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Abstract 
 

According to SANS Common weakness Enumeration Heap Overflow vulnerability is among 

twenty five most dangerous software errors which if exploited in an organized manner aids the 

attacker to gain privilege escalation. Detection of malwares that can exploit this vulnerability 

requires the combination of datamining and machine learning techniques. 

 

Our work presents a hybrid malware detection technique that is the combination of both data 

mining and machine learning approach. For overcoming the absence of typical anti-virus 

software we have used static analysis technique to extract features of malwares. We extracted 

features from malware binaries then calling frequencies of the raw features are collected to 

select valuable features. Feature engineering technique is used for the reduction of the selected 

features. The created feature set is used to train three classifiers J48, K-Star and Simple logistic 

for the detection of malwares that exploit heap based overflow vulnerability. By embracing the 

notion of machine learning and datamining a static malware detection technique is proposed. 

The proposed technique is easy to implement in operations of cyber security to comprehend the 

behavior of malwares targeting their organizations. 
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      Chapter 1 

Introduction 

 
 

1.1 Overview 
 

A heap overflow is a well-known type of buffer overflow occurring in heap data area. 

Memory on heap usually comprises of program data and is dynamically allocated by the 

application at run-time. Heap is a segment of memory that is used for keeping global 

variables and dynamically allocated data. It can be exploited by corrupting the program 

data located at heap. It usually happens when a pointer or its index is step-down to a 

position before the buffer or when a destructive index is used, which produces a position 

before the buffer. Each portion of memory in heap comprises of boundary tags that 

enclose information related to memory management [1]. 

 
 

When a heap buffer is over run, the control statistics in these tags is overwritten. Access 

violation occurs when a memory address overwrite takes place. When the overflow is 

executed in an organized manner, the vulnerability would permit an attacker to overwrite 

a memory location with a carved input.  

 

 

This vulnerability directly affects the CIA triad and can result in different consequences 

as specified below: 

a. Confidentiality. By exploiting CWE-122 the attacker can read memory, execute 

unauthorized programs and can evade protection mechanism. 

b. Integrity. It is mostly used by attackers to run arbitrary or unauthorized programs 

to modify memory. The memory modification can be done by overwriting 

function pointer residing in memory or pointing it to the exploiter's code 

c. Availability. It can be used to crash the systems, generated D-Dos Attacks, 

resource consumption and can lead to put the program in to an infinite loop. 
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Several techniques have been recommended to identify this software vulnerability, but all 

of them rely on deep code analysis and run time execution which is a tedious process. 

Data mining and machine learning techniques have introduced new dimensions in the 

field of malware analysis. We have a proposed a hybrid detection technique that is the 

combination of both data mining and machine learning. Machine Learning technique is 

used to find patterns in data and then prediction of the outcome is done by using 

datamining technique [2].  

 
 
We extracted twenty one features from malware executables which are File name, Risk 

Parameter, Network Connections, Number of Mutex, Number of Loaded libraries, 

Number of Process Interactions, DNS Queries, Frequent API Calls, Downloaded Files, 

Process Interactions, Registry Writes, Registry Reads, Mutex Count, Mutex Name, File 

Queries, Type of Strings, Total Count of Strings, Strings, Total Count Loaded Libraries 

(.dll format), Loaded Libraries (.dll format) and Type of Malware by self-written code in 

php language. Our work presents a heap based over flow vulnerability detection system 

using data mining technique such as three classifiers: J48, KStar and Simple Logistic. For 

overcoming the absence of typical anti-virus software we have used static analysis 

technique to extract features of malwares. Then feature engineering technique is used for 

decreasing the selected features. By embracing the notion of machine learning and 

datamining, we created a malware detection technique. 

 

1.2 Motivation and Problem Statement 
 
Buffer overflow is among the 25 Top most Dangerous Software Errors. It ranks high in 

the Common Weakness Enumeration. It can cause direct memory manipulations. A 

cautiously crafted input by a malicious actor can overwrite a register that stores important 

information and thus by doing so gain access to the program or in worst cases gain access 

to the root or admin account.  

 
 
Hence, there is a need for an effective detection technique that can effectively detect heap 

based overflow vulnerability. Assessment of Heap based Vulnerability along with the 
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implementation of proposed hybrid technique can be used by the programmers to develop 

secure applications. 

 

1.3 Objectives 
 

The main objectives of thesis are: - 

 

• Proposition of new technique for the detection of heap-based overflow. 

• To create a dataset that highlights heap based overflow vulnerability in different 

classes of malware 

• Implementation of detection technique which is the combination of both machine 

learning and datamining approach. 

 

1.4 Relevance to National and Army Needs 
 

a. National Needs. No industry can progress without such system that alerts 

them about their weaknesses. If such weaknesses are exploited by users 

having malicious intent it can badly affect the reputation of the industry. 

An efficient detection system that can detect memory attacks and can help 

industries to protect them self from malware that is capable of using their 

machines by manipulating or by corrupting the sensitive data. 

b. Military Needs. A military data center contains confidential and important 

data. If the securities of such systems are compromised it will directly 

affect the security of our nation. A detection system that can effectively 

detect heap-based overflow attack can improve the security of such 

systems. 

 

1.5 Thesis Contribution 
 

It is stated that our work is unique because after extensive research we have found that 

there is no single dataset that gives the detailed information about the malware showing 

their identified class and the heap based overflow vulnerability. We have not only created 

a dataset but also proposed a hybrid malware detection technique. 
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Our contributions in this research are listed below: 

 Proposition of a hybrid detection technique that is the combination of both data 

mining and machine learning approach 

 Creation of a program to automatically extract feature from malwares files 

 Creation of a program for data cleaning 

 Identification of heap based overflow vulnerability of seven classes of malware 

which are Adware, Backdoor, Downloader, Dropper, Keylogger, Rootkit and 

worm.  

 Three Classifiers in WEKA are trained by extracted features dataset for detection 

of heap based overflow vulnerability. 

 Results are generated and accuracy is calculated of each classifier for our created 

dataset.  

 

1.6 Thesis Organization 
 

The thesis is structured as follows: 
 

• Chapter 2 comprises of literature review. In this chapter evaluation of existing 

tools and diverse techniques proposed by different researcher have been presented 

that includes evidence combination techniques, smart fuzzing, concolic execution 

and anomaly detection.   

 
 

• Chapter 3 comprises of Architecture of Proposed Malware Detection Technique. 

In this chapter details of proposed technique architecture is discussed. The 

technique is to accurately detect malwares that exploit heap based overflow 

vulnerability from malware binaries belonging to seven different classes by using 

data mining and machine learning approach. 

 
 

• Chapter 4 covers the Malware Dataset Collection and Report Generation. In this 

chapter malware dataset creation, mechanism of online sandbox configuration and 

the procedure of report generation is discussed in detail. 
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• Chapter 5 comprises of Feature Engineering. In this chapter process of feature 

selection and feature extraction is discussed in detail. 

 

• Chapter 6 covers Reverse Engineering techniques .In this chapter details of heap 

based overflow malware detection technique by using reverse engineering is 

discussed in detail. 

 

• Chapter 7 covers Detection of Heap Based Overflow by using Extracted Features. 

In this chapter by using datamining techniques, extracted features are analyzed to 

detect heap based overflow. 

 

• Chapter 8 covers Detection of Heap Based Overflow by using Classifiers. In this 

chapters three classifiers are trained and then tested to detect heap based 

overflow. 

 

• Chapter 9 covers Validation and testing. It comprises of performance validation of 

our proposed system. 

 
 

• Chapter 10 concludes the document. It comprises of conclusion and future work. 
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Chapter 2 
 

Literature Review  

 
 

2.1 Overview 
 
This chapter includes the literature review of malware analysis. It discusses origin of 

malwares, their types followed by the evolution of malware detection techniques. These 

detection techniques helped in developing malware detection tools to detect malwares 

that exploit heap based overflow vulnerability. 

  

2.2 Origin of Malwares 
 
Technological advancements have made our small globe equivalent to a global village.  

Internet, complex computer networks along with the intelligent software advancement 

has become a crucial element to keep individuals, businesses and organizations together. 

This setup has led to an increased rate of cyber-crimes with every passing day.  

 
 
Cyber criminals use malicious software to launch cyberattacks on computers to realize 

malicious goals. Designing malwares to meet certain goals that may include stealing of 

data, encrypting sensitive file, corrupting information, displaying unwanted 

advertisement or to gain control of a computer system. Malwares use vulnerabilities of 

the system to exploit data. Users are tempted into running a useful code that is often 

displayed on a site, malware is attached with this useful code & that it is activated on the 

host system.  

 
 
Over time, malwares have evolved each has its unique technique to exploit the user or 

businesses and can be classified into categories depending upon what type of malicious 

activity they perform on their host.  
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Symantec’s 2018 Internet Security Threat Report (ISTR) reveals that 600 percent 

increase in IoT attacks is recorded. Cryptojacking explodes by 8,500 percent, stealing 

resources and increasing vulnerability. It further says that malware implants grow by 200 

percent, exploiting the software supply chain. Mobile malware variants are increased by 

54 percent, and according to their sensors record about 126.5 million of threat events are 

logged every second from 157 countries and territories. Fig. 2.1 shows the pi-chart (%) of 

different popular malwares. 

 
 

Figure 1:  Popular Malwares 

 

2.3 Malware Detection Techniques 
 
Malware detection techniques are implemented through malware detector. The malware 

detector attempts to help protect the system by detecting malicious behavior. The detector 

may or may not reside on the same system it is trying to protect from malicious code. 

Using manifested malware detection techniques malware detector performs its protection, 

and serves as an experimental means of evaluating malware detection technique’s 

detection capability.  

 
 
Techniques used for malware detection largely categories into three parts: Static 

Analysis, Dynamic analysis and Hybrid analysis. The malware analysis that Anti-virus 

companies do, can be classified broadly into two categories; the static analysis techniques 

and the dynamic analysis techniques. The static techniques involve looking into the 

binaries directly or reverse engineering the code for patterns in the same. 
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The dynamic analysis techniques involve capturing the behavior of the malware sample 

by executing it in a sandboxed environment or by program analysis methods and then use 

that for extracting patterns for each family of virus.  

 
 
Rossow, et al., presented a survey on literatures for malicious software detection 

techniques. Muazzam, et al., also presented a survey on mining techniques to detect 

malwares on the basis of file features. CWSandbox was proposed by Willems, et al., and 

it is a well-known tool which can run malware samples in a virtual environment.  

 
 
Choudhary and Saharan also used data mining technique to detect malicious software. 

They use abstract assembly and selected top features. IDApro was used to generate the 

assembly code. SVM and Neural net classifiers are considered. 

 
 
Malware detection tools can be categorized in to the following three groups. 1. Static 

Malware Detection Tools 2. Dynamic Malware Detection Tools 3. Online Malware 

Detection Tools. Many different types of malware detection tools are available in the 

market and are used with variant approaches. Their names and approaches are given as 

under: 

i. IDA Pro Anomaly Based Approach 

ii. OllyDbg Heuristic Based Approach 

iii. Regshot String Matching 

iv. Process Monitor Probabilistic Approach 

v. Process explorer Address space randomization 

vi. Virus Total Heuristic Based Approach 

vii. Anubis Behavioral Based Approach 

viii. Threat Expert Behavioral Based Approach 

ix. Comodo Signature Based Approach 

 
 

2.4 Detection of Heap-Based Overflow 
   

Buffer overflow is a reputed software vulnerability. In the past two decades, numerous 

approaches have been recommended to detect this vulnerability.  
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Anitta Patience Namanya et al.  in “Detection of Malicious Portable Executables Using 

Evidence Combinational Theory with Fuzzy Hashing” presented the techniques to, 

calculate the similarity of the Portable Executable files and according to researcher by 

using evidence combination techniques, detection rates can be improved [1].  

 
 
Maryam Mouzarani et al.  in “Smart fuzzing method for detecting stack-based buffer 

overflow in binary es” presented the concolic execution to determine the factors that can 

cause stack-based buffer overflow in binary codes [2].  

 
 
Maryam Mouzarani et al.  in “A Smart Fuzzing Method for Detecting Heap-Based Buffer 

Overflow in Executable Codes” presented the concolic execution based smart fuzzer to 

determine the factors that can cause heap-based buffer overflow in executable codes [3]. 

  
 
Zane Markel and Michael Bilzor. in “Building a machine learning classifier for malware 

detection” researcher has presented a machine learning technique for the detection of 

malware. With the varied malware prevalence the researchers calculate variations in 

classifier performance [8]. 

 
 
S.K. Pandey  et al.  in “Performance of malware detection tools: A comparison” 

presented the evaluation of existing tools and procedures for malware detection and 

concluded that top three tools are Regshot, Process Monitor and Process Explorer [11]. 

 
 
Mikhail Zolotukhin et al.  in “Detection of zero-day malware based on the analysis of 

opcode sequences” presented the anomaly detection technique to detect malwares. A 

software behavior model is proposed to detect the unseen malwares [12].   

 

2.5 Conclusion 
 
Many researchers has used different techniques for the detection of malwares that exploit 

overflow vulnerability but failed to inspect the run time performance of malwares and the 

methods proposed by them are also ineffective against encrypted features. In our 

proposed framework we have extracted and used more than twenty features for efficient 

http://ieeexplore.ieee.org/document/6866599/
http://ieeexplore.ieee.org/document/6866599/
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detection of malwares that exploit heap based overflow vulnerability. The propose 

methodology is automatic and flexible to be deployed in any operational environment. 
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Chapter 3 
 

Architecture of Proposed Malware Detection 

Technique 

 

3.1 Introduction 
 

In this chapter details of proposed architecture of malware detection technique is 

discussed in detail. The technique is to accurately detect malwares that exploit heap based 

overflow vulnerability from malware binaries belonging to seven different classes by 

using data mining and machine learning approach.  

3.2 Components of Architecture 
 
Our proposed architecture has five main components:  

 

a. Component 1: Feature Extraction 

b. Component 2: Feature Selection  

c. Component 3: Reverse Engineering 

d. Component 4: Data Cleaning and Transformation 

e. Component 5: Learning Algorithm 

 

Figure 2: Components of proposed Architecture 
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Component 1: Feature Extraction 
 
Feature parser extract data from all JSON files of malware dataset. JSON files are created 

by using IBM X-Force Exchange Tool. After extracting features, parser stores the 

extracted features in a CSV file. 
 
Component 2: Feature Selection  
 
Extracted Raw Features with calling frequencies greater then threshold are selected.  
 
Component 3: Reverse Engineering 
 
Type of software vulnerability has been identified by code analysis by executing malware 

in a sandbox environment. OllyDbg and IDA Pro tools are used for code analysis. 
 
Component 4: Data Cleaning and Transformation  
 
Self-Written VBA Macro code is used for data cleaning which will be explained in detail 

in next section. 
 
Component 5: Learning Algorithm  
 
Learning algorithms are used to drive a classification results from the created labeled 

dataset. 
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3.3 Conclusion 
 
This chapter describes the major components and architecture of proposed detection 

technique which is the combination of both datamining and machine learning approach. It 

gives a summarize view of complete dissertation.  
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Chapter 4 
 

Malware Dataset Collection and Report 

Generation 

 

4.1 Introduction 
 

This chapter comprises of three sections that discuss in detail about the malware dataset, 

mechanism of online sandbox configuration and the procedure of report generation.  

 

4.2 Malware Dataset  
 

Malware dataset comprises of malware executables is taken from online malware and 

URL scanner that is from Virus Total. 

 
Our selected Malware dataset has following characteristics: 

 

a. Windows based Malware executables supports 32-bit and 64-bit Operating System. 
b. High detection rate and can be detected by more than 20 antiviruses. 

c. Labeled Malware files belonging to seven different classes including Adware, 

Backdoor, Downloader, Dropper, Keylogger, Rootkit and Worm. 

 
 

Type of Malware Total Count 

Adware 146 

Backdoor 100 

Downloader 100 

Dropper 96 

Keylogger 110 

Rootkit 96 

Worm 99 

Total 747 

Table 1: Malware Dataset 
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4.3 Online Sandbox Configuration 
 
To analyze malwares executables we have selected two online sandboxes that are hybrid 

analysis and IBM X-Force Exchange tool.  Hybrid Analysis use hybrid analysis 

technology and falcon sandbox to analyze malware files and summarize the result by 

generating report.    IBM X-Force Exchange tool has malware analysis components that 

uses cloud-based threat intelligence distribution podium to generate malware reports. 

Malware Analysis of IBM X-Force is a component of larger Security Operations and 

Response platform. Initial registration of subscription of services is required to use both 

the sandboxes.  

  

4.4 Report Generation 
 
IBM X-Force tool is used for report generation.  Total 747 malware executables 

belonging to seven different classes have been uploaded on IBM tool for analysis. The 

generated report is created in JSON format. The report contains the detail analysis of 

each and every feature of malware and rate the malware according to its level of severity. 

 

4.5 Conclusion 

 
This chapter gives an overview of the selected platform and dataset for the 

implementation of detection technique. Platform selection is the most important step as 

the report generated by the selected platform will be used to extract features as discussed 

in detail in next Chapter. The accuracy of the results will be directly dependent on the 

generated reports. 
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Chapter 5 
 

Feature Engineering 

5.1 Introduction 
 
One of the most important phase in machine learning is defining the suitable feature 

illustration. The process of feature selection and feature extraction is known as feature 

engineering.  Feature engineering is used for converting raw data into features that 

present the problem to the logical models, ensuing in enhanced model accuracy on testing 

data. The features in dataset directly affect the learning algorithm used to predict the 

results. The more time and importance given to select features will result in better 

features. Better features results in agility, simpler model and accuracy.  

 

5.2 Feature Extraction 
 
Some dataset are too big in their raw state to be modeled by learning algorithms directly. 

So, to reduce the dimensionality of dataset, process of feature extraction is used. For 

feature extraction the key is that the methods used should be automatic. To automate the 

process of feature extraction feature parser is used.  Feature parser is a self-written 

program in .php language. 

 
In order to extract features from malware executables we first required the malware 

report in JSON format that we have generated with the help of IBM X-Force Exchange 

malware analysis tool. X-Force Exchange Malware Analysis is an IBM tool that can 

analyze multiple malware executables within a minute. The generated malware report is 

save in a JSON format is fed as an input to the feature parser.  

5.3 Feature Parser 
 
Twenty one features are extracted by using self-written feature parser and one feature is 

extracted by using reverse engineering technique. Feature parser takes multiple input files 

read them one by one, decode them in standard json format, extract all the required 
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features, save them in a tabular form and display the result of all 747 files in html file. 

The html file can be saved in to a CSV file both options are available for the user.  

 

---------------------------------------------------------------------------- 
Algorithm 1: Extracting features from created JSON files 

---------------------------------------------------------------------------- 
Input: JSON file created from IBM X-Force tool 

Output: Extracted features from a raw JSON file 

Begin 

1. Read all JSON file saved in a folder. 

2. Get the index of the file then decode it in a standard json format. 

3. Foreach (Selected Decoded feature we get a value) 

  If (value == selected feature) 

                 Write the feature in a tuple in a row 

     If (data against feature ≠empty) 

                   Write all data in a next tuple of a same row 

      End if 

  End if 

       End for 

End 

 

5.4 Feature Selection 
 
Feature selection is a procedure to address the problem by selecting a subset that is useful 

to a problem. Important features are selected to extract from malware executables. 

Features that are unrelated to the problem are removed. The features that are important 

and improves the accuracy of the model are selected. Total 21 features are selected. List 

of features selected from malwares executables and their total count is given in Table 2. 

 

Extracted and Selected Feature Total Count 

Malware signature 747 

Risk Parameter 79 

Network Connections 179815 
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Number of Mutex 4924 

Number of Loaded libraries 85998 

Number of Process Interactions 2564 

DNS Queries 1622 

Process Interactions 589 

Registry Writes 271 

Registry Reads 274 

Mutex Count 938 

Mutex Name 41 

File Queries 565 

Type of Strings  2 

Total Count of Strings 64406 

Strings 284 

Total Count Loaded Libraries (.dll 

format) 

28133 

Loaded Libraries (.dll format)  476 

Type of Malware 7 

Table 2: Extracted and Selected features 
 

5.4.1 Malware Signature 

 
It is a SHA-256 signature of a malware file. 
 

5.4.2 Risk Parameter 

 
Risk parameter is a factor of classifying and investigating potential issues that could have 

a negative impact on system security. There are twelve risk parameters detected in our 

selected dataset of malware and each risk parameter is further classified into sub 

categories.  Bar chart representation showing the risk parameter and their total count is 

given below. 
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Figure 4: Risk Parameter 

 

5.4.3 Network Connections 

 
The Network Connection is a factor that identifies that the malware makes a network 

connection or not. Bar chart showing the number of network connection and their total 

count is given below. 

 

 
Figure 5: Range of  Network connections made by different classes of malware 

 
As per my graphical analysis of selected dataset it has been observed that downloader and 

worm creates many network connections which can range up to 100 and backdoor creates 

least number of network connections. 

 

 
Figure 6:  Network connections made by different classes of malware 



 

21 
 

5.4.4 Mutex 

 
To synchronize access to a resource, mutex is used and is also known as locking 

mechanism. At a time one task that can be a thread or process based on OS abstraction 

can acquire the mutex. It means there is an ownership associated with mutex, and only 

the owner can release the lock (mutex). Graphical Analysis of extracted mutex of selected 

dataset is shown in a graph below. 

 

 
Figure 7: Mutex used by different classes of malware 

5.4.5 Process Interactions 

 
Operating systems provides a communication technique to allow different processes to 

communicate with each other to enable better performance and to achieve certain tasks 

by using code and data injection methods. Malware use process interactions to perform 

malicious activities. As per my graphical analysis of selected dataset it has been observed 

that mostly malwares perform 1 to 25 process interactions. Only downloader makes more 

than 100 process interactions. 

 

 
Figure 8: Number of Process Interactions of different classes of malware 
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5.4.6 Strings 

 
String generally means an ordered arrangement of characters. It can be divided in to two 

sub categories i.e. Heap Strings and Stack Strings. Heap is a large pool of memory also 

known as dynamic memory and used for run time operation. Strings stored in a heap area 

are known as heap strings. As per my graphical analysis for selected data set that 24% of 

adware, 20% of backdoor, 16% of downloaders, 10% of droppers, 13% of keyloggers, 

11% of rootkits and only 6% of worms use heap strings. So, maximum number of heap 

strings are used by adware and minimum number of heap strings are used by worms. 

 

 
Figure 9: String types and their count 

 

 
Figure 10: Heap strings belonging to different classes of malware 
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5.5 Conclusion 
 
Feature parser is used to extract features from 747 malware files. Crucial features 

extracted with the help of feature parser are File name, Risk Parameter, Network 

Connections, Number of Mutex, Number of Loaded libraries, Number of Process 

Interactions, DNS Queries, Frequent API Calls, Downloaded Files, Process Interactions, 

Registry Writes, Registry Reads, Mutex Count, Mutex Name, File Queries, Type of 

Strings, Total Count of Strings, Strings, Total Count Loaded Libraries (.dll format), 

Loaded Libraries (.dll format) and Type of Malware. Feature extracted with the help of 

reverse engineering is overflow which will be discuss in detail in next chapters. 
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Chapter 6 
 

Reverse Engineering 

6.1 Introduction 
 

In this chapter details of heap based overflow malware detection technique is 

discussed in detail. The technique is to use reverse engineering tools like ollyDbg 

and IDA Pro to accurately detect heap based overflow vulnerability from malware 

binaries. Malware reverse engineering is a process to minutely explore the working 

of malware and to determine its effect on the environment after its execution. In our 

technique we have used both static and dynamic analysis for the detection of heap 

based overflow vulnerability in malwares. 

 

6.2 Disassembler 
 

IDA Pro also known as Interactive Disassembler is a disassembler which converts 

machine language code to assembly language source code. It is used to comprehend 

the functionality of the code by swapping between hex code and graph view. Its code 

view and string section gives a swift illustration of the mapping of flow of 

implementation.  

 
 
To verify that the selected malware binary file is vulnerable to heap based overflow 

vulnerability or not it is disassembled in to assembly source code by using IDA-Pro. 

To identify it disassemble an adware into assembly source code. The shah 256 hash 

of the selected adware is 

1fb9cb60b11165df3298dee55b59517e3ed15957b820b19b4ca0d8f9f2e20173. Move 

to string window of the dissembled adware binary file. The string windows contain 

all the strings of the loaded disassembled program. 
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It shows that at segment 00038C44 to segment 00039080 contains run time error 

strings. At segment 00037418 it shows insufficient memory string. 

 
 
When we try to execute the assembly code in IDA Pro it gives an access violation. 

The access violation exception occurs only when an unapproved application attempts 

to access unauthorized memory fragments of your system. 
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6.3 Debugger 
 

Olly Debugger is an assembler-level investigating Debugger. It is used to analyze 

binary codes and to execute the application in a controlled environment that is useful 

to find and list the effects of malicious binaries on an environment. 

 
 
To verify that the selected malware binary file is vulnerable to heap based overflow 

vulnerability or not load the malware binary file in to primary memory by using olly 

debugger. When it is loaded the value of EIP=770EAE14 and the value of EAX 

register is at stack position 0019FFF4. The shah 256 hash of the selected adware is 

1fb9cb60b11165df3298dee55b59517e3ed15957b820b19b4ca0d8f9f2e20173. 
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The flag register hold the information of official flags of processing in the central 

processing unit. These flags are affected by the processes in the Arithmetic logic unit. 

They are changed as a result of arithmetic and logic process. Flag O is an Overflow flag 

and it holds a flag resulting from an instruction that is needed in order to make decision 

in another instruction. Initially when an adware binary is loaded it shows LastErr 

ERROR_ENVVAR_NOT_FOUND (000000CB). This error occurs when the system 

does not find the environment option that was entered.  

 
 
Enable OllyHeap trace and execute the code. OllyHeap trace is a plugin by Stephen 

Fewer. It is used to view heap allocations and deallocations for multiple heaps, as well as 

operations such as creating and destroying heaps. OllyHeap trace is used to depict the 

behavior of heap trace. Initially no heap is allocated till address 0041A39B. 

 

 
 

First heap allocation takes place when EIP value is equal to 0041A3A1. The allocated 

size of heap chunk is 94. The GetProcessHeap function is used to get a handle to the 

default heap for the calling process. The handle can be used by the process to assign 

memory from the process heap without having to first create a private heap. 
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The 32-bit Kernel32 dynamic link library found in the kernel of Windows operating 

system. It is used to manage memory, I/O operations, and interrupts. kernel32.dll is 

located in protected memory space. The code at address 004A3A8 shows that get 

heap buffer of size 94 that is 148 bytes from protected memory. If a string larger than 

147 bytes passed to it will thereby overwrite the data coincidental to this memory 

block which is, actually, a header of the following memory block because memory is 

allocated without bound checking. At this point following heap traces are generated. 

 

 
 

 
 

At EIP 0041A3BF Heap overflow takes place. The value which is overflown to EBX 

is 77047910 which points to value at stack. EBX is a non-volatile register which has 

no particular use but mostly used to set a common value to speed up calculations. 
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At virtual address 0042A489 we can see the error in resolved API information 

window. Error_NOT_ENOUGH_MEMORY this error occurs when the free space is 

not available or if the memory is fragmented. 

 

 
 

The lookaside list contains the information of heap buffers it has two pointers 

pointing before and after the lookaside entries. These pointers are FLINK and 

BLINK.  

 

Heap Overflow  
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After complete execution of adware when we observe CPU window it appears as 

follow: 

 

 
 

The complete Heap trace is given below: 

 

Overflow prefix 

 

It shows the place where 
the lookaside list is being 
modified with the value 

overflown into FLINK 
pointer of the allowed 

block  
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The call stack window appears after complete execution as given below: 

 

 
 

  

6.4 Conclusion 
 
In reverse engineering the most observable method is to entirely engineer a malware 

but this obviously takes a great amount of time. So, in an environment where there 

are more than 100's of malware this approach is not practical. Another approach to 

detect malwares that exploit overflow vulnerabilities in big dataset efficiently with 

respect to time is, to use datamining technique for malware detection. 

 

Initialize Critical Section 

 

Delete Critical Section 

 

Delete Boundary  
Descriptors 
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Chapter 7 
 

Detection of Heap Based Overflow by using 

Extracted Features 

 

7.1 Introduction 
 

By adopting the concepts of datamining techniques extracted features are analyzed to 

detect whether the file under observation is vulnerable to heap based overflow 

vulnerability or not. Detailed Graphical analysis of each extracted features of 747 

malware file of selected dataset is inspected in detail and rules are created for the 

efficient detection of heap based overflow. 

 

7.2 Risk Parameter 
 
Risk Parameter is a factor of categorizing and examining possible issues that could 

have an undesirable impact on system security. Malwares that exploit heap based 

overflow vulnerability use six risk parameters and each risk parameter is further 

classified into sub categories.  Pie chart representation showing that about 63% of 

such malwares use autostart, 7% use execution and evasion, 5% has signatures, 1% 

generates traffic and use popular applications to exploit heap vulnerability. 

 

 
Figure 11: Risk Parameter of malwares that exploit heap based overflow vulnerability 
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Figure 12: Count of  Risk Parameter of malwares that exploit heap based overflow vulnerability 

  

Subcategories of the risk parameter and their total count is shown in the bar chart 

representation given below. There are total nineteen subcategories that belongs to six 

different categories of risk parameter. About 60% of malwares that exploit heap based 

overflow vulnerability use autostart risk parameters subcategory that is registering for 

autostart during Windows boot. This features set the malware to run on start up. This 

means the malware does not need the permission to execute it and will start automatically 

after windows boot.  
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Figure 13: Subcategories of Risk parameters 

 

7.3 Network Connection 
 

       A factor that determines that the malware makes a network connection or not. About 

50% of malwares that exploit heap based overflow vulnerability makes network 

connection ranging between 1 to10. Bar chart representation of malwares showing 

network connections belonging to seven different classes is given below. 
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Figure 14: Range of Network Connection of malwares that exploit heap based overflow vulnerability 

 

7.4 Mutex 
 

Mutex is a locking mechanism to synchronize access to resources. About 60% of 

malwares that exploit heap based overflow vulnerability use mutex ranging between 

1 to 15. Bar chart representation of seven different classes of malwares showing 

mutex range is shown below. 

 

 
Figure 15: Mutex range of malwares that exploit heap based overflow vulnerability 
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Malwares that exploit heap based overflow vulnerability use five mutex and each mutex 

parameter is further classified into sub categories. 

 
Mutex Name A B D Dr K R W Total 

No Mutex 27 4 4 1 3 2 4 45 

DBWinMutex 0 0 0 0 0 6 0 6 

Global\ 0 0 0 0 1 0 3 4 

Local\ 8 63 0 1 5 1 2 80 

OSSProxyAlreadyRunning 2 0 0 0 0 0 0 2 

ShimCacheMutex 3 1 0 2 2 4 0 12 

Grand Total 40 68 4 4 11 13 9 149 
 
Bar chart representation of mutex is given below. 
 

 
Figure 16: Mutex belonging to seven different classes of malware that exploit heap based overflow 

vulnerability 

  

7.5 Process Interactions 
 
Malware use process interactions to perform malicious activities. Most common 

processes used by malwares that exploits heap based overflow vulnerability are 

shown in bar chart representation given below. 
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Figure 17: Process Interactions belonging to seven different classes of malware that exploit heap based 

overflow vulnerability 

As per my graphical analysis of selected dataset it has been observed that mostly 

malwares that exploits heap based overflow vulnerability perform 1 to 15 process 

interactions. No such malwares makes more than 55 process interactions. Maximum 

number of process interactions are made by backdoor malwares. 

 

  A B D Dr K R W 

0  34 0 0 1 4 2 1 

1 to 15 6 68 3 3 7 11 7 

45 to 55 0 0 1 0 0 0 1 
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Pie chart representation showing the percentage of malwares is shown below. As per the 

graphical analysis it has been observed that most malwares use 

C:\DOCUME~1\Miller\LOCALS~1\Temp\\ path to perform malicious activities. 

 

 
Figure 18: Name of Process Interactions belonging to seven different classes of malware that exploit heap 

based overflow vulnerability 

  

7.6 Loaded Libraries 
 
When a program running on the computer system needs a library to execute a 

subroutine is loaded from the dynamic load library into main memory. As per my 

graphical analysis of selected dataset it has been observed that mostly malwares that 

exploits heap based overflow vulnerability loads 101 to 150 libraries from dynamic 

load library. 
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     Figure 19: Loaded Libraries belonging to seven different classes of malware that exploit heap based 

overflow vulnerability 

 

7.7 DNS Queries 
 

To get an IP address against the DNS name an inquiry is made by the computers 

system or networking device. As per my graphical analysis of selected dataset it has 

been observed that only few malwares that exploits heap based overflow vulnerability 

perform DNS queries. Bar chart representation is given below. 

        

 
    Figure 20: DNS Queries belonging to seven different classes of malware that exploit heap based 

overflow vulnerability 
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7.8 Strings 

 
Strings stored in a heap area are known as heap strings. As per my graphical analysis 

for selected data set it has been observed that most of the malwares that exploits heap 

based overflow vulnerability has heap strings range between 1 to 50. Bar chart 

representation is given below. 

 

 
    Figure 21: Strings belonging to seven different classes of malware that exploit heap based overflow 

vulnerability 

 

7.9 Conclusion 
 
As per above graphical analysis of features the following rules are generated for the 

efficient detection of malwares that exploits heap overflow vulnerability. 

 
 
Rule#1: (TypeofStringz = HeapStrings) and (Countofloadedlibr <= 32) and 

(Numbercountofs <= 19) and (NumberofLoadedLibararies <= 0) => 

Overflow=HeapOverflow (25.0/1.0) 
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Rule#2: (TypeofMalware = Backdoor) and (TypeofStringz = HeapStrings) => 

Overflow=HeapOverflow (87.0/19.0) 

 

Rule#3: (TypeofStringz = HeapStrings) and (Numbercountofs <= 11) and 

(NumberofMutex >= 1) and (NumberofMutex <= 16) => Overflow=HeapOverflow 

(32.0/9.0) 

 
 
Rule#4:  (NumberofProcessInteractions > 1) AND (TypeofStringz = HeapStrings) 

AND (TypeofMalware = Backdoor) AND (MutexName = Local\) AND 

(NumberofMutex <= 5) AND (NumberofProcessInteractions <= 5) AND 

(NumberofProcessInteractions > 4) => Overflow=HeapOverflow (47.0/6.0) 

 
 

Rule#5:  (LoadedLibraries = No) AND (Numbercountofs > 0) => HeapOverflow 

(23.0) 

 
 

Rule#6: (TypeofStringz = HeapStrings) AND (MutexName = Local\) AND 

(NumberofProcessInteractions > 5) => HeapOverflow (16.0/1.0) 

 
 
Rule#7: (TypeofStringz = HeapStrings) AND (Mutexcount > 2) AND 

(NetworkConnections <= 0) => HeapOverflow (11.0) 

 
 
Rules#8: (TypeofStringz = HeapStrings) AND (MutexName = Global\) 

=>HeapOverflow (4.0) 

 
 
Rule#9: (TypeofStringz = HeapStrings) AND (MutexName = Local\) AND 

(RegistryWrites = Yes) AND (RiskParameter = Autostart) AND (TypeofMalware = 

Backdoor) AND (NumberofMutex <= 4) AND (NumberofLoadedLibararies <= 102) 

AND (StigQueries = Yes) => HeapOverflow (4.0/1.0) 

 
 
Using mining techniques to detect heap based overflow in a large dataset is much 

easier and takes less time as compared to conventional reverse engineering technique. 
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Chapter 8 
 

Detection of Heap Based Overflow by using 

Classifiers 

 

8.1 Introduction 
 

Using classifiers to detect malwares that exploit heap based overflow vulnerability 

can be accomplished using a direct process. This process can take as little as few 

minutes or can be elongated to months, depending on the clarity of the objectives and 

scope, availability of dataset, and the pre-processing trials related with the data. Two 

rudiments of the analysis are collection of data and tool acquisition. The collected 

data entails a pre-processing stage to move it into the form which is required for 

classifier implantation and heap overflow detection. Result execution and analysis of 

data is a significant step to comprehend the subsequent model and its rule sets. 

 

8.2 Result Execution and Analysis of Data 
 
For the result execution and analysis an open source weka tool has been used. Weka 

is a best known data mining tool and provides a wide-ranging list of machine 

learning algorithms. The created dataset of 747 malware files comprising of 22 

features are converted in to .arff format. ARFF files known as Attribute-Relation File 

Format used to work with weka machine learning software.  

 

8.2.1 J48 Classifier 

 

By implementing J48 classification algorithm we get an accuracy rate of 91.834%. 

 

 



 

43 
 

 
 
J48 tree detect the malwares which exploit heap based overflow vulnerability on the 

basis of following rules. 
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Figure 22: Rules Generated by J48 Algorithm to detect Heap-Based Overflow 

 
Visual representation of J48 tree is shown below. 
 
 

 
Figure 23: J48 tree 
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8.2.2 Lazy K-Start Classifier  

 
By implementing Lazy K-Star classification algorithm we get an accuracy rate of 

90.3614%. 

 

 
 

 
 

8.2.3  Simple Logistic 

 
By implementing Simple Logistic classification algorithm we get an accuracy rate of 

90.8969%. 
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8.3 Conclusion 
 
Implemented data mining classification algorithms are used to classify new portions 

of information into predefined groups. Classification algorithms use pre-classified 

dataset to classify data, based on current trends and patterns. After rule generation, 

the logic from the implemented algorithm can be combined into numerous intrusion 

detection technologies including firewalls and IDS signatures. Out of 3 implemented 

classifiers J48 algorithm shows highest accuracy rate of 91.834%. 

 

Classification Algorithm J48 K-Star Simple Logistic 

Accuracy Rate 91.834% 90.3614% 90.8969% 
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Chapter 9 
 

Validation and Results 
 

9.1 Introduction 

 
To validate the performance of our proposed system 10-Fold cross validation is 

implemented. Cross validation computes the accuracy of the implemented model by 

dividing the dataset into training testing set. J48, K-Star and simple logistic 

classification models are created from the training set and their accuracy is calculated 

grounded on how well it classifies the testing set.  

 

9.2 10-Fold Cross Validation 
 
Three classifiers J48, KStar, Simple Logistic are trained and tested with 10 fold cross 

validation i.e., the created dataset is divided arbitrarily into 10 subsets, where 1 

subset is used for testing and 9 for training. For every combination the process is 

repeated 10 times. This procedure aids in assessing the strength of a given approach 

to detect malwares that exploits heap based overflow vulnerability without any 

previous information. 

 
 
For evaluation of the propose system the following quantities are considered: 

 
 

 True Positives (TP): Number of malwares that exploit heap based overflow 

vulnerability  are classified as malicious executable 

 False Positives (FP): Number of benign programs classified as malicious 

malware that  exploit heap based overflow vulnerability 

 
 

Classification Algorithm J48 K-Star Simple Logistic 

Accuracy Rate 91.834% 90.3614% 90.8969% 

True Positives (TP) 0.918 0.904 0.909 

False Positives (FP) 0.163 0.171 0.262 
Table 3: Accuracy Rate of Classifiers 
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Implementation of 10-Fold Cross Validation technique has significantly increase the 

accuracy rate of the system. The comparison of the modeled data is given below 

 
  
Classification Algorithm J48 K-Star Simple Logistic 

Accuracy Rate (10-Fold 

Cross Validation) 

91.834% 90.3614% 90.8969% 

Accuracy Rate 

(Percentage Split) 

88.5827% 89.7638% 88.189% 

Table 4: Comparison of Accuracy rate before and after Data Modeling 

 

9.3 Conclusion 
 
By the implementation of proposed system a comprehensive detection technique is 

presented for classification of malwares that exploits heap based overflow 

vulnerability.  

 
 
The logic from the implemented algorithm could be used to upsurge awareness of 

APT strategies, and advance the complete security of the organizations. Details of 

our work is concluded in this chapter and future work is discussed in detail in next 

chapter. 
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Chapter 10 
 

Future Work 

 

10.1 Introduction 

 
Polymorphic variants and generation of new malware families are forcing the Anti- 

Malware industry to create automatic tools to classify the malwares ability to exploit 

vulnerabilities and their corresponding class. In our proposed research work we have 

presented a behavioral detection technique for the malwares exploiting heap 

overflow vulnerability. In this chapter, our research work is concluded.  

 

10.2 Future Work  

 
The proposed methodology can be used by security analysts to protect systems from 

memory manipulation errors. It can be used for the behavioral analysis of malwares 

to detect APT treats. This approach can be used to detect Memory Leaks, Stack 

Overflow, and Integer Overflow.  This approach can be combined with Address 

Space Layout Randomization (ASLR) technology to efficiently detect and prevent 

heap based overflow malwares. 

  

10.3 Conclusion 
 

Our work presents a malware detection system using combination of data mining and 

reverse engineering techniques. The proposed system is based on mining features of 

the binary files for detecting malwares that can exploit heap based overflow 

vulnerability. We developed a Feature parser to parse features from malware files 

and store them in to a dataset. A labeled dataset is created representing the class of 

malwares and their ability to exploit heap based overflow vulnerability. The created 

feature set is used to train three classifiers J48, K-Star and Simple logistic for the 

detection of heap based overflow. The proposed methodology is easy to implement 
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in operations of cyber security to comprehend the behavior of malwares targeting 

their organizations. 
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