equipment such

as those installed in personal computers, mobile phones and PDAs.

Another Wi-Fi based technology is termed as the IoT or Internet of Things. Location

estimate in IoT forms as the pioneer of research in this field.

Researchers have implemented various positioning algorithms to find the indoor posi-

tion. Some popular algorithms among these are signal strength mean value algorithm,

the K-nearest neighbors algorithm, and Bayesian positioning algorithm. K-nearest

neighbour algorithm is a widely accepted algorithm and it has the least complexity

and has been used for the purpose of this research.

2.1.7 Wi-Fi Multilateration

The basic idea of the multilateration is that the distances from an unknown station to

several reference locations contribute to finding the presence of this node. [35] Multilat-

eral algorithms [32] basically measure, compare and process the location data received

from reference stations in the environment. [33]

In multilateration the position can be estimated by using the signal strengths received

from several non-collinear (series of points that are not on the same line in a plane)

Access Points. Using the Received Signal Strengths and a path loss model, the distance

between the device and Access Points can be estimated. Then the relationship between

this distance and signal strength gives an estimate of the position of the user.
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2.1.8 Trilateration for Indoor Positioning

Trilateration for indoor positioning is relatively simple approach in which GPS re-

ceivers calculate the position of objects by using the mathematical process of trilatera-

tion. This method finds the position of an object or target node based on the following

two measures:

1) The distances of the object from any three different known points.

2) The coordinates (position) of any three points.

In trilateration, the target nodes are unknown location nodes which have to be calcu-

lated by using known coordinates of any three points. By taking the coordinates of

any thre Access Points we can easily find the position. In the conventional trilateration

method, the intersection of three circumferences gives the position of the target node.

2.2 RSSI Fingerprinting Method

The technique of Fingerprint positioning is Received Signal Strength (RSSI) based

positioning that uses location dependent characteristics with a location and uses these

characteristics to estimate the position. Fingerprint based indoor positioning consists

of two phases named as offline and online phases. Fingerprint database is established

in offline phase and positioning is performed in online phase. RSS values that are

obtained from access points on a specific time period at the predetermined reference

points are stored in a database that is called as fingerprint database. Each fingerprint

in this database contains basically location information and RSS values obtained from

surrounding access points at that location.

In the offline phase the RSS fingerprints are sampled at each reference position from

a number of access points (AP). APs are usually fixed transmitters such as Wi-Fi

routers. A reference position is the position in the indoor environment that needs to

be tracked. And the signal fingerprint at each RP are updated or inserted in the survey

database. The received signal strength (RSS) can be defined as the measure of signal

power from an AP to a receiver which can be sampled without any additional require-

ment in WLAN environment. Single samples of RSSI recorded from the nearby access

points are not sufficient to characterise a fingerprint. Due to presence of noise in the

9



environment it is necessary to obtain an average of the readings to successfully identify

a fingerprint. In the online phase the background service running on the users mobile

measures a vector of RSSI value at an unknown location and then compares the RSSI

value received in the online determination phase with the training database. With the

help of positioning algorithm the most likely location of mobile user is finally calcu-

lated.

Hence, the method of finding loci of users through an RP database in which RSSI for

each point is recorded and compared with the instantly received RSSI vector at the

users is called fingerprinting for location estimation. Fingerprinting helps to signif-

icantly improve the accuracy and precision of conventional signal strength lateration

techniques. [19]

2.3 Dilution of Precision (DOP)

Dilution of Precision, or DOP, is a concept taken from GNSS satellite navigation. It is a

figure of merit which specifies the effect of geometry formed by navigation satellites on

the precision of positional measurement. DOP is a number which signifies the effect

of satellite geometry on the receiver’s calculated position, inherently describing how

good the satellite geometry is in estimating the position. [38] DOP only depends on the

positions of Access Points relative to the location of the receiver. [40] Calculation of

GDOP coefficient has been widely used to determine appropriate positions for satel-

lites in Global Satellite Navigation System and can be applied to indoor positioning

systems to find suitable locations for Wi-Fi Access Points. The coefficient of dilution

of precision is a good candidate to specify the most adequate Access Points distribution

in a Wi-Fi network. [40]

Using the relations for DOP in the indoor environments calls for an explanation of

‘pseudorange’as discussed in Section 2.3.1.

2.3.1 Pseudorange measurements

A GPS receiver computes its three-dimensional coordinates and its clock offset from

four or more simultaneous pseudorange measurements. These are measurements of

the biased range (hence the term pseudorange) between the receiver’s antenna and the
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antennas of each of the satellites being tracked. This is derived by cross-correlating

the pseudorandom noise code received from a satellite with a replica generated in a re-

ceiver. The accuracy of the measured pseudoranges and the fidelity of the model used

to process those measurements determine, in part, the overall accuracy of the receiver-

derived coordinates.

DOP gives a measure of the extent to which the pseudorange deviates from the actual

distance. Pseudorange is depicted in Figure 2.1. [43]

Figure 2.1: DOP: The uncertainty in the receiver’s position [43]

Dilution of Precision (DOP) measures the relative degradation or reduction in the cer-

11



tainty of a navigation solution based on one-way range measurements from a set of

transmitters. For GNSS, if four or more satellites are in view of a ground receiver, a

navigation solution consisting of the position of the receiver and the offset between the

receiver clock and the GPS clock is calculated.

DOP estimates the error in the geographical position of a receiver. The calculation

of GDOP (Geometric Dilution of Presision) coefficient has been widely used to deter-

mine appropriate positions for satellites in Global Satellite Navigation System and can

be applied to indoor positioning systems to find suitable locations for Wi-Fi Access

Points. Candidate locations for APs are the solutions of a Genetic Algorithm (GA), as

described later.

The position, horizontal, vertical, and time DOPs are defined as follows:

PDOP =
√
(σ2

E + σ2
N + σ2

U)/σ (2.1)

HDOP =
√

(σ2
E + σ2

N)/σ (2.2)

V DOP = σU/σ (2.3)

TDOP = σT/σ (2.4)

Where σ represents the variance in East, North and Up direction for the position dilu-

tion of precision; in the East and North for horizontal dilution of precision; in only the

Up direction for vertical dilution of precision and the Time offset for time dilution of

precision.

For 3D positioning the East, North and Up directions are considered, whereas for four

positioning nodes, the time offset is also included; otherwise it is skipped.

The variants of Dilution of Precision are summarised as follows:

a) GDOP (Geometric Dilution of Precision) measures the dilution of precision for

the entire navigation solution, concerning with the geometry of the localising entities.

GDOP combines the dilution of precision of the position and optionally, clock-related

components of the navigational solution.

b) PDOP (Position Dilution of Precision) measures only the dilution of precision asso-

ciated with the positional portion of the navigational solution. It is further divided into
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four categories:

- HDOP (Horizontal Dilution of Precision) measures the dilution in precision for the

latitude/longitude (horizontal) components of the Positional portion of the navigational

solution.

- VDOP (Vertical Dilution of Precision) measures the dilution of precision for the

altitude (vertical) component of the Positional portion of the navigational solution.

- EDOP (East Dilution of Precision) calculates the dilution of precision in the Eastern

component of the navigational solution.

- NDOP (North Dilution of Precision) determines the dilution of Precision in the North-

ern component of the navigational solution.

c) TDOP (Time Dilution of Precision) measures the dilution of precision in the time

portion of the navigational solution.

Table 2.2 shows DOP values and their significance with respect to system accuracy.

A DOP value of around 1 is considered ideal and gives the most accurate location

estimate.[3]

Table 2.2: DOP Rating [3]

2.4 Localisation

Even though GPS is a promising and reliable technology, the GPS signals cannot be

detected due to environmental obstructions which renders GPS unsuitable for some ter-

restrial applications. Since the satellite signals are heavily attenuated passing through

the atmosphere and their intensity is further reduced due to trees, heavy fog or man-

made structures e.g. buildings, this system can not be especially useful for densely
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populated urban areas and also inside buildings and corporate setups. Even in indoor

environment, the GPS does not work well because the walls, floors and other construc-

tion objects greatly attenuate the signals received from satellites. [20] Because indoor

applications require a continuous, seamless and ubiquitous positioning, the GPS is not

suitable due to great signal attenuation. [21]

To overcome this issue, researchers restored their focus to land-based positioning and

tracking systems such as Wi-Fi IPS for a variety of situations which cannot make use

of satellite signals.

The fundamental techniques of locating and tracking radio frequency devices differ

greatly from those of data communications as in communications, the information is

transferred from one station to another. The information carrier might be RF, sound

or light and a single, reliable link is sufficient to transfer data between the stations.

Locating a device whose location is completely unknown however requires a com-

pletely different approach than traditional data communication in which only data is

transmitted.

As seen from various researches, localisation can be achieved in the following

ways: [14]

1) Geometric methods e.g. trilateration, triangulation, hyperbolic methods.

2) Fingerprinting methods or signal mapping.

The geometric methods include those techniques which can locate or track devices

based on properties of the signals being transmitted. Time of Arrival, Time Differ-

ence of Arrival and Angle of Arrival are examples of geometric location measurement

techniques, while an alternate technique is the Received Signal Strength based finger-

printing method which is more robust and less susceptible to errors.

Figure 2.2 shows the architecture of a position estimation system [42].
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The received RF signals being observed at various reference points are characterised

Figure 2.2: Positioning system architecture [42]

by location metrics e.g. TOA, RSS or AOA etc and a positioning algorithm is used to

find the location estimate to be observed at a higher level application such as display.

2.5 Distance/position estimation metrics

A location system needs to obtain range estimates from fixed anchors or reference

points in order to estimate the location of a node. Range estimates can be obtained

using different metrics. RSS and TOA/TDOA are examples of such techniques.

2.5.1 RSS

The energy of an RF signal, after being transmitted, experiences propagation loss which

is proportional to the distance that the signal travels. Because RSS level changes in-

stantly, it is necessary to use the average value of RSSI in computations. [15]

A commonly used radio signal propagation model is given as

Pr(dB) = Pt(dB)− 10αlog10d (2.5)

Where Pr (dB) and Pt (dB) represent the received signal power and transmitted signal

power in decibel. α is the indoor attenuation factor and is dependent on the propaga-

tion environment. For free space propagation, α = 2. There are wide range of values

possible for α, e.g. for a hard partition office environment α is found to be 3.0 and for

a lab environment with metal partitioning it is reported to be 3.3. [41]
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2.5.2 AOA

Angle of Arrival (AOA) information from two different anchor nodes can be used to

determine the position of a user by using triangulation. AOA estimation is also referred

to as Direction of Arrival (DOA) estimation, direction finding or bearing estimation in

many contexts and has been researched extensively. AOA is demonstrated in Figure

2.3.

Figure 2.3: Angle of Arrival [14]

2.5.3 TOA

Time of Arrival (TOA) is another distance estimation method in which the distance

is estimated based on the time the signal takes as it travels from a transmitter to the

receiver. The speed of RF propagation is very well known in both free space and

air, therefore it gives a direct estimate of the distance between the transmitter and the

receiver when the time travel is measured. TOA is the only important parameter which

needs to be estimated correctly in a multipath propagation environment. TOA needs

an LOS path or the pirect path (DP), without which the TOA measurements can be

inaccurate.

2.5.4 TDOA

TDOA, or hyperbolic positioning, is a positioning method in which the receiver cal-

culates the differences in the TOAs from different reference points. This method au-

tomatically removes the clock biases between the transmitters and receivers, since the

differences between the TOAs from two transmitters are only considered.
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Figure 2.4: Time of Arrival

TDOA is based on Hyperbolic Lateration in which TDOA between two sensors is cal-

culated and the value is used to construct a hyperbola. The focal points of the hyerbola

are the respective locations of the sensors. The position estimation using TDOA is

shown in Figure 2.5.

Figure 2.5: Time Difference of Arrival

2.5.5 Fingerprinting

Fingerprinting is a training-based method which is estensively used in positioning sys-

tems in WLANs because it is not affected by the time varying characteristic of radio
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propagation caused by multipath, shadowing, and interference. [17]

Geometric methods of positioning do not provide robustness in terms of performance

as compared to fingerprinting method. This method is called so because the RSSI

vectors received at the Reference Points (RPs) from various Access Points (APs) are

all different from one another as in a fingerprint collection. Also this method is more

accurate and convenient to implement as it does not require an LOS path between the

RPs and the APs.

This method is essentially a two-step approach. The first step is the construction of an

offline training database in which a set of grid points and the RSSI received at various

RPs are used. The next step is the online phase in which actual localisation is done by

comparing the RSSI vector received from APs at the user with the training RP database

using some low-complexity algorithm like the K-nearest neighbour algorithm. The

position of the user is then the position of the RP ‘nearest’to it and the difference

between the RP’s location and the user’s actual location contributes to the localisation

error calculated by various samples since the RSSI values are also averaged.

Fingerprinting technique inherently captures all the environment related signal prop-

agation effects e.g. multipath, shadowing and scattering and hence it can be used for

applications in which geometric methods do not work up to the mark.

Figure 2.6 describes a location fingerprinting process, highlighting the offline and

the online phases.

The Reference Points (RPs) are represented by RSS values from a number of Ac-

cess Points, constructing a ‘fingerprint’database for each of the received RSS vectors.

These vectors are all different from one another attributed to the distance kept between

reference locations and hence are named as fingerprints. When the offline database

formation is complete, the location of a user can be determined in the online stage by

comparing the RSS vector at the user with the vectors in the RP database using an al-

gorithm like the k-nearest neighbour algorithm. The accuracy (the error which exists

between the location estimated by the IPS and the actual location of the user) of such

systems depends upon the underlying techniques used and improving accuracy is also
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Figure 2.6: Location fingerprinting method [14]

the main concern of this research.

The time taken by a signal to obtain a position and the energy needed to successfully

localise the user is directly dependent upon the complexity of the indoor positioning

system. It is important to keep the complexity as low as possible as it also decreases

the power consumption of the system. [16]
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Chapter 3

SYSTEM MODEL AND PROPOSED SCHEMES

Indoor location-based services (ILBS) have gained interest in the recent years because

of the social and commercial usage. [12] Indoor environment is more often complex,

defined by objects and non-line-of-sight (NLOS) distances between the RF tranmitters

and receivers. The presence of obstacles, signal fluctuation or noise and environmental

changes clutter the indoor environment. In order to gain satifactory ILBS, a high local-

isation accuracy is required despite such a complex environment. [13]

This chapter provides definitions and detailed description of a Wi-Fi based Indoor Lo-

cation technique. Starting from definitions, this chapter covers an Access Point deploy-

ment algorithm (the Genetic Algorithm or GA) and the user-to-Access Point position

vector algorithm which classifies the Access Points on the basis of RSSI and position

vector objective functions.

Wi-Fi based indoor location systems (Indoor positioning systems or IPS) contain a

set of wired or wireless Access Points (APs). These are networking devices which al-

low wireless Wi-Fi devices to be connected to a wired basic network infrastructure. The

wireless APs make up a Wireless Local Area Networks (WLAN). The access points act

as central transmitters and receivers of wireless radio signals.

To achieve the full performance potential of the IPS, it is a best practice to ensure the

proper placement of APs. The APs are mainly distributed throughout the interior spaces

in many office WLANs, providing service to the surrounding workplace. While the AP

locations are selected traditionally on the basis of coverage, WLAN bandwidth, channel

reuse, security, aesthetics and feasibility, the indoor positioning system requires that a

good location fidelity is achieved too.

The Access Points should not be clustered solely in the interior or center of floors,

rather they should be arranged in perimeter locations to provide full coverage for the lo-

cation based systems. [14] This complements the location fidelity and adds robustness
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to the positioning environment. The Access Points in some cases might also be provid-

ing data services along with a location based service, therefore it is a best practice to

distribute the APs in for example, the four corners of a room or office building where

positioning is required to be done. These perimeter APs play a key role in ensuring

good location fidelity within the areas reached by their signals.

However, in some cases, customer may prefer to deploy APs in places other than

perimeter locations which can make the location estimate less efficient in terms of ac-

curacy. With the underlying principle of RSSI-based positioning, since the Reference

Points (RPs) have to be calibrated in the same environment, perimeter locations for APs

are the best. Center locations of an AP can either be very close to the RPs or overlap

the RP altogether, and ambiguity will be created in the RSSI measurements for RP cal-

ibration in the offline phase. In the online phase, again a centered location of AP will

overlap a user’s location, excluding the RP location which might have been calculated

at that point but is left out due to the placement of an AP in that area. Also in situations

where asset tracking is required, placing the APs other than perimeter locations will

hinder the movement of goods inside the building.

This research work focuses on the deployment of additional APs in an existing Wi-Fi

based IPS, based on certain search perimeters like the DOP (Dilution of Precision).

The second stage of the research calls for a selection of APs from among the initially

placed and the deployed ones based again or some simulation parameters as discussed

in this chapter and in Chapter 4.

3.1 Received Signal Strength Indicator

The Received Signal Strength Indicator (or RSSI) is a device-specific identifier usually

expressed in dBm for Wi-Fi Access points or routers. It is used to establish link be-

tween the mobile user and the Access Points as seen in sending CTS (clear to send) or

ACK (acknowledge).

A user can receive signals or RSS from more than one access points at a given time and

the RSS is used to estimate the device’s location. According to studies, a minimum of

three access points are enough to locate an object in 2-dimensional space. Although
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systems have been developed which make use of two APs for 2-dimensional space, but

those systems are more complex. Moreover, due to low cost of access points and ease

of availability, increasing the number of access points is not an issue.

An increase in number of APs can also lead to improved accuracy of the system, as

shown later in Chapter 4. Suppose an MS (mobile station) receives RSSI from Ac-

cess Points (or base stations) in an indoor positioning system (IPS). The set of RSSI is

recorded in a table, known as the RSSI database. This database is saved for the pur-

pose of comparison with the instantly received RSSI vectors in the online phase for

localisation.

3.2 The database

These are basically reference points (RPs) at which RSSI is recorded in the offline

phase. These are different from grid points and their cardinal number is arbitrary. In

the online phase, a user is referenced to one of these points using K-nearest neighbour

(KNN) algorithm.

3.3 K-NN algorithm

The K Nearest Neighbour (KNN) algorithm finds the K ‘fingerprints’which have the

minimum signal distance to the online reported RSSI vector from among various fin-

gerprints in the database that the location server has in store. [7]

Consider a two dimensional plane in which three Access Points are present, and the

coordinates of one user have to be found out. From a set of Reference Points, the RSSI

is compared with the instantly received RSS at the user.

If K=3, the algorithm allows for three neighbouring points at which RSS recorded

earlier is compared to the instantly received RSS vector at the MS (vector here refers

to RSSI from all the three Access Points).

Averaged over ’K’, the coordinates or location of the user is then the coordinates of the

nearest RP whose recorded RSS matches with the user’s RSS vector.
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3.4 Flow for the progress of this research

The following flowhart emphasizes the step-by-step progress of this research.

Starting with GA which optimises GDOP to minimum with each iteration, candidate

Figure 3.1: Flow for Access Point deployment and selection

locations for APs are found out, following by deployment of APs at the same. Then user

localisation in the indoor invironment is run in parallel with AP selection to conserve

the spectrum bandwidth.
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3.5 Access Point Deployment

One way to deploy Access Points is to analyse and compare all the possible AP setups,

but that is a complex task. Also the propagation characteristics of the environment

have to be taken into account. [18] Hence a deployment solution is acquired based on

simulations because a real-world modelling of such system is complex. The usage of

Genetic Algorithm (GA) in this research, therefore calculates a suitable location of AP

while at the same time considering the multipath propagation loss and areas of optimum

DOP.

3.6 The Genetic Algorithm

Genetic algorithm (GA) was proposed by John Holland and has been extensively ap-

plied in many fields. [39] Genetic Algorithm is one of the most important computation

methods and has been used in searching, optimisation and approximation fields. [37]

It is an algorithm which consists of a group of iterations to figure out solutions to the

GDOP problem. Consisting of four stages, the Genetic Algorithm or GA aims to max-

imise a fitness function which results in the minimum EDOP. The Access point is then

deployed on the location of minimum EDOP as shown in the next section.

The end result of GA is essentially the acquiring of x- and y- coordinates for the new

deployable AP. GA consisted of four stages and the pseudocode for simulations is de-

scribed below.

3.6.1 Elitism

Possible locations for APs are the specimens for Genetic Algorithm. In the first step,

some specimen having the best value of fitness function are selected from a total pop-

ulation of candidate locations. The fitness function is a minimum requirement which

should be met by a candidate solution, in this case, a fixed AP-to-AP distance which

may not be decreased for good measurement. These specimens are isolated from the

population and set aside so that the conservation of the presently best solution is en-

sured at each iteration.
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3.6.2 Crossover

The selected best solutions from the Elitism stage are broken up based on a crossover

probability and alternatively combined with each other, leading to new incurred so-

lutions. This is called crossover of two parent genomes. The place of the crossover

process is selected randomly and a new specimen originates. This new specimen is

now the combination of information from the first specimen and information from the

second specimen. The crossover process is shown in Figure 3.2.

Figure 3.2: Process of crossover of two specimens and origination of a new specimen

3.6.3 Mutation

In order to prevent the group of crossed-over specimens (genomes) to be restrained just

to a combination of already existing solutions, they are mutated at every step of the

algorithm, based on a mutation probability. This is basically a random change of one

gene in the crossed-over genomes.

3.6.4 Elimination

Running in parallel, the weak solutions are eliminated from the new updated set of

solutions. In this phase the worst specimen is deleted from the population. After this

phase the specimens which were preserved at the beginning in the elitism phase are

returned back into the population.
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Algorithm is terminated when all k iterations are over. It is necessary to select suf-

ficient amount of iterations in order to obtain good results. For this, a selection of

termination condition is necessary so that the value of fitness function will not change

more than the defined certain value. The termination condition for simulations in this

research is the end period of an evolution time of 300 seconds.

3.7 Pseudo code for Access Point Deployment using Genetic Algorithm

Deployment of Access Points as the first part of this research is carried out with the

help of Genetic Algorithm. The GA selects position of new APs to be deployed based

on a fitness function which in this case is the maximisation of distances between two

closest APs. [3]

The following pseudo code defines a step by step progression of the GA algorithm.

Step 1 Generate Population

Specimens[x,y] = Graycode[size]*Total Population;

Step 2 Identify Best Specimens

Define (Fitness Function) = A fixed AP-to-AP Distance;

G1 = Find GDOP for each Specimen(x,y);

Best Specimens = Specimens[x,y](minimum(G1));

Separate (Best Specimens);

Step 3 Crossover

Make two groups (Best Specimens);

Split (Best Specimen) at Crossover Probability;

Shuffle and Combine (Split Specimens);

Step 4 Mutation

Flip one bit (Combined Specimens) based on Mutation Probability;

Step 5 Elimination

Discard (Specimens) with AP-to-AP distance>Fitness Function;

Retain rest (from Step3, Step4);

G2 = Find GDOP (Retained Specimens);
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GDOP = min (G2);

AP Location(x,y) = Specimen(x,y) for which GDOP(min) exists;

Deploy new AP at AP Location(x,y);

The algorithm first generates a total population of 256 specimens. The best solu-

tions, called as ’elite’ solutions, are gray coded to make up a set of ’chromosomes’,

with each chromosome containing two genes i.e. the x- and y- coordinates of new APs

to be deployed. These solutions are preserved to be used at a later stage, before being

subjected to crossover of any two solutions to form a new specimen with the crossover

occurring at random bit locations. One bit at random is altered from each crossed over

solution to avoid repetition of resultant solutions, the process being called as mutation.

The crossover and mutation probabilities determine how many solutions remain un-

changed in the next generation and how many of the new specimens are modified by

1-bit respectively.

The final set of solutions is then checked for solutions which deviate most from the

fitness function and are discarded.

GA determines the coordinates of AP for calculation of GDOP coefficient. The algo-

rithm uses a group of n-D solutions from which it selects the best ones (where n=2 for

2D and n=3 for 3D positioning). [3]

3.8 Access Point Deployment

The following discussion relates Euclidean Distance (ED), Geometric Dilution of Pre-

cision (GDOP) and Enhanced Dilution of Precision (EDOP) to the Access point de-

ployment problem.

3.8.1 The ED

To ensure the positioning accuracy, the Euclidean distance (ED) should be maximized.

ED is defined as, [1]

EDi =
∑
jN(i)

||RSSIi −RSSIj||2/Ni (3.1)
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Max : EDave = 1/n
n∑

i=1

EDi (3.2)

WhereEDi is the Euclidean distance between the ith RP and the surrounding RPs, N(i)

is the aggregate of surrounding RPs with cardinal numberNi. EDave is the average ED

of all the RPs and n is the number of RPs.

3.8.2 The GDOP

The locations of Access Points calculated through Genetic Algorithm are such that the

GDOP coefficient is minimised. Computing the quotient between RSSI and GDOP to

form an enhanced DOP, the EDOP, the resultant is used to find user locations.

Considering the Euclidean distance formula, [1]

ri,j = ||(xr,i−xa,j ) + (yr,i−ya,j )|| (3.3)

Where xr,i and xa,j refer to the x- coordinate of the ith RP and the jth AP; and yr,i and

ya,j are their corresponding y-coordinates.

The coefficients of DOP matrix are calculated by:

bi,x=
xr−xa

ri,j2
, bi,y = yr−ya

ri,j2

Hence constructing the Matrix,

B =

 b1,x b1,y

b2,x b2,y


The scalar quantity GDOP is the square root of the trace of B matrix, specifically:

GDOP =
√
Tr(BTB)−1 (3.4)

3.8.3 The EDOP

Introducing a new indicator, the Enhanced DOP, given as the quotient between ED and

GDOP:

EDOPi = EDi/DOPi (3.5)
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Max : EDOPave = 1/n
n∑

i=1

EDi/DOPi (3.6)

EDOPi is the EDOP of the ithRP and EDOPave is the average EDOP of all RPs.

This EDOP is calculated as an objective function and fed into the GA optimisation

algorithm, giving the candidate location for deployable Access Point(s). The number of

Access Points to be deployed is according to the formulation of the planning problem.

Due to low cost of deployment, additional AP placement in an already existing Indoor

Positioning System will reduce positioning error and hence improve accuracy as shown

in the results in Chapter 4.

3.9 Access Point Selection

In IEEE 802.11 Wi-Fi localisation networks, the performance given to the users greatly

depends upon the users’ ability to identify those Access Points which will offer the best

location estimate. [36] A number of methods are used to determine the competency of

Access Points, from which two techniques are discussed, the RSSI- based selection and

the Position vector based AP selection.

3.9.1 User-to-AP position vectors

Figure 3.3 is a generalisation of position vectors as seen from a user to the Access

Points.

The position vectors give position of a point relative to another point. If the location

of a body changes, its position vectors formed relative to a point also change.

Considering that for the vector, its absolute value and a unit vector in its direction the

following proposition is valid: [3]

eR = |R| (3.7)

The vector R is then the Position Vector from user to a satellite, where R is its magni-

tude and e is the unit vector in its direction.

Taking unit vectors as the coefficients of the GDOP matrix, we can calculate position

vectors by the magnitude of distance between the users and each of the APs. [2]

| R | shows the position vector distance or specifically;
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Figure 3.3: Position vectors from users to the Access points

Let P(0,0) and P (x1, y1) be two points present in an x-y plane, then | R | is calculated

much like the Euclidean distance metric,

P (0, 0)− P (x1, y1) =
√

(x1 − 0)2 + (y1 − 0)2 =
√
(x21 + y21) (3.8)

If P(0,0) 6= Origin, and user a is present at location P (xa, ya), and Access Point loca-

tions are P (xi, yi), where i = number of Access Points, then position vectors seen from

location P (xa, ya) relative to the Access Points will be:

Pi =
√
(xi − xa)2 + (yi − ya)2 (3.9)

For a fixed set of Access Point locations, the probability of a user to be nearer to any

three out of four APs is greater than that of being at equal distances from each of the

APs. Therefore, with RSSI and position vector distances as metrics, an algorithm can

reside at the user’s end which selects those APs which are nearest to it for the k-NN lo-

calisation. There are two cases to be considered in this regard; first is the maximisation

of the ED and hence RSSI objective function, defined above, and the second method

consists of minimisation of the position vector distances returned by position vectors

seen from the users to the APs.
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As proposed by [2], there exists a relation between GDOP and the collective geometry

formed by positions of signal transmitters and each of the receivers, setting the frame-

work for a localisation algorithm which uses position vectors in addition to RSSI to

determine a set of Access Points which will localise each user with the least error.

3.10 Pseudo code for AP selection

The algorithm developed for Access Point selection is the User-to-AP position vector

algorithm, devised as follows:

Step 1 Sorting

(a) Sort descending[RSSI]

(b) Calculate position vector distances(Pvec)

(c) Sort ascending[Pvec]

Step 2 Selection

Select APs[greatest RSSI, smallest Pvec]

Step 3 Return selected AP(s) index

Step 4 Select AP coordinate for the index value returned in Step 3

The RSSI vectors are first sorted in descending order and the position vector dis-

tances are calculated using users’ coordinates and the coordinates of the Access points.

These position vectors, after being sorted in ascending order are used in the AP selec-

tion algorithm in which the APs which provided the highest RSSI and lowest position

vector distances are selected to be used for a second-step localisation for better accu-

racy.

3.10.1 Explanation

For the indoor positioning system in which some Access Points are already present and

their locations are fixed, while some have been deployed using the GA algorithm and

EDOP coefficient, suppose a user is present at location P (xa, ya), where xa and ya are

the x- and y- coordinates to be determined for the user. After using k-NN algorithm,

the location of user is found out and stored in a table.

Now in the position vector formulation step, the users coordinate information along
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with RSSI is also present and those Access Points are selected which are nearest to

the user in physical space (x- and y-coordinates) and to the Reference Points in signal

space (signal strengths).

Two methods of Access Point selection are proposed in the next sections.

3.11 RSSI based Selection

Objective function for this scheme is,

Max : RSSI = 1/n
n∑

i=1

||RSSIi −RSSIj||2/N(i) (3.10)

Where i = number of RPs with cardinal number N and j = number of APs.

After the RSSI at each user has been sorted in descending order as shown in pseudo

code, the first n APs are selected for which RSSI is maximum.

3.12 Position Vector based Selection

A novel scheme of position vectors based AP selection when used in conjunction with

RSSI based selection has the advantage that the localisation accuracy is improved. Also

there is no need to introduce new infrastructure rather the existing IPS can be updated

easily.

The objective function for this case is,

Min : Pdist. = ||Px − Pa||2 (3.11)

Where x = number of Access Points and a = number of users.

Using user-to-AP position vector algorithm, those Access points will be used to localise

users for which the position vector distances are minimum. The cumulative distribution

functions for the RSSI based selected APs, the position vector-based selected APs and

without the selection of APs (initial case) are discussed in Chapter 4.
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Chapter 4

RESULTS AND ANALYSIS

This chapter contains the results generated using MATLAB simulations for a Wi-Fi

based Indoor Positioning environment covering the floor of a building with dimensions

of 16m*32m. Let this floor be composed of two small offices and two big classrooms.

Dividing this floor into a uniform grid, a 1m space in each direction is set. Three

existing APs are denoted by the triangles as shown in Figure 4.1.

Consider placing additional APs in an optimal way. Since the data collection process

using real deployments is prohibitively time-consuming, it is replaced with a simulation

methodology for simplicity.

4.1 Overview

The process of mapping offline RSSI measurements to real-time RSSI observations

with the help of a Reference Point database and Access Points is called location fin-

gerprinting. The offline phase comprises of updating a database of known reference

locations in the grid map of coverage area. In the online phase, a user receives signals

from Access Points and by using an algorithm e.g. the k-nearest neighbour algorithm,

these real-time RSSI measurements are compared with the database of RP locations.

The unknown location which is to be determined is then the location of the reference

point closest to the user in signal space.

The database is made up of a large number of reference locations. In this study a total

of 154 reference locations have been entered into a 154x2 data matrix.

4.2 Access Point deployment

Access point are placed in locations where they are likely to provide appropriate cov-

erage. [24] For realizing the simulations, a rectangular area of the floor of a university

building is considered, made up of two big classrooms and two small offices. Three

Access Points are already placed at fixed locations as shown in Figure 4.1.
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Figure 4.1: Map of experiment region

4.2.1 Multipath model

The foremost step of an Indoor Positioning system is to choose an appropriate Mul-

tipath model based on the design parameters. Empirical models are used in network

design, while deterministic models are used for high precision applications. [8]

To devise a multipath model for indoor positioning systems, there are two types

of obstacles to the signal path, the main or static obstacles and the mobile or moving

obstacles. However, the accuracy of localisation algorithm depends more on the type of

obstacles rather than their mobility. A Rayleigh model is used where multipath signal

is present whereby it is impossible to achieve a line-of-sight path for a signal between

the transmitter and the receiver.

A Rician model is applicable where an LOS is also present along with multipath

signals received at the the MS in which the probability of an LOS present is determined

using the received signal strength at the nodes.

Multipath dispersion due to the influence of many signal reflections and diffusion is

one of the major issues in WLAN indoor environments. Walls, floors and roofs highly

attenuate the signal and induce great variations in the mean received power. [22]

The partitions and the walls as depicted in the diagram are categorised in a path loss

model by the Wall Attenuation Factor (WAF).
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Using the following empirical path loss model for signal strength: [4]

P (r)[dBm] = P (ro)[dBm]− 10αlog(r/ro)− l.WAF (4.1)

where P (r) is the signal strength at distance r and P (ro) is the reference strength at

distance ro. α is the attenuation factor of the indoor environment. l is the number of

walls between the transmitter and the receiver and WAF is the wall attenuation factor.

To ensure the results reasonably accurate, the propagation factors should be approached

with real signal strength measurement. [1] Simulating for an indoor Wi-Fi test bed of

154 reference points and 9 localised users, with 3 existing APs, the simulation param-

eters are defined in Table 4.1.

Table 4.1:Simulation parameters

Genetic Algorithm (GA) is used to optimise the EDOP defined in Chapter 3. The

parameters for GA were as follows:

Evolution time = T= 300 s

Crossover probability = Pc= 0.8

Mutation probability = Pm= 0.05

Population size = PT = 256;

EDOP will be optimised in the evolution time of 300 seconds. Pairs of genomes from

the elite solutions will be crossed over with crossover probability of 0.8. After the

crossover is complete, one bit is flipped at random from the crossed over genomes so

that the resultant ones are all different from one another. This is known as mutation

and will occur at mutation probability of 0.05.
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Table 4.2 shows the simulation results of variation in EDOP with respect to evolu-

tion time T.

Table 4.2: Evolution of EDOP with time T

The Genetic Algorithm is used to optimise the EDOP to a lower value and the coordi-

nates of candidate AP location are updated with each iteration of the GA. The reduction

in EDOP is not linear but constant for some ranges of T. This is a random process and

evolves as the EDOP is calculated for the indoor environment considered.

From Table 4.2, at the end of evolution time T the EDOP coefficient is reduced to the

value of 0.5218.

Figure 4.2 shows location of the new AP calculated through GDOP. Existing APs are

depicted in blue while the new location for the deployed AP is depicted in red.

4.3 Localisation and Access Point Selection

The localisation step involves the following entities:

1) Three initial APs at locations (2,5), (14,5) and (8,25)

2) One additional AP at location of minimum EDOP

3) A set of 9 uniform and randomly distributed users

The localisation takes 3850 samples for error calculation in the CDF plots. The

coverage area can have a number of users depending upon the time. For leisure hours

users can be more for a university building while the number of users will be less during

lecture hours. Nevertheless, an estimate has been made on a fixed number of users in

the given area. In Figure 4.3, a set of 9 uniform and randomly distributed users are

depicted in an area of 14x25 m2.

Position vectors formed from each of the user to the Access Points are shown in Fig-
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Figure 4.2: Initial Access Points (blue) and the Deployed Access Point (red)

Figure 4.3: Set of uniform and randomly distributed users

ure 4.4. Minimisation of distances determined through position vectors is the frame-

work for the second phase of Access Point selection; the first being the maximisation

of RSSI at the users.
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Figure 4.4: Position vectors from users to each of the Access Points

4.3.1 AP Selection

The next step after position vector formulation is the Access Point selection. In this

step the users ‘select’ the APs which provide the best location estimate. Since we

have used RSSI fingerprinting for localisation, the AP selection is first based on RSSI

readings and then on the technique of user-to-AP position vectors. The purpose is to

reduce the localisation error further which can not be achieved while solely using the

RSSI measurements. To summarise, the Access Point selection is carried out based on

the following two objective functions:

1) Maximisation of RSSI at the users

2) Minimisation of distance determined through position vectors (the user-to-AP posi-

tion vectors)

In light of the algorithm for AP selection described in Section 3.3.2, the CDF localisa-

tion on three cases was observed.

Case I: Initial APs (3)

Case II: RSSI based selected APs (3 out of 4)

Case III: Position vectors based selected APs (3 out of 4)
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Figure 4.5 shows cumulative distribution plots for localisation error with a total of 3

localising APs. The blue line represents error calculated using the existing APs for a

set of 9 users, the red line shows error CDF for localisation of the same users with the

help of RSSI-based selected APs, while the magenta line represents their localisation

error calculated through APs selected by the user-to-AP position vectors.

Evidently, the position-vector based selection has produced the least error of 3.3

meters at the 90th percentile; the RSSI-based selection yielded an error of 3.6 meters

while the initial APs localised with an error of 4.3 meters.

Figure 4.5: Comparison of localisation error for existing and deployed APs

4.4 Performance analysis

Altering various simulation parameters to check their effect on localisation accuracy is

the main concern of this section. The parameters changed were:

1) L, the gray code bit length

2) K, the nearest neighbour parameter, and

3) AP locations.
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4.4.1 Changing values of L

Parameter optimisation technique like the Genetic Algorithm, requires some method

of representing the parameters. One approach used in genetic algorithms is to encode

an integer parameter directly in its base-2 representation, using explicit bits, and then

apply a standard binary-to-integer mapping to decode the parameter value. [5] Gray

coding has been used for GA in this research with the initial bit length equal to L = 8.

Table 4.3 shows the effect of changing L = size[graycode]= 7, 8, 9, 10 , with keeping

K = 3 constant:

Table 4.3: Effect of changing gray code bit length ’L’ on the localsiation error and GDOP

From the table we can see that the localisation error decreases with increasing L

for the variables under study i.e Pvec, RSSI and initial AP locations. There was no

significant change in GDOP; the first two significant terms to the right of the decimal

are the same.

4.4.2 Changing number of neighbours (K)

The value of K should be chosen carefully since the number of nearest neighbors

strongly affects the performance of the system. [31] If K = 1 the classification will be

done in a way whch is very sensitive to the local characteristics of the data. Conversely,

if a large value of K is chosen the algorithm averages over a large number of data points

and hence averages out the variability due to noise associated with the individual data

points. A large value like K=10 would simply predict the most frequent set in the

training data set in all cases. This choice trades off the variability associated with a low

value of K against the over-smoothing associated with a high value of K. [6]

The effect of changing the K parameter from 1 to 10 while keeping L = 8 constant

on the localisation error and GDOP was as shown in Table 4.4.
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Table 4.4: Effect of changing number of Nearest Neighbours ’K’ on the localsiation error and GDOP

The results show that GDOP gains the constant value of 0.5218 for K = 1, 2, 7 and 9.

The localisation error for position vector based AP selection is the lowest for majority

of the values of K.

4.4.3 Changing AP locations

Changing the location of an Access Point would be simply to unplug it from the wall

socket it is connected and move to another place. Unfortunately, analysing all the

possible AP location setups cannot be accomplished due to the large number of location

setups not feasible in practical deployment. [18]

Wireless Access Points provide better accessibility, yet for this research wired Access

Points are considered. The locations of Access Points were changed and the effect on

CDF error was checked as shown in Table 4.5.

Table 4.5: Changing locations of Access Points

Initial locations = [2 14 8 x1, 5 5 25 y1]

New locations = [2 14 8 x2, 13 13 25 y2]

For a total of 5 APs their locations are specified as follows:
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[3 7 11 z1 z2, 20 1 23 t1 t2]

Figures 4.6 - 4.11 show the deployment areas, and localisation error CDF for the

following three cases:

Case I: Total 4 APs, original locations

Case II: Total 4 APs, new locations

Case III: Total 5 APs, new locations

Consider Figure 4.6, in which three initial Access Points can be seen at locations

(2,5), (8,25), and (14,5). One additional AP has been placed at (7.75,4.125) using

genetic algorithm optimisation of GDOP. With a total of four APs among which 3 are

Figure 4.6: Deployment area for Case I: Total 4 APs - Initial: 3, Deployed: 1 - at
original locations

initially placed and 1 additional AP has been deployed, the localisation error is 4.669

m as shown in Figure 4.7.
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Figure 4.7: Localisation error for Case I: Total 4 APs - Initial: 3, Deployed: 1 - at
original locations

With the realisation of deployment area and localisation error computed for Case 1,

we move towards Case II.

Consider Figure 4.8 in which the locations of two of the initial APs have been changed

to new locations. The final locations of APs for this case are now (2,13), (8,25) and

(14,13). From Figure 4.8, one additional AP can be seen placed at (6.125 1.375).

For this case the localisation error has dropped to 4.581 meters at the 90th percentile as

shown in the CDF plot in Figure 4.9.

The result verifies the statement that an alignment of Access Points close to a regu-

lar polygon (in this case a square or diamond) leads to improvement in localisation

accuracy. This has been proved in [3] with navigation satellites for GNSS.

In Figure 4.10 for Case III, the locations of all three Access Points have been

changed, with the placement of two additional APs in effect. The final locations of

APs are; Initial: (3,20), (7,1), (11,23), and deployed: (11.625,2.125), (6.3125,2.875).
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Figure 4.8: Deployment area for Case II: Total 4 APs - Initial: 3, Deployed: 1 - at new
locations

Figure 4.9: Localisation error for Case II: Total 4 APs - Initial: 3, Deployed: 1 - at new
locations
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The initial AP locations have been selected at random while the deployed AP locations

Figure 4.10: Deployment area for Case III: Total 5 APs - Initial: 4, Deployed: 2 - at
new locations

are generated from the Genetic Algorithm optimisation. The new locations, however

not complying by the regularisation of geometry as described in [3], have yet resulted

in the lowest error for this case. The reduction in error is also due to addition of one

more AP as compared to the previous cases of three initial and one additionally deloyed

AP.

The localisation error for three initial and two deployed APs is shown in figure 4.11.

Because of the addition of two APs, the localisation error is further reduced to 4.228

meters. While a large number of Access Points improves the localisation error, a re-

duction in EDOP will be possible when the APs are regularised in geometry. Also an

increase in number of Access Points beyond the requirement is excessive and is better

avoided for achieving lower complexity.
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Figure 4.11: Localisation error for Case III: Total 5 APs - Initial: 4, Deployed: 2 - at
new locations

Table 4.6 enlists the effect on localisation accuracy with the change in AP locations.

Table 4.6: Effect of changing AP locations on localisation accuracy

From the table, when the geometry of Access Points is not regularised (close to a

regular polygon), the localisation error is 4.669.

After the geometry was regularised as shown in Figure 4.8, the localisation error re-

duced to 4.581 for the same number of APs. This is because of a reduction in EDOP

due to a better geometry which results in lower localisation error. [2].
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An anomaly case was observed in Figure 10 in which three existing APs are present

and two additional APs are placed at locations determined by the simulations. The aim

is to check localisation error. Although the geometry formed by the Access Points is

not close to a regular polygon, but the localisation error was further reduced to 4.228

because the addition of another AP makes the received RSSI vector larger and makes

a better comparison with the RSSI database, making the localisation process easier.

However, a rigorous increase in the number of Access Points may lead to similar and

repetitive RSSI measurements which will induce errors in online RSSI measurements

and should be approached with caution.
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Chapter 5

CONCLUSION AND FUTURE WORKS

An RSSI database was used as the framework for GDOP based AP deployment in this

research. Localisation of users was carried out as a comparison of three AP deployment

scenarios: without the deployment or additional APs, with the deployment and selec-

tion of APs based on RSSI and lastly with AP selection based on user-to-AP position

vectors formed after the deployment.

A discrepancy was observed in the cumulative distributions of the three cases, with

the user-to-AP position-vector based AP selection giving the least error as compared

to either the RSSI-based selection or localisation using only the existing number of

APs. This is a productive result, since the 3-tuple numerical set of APs is dynamically

optimised in accordance with proximity to each of the localisable user in signal space

(in case of RSSI-based selection) or the physical space (in case of position-vector based

selection), with an improvement in localisation accuracy observed in the latter case.

Furthermore, a performance analysis showed the variation in localisation error with the

change in simulation parameters like K, L and AP locations. The performance was

best with 3 initial and 2 deployed APs with new AP locations. Hence the more regular

the geometry formed by APs was, the lesser was the localisation error. This can be

attributed to a better signal reception and lesser time delay from one AP to another AP.

This work can be extended to anomaly cases where one or more of the APs become

disfunctional due to any reason and the signal strengths from the remaining set are left

to localise the users, in which a need for selection mechansim can arise for the APs.

To summarise, indoor location systems have originated in various forms and tech-

niques among which Wi-Fi based systems are robust and cost-effective because they

require little modification in the existing systems.

Localisation error reduction has been the focus of many research works and improv-

ing the error significantly with little modification in the existing system has a major
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impact on such system’s efficiency. Nowadays, hand-held mobile devices can easily

allow interfacing with Wi-Fi technologies and in indoor environments where location

estimate is the main concern, a Wi-Fi coverage is almost readily available. Such sys-

tems when crowned with an intelligent deployment of Access Points not only increase

the localisation accuracy but also reduce the overall cost requirement when combined

with a hybrid approach towards Access Point selection at the users’ end.
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