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ABSTRACT

With exponentially increasing number of users and their demand regarding data rate,
current 4G cellular networks need to be evolved to next Fifth Generation (5G) networks.
Heterogeneous Cloud Radio Access Network (H-CRAN) is the capable architecture for
future high data rate enabled, energy efficient networks.

H-CRAN differs from today’s cellular system by addition of extra number of Re-
mote Radio Heads (RRHs) within the vicinity of one Macro Base Station (MBS). This
provides high data rates to users with minimized interference by centrally controlling
the resource allocation. On the other hand, increased density of hardware in the area,
H-CRAN also consumes more grid power of the system.

To mitigate the greater power requirements for this type of dense network, Energy
Harvesting (EH) techniques are used to minimize the grid energy consumption. In
EH, energy is harvested from natural sources like solar, wind etc. By maximizing the
harvested energy usage instead of grid power, the system’s Energy Efficiency (EE) can
be improved significantly.

In this thesis, EE of an H-CRAN consisting of several Green RRHs (G-RRHs),
powered by EH modules are explored. A Mixed Integer Non-Linear Programming
(MINLP) problem is formulated which maximizes the EE of the system. Mesh Adap-
tive Direct Search (MADS) algorithm is used to optimize the problem. As a result
of this optimization, efficient power and resource allocation is done and higher EE is
achieved with low complexity and lower consumption of grid power.
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respectively.
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: Channel gain when user is connected to MBS or any GRRH Ri

respectively.

Φ
′n
M , Φ

′n
Ri

: Rayleigh Random Variable when user is connected to MBS or any
GRRH Ri respectively.

ð : Zero mean gaussian variable.

G0, H0 : Antenna Gain of MBS or GRRHs respectively.

do : Antenna far field reference distance.

dM , dRi
: Distance of User n from MBS and GRRH respectively.
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: Maximum storage capacity of battery of GRRH Ri

Eavail
Ri

: The available energy at GRRH Ri at any timeslot
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Ri
: Maximum Transmit power of MBS and GRRH Ri respectively

P static
M , P static

R : Static power consumption of MBS and GRRHs respectively.

µeffM and µeffR : Drain efficiency of MBS and GRRHs respectively

ptotal : Total Power consumption of Network
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Chapter 1

INTRODUCTION

1.1 Communication Networks - Past, Present and Future

In past few decades, a marvelous emergence of wireless communication in global mar-

ket has been witnessed. Even after years of growth, number of communication devices

are still progressively increasing even in some countries number of communication

devices have surpassed their population due to consumers need of seamless wireless

connectivity. In 1979, when Bell Labs [1, 2] proposed the concept of cellular commu-

nication systems, mobile communication systems witnessed their four generation and

are steps away from their very dense, complex but very efficient and data rich 5th gen-

eration. It started from 2.4 kbps in 1G to 100 Mbps of 4G. 1000x more data rate is

expected in 5G networks. The journey of cellular communication systems is depicted

in Fig. 1.1.

The first-generation networks (1G) were rolled out commercially in the 1980’s. 1G

mainly provided only voice services and was limited in terms of low quality, very small

system capacity and limited services. 1G systems lacked the digital processing and

were pure analogue systems with throughput up to 2.4 kbps. Typical 1G systems in-

cluded North American Advanced Mobile Phone Systems (AMPS) and British Total

Access Communication Systems (TACS) [3].

1.1.1 2G and 3G Networks

In early 1990’s, the second-generation (2G) mobile systems were rolled out commer-

cially as a digital communication system. As 2G was of digital nature of the system, the

system capacity and quality were improved significantly as compared to 1G. 2G also

supported low data rate services along with voice services. These positive edges, made

2G systems to receive a quick market boost and were spread out globally. 2G systems

are circuit switched networks with throughput up to 384 kbps. Typical examples being
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Figure 1.1: Journey of cellular networks

North American IS-95 (Interim Standard - 95) [4] and European GSM (Global System

for Mobile Communication) [5].

In the 21st century, third generation mobile systems (3G) were standardized under

the coordination of International Telecommunication Union (ITU) [6]. Based on Code

Division Multiplexing Access (CDMA) technology, 3G supported higher data rates,

system capacity and larger bandwidth. The services were more data oriented and was

capable of providing seamless user experience. 3G networks are both packet switched

and circuit switched digital networks with throughput up to 2Mbps. Major members of

3G standardization include Wideband CDMA (WCDMA) in Europe, CDMA2000 in

North America and Time Division - Synchronous CDMA (TD-SCDMA) in China [7].

Worldwide interoperability for Microwave Access, IEEE 802.16e (WiMAX) became

4th member technology of 3G global standards family in 2007 [8].
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1.1.2 4G LTE Networks

Long Term Evolution (LTE) proposed by Third Generation Partnership Project (3GPP)

was initial taste of 4G networks around 2004 [9]. LTE was CDMA based digital com-

munication system with higher data rates and IP based voice services. In 2010, 4G stan-

dards were laid down to overcome the drawbacks of 3G networks. With introduction of

orthogonal frequency division multiple access OFDMA and MIMO, 4G networks pro-

vides much higher data rates than 3G [10,11]. These networks are packet switched and

both data and voice communications are Internet Protocol (IP) based. 4G LTE consists

of a single radio access network node called evolved Node B (eNB). Throughput of 4G

networks reaches up to 100 Mbps.

1.1.3 5G Networks

A massive research and development is observed in cellular networks and mobile inter-

net for past decade [12, 13]. As the internet is transforming from only human users to

the internet of things (IoT), there is an explosive rise in number of machine to machine

modules with dense sensor networks and smart devices, loaded with multimedia-rich

applications such as high definition video conferencing, online gaming and social me-

dia platforms with huge amount of data communications. It is projected that smart

phones will surpass 86 percent of total mobile data traffic and 78 percent of mobile

data traffic will be video by 2021 [14]. The present LTE wireless networks are far

away to take such huge mobile data traffic burden, hence wireless communication is

entering new fifth generation (5G) networks. In comparison with current 4G networks,

5G networks are expected to deliver energy efficient performance with approximately

1000x more wireless capacity with 90 percent savings of energy consumption. Also,

with these high data rates, 5x reduced end-to-end latency and 10x higher batter life of

the devices will be key characteristics of 5G networks to provide uninterrupted user

experience [15, 16]. An illustration of 5G networks presented in [17] is given in Fig.

1.2.
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Figure 1.2: Illustration of 5G networks [17]

1.1.3.1 Cloud Radio Access Networks

To reach the goals mentioned above, topologies and architectures must be smoothly

evolved from traditional simple 4G to much complex, dense and heterogeneous 5G

architecture. Cloud radio access networks (C-RAN) and heterogeneous networks (Het-

Nets) with ultra-small cells architecture have been considered as potential enabler of

5G networks. In C-RANs, large number of low-cost, low-power remote radio heads

(RRHs) are deployed randomly in the coverage area. These RRHs are connected with

baseband (BBU) pool through fronthaul links. C-RAN has an advantage over tradi-

tional networks deployment with reduced propagation distance between base station

and user. Smaller distance with lesser interference allows network to achieve more sys-

tem capacity with very less power consumption. Moreover, centralized baseband pro-

cessing at BBU, interference can be mitigated by cooperative processing techniques.

Although C-RAN is much energy and cost-efficient architecture, but its performance is

degraded by fronthaul limitations and by the limit of maximum number of RRHs con-

nected to BBU. We cannot deploy too large number of RRHs due to implementation

complexity. Although C-RAN is explored extensively by search groups and imple-

mented by industry, it is still not straightforward solution for 5G networks.
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1.1.3.2 Heterogeneous Networks

To increase the system capacity in HetNets, along with one homogeneous cellular

macro base station with high transmission power under laid with several low powered

femto-cells, pico-cells and relay nodes collectively called small cells. Purpose of small

cells is to offload traffic from macro base station hence providing higher throughput

and higher edge data rates. All cells are connected to core network directly via back

haul links. A key lead of HetNets is the decoupling of control plane and user plane [18].

Small cell base stations provide data only service while control channel and signaling

are fully managed by macro base station. Unfortunately, the architecture of HetNets in

which macro base station and under laid small cell base stations share and reuse same

spectral resources, there is presence of high inter-tier interference. Although several in-

terference mitigation techniques have been proposed in literature [19,20], HetNets still

lag to deliver the 5G demands. Inter-cell coordinated multi-point access in HetNets

to reduce interference between macro base station and small cell base stations need

huge amount of signaling in backhaul link hence effecting the capacity of backhaul

link. Ultra-dense small cell may increase the capacity of the system but also increase

the consumption of energy by the system hence reducing the energy efficiency of the

system.

1.2 Heterogeneous Cloud Radio Access Networks

H-CRAN network is the hybrid of CRAN and HetNets. It acquires the cloud process-

ing feature from CRAN and several small cells of heterogenous nature from HetNets.

The CRAN in which there is also a Macro Base Station (MBS) is known as Hetero-

geneous Cloud Radio Access Network (H-CRAN). MBS do all the signalling directly

to user equipment to improve mobility and is connected to BBU pool via back haul

link. The User Equipment (UEs) can be connected to either MBS or any of RRH. UEs

with high data rate demand can be served by RRH and UEs with low data rates are

served by MBS. UEs can also be served by RRH, if MBS has high traffic and resources

cannot be allocated to any further UE. Resource allocation is done by BBU pool hence

minimizing the intra-tier interference. Hybrid nature of H-CRAN is shown in Fig. 1.3
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The main contribution of this thesis is summarized below:

• A thorough literature review on history and developments in cellular communi-

cation networks, energy harvesting and its implementation in cellular networks,

optimization in 5G cellular networks is presented. Presented literature review

will help in formulating the proposed problem and its solution.

• An H-CRAN architecture is considered in which several green RRHs powered

by harvested energy are deployed to increase the system capacity. Capacity of

system is increased significantly without putting any burden on grid energy.

• User association is maximized so that most of the user can be served constrained

by the QoS threshold. Admission control is considered to keep the system Key

Performance Indicators (KPIs) up to the mark. If any user does not fulfil the

minimum admission requirements, it will not be served.

• In practical scenario, rate of arrival of harvested energy and rate of traffic are

totally random in nature and can not be known precisely a priori, so power allo-

cation is also optimized to use the green energy efficiently.

• A less complex sub optimal algorithm MADS [21] is used to solve formulated

fractional MINLP problem which gives ε − optimal solution and allocates the

power and resources to a user very efficiently.

As the basic architecture of 5G and previous cellular networks has been discussed

briefly, the organization of rest of the thesis is as chapter II with previous work done on

energy harvesting and optimization in 5G networks specially in HCRAN networks are

thoroughly discussed. System model, formulated problem and optimization technique

is proposed in chapter 3. Simulation setup and results are discussed in chapter 4. Chap-

ter 5 concludes this thesis along with highlights on possible future work which can be

done.
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Figure 1.3: H-CRAN - As a hybrid of CRAN and HetNets Architecture

7



Chapter 2

LITERATURE REVIEW

2.1 Energy Harvesting

As discussed in previous chapter that 5G will be dealing with huge amount of data

traffic with very dense network architectures. As a result of this processing this huge

data traffic and maintaining the architecture will also result in highly increased energy

consumption resulting in larger carbon footprint of the mobile communication indus-

try. 2% of the global CO2 emission is contributed by information and communication

technology (ICT) industry. In this 2%, mobile communication contributes about 15-

20% [22]. Only the operation of BSs consumes 80% of consumption of energy in

mobile communication [23, 24].

To mitigate this huge energy consumption issue in 5G networks, a technique of en-

ergy harvesting is being focused by academia as well as industry. EH is the process

in which energy is generated from ambient environmental sources like solar, wind etc.

Fig. 2.1 shows different forms of ambient energy sources in natural environment.

Ambient 
Environmental 

Energy 
Sources

Mechanical 
Energy

Thermal 
Energy

Fluid Energy
Radiant 
Energy

Human Activity Pressure Wind Hydro Solar RF

Vibration

Figure 2.1: Different ambient energy sources in environment
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2.1.1 Energy Harvesting Integration Techniques

Energy harvesting can be integrated with a cellular system in three main techniques,

which are:

• Standalone EH

• Hybrid EH

• Simultaneous Wireless Information and Power Transfer (SWIPT)

In standalone EH, some entities of cellular system such as small cells base stations, are

solely connected to EH system. These entities are totally green and self powered. In

Hybrid EH integration, cellular system is both powered by grid energy and EH. In the

unavailability of harvested energy system uses grid energy. In SWIPT, system gets the

energy harvested from the radio frequencies through which data is being received. EH

module is able to separate the data stream and energy stream from RF waves. Mostly

in SWIPT, user equipment is mounted with EH modules which charges their batteries

with the energy extracted from the received data signal. These three integrations are

explained in Fig. 2.2.

2.1.2 Green 5G Networks

As the 5G standardization is in on-going phase, one of the most used terminology in

5G systems is ”Green”. Energy harvested green networks not only focus on improving

the EE but also offloads the dependency of system energy on electric grid. There are

several potential advantages of energy harvesting in 5G cellular networks. First from

the point of view of network operator, EH can reduce the cost of energy consumption

by deploying base stations powered by solar or wind energy. Base stations are the

eighty percent energy consumers in cellular networks. EH enabled BSs can use solar

energy for operation in daytime along with storing it in rechargeable batteries and at

night time, stored energy can be utilized along with the wind energy power generation.

Second from the consumer point of view, the lesser expenditure of running cellular

network, lesser will be the network utilization charges for the users of that network.

9
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Figure 2.2: Energy harvesting integration techniques

EH also speed up the roll out of the cellular network in remote areas which lack power

grid infrastructure.

2.1.3 Energy Harvesting and Industry

It is estimated that to operate an off-grid base station, approximately twelve solar pan-

els are sufficient and even able to transfer extra harvested power to electric grid through

sophisticated mechanism [25]. Industry and academia are focusing on making cellu-

lar networks greener and energy efficient. According to Pike Research statement it is

predicted that more than 390 thousand green stations will be deployed from 2012 to

2020 [26]. Motorola and Sony Ericsson have considered deployment of solar pow-

ered base stations several years ago [27]. Telekom company deployed first base station

which is powered by wind energy, in Eibesthal in Lower Austria [28]. NTT DoCoMo

has already started environmentally friendly, disaster proof green base station empow-

ered by wind and solar energy [29]. Illustration of base station is shown in Fig. 2.3.

Hence EH can be a vital part of future 5G networks. EH not only reduces the consump-

10



Figure 2.3: Model green base station illustration by NTT DoCoMo

tion of grid energy of the system but also helps in making the environment cleaner.

2.2 Optimization in 5G Heterogeneous Networks

The necessity for implementing green communication has been recognized by the re-

search groups and the industrial assemblies worldwide [30], [31]. The upcoming 5G

shift will be focusing on new techniques in network deployment, resource allocation,

grid energy management and base stations that are smart enough in traffic offloading

and efficient sleep control to maximize the EE. Studies target the improvement of EE

and cost minimization of the system by minimization of transmit powers of base sta-

tions and minimization of grid energy consumption with the help of traffic shaping and

EH and green energy management respectively [32]. User association, resource alloca-

tion and base station sleep control have also been focused in literature to improve the

EE [20, 33].
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2.2.1 Grid Energy Minimization

EH is widely implemented in 5G HetNets and is used in the form of standalone EH

enabled base stations, hybrid energy enabled base stations and SWIPT. In this section,

grid energy minimization with the help of EH implementation is briefly discussed.

A multi-cell cooperation scheme is discussed in [34], a cooperative sleep mode and

transmission operation is proposed to confront the inter-cell interference and conserve

the network energy i.e., grid energy minimization. The study also investigates the inte-

gration of hybrid energy sources in proposed system to get green multi-cell cooperation

and further offload energy burden from grid system.

In [35], simultaneous data transmission and power transfer is studied. Both informa-

tion and energy are transfer to information and EH receivers. An optimization problem

for minimization of transmit power across the network is formulated. Problem is sub-

jected to data reliability, information security and EH. To achieve rank-one optimal

solution semi-definite relaxation technique is used.

In [36], a HetNets architecture which consist of MBSs and EH enabled small-cell

base stations is considered. Due to dense nature of the system, joint optimization prob-

lem is formulated for maximization of the total system utility of both network operators

and end users. Optimization problem is solved in two stages due to complexity and in-

terference among the small cell base stations. These two phases are location update

phase and small cells cooperation and association phase. Location update keeps the

track of available energy and traffic load that is left in small cell base station. On the

basis of this location update, an optimal user association vector is formulated with the

help of two-side matching algorithm. The proposed algorithm in this study improved

the system efficiency effectively.

[37] proposed a distributed delay aware and energy aware algorithm for user asso-

ciation in 3 tier HetNets architecture with hybrid energy. Algorithm aims to minimize

the consumption of grid energy by maximizing the usage of green harvested energy.

Algorithm also ensures the QoS by the average traffic delay minimization. A convex

optimization problem is expressed which is constrained with traffic delay and on-gird

power consumption constraints. Results shows that proposed algorithm succeeds in al-
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locating the green power. It is also able to adjust the base station traffic load by efficient

user association resulting in minimized traffic delay.

[38] also adopted optimization of green power allocation and user association to

minimize the consumption of grid energy in HetNets. A two-dimensional optimization

problem is studied in which user association is optimized in space dimension and green

power allocation is optimized in time dimension. Results of simulations shows that the

proposed optimal offline algorithm effectively conserve grid energy as well as reduces

peak consumption of on-grid energy.

[39] studies the minimization of the grid energy consumption by jointly investi-

gating admission control, sub-carrier assignment, power allocation and transmission

time. System is hybrid energy enabled OFDMA based with battery leakage constraint.

Formulated optimization problem is solved using Lyapunov optimization technique.

Authors also proposed battery leakage aware algorithm with dynamic resource alloca-

tion policy to tackle the minimization problem. By using Lagrange dual theory and

nonlinear fractional programming, authors further devised a bisection based iterative

algorithm. Simulation results support the feasibility of the theoretical analysis of pro-

posed algorithm.

In [40] grid energy minimization problem is optimized in OFDMA based hybrid

energy powered cellular network. Formulated problem is constrained with QoS con-

straint. A sub-optimal online resource allocation algorithm is proposed using Lagrange

dual method and stochastic optimization theory.

[41] also studies the energy minimization in hybrid energy empowered cellular net-

work. Long term average network service cost is taken as the performance metric which

include both grid power consumption and QoS achievement. Lyapunov optimization-

based BS assignment and power control algorithm is proposed to optimize the for-

mulated problem. Proposed algorithm is less complex online algorithm that make deci-

sions only on the basis of the instantaneous information without having any information

regarding channel and EH processes.

In [42] a game theoretic approach is discussed for energy cooperation in self pow-

ered small cells to minimize the grid energy. Authors proposed two algorithms in the
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study, one is centralized and one is decentralized. In decentralized approach, BSs with

redundant harvested energy can sell their energy to energy deficit BSs. Algorithm uses

matching theory to make the transaction of energy between the BSs. In second central-

ized approach different values of portions of energy are pre-defined. BSs are involved

in double-auction bid algorithm on the basis of their bids. An optimization is carried

out to minimize the usage of smart grid for transferring energy between the BSs. Au-

thors demonstrate that second algorithm is more truthful and balanced in budget. Both

algorithms reduce the renewable energy consumption considerably.

2.2.2 Capacity Maximization

[43] considered EH enabled small cell based cellular system. A sleep-awake schedul-

ing scheme has been proposed. Along with optimized power control, proposed scheme

maximizes the capacity of the cell by 25%. A near optimal heuristic polynomial-time

algorithm is proposed for the formulated mixed integer programming problem. Ca-

pacity is maximized with maximum battery capacity constraint and energy causality

constraint. It is proposed that keeping the small cell BSs always active may not be

always good method to maximize the capacity.

System capacity of EH empowered HetNets is maximized by adaptive user associ-

ation in [44]. In contrary to user association based on constant transmit power of BSs

in grid powered cellular system, an adaptive user association algorithm with varying

transmit powers is proposed. The proposed technique is expressed as an optimization

problem which maximized the number of users that are accepted by the system and

minimized the usage of radio resources at the same time. Proposed online heuristic

algorithm makes the user association decision on the basis of available resources in

timely manner hence reducing the user association delay.

In [45] energy harvesting is only in relay nodes through which base station commu-

nicates with edge users. Self-sustaining relay nodes harvest energy from the received

signals from base stations for processing and forwarding information to the edge users.

Study optimizes transmission power of BS, transmission power of relay node and the

separation of energy from the received signal for EH operation and processing the sig-
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nals at relay node jointly. Three separate optimization problems are formulated for

capacity maximization, throughput fairness and sum power minimization. Due to lim-

ited radio resources and high inter-cell interference, formulated problems are highly

non-convex. Successive convex approximation approach is applied to derive an itera-

tive algorithm, which converts the three on-convex problems in to set of convex prob-

lems which are solved by interior-point method. Results confirm that joint optimization

solutions effectively improve the network performance

[46] also considers SWIPT mode for EH in connected devices. A small cells based

network overlaid with a macro cell is proposed in which resource allocation is inves-

tigated. Formulated MINLP problem is optimized using scalarization technique and

is converted to convex problem by relaxation of some variables and introducing some

new auxiliary variables. Results show that efficient resource allocation is done with

improvement in energy harvesting rate.

2.2.3 Energy Efficiency Maximization

In [47], a non-linear in nature fractional programming problem is proposed to opti-

mize the transmit power, consumption of grid power and sharing of energy in small

cell base stations which are empower with hybrid energy sources. Optima allocation

of resources is carried out using Lagrangian duality method based energy efficient al-

gorithm. Results show that proposed algorithm efficiently controls the consumption of

power to substantially improve the system EE.

[48], system’s EE is maximized by controlling power allocation and energy man-

agement among the cells in heterogeneous networks with hybrid energy power. By

minimizing the amount of energy consumed from the constant energy source and max-

imizing the transmitted data per constant energy unit, the proposed fractional program-

ming problem maximized the system EE substantially. An optimal iterative offline

algorithm is proposed to solve the problem. Simulation results depict that algorithm

utilizes harvested energy more efficiently and by increasing the data transmission per

unit energy improved EE is obtained.

[49] uses first harvest-then-transmit technique on user level to maximize the energy
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level of the user which is expressed as ratio of system throughput to amount of har-

vested energy. A wireless powered communication system is considered in which a

user has to harvest energy first then performs communication. A resource allocation

algorithm proposed which maximizes the individual EE of the users. Proposed EE

problem is non-convex problem and to solve it authors first convert the problem into

its corresponding parameterized subtractive form and then efficient iterative two-layer

algorithm is applied to get the optimal results. Simulation results depict that proposed

algorithm yields better EE performance that conventional schemes by fairness-based

nature of the algorithm.

[50] investigates the SWIPT energy harvesting technique in cloud based cellular

system. In this study, an energy efficient allocatioin of resources optimization problem

for uplink is considered. In order to obtain sufficient amount of energy harvested from

ambient RF frequency, a ractenna is equipped with the user equipment which is able to

harvest energy from six frequency bands at the same time. These six frequency bands

are Wi-Fi (2.4 - 2.45 GHz), UMTS (2150 - 2200 MHz), GSM1800 (1850 - 1900 MHz),

GSM900 (850 - 910 MHz), LTE (750 - 800 MHz) and DTV (550 - 600 MHz). This

wide spectrum of RF frequency enables users device to harvest more energy than con-

ventional single frequency energy harvesters. Objective of the proposed optimization

problem is maximization of the energy efficiency which is constrained by the energy

consumption and data rate requirements. Quantum-behaved particle swarm optimiza-

tion technique is used to solve the problem with sub-optimal solution and low com-

plexity. Results show that greater amount of energy is harvested resulting in improved

EE of the system. [51] introduces massive Multiple Input Multiple Output (MIMO)

technology along with EH technique in small cells to maximize the EE of the sys-

tem. Capacity is maximized in HetNets based cellular system with energy efficient

power allocation and admission control using a heuristic algorithm while taking energy

causality constraints in to account.
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2.3 Optimization in 5G HCRAN

Due to its cloud-based nature, H-CRAN as a promising candidate is also been studied

in literature [18,52]. According to [18], the motivation of H-CRANs is to assimilate the

cloud computing technology into HetNets so that a large-scale centralized cooperative

information processing and network functionalities can be realized, and thus spectral

and EE performance is considerably improved beyond existing HetNets and CRAN.

In [53], CRAN architecture is considered in which several BSs are solely powered

with energy harvesting. In addition to these self-operated BSs, these BSs also transmit

wireless information as well as energy to the data receivers and energy receivers si-

multaneously. A throughput maximization problem is formulated obtain at joint beam

forming design over finite time. Problem is constrained with the amount of sufficient

RF charged energy of the energy receiver. The formulated convex problem is relaxed to

convex problem and is upper bounded by the rank one optimal values of relaxed form

of the problem.

In [54], CRAN architecture with RRHs that are solely powered with harvested en-

ergy is considered. By jointly considering the energy harvesting process and wireless

channel conditions, optimization of a utility function problem is formulated. Problem

decomposition method is used based on Lyapunov techniques for optimization. De-

composed problem separately optimizes the data scheduling, energy harvesting and

resource allocation. An online energy efficient algorithm is proposed which ensures

the stability of both energy buffers and data buffers.

[55] explores the multi-tenant network slicing in H-CRAN networks. Proposed

dynamic network slicing considers tenant’s priority, baseband resources QoS, interfer-

ence and capacities of fronthaul and backhaul links. The upper level of sliced network

manages baseband resource allocation, user association and admission control while

the lower level looks after the radio resource allocation. The proposed schemes show

improved network throughput and QoS performance. This work lacks the green energy

integration.

[56] authors proposed a tiered framework for the design and analysis of H-CRAN

with EH aided RRHs and heterogeneous internet service provider. The proposed hi-
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erarchical framework works efficiently by trading energy model between the ISPs and

utilizing the energy sharing model. Study also incorporated D2D communication based

on available energy and traffic load status of the RRHs. Using multi time scale Markov

decision processes (MMDP), a multiple time-scale energy scheduling scheme is pro-

posed. EH rates, channel states and user association are considered while designing the

proposed scheme. Results show that the proposed algorithm significantly reduces the

energy consumption cost of the network.

[57], EE is maximized in H-CRAN by using online learning model to optimize

the resource and power allocation backed by test bed implementation and simulation

results. Approximated online learning methodology is proposed to jointly allocate re-

sources and energy to the users. Sophisticated frequency partitioning is proposed to

mitigate the interference. Results include improved EE, SE, bit error rate and data rate

in the system.

[58] considers H-CRAN network in which macro BS is powered with grid energy

and RRHs are powered solely with green energy. A resource allocation problem is

formulated on the basis of which a new problem with maximizes the utilization of green

energy, is formulated. Proposed problem is evaluated by Lagrange dual decomposition

method. Results express that proposed algorithm increases the green energy utilization

that leads to decreased grid energy consumption.

[59] considers the co-operative beam-forming with front-haul capacity and stable

data queue improvement in EE of multimedia rich H-CRAN. An optimization prob-

lem which maximizing the EE of a queue aware H-CRAN system is formulated which

is constrained by individual fronthaul capacity and interior interference. The problem

is reformulated on the basis of Lyapunov optimization technique. After transforma-

tion, this problem is now converted to a co-operative beam forming design algorithm

which is constrained by inter-tier interference, instantaneous power and average power.

To solve the reformulated problem, generalized weighted minimum mean-square er-

ror technique is used. Simulation shows the achievement of trade-off between EE and

queuing delay strictly depending on the fronthaul capacity constraint.

In [60], to mitigate the inter-tier interference between RRHs and high power nodes
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(HPN) and to improve the system EE, characterization of association of users with RRH

or HPN is considered. Soft fractional frequency reuse (S-FFR) is further enhanced to

achieve the objective. Based on constraint of association of users and enhanced S-FFR,

a non-convex EE maximization problem is formulated for OFDMA based H-CRAN.

The non-convex problem is re-formulated to an equivalent convex feasible problem and

resource and power allocation expressions are derived in close form by using Lagrange

dual decomposition method. EE is improved significantly by using e-SFFR.

[61] studies a joint resource allocation and congestion control optimization to en-

ergy efficient trade-off between throughput and delay. A stochastic optimization prob-

lem if formulated, which maximizes the average throughput constrained by required

EE, power allocation, admission control, resource allocation and user association con-

straints. Lyapunov optimization technique is used decompose the formulated problem

in three sub-problems, which can be solved in each slot in slotted downlink H-CRAN

system. Results show that proposed solution stabilizes the queue and optimizes the

power consumption of the system.

[62] considers user association, power allocation and admission control to maximize

the throughput of the system. The formulated problem is mixed integer non-linear

programming problem and is of NP-Hard nature. The NP-Hard problem is simplified

using Outer Approximation Approach (OAA) from linear programming. OAA ensures

the convergence of the problem in a finite computations. Summarized literature review

is given in Table. 2.1.

2.4 Common Objectives Functions and Constraints

After going through the literature review in previous section, some common objective

functions and constraint functions in network optimization problems can be extracted.

Few of the common objective functions are listed below:

• User association maximization.

• Throughput maximization.

• Transmit power minimization.
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Ref. Objective Constraints Problem Type Solution Technique EH U.A P.A A.C

Centralized/

Decentral-

ized

[34]

Multicell Coop-

eration

Max. Power, Max. Capac-

ity
NP-Hard Problem decomposition X X X Decentralized

[35]

Min. transmit

power

Max. SNIR, Data reliabil-

ity

Semidefinite program-

ming
SeDuMi solver by CVX X X Decentralized

[36]
Traffic Shaping

Max. Power, Max. Capac-

ity
NP Hard Optimization X X Decentralized

[37]
Min. Grid Energy

QoS constraint, Traffic

Delay
Convex problem IDEA algorithm X X X X Decentralized

[38]
Min. Grid Energy

Energy Causality, Battery

Capacity
Convex prob. Convex optimization X X X Decentralized

[39]
Min. Grid Energy

Energy Causality, Min

Rate
Stochastic problem

Lyapunov optimization

theory
X X X Decentralized

[40]
Min. Grid Energy

QoS constraint, Max.

Transmit Power
Convex Problem

Lyapunov optimization

theory
X X X Decentralized
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[41]
Min. Grid Energy

Energy Causality, Min.

Throughput
Markov decision process Standard MDP algorithms X X X Decentralized

[42]
Min. Grid Energy

Energy Consumption by

buyer
Matching theory Game Theory X X Decentralized

[43]
Max. Capacity

Energy Causality, Battery

Capacity
Convex and mixed integer Heuristic X X Decentralized

[44]
Max. Capacity

BS resources, Connectiv-

ity
NP-Hard

Gradient Decent based al-

gorithm
X X Decentralized

[45]
Max. Capacity Max. Transmit Power Non Convex

Difference -of-convex-

function prog.
X X Decentralized

[46]
Max. Capacity Min. Throughput

Mixed Integer Non-Linear

Programming

Scalarization of multi ob-

jective prog.
X X Decentralized

[47]
Max. EE

Energy Causality, Max.

Capacity

Non-Linear Fractional

Programming

Lagrangian Duality

Method
X X Decentralized

[48]
Max. EE Energy Causality, QoS Non-Convex

Convex Lagrange func-

tions
X X Decentralized
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[49]
Max. EE Rate Constraint Non-Convex 2-layer iterative algorithm X X Decentralized

[50]
Max. EE

Energy Causality, Min.

data rate

Mixed Integer Non-Linear

Programming
QPSO X X X Decentralized

[51]
Max. EE

Energy Causality, Trans-

mit Power
Non-Convex

Difference of convex pro-

gram
X X X Decentralized

[53]
Max. Throughput Energy Causality Non-Convex Constraints relaxation X X Centralized

[54]

Max. User Asso-

ciation

Energy Causality, Stable

Data Queue
Stochastic problem Lyapunov Optimization X X X Centralized

[55]
Max. Throughput

User Association, QoS,

Transmit Power

Dual Optimization Prob-

lem

Lagrange dual decomposi-

tion
X X Centralized

[56]
Min. Energy Cost

Energy Causality, user as-

sociation
Stochastic problem

Multi-time scale Markov

decision process
X X X Centralized

[57]
Max. EE

User Association, QoS,

Transmit Power

Mixed Integer Non-Linear

Programming

Model Based Dynamic

Programming Problem
X X Centralized
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[58]
Max. EE

Energy causality, Min.

data rate

Mixed Integer Program-

ming

Lagrange dual decomposi-

tion
X X X Centralized

[59]
Max. EE

Max. Transmit power,

Min. data rate
Non-Linear Programming

Lyapunov optimization

technique
X X Centralized

[60]
Max. EE

QoS Constraints, user as-

sociation

Mixed Integer Program-

ming

Lagrange dual decomposi-

tion
X X Centralized

[61]
Max. Throughput

QoS constraint, Transmit

Power
Stochastic problem

Lyapunov optimization

technique
X X Centralized

[62]
Max. Throughput

QoS constraint, Transmit

Power

Mixed Integer Non-Linear

Programming

Outer Approximation Al-

gorithm
X X Centralized

This

work
Max. EE

Energy Causality, QoS,

Transmit Power

Mixed Integer Non-Linear

Programming
MADS X X X X Centralized

Table 2.1: Literature Review: A.D=Admission Control,

U.A=User Association, P.A= Power Allocation, EE=Energy

Efficiency
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• Grid energy minimization.

• Harvested Energy consumption maximization.

• Energy Efficiency maximization.

• Energy cost minimization.

Few of the common constraint functions are explained below:

2.4.1 User Association

User association constraint defines that a single user must be connected to single BS

for communication. It is usually a binary constraint having value of {0,1}.

2.4.2 Maximum transmit power

This constraint makes sure that the transmission power of all connections of the BS

must be less than or equal to the total transmit power of the BS. Similarly transmission

power of the user must be less than or equal to its total transmit power.

2.4.3 QoS constraint

QoS constraint makes sure that the data rate assigned to the user must be equal to or

greater than the minimum threshold defined by the operator. If the channel conditions

do not allow to provide the data rate equal to or greater than the threshold than the user

will not be allowed to connect to the specific BS.

2.4.4 Energy Causality

This constraint is applied in the problems where the system is solely powered with

harvested energy. This constraint makes sure that the amount of energy stored in the

battery or incoming harvested energy rate (in case where no battery is attached) must

be equal to or greater than the static power consumption plus minimum transmit power

required to connect with a user.

Along with above mentioned constraints, battery capacity constraint, data buffer con-

straint, admission control constraints are also being used in the literature.

It is observed from the literature review that studies focus solely on resource al-

location, power allocation, EE optimization and EH integration. The lack of energy
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efficient joint power and resource allocation in H-CRAN based cellular network that

is also aided with harvested energy, is key reason of motivation for the proposed work

i.e., to take into account all these metrics to optimize EE of H-CRAN cellular network.
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Chapter 3

SYSTEM MODEL AND PROPOSED TECHNIQUE

3.1 System Model

CRAN consist of BBU and several RRHs. BBU is a centralized processing and sig-

nalling unit, connected to all RRHs via front haul links. The CRAN in which there is

also a MBS is known as H-CRAN. MBS do all the signalling directly to user equip-

ment to improve mobility and is connected to BBU pool via back haul link. Proposed

system model considers H-CRAN consisting of only one MBS, which is connected to

grid power and I number of Green RRHs (GRRHs), which are solely connected to har-

vested energy (solar, Wind, etc.). Energy harvested in GRRH can be stored in battery

connected to them. GRRH can only serve when it has sufficient energy to establish the

communication link. Centralized BBU have knowledge of power status of every GRRH

connected to it so that it can decide whether to assign resources to them or keep them

on sleep until there is enough energy stored in battery. There are N number of User

Equipment (UEs) which can be connected to either MBS or any of GRRH. UEs with

high data rate demand can be served by GRRH and UEs with low data rates are served

by MBS. UEs can also be served by GRRH, if MBS has high traffic and resources can-

not be allocated to any further UE. Efficient user allocation is done by centralized BBU

pool. Proposed system model is shown in Fig. 3.1.

3.1.1 Resource Allocation Model

Proposed model considers downlink, OFDMA based H-CRAN. Let there be one MBS

M and i GRRHs such that i ∈ R = {1, 2, ..., I}. There are n number of users where

n ∈ N = {1, 2, ..., N}.

Let xns be the binary indicator for user connection mode, i-e, user is either connected

with MBS or any GRRH Ri, where s ∈ S and S = {M,R1, R2, R3, ..., RI}. This

mode selection indicator can be written as: xns = {0, 1}∀n ∈ N , s ∈ S. Let yn be the
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Figure 3.1: System Model - Downlink in H-CRAN with EH powered RRHs and grid
energy powered MBS

user selection indicator which decides whether user is admissible to connect with MBS

or any GRRH or not, such that, xns ≤ yn. Let pnM and pnRi
be the power allocated to

user n while connected to MBS or any GRRH Ri respectively. Channel gain of MBS

and GRRH is denoted by φnM and φnRi
respectively and stated as:

φnM = φ
′n
MðGo

(
do
dM

)α
φnRi

= φ
′n
Ri
ðHo

(
do
dRi

)α
(3.1)

where φ′n
M and φ′n

Ri
are Rayleigh random variables for MBS and GRRHs respectively.

ð be the lognormal shadowing. Go and Ho are the antenna gain for MBS and GRRH

respectively. do is antenna far field reference distance. dM and dRi are the distances of

UE n from MBS and GRRH Ri respectively with path loss constant α.

According to proposed resource allocation policy, the total data rate of the system

as:

ςtotal =
∑
n∈N

∑
s∈S

xns c
n
s (3.2)
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where cns is the data rate of user n served by MBS or any of GRRHs and is given by:

cns = log2

(
1 +

pnsφ
n
s

N0

)
∀n ∈ N , s ∈ S (3.3)

where pns is power received by the UE n from MBS or any GRRH Ri. N0 is the channel

noise suffered by the signal.

3.1.2 Energy Model

As mentioned earlier that all GRRHs are solely operated by ambient source of energy

which is harvested and stored in a rechargeable battery though EH modules such as

wind turbines and solar panels at each GRRH location. Let maximum storage capacity

of battery of GRRH Ri is εi. Let Eavail
Ri

denotes the available energy at GRRH Ri and

eRi
denotes the amount of energy harvested by GRRH Ri in each time slot such that:

0 ≤ eRi
≤ γRi

(3.4)

where γRi
is the maximum amount of energy that an GRRH Ri can harvest in one

time slot. EH model is proposed to be a random process and for any GRRH, γ(t) is

independent and identically distributed over [0, γmax] at each time slot t i.e., γRi
(t) ≤

γmax. It is assumed that proposed system may have no a priori information about γRi
(t)

which is practically valid when no statistical data is available for EH process.

According to proposed resource allocation model the total power consumption of

MBS and GRRH Ri is given by:

Ps = µeffs

∑
n∈N

pns ∀s ∈ S (3.5)

where Ps is further explored as:

PM = µeffM

∑
n∈N

pnM (3.6)

PRi
= µeffR

∑
n∈N

pnRi
∀i ∈ R (3.7)

where µeffM and µeffRi
are the drain efficiency of MBS and GRRH Ri respectively. Drain

efficiency is the ratio of RF output power to the input direct current power of the ampli-
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fier. It is assumed that drain efficiency of all GRRHs are same. Total power consump-

tion of the system will be:

ptotal =
∑
s∈S

Ps + P static
M + P static

R (3.8)

where P static
M and P static

R are static power consumption of MBS and GRRH respectively.

Now as the total power consumption of GRRHs is known, the energy available at

GRRH will be given as:

Eavail
Ri

= [eRi
− P static

R , 0]+ (3.9)

where [x]+ = max{x, 0}. Equation (3.10) shows that to serve any UE, GRRH Ri

should harvest the energy greater than the static power consumption. Successful com-

munication by GRRH is constrained by the available energy in its battery, that is:

Eavail
Ri
≥ PRi

∀i ∈ R (3.10)

Moreover, as the battery has a finite maximum storage capacity it is possible that en-

ergy charging overflows the battery capacity. To limit the charging of battery to the

maximum battery capacity, following limitation is considered:

Eavail
Ri

+ eRi
≤ εRi

(3.11)

3.2 Problem Formulation

For a given period of time, number of transmitted bits consuming one joule of energy

is termed as EE. Hence EE of the system will be the ratio of the total data rate of the

system to the the total consumption of power, and is given by:

EE =
TotalDataRate

TotalPower
(3.12)

If the total capacity is in bits/sec and total power is in watts then EE can be measured

in bits/sec/watt or bits/joule. This classic metric of EE does not take into account the

spectral efficiency (SE) of the system. System capacity per unit of bandwidth is defined

as SE and is measured in bits/sec/Hz. Hence the resulting metric bits/sec/Hz/watt also
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take the SE into account. According to proposed system model, EE can be stated as:

EE =
ςtotal
ptotal

(3.13)

After defining EE, an EE maximization problem is formulated with objective function,

U , mathematically stated as:

U(x,y,p) =

∑
n∈N

∑
s∈S x

n
s c
n
s

P static
M + P static

R +
∑

s∈S Ps
(3.14)

subject to following constraints:

C1 :
∑
s∈S

xns ≤ 1 ∀n ∈ N

C2 : cns ≥ ynC
n
min ∀n ∈ N

where

xns ≤ yn ∀n ∈ N , s ∈ S

C3 : pnM ≤ ynPmax
M ∀n ∈ N

C4 : pnRi
≤ ynPmax

Ri
∀n ∈ N , i ∈ R

C5 :
∑
n∈N

pnM ≤ Pmax
M

C6 :
∑
n∈N

pnRi
≤ Pmax

Ri
∀i ∈ R

C7 : Eavail
Ri
≥ PRi

+ P static
R ∀i ∈ R

C8 : Eavail
Ri

+ eRi
≤ εRi

∀i ∈ R

C9 : xns , y
n ∈ {0, 1} ∀n ∈ N , s ∈ S

(3.15)

where Cmin
n is the minimum data rate that can be allocated to a user by MBS or GRRH.

Pmax
M and Pmax

Ri
are the maximum transmit powers of MBS and GRRHs respectively.

P static
R and P static

M are the static power consumption of GRRHs and MBS respectively.

Static power is used to power up the circuit board, cooling system, front haul and

back haul power in GRRH and MBS respectively. Constraint C1 ensures that the user

is connected to MBS or any one of the GRRHs at a given time. Constraint C2 is

the QoS constraint ensuring the minimum data rate that can be allocated to a user.
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Constraints C3 and C4 ensure that if user is not connected to any base stations its power

will not be taken into account. Constraints C5 and C6 are maximum power constraint

that MBS and GRRHs can transmit to their users respectively. Constraint C7 is the

energy causality constraint which ensures that energy stored in the battery should be

equal to or greater than the transmit power needed for communication and static power

consumption of GRRH. Constraint C8 expresses the battery overflow constraint, i.e.,

stored energy in the battery cannot exceed the maximum battery capacity. Constraint

C9 limits the value of resource allocation indicator to binary values {0,1}.

3.3 Proposed Technique

For proposed optimization problem, Mesh Adaptive Direct Search (MADS) algorithm

[21] is used. This method is an iterative algorithm which performs an adaptive search

on the tower of basic meshes on domain space along with the control over resizing and

refinement of the mesh. MADS algorithm is composed of a search and poll method as

in each iteration there are two steps called SEARCH step and POLL step. The objective

of an iteration in MADS is to find the function minimum among some trial points on

a predefined mesh of points with the help of SEARCH and POLL steps. In SEARCH

step solutions over the trial points are calculated and compared with current incumbent

point. If there is a better solution than the current point is found, then it is updated

with new improved solution point as a starting point for next iteration. If SEARCH

step fails in finding the improved solution, then the POLL step is invoked which tries

to find the solution with its new parameters. If POLL also does not succeed in finding

the improved solution, the iteration then be called an unsuccessful iteration. The mesh

is redefined by reducing its size and hence increasing its resolution, and whole process

is repeated. The pseudo code explaining the algorithm is depicted in Fig. 3.2. The

four main steps of the algorithm, initialization, SEARCH step, POLL step, parameter

update, are explained in detail below:

3.3.1 Initialization

Iteration is initialized given x0 ∈ Ω where Ω is the domain space and x0 is the initial

iteration. Mesh size, poll size and direction set are also defined in this step. Trial
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Figure 3.2: Flow chart of Mesh Adaptive Direct Search (MADS) algorithm
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points will be the member of current mesh Mk which is constructed with the help of

direction set D ⊂ Rn → R ∪ {+∞} having finite number of nD directions scaled by a

mesh size parameter 4m
k ∈ R+. Mesh is not actually constructed but just overlies the

MADS algorithm. Mesh will be defined as in [21]:

Mk =
⋃
x∈Sk

{x+4m
k Dz z ∈ NnD} (3.16)

where Sk is set of points where objective function f had been evaluated by the start of

first iteration.

3.3.2 SEARCH Step

After initialization the SEARCH step tries to trace a function f minimum over Ω by

assessing fΩ at some trial points. At each iteration, algorithm generates a finite number

of trial points. Among these trial points the infeasible ones are discarded, and the

feasible ones are considered. At the feasible trial points, objective function values

are compared with the current value fΩ(xk), i.e., the best value of feasible objective

function, found so far. Strategy same as Generalized Pattern Search (GPS) algorithm

can be used in the SEARCH step to generate the points [21, 63]. When an improved

mesh point is found, its up to the user to continue to search further improved solution

point or stop the algorithm. In either case the next iteration will be started with new

improved incumbent solution point xk+1 ∈ Ω such that fΩ(xk+1) < fΩ(xk) with mesh

size parameter4m
k+1 equal to or larger than4m

k .

3.3.3 POLL Step

When the SEARCH step is failed to locate an improved mesh point then the POLL

step is called before the iteration is terminated. The POLL step explores the space

of optimization variable locally near the current incumbent solution xk. POLL steps

involves another parameter called poll size parameter4p
k ∈ R+ for iteration k. The set

of trial points generated by the POLL step is called frame. This frame is constructed

using current incumbent point xk as a frame center and the new direction set Dk. Dk

is constructed with the help of mesh and poll size parameters4m
k and4p

k respectively
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such that Dk is not the subset of D. MADS frame defined in [21] is as follow:

Pk = {xk +4m
k d : d ∈ Dk} ⊂Mk (3.17)

The way4m
k is updated should satisfy that4m

k ≤ 4
p
k and limk∈K4m

k = 0 if and only

if limk∈K4p
k = 0 for all k ∈ K. If the poll step finds an improved solution then it

moves its frame centre xk to the new improved point xk+1 for next iteration k + 1. If

the POLL step does not succeed in finding the improved mesh point then the frame will

be labeled as a minimal frame and the frame center xk is said to be the minimum frame

centre. This leads to the mesh refinement, i.e., mesh size is reduced to increase the

resolution of the mesh for next iteration: 4k+1 < 4k. This whole process is shown in

the flow chart given in Fig. 3.2.

3.4 Complexity Analysis of MADS

Unlike traditional optimization techniques which require first or higher derivative infor-

mation to get to optimal solution, MADS algorithm has capability to solve a nonlinear

programming problem without requiring information about the gradient of the objective

function. MADS, uses extreme barrier approach with the constraints, by considering

the objective function as infinity for infeasible points and treats the problem as un-

constrained programming problem [21], hence reducing its computational complexity.

Global optimal solution can be obtained Exhaustive Search Algorithm (ESA) but its

complexity increases exponentially as the number of users in the network is increased.

Let C denotes the computational complexity of an algorithm and N be the number of

users than complexity of ESA will be given as:

C = 22N (3.18)

But with MADS, ε− optimal solution can be obtained in finite number iterations [66].

MADS converges in finite number of iterations with independence of initial point

knowledge and the gradient of the objective function. Complexity of MADS is given

by:

C =
N2

ϑ
(3.19)
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where ϑ is the error tolerance of ε− optimal solution from the global optimal solution.

Similarly, complexity of OAA is given by:

C =
N2ω

ϑ
(3.20)

where ω denotes the number of constraints [62]. Complexity of OAA is number of con-

straints times higher than the complexity of MADS. Computational complexity trend

of ESA, MADS and OAA are presented in Fig. 3.3.

3.4.1 Convergence Analysis of MADS

In [21], complete proof regarding convergence of the MADS is presented. The algo-

rithm converges to point x̂ globally, where it satisfies all the local optimalityl condi-

tions. Convergence of MADS does not depend on the starting point x0 but depends

totally on local properties of the objective and constraint functions. It is assumed in

the algorithm that at least one starting point in X is given, which may or may not lye

in feasible domain space Ω, and all the iterations are from a compact set. If there is no

information available about the objective function f then x̂ can be considered as limit

for local optimizer for the infinitely fine meshes. The resulting solution is called the

zeroth order result. If at x̂, hyper tangent cone of domain space is non-empty and f is

Lipschitz near x̂, then at x̂ the Clarkes generalized directional derivatives of f [64] in

all of the directions in the Clarke tangent cone are non-negative. The authors in [65],

extend the convergence analysis of MADS algorithm to second order stationary points.
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Figure 3.3: Computational complexity of ESA, MADS and OAA vs number of users
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Chapter 4

RESULT AND ANALYSIS

4.1 Simulations, Result and Analysis

Experimental results for this work is obtained with a simulation setup to optimize equa-

tion (3.15) which is a fractional programming problem to evaluate the EE of the sys-

tem. Results include efficient power allocation and user association to attain maximum

throughput. The effect on grid energy is also highlighted. To solve the problem open

source nonlinear mixed integer optimization using Mesh Adaptive Direct Search (NO-

MAD) [67] solver is used.

4.1.1 Simulation Setup

Parameters used for the simulation system are given in table 4.1. For all the simula-

tion radius of macro cell is set to 1000 m and for each GRRH radius is set to 200 m.

Maximum transmit power for macro cell Pmax
M , and each GRRH Ri,Pmax

Ri
is set to 24

W and 12 W respectively. Minimum data rate threshold for any user is set to 100 kbps.

Reference distance as per antenna far field d0 is set to 10 m and d is always greater than

d0. Path loss exponent α is set to 2 and zero mean Gaussian variable for shadowing ð

is set to 10 dB. Circuit power for macro BS is set to 10 W and for each GRRH is set

to 0.3 W. EH rate for any GRRH range from 0 W to 15 W per unit time. Maximum

battery capacity εi attached to GRRH is 5 kWh. Users are supposed to be uniformly

distributed in the network.

4.1.2 Results and Discussion

Optimization of the network EE is achieved using MADS algorithm. In Fig. 4.1, EE

is plotted against the number of users. The general trend of this relation is that EE

of the system increases when number of users is increased. It is observed that using

MADS we achieve the same trend i-e., EE increases as number of users is increased.

It becomes constant when maximum system capacity limit reached. System will not
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Table 4.1: System Parameters
Parameter Value
Pmax
M , 24 W
Pmax
Ri

12 W
do 10 m

Macro BS cell radius 1000 m
GRRH cell radius 200 m

Min. data rate requirment 100 kbps
εi 5 kWh
ei 0-15 W

P static
M 10 W
P static
R 0.3 W
G0 50
ð 10 dB

Min, Users 2
Max Users 16

admit the users to keep the QoS constraint ensured.

Fig. 4.2 shows the plot of user associated to each BS when the number of users

increased. User association is maximized formulated problem. System tend to admit

maximum number of users while keeping the quality constraint in consideration. It

is observed that almost all users have been admitted up to sixteen users. Moreover it

is also observed that more number of users are connected to GRRH as compared to

macro BS hence increasing the utilization of green energy. This minimizes the grid

energy cost effectively.

Fig. 4.3 shows the total system throughput vs number of users. Plot depicts that

as the number of users increased system throughput also increases. if the number of

users are further increased, data rate will stay constant to maximum system capacity

limit. System throughput also depends on the channel state between the BS and the

user. Proposed formulation keep the minimum rate constraint in to account so that QoS

is kept ensured.

Fig. 4.4 shows the utilization of grid energy when EH is integrated with the system.

In the plot bars show 100% utilization of grid energy when EH is not integrated. When
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Figure 4.3: Total system throughput vs different number of users

EH is integrated, only circuit and transmission power of MBS is taken into account.

Grid energy minimization is obvious as all the RRHs are off the grid. But it is also

observed that due to efficient resource allocation, most of the users are connected to

GRRHs hence maximizing utilization of green energy. It is observed that grid power

utilization is cut to approximately half due to efficient user association with EH aided

GRRHs.

Fig. 4.5 shows the EE of the system with different QoS requirements. Graph shows

that as the data rate requirement gets high, EE decreases. This is due to the reason

that system rejects the users when they don’t meet the QoS requirements. As the QoS

threshold gets high system tend to allocate more power to the users and controlling the

admission.

Energy efficiencies calculated by MADS and OAA are compared in Fig. 4.6 It is

observed that EE values in OAA are slightly higher than MADS. As discussed in pre-

vious chapter, OAA is more complex than MADS so if the complexity graph of MADS

and OAA in Fig. 3.3 is considered, complexity comparison shows that with much less

complexity of MADS algorithm, approximately same EE values can be attained. This

slight trade off in EE values is acceptable.
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Chapter 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In the very dense 5G H-CRAN architecture, an extra ordinary burden is put on grid

energy. In this thesis, EH is integrated in the system to reduce the grid energy con-

sumption. An optimization problem is evaluated which considers, user association,

power allocation and EH constraints to maximize the system EE in bits/sec/Hz/watt for

downlink in H-CRAN that is comprised of one macro base station connected to grid

energy and several green RRHs (GRRHs) empowered solely with harvested energy. An

EE optimization problem in HCRAN is formulated as fractional mixed integer nonlin-

ear programming problem and is solved using MADS algorithm. Proposed algorithm is

also less complex and yields ε−optimal solution in finite and fewer iterations than outer

approximation algorithm and exhaustive search algorithm. Different metrics of the sys-

tem and effects of EH on grid energy and power allocation to the users are observed.

Results show that EE is improved as the number of users is increased for proposed

algorithm. Moreover, users are associated, in majority, to energy harvested GRRHs

hence decreasing the load on grid energy which in turn enables green communication.

Results show that the consumption of grid energy is approximately reduced to half, as

much of communication is done by GRRHs.

5.2 Future Works

Future direction for this work can be in different aspects of the nature of the system

model. User equipment may also be equipped with EH modules which can harvest

energy from RF waves. Simultaneous wireless information and power transfer may also

be integrated. The heterogeneous nature of the H-CRAN also allows us to incorporate

device to device (D2D) communication, which will result in more data off-loading

from the network and increase the capacity of the system several times. Due to large
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number of RRHs and more efficient RRH management algorithms and interference

management algorithms can be studied.
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