CONTEXT-BASED CARVING OF FRAGMENTED WORD
DOCUMENTS FROM VOLATILE MEMORY USING
MACHINE LEARNING TECHNIQUE

Noor Ul Ain Ali

A thesis submitted to the faculty of Information Security Department,
Military College of Signals, National University of Sciences and Technology,
Islamabad, Pakistan, in partial fulfillment of the requirements for the degree of MS in

Information Security

July 2019

i

DECLARATION

I hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification either at this institution or elsewhere.

11

DEDICATION

This thesis is dedicated to
MY MOTHER IN LAW,HUSBAND AND CHILDREN; ABDULLAH and IBRAHIM
for their love, support and great endurance. Also my MOTHER for always motivating and

hearing me out

v

ACKNOWLEDGEMENTS

All praises be for you ALLAH; al-Hadi, al-Fattah, and al-Muizz

As my supervisor, I am grateful to AP Waseem Igbal for he has guided me at every key mo-
ment and also gave me enough confidence to work independently majority of the time.Also

for keeping up with the amount of breaks I took during the course of my work.

I’m thankful to my committee members; Dr Rabia Latif, PhD and Lec Narmeen for their

support and guidance.

I’m also obliged to HoD and all faculty members of Information Security department, who
have influenced and enhanced my research. Especially Lec Narmeen for she went above and

beyond to accommodate me.

Finally, I would take this opportunity to show my deep gratitude to my parents, siblings, and
friends, and coursemates who see good in me and always push me to be the best version of

myself.

Noor Ul Ain Ali

SUPERVISOR CERTIFICATE

This is to certify that Noor Ul Ain Ali Student of MSIS-15 Course Reg.No: 00000171974

has completed her MS Thesis title ''Context-based Carving of Fragmented Word

Documents from Volatile Memory using Machine Learning Technique'' under my su-

pervision. | have reviewed her final thesis copy and I am satisfied with her work.

Thesis Supervisor

(Asst Prof. Mian Muhammad Waseem Igbal)

Dated: 2019

vi

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Noor Ul Ain Ali Registration No.

00000171974, of Military College of Signals has been vetted by undersigned, found com-

plete in all respect as per NUST Statutes/Regulations, is free of plagiarism, errors and mis-
takes and is accepted as partial, fulfillment for award of MS degree. It is further certified
that necessary amendments as pointed out by GEC members of the scholar have been also

incorporated in the said thesis.

Signature:

Name of Supervisor:

Date:

Signature (HOD):

Date:

Signature (Dean/Principal):

Date:

Vil

ABSTRACT

With the rise in digital crimes nowadays, digital investigators are required to recover and
analyse data from various digital resources. Since the files are often stored in fragments
owing to memory constraints, the information related to file system and metadata of the
file is required to recover a file. However, in many cases when the file system is destroyed
intentionally or unintentionally, and the metadata is deleted as well, the recovery of the
digital evidence is done by a special method known as carving. In file carving, files are
recovered solely based on the information about the structure and content of the individual

file rather than matching the system’s information of the file

viil

TABLE OF CONTENTS

ABSTRACT viii
LIST OF FIGURES xi
LIST OF TABLES xii
ACRONYMS xiii
1 INTRODUCTION 1
1.1 PROBLEM STATEMENT AND OBJECTIVES 2
1.2 MOTIVATION e 3
1.3 CONTRIBUTIONS|.o oo oo o oo 3
1.4 THESIS STRUCTURE 3

TECHNIQUES OF FILE CARVING AND TYPES OF F MENTATION
2.1 FileCarving|.

[2.1.1 Daifterence between File Recovery and File Carving|.

5
5
5
2.2 Fragmentation|. 6
2.3 Clustering 6
7
7
8
8

[2.3.1 K-Mean Clustering Algorithm|.
[2.3.2 Hierarchical Clustering Algorithm|

1X

29

29

34

34

35

35

35

36

S EXPERIMENTS AND RESULTS 38
D1 XPERIMENTS| o o oo 38
[5.1.1 Experiment 1| L 39

[5.1.2 Experiment2| 40

[5.1.3 Experiment 3,4andb| 41

5.2 RESULTS|. 42
[5.2.1 When File was being Viewed. 42

6 CONCLUSION and FUTUREWORK DIRECTIONS 46
46

47

47

LIST OF FIGURES

X1

2.1 ~ The corpus used for theexample] 9
[2.2 Tokenizing the corpus|.o oo 9
[2.3 Vectorizing each document| 10
[2.4 Internal Structure of a Compound File Format 13
2.5 Sectorsof a Compound File| 14
2.6 Example of a secID chain of a stream 1s [1,6,3,5,-2f 15
2.7 Headerof acompoundfile| 15
[2.8 The main components of the Compressed Microsoft XML format| 21
4.1 Model for Investigation| o oo 29
4.2 The Dump created using Dumplt 30
4.3 Shows the header of an xml compressed file format 32
4.4 Shows the footer of an xml compressed file formatf 32
4.5 Shows the XML wrapping of an xml compressed file format) 33
4.6 The figure shows grey space as the pool and all the colored files are compo- |
[nents of word document|.o 33
4.7 The figure shows grey space as the pool and all the colored files are compo- |
[nents of word document|.o 34
4.8 Detailed model of the techmque| 37
[5.1 precision|. 43
B2 Recalll oo 44

LIST OF TABLES

[3.1 Summary of Existing Carving Tools| 26
[5.1 No. of Extracted XML components| 42
[5.2 No. of Textual Components|. 42
5.3 PRECISIONI. 43
BA"RECALL] o oottt e e e e e e 43
[5.5 Experiment performed right before the systemisclosed| 44
[5.6 Experiment performed 10 mins after the systemis closed| 44
[5.7 Experiment performed 30 mins after when the system was closed|. 45

Xii

ACRONYMS

DEFINITION

Application Program Interface
Random Access Memory

Bag Of Words Model

Inverse Document frequency
Sector Identifier

Sector Allocation Table
Master Allocation Table
Microsoft Compound Document File Format
Random Access Memory
True positives

True Negative

False Positive

False negative

Term Frequency

X1il

ACRONYM
API
RAM
BOWM
IDF
SecID
SAT
MAT
MCDFF
RAM
TP

TN

FP

FN

TF

Chapter 1

INTRODUCTION

The main task of digital forensics investigator is to extract data including documents, folders,
files, browsing history etc.Such artefacts are very helpful when determining the evidences
in case of a digital crime.It is possible to recover the data using metadata and Application
Program Interface (API) of a file system in a storage device. But, in cases where the API is
damaged the technique of file craving is used for the extraction of data. However, in some
cases the API is damaged and extraction of data is done using the technique of file carving
[1]. The evidences are mainly extracted from storage media like hard disks and solid state
drives. However, the interest of forensic investigators has recently shifted towards extraction
of data from volatile memory i.e. Random Access Memory (RAM). The importance of
RAM forensics can be determined by the fact that all important operations such as writing
to a specific file or reading a file are all saved in RAM for a temporary time limit [2]. Due
to the scattered inhomogeneous nature of RAM and the absence of metadata, carving of
RAM is very useful for artefact extraction. During an investigation when a dump of physical
memory i.e. RAM is taken, carving and extraction process on that memory dump can lead

to important inferences about the investigation.

If the file is stored on adjacent blocks of memory it is comparatively easier to crave a file
from memory. Whereas in reality, a file is saved as multiple fragments scattered across the
memory because of the file structure being used and many other reasons [2]]. This makes
the carving of fragmented files difficult and requires something more than just matching
the signatures of files to yield better results.Hence the conventional craving tools are not

successful at recovering fragmented files from memory.

A universal approach regarding carving of fragmented files from memory is to perform ex-
traction in two steps. Firstly, the fragments are grouped together in classes of similar type
of files. For this purpose of fragment classification, three types of approaches are generally

applied:

e Content based analysis approach: In this approach each block of data is first classified
as a specific file type based on the content of the file. Then these blocks of similar

contents are further grouped together to form a file.

e Distance-based approach: It performs the classification based on the differences be-
tween the values of adjacent blocks in memory and the frequency of the byte values.
A set of files is used as a model frequency. When the distance between the model
frequency and a non-classified block is below a threshold, then this block is assigned

this particular type of file.

e Machine learning approach: In this approach statistical values are used as input to a
classification algorithm which is used for classifying already formed machine learning

algorithms.

e Binary Classifiers: In case of binary classifiers, files are classified based on one to one

functions that distinguish one file from another

All possible combinations are checked by exhaustive search from each class for the reassem-
bly of fragmented files in correct order. Image markers could be used in some cases as extra
information of the file structure [3]].

Secondly, another dimension of File carving is its usefulness for data recovery in times of
accidental loss. MS Word format is the most widely used format of MS Office and is required
for most of the digital documentation done using computers including text files in form of
documents and sending emails [4]. The recovery of Microsoft Word files is an essential need
for every user these days as loss of important Word documents can be very devastating for

the owner.

1.1 PROBLEM STATEMENT AND OBJECTIVES

Microsoft File format is one of the format which is not much studied and researched be-
cause it is a compound format. Research has been conducted in either the extraction of
images or text from documents but there has been no detailed research for the extraction of
both components simultaneously.The extraction process becomes more complex in case of
fragmented word documents and recovery of image and text is almost impossible.

Objectives of this thesis are:

e Literature review of carving techniques from volatile memory

e Proposing a technique using machine learning algorithms for context based carving of

fragmented word documents from volatile memory

1.2 MOTIVATION

This research will be helpful for industry, academia researchers from all fields of life. This
research will prove a way forward for forensics examiners to strengthen their tools and tech-
niques for yielding best results while examining a crime scene involving volatile memory

based word document usage.

1.3 CONTRIBUTIONS

Following are the main contributions of this research work:
e In depth literature review of carving techniques

e Ready reckoner document for researchers, academicians and forensics analysts to

carve word base documents from volatile memory

e In this work, the extraction of Microsoft Word Document from RAM is done using

file carving

e The work basically encompasses both Microsoft word format i.e DOC and DOCX

which have before never been catered together.

1.4 THESIS STRUCTURE

Including the current Introduction chapter, this research work is composed of six chapters.

Outline of the remaining chapters is as follow:

e Chapter 2: It contains extensive literature review done on carving of all type of formats

available.

e Chapter 3: It contains all the background knowledge, including in detail analysis of

DOC and DOCX file formats.

e Chapter 4: It contains the Methodology used for carving of both the formats.Also the

experiments designed for carving.

e Chapter 5: It contains the experimental results

e Chapter 6: It contains Conclusion and Future Work.

To facilitate our readers we have included an extensive bibliography at the end.

Chapter 2

TECHNIQUES OF FILE CARVING AND TYPES OF
FRAGMENTATION

This chapter extensively addresses the technique of file carving.In this section we briefly
describe few terms used in this research.In the next section [2.2]the general idea behind frag-
mentation and why fragmentation happens. Then[2.3|explains clustering and two basic types
of clustering.In section 2.4 we have the process of feature extraction followed by detail dis-

cussion about Microsoft Compound File Formaf2.5|and Open Office XMIL2.5.3|

2.1 File Carving

Carving is recovery of the data which is lost without the information about the related file
structure or metadata of the file. In digital forensics, the technique of file carving depends
totally upon the content of file structure rather than on similarities of metadata of the file
system. The unallocated space in the drive is basically analyzed for file carving. Unallocated
space in a drive means the portion of the drive that is not holding any piece of information
about the file or the file structure information like file allocation tables etc. In file carving the
complete drive is considered if the drive is damaged or the file system is corrupt or missing.
It is believed that under the limitations of constraint environment symmetric-key primitives
are better choice to gain security, but their design and implementation should be efficient

enough to comply with the scarce resources.

2.1.1 Difference between File Recovery and File Carving

There is a very huge difference that exists between recovery and carving of a file. When a file
is deleted from memory, its file system information still remains on the disk and file recovery
basically uses this file system information for extraction of data. By utilizing this information
a great deal of files can be extracted. In order for file recovery to work efficiently and
correctly the system information must be accurate. If the system information is incorrect or
corrupted than the files are impossible to recover or if the file system is somehow formatted,

even then the recovery technique will fail [1]

On the other hand file carving techniques makes use of raw data in the storage media and has
nothing to do with the file system’s structure or information. A file system basically deals
with the arrangement and organization of files and the data a system may contain. Although
carving is not at all affected by the types of file system used by the user of files but knowing

the file system type could significantly help in the carving of data.

2.2 Fragmentation

Most of the Operating Systems don’t use fragmentation because it makes the writing and

reading process slower except the following situations in which the OS is bound to do so.

e [f the disk has not enough space to write the file without been fragmented.This basi-
cally happens in drives that are used for a long period of time and it has been used up
to its maximum capacity and has many files deleted and added randomly over a long

period of time [3] .

e If a file already exists on a disk and new data is added to it, and the disk has some
missed non allocated sectors at the end and no sectors are available for appending new
data.In this type of scenario some file systems rearrange the original file but in most

of the cases it will write the data to some other distant memory location. [|6]

o [f writing of a specific type of file in adjacent blocks of memory is not supported by

the file system. This mostly happens in Unix based file systems.

Simon Garfinkel [2]] studied the fragmentation statistics in which he investigated 350 disks
that included NTFS, FAT, and UFS. From his study, he proved that the fragmentation rate
for user files like emails,Microsoft Excel, JPEG and Microsoft Word is considerably higher
than other files. According to the study , the fragmentation rate for Microsoft Word is 77

percent.

2.3 Clustering

Clustering is an unsupervised machine learning problem.clustering is like finding a pattern or
groups of unlabbeled data.We can say that clustering is arranging similar members together
in a group.So objects within a cluster are similar to each other but they are different from

other clusters. There are maily two types of clustering:

e Partitioning clustering: Cluster numbers are specified in this type of clustering. It is

implemented by K mean

e Hierarchical clustering: Cluster number is not specified in this type of clustering. It is

Implemented by Hierarchical clustering

2.3.1 K-Mean Clustering Algorithm

For clustering larger data sets k-means clustering algorithm is deemed more efficient. Mac-
Queen proposed this clustering algorithm , and is simply the best algorithm available. The
K-Means algorithm differentiates objects based on unique features or attributes, divides it
into k clusters, where k is constant. It defines one centroid per cluster ,the idea is to define k

centroids, one per cluster. [7].The centroid is the starting point for partitioning every cluster.
Method
If k mean is performed in the following way :

o first we will partition the objects into k partitions, the partitions should have a non zero

value.
e For each partition we created, we will define a centroid.
e Then we will assign objects to the clusters.

e Then using the distance formulae we will calculate the distance of each object to ev-
ery centroid and assign the object to the cluster whose object-centroid distance is the

closest.

e Now we re allot the clusters and again calculate centroid for each newly assigned

cluster. [8]]

2.3.2 Hierarchical Clustering Algorithm

Hierarchical Clustering Algorithm is a type of agglomerative algorithm that means it can
have many variations depending upon the formulae used for calculating distance between
clusters. The most common formulae for calculating distances of individual points is the
Euclidean distance. There is no strict criteria or rule regarding which distance formulae be
used, and depends mostly on dataset. Following are the types of hierarical clustering based

on different distance formulaes: [9]:

Average Linkage Clustering

Average values are used in this case for calculating the dissimilarity of clusters.For calculat-
ing the average distance we calculate the distance between every object in observed cluster
and all other objects of another cluster.The clusters with the smallest distance are joined

together to form a new cluster.

Centroid Linkage Clustering

It uses the centroid ,which is the centre of all the objects, as the average value .

Ward’s Method

Clusters are assigned by calculating the sum of squared difference from the centre of a
cluster. The clusters are joined that produce the smallest squared sum

In order to perform both the K mean algorithm and the hierarchal algorithm we need to
perform some preprocessing on our data. This preprocessing is basically making our textual

data ready for input to the machine learning algorithm.

2.4 Feature Extraction

Computers can’t really understand English and machine learning cannot deal with raw text.
For machine learning we need to have well defined inputs and outputs. So we convert each
word into a numeric value. Each of this numeric value is stored in a vector. This is known
as feature extraction. [[10]]

It is a basic step for any machine learning technique. In order to reduce our dataset, we
convert each word into a dense vector. A dense vector consists of 300 real values. In this
way every document in converted into a list of vectors or numbers. Each of these lists have
a special sequence of text and that sequence is known as a token. These token can either be

single unique words or a sum of words.

2.4.1 Bag Of Words Model

Bag of words (BOWs) approach is a way of feature extraction from text which are then used
for machine learning. This approach is the most common and the feature extraction can be
done in a number of ways. Bag of words is basically a collection of the occurrence of words
in a document. The sequence of the document is not important. Only the frequency of the

content is what interests us hence the name bag of words in used for this. The features are

basically the word counts.The idea is that the documents having same frequency of words

are similar. [[11]].

Steps for Bag of Words

Following steps are performed for feature extraction from bag of words model:

COLLECTION OF DATA

The first step is to collect our data. The data could be anything from random documents to
emails to anything that contains text. For our Example we consider the following document

corpus, and each line in the corpus refers to a different document.

Corpus = [When you are running your code,
When Jimmy ate fish at lake,
The way at variables is DataTip]

Figure 2.1: The corpus used for the example

TOKENIZING

Before we start making our vocabulary one important thing is to tokenize our document
corpus. Tokenizing is basically to split the document into individual words or letters. This is
basically done so that each word appears as a separate component in our bag of words. Our

example corpus would look like something like this if we tokenize it.

Corpus= ["When” “you” “are” “running” “your” “code”,
".\.Whenfi '.\.meif \\.ate.ﬂ' ‘Hflsh”’ '\.‘latf.l" 'l.\lakeﬂ"r

“The” “way” “at” “wariables” “is” “DataTip”]

Figure 2.2: Tokenizing the corpus

MAKING OF VOCABULARY

Designing the vocabulary comes next. The vocabulary is designed ignoring the punctuations
and case sensitivity of words. Vocabulary can contain unique words from the documents or
any word from the documents. Choosing the vocabulary is the most crucial step in bag of

words and it directly impacts the result.

The vocabulary is selected as follows:
. 13 When »

o “you

e “Running”

o “Jimmy”
o “Lake”
[] “Fl.Sl’l”
o “Way”
o "The“

o “Variables”

° ((At))

CREATION OF VECTORS

The fourth step is to create the vectors for the documents. One way is to simply use the
Boolean representation L.e. "0" for absence of that word in vocabulary and "/" if that word

is present in vocabulary. The binary vectors for the above documents are as follows: [12]

When | you | are | running | your | code
1 1 0 1 0 0

When | Jimmy | ate | fish at lake
1 1 0 1 1 1

The | way | at | variables | is dataTip
1 1 1 1 0 0

Figure 2.3: Vectorizing each document

10

In this way the occurrences of the known words are recorded. Now this is a very small
example and in real life the documents are large in number and hence the vectors will also
be very large because the length of the vector is equal to the length of the vocabulary defined.
Like for some books in a library the number of words in our defined vocabulary can be in
thousand and millions and the known words from one book will be very less. So there would
be a lot of zeros in a vector. This type of a vector is known as sparse vector. As it is evident
that dealing with sparse vectors would lead to the use of large number of resources. So we

will reduce the size of vocabulary.

REDUCTION OF VOCABULARY

For reducing the size of the vocabulary we can simply ignore words that are very common
to appear in a text, for English language words like the articles the, are etc. These words
don’t have a significant meaning so we can ignore them. Also we can ignore the words that
have spelling mistakes. A more sophisticated method for reducing vocabulary is that we
make groups of words and store a group as single entry in the vocabulary. In this approach
each group of text is called “gram”. So if we have two words in a group we would call it a
bigram, a group of three words is called a trigram. Similarly if we have n number of groups
then we will call this approach as n gram. [|13]

Keep in view the above technique the bigrams for the above lines are as follows:

The use of bigrams and trigrams in BOW is a better approach because it captures the essence

of the document better and also reduces the computation.

o “When you”

o “When Jimmy”

o “The way”

The use of bigrams and trigrams in BOW is a better approach because it captures the essence

of the document better and also reduces the computation.

SCORING OF THE VOCABULARY

Once our vocabulary is decided and reduced the next thing is to score the occurrence of the

vocabulary words in the example document. One simple way is the Boolean score i.e. “1”

11

and “0”. Other scoring methods can be to count the number of times a word appears in a
document or to calculate the frequency of the word in the document as compared to all the

other words of the document.

TF-IDF

When we are scoring the words according to their frequencies,then the words dominating
the scoring would be the ones that are least significant in their meaning like “the” but their
occurrence frequency would be very high.So in order to neutralize this we use the term
frequency-inverse document frequency approach.Term frequency is the frequency by which
a word appears in a document.Inverse Document frequency (/DF’) is to find that how rare
is the word in all the documents under observation.The IDF of a known word is low whereas

the IDF of a rare or unique word is high. [14]

2.5 Compound File Format

Compound file format as described by Microsoft is a binary file format and it contains a
number of streams that are virtual in nature. These virtual streams consist of both control
streams and user data streams [[15]]. The smallest portion of memory space in a compound
document is a sector and it is 5/2 bytes in size. it is just serial arrangements of the sectors.
The start of these sectors is called sector identifier and they start with index number zero.

These arrays of sectors of virtual streams have a special sector in start known as the header
and its size is 572 bytes.It is a special purpose sector and has some very important infor-
mation that is stored in the header which is actually crucial for the proper working of a
compound file i.e. the signature for a compound file, size of the virtual streams, etc. The rest

of the sectors are used for other purposes and are of different types. [[16]]

2.5.1 A Brief History of the DOC Format

Over thirty years ago Microsoft first used the Doc format MS-DOS.it was a strictly propri-
etary application used by only the Microsoft for making word documents until it opened the
specifications for general public is 2006, It was reverse engineered and finally a number of
similar applications were built. [16]

In the early 2000s there were a number of softwares that were compatible with Microsoft’s
office doc format, but the full editing functionality was missing in those competitive ver-

sions of document format.Since Office and specially the word has been the most common

12

feature of the Microsoft’s office suit, it has maintained its dominance over the competitors
for years.Since 2008 Microsoft has released a number of doc formats and the versions are

revised each year.

2.5.2 FRAMEWORK FOR CARVING OF COMPOUND MICROSOFT WORD
DOCUMENT

The structure of a compound file format is almost similar to a file system in real life. There
exist a number of data streams which can be considered as files that are hieratically organized
in storages, like the directories of a file system. There is always a root storage, it further has
storages and stream, which are direct and indirect members of the root storage. Two direct
members of the storage cannot have a same name where as two indirect storage or streams

can have same names. The hieratical structure is shown below.

ROOT STORAGE

STORAGE 1 STREAM 1 STORAGE 2 STREAM 2 STREAM 3

STREAM 1 | |

STREAM 21 _STREAM 22

Figure 2.4: Internal Structure of a Compound File Format

SECTORS AND SECTOR IDENTIFIER

All the streams of a compound file format are divided into small chunks of data known as
the sector. The file consists of one header that is the beginning of the file, followed by the
number of sectors in that file. the header includes the size of every sector and then remain

constant throughout the whole file.

13

HEADER
SECTOR O
SECTOR1
SECTOR 2
SECTOR 2
SECTOR 4
SECTOR 5
SECTOR 6

Figure 2.5: Sectors of a Compound File

The sectors are numbered according to their occurrence in the file. The sector with the index
zero is called the sector ID (SecI D). If the secID has a non-negative value then it means
that this sector belongs to some preexisting file.If secID has a negative value than it has a

specific meaning. Following is a list of the valid possible values of secID’s:
e [f a secID value is“-1” it means the sector is a free sector.

e If a secID value is“-2” it means that the sector is an ending sector also known as a

trailing sector.
e If a secID value is “-3” it means that the sector contains sector Allocation Table.

e If a secID value is “-4” it means that the sector contains Master Allocation table.

SECTOR CHAINS AND SECID CHAINS

The data stream is divided into a number of sectors and the list of these sectors is known as
the sector Chain. The sectors can be placed anywhere in the file, without any sequence and
can be at totally random places. The sector chain which is an array of the secID specifies
the order of all the sectors of a stream. The stream also ends with the secID -2 indicating the
end of file. The SeclID chain for very stream us build using the sector Allocation table except
for the short sector Allocation table, the SecID’s of Master sector Allocation table because
it uses itself for making it and the SAT table because it is built from the master Allocation

Table.

14

HEADER

S5ECTOR D
SECTOR 1
SECTOR 2
SECTOR 2
SECTOR 4
SECTOR S
SECTOR 6

Figure 2.6: Example of a secID chain of a stream is [1,6,3,5,-2]

COMPOUND DOCUMENT HEADER

The header has all the required information necessary for reading a MCCFD file. Header is
always present at the starting of a file and has a fixed length of 512 bytes, which means that

the secID zero known as the sector identifier always starts at file offset of 512 bytes.

Of f ==t o1 2 3 4 5 6 7
googoooo DO CF 11 E0 A1 Bl 14 E1l
goooooio 00 0O OO0 00 OO0 00 OO0 00
gooooozo 06 0O OO 0O OO 0O OO0 00
gooooo3o 27 00 OO0 00 OO0 00 OO0 00
gooooo4o0 01 00 OO0 00 FE FF FF FF
goooooso | FF FF FF FF FF FF FF FF
googooed | FF FF FF FF FF FF FF FF
gooooo?o | FF FF FF FF FF FF FF FF
goooooso | FF FF FF FF FF FF FF FF
goooooso | FF FF FF FF FF FF FF FF
goooooid | FF FF FF FF FF FF FF FF
goooooed | FF FF FF FF FF FF FF FF
goooooco | FF FF FF FF FF FF FF FF
googoopo | FF FF FF FF FF FF FF FF
00000dED | FF FF FF FF FF FF FF FF
0oooooFo | FF FF FF FF FF FF FF FF
gooooio0o0 | FF FF FF FF FF FF FF FF
goooolio | FF FF FF FF FF FF FF FF
goooolzo | FF FF FF FF FF FF FF FF
gooool3o | FF FF FF FF FF FF FF FF
gooool40 | FF FF FF FF FF FF FF FF
goooolso | FF FF FF FF FF FF FF FF
goooole0 | FF FF FF FF FF FF FF FF
gooool?0 | FF FF FF FF FF FF FF FF
gooools0 | FF FF FF FF FF FF FF FF
goooolso | FF FF FF FF FF FF FF FF
goooolian0 | FF FF FF FF FF FF FF FF
gooooleE0 | FF FF FF FF FF FF FF FF
gooooico | FF FF FF FF FF FF FF FF
goooolbo | FF FF FF FF FF FF FF FF
000001ED | FF FF FF FF FF FF FF FF
QoooolF0 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 9999y ywyvyyyyyyy

Figure 2.7: Header of a compound file

The first eight bytes are the fixed file identifier for a Microsoft Compound file format

15

00000000 DOCF 11 EDO Al B1 1A E1 00 00 00 00

The next 16 bytes include a unique identifier followed by a four byte version no or revision

number.

00000000 DO CF11EO A1 B1 1A E1 00 00 00 00 00 00 00 DO
00000010 0000 000000000000 3EO000300FE FE 0900

The byte order is identified by the next two bytes , it will always have the value FE FF.

00000010 0000000000000000 3EOQO0O03 00 FEFE 0900

The following two bytes show the size of a sector and the bytes following it show the size
of a short sector, the size of a sector is 64 bytes and size of a short sector is 64 bytes. After
that there comes ten bits without any valid data so we can ignored them, then the last four
bits show the number of sectors occupied by Sector Allocation table(SAT) and in this case it

is just one.

00000010 0000000000000000 3EO000300FEFEOS 00
00000020 06000000 00000000 0000000001000000

The first four bytes contain the SecID of the directory, In this case the directory starts at offset
00000027 which means sector 39.Next four bytes are ignored because they don’t contain
any valid data. The next bytes identify the minimum size a standard stream can occupy, it is
00001000 which turns to be 4096 bytes. Next four bytes determine the sector ID of the first
sector occupied by SSAT which is 00000029 that becomes sector 41 and the next four bytes
determine how many sectors are occupied by SSAT which in this case is just one. Then
comes the sector ID of the MSAT and the sectors occupied by it. Its value is FEFFFFFF
which is -2, and we know that it is the end of chain. So know that there is so MSAT in this

example.

00000020 27 000000 00 00 0000 00 10000029 00 00 00
00000040 01 000000 FE FF FF FF 00 00 00 00 26 00 00 DO

16

The next 109 bytes contain the sectors occupied by MSAT. We can see that only one sector
is valid because the SAT only occupies one sector. So all the rest if the sectors are given
the special value of FFFFFFF i.e. -1 to indicate free sectors. The only sector used is sector

00000026 i.e. 38.

00000040 01 00 00 00 FE FF FF FF 00 00 00 00 26 00 00 00
00000050 FF FFFFFFFFFFFFFF FF FF FF FF FF FF FF FF

MASTER SECTOR ALLOCATION TABLE

Since the master allocation is present inside the header so its sector chain would look like

[O,-2]
SECTOR ALLOCATION TABLE

The most important control stream in case of compound file is a Sector Allocation Ta-
ble(SAT). These SAT can be one or more than one in number. SAT is basically used for

the arrangement of control streams in sectors and represents them in the form of chains.

2.5.3 The Introduction of Office Open XML (DOCX)

Due to the increase in the readily available open source office suits, Microsoft started work-
ing on a more open standard in early 2000s. This resulted in the formation of DOCX file
format for documents, XLXS format for excel and PPTX for presentations.

These new standards were given the name of "Open Office XML" and were made using the
extensible Markup language rather than the binary format. There were a number of advan-
tages of these new standards like lesser chances of data corruption, very small document

sizes and compressed images were handled without more compression.

OPEN OFFICE FILE FORMAT

An Office Open XML (OOXML) document is basically a series or collection of word docu-
ments just like we have subfolders. One greatest advantage of this format is that it provides
more flexibility and ease as to when we have to edit the document because everything is
divided in parts.

In order to view the compressed components of a Microsoft Word file, we need to change the
file extension from .DOCX to .ZIP, This will show the Microsoft Word document as series

of compressed folders. Following is an example containing a traditional word document

17

and open office file format document containing the text “7This is a text document”. We are

breaking the individual components of the word document down for better understanding:

rels/.rels

The rels tells Ms word as to where we can find the contents of the whole document. In
this case, it references word/document.xml for document contents, docProps/app.xml for

extended properties and docProps/core.xml for core properties like versions and authorship.

) rels - Notepad - X
File Edit Format View Help

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Relptionships xmlns="http://schemas.openxmlformats.org/package/2806/relationships™>

<Relationship Id="rId3" Type="http://schemas.openxmlformats.arg/officeDocument/2606/relationships/extended-properties” Target="docProps/app.xml"/>

<Relationship Id="rId2" Type="http://schemas.openxmlformats.org/package/2006/relationships/metadata/core-properties” Target="docProps/core.xml”/>

<Relationship Id="rId1" Type="http://schemas.openxmlformats.org/officeDocument/2886/relationships/officeDocument™ Target="word/document.xml"/>

</Relationships>

rels/document.xml.rels

This file defines the objects that are defined in the document like images etc. We have five
resources with the Id=rId1.rId2,rId3,rId4, rId5. rId1 references to style.xml in our case, rld2
is referring to settings.xml , rld3 shows websettings, rId4 has fontTable information and rId5

has theme in it.

mj documentxml.rels - Notepad

File Edit Format View Help

<?xml version="1.8" encoding="UTF-8" standalone="yes"?>

<Relationships xmlns="http://schemas.openxmlformats.org/package/2086/relationships”>

<Relationship Id="rId3" Type="http://schemas.openxmlformats.org/officeDocument/2806/relationships/webSettings” Target="webSettings.xml"/>
<Relatienship Id="rId2" Type="http://schemas.cpenxmlformats.org/officeDocument/2006/relationships/settings” Target="settings.xml"/>
<Relationship Id="rId1" Type="http://schemas.openxmlformats.org/officeDocument/2886/relationships/styles” Target="styles.xml"/>
<Relationship Id="rId5" Type="http://schemas.openxmlformats.org/officeDocument/2806/relationships/theme” Target="theme/themel.xml" />
<Relationship Id="rId4" Type="http://schemas.openxmlformats.org/officeDocument/28@6/relationships/fontTable” Target="fontTable.xml"/>
</Relationshipsy|

[Contentrypes).xml

[Contentrypes|.xml is a type of dictionary and it includes information about what types
of media there exists inside the document. In our example since we are working with the

textual content of the word file for now, so it becomes pretty simple:

<?xml version="1.0" encoding="UTF-8" standalone="true"?>

<Types xmins="http:/ /schemas.openxmlformats.org/package/2006/content-types">
<Default ContentType="application/vnd.openxmliformats-package.relationships+xml" Extension="rels"/>
<Default ContentType="application/xml" Extension="xml"/>

<0Override ContentType="application/vnd.op mats-officed wordpr gml.d in+xml" PartName="/word/document.xml"/>
<0Override ContentType="application/vnd.op mats-officed wu.dp- il 1 <fyle5+xml PartName= /word/styles xml"/>
<Override ContentType="application/vnd.op mats-officed wulul.. i I gs+xml" PartName= jwurd/settlngs xml"/>
<Override ContentType="application/vnd.op mats-officed wordp i l.web: ings+xml" PartName="/word/webSettings.xml"/>
<Override ContantType:“application/vnd.o._ mats-officed wordpmcesslngml fontTable+xml" PartName="/word/fontTable.xml"/>
<Override ContentType="application/vnd.op mats-officed theme +xml" Partlame="/word/theme/themeLxml'/>
<Override ContentType="application/vnd.openxmiformats-package.core-properties+xml" Partiiame="/docProps/core.xml’/>
<Override ContentType="application/vnd.op 'mats-offi extended-properties+xml" ParthName="/docProps/app.xml"/>
</Types>
document.xml

Document .xml is the part where there is the main XML textual content of the document.

Our simple example document has the text “This is a text document” inside it. We can see

18

in the figure below that the text is written in the tag < w : ¢ > in the tag < w : body >.

<Ml version="1.0" encoding="UTF-§" standalone="true"?»
- cw:document me:Ignorable="w14 w15 wp14" xmins:wps="http: /schemas.microsoft.com / office / word,/ 2010/ wordprocessingShape’
«mins:wne="http:/ /schemas.microsoft.comoffice /word/ 2006/ wordml” xmlns:wpi="http:/ /schemas.microsoft.com/office/word /2010 /wordprocessingInk”
aming:wpg="http: /schemas.microsoft.com (office /word f 2010/ wordprocessingGroup® wmins:wi3="http:/ /schemas.microsoft.com foffice /word/ 2012/ wordml*
umins:wl4="http:/ / schemas.microsoft.com foffice /word 2010/ wordml® xmins:w="http:/ /schemas.openxmlformats.org/wordprocessingml 2006/ main®
wmins:w10="urn:schemas-microsoft-com:office:word" xmlns:wp="http:/ { schemas.openxmlformats.org { drawingml / 2006 /wordprocessingDrawing”
umins:wp14="http:/ fschemas.microsoft.com/ office/word /2010 /wordprocessingDrawing" xmins:v="urn:schemas-microsoft-com:vml"
amins:m="http:{ f schemas.openxmiformats.orgofficeDocument/ 2006/ math® xmins:r="http:/ fschemas.openxmiformats.org fofficeDocument /2006 relationships”
wmins:o="urn:schemas-microsoft-com:office:office” xmins:me="http://schemas.opemxmiformats.org/ markup-compatibility /2006"
wmins:wpc="http: /schemas.microsoft.com office /word/ 2010, wordprocessingCanvas >
- <w:bodys
= <n:p wersdRDefault="00F41398" w:rsidd="005CS30F">
- W
<w:k>This s a text document</iw:t>
TW.TF
<w:bookmarkStart winame="_GoBack” w:id="0"/>
<w:hookmarkEnd w:id="0"(>
<wips
- <w:sectPr wersidR="005C339F">

<W:pasz wew="12240" w:h="15840"/>

<w:paMar wigutter="0" w:footer="720" w:header="720" w:left="1440" w:bottom="1440" w:right="1440" w:top="1440"(>

<wools wispace="720"/>

<w:docGrd w:linePitch="360"/>

<fw:sectPr>
<fw:body>

<fw:document

The main node < w : document > is representing the actual document, < w : body > is the
main body of the document and it contains paragraphs, and nested within these paragraphs
are the dimension of the page defined by the tag < w : sectPr >.< w : rsidR > is an

internal attribute of the MS word so we can ignore it.

Paragraph Structure

Every Word document has paragraphs, paragraphs are basically a collection of text having
similar font, size color and editing etc.This set of same text is known as a run and a para-
graphs can have single to multiple runs.

Text properties

Some of the text properties include color,style,size and font so on.There can be upto 40 tags
used in specifying the text of a word file.As we mentioned earlier that each would have its

own text properties.

Styles

There are a variety of styles in a word document etc. All of these styles are stored in the

xml file known as /word/styles.xml. So when we choose a style for text than the type of this

19

style can be found inside the tag labelled as < w : pPr >which is also known as paragraph
properties.

- ¢w:docDefaults>
- owrPrbefault>
- <wirPr>
<wirFonts wicstheme="minorBidi" w:hAnsiTheme="minorHAnsi" w:eastAsiaTheme="minorHAnsi" w:asciTheme="minorHAnsi"/ >
<w:isz wival="22"/>
<w:szCs wival="22">
<w:lang w:val="en-US" w:bidi="ar-SA" w:eastAsia="en-US"[>
<wirbr>
<fw:rPrDefaults
- <w:pPrDefaults
- cwiphre
<w:spacing w:lineRule="auto" w:line="259" w:after="160">
<fw:pPr>
</w:phrDefault>
<fw:docDefaultss

Fonts

There are a variety of fonts in the word document and the reference of these fonts can be
found in word/,els/Document.zml.rels:

yes"?x

ts.org/package/2006/relationships™>

xmlformats.org/officeDocument/2886/relationships fwebSettings” Target="webSettings.xml"/><Relationship
xmlformats.org/officeDocument/2886/relationships/styles” Target="styles.xml"/>»
imlformats.org/officeDocument/2886/relationships /theme” Target="theme/themel.xml" />
xmlformats.org/officeDocument/2886/relationships /fontTable” Target="fontTable.xml"/></Relationships>»

The default font name is found in word/theme/themesl.xml, also inside a theme tag exist

a major font and a minor font tags.
Text alignment

Text alignment is done using the tag < w : jc > with four modes of < w : val > available.
The modes are right, left , center and both. Default mode is the left mode, text always starts
with the left of page’s width. The center will align all the characters to appear at the center
according to the of page’s width. For right mode, text is aligned to the right of the page’s

margin. The both modes aligns the text equally on both the edges of the page’s margin.
Tables

The tags used for making tables in XML are quite similar to the tags used in HTML i.e
< table > for XML tag matches with < ¢r > for the html tag, etc.< w : tbl > tag is the table
itself. Its properties are stored in tag < w : tblPr >. Each table grid tag < w : tblGrid >

contain the column property mentioned in < w : gridC'ol >. Rows come one after the other

as < w : tr > tags and number of rows should be equal to the number of columns generally

20

Width size is specified in the < w : tblIV > tag, but giving the width, manual is not required
because MS word’s internal algorithm find the minimum width required for making a table

of effective minimum size.

XML COMPRESSED DOCUMENT

o et o EETES

webSettings.xml fontTable.xml

settings.xml

Document.xml.rels

Figure 2.8: The main components of the Compressed Microsoft XML format

21

Chapter 3

EXISTING METHODOLOGIES FOR CARVING

Initially Foremost used header and footer carving and was developed by US airforce. [|18]]
Cohen proposed the idea that the carving of fragmented files was equivalent to a mapping
function of recovered files and byte image of storage media, Cohen suggested that the re-
covery of fragmented files was possible by a generator that will generate all potential map-
ping functions. The acquired mappings were then fed to a validator for validation. Cohen
also suggested that the disadvantage of using this approach was the processing required for
finding all possible mappings and further solution was needed for this processing intensive
problem. [19]]

Brian Roux in his research determined that the text files particularly the ASCII files are
overlooked in data carving applications because of the absence of the header and footer
information in them. He further proposed a technique for rebuilding of ASCII file fragments
using machine learning. [20]

A. Pal and N. D. Memon [21] the evolution of carving in detail and showed the problems
with the existing recovery techniques in detail. They also used their technique to recover
image and text but further suggested the need for a customized software for the recovery of
other formats like video, executables and audio etc.

Xinyan Zha and Sartaj Sahni [22]] have also explored Scalpel and pointed out that it spends
a lot of time in searching for headers and footers. Hence, if the algorithms used by scalpel
were changed to the one proposed by them, then its performance can be increased 17 times
and the search time is drastically reduced as well.

Rainer Poisel, Simon Tjoa, and Paul Tavolato [23]] carried out their research on extracting
the digital images from the multimedia files using carving technique. They also incorporated
the fragmented image files in their research and developed an open source carving tool.

In 2012 Wei Lin and Ming Xu [24]proposed a method for carving text document using vir-
tual streams in a text document. Firstly they located the header and control streams for con-

struction of word file’s framework and later utilized this framework to find the fragmented

22

regions.

Azzat Al-Sadi, Manaf Bin Yahya, Ahmad Almulhem [25] in their work specifically ad-
dressed the problem of image fragmentation and its detection. They used the image pixel
value for identification of fragments of different images from a pool of images using Naive
Bayes Multinomial Updateable, Multi Class, Random Forest and Bayes Net classifiers.
These classifiers are selected due to their popular usage with images. The results they ob-
tained further validated their choice of technique.

Luigi Sportiello and Stefano Zanero [3] carried out research on carving data using block
classification. They used simple training and reduced the number of false negatives and
positives in a block classifier of the single block. They also improved the context-based
classification by labelling the unidentified blocks as miss-classified rather than using them
in their classification that greatly improved results for them.

Vassil Roussev and Simson L. Garfinkel [26] in their work proposed that the practice of using
only header and footer byte sequence in identification of specific file type for file carving is
flawed mainly because it does not cater for the complex file structure of compound files like
ZIP, DOC and PPT etc. They further supported their argument by examining the framework
of these formats and reached to the conclusion that the data sets used for file carving using
headers and footers were very limited and did not cater for compound and complex files.
According to their study the most effective methods used for carving only worked on a
specific kind of data set. They proposed that specific classification carvers are required for
carving each type of complex file for a more practical outcome.

Ziad A. Al-Sharif, Dana N. Odeh and Mohammad 1. Al-Saleh [27] proposed a technique to
extract open PDF files from RAM based on the pointers in a pdf file that represent the start
and end of a pdf file, they used these special pointers for locating and extracting the pdf files
from memory. They performed many experiments and proved that it is possible to extract
pdf files from memory even when the pdf viewer is closed.

Simson L Garfinkel and Micheal McCarrin [28]] presented a relatively different method for
carving files i.e. by using hashes. They proposed that for finding the targeted files on a
system, instead of taking hashes of the whole file ,one can take hashes of individual blocks
of files and still determine whether a file was fragmented or not. Previous efforts in this

regard catered for only one file or one or two fragments but their research was based on a

23

dataset of millions of files.

James Wagner, Alexander Rasin and Jonathan Grier [29] had their research on how to carve
files from databases. According to them there existed a lot of database recovery tools but
there is no such tool for carving databases specifically. They made a universal tool for carv-
ing databases that would also work for fragmented databases as well. Further they verified
their tool as an efficient solution for recovery of slightly corrupted and deleted data from
databases.

Amer Aljaedi, Dale Lindskog, Pavol Zavarsky, Ron Ruhl, Fares Almari [30] in their research
carried out a comprehensive comparison between the two mostly used live memory forensics
techniques which are live memory forensics and forensics analysis of memory dump taken
from the kernel. It was proved that live memory forensics plays a more vital role in memory
forensics as compared to image analysis and in their research they also proposed some im-
portant information that can be considered as forensics artefact which is usually missed in
live analysis.

Aaron Walters and Nick L. Petroni Jr [31] described the important role of volatile memory in
digital investigations and also pointed out various shortfalls in the existing techniques of live
memory forensics. They further provided a mechanism for extraction of keying information
from the disk without the knowledge of the password. They also discussed about Volatools,
which is software for extraction of live responses from memory.

William C. Calhoun and Drue Coles [32] devised two algorithms for identifying the various
kinds of file fragments. One algorithm used the byte frequency i.e. the frequency of occur-
rence of bytes, in order to identify the type of a certain file fragments. The other used the
idea that two files which are of the same type would have same type of strings in them, this is
known as the common longest substring method. Both these methods were not very efficient
and required a larger dataset and efficiency improvements for practical purposes.

Husrev T. Sencar and Nasir Memon [33]work focused on identification of next fragment
of an encrypted JPEG file, they used the JPEG file format and did bit pattern matching for
identifying the next segment of an encrypted JPEG. Also they worked with fragments that
cannot be linked to a header or their header is just missing.

Mehdi et. al also proposed a technique for the identification of the file type of the fragments

in memory. The technique used by them extracted 15 features from byte frequency distribu-

24

tion and based on this they used both the SVM classifier and MLP classifier for classifying
their test fragments. Their comparison proved that SVM is a better classifier when it comes
to classifying different types of fragmented data. [34]

Binglong et al [34] worked specifically on finding the Document fragments and used the
technique of enhanced string kernel (ESK) for its classification purposes. ESK is used
to extract a small sequence of bytes from the document header fragment and uses it for
matching with the other available fragments. This pattern matching would led in finding the
remaining fragments of the file header.

Golden et all [35]] proposed a new technique for carving. He reasoned that traditional cravers
doesn’t use the host machine for analysis, what they really do is make a copy of the whole
disk and it can be very time consuming most of the time. So they introduced a technique
known as the in place file carving. In this type of carving the investigator uses the host
machine itself for investigating the files live without making a copy of them.

Nadeem et al [36]] did a very extensive literature review on the existing techniques of carving
and he proposed that there was a need of more realistic data sets for carving, he also said
that special focus is required for carving of the fragmented files. Also said that there was
a need to detect hidden or malicious injections in unoccupied spaces and carving should be
used effectively for this purpose.

Zaid et al [37] performed a forensics analysis of RAM and he used the XML representation
of the word document to find out which Word document the criminal was viewing or editing.
He extracted the XML representation of the number of paragraphs and the textual content
of the word file from RAM , he than matched these both to the available documents in the
system. The document that matched was the document being viewed.

Hyukdon et al [38]] proposed that there was a problem with the Microsoft Compound Doc-
ument File Format (M CDF'F') that it is easy to insert information in the MCDFF but it is
very hard to detect that information. He said that open source tools can be used for adding
malicious contents in the MCDFF, so he presented the analysis of the possible exploits.
Also formed a tool called Doc detector that helped in detection and analysis of the hidden
malicious data.

Irfan et al [39] proposed a technique for a faster identification of file fragments, his technique

involved selection of only the most frequently occurring frequencies for calculating the byte

25

frequency distribution for content based file carving. Also the classification processing time
was reduced by randomly selecting chunks of data rather than using every chunk consecu-
tively.

After the summary of the techniques being used, we list down the existing data carving open

source tools in Table below:

Table 3.1: Summary of Existing Carving Tools

Name Algorithm Type of Artefact
Scalpel It is used by finding header and footers | Non fragmented files
and extracting those header footer pairs
Foremost It uses the technique of sequential finding | Image files
of header and footer
Volatools It basically views the memory pages Extraction of data from
a live resource

The most common tool used for carving of non-fragmented files is Scalpel. For the extraction
of image files the tool used is called Foremost developed by US Army. Another well-formed
tool for extraction of data from live memory is known as Volatools. Other than these we
don’t have any proper tool designed for the carving of data from memory.

All the research papers mentioned in section discuss the carving of data from memory using
multiple techniques and procedures.Microsoft file format has been researched and studied
very less because it is a compound format.To store the data directories and hierarchal struc-
ture of streams is used. Research has been conducted in either the extraction of images or text
from documents but there has been no detailed research for the extraction of both compo-
nents simultaneously.The extraction process becomes more complex in case of fragmented

word documents and recovery of image and text is almost impossible.

3.1 Quantitative Measures

Quantitative measure is required for evaluating the performance of the approach one uses.
It is also required for comparison with the existing techniques and also for tracking im-
provement in your own approach. While choosing the evaluation measure it is important to
consider all the choices available and selecting your quantitative measures accordingly.

In classification of text each text instance belongs to one of the available classes. So if each
class is assigned a label than the two of the class cases would “+/” and “-1”. “+1” for

positive and “-1 ”for negative. A simple case is that we count the number of labels assigned

26

by the system that are correct.
[40] In text classification the commonly used performance evaluation measures are a func-

tion of these followings:

e True positives (TP): The system predicts “+/ ”for text that is actually present in the

class.
e True negatives (TN): The system predicts “-1” for text that is not present in the class.

e False positives (FP): The system predicts “-/” for text that is actually present in the

class.

e False negatives (FN): The system predicts “+1/” for text that is not present in the class.

True positives True negatives
(TP) (TN)

False positives False negatives
(FP) (FN)

In order to find that how much relevant data is retrieved by the system, we use the measures

precision and recall. These measures are defined below:

3.1.1 Precision

Precision is used to measure of how exact a classifier is performing. A classifier with less
false positives is a good classifier, whereas a classifier with more false positive is a bad
classifier. The basic question answered by precision is “what is the correct proportion of
positive identification?”
Precision = Total number of relevant documents retrieved /Total number of documents that
are retrieved.

TP

Precision = ————— 1
recision TP+ PP 3.1

Example: If in case we have one true positive and false positive the precision would be half

i.e. 0.5
TP 1

TP+FP 141

Precision = 0.5 3.2)

27

3.1.2 Recall

Recall measures how sensitive or complete a classifier is. High value of recall would mean
lesser false negatives, while low value of recall would mean higher false negatives. Recall is
used to answer “How many actual positives were correctly identified?”

Recall = Total number of relevant documents retrieved /Total number of relevant documents

in the database.

TP
Recall = — - 3.3
T TPYEN (3-3)

Example: If consider in a scenario that the TP is one but the value of FN is 8 then our Recall

would be 0.11.
TP 1

Recall — _
T TPIFN T 1438

=0.11 (3.4)

In order to fully evaluate our model we need to consider both precision and recall. But
the fact is that precision and recall are inversely related to each other that means increasing

precision would reduce recall and vice versa. [41]

3.1.3 F-measure Metric

Many times Precision and recall are combined together to make a single metric known as

F-measure. F mean is basically harmonic mean of both precision and recall.

Fo 2 % ((Precision x Recall)
~ (Precision + Recall))

(3.5)

28

Chapter 4

PROPOSED METHODOLOGY

We are assuming that the metadata of the files in RAM is lost. So in order to recover them we
would need to carve the Word Document from the RAM. This assumption is pretty logical
because the data in the RAM is constantly overwritten as new files are viewed/edited or
new processes are used. In many cases the carving of Microsoft Word Document using
its own internal structure is the only option available to us. A Word Document consists of
many components and these components can be uniquely identified from the RAM. These
components may come from different files if more than one file is being viewed at a time.

But the real challenge is to identify the parts belonging to different files. The challenge is
overcome using SVM classifying, which will classify each component based on its content.

The figure shows our model for investigation

QY Q i

Load dump Scanning Apply Grouping of Classification Alignment
on em for Technique Chunks
Markers

Classifier to Align the file to
Create a Apply Group together classify chunks recover Original
dump of a All database Classification, chunks of data off same file file

system using scanned for Clustering, with similar file

any memory known Regression or type
dump tool markers Ranking

Figure 4.1: Model for Investigation

4.1 CREATING OF RAM DUMP

There are a number of methods and open source tools available for creating memory dumps.
We performed our analysis on a virtual Windows 7 Operating System (OS) made using the
“VMware Workstation”. We used a RAM of 1GB for this OS. The tool which we used for

taking the memory dump was Dumplt. Dumplt is a command prompt application, which

29

takes a live dump of your RAM and saves it as a “.rar” format (raw binary format).

I D\Forensics Softwaresitools 1\Dumpit2\Dumplt.exe — m] w

memory memory du mper

--» Are you sure you want t
+ Processing...

Figure 4.2: The Dump created using Dumplt

sectionCARVING OF OPEN OFFICE MICROSOFT WORD DOCUMENT OBJECTS One
of the first component of every document was its header. We performed our analysis in the
Win Hex, where we could see the hex format of the word file. We began with our manual
analysis of the word file. As there is a fixed header for each type of file, we started by finding

the header for our file. [?]

Since the DOCX is the part of the Microsoft Office Open XML Format (OOXML).
There is no sub header for MS OOXML files as there is with XLS,DOC, and PPT.If
we change the extension of any word document from.doc to .zip; look at the resul-
tant file named [Contentrypes].xzml to see the content types.In particular,look for the

< QOverridePartName = tag >, where you will find word, ppt, or xls, respectively.

The header looks like this: 504 5030414000600 followed by 18 additional bytes. The first
two bytes of the Header 0250 0240 are also the header for ZIP file, which is fine because we

said that a DOCX file format is basically a collection of compressed ZIP folders.

One more thing that we deducted from our research was that there were different signatures
in different Open Office Microsoft Word Documents. For this we made a dataset of 100
Microsoft Word Documents on different versions and observed the starting bytes of every
document manually. We found that each version had a unique header, the starting 12 bytes
were same for all the versions of Word Document, the next 8 bytes were different and unique
for every version and the remaining 28 bytes were totally same in all versions. The common

headers are listed below.

30

SIGNATURE MICROSOFT VERSION

PK............RHOIZ.......... [Content_Types].xml Microsoft Office Professional Plus 2013
PK...........2°0Wf...X....... [Content_Types].xml

PK...........GE.pt5...-....... [Content_Types].xml

PK..........1.3%%0L}...)....... [Content_Types].xml

PK...........>RHéq...H....... [Content_Types].xml

PK..........L.1J¥3¢.. -....... [Content_Types].xml

PK............-&i/r...U.......[Content_Types].xml

In the Hex values the first component to appear was the Contentrype.xml we have
consider this the header for our convenience, after this came the .relsfile , then came
the Document.xml.rels from the Word folder, then came the Document.xml, the
Document.xml contains the actual text of the word document, followed by themel, After
this came the settings, App.xml, core.xml, websettings, Fonttable, Core.xmlandstyles.xml.
After observing a number of Microsoft Word Document we found a pattern in the way the
files and folders were aligned in the hex file. The following figures shows the flow in which

the components of the XML document appear in file:

[Content_Typel.xml —— __rels/.rels ———» word/ rels/Document.xml.rels

l

word/settings.xml 4——— word/theme/ themel.xml 4————— Document.xml

l

word/fontTablexml — webSettings.xml — , docProps/App.xml
word/styles.xml «—— docProps/Core.xml

The first five components are constant for any word file and would appear in the same se-
quence but the later appear according to the use in the word file , For example if the font is
set first than the Fontable.xml will appear first ,following the rest of the components.

As we know that Open Office XML representation uses the XML as its back end program-
ming and MS word is just a compressed folder of different XML files, each of which repre-
sents a specific feature in the word document [?]. So we observed that the folder or file that

appeared first in the hex file would end first in the file.

31

For Example if [Contentrype|.xml comes first in the compressed format than when the file
will begin to end the first to appear in the ending section would be the [Contentrype].zml.

So we can consider this like an xml wrapping.

Dff==t o1 2 3 4 5 & 7 B 9 &2 B C D E F ~
oooooo0o 50 4B 03 04 14 00 06 00 08 00 00 00 21 00 DF A4 FE... I BRE
0ooooolo D2 AC S5A& 01 00 00 20 05 00 00 13 00 08 02 5B 43 O1Z. [C

goooooZo eF 6E 74 65 6E 74 SF 54 79 Y0 65 Y3 5D 2E 78 6D ontent_Types] . =n
oooooo3n e 20 A2 04 02 28 A0 00 02 00 00 00 OO OO OO OO 1

nnnnnnnn AA AR AR AR AE e mE mA AR AmA AR AEA A mA mA Em

Figure 4.3: Shows the header of an xml compressed file format

Figure below shows the ending of a Microsoft word document and we can see that the
[Contentrype].xml comes first in the ending because it appeared first in the start as well.
Similarly whatever file or folder appears first in the starting of the file will also appear first

in the ending of the file.

Of fset o1 2?2 3 4 5 6 7 & 9 AEBCDTETF

00002CD0 6D 6F A7 18 3A D2 9B BEE AD FE 2B 3E FD OF 00 00 moS . ORk-p+s§.
00002CE0 FF FF 03 00 50 4B 01 02 2D 00 14 00 06 00 08 00 +#%. BE. . —.
00002CF0 00 00 21 00 DF &4 D2 &C S& 01 OO0 00 20 05 OO0 00 .. 0. @=QlT. . .
00002000 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00002010 (00 00 SE 43 6F GE 74 65 &E 74 SF S4 79 70 &5 73 .. [Content_Types
goooz2p2n |5D 2E 78 6D &C S0 4B 01 02 2D 00 14 00 06 00 08 1. =mlPFE. -

gooozp30 jo0 00 00 21 00 1E 91 1A BY EF OO0 00 OO0 4E 02 00 N Y T
gooozp40 |00 OB 00 00 00 OO0 00 OO OO0 OO0 OO0 OO0 OO0 o0 00 93-1
Qo0o2Dsn 03 00 00 SF 72 65 &C 73 2F 2E 72 65 6C 73 50 4B .. _relss.relsPH
0O002ZDED 01 02 2D 00 14 OO0 06 OO0 OB OO0 OD OO 21 00 DE &4 . —.........|.0d
gooozpyo E3 51 F4 00 00 00 31 03 OO0 OO0 1C OO OO0 OO0 OO0 00 *Qo. . 1.
Qo0o2lao o0 00 00 00 00 00 00 00 B3 06 00 00 77 &F 72 &4 Y. word

gooozpsn 2F 5F 72 65 eC 73 2F 64 oF 63 75 6D &5 6E 74 2E ~_rels-docunsnt.
gooozpan 78 6D eC ZE 72 65 6C Y3 50 4E 01 02 2D 00 14 00 =:ml relsPE. = ..
gooo20B0 06 00 08 00 00 00 21 00 1B C3 CC 53 87 05 00 o0 AISK. ..
gooogzpCh ie OF OO0 OO0 i1 OO0 OO0 OO OO OO OO QO OO Q@O0 OO0 Q0
gooozoo 00 00 E9 08 00 00 77 6F 72 64 2F 64 &F &3 75 6D . .&. . word- docum
Q000ZDED &5 GE 74 ZE 78 6D oC 50 4B 01 02 2D 00 14 00 06 ent.=nlPK. .- ...
Qoo0zDED 00 04 00 00 00 21 00 AA 52 25 DF 23 06 00 OO 8E0| *RXRBE. . .12

Qo00ZEOD 14 00 00 15 00 OO0 OO OO OO0 OO OO OO OO0 OO0 OO0 o0_.......
Q000ZE1I0 00 9F QE 00 00 7% oF 72 64 2ZF 74 68 65 6D 65 ZF . 01...word-theme~
QO00ZEZ0D 74 68 65 6D 65 31 2E 78 oD &C 50 4E 01 02 2D 00 themel xnlPE. -
QO00ZE3D 14 00 Oe OO 03 00 OO0 OO0 21 OO0 &8 10 E¥ 22 B3 03 1. " .g2*.
Q000ZE40 00 00 C7 09 00 00 11 00 OO0 OO0 00 OO0 00 00 00 00 Qoo ..
QOOOZESD 00 OO0 00 OO0 F5 14 00 00 77 oF 72 &4 2F 73 65 74 ... 8. word-sst
QO00ZEeD 74 69 BE 67 73 ZE 78 6D 6C 50 4E 01 02 2D 00 14 tings xmlPE. . =_.
QO00ZE?D 00 06 00 08 00 00 00 21 OO0 29 BF &3 1D &% 01 00 0. Jic. &,
Qoo0zZESD 00 ED O4 00 00 12 00 OO OO OO OO0 QO OO QO 00 OO0 .i..............
gooozZESD 00 00 00 DY 13 00 00 ¥7 oF 72 64 2F 66 &F &E V4 .. ¥ word“font
Q000ZEAD %54 61 62 6C 65 ZE 78 6D o&C 50 4B 01 02 2D 00 14 Table xmlPK. -..
QO0O0ZEED 00 O6 OO0 OF 00 OO0 OO0 21 OO0 SE oD FD 53 0% O1 000.[=;¥0...
QgooozECO 00 F1 01 OO OO 14 00 OO OO QO OO QO OO QO OO OO .;m..............
Q000ZEDO 00 00 00 EO 1& 00 00 ?7 oF 72 64 2F 77 65 82 53 .. .°. . word-webS
DOOOZEED &5 74 74 69 6E 67 73 2E 78 6D &C 50 4E 01 02 2D ettings. =mlPE. -
QO0DZEFO 00 14 00 06 OO0 08 00 00 OO0 21 00 95 OF F9 BD DB01 .1.ak2

Figure 4.4: Shows the footer of an xml compressed file format

32

The most tedious task is to find the footer of a word file because there is no definite end point
as to where the Word file would end. Particularly it has a complex hieratical structure and
the structure changes with the change in the file. But we noticed a particular bytes appearing
in ending of the file. These bytes are same as the unique bytes present in the header of each

OOXML file. The figure below shows the unique bytes in a header.

00 06 00 08 00 OO0 00 21 OO0 DF A4 D2 6C 54 01 001.BEQLZ. .
0o 20 05 00 00 13 00O 00 OO0 00 OO0 00 00 Q0 0O o0O0)
0 0o 0T 00 0o o0 0o 5B 43 6F eE 74 &% 6E 74 5F[Content_
54 79 70 85 73 5D ZE 78 6D eC 50 4B 01 02 2D 00 | Types].=zmlFK..-.
14 00 06 00 0O OO OO OO 21 00 1E 91 1& BY EF 0O_ 0. .7 . -1.
50 4B 03 04 14 00 06 OO0 0% 00 00 00 21 |00 DF &4 PE.......... 1.BH
D2 6C S4 01 00|00 20 OS5 00 00 13 00 08 02 SB 43 OLZ... [C

6F 6E 74 65 BE 74 5F 54 79 70 65 73 5D 2ZE 78 oD ontent_Types].=zn
BC 20 A2 04 02 28 A0 00 02 00 OO OO 0O OO OO OO 1 &..¢ e

Figure 4.5: Shows the XML wrapping of an xml compressed file format

The figure above shows the ending portion of the OOXML file, we can observe that the
header bytes are repeated in the ending of the file also, so we can consider this as a footer or
ending.

Other than header and footer the important components that are extracted are Document.xzml.rels,
rels and document.xml. A number of these components is extracted from RAM based on

the number of documents being viewed by the user. For further analysis all of these compo-

nents are grouped together in a pool of data. .

Figure 4.6: The figure shows grey space as the pool and all the colored files are components
of word document

33

4.2 GROUPING SAME TYPE OF WORD COMPONENTS TOGETHER

Now comes the classification of the components. We now have to sort the components based
on their textual content. As we can see that components which are headers have a certain type
of text in them. Also the assumed footers have portion of the same header text. So we can
save these headers and footers in a pair and separate them from the pool of the components.
The remaining contents are also sorted. All document.zml are grouped together, all ,.els are
separated in a different pool, same happens with [Contentrype] and document.xml.rels.

So now we have different groups of similar components.

ofofo] o

Figure 4.7: The figure shows grey space as the pool and all the colored files are components
of word document

4.3 EXTRACTION OF TEXTUAL DATA

Since we have recovered different components of the word document, we analysis them fur-
ther to find the textual data from the document. We first observe the [Contentrype].xml
data, we known from the basic structure of Open Office XML that it contains information
about all the parts of the document but doesn’t contain the actual content. The Open Of-
fice XML internal structure states that the content of the word document is present in the
document.xml life, which is a part of the word folder. But the component is ZIP encoded
and the first thing we need to do is decode it using some ZIP decoder technique. After the
decoding is done we further observe all the document.xml files. In the tag < w : ¢ > is
the textual content of that word life. Tag < w : ¢t > is a run and it will be present inside a

tag < w : p > 1.e. a paragraph. From this we can note down the text and the number of

34

paragraphs for each of the word document.

4.4 TEXT SPELLING AND SPACING CORRECTION

The plain text take comes from decoding can have a number of spelling and spacing mis-
takes. Probably due to the fact that not every character is decoded properly. Some characters
are missed hence some spacing and spelling issues can occur. So for now we would just
simply correct the spaces and spelling mistakes that occur during the extraction of textual
content. For this we simply pasted the content in a word document and it gave us the sug-
gestions for the corrections. We rectified the mistakes and saved these textual instances for
further processing.

For example an encoded sentence “This is an experimental test document used for forensics
analysis of RAM” can be decoded as follows:

“T his is an e periment | text docu ment used for f o r e n sics analy sis of RAM” Like
of the characters stay decoded and disrupt the whole sentence. With simple observation we

can correct the spellings and spacing of the lines.

4.5 TEXT CLUSTERING

For a smaller size document the document.xml can be found at one place in the RAM but
for a large file the document.xml file might be present at multiple locations. For this purpose
we would need to cluster together pieces of the document.xml to retrieve the contents of the
original file. The technique that we would be using is called the text clustering. We would
be grouping together text that have similar text instances in their contents. The idea behind
this is that similar text instances are more likely to originate from the same word documents.
We will be using the two most popular clustering algorithms for this the simple K mean
and Hierarchical clustering, both of these are used using their default distance function. But

before performing the text clustering we need to perform some preprocessing on the data.

4.5.1 Preprocessing

In order to differentiate between two texts and also to group together text from the same
document we will first gather all the text instances. After gathering the data we tokenize
each document i.e. we split each document into individual words.

After we have our data, we will analyze it and form our vocabulary. Vocabulary basically

consists of known words or unique words from the documents. We can have as many words

35

in our vocabulary as we want. The more the dataset is diverse, the more diverse vocabulary

we can have.

After defining the vocabulary we will form vectors for each document. The vectors will be
formed by putting “/” in place of the words present in the document and “0” for the words

absent in the document.

After forming the vectors we will than parse these vectors or you can say shorten them up
by removing the words that are known and are of lesser importance but their occurrence in
any data is high e.g. like is are, the etc. By removing these common words we will be left

with a shorter length of a vector.

One more thing we will do is that we will take the term frequency versus inverse document
frequency tf-idf of the document. What this will do is that it will give us the frequency of
words that are different in both of the documents. So we would know which word belongs

to which document.

4.6 EVALUATION METRIC

For validating our results we will be using the evaluation metrics known as precision and

Recall. These are text processing metrics based on true positives and false negatives.

In our scenario we have a pool of text documents and we have to separate the text that belong

to one single document. The number of classes would be equal to the number of documents.

Following is the detailed overview of the whole model we will be following in our experi-
ments performed in the next section. The part labelled "A"” shows the process of extraction
of the textual content from RAM."B" shows the pre processing performed on the textual
content before applying the machine learning technique and finally "C"” Shows the details of

hierarchal clustering for best results.

36

Figure 4.8: Detailed model of the technique

37

Chapter 5

EXPERIMENTS AND RESULTS

5.1 EXPERIMENTS

Our methodology consists of three parts, one is to extract the Open Office Microsoft Word
Document components and second is to extract the textual content correctly from these com-
ponents and thirdly we need to classify and group these textual contents correctly in order
to find which content belongs to which word file. In order to achieve these goals we design

our experiments as below.

Our experiment will have two portion i.e. to extract the Microsoft Word Document from
RAM when it is being viewed or edited and to extract the Word Document when it is closed

and not being viewed. So we need the memory dump in the two states below:

State 1: The RAM dump was taken while the MS Word document is viewed or is being
edited.

State 2: The RAM dump is taken after the document is closed.

For our experiments we will be using a total of 30 word documents. These word documents
are chosen at random from the internet and contain children stories, technical documents,
daily news, fashion articles, food blogs etc., they include different versions of Word Doc-
ument. The reason that we have chosen completely different types of documents in our
experimental phase is because we can’t simultaneously open thousands of word documents,
which are required in terms we want to train our machine learning algorithm. So for sim-

plicity we chose documents with diverse topics so that they can be segregated easily.

We have divided these documents into five subsets. Subset one (S1) includes just 1 file,
Subset two (52) consists of 5 files and subset three (S3) consists of 10 files, Subset four
(S4) consists of 20 files and subset five (S5) consists of all 30 files. Subset two includes
subset one and 4 new files. Subset three includes subset one, two and 5 new files, subset four
includes subset one, two and three with 10 additional files and finally subset five contains all

the previous subsets with 15 new files.

38

First all of these experiments are performed with the state 1 and then the same experiments
are performed using the state 2. The purpose is to find out that how much data retains in the
RAM when the RAM is not using our particular file. Before we began our experiments we
checked if the whole of the word documents exits in RAM or some pieces or chunks are just
loaded in RAM. For this purpose we manually constructed the whole word document from
RAM. We rearranged all the fragments extracted from the RAM together than we were able
to open to the word document. Hence proving our assumption that the whole document is

loaded in the RAM.

5.1.1 Experiment 1

For our very first experiment we work with S1. We open this word file and take a memory
dump using the Dumplt tool. First of all we need the components of the word document for
the extraction of the textual contents for this we start analyzing the whole memory dump and
look for our header. After finding the header we look for our remaining components. After

we find the components we add all these to a pool of files we create.

Algorithm 1 Extraction of Components
Find the components of the word file

: Input: A memory Dump

- Result: A dataset of word components

: Data: Creates sumple text files

: Find the header

: Match the header with the version of Word Doc
: Find the [Content Type xml] and store it as Oly
: Find the Eels xml and store it as Oby

: Find the document. xml and store 1t as Oly

- Create a pool of Objs

i R R R O LY I

Then we further analyze these pool of files and differentiate our components. The compo-
nents of similar types are grouped together. From all of these components the textual content
is extracted and decode, the document.xml is then used for finding the actual text of the word
document. This text is checked for errors and saved in a text file. Since we have just used a
single file so we don’t need to use any clustering technique in this experiment. Algorithm 1

shows the process of extraction of the components of the word file.

39

Algorithm 2 Extraction of Textual Data
Find the textual data from the components
: Input: A pool of Objs
: Result: A dataset of textual components
: Data: Creates different sets of components.
- Analyze Objs
- Differentiate the components
- For each Oby £ 51
If Obj has textual data then
Extract its textual data
If Data 1s encoded then
Decode its textual data
end

69 ~1 O Lh da W b e

e L >]
s

if Fix missing spaces in text;
Fix spelling mistakes in text;
Save the text in a separate text file
Add the resulting file to pool of data;
end if

ke
LA e L

[y
(=

17: endif

5.1.2 Experiment 2

For experiment 2 we take the data set S2 which contains 5 Word files taken at random
from our system. Since in this experiment we have more than one file so we will need
to classify the components i.e. which component belongs to which file. We used the two
most commonly used text clustering Algorithms available and the Algorithm 4 shows these
techniques and we tested each of these techniques using the precision metrics we discussed
earlier, since now we have more than one text document, we would need to perform some
preprocessing on the textual contents before we can actually perform our Machine Learning

Algorithms on it. This process is known as Preprocessing and is shown below:

Algorithm 3 Preprocessing of Textual Data

Preparing the textual data for the Machine Learning Algorithm.
: Input: A pool of Textual data

- Result: A reduced dataset of textual components.

: Data: Unique textual Content

: Collecting all textual instances into a Corpus

: Tokemzing 1t

: Making of vocabulary from Corpus
: Making Vectors of Corpus

: Reduction of Stop words

9: Scoring of Vectors

10: Finding Document Frequency DF
11: Finding TE-IDT

== T B o T A FE A

40

After the preprocessing is done the ending result is textual content which is unique in every
textual instance. The preprocessing reduces the processing time by removing repetitive or
common words like stop words, like is, am and the etc., which are mandatory to appear in
every document but have no significant meaning that contribute towards the document. So
removing and sorting our text is a very crucial step and can lead to drastic changes in results.
After preprocessing we perform the Text Clustering, The Algorithm 4 basically shows the
whole process behind the Text Clustering. We performed both K mean and Hierarchal Clus-
tering in our experiments, because we were not sure which algorithm could provide us with

better results.

Algorithm 4 Classification of Objects
Classify each component using Text Clustering

: Input: A dataset of textual components

: Result: Micro Average precision and Recall

: Data: Sets of textual components

- Apply Algorithm 1

- Apply Algorithm 2

- Apply Algorithm 3

: Apply the K Means Text Clustering algorithm on pool
: For each Cluster do

Find the Macro Average Precision

10: Find the Macro Average Fecall

11: end for

12: Apply the Hierarchical Text Clustering on pool
13: For each Cluster do

pmummhwm—

14: Find the Macro Average Precision
13: Find the Macro Average Eecall
16: end for

5.1.3 Experiment 3, 4andb

The other experiments 3, 4and5 were carried out using the subsets 53, S4 and S5 respec-
tively, these contain a total of 30 files. There are no practical real life scenarios where there
is a need of opening 30 or so files at once. These experiments were carried out just to
check how well the clustering algorithm works and the impact of size of the data set on the

precision of our technique.

41

5.2 RESULTS

The following section presents the results obtained from the experiments performed above.
The results are divided into two parts. The first part contains results when the file was read

or viewed. The second part contains results when the file was not being viewed.

5.2.1 When File was being Viewed

As we know from above experiments that the first thing we need are the XML compo-
nents.The following table shows the number of components extracted from all the five sets
of data that we have chosen. Point should be noted that there are almost 11 to 12 components
in an XML file that contains vital information but since we are only focused on finding the
content we would only extract 4 main components that would lead us to our content. This

saves us from extra computation and processing.

Table 5.1: No. of Extracted XML components

DataSet Number of XML components
S1 4

S2 20

S3 40

S4 60

S5 120

After receiving the XML components we decoded the XML components using ZIP decod-
ing.The resulting decoding lead us to a number od textual files. Below is the number of
Textual files generated from each data set. Number of text file generated form a single docu-
ment mostly depended upon the number of lines in a document. But this cant be generalized

for each document.

Table 5.2: No. of Textual Components

DataSet Size Number of Textual components
S1 12 KB 8

S2 76 KB 65

S3 172 KB 158

S4 696 KB 247

S5 976 KB 534

So After performing K mean clustering and Hierarchal Clustering we got the following per-

formance metrics:

42

Table 5.3: PRECISION

Dataset Hierarchial K-mean Clustering
Clustering

S1 0.998 0.767

S2 0.834 0.751

S3 0.910 0.655

S4 0.899 0.621

S5 0.821 0.600

The Table below shows the recall results :

Table 5.4: RECALL

Dataset Hierarchial K-mean Clustering
Clustering

S1 0.978 0.802

S2 0.824 0.772

S3 0.870 0.733

S4 0.900 0.656

S5 0.868 0.627

The above results clearly indicate that the Hierarchial clustering algorithm performs better
than the K mean algorithm.The range of precision for hierarchial clustering is from 0.821 to
0.998 and for k mean it is 0.600 and 0.767. Also the range for recall is 0.868 and 0.978 for

hierarchial clustering and 0.637 and 0.802 for k mean.These number clearly show that which

algorithm is the best.

The results are graphically shown as follows

Simple K-Means Vs. Hierarchical Clustering(Precision)

1.00 A
0.95 4
0.90
0.85 4

0.80 4

Precision

0.75 4
0.70

0.65 4

0.60 4

-@- K mean Clustering A
—¢- Hierarical Clustering //
,,,,,,, . Vs
LK ~ .
/_/ "~ _/
'/. ~. 7/
x*
—————— *
’J
o
’I
-
IR o
e
T T T
1 2 3 5

Dataset Number

Figure 5.1: precision

43

Simple K-Means Vs. Hierarchical Clustering(Recall)

i x
0.95 4 —®- K.mea.n CIustermg /
=~ Hierarical Clustering 7/
0.90 - T ya
% - ’H."“-,‘ /
0.85 ~w /
= «
T 0.80 e
& I
0.75 - =
d’r
0.70 ~
/,/I
0.65 s
-
0.60 .
1 2 3 4 5

Dataset Number

Figure 5.2: Recall

The final Table includes results for both scenarios, the one when the files are open and the
one where the files are closed.We performed the experiment three times using the hierarchial
clustering and averaged our results in the table below:

Table 5.5: Experiment performed right before the system is closed

Dataset Number of | Scenario 1 Scenerio 2 | Perc.
Objects carved
S1 8 7.5 7 90.625
S2 65 61 58 91.538
S3 158 143 140 89.55
S4 247 222 217 88.866
S5 534 498 486 92.134
Avg - - - 90.54

We can see that the percentage of carved files is 90.54 percent when the system is powered
on.After that we perfrom the same experiment but after 10 mints of closing the system. The

results are as follows:

Table 5.6: Experiment performed 10 mins after the system is closed

Dataset Number of | Scenario 1 Scenerio 2 | Perc.
Objects carved
S1 8 6 5 68.75
S2 65 53 49 78.46
S3 158 137 129 84.177
S4 247 217 203 85.020
S5 534 483 465 88.7
Avg - - - 81.021

44

The results of carving comes out to be 81.021 perc after 10 mints.Now we perform the same

experiment after 30 minutes and the result is as follows:

Table 5.7: Experiment performed 30 mins after when the system was closed

Dataset Number of | Scenario 1 Scenerio 2 | Perc.
Objects carved
S1 8 4 3 43.75
S2 65 39 30 53.07
S3 158 98 79 56.012
S4 247 152 138 58.706
SbH 534 344 299 60.20
Avg - - - 54.3476

Above are the results obtained by carving of Microsoft word document objects from RAM
using 30 word files.We have considered two scenarios, one when the document is being
viewed or open and second when the document is closed. Further we performed the same
experiment thrice with some time difference.It can be seen that the number of textual content
extracted has slight difference when the document is open or close. But the percentage of the
carving decrease on whole when the time is passed.This is mainly because the RAM being
a temporary memory stores the state of every function being performed so some data might
be lost or overwritten with time.

When we performed the experiment after 30 mints than the percentage of carved files became
54.37 percent. So we can say in our case that the Digital Investigator has almost 50 percent
chance of correctly carving the Microsoft Word Document from RAM. Also we have shown
experimentally that the better Algorithm for separating carved textual content from RAM is
the hierarchal Clustering.The total number of textual contents of all 30 word files is 534 and
the size of the carved textual files from RAM range in size from 1K B to 8K B.

This extraction technique is useful for the Digital Investigators and has shown promising
results, but there are a few factors that resulted in such good results.One thing is the size
of the data set,our data set is very small and has very small number of textual content that
needed classification. Using a bigger data set would be complex and would certainly reduce
the performance. Secondly the Word files were not choosen at random, the files were chosen
in a way that they include different themes so that it becomes easier in classification because

we would have distinct data with lesser similarity between content.

45

Chapter 6

CONCLUSION and FUTUREWORK DIRECTIONS

6.1 CONCLUSION

The rise in the digital crimes these days lays emphasis on the digital forensics in solving
crimes.Proof extracted from digital machines is enough for proving a criminal guilty. While
extracting these proofs from the system a crucial place for extraction is the RAM because
it hold the current state about the system.So in cases where the meta data of the file is not
present so extraction of file from RAM is a very challenging task because files are placed
randomly in a RAM frames.Now if we carve these randomly placed instances separately
then they would mean nothing in the court and wont be considered a valid proof.Our research
enhances the technique of carving a specific type of file by clustering chunks of similar data
together, based on similar features.In our research we use multiple files and extracted their
chunks using the two most common clustering techniques i.e. K mean and Hierarchical
clustering. Our results show that when it comes to clustering textual content of a word
file then the hieratical clustering out performs the simple K-mean algorithm.Also when the
experiments are repeated after some time than due to the change in the dynamics of the RAM,
the performance of our technique reduces. This is mainly because the chunks no longer
reside in the RAM or are scattered discontinuously across multiple pages in RAM.Hence
the use of clustering technique for extraction of word file from RAM reduces the burden
of the digital investigator ,which otherwise would have to go through each and every word

document available on the system in order to find the concerned document.

The focus of this research is to study the extraction of multiple formats from the main mem-
ory using multiple tools and methods.It also emphasizes on analyzing MS Word document
file format from craving point of view.For future research,it can be concluded from above
discussion that the recovery of MS Word document from volatile memory when the docu-

ment is fragmented is a promising field to explore for researchers and forensic investigators.

From the above discussion we have concluded that as future research,the recovery of Mi-

46

crosoft word document from volatile memory when the document is fragmented seems like

a promising field to explore for forensic investigators and researchers

6.2 FUTURE DIRECTIONS

In this section, proposals for the future work are provided.

e One important aspect that should be explored is the extraction of Microsoft Word
Document when we have the same type of content in two different Microsoft Word
Document. Like same text or type of text originating from multiple sources.We did
not go into this regime because it became a very tough text classification problem,
each word document would become a class and we would have to find which chunk is

a part of which class.

e Another thing is the extraction of images from the Microsoft Word Document, in order
to keep our work simple, we ignored the images used in the Microsoft Word Docu-
ment. The data set we choose intentionally had documents only containing the textual
contents.But the images can be extracted in the same way by choosing the Open Of-
fice XML component that contains the information about the images used.So for future

work we would like to extend our methodology to include the non textual data as well.

e We have just discussed the carving of Word Document from the RAM for simplic-
ity. Same procedure can be performed on the main disk but it would require more
resources and power because we would have to search through the whole disk many

times for finding the components of the word documents.

e The current focus of our work included the investigations performed on a normal desk-
top environment, with limited number of users and smaller resources available. How-
ever in future we would like to check the applicability of our technique on a cloud

environment with more number of users and complexity.

47

[1]

(2]

[4]

[5]

[8]

[9]

[10]

[11]

BIBLIOGRAPHY

Beek, Christiaan. "Introduction to file carving." White paper. McAfee (2011).

Garfinkel, Simson L. "Carving contiguous and fragmented files with fast object vali-

dation." digital investigation 4 (2007): 2-12.

Sportiello, Luigi, and Stefano Zanero. "Context-based file block classification." IFIP

International Conference on Digital Forensics. Springer, Berlin, Heidelberg, 2012.

Cohen, Michael I. "Advanced carving techniques." Digital Investigation 4.3-4 (2007):
119-128.

Wei Lin and Ming Xia. Advanced Materials Research Vols. 433-440 (2012) pp 3028-
3032, 2012

Azzat Al-Sadi, Manaf Bin Yahya, Ahmad Almulhem. “Identification of image frag-
ments for file carving” . Proposed in World Congress on Internet Security (WorldCIS-

2013)

Deokar, Sanjivani Tushar. "Text documents clustering using k means algorithm." In-
ternational Journal of Technology and Engineering Science [IJTES] TM 1.4 (2013):
282-286.

Jing, Liping, et al. "Subspace clustering of text documents with feature weighting k-
means algorithm." Pacific-Asia Conference on Knowledge Discovery and Data Min-

ing. Springer, Berlin, Heidelberg, 2005.

Mythili, S., and E. Madhiya. "An analysis on clustering algorithms in data mining."
International Journal of Computer Science and Mobile Computing 3.1 (2014): 334-
340.

Guyon, Isabelle, et al., eds. Feature extraction: foundations and applications. Vol.

207. Springer, 2008.

Goldberg, Yoav. "Neural network methods for natural language processing." Synthe-

sis Lectures on Human Language Technologies 10.1 (2017): 1-309

48

[12] Umer, Muhammad Fahad, and M. Sikander Hayat Khiyal. "Classification of textual
documents using learning vector quantization." Information Technology Journal 6.1

(2007): 154-159.

[13] Martin, James H., and Daniel Jurafsky. Speech and language processing: An intro-
duction to natural language processing, computational linguistics, and speech recog-

nition. Upper Saddle River: Pearson/Prentice Hall, 2009.
[14] Compound file format introduction.

[15] Martin, James H., and Daniel Jurafsky. Speech and language processing: An intro-
duction to natural language processing, computational linguistics, and speech recog-

nition. Upper Saddle River: Pearson/Prentice Hall, 2009.

[16] Source: https://www.howtogeek.com/304622/what-is-a-.docx-file-and-how-is-it-

different-from-a-.doc-file-in-microsoft-word

[17] Richard III, Golden G., and Vassil Roussev. "Scalpel: A Frugal, High Performance
File Carver." DFRWS. 2005.

[18] Foremost 1.53 [Online]. Available: http://foremost.sourceforge.net

[19] Cohen, Michael I. "Advanced carving techniques." Digital Investigation 4.3-4 (2007):
119-128.

[20] Roux, Brian. "Reconstructing Textual File Fragments Using Unsupervised Machine

Learning Techniques." (2008).

[21] Pal, Anandabrata, and Nasir Memon. "The evolution of file carving." IEEE signal

processing magazine 26.2 (2009): 59-71.

[22] Zha, Xinyan, and Sartaj Sahni. "Fast in-place file carving for digital forensics." Inter-
national Conference on Forensics in Telecommunications, Information, and Multime-

dia. Springer, Berlin, Heidelberg, 2010.

[23] Poisel, Rainer, Simon Tjoa, and Paul Tavolato. "Advanced file carving approaches for

multimedia files." JOWUA 2.4 (2011): 42-58.

[24] Wei Lin and Ming Xia. Advanced Materials Research Vols. 433-440 (2012) pp 3028-
3032, 2012

49

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Al-Sadi, Azzat, Manaf Bin Yahya, and Ahmad Almulhem. "Identification of image

fragments for file carving." World Congress on Internet Security (WorldCIS-2013).
IEEE, 2013.

Roussev, Vassil, and Simson L. Garfinkel. "File fragment classification-the case for
specialized approaches." 2009 Fourth international IEEE workshop on systematic ap-

proaches to digital forensic engineering. IEEE, 2009.

Al-Sharif, Ziad A., Hasan Bagci, and Aseel Asad. "Towards the Memory Forensics of
MS Word Documents." Information Technology-New Generations. Springer, Cham,

2018. 179-185.

Garfinkel, Simson L., and Michael McCarrin. "Hash-based carving: Searching media
for complete files and file fragments with sector hashing and hashdb." Digital Investi-

gation 14 (2015): S95-S105.

Wagner, James, Alexander Rasin, and Jonathan Grier. "Database forensic analysis

through internal structure carving." Digital Investigation 14 (2015): S106-S115.

Aljaedi, Amer, et al. "Comparative analysis of volatile memory forensics: live re-
sponse vs. memory imaging." 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third International Conference on Social
Computing. IEEE, 2011.

Walters, Aaron, and Nick L. Petroni. "Volatools: integrating volatile memory into the

digital investigation process." Black Hat DC 2007 (2007): 1-18.

Calhoun, William C., and Drue Coles. "Predicting the types of file fragments." digital
investigation 5 (2008): S14-S20.

Sencar, Husrev T., and Nasir Memon. "Identification and recovery of JPEG files with

missing fragments." digital investigation 6 (2009): S88-S98.

Amirani, Mehdi Chehel, Mohsen Toorani, and Sara Mihandoost. "Feature-based Type
Identification of File Fragments." Security and Communication Networks 6.1 (2013):

115-128.

50

[35]

[36]

[39]

[40]

[41]

Li, Binglong, Qingxian Wang, and Junyong Luo. "Forensic analysis of document
fragment based on SVM." 2006 International Conference on Intelligent Information

Hiding and Multimedia. IEEE, 2006.

Zha, Xinyan, and Sartaj Sahni. "Fast in-place file carving for digital forensics." Inter-
national Conference on Forensics in Telecommunications, Information, and Multime-

dia. Springer, Berlin, Heidelberg, 2010.

Alherbawi, Nadeem, Zarina Shukur, and Rossilawati Sulaiman. "Systematic literature

review on data carving in digital forensic." Procedia Technology 11 (2013): 86-92.

Kwon, Hyukdon, et al. "A tool for the detection of hidden data in microsoft compound
document file format." 2008 International Conference on Information Science and

Security (ICISS 2008). IEEE, 2008.

Ahmed, Irfan, et al. "Fast content-based file type identification." IFIP International

Conference on Digital Forensics. Springer, Berlin, Heidelberg, 2011.

Suominen, Hanna. "Performance evaluation measures for text mining." Handbook of

research on text and web mining technologies. IGI Global, 2009. 724-747

Buckland, Michael, and Fredric Gey. "The relationship between recall and precision."

Journal of the American society for information science 45.1 (1994): 12-19.

51

	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENTS
	SUPERVISOR CERTIFICATE
	THESIS ACCEPTANCE CERTIFICATE
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS
	INTRODUCTION
	PROBLEM STATEMENT AND OBJECTIVES
	MOTIVATION
	CONTRIBUTIONS
	 THESIS STRUCTURE

	TECHNIQUES OF FILE CARVING AND TYPES OF FRAGMENTATION
	File Carving
	Difference between File Recovery and File Carving

	Fragmentation
	Clustering
	K-Mean Clustering Algorithm
	Hierarchical Clustering Algorithm

	Feature Extraction
	Bag Of Words Model

	Compound File Format
	A Brief History of the DOC Format
	FRAMEWORK FOR CARVING OF COMPOUND MICROSOFT WORD DOCUMENT
	The Introduction of Office Open XML (DOCX)

	EXISTING METHODOLOGIES FOR CARVING
	Quantitative Measures
	Precision
	Recall
	F-measure Metric

	PROPOSED METHODOLOGY
	CREATING OF RAM DUMP
	GROUPING SAME TYPE OF WORD COMPONENTS TOGETHER
	EXTRACTION OF TEXTUAL DATA
	TEXT SPELLING AND SPACING CORRECTION
	TEXT CLUSTERING
	Preprocessing

	EVALUATION METRIC

	EXPERIMENTS AND RESULTS
	EXPERIMENTS
	Experiment 1
	Experiment 2
	Experiment 3, 4 and 5

	RESULTS
	When File was being Viewed

	CONCLUSION and FUTUREWORK DIRECTIONS
	CONCLUSION
	FUTURE DIRECTIONS

	BIBLIOGRAPHY

