Detection of Heap-Based Overflow in
binary Codes

Huma Siddiquie

A thesis submitted to the faculty of Information Security Department, Military College
of Signals, National University of Sciences and Technology, Rawalpindi in partial
fulfilment of the requirements for the degree of MS in Information Security

August 2018

Abstract

According to SANS Common weakness Enumeration Heap Overflow vulnerability is among
twenty five most dangerous software errors which if exploited in an organized manner aids the
attacker to gain privilege escalation. Detection of malwares that can exploit this vulnerability

requires the combination of datamining and machine learning techniques.

Our work presents a hybrid malware detection technique that is the combination of both data
mining and machine learning approach. For overcoming the absence of typical anti-virus
software we have used static analysis technique to extract features of malwares. We extracted
features from malware binaries then calling frequencies of the raw features are collected to
select valuable features. Feature engineering technique is used for the reduction of the selected
features. The created feature set is used to train three classifiers J48, K-Star and Simple logistic
for the detection of malwares that exploit heap based overflow vulnerability. By embracing the
notion of machine learning and datamining a static malware detection technique is proposed.
The proposed technique is easy to implement in operations of cyber security to comprehend the

behavior of malwares targeting their organizations.

Declaration

| hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

Dedication

“In the name of Allah, the most Beneficent, the most Merciful who bestow me with
knowledge and favors me with opportunities to prove myself"

| dedicate this thesis to my parents, siblings, and teachers who had always been
so encouraging and loving. Who always show their full confidence in me and

make me to believe in myself.

Acknowledgments

I am thankful to ALMIGHTY ALLAH, the most Powerful and Gracious, Who helped me
and guide me to successfully complete this thesis.

| wish to express my sincere thanks to my supervisor, Major. Muhammad Faisal Amjad,
PhD, for his expert and valuable guidance, suggestions and ==humbleness. Also, | would
thank my committee members; Lecturer Waleed Bin Shahid and Asstt Prof. Mian

Muhammad Waseem Igbal for their support and knowledge regarding this topic.

Last, but not the least, I am highly thankful to my parents. They have always stood by my
dreams and aspirations and have been a great source of inspiration for me. I would like to
thank Sir Omer and Madam Anum for helping me in my tough time and this dissertation
would have not been possible without their help.

Table of Contents

Page

YN 115 2 Yo i

ACKNOWIEAGEMENTS .o 0\

Thesis Acceptance Certificateovuiviiiiiintiii i, v

Table OFf CONENLSueti e e e et Vi

LISt Of FIQUIES ..ee it e e e e e e IX

LISt OF TabIEs ...ttt Xi
Chapter

(O =T o) USSR USRS 1

INEFOTUCTION ...ttt bbbttt eaneene e nes 1

I R @ VT Y 1= ST SRP 1

1.2 Motivation and Problem Statementccocvveieniiininineee s 2

1.3 ODBJECHIVES ..ot bbb 3

1.4 Relevance to National and Army NEEAS...........ccceviriririiieieie e 3

1.5 Thesis CONIIDULIONocieiiiie e nne s 3

1.6 TheSiS OrganiZationcoceieriiiiiiisieieie et 4

(O T o)] USSP SPURRTIS 6

LITErAtUIE REVIEWeeviiieiiciieiee ettt bbb ne e 6

2.1 OVEIVIBW ..ttt bbbttt ettt bbb e reeneene e nes 6

2.2 Origin Of MalWAIES...........coiiiiieiieiee et sre s 6

2.3 Malware Detection TECANIQUEScoviiiiiiiieiiiiesiieee e 7

2.4 Detection of Heap-Based OVEIflOW ..o 8

2.5 CONCIUSION ...ttt et esreeteeneenreenteaneennees 9

(O g Fo 0] (=] S ST PR USRS PPRO 11

Architecture of Proposed Malware Detection TeChnIqUe..........cccevveeieeiie e 11

3.1 INEFOTUCTION ..ttt nreas 11

3.2 Components OF ArCITECIUIE........c.eciiiiiic et 11

3.3 CONCIUSION ...ttt sttt e nneas 14

CRAPLET 4 ...ttt b et bbbt 15

Malware Dataset Collection and GENErationcccceeeveririnienieieie e, 15

Vi

Ot [11 (T (1 o4 A o] o PSS UR PP PSP 15
4.2 MaIWare DataSEL.........ccoeeriiiieiiiei ettt sttt nne s 15
4.3 Online Sandbox ConfiQUIAtIONccueiiiiirieiiiesieeeee e 16
4.4 RePOIt GENEIALION.......cciiiiiieiieeie et e st ee et e e e sre e esre e e sneenres 16
4.5 CONCIUSION ..ottt ettt 16
(O T TSSOSO 17
FEatUre ENQINEEIINGvoiiiiiccie ettt te et esreesreenneanes 17
T8 A 11 oo L1 T £ o] o OSSR 17
5.2 Feature EXIrACHION.ccviiiiie ettt sre e 17
5.3 FRALUIE PAISEN ...ttt ettt st 17
5.4 FEature SEIECTIONcoii i 18
5.4.1 MalWare SIgNatUrecc.ccveiueiiiiieeiecie et sre e ens 19
5.4.2 RISK PAr@GmeLerccveiiiiieiieieeie sttt nns 19
5.4.3 NetWOrk CONNECLIONS.ciiiiiiiieieie ettt 20
D44 IMIULEX ...ttt ettt ettt et e et e e be e nr e nre e 21
5.4.5 Process INTErACIONSccceiiriiiieiieieiie sttt sie et 21
546 SHINGS .ottt 22

5.5 CONCIUSION ...ttt bbbttt 23
(08 T o) G OSSPSR 24
REVEISE ENQINEEIING ...vcvviivieiieeie ettt ettt te e e s te e te e e e sreesreenneanes 24
G T0 R 114 {0 o [FTox o] ISP PRI 24
6.2 DISASSEMDIETieeiiie et 24
8.3 DBDUGGET ... 26
R O o] 1] [o ISR 31
(O g F- 10 (=] S OSSP P PP PSR PRPPPO 32
Detection of Heap Based Overflow by using Extracted Features...........c.ccccoeevvevivenenne. 32
% S 114 {0 o [FTox o] ISR PRTIN 32
7.2 RISK PAr@mMeLEr......ccveieiieiieiieeiesee ettt 32
7.3 NetWOrk CONNEBCLION.........oiiiiieie ettt e 34
A |V, V1 () TP TSP PR OPPROPPR 35
7.5 Process INEraCtioNScccueieerueiieiieieeeesee e seesee e ee e e steesee e e seesneesseeneeens 36
7.6 LoAded LIDrariEs......ccooiveiiiieieee e 38
T.7T DINS QUEKIES .eeveeutesiieiieeieeee e etesee e e stesreesteetesseessaeseeaseesseesteaneesseesseeneesseenseans 39
A TS (] LSS 40

vii

T.9 CONCIUSION ... 40

CRAPLET 8.t b bbbt 42
Detection of Heap Based Overflow by using CIasSifiers..........cccoooeieniniiininiinicee, 42
8.1 INrOAUCTION ...ttt 42

8.2 Result Execution and Analysis Of Datacccevvevveiiiienienecie e 42
8.2.1 JAB ClaSSITIEI ...ttt 42

8.2.2 Lazy K-Start CIaSSITIENccoouiiiiiieie e 45

8.2.3 SIMPIE LOGISLIC ...veeveeiicie et 45

8.3 CONCIUSION ...ttt sttt sttt sre e be st e sreenne e 46

(00 F= 0] (=] o TSP P PP PR PR R PRPPPO 47
O R 1011 {0 o [FTox o] ISP URORPRRIN 47

9.2 10-Fold Cross Validation...........cccoueieierieieneieseseseeie e 47

9.3 CONCIUSION ...ttt ettt sttt 48

L0 =) OSSPSR 49
DT AY o] USSP 49
050 R 1o 1 oo [0 Tox 1 oo SR 49
10.2 FULUIE WOTK ..c.eieie ettt st nne e nnes 49
IO T 0] o [1] o] o SR 49

R EIENICES ... ettt bbbttt bbb 51

viii

List of Figures

Figure 1: POPUIAr MAIWAIES........cc.oiiiiiiiiiieiee e 7
Figure 2: Components of proposed ArChiteCtUIE..........coovvvririiiiieieee s 11
Figure 3: Architecture of Proposed Malware Detection Techniquecccccvevveveevivenenne. 13
Figure 4: RISK PAramELETccveiuiiieiieiti et se sttt te ettt e e e nne e anes 20
Figure 5: Range of Network connections made by different classes of malware............... 20
Figure 6: Network connections made by different classes of malwarec...ccevenenee. 20
Figure 7: Mutex used by different classes of malwarecccccceoveviiieiieie i 21
Figure 8: Number of Process Interactions of different classes of malware......................... 21
Figure 9: String types and their COUNL...........coveiiiii i 22
Figure 10: Heap strings belonging to different classes of malware............cccccoceevvevvenenne. 22

Figure 11: Risk Parameter of malwares that exploit heap based overflow vulnerability 32
Figure 12: Count of Risk Parameter of malwares that exploit heap based overflow
VUINEIADIIILY ..ot re et e et e be e besreenne s 33
Figure 13: Subcategories of RiSK Parameters ..o 34
Figure 14: Range of Network Connection of malwares that exploit heap based overflow
VUINEIADTIITY L.ttt 35
Figure 15: Mutex range of malwares that exploit heap based overflow vulnerability 35
Figure 16: Mutex belonging to seven different classes of malware that exploit heap based
OVErfIOW VUINEIaDIIITY ... 36
Figure 17: Process Interactions belonging to seven different classes of malware that exploit
heap based overflow vulnerability ... 37
Figure 18: Name of Process Interactions belonging to seven different classes of malware
that exploit heap based overflow vulnerability..........ccccocooiiiiiiiiiie 38
Figure 19: Loaded Libraries belonging to seven different classes of malware that exploit
heap based overflow VUINErabilitycccoiiiiiiiii e 39
Figure 20: DNS Queries belonging to seven different classes of malware that exploit heap

based overflow VUINErability ..o 39

Figure 21: Strings belonging to seven different classes of malware that exploit heap based

OVEIrFIOW VUINEIADTIILYeoivieiecc et 40
Figure 22: Rules Generated by J48 Algorithm to detect Heap-Based Overflow................. 44
FIGUIE 23: JAB LI ...ttt et e e st et e e et e et e e e e s neesreeneanes 44

List of Tables

Table 1: MalWare DataSELccceieieriiiiiiisisieieie et 15
Table 2: Extracted and Selected fRAtUIESccuuveierieiiie e 19
Table 3: Accuracy Rate 0f CIaSSITIErScvcvviiiiicii e 47
Table 4: Comparison of Accuracy rate before and after Data Modeling..........c...ccccvevenen. 48

Xi

Chapter 1

Introduction

1.1 Overview

A heap overflow is a well-known type of buffer overflow occurring in heap data area.
Memory on heap usually comprises of program data and is dynamically allocated by the
application at run-time. Heap is a segment of memory that is used for keeping global
variables and dynamically allocated data. It can be exploited by corrupting the program
data located at heap. It usually happens when a pointer or its index is step-down to a
position before the buffer or when a destructive index is used, which produces a position
before the buffer. Each portion of memory in heap comprises of boundary tags that

enclose information related to memory management [1].

When a heap buffer is over run, the control statistics in these tags is overwritten. Access
violation occurs when a memory address overwrite takes place. When the overflow is
executed in an organized manner, the vulnerability would permit an attacker to overwrite

a memory location with a carved input.

This vulnerability directly affects the CIA triad and can result in different consequences
as specified below:

a. Confidentiality. By exploiting CWE-122 the attacker can read memory, execute
unauthorized programs and can evade protection mechanism.

b. Integrity. It is mostly used by attackers to run arbitrary or unauthorized programs
to modify memory. The memory modification can be done by overwriting
function pointer residing in memory or pointing it to the exploiter's code

c. Availability. It can be used to crash the systems, generated D-Dos Attacks,

resource consumption and can lead to put the program in to an infinite loop.

Several techniques have been recommended to identify this software vulnerability, but all
of them rely on deep code analysis and run time execution which is a tedious process.
Data mining and machine learning techniques have introduced new dimensions in the
field of malware analysis. We have a proposed a hybrid detection technique that is the
combination of both data mining and machine learning. Machine Learning technique is
used to find patterns in data and then prediction of the outcome is done by using

datamining technique [2].

We extracted twenty one features from malware executables which are File name, Risk
Parameter, Network Connections, Number of Mutex, Number of Loaded libraries,
Number of Process Interactions, DNS Queries, Frequent API Calls, Downloaded Files,
Process Interactions, Registry Writes, Registry Reads, Mutex Count, Mutex Name, File
Queries, Type of Strings, Total Count of Strings, Strings, Total Count Loaded Libraries
(.dll format), Loaded Libraries (.dll format) and Type of Malware by self-written code in
php language. Our work presents a heap based over flow vulnerability detection system
using data mining technique such as three classifiers: J48, KStar and Simple Logistic. For
overcoming the absence of typical anti-virus software we have used static analysis
technique to extract features of malwares. Then feature engineering technique is used for
decreasing the selected features. By embracing the notion of machine learning and

datamining, we created a malware detection technique.

1.2 Motivation and Problem Statement

Buffer overflow is among the 25 Top most Dangerous Software Errors. It ranks high in
the Common Weakness Enumeration. It can cause direct memory manipulations. A
cautiously crafted input by a malicious actor can overwrite a register that stores important
information and thus by doing so gain access to the program or in worst cases gain access

to the root or admin account.

Hence, there is a need for an effective detection technique that can effectively detect heap
based overflow vulnerability. Assessment of Heap based Vulnerability along with the

implementation of proposed hybrid technique can be used by the programmers to develop

secure applications.

1.3

Objectives

The main objectives of thesis are: -

1.4

1.5

Proposition of new technique for the detection of heap-based overflow.

To create a dataset that highlights heap based overflow vulnerability in different
classes of malware

Implementation of detection technique which is the combination of both machine

learning and datamining approach.

Relevance to National and Army Needs

a. National Needs. No industry can progress without such system that alerts

them about their weaknesses. If such weaknesses are exploited by users
having malicious intent it can badly affect the reputation of the industry.
An efficient detection system that can detect memory attacks and can help
industries to protect them self from malware that is capable of using their
machines by manipulating or by corrupting the sensitive data.

b. Military Needs. A military data center contains confidential and important

data. If the securities of such systems are compromised it will directly
affect the security of our nation. A detection system that can effectively
detect heap-based overflow attack can improve the security of such
systems.

Thesis Contribution

It is stated that our work is unique because after extensive research we have found that

there is no single dataset that gives the detailed information about the malware showing

their identified class and the heap based overflow vulnerability. We have not only created

a dataset but also proposed a hybrid malware detection technique.

Our contributions in this research are listed below:

1.6

Proposition of a hybrid detection technique that is the combination of both data
mining and machine learning approach

Creation of a program to automatically extract feature from malwares files
Creation of a program for data cleaning

Identification of heap based overflow vulnerability of seven classes of malware
which are Adware, Backdoor, Downloader, Dropper, Keylogger, Rootkit and
worm.

Three Classifiers in WEKA are trained by extracted features dataset for detection
of heap based overflow vulnerability.

Results are generated and accuracy is calculated of each classifier for our created
dataset.

Thesis Organization

The thesis is structured as follows:

Chapter 2 comprises of literature review. In this chapter evaluation of existing
tools and diverse techniques proposed by different researcher have been presented
that includes evidence combination techniques, smart fuzzing, concolic execution

and anomaly detection.

Chapter 3 comprises of Architecture of Proposed Malware Detection Technique.
In this chapter details of proposed technique architecture is discussed. The
technique is to accurately detect malwares that exploit heap based overflow
vulnerability from malware binaries belonging to seven different classes by using

data mining and machine learning approach.

Chapter 4 covers the Malware Dataset Collection and Report Generation. In this
chapter malware dataset creation, mechanism of online sandbox configuration and

the procedure of report generation is discussed in detail.

Chapter 5 comprises of Feature Engineering. In this chapter process of feature

selection and feature extraction is discussed in detail.

Chapter 6 covers Reverse Engineering techniques .In this chapter details of heap
based overflow malware detection technique by using reverse engineering is

discussed in detail.

Chapter 7 covers Detection of Heap Based Overflow by using Extracted Features.
In this chapter by using datamining techniques, extracted features are analyzed to
detect heap based overflow.

Chapter 8 covers Detection of Heap Based Overflow by using Classifiers. In this
chapters three classifiers are trained and then tested to detect heap based

overflow.

Chapter 9 covers Validation and testing. It comprises of performance validation of
our proposed system.

Chapter 10 concludes the document. It comprises of conclusion and future work.

Chapter 2

Literature Review

2.1 Overview

This chapter includes the literature review of malware analysis. It discusses origin of
malwares, their types followed by the evolution of malware detection techniques. These
detection techniques helped in developing malware detection tools to detect malwares

that exploit heap based overflow vulnerability.

2.2 Origin of Malwares

Technological advancements have made our small globe equivalent to a global village.
Internet, complex computer networks along with the intelligent software advancement
has become a crucial element to keep individuals, businesses and organizations together.
This setup has led to an increased rate of cyber-crimes with every passing day.

Cyber criminals use malicious software to launch cyberattacks on computers to realize
malicious goals. Designing malwares to meet certain goals that may include stealing of
data, encrypting sensitive file, corrupting information, displaying unwanted
advertisement or to gain control of a computer system. Malwares use vulnerabilities of
the system to exploit data. Users are tempted into running a useful code that is often
displayed on a site, malware is attached with this useful code & that it is activated on the

host system.

Over time, malwares have evolved each has its unique technique to exploit the user or
businesses and can be classified into categories depending upon what type of malicious
activity they perform on their host.

Symantec’s 2018 Internet Security Threat Report (ISTR) reveals that 600 percent
increase in loT attacks is recorded. Cryptojacking explodes by 8,500 percent, stealing
resources and increasing vulnerability. It further says that malware implants grow by 200
percent, exploiting the software supply chain. Mobile malware variants are increased by
54 percent, and according to their sensors record about 126.5 million of threat events are
logged every second from 157 countries and territories. Fig. 2.1 shows the pi-chart (%) of
different popular malwares.

Backdoor 1.89%
Adware 2.27%

Spyware 0.08%
f Others 1.18%

Worms 7.77%

Figure 1: Popular Malwares

2.3 Malware Detection Techniques

Malware detection techniques are implemented through malware detector. The malware
detector attempts to help protect the system by detecting malicious behavior. The detector
may or may not reside on the same system it is trying to protect from malicious code.
Using manifested malware detection techniques malware detector performs its protection,
and serves as an experimental means of evaluating malware detection technique’s
detection capability.

Techniques used for malware detection largely categories into three parts: Static
Analysis, Dynamic analysis and Hybrid analysis. The malware analysis that Anti-virus
companies do, can be classified broadly into two categories; the static analysis techniques
and the dynamic analysis techniques. The static techniques involve looking into the
binaries directly or reverse engineering the code for patterns in the same.

The dynamic analysis techniques involve capturing the behavior of the malware sample
by executing it in a sandboxed environment or by program analysis methods and then use

that for extracting patterns for each family of virus.

Rossow, et al., presented a survey on literatures for malicious software detection
techniques. Muazzam, et al., also presented a survey on mining techniques to detect
malwares on the basis of file features. CWSandbox was proposed by Willems, et al., and

it is a well-known tool which can run malware samples in a virtual environment.

Choudhary and Saharan also used data mining technique to detect malicious software.
They use abstract assembly and selected top features. IDApro was used to generate the

assembly code. SVM and Neural net classifiers are considered.

Malware detection tools can be categorized in to the following three groups. 1. Static
Malware Detection Tools 2. Dynamic Malware Detection Tools 3. Online Malware
Detection Tools. Many different types of malware detection tools are available in the
market and are used with variant approaches. Their names and approaches are given as
under:
i. IDA Pro Anomaly Based Approach

ii. OllyDbg Heuristic Based Approach

iii. Regshot String Matching

iv. Process Monitor Probabilistic Approach

V. Process explorer Address space randomization

vi. Virus Total Heuristic Based Approach
vii. Anubis Behavioral Based Approach
viii. Threat Expert Behavioral Based Approach

ix. Comodo Signature Based Approach

2.4 Detection of Heap-Based Overflow

Buffer overflow is a reputed software vulnerability. In the past two decades, numerous

approaches have been recommended to detect this vulnerability.

Anitta Patience Namanya et al. in “Detection of Malicious Portable Executables Using
Evidence Combinational Theory with Fuzzy Hashing” presented the techniques to,
calculate the similarity of the Portable Executable files and according to researcher by
using evidence combination techniques, detection rates can be improved [1].

Maryam Mouzarani et al. in “Smart fuzzing method for detecting stack-based buffer
overflow in binary es” presented the concolic execution to determine the factors that can

cause stack-based buffer overflow in binary codes [2].

Maryam Mouzarani et al. in “A Smart Fuzzing Method for Detecting Heap-Based Buffer
Overflow in Executable Codes” presented the concolic execution based smart fuzzer to

determine the factors that can cause heap-based buffer overflow in executable codes [3].

Zane Markel and Michael Bilzor. in “Building a machine learning classifier for malware
detection” researcher has presented a machine learning technique for the detection of
malware. With the varied malware prevalence the researchers calculate variations in

classifier performance [8].

S.K. Pandey et al. in “Performance of malware detection tools: A comparison”
presented the evaluation of existing tools and procedures for malware detection and

concluded that top three tools are Regshot, Process Monitor and Process Explorer [11].

Mikhail Zolotukhin et al. in “Detection of zero-day malware based on the analysis of
opcode sequences” presented the anomaly detection technique to detect malwares. A

software behavior model is proposed to detect the unseen malwares [12].

2.5 Conclusion

Many researchers has used different techniques for the detection of malwares that exploit
overflow vulnerability but failed to inspect the run time performance of malwares and the
methods proposed by them are also ineffective against encrypted features. In our

proposed framework we have extracted and used more than twenty features for efficient

http://ieeexplore.ieee.org/document/6866599/
http://ieeexplore.ieee.org/document/6866599/

detection of malwares that exploit heap based overflow vulnerability. The propose

methodology is automatic and flexible to be deployed in any operational environment.

10

Chapter 3

Architecture of Proposed Malware Detection

3.1

Introduction

Technique

In this chapter details of proposed architecture of malware detection technique is

discussed in detail. The technique is to accurately detect malwares that exploit heap based

overflow vulnerability from malware binaries belonging to seven different classes by

using data mining and machine learning approach.

3.2 Components of Architecture

Our proposed architecture has five main components:

a.
b.
c
d

€.

Component 1: Feature Extraction

Component 2: Feature Selection

. Component 3: Reverse Engineering

Component 5: Learning Algorithm

. Component 4: Data Cleaning and Transformation

Feature
Extraction

Feature
Selection

Reverse

Engineering

Data Cleaning
and
Transformation

Learning
Algorithm

Figure 2: Components of proposed Architecture

11

Component 1: Feature Extraction

Feature parser extract data from all JSON files of malware dataset. JSON files are created
by using IBM X-Force Exchange Tool. After extracting features, parser stores the
extracted features in a CSV file.

Component 2: Feature Selection
Extracted Raw Features with calling frequencies greater then threshold are selected.
Component 3: Reverse Engineering

Type of software vulnerability has been identified by code analysis by executing malware
in a sandbox environment. OllyDbg and IDA Pro tools are used for code analysis.

Component 4: Data Cleaning and Transformation

Self-Written VBA Macro code is used for data cleaning which will be explained in detail
in next section.

Component 5: Learning Algorithm

Learning algorithms are used to drive a classification results from the created labeled
dataset.

12

Malware Data] I Online Sandbox
Set Collection Configuration

gy

. I .— I —.l
: 32and64 E< ______ E :llllllllllllllllll: E E SmeiSSionOf E E
: bitwindows - - ¢ IBMXForce =& _ P Malwarefiles s<Greeed
‘............. : EXChange - : :IIIIIIIIIIIIIIIII. :
g UEUEREEREEREERR R ‘lllllllllllllllll: :...................l
: Labeled : :IIIIIIIIIIIIII.IIII: : Creatlonof : E
Malwares = P Hybridanalysis = . : : ReportinJSON = <=+
: belonglngto :<' """ : :IIIIIIIIIIIIIIIIIIE i format .
: 7different : EEEEEEEEEEEEEEEEER

and Data Engineering Handling
Transformatlo

'] ‘ !

E E Handling E g IIIIIIIIIIIIIIIIIIIIII. g >:

=2 Missing Data : : > OllyDBG Debugguer :

Illlllllllllllll. .
> DataCIeanlng : FeD

Learning Algorithm I

AN EEEEEEEEEEEERERNRY
- Decision Tree =

AEEEEEEEEEEENEEREREENg
K Star

P>

":IIIIIIIII,'I!I'I!II
EEEN
EEEnN

v

Simple
Logistic

'.: e

>: IDA Pro Disassembler =

Malware
I Report
Generation

I____I I____I

Evaluation I

I S

v

Precision and
Accuracy

Figure 3: Architecture of Proposed Malware Detection Technique

13

Feature Selection

Feature Extraction

3.3 Conclusion

This chapter describes the major components and architecture of proposed detection
technique which is the combination of both datamining and machine learning approach. It

gives a summarize view of complete dissertation.

14

Chapter 4

Malware Dataset Collection and Report

4.1 Introduction

Generation

This chapter comprises of three sections that discuss in detail about the malware dataset,

mechanism of online sandbox configuration and the procedure of report generation.

4.2 Malware Dataset

Malware dataset comprises of malware executables is taken from online malware and

URL scanner that is from Virus Total.

Our selected Malware dataset has following characteristics:

a. Windows based Malware executables supports 32-bit and 64-bit Operating System.

b. High detection rate and can be detected by more than 20 antiviruses.

c. Labeled Malware files belonging to seven different classes including Adware,

Backdoor, Downloader, Dropper, Keylogger, Rootkit and Worm.

Type of Malware Total Count
Adware 146
Backdoor 100
Downloader 100
Dropper 96
Keylogger 110
Rootkit 96
Worm 99
Total 747

Table 1: Malware Dataset

15

4.3 Online Sandbox Configuration

To analyze malwares executables we have selected two online sandboxes that are hybrid
analysis and IBM X-Force Exchange tool. Hybrid Analysis use hybrid analysis
technology and falcon sandbox to analyze malware files and summarize the result by
generating report. IBM X-Force Exchange tool has malware analysis components that
uses cloud-based threat intelligence distribution podium to generate malware reports.
Malware Analysis of IBM X-Force is a component of larger Security Operations and
Response platform. Initial registration of subscription of services is required to use both

the sandboxes.

4.4 Report Generation

IBM X-Force tool is used for report generation. Total 747 malware executables
belonging to seven different classes have been uploaded on IBM tool for analysis. The
generated report is created in JSON format. The report contains the detail analysis of

each and every feature of malware and rate the malware according to its level of severity.

45 Conclusion

This chapter gives an overview of the selected platform and dataset for the
implementation of detection technique. Platform selection is the most important step as
the report generated by the selected platform will be used to extract features as discussed
in detail in next Chapter. The accuracy of the results will be directly dependent on the
generated reports.

16

Chapter 5

Feature Engineering

5.1 Introduction

One of the most important phase in machine learning is defining the suitable feature
illustration. The process of feature selection and feature extraction is known as feature
engineering. Feature engineering is used for converting raw data into features that
present the problem to the logical models, ensuing in enhanced model accuracy on testing
data. The features in dataset directly affect the learning algorithm used to predict the
results. The more time and importance given to select features will result in better

features. Better features results in agility, simpler model and accuracy.

5.2 Feature Extraction

Some dataset are too big in their raw state to be modeled by learning algorithms directly.
So, to reduce the dimensionality of dataset, process of feature extraction is used. For
feature extraction the key is that the methods used should be automatic. To automate the
process of feature extraction feature parser is used. Feature parser is a self-written

program in .php language.

In order to extract features from malware executables we first required the malware
report in JSON format that we have generated with the help of IBM X-Force Exchange
malware analysis tool. X-Force Exchange Malware Analysis is an IBM tool that can
analyze multiple malware executables within a minute. The generated malware report is

save in a JSON format is fed as an input to the feature parser.

5.3 Feature Parser

Twenty one features are extracted by using self-written feature parser and one feature is
extracted by using reverse engineering technique. Feature parser takes multiple input files

read them one by one, decode them in standard json format, extract all the required

17

features, save them in a tabular form and display the result of all 747 files in html file.

The html file can be saved in to a CSV file both options are available for the user.

Input: JSON file created from IBM X-Force tool
Output: Extracted features from a raw JSON file
Begin
1. Read all JSON file saved in a folder.
2. Get the index of the file then decode it in a standard json format.
3. Foreach (Selected Decoded feature we get a value)

If (value == selected feature)

Write the feature in a tuple in a row
If (data against feature empty)
Write all data in a next tuple of a same row
End if
End if

End for
End

5.4 Feature Selection

Feature selection is a procedure to address the problem by selecting a subset that is useful
to a problem. Important features are selected to extract from malware executables.
Features that are unrelated to the problem are removed. The features that are important
and improves the accuracy of the model are selected. Total 21 features are selected. List
of features selected from malwares executables and their total count is given in Table 2.

Extracted and Selected Feature Total Count
Malware signature 747
Risk Parameter 79
Network Connections 179815

18

Number of Mutex 4924
Number of Loaded libraries 85998
Number of Process Interactions 2564
DNS Queries 1622
Process Interactions 589
Registry Writes 271
Registry Reads 274
Mutex Count 938
Mutex Name 41
File Queries 565
Type of Strings 2
Total Count of Strings 64406
Strings 284
Total Count Loaded Libraries (.dll 28133
format)

Loaded Libraries (.dll format) 476
Type of Malware 7

Table 2: Extracted and Selected features

5.4.1 Malware Signature

It is a SHA-256 signature of a malware file.

5.4.2 Risk Parameter

Risk parameter is a factor of classifying and investigating potential issues that could have
a negative impact on system security. There are twelve risk parameters detected in our
selected dataset of malware and each risk parameter is further classified into sub
categories. Bar chart representation showing the risk parameter and their total count is

given below.

19

Risk

Verified Signature

Search: Enumerates running threads

Reputed Application

Packer

Mo Risk Parameter

Network Attack

Memory: Modifying image in kernel address space
File Modification

Execution

Ewvasion

Parameter

= 58
11

= 18

2 10

= 25

2 12

11

a7
e_— 70

DOTota

208

Disable: Disabling Windows File Protection 1 1
Autostart
Anomaly 1 3

338

0 50 100 150 200 250 300 350 400

Figure 4: Risk Parameter

5.4.3 Network Connections

The Network Connection is a factor that identifies that the malware makes a network
connection or not. Bar chart showing the number of network connection and their total
count is given below.

Network Connections

Above 100 connections [1]
51to 100 1
1to50 I 1
Mo Network Connection [1
lo] 50 100 150 200 250 300 350 400
No Network Connection 1to 50 51 to 100 Abowve 100 connections
CiSeriesl 367 274 7 104

Figure 5: Range of Network connections made by different classes of malware

As per my graphical analysis of selected dataset it has been observed that downloader and
worm creates many network connections which can range up to 100 and backdoor creates

least number of network connections.

160 147
140 110
igg a7 a1 100 100 e 96 85 95 99
80 63
eo 9 5 7 5
a0 232 0 ra
20 10 il | EXO) m: 00 00 o0 I;] 0
0 | H il il il il il il 18 il
Adware Backdoor Downloader Dropper Keylogger Rootkit Worm
10 or No Network Connection a7 2 23 76 63 35 14
H1to50 49 91 22 20 47 10 31
51 to 100 1 1 5 9] (o] (o] 9]
Above 100 o] o 50 9] o (o] 54
K Total 147 100 100 96 110 95 o9

Figure 6: Network connections made by different classes of malware

20

5.4.4 Mutex

To synchronize access to a resource, mutex is used and is also known as locking
mechanism. At a time one task that can be a thread or process based on OS abstraction
can acquire the mutex. It means there is an ownership associated with mutex, and only
the owner can release the lock (mutex). Graphical Analysis of extracted mutex of selected
dataset is shown in a graph below.

800
700
600
500
400
300
15 1
100
O pee fl_np Ono .- 0. _dlona Jlo - Ao 0
Adware Backdoor Do:enrloa Dropper Keylogger Rootkit Worm Count
O No mutex 64 7 76 18 45 48 65 323
DBWinMutex 1 0] (0] (0] 0 8 (0] =]
I Globaly 21 0 (0] (0] 5 3 3 32
O Localy, 42 82 19 7 31 21 19 221
OSSProxyAlreadyRunning 2 0 0 0 0 0 o] 2
RasPbFile 4 1 (o] 1 3 (o] (o] 9
O ShimCacheMutex 13 10 5 70 26 15 12 151
O Total 147 100 100 96 110 95 99 747

Figure 7: Mutex used by different classes of malware

5.4.5 Process Interactions

Operating systems provides a communication technique to allow different processes to
communicate with each other to enable better performance and to achieve certain tasks
by using code and data injection methods. Malware use process interactions to perform
malicious activities. As per my graphical analysis of selected dataset it has been observed
that mostly malwares perform 1 to 25 process interactions. Only downloader makes more
than 100 process interactions.

800

700
500
500
400
300
200
100
com loon non 0o 0w oo ol |l
Adware Backdoor Dozlvenrloa Dropper Keylogger Rootkit W orm Count
D10 or No process Interactions 66 o] 3 4 27 a7 3 150
1to 25 81 =y a3 91 81 48 a4 585
K126 to 50 (o] 2 3 1 2 o 1 1=
O51to 75 o] 1 (o] o]} o (o] 1 2
75to 100 (s} o (o] (o] o (o] (o] (o]
100 to 114 o] o 1 o o o] o] 1
O Total 147 100 100 96 110 (=121 99 7av

Figure 8: Number of Process Interactions of different classes of malware

21

5.4.6 Strings

String generally means an ordered arrangement of characters. It can be divided in to two
sub categories i.e. Heap Strings and Stack Strings. Heap is a large pool of memory also
known as dynamic memory and used for run time operation. Strings stored in a heap area
are known as heap strings. As per my graphical analysis for selected data set that 24% of
adware, 20% of backdoor, 16% of downloaders, 10% of droppers, 13% of keyloggers,
11% of rootkits and only 6% of worms use heap strings. So, maximum number of heap

strings are used by adware and minimum number of heap strings are used by worms.

160
140 [
120
100
80
60
40
20
. 0Ol <=l Ao ol U a0 T el
Adware Backdoor Downloader Dropper Keylogger Rootkit Worm
B0 or No Strings 23 6 15 19 16 33 57
Heap Strings 103 87 70 42 57 49 26
[0 Stack Strings 21 7 15 35 37 13 16
O Total 147 100 100 96 110 95 99
Figure 9: String types and their count
HEAP STRINGS
= Adware = Backdoor Downloader = Dropper = Keylogger = Rootkit Worm
Worm
Rootkit 6% . Adware

24%

Keylogge
13%

4 Backdoor

: 20%
10% 7

Downloader
16%

Figure 10: Heap strings belonging to different classes of malware

22

5.5 Conclusion

Feature parser is used to extract features from 747 malware files. Crucial features
extracted with the help of feature parser are File name, Risk Parameter, Network
Connections, Number of Mutex, Number of Loaded libraries, Number of Process
Interactions, DNS Queries, Frequent API Calls, Downloaded Files, Process Interactions,
Registry Writes, Registry Reads, Mutex Count, Mutex Name, File Queries, Type of
Strings, Total Count of Strings, Strings, Total Count Loaded Libraries (.dll format),
Loaded Libraries (.dll format) and Type of Malware. Feature extracted with the help of

reverse engineering is overflow which will be discuss in detail in next chapters.

23

Chapter 6

Reverse Engineering

6.1 Introduction

In this chapter details of heap based overflow malware detection technique is
discussed in detail. The technique is to use reverse engineering tools like ollyDbg
and IDA Pro to accurately detect heap based overflow vulnerability from malware
binaries. Malware reverse engineering is a process to minutely explore the working
of malware and to determine its effect on the environment after its execution. In our
technique we have used both static and dynamic analysis for the detection of heap

based overflow vulnerability in malwares.

6.2 Disassembler

IDA Pro also known as Interactive Disassembler is a disassembler which converts
machine language code to assembly language source code. It is used to comprehend
the functionality of the code by swapping between hex code and graph view. Its code
view and string section gives a swift illustration of the mapping of flow of

implementation.

To verify that the selected malware binary file is vulnerable to heap based overflow
vulnerability or not it is disassembled in to assembly source code by using IDA-Pro.
To identify it disassemble an adware into assembly source code. The shah 256 hash
of the selected adware IS
1fb9cb60b11165df3298dee55b59517e3ed15957b820b19b4ca0d8f9f2e20173. Move
to string window of the dissembled adware binary file. The string windows contain

all the strings of the loaded disassembled program.

24

3eg000:00037 3F0 00000015 C incompatible version
segDDD 00037408 00000000 C buffer eror
C insulficient me

”" segElElU UUDS742E 0000000e
" 5eg000:00037438 00000000
seq000.00037448 00000008
3eg000:00037454 00000008 stream end

C data emor

C

C

C
3eg000:00037460 00000010 C need dictionary

C

C

C

C

-

stream enor
file error

5eg000.00037498 000000zF inflate 1.2.1 Copyright 1395-2003 Mark Adler

" gegO00.00037C1C 00000034 ahahahahbhbib b EAEAE A bbb nb bbb rsnnbe b e e b

3eg000:00037C70 00000020 Sttt A A

+eg000:00037070 00000020 Sl BT BT Bt B BT Bk B B B B Bk Bk Bt B BT Bk BA 1B B BT B B AT B 1B B 1B B A 1B A1 B\ 1 B 1B 1B

- -ARAARAATEA T AnnAnnnn RN

€% DA - Ci\thesis\Malware\Malwares\bitdefender_Adware size_IMB- type_peexe positives_20+\1fb3chE0b111653298d ee55b59517e3ed15957b820b19b4ca0dBrSF26201 T2.idb (1f -
o File Edit Jump Search View Options Windows Help &=

L R I T Y YRl - J#] =+ x[|esm L=
EERIEEEEEY PX EET SEEANEDY
Boen[[B5 el =~ = N x[[®- #-wSHKm~ #]]: 5 IMAEELT Y
EERIERRIEE T

B RN I [0 DE— ______________§

1DA View HexViewA B Erpots B Impots N Names H Functions ™ Stings B Skuctues En Enums

-
. 3000000037310 0000001 © wunknown compression method
<eq000: 00037338 00000035 © deflate 1.2.1 Copyright 19352003 Jean-loup Gaily
- 520000 000373E8 00000006 © 1
* segD00 00037370 00000015 © incompatble version
" 52g000:00037 408 UUUUUUUD C buffer error
nnunnnna C daaenor
00000000 C stieamenor
O0OODODE © e error
- 520000 00037454 0000000B ~ C stream end
* segD00 0037460 00000010 © reed dictionary
" 529000:00037498 000002F C iflate 1.2.1 Copright 1995-2003 Mark Adker
. 5ea00000037C1C 00000034 ©
<eq000:00037C70 000000 ©
. 5200000037070 00000020 ©
* <000 00037ETT 00000003 © albbAninwi
- 520000 00037EFD 000000TF ©
* seg000 00038000 00000010 £ stingtoo lng
s oo conennen connean s 2
Line 476 of 1642
bytes pages size description
507904 62 8192 allocating memory for b-tree,
1540096 185 8132 allocating memory for virtual array.
262144 3z 8192z allocating memory for name pointers.
2310143 total memory allocated
Loading 0P module Ci\Program Files (x85)\IDA Free\procsipc.w32 for processor metapc...Ok
adina twoe librarie: hd

Au. idle Down | Di

It shows that at segment 00038C44 to segment 00039080 contains run time error

strings. At segment 00037418 it shows insufficient memory string.

When we try to execute the assembly code in IDA Pro it gives an access violation.
The access violation exception occurs only when an unapproved application attempts
to access unauthorized memory fragments of your system.

i] -
" File Edit Jump Search View Options Windows Help - & %
S@| - --[[hdmisB (6= - 4] =+ x[2emp =]
EEREEEEYY P21 E il mE| 2e
Bom[[@ne® v =« N x[[st- 8- S HKr-~ £ : s 0][ld][& & F AE

AIEIIRET

1DA View# HexViews B Ewpots Eh impots N Names ™) Functions Stings B Stuchwes En Enums
Address Length Type Sting "
. 5eg00} 0003BE 20 00000033 C RBO324n-nol encugh space for lacale information'in
. 5eg00 0003BE S8 000000E3 © Re031\ffre Alemt Lo e (P FFT mare Thar orice o s Ihcates o B3 in yout apecator ron
0 oglDD0003BEBC 000OODTF € RED30\in- CRT not inifilizechrin
"0 seglDD00O3BEDC 00000025 € RBOZ8\fn- unable lo inkialize heap'sin
" 529000000367 04 00000035 € RE027\gn nak e na - CovthesisiMalware\Malwares\bitdefender Adware size_IMB- type_pesxe posi.. X
* <egl00 00036FC 00000035 € RG02En-note
. 5egl0000036F 74 00000025 C REO25\fn pure
* 5egl0N00038FSC 00000035 C Re2eun-note Access violation at address 0040B0S8 in module 'idag.exe’, Read of
. 5egDD00038FDA 00000029 C REOTSdn- unabl address
. 52a000,00039000 00000021 C REOTE\fn-unesp
. sogDD 00039024 00000020 € REOT7\dn-unep
.t 5eaD000039054 0000002C © REO1B\fn- note
* 529000:00039020 00000036 C AnT it e for mre information At
* <egl0000039118 0000002C € REO0S\dn-not enoagrrspacear
. 5eg00 00039144 00000024 © RE0DB\fn- not enouch space for arquments\rn
.+ 5eg000.00039170 00000020 C Re002\duadoal deSupRaaL
L 5egl00 00039140 00000025 C Microseft Visual Co+ Runlime Libray
. 52g000000391D0 00000017 © <program nams unkrowr
<eglD0000391ES 00000014 € Runtime Enor\ntnFrogram .
Line 546 of 1642
2310144 total memory allocated "
Loading IDP module C:\Program Files (x86)\IDA Free'\procs\pc.ws2 for processor metapc...OK
Loading_type 1i brar\ es.
stem has been initialized.
F17DSCDE0D111650732980ees 505 9517 63 £d15 95 70820D1904CA0ASTIT 2620173 15 Toaded.
\Erogram Files (x86)\IDA Freelidciida.iac
v

25

Virtual
address of
instructions

6.3 Debugger

Olly Debugger is an assembler-level investigating Debugger. It is used to analyze

binary codes and to execute the application in a controlled environment that is useful

to find and list the effects of malicious binaries on an environment.

To verify that the selected malware binary file is vulnerable to heap based overflow

vulnerability or not load the malware binary file in to primary memory by using olly
debugger. When it is loaded the value of EIP=770EAE14 and the value of EAX
register is at stack position 0019FFF4. The shah 256 hash of the selected adware is
1fb9ch60b11165df3298dee55b59517e3ed15957b820b19b4ca0d8f9f2e20173.

El
E!
El
E!
15

Eolsters (FEOV

Hi BE41H5E7 1fbPchel. <Modu LeEntryPoint >

Bk TFFDE@E!
SP @alaFFF
BF Aan@aa6a
S BABAEAEA
oL

E

IP 77BVAEL4 ntdll.77BFAE14

F @ C§ 0023 Szbit a1)
A 5 @aze 2bit @ 1
Z 03 AAZE 32bit @l 1
S B FS @A53 32hbit FFFODBOGLFFF)
T B G5 AA28 37hit Al)
—
o LzstErs ERROR_ENUUAR_MOT_FOUMD (00EGGECE]
576 empty 8.0
5 empty B.8
ST2 enpty B.@
S5T3 empty 8.8
£T4 empty 9.0
STE empty 8.0
STE empty 6.0
ST7 empty 6.0
2210 ESPUDZDI
FST B@8@ Cond A @ AA Err @B @G A868A (GT)
FCW B2°F Prec MEAR,53 fask 111111
* OllyDbg - 1fb9chblb11165df3298dee35h59517e3ed15957b820b19b4ca0d8fof2e20173 X
File View Debug Plugins Options Window Help
[l x| win| wisd e H] =8 mfE|m]T(wiE|c|sK[BR].[5] |
[€] CPU - main thread, module ntdll
IO T00RD PTR S5: [EGFraT, EBR Reaisters (FPUI < ¢ <
» | Beais
[S —. 1 EffL 031HEe 1 FES0b60. iodu [eentryFointy
e (] EDX 0o00p000
LEA ESP, DUORD PTR 553 [ESP 3
f ESF GR1SFFF
FE SHORT nvalL.KiFasesust enCal et A
g ES] Bopnpana CPU
ol £ e H e
(ESL| . BDA424 DBAGAAILER ESP,OUORD PTR S8:[ESF] Informatlon =

- BOR424 0BGRAGILER ESP,DUDRD PTR S5:(ESPI

.98 Ok
§ gns4z4 oe LEA ED%,DUORD FTR 883 [ESP+81
. G0 2E INT 2E

T
o h Sp+51
MO0 OUORD FTR DS:TEDRT, B
MOU_DUORD PTR DS: [EDX+41,EDT
OR EDL,EDI

JE SHORT ntdlL. 77E7AER4
OR_ECH, FFFFFFFF

HOR ERR, EAK

a REFNE SCAS BYTE PTR ES: [EDI]
. FrDL HOT EC

- BIF3 FFFFaean| CHP ECH, BFFFF

w76 BE JEE SHORT ntdl L, 77B7AETC

of Resolved
API

STE empry 8.6

STV ewowy 0.0
FST 8280 Cond B
FCUl 827F Frec M

C 8 ES DHGE 82bit OIFFFFFFEF)
F @ (58023 32bit @FFFFFFFF)
5 B02E 32bit QUFFFFFFFF)

z18 ESPUODZDI
HEE EcBEBOBOEA (T
EAF,53 Mask 111111

Registers

.V 3 FFFF@EsE | MOV ECH,
1994A B2 ggg ggRD PTR DS:[EDH+2],CH
13907 MOU WORD PTR OS:[EDKI,CH
POP EDT
. 20 RETN 2
DB 80
4 OB A4
4 DE 24 CHAR "% -
I} DB B8
2 26 8 v
idwe i A &
8 al A a8 E E& 65 T
o o 3F 41 &7 7
7 res T3 74 @a 2
: gi b1} EE : i I
o es 7 HEER 05| 2 gezrden. T=2L, StaCk
ER UL |] Runtime Error
i T — v v
BA44E160] 40 7: &4 48 40 08 B 24 81 43 AQ) A A0 A6 Bstd@E, , FiC.. ...
| Single step event at ntdl. 7787AE 14 - use ShiftsF7/F&/F3 ta pass exceplion ta program [[Paused }
\ J
Y Debug
Status
Memory Viewed
as data

26

The flag register hold the information of official flags of processing in the central
processing unit. These flags are affected by the processes in the Arithmetic logic unit.
They are changed as a result of arithmetic and logic process. Flag O is an Overflow flag
and it holds a flag resulting from an instruction that is needed in order to make decision
in another instruction. Initially when an adware binary is loaded it shows LastErr
ERROR_ENVVAR_NOT_FOUND (000000CB). This error occurs when the system

does not find the environment option that was entered.

Enable OllyHeap trace and execute the code. OllyHeap trace is a plugin by Stephen
Fewer. It is used to view heap allocations and deallocations for multiple heaps, as well as
operations such as creating and destroying heaps. OllyHeap trace is used to depict the
behavior of heap trace. Initially no heap is allocated till address 0041A39B.

3k OlyDbg - 1f69cb60b 1116503298 dee55b595 1 TeJed1 5957b20b19b4caldBfOR2e20173

File View Debug | Plugine Options Window _Help

> Enable/Disable [BR[-]s] =&l 2] |
—

View Log

About

First heap allocation takes place when EIP value is equal to 0041A3A1. The allocated
size of heap chunk is 94. The GetProcessHeap function is used to get a handle to the
default heap for the calling process. The handle can be used by the process to assign
memory from the process heap without having to first create a private heap.

3k 0llyDbg - 1fb9cbB0b11165dF3298dee35b59517e2ed15857b820b19b4caldFOF2e20173
File View Debug Plugins Options Window Help

Blex] w0 v 4 Y] 4 L[E[M|T|wH[c|/|K[B[R]|S] i1

[€] CPU - main thread, module 1fb9cbs0

@841A2AL| . C745 FC_FEFFFIMOY DWORD PTR SS5: [EEP-41,-2

. BF 240080680 Moy EDI, 94

&7 PUSH EDI HeapSize => 94 (148.]
. EH B8 LSH Flags = @
. 2E1D A4284308 10U EEX,DWORD PTR D5:[<&KERMEL3Z.GetPro| KERHELZZ. GetFProcessHeap
. FFD3 CALL EEX CGetProcessHeap
@Ea41A3ES| . 5@ PUSH ER=

e ap
E841A2E9| . FF1E EB214208 CALL DWORD PTR DS: [<&KERMEL2Z2.HesapAlloc|bHeapAl loc
G841ASEF| . BBFG My ESI,EAH

TEST ESI,ESI

GE41A2C1 . BEF&

BEa41ASCS(.»75 @0 JHE SHORT 1fb9chbéd. Bed41R302
R Sllz =TT

GE41A2CT| . E2 GEFFFFFF | CALL 1fb9chéd.@a41A222
GE41A2CC

GEE41A2C0 :vggSEHBIBBBB JMP 1fBSchbEd. B84 1ACCE

Ba41A302| > MOU DWORD PTR DS:CESIT,EDI

GE41AZ04| . 56 FUSH ESI [DUers ionInformation
@841A205| . FF1E C2284208| CALL DWORD PTR DS: [<&KERMELZ22.GetUersiolbGetUsrsionExA
BB841A20E| . 56 PUSH ESI

BE41A20C) . &A @@ PUSH &

@E41AS0E| . 85CA TEST EAX, EHx

BE41ASEE(.75 BE JHZ SHORT 1fb2cbéd. 8841A3FE

BB841A2EZ| . FFD3 CALL EEX

B841A2E4 hHeap

. BB PUSH ERX
GE41AZEE| . FFIE AG2E4266 CALL DWORD PTR DS: [<&KERMEL22.HeapFree:>|LHeapFres
GE41AZER] .~E9 eCB1G8GE | JMP 1fbO9cbed. B@4 1AEEC

27

The 32-bit Kernel32 dynamic link library found in the kernel of Windows operating
system. It is used to manage memory, I/O operations, and interrupts. kernel32.dll is
located in protected memory space. The code at address 004A3A8 shows that get
heap buffer of size 94 that is 148 bytes from protected memory. If a string larger than
147 bytes passed to it will thereby overwrite the data coincidental to this memory
block which is, actually, a header of the following memory block because memory is

allocated without bound checking. At this point following heap traces are generated.

* OllyDig - 11b9chib 11153413288 dee35h3931 Teded1 395 Th200 19b4calffSt2e201T3 - [OllyHeapTrace - Log]

4]

@File View Debug Pluging Options Window Help

ElWx vl K RN A) VEMTRE C/EBR

Laller Thread Function Call Return Value
FERMNELZZ, 77345760 |G-B0G015FE |Re AL LocateHean! @4RA300ARG, A, 68) Brdd309320
ntdl L, P7CEBIF4 HrAAA1EFE | Rt LA locatetzanl BHBBSBBBB@. fa ' BENERATE_EXCEFTIONS | HERP_WO_SERIALIZE | HERP_ZERO_MEMORY, &8) BrAA3na32e
ntdl L, 77BEDREC OA0R1EFE | RelAllocateteapl AwR3RAAAED, 8, 1) BrAA30A3%0
nedl L. 7FCEBIF4 AAAGA1EFE | Rt 1AL locateteapl AxBA3RAARG, f '_GENERATE_EXCEPTIONS | HEAP_WO_SERIALIZE | HEAP_ZERD_HEMIRY, 1) BrAA3AA39A
ntdl L, 77BEDREC HufA0A1EFE | RelAllocateteanl BwE3ARAGE, 8, 16) BrAA3A3FER
ntdl L. 77CEBIFY HrAAAA1EFR | Rt AL locatedeapl BuR3AAAAN, HEAP_GENERATE_ENCEPTIONS | HEAP_NO_SERIALIZE | HEAP_ZER_MEMORY, 16) BrAA3A3FER
ntdl |, P7BEDRZC U0B1EFE | RelAllocateteanl DuGRIRAGED, &, 110) Brdd3098FS
ntdl L, 7FCEBIF4 HuA0A1EFE | Re LAl locateteanl BHBBSB@BB@. ra] ' GENERATE_EXCEFTIONS | HERP_NO_SERIALIZE | HERP_ZERD_MEMORY, 118 Brdd3098ra
1Fb%chE, AE41AIES | BHARRA1EFE | BetProcessHeapl) BrAA3BnaaE
1F5AcheR, BG4IATEF | BWAARa1EFG | Re 1Al locateteapl GetProcessHeapl], B, 148) ArAAZAIEES
ntdl L, 7FCEBIF4 HfABA1EF | Re LAl locateNeanl GetProcessHeap(), Heee ' GENERATE_EXCERTIONS | HERP_MO_SERIALIZE | HERP_ZERD_HEMIRY, 148 BrAA3AIBES
1Fb9chER, AR IA4ED | BuARAR1EFE | RetProcessHeapl) BuA3ARG
1Fb9cheR, GEdIAd14 | BWARARIEFA | Rt LFreeHeapl BetProcessHeapl), , BrEASAORES) TRUE

ntdl L, PFCRRESE Uu001EF | Rt IFreeHespl GetProcessHeapl), r] ' GENERRTE_EXCEFTIONS | HERP_NO_SERIALIZE | HERP_ZERD_MEMIRY, Br@GIMOEES) TRUE

Ollybbg vi. 18
Ol lyHeapTrace plugin wi.i
Eu Stephen Fewer of Harmony Security Cwww.hacmongsecur itw.com)

File 'CisUserssthesis~DesktoptHeap Allocate-~Adware™1fbIcbéfbll]65df 3298deeEEbE951 Pe3ed159E57bE2A01 Phd caldBF 3F 22201 73"
Mew process with ID BEAAGEEd created

GE41A567 | Main thread with ID 9OOEOT04 created

BE4RAEREE | Modu Le Ci \Users\thesls\DesktoD\HeaD Al lozateAdware~1fb3cbEAb11 165df 3298deeEELEIE] FeBed 159572001 ShdoaBdaf 2 2220173
FEEDEEEE | Modu Le Crindows~system3Z2~apphelp.dll
TIEVEEEE| Modu le CiWindowsSYSTEMZ2-WERSION.dLL
VABDEARE| Modu le C:sWindows~SYSTEMIZ2 boryptPrimitives.dl1
VACEEADE| Modu le CrindowsSYSTEMS2.CRYFTEBASE. d L1
FACABEEE | Modu Le CiWindowsSYSTEMZ2-SspiCli.dLL

FE15EAEE| Hodu Le C:sWindows~SYSTEM3Z2 mswcrt. dLL

FEZ1EAGE| Modu le Crindows~SYSTEM32 combase.dL 1

VEASAREE| Modu le CisilindowsSYSTEMZ2-G0I32. d1 1

TESABAGE| Hodu Le Cilindows~SYSTENZ2~OLEAUTSZ. A1 L
TFEEDEEEE| Modu le CiWindows SYSTEMZ2-KERNELERASE. dL 1
FEOTAREE| Modu le CiilindowsSYSTEMZ2ADVAPTIZ. d1 |
FrEZEaEE| Hodu Le Crindows~SYSTEM32~KERNELS2. DLL
FrE2ERE0| Modu Le CoWindows-SYSTEMIZ sechost. . dl

FPARBAGE | Modu le Cishlindows~SYSTEMI2WUSERIZ. AL L
FPEERAAGE| Hodu le Crlindows~SYSTENZ2~RPCRT4. dLL
FPEDOEEEE| Modu le CiWindowsSYSTEMZ2wole32.dL1
VPBZAAEE| Modu le Cishlindows~SYSTEMZZ2wntdll.dl1
VEAZEADE| Modu le Crlindows~SYSTEMS2IMM22. DLL
FrEE4c20| New thread with ID GBE013CH created
FPESHEL4| Single step euvent at ntdll.7FBIAEL4
EE41A5E7 | Program entry point

7rEcDA40| Breakpoint at ntdll.Rt LAl LlocateHeap
7TEEDA4G| Breakpoint at ntdll.RtlAllocateHeap
Y7EEDA4E| Breakpoint at ntdll.RtLALlocateHeap
77EEDA468| Breakpoint at ntdll.Rt LAl locateHeap
7TEEDA4G| Breakpoint at ntdll.RtlAllocateHeap
7rEEDA48| Breakpoint at ntdll.RtlAllocateHeap
77EEDA468| Breakpoint at ntdll.Rt LAl locateHeap
77EEDA4A| Breskpoint at ntdll.Rt LAl locateHeap

At EIP 0041A3BF Heap overflow takes place. The value which is overflown to EBX
is 77047910 which points to value at stack. EBX is a non-volatile register which has

no particular use but mostly used to set a common value to speed up calculations.

28

M OllyDbg - 1fb9cbE0b11 Teled15957b8200 73 - [CPU - main thread, madule 1fb9ck0) = *
[€] File View Debug Flugins Options Wmdnw Help - & %

'Elﬁ[_J—_f_l—ﬂfI_&J_U'_l_-' LM [wa|c|s K[B[R[.]s]
Eiasarep i

O 7704 75ti JHF to KERHELDA,

4020, Heap Overflow

KERNELE2. Gevar avc| LEot BYai¥uBTrean
EFCa 1,5 =

i FCRERRF 2z
z ES1 mosianes
E01 bonaonss

BO41RZC] 1FbRCBED. BR4LASCT

o ”ﬁ“”“@ﬁf;mﬁ[

Get wmné
P o
eaph1 Loo

LaseErr
Py

p————

SERc]
E}

25 ol
Freety

GanBabaa 01
TEITEY

ond & 868 Err
oo AR, ES Flank

[Paued

At virtual address 0042A489 we can see the error in resolved API information
window. Error NOT_ENOUGH_MEMORY this error occurs when the free space is
not available or if the memory is fragmented.

* QllyDbg - 1fb9cb60b111653df3298d ee55b59517e3ed15957h820b19b4 caldBff2e20173 -
File View Debug Options Window Help

(Sl =] wn] wi+] 4 |] L]Ee[mT|wir[c[/[E[B[R

[€] CPU - main thread, module 1fbach60

-8

T2 R DAGED I 0 asstsrars <

3 R Bt o e 24] e ECH MBIRASER 1bIchip. cHodulsEnteuPoint 3

Towonoc | CF Enx,cammﬂ EDX BO41ASE7 1fb3chen, <Modu | eEntryFoint >
if? E5F Goioers
1 10U ER, ECK EEP 9915FFod

H ESP, DWORD PTR SS: [EBP- ESI B041ASE? 1fb3chsn. <HoduleEntruFoint >

65 £ nn 121
170 OC_17608(CHP DUDRD PTR 55: [EBP 241, CABAGA17 EDT BB41ASET 1Fb3cbed. cHoduleEntryFoint >
EIP M341ASE7 1FbIchid. ModuleEntryFoint >

A 68 PUSH & cooor = ERRORNOT_ENOUGH_MEMORY

F1E 4314308 CRLL DUORD PTR DS [<EKERNELSE, SetLastEr] Lozt ast Error I B0 & e ek e
1LEBE=2R), 0 S5 BAZE 32hit BIFFFFEFEF)

05 8828 32bit BIFFFFFFFF)

FS 8853 32bir PFFODGBOLFFF)

G5 BE2E 32bir A(FFFFFFFF)

=7t
45 EQ 10U ERK, DUCRD PTR, 553 [EGF-201
EIGSFFFT | CALL Irbacbed. GB4203CE

0] HOR: B, EAY

iC ERK
7024 B4 0@ |CHF DUORD PTR §5:[ESP+41,0
[JNZ SHORT Lfb9cbéd, 2842R4E1

LastErr ERROR_ENJURR_NOT_FOUND (BBBAEACE)
BOBRBZ4E (O, NE, E, BE, NS, FE, BE ,LE)

b 5TG snpry 0.8
g ca ég?NERXVEW ST1 enpty 8.8
b T2 ST2 enpty @.8
& HiE] 573 enpry 2.8
& i &Td snpry B.0
3 i) STS enpty 9.8
b HT2 STE enpty @.8
ST7 enpty @.8
I 3 e EsPUDZOI
i T3
& i) FS7 0900 Cend B2 Err GOOD@DOOM (6T
& i S N R R R R
¢ T3
2 T3
T3
]NTE
E

a424 14 NDU Enx ThtRD PTR S5 (ESPe141

38 SHORT Lb9chsd, BB42A4F 1
it2e 10 (0 ECX, DWORD PTR 88: [ESP+1a]

4424 B0 MY ER, DNORD PTR 55:[ESP+C]
302 §?R EDX,EDK
MOV EBX, EAX
854424] HOU EAZ, DWORD PTR 85: [ESP+8]
01U ECH
MY EST,EAR 4
Address \H H_dunp. o [eeE T43E3744[RETURN ro KERMELZ2, T49E3744 A
& c 9 gg 2 53 52 23 2E §E 3; 749E3728| KERNEL 32, BazeThreadn it Thunk
43 B DA 0O B9 B ZE 3F
53 E 22 g? Z? ;2 éé é@ 77319E54| RETURN to ntdl1.77319E54
73 74|64 40 40 08 24 81
41 S6[6C 65 6E 67|79 68
74 54/ 40 40 B3 BA 24 81
41 B BL EF B7 £3 63 BF
T4 64 4040 G2 00 03| 24 B1
2E 3F 41 56 6F 75 74 SF 6F 66
hradeiieny
83 6D 65 SF| 65 72 72 6F 72 48 v | HBLoF v
| Moduie C:\indows\SYSTEM32\MSCTF.di [[Paused

The lookaside list contains the information of heap buffers it has two pointers
pointing before and after the lookaside entries. These pointers are FLINK and
BLINK.

29

| Address Hex dump Disassembly Comment -~
84 438CE EEES ADD BYTE PTR DS:CESII,CH
i EECD QQS
14 AEECE 41 ECX
14 ABECE E& F'USH EST
448808 | ~ 72 7S oI SHORT 1fb9cboB.B8a440147
PrT BoTe O e TE ETe Eat tenl] 10 command
448603~ 74 69 JE_SHORT 1fB2cbes. Bo44613E
< EED! &n IHS DWORD FTR ES:[CEDI1, DX 1.0 command
IAEE0E E:EF P El Superf luous pref i
I 4EE02 gL 72 72 I SHORT 1fbSPcbeB. 3844914D Superf luous pref i
144280 eF ol TS D3, DWORD PTR ES: LEDI 0 command
Ga4PolC |« 72 48 i ORT_1fb3cbed. 284431 lE
Er SEE VE? :g -IJ EERT 1fbSched. BB446154 = 7 5 Overflow refix
re 3 perf Luous pref L
EEREE| ¢ o L_superfiuous pearin] p
14 AEEE 3 2481 Al WTE FPTR DS: ECHK+ERX#41, AH
I ABEES I B
14 4E0E 7 = Al YWTE PTR DS: CERXI, AL
14 4A8E S 2=l Al wWTE PTR DS: CERXI, AL
14 4E08EE Ba2E Al WTE PTR DS:[CESII,CH
144 3BED aF A
14 AEBEE 41 IHI ECX
1 ABEEF =13 P ESI
14 4B8F 8 s el P
2 EI6LFS T2 £5485] 1 EBP,DWORD PTR SS: [EBP+ESI#2+721, 6F624065
~73 SF o >HDRT lFle:bE.B 82448153
6261 73 E MO SP, GWORD PTI HeT31
EEz 4@ I Superf luous pref i
1} 1|~7 74 o HORT 1fb9cbed.aB44a177
144 g &dza@ % E§ Superf luous prefix
144] [=15] Al WTE PTR DS: CERXI, AL
Er I=] = a1 Al L, 21
1<} 1] I EEx
1<k E Js]s) Al W TE DS: CEAXT, AL
1} 0 1515) Al W TE
144 F ZE Al EYTE
144 1 F Al
e 2 41 I ECH
1<} 3) P ESI
i<t} ; 6%61 &<t g UMD ESF, @WORD FTR DS:[ECK+6<4]
1} 2 6361 ?3 ARFL WORI PTR DS:[ECK+72], 5P
Gieiig|ves 35 SRSt EREeE S e
b M 2
4daiin| Esda The East Superfluous pref iu It shows the place where
EeriE o o s .
i<} '} FA: 32432 a L LOCK prefix is not allowed
i mmme e £ £gR meein i= net afioug the lookaside list is being
33 B2 BB 5R 2SS e .
PerEH| EE B modified with the value
it} g E S II:BE:E Dre: i is not a{ tuueg .
33 B2l B B ShiEs
i3eige| E 2 EBek Brefli iz nat 2iioueg overflown into FLINK
144 s E é a LOCE EreF ix L= ncv_t allowsd .
daaidd) 8 pointer of the allowed
ek o
H4E14C(e block
e B
144 == a. aa
144 S2 2258 2202200 Y'TE PTR DS:LERX]
144 55 cacy _4a =] Shift constant out of range 1..31
i<t} EE aBz451 FTR DS: [ECR+ERAX#*4], AH
1} EE <4 ht
Process terminated. exit code 0
* OllyDbg - 1fb9ch60b11165df3208dee35059517e3ed15937b 82001 9b4caldsfof2e20173 - X

File View Debug Options Window Help

e x] wlu] v ¥)« u[E[mlr]wn]c]/ k[B[R].-[s] E=[E?
@ CPU - thread 00000CD4, module ntdl|
u g TOU ED7, Al 1, 77663700 FSCIT Rt LUsLidatenean” « [Feaizier= tFFU T < (< <
7 £ 2won I nedl L. 77EEECEE J—E§§ A BRI S
7 w7d 30 JE SHORT ntdll, 77BS221]
7 epas B8 TR e S s
7 L Bd7 44 o5 EA] BUCRD PTR D3+ TEDE+441 e
g £ EBF 0013EC2C
7 75 B SR e 1 Rgz1F? B s
7 “FFe7 Copeeaa PUSH DUGRD PTR_DS: [EDT+C21 B oeaaaaan
i © E8_GC3E0E00 G oL Enter g coatsect on
: ; e iy EIP BR1SECEC
7 iFEd 74D9ESaR JE ntdl |, 77B0FGY B BEH M
4 5 SR AU, 78 D res1-21 Bl B am
7 * 070 07 68 CIP BYTE FTR DSt [EDX+T],5 Bl BRI
7 \0FE4 7EDSES0 JE ntdl L. PTEOFESL . . AR 3 L e
d 5'¢s Daarsirt ESEHEE;dEME‘WEBS?DB ASCII "Rt LWal idateHean 11 R EERRE
7 47000000 CALL ntdl L, 77EE2z
7 a5 BF A0 EATE PSS teb-a11,AL 00 LoEEs (D
v C3 XOR ECHECK EFL 108171C (KO, NE, HE, A, 15, PE. GE. 6]
7 40 Fi 10U DOhD PTR 55: [EEEeh
ST6 +UNOR B71C 753DESFD GO1SED4R
; 45 FC FEFFFFFF 10U DiCKD TR 53 (E6P—41,-2 R e
: © 2AB0 BOBEFETF HoU ol By FTR s reFensan) it e . T
o valid +
EoreEe BN e i b o
B D D (I, EENLFREETE §T7 GoBloacusEsEEIz0sEedE
7 % 8070 _BE 88 CMF BVTE 421,80
g FST EC2C EDndllEB Errﬂﬂlﬂllﬂﬂ
7 7 el
7 ~aBes Ae iy Ex, DUORD FTE S5 [2gr-541 FEDEH Ren(=A) =2 000004
i © FFBG Copenage FUSH DUl
7 « EB 2737200 CALL nth Rt LLEaVEErlt icalSection
7 b= FETH
7 G ITIE]
7 L mrs
7 G INT3
7 2 INT3
7 L T2
7 § BBFF Moy EDIL,EDD
7 - SH_Egf
i © e 10U EEF, E5P
7 B3EC BC EUB ESP,GC
7 . FUSH
7 . E0m 10U EBR, EOX
7)
7 . 10U ESI, ECx
|2 LeEe TEeT e e v
[Redress [Hex durp | T30 TEEaTGaa| RETURN ©a RERELER. 72531608 Fran nedll o [eFarl
F8 32 43 04 24 01 43 00 00 U0 09 B8 ZE el e
41 74 £ 72 £3 B5|VE 74 63 £F EE 4@ 41 Ba19F37C| PoRaRaRL|
49 40 80| 24 01 43 06|00 bR 09 60| 2E CIEE| EHE
61 64 5F 61 60 6L GF 53 4@ 73 74 64
&1 a3 BB A BB 2 aF 41 5 BA13F984| BA13FICE)
74 €3 £F 6E 4 73 74|84 48 49 on 24 eaL 3309 geenisal .
B ETh ek o 6 GAISF3EC| F7ES6OFE[JIP to KERNELBA.UaltFartiiltinlelbjects
72 EF 73 74 B4/ 46 48 00 BA13F950| BOEEAOE1
03 00 B0 EE SF 41 56 EC EF &7 €3 £8 SF €5 72|..... A logic_er R | E e g
GF 72 40/ 73 74 64 4040 a0 4D R Cbeetgatiases
HECEH T HEES BEISFIAC, BRROngE
BE 67 B5 40 73 74 B4 48 40 A6 BA13F300| BOEEA0E1
EEERRREABEERE a15F3p4| GopERgen
75 6 74 69 GO 68| F 65 72 72 il ool Foqg) 2aaaaoeo) Y

‘ New thread with ID 00000CD4 created

| Rurving

The complete Heap trace is given below:

30

* QllyDbg - 1fb%cb0b11165df3298dee55b39517e3ed15957b820b19b4cald8f% 2620173 - [OllyHeapTrace - Log] - K
[E] File View Debug Plugins Options Window Help - & x
JJ] sl) s e T w7 K[B R]-]5] %]
Thresn |Function oall R Vs lue 5

e e e o A
Ry | B | Il ooreHo by QuoIERaan Wik SENERATE_EXCEFTIONS | HERP_NOLSERIALIZE | HEAP_ZERLIENGRY, 45) Saleeze
e 19aier | Al iooaraesey duaiEetana, MR fh
jasi 90901000 | 10| Comree i GiaiEcaona: U SENERATE EXCEPTIONS | WERP_NOLSERIALIZE | HEAP_ZERLIENGRY, 43) e
Tk, e e
fass Sonaiar: Dl SANECST2 LucepTIONS 1 WERP_N_SERIALIZE | HEAP_OERM_HENDRY, BeBiFGS22s) e
i : Samaiar: roiteae e
i AL R AEERE Liccprions 1 WERP_N_SERIALIZE | HERP_OERM_MENDRY, BediFSamas) e
i Samaiar: Rt e e
i ! Sagn | B SIS, RPN rerions | HERPMALSERIALIZE | HERP_ZERO_NENDRY, GxBIES12HS) T
i 50a11r | B {051 ShER s e oot o LRTECISR)
it e T T
i Soomiar: PnZ ENERCTE LicePTIONS | WERP_N_SERTALIZE | HEAP_DERM_HENDRY, BeaiEG1aFa) THE
it Samaiar: Pl e
i A ez BeZUSREERE Liceerions 1 WERP_WLSERTALIZE | HERP_SERO_MENDRY, mesIES1AFS) I
i S0amIra | InT esoieon ejecbont 3 tessann
i 1G0Iac | Erinl{oestatece) LRI BB henre maneRTIoNs | WERP_WOLSERTRLIZE © HERF_SER_UENDRY, 45) b=t
i Sonaiar: L2 B o MOIESIos | i
jass ISam1cra | B IErcolioon Gualcoosam LEAR GHERATE LKCEPTIONS | HERFLNA_SERIALIZE | HEAF_ZERQ_IETIORY, G:@1ES32ss |
e i St e S R ecornn
jas5 90901000 | {01 | Conioaie GiaiEraona: HEAT GENERATE_EXCEPTIONS | HERP_NOLSERIALIZE | HEAP_ZERLIENGRY, 4) izt
e ! Sataicea | 1ol soseteinl QuoiEcasen: oS fh=
jash L S0am15ra | Bt 1AL | oo ot aoIEcaoda: HERE GENERRTE EXGEPTIONS | HERP_NOLSERTALIZE | HEAP_OERLIENDRY, 64) Pty
i oty | St oot B et
i AL SEHEn! DUBIERONAN: Dral'AIEERRE Lucerrions | HERP_MO_SERIALIZE | HERP_ZERNLMENORY, oeolESS025) JEE
i T e R tecsnzy
b 1Gagian | Erial{cearatece) BUAlERIaNt RS hmnare_purepTIONS | HERP_WOLSERTALIZE © MERP_OER_UENDRY, 64) e
i S R ; o
i G000 | Erierecheen GUMESIN DB BIRIERR Lcerions ¢ MERRMOSERIALIZE | HERF_ZERO_VENORY, ulES0:S) i
i L S0aIora | IR ok Drjechonty B o Esansn
a5 onnire | BELSENER GRIEiOR R shharare ECEPTIONS | HERP_NO_SERILIZE | NEAP_ZERGIEORY. 64) iy
1 A eIy e e S oy
jass S0aI0r | Bt IFrosloan G coodom: LEAF.SHERGTE LXOEPTIONS | HERPNASERIALIZE | HEAP_ZEFO_NETDRY, BiG1ES3628) e
phE R R S e o Secsaze
fads Sonaiar: (e GENERATE_EXGEPTIONS | HERP_NOLSERTALIZE | HEAP_OERTLIENDRY, 6) pdt
i : Samaiar: e holEea e | o
iy AL PenZ'SRCERTE2 biceprions 1 WERP_N_SERIALIZE | HERP_OERM_HENRY, BeiESEFDG)
i Samaiar: feaet: &1 digssesers
it Cesne TSN RendTilenere excerTions ¢ HeRP_o_SERIALIZE | HeRP_iEReLiEIORY, 122) BEEH
g ISooicr |BriEreaoinl ambneecmlieml) B 2B icermions ¢ MERPLNO_SERIALIZE | HERR_ZERO_NENRY, 840098SELE 1 e
ity e e L B o | Cormrmeirers R A, =T § e
ot ' " o ' >_2ER0L| L B itiali i H
el ! genier HE RS T Initialize Critical Section
jass Somaiar: ESP-CHETATE DOEPTIONS | HEFP_MO_SERIALIZE | HESP_ZERI_NENORY, oMBIESD220) e
phE e e Seciurs
fads L S0mIora | 1Al coovoHoopl GuIECagH, LA SENERATE_EXGEPTIONS | HERP_NOLSERTALIZE | HEAP_OERLIENDRY, 4 1 SiolEeriEe
O LCbLh. S IEe07 | Boai o |1 Lo 1t ot (3 e v o (oecr h(TTCe i]

ki il
N O L Y o o L B T i
10ncigh. a1 et | Giodeaiard | Ry Rl LooareHoay Fagicsosea, B oE Saleerte
L | | R oo e 2k enaTe_FuCEPTIONS | WERP_NOLSERIALIZE § MEAP_OERLMENORY, 52) B
Tonibid i1 teen | Gioamiord | inl LSenreieiey Ghgicoadas: bt Saieetieg
proiiesan i | MR | Erinl{orarace BUlERtan G S Lenare_earepTIONS | HERP_WOLSERTALIZE § MERP_OER_IENDRY, 64) B
dEoobin. a1 a5 | Gioaamiora | IEsesioan, St haton. e ovOIE
RO | SRS | B IENIETD! Galietann: Peaf'SHEREDZ LickPTIONs | HERRLNA_SERIALIZE | HEAF_ZERQ_IETIORY, G4@1ESZFLE) 3
Tibin it | Gioeaiorn | o jonsanh, DU E AR, e ER ecason
DA |Gy | BRI SERRNe! Mo S ATe EXCEPTIONS | WERPNG_SERIALIZE | NERP_ZERO_IENGRY, 42 1 e
Pl | Ehiny RRERARE SRR e shenare EPTIONS | HERP I SERIALICE 1 NERP_ZERD.IEXCRY. 10) Gigieessis
et R e Delete Critical Section
sty s Tl ENERSTE LucepTIONS | WERP_N_SERTALIZE | HEAP_OERM_HENDRY, BeBiFGa22a) e
1ciiddizes | Guosmaiar Pl e
Fitsamiiee | moge Fenf BARERESE Liverrions | WeRe_o_SERIALIZE | WERR_ZERO_NENORY, 5<01E53065) e

b ousanan

T

[[Paused

The call stack window appears after complete execution as given below:

[] Call stack of main thread

_Addy ﬁ'&wts Called from Frame ~
HL5F 95| T7LAOESE © ntdll. Rt [FrecHeap ntdl L. 770BEEE1
BEELGEOR Arol - BEGIEEDE
: AraZ - SEEAOA
19502 Ara® - BEE19ECE
BHS1Z| 7 ntdll.rrosasd ntdl L. 7YEERZED
ACEEE rtdl L. FYEECER rtdl L) 7PEACEEER Ba15FERR
LEDC ntd | |- P7BACEE ntdl L. Rt [FreeHeap+27 B019FE34
ral =
05 ntd Ll Rt IFresHeap ntdll.Rt De leteBoundaryDescriptor+13 |BA19FE4D
66 fral BAGE
EEIBIE
£8 Aros - AOE19
87 nedl[RE DeleieBoundaruDesor intor | ntdL LRt Freet ioodeStr ing+12 01 9FESS
7550 nedlLRnEreeln odestring KERNELBA. 76037954 2a15FEGH Del o d
Bz5L KERNEL32 GetngguletggdéLE” 1£b9chEl. BE4ZAZEE Ba19FESD elete Boundary
T | 1690008, paazazaD 1£E9ch68, BB4ZAZFT 2019FEDS Descriptors
BRES| 7 1£bIchEn. BB4ZASER 1£b3chEl. BE4ZARES Ba19FEDS
G750 | 1#E9chER . DO ZBASE 1¥b3chEl. BB4ZATAE Ba19FF R
F4EF | 1 D3chEs | DE4E0EIF 1fb3chEd. BE41A4EA Ba15FF 38
W

6.4 Conclusion

In reverse engineering the most observable method is to entirely engineer a malware

but this obviously takes a great amount of time. So, in an environment where there

are more than 100's of malware this approach is not practical. Another approach to

detect malwares that exploit overflow vulnerabilities in big dataset efficiently with

respect to time is, to use datamining technique for malware detection.

31

Chapter 7

Detection of Heap Based Overflow by using

Extracted Features

7.1 Introduction

By adopting the concepts of datamining techniques extracted features are analyzed to
detect whether the file under observation is vulnerable to heap based overflow
vulnerability or not. Detailed Graphical analysis of each extracted features of 747
malware file of selected dataset is inspected in detail and rules are created for the

efficient detection of heap based overflow.

7.2 Risk Parameter

Risk Parameter is a factor of categorizing and examining possible issues that could
have an undesirable impact on system security. Malwares that exploit heap based
overflow vulnerability use six risk parameters and each risk parameter is further
classified into sub categories. Pie chart representation showing that about 63% of
such malwares use autostart, 7% use execution and evasion, 5% has signatures, 1%

generates traffic and use popular applications to exploit heap vulnerability.

RISK PARAMETER

Autostart Fvasion Execution = Network = Reputation = Signature Mo Risk Parameter
Mo Risk Parameter
16%
Signatu re/,(
Reputation 5og ,//’
o
1% fﬁfﬁ%
Network ~— e
aQ,
1% Execution
7o Autostart

. E3%
Evasion

7%

Figure 11: Risk Parameter of malwares that exploit heap based overflow vulnerability

32

Risk Parameter

Keylogger
Dropper

Downloader

Rootkit -

e

0 50 100 150 200 250 300 350
Adware Backdoor Downloader Dropper Keylogger Rootkit Worm Total Count
W Autostart 0 68 2 1 3 10 8 94
M Evasion 4 0 2 2 2 1 0 11
B Execution 10 0 0 0 0 0 0 10
Network 2 0 0 0 0 0 0 2
W Reputation 1 0 0 0 0 0 0 1
M Signature 2 0 0 1 3 1 1 8
m Mo Risk Parameter 21 0 0 0 1 1 0 23
W Grand Total 40 68 4 4 11 13 9 149

Figure 12: Count of Risk Parameter of malwares that exploit heap based overflow vulnerability

Subcategories of the risk parameter and their total count is shown in the bar chart
representation given below. There are total nineteen subcategories that belongs to six
different categories of risk parameter. About 60% of malwares that exploit heap based
overflow vulnerability use autostart risk parameters subcategory that is registering for
autostart during Windows boot. This features set the malware to run on start up. This
means the malware does not need the permission to execute it and will start automatically
after windows boot.

33

Total

Signature: Identified virus code

Signature: Identified trojan code

Signature: Identified malicious-downloader code
Signature: Identified adware code

Reputation: Popular application

Network: Adware-related traffic observed

Execution: Ability to iterate through running processes
Execution: Ability to create service

Execution: Ability to control services

Evasion: Unmaps and overwrites base address

Evasion: Searching for installed programs (antimalware
software)

Evasion: Detecting debugger by checking debug port
Evasion: Attempts to disable kemel mode debugger

Evasion: Ability to check the disk size

Autostart: Registering for autostart during Windows boot
(multiple ASEP)

Autostart: Registering for autostart during Windows boot

Autostart: Registering a new service at startup

Autostart: Potentially malicious application/program
{Autorun)

Autostart: Modifying the logon process to autostart

No Risk Parameter

| 149

L | 76

— 23

0 20 40 60 80 100 120 140

Figure 13: Subcategories of Risk parameters

7.3 Network Connection

160

A factor that determines that the malware makes a network connection or not. About

50% of malwares that exploit heap based overflow vulnerability makes network

connection ranging between 1 to10. Bar chart representation of malwares showing

network connections belonging to seven different classes is given below.

34

Network Connections

Worm
Rootkit
Keylogger N
Dropper Wl
Downloader WM
Backdoor I
Adware I
0 20 40 60 80 100 120 140 160
Downloa .
Adware Backdoor der Dropper Keylogger Rootkit Worm
0 or No Network Connection 38 2 1 2 9 12 9
®m1lto10 2 66 2 1 2 0 0
m11lto 40 0 0 0 1 0 1 0
Above 100 1 0 0 0 0
M Total 40 68 4 4 11 13 9

Figure 14: Range of Network Connection of malwares that exploit heap based overflow vulnerability

7.4 Mutex

Mutex is a locking mechanism to synchronize access to resources. About 60% of
malwares that exploit heap based overflow vulnerability use mutex ranging between
1 to 15. Bar chart representation of seven different classes of malwares showing
mutex range is shown below.

Mutex
Grrand T otz |
Worm .
Rootkit W
Keylogger
Dropper W
Downloader 1l
Backdoor IR
Adware I
0 20 40 60 80 100 120 140 160
Adware Backdoor Download Dropper Keylogger Rootkit Worm Grand
er Total
B No Mutex 27 4 4 1 3 2 4 45
m1lto15 13 64 0 2 4 0 5 88
m16to 30 0 0 0 1 4 11 0 16

Figure 15: Mutex range of malwares that exploit heap based overflow vulnerability

Malwares that exploit heap based overflow vulnerability use five mutex and each mutex

parameter is further classified into sub categories.

Mutex Name A B D Dr K R W | Total
No Mutex 27 4 4 1 3 2 4 45
DBWinMutex 0 0 0 0 0 6 0 6
Global\ 0 0 0 0 1 0 3 4
Local\ 8 63 0 1 5 1 2 80
OSSProxyAlreadyRunning 2 0 0 0 0 0 0 2
ShimCacheMutex 3 1 0 2 2 4 0 12
Grand Total 40 68 4 4 11 13 9 149
Bar chart representation of mutex is given below.
Mutex
Grand Total G .- |
Worm NI
Rootkit INNEEE
Keylogger 1NN
Dropper |l
Downloader
Backdoor []
Adware [N
0 50 100 150 200 250 300 350
m No Mutex DBWinMutex Global\
Local\, B OSSProxyAlreadyRunning B ShimCacheMutex

B Grand Total

Figure 16: Mutex belonging to seven different classes of malware that exploit heap based overflow
vulnerability

7.5 Process Interactions

Malware use process interactions to perform malicious activities. Most common
processes used by malwares that exploits heap based overflow vulnerability are

shown in bar chart representation given below.

36

Process Interaction

Total I

Worm
Rootkit
Keylogger
Dropper
Downloader

'm
L1
[] |
]
||
Backdoor [N
1

Adware
0 20 40 60 80 100 120 140 160
Adware Backdoo| Downlo Dropper Keylogg Rootkit Worm Total
r ader er
m No Process 34 0 0 1 4 2 1 42
m C\DOCUME~1\Miller\LOCALS~1\Te 1 3 1 2 3 1 20
mp\\
m C:\Program Files\Microsoft Office
15\Root\Office 15\WINWORD.EXE /n 0 0 0 0 0 0 2 2
C\WINDOWS\mydoc.rtf /o
C:\Program Files\Common
Files\Microsoft Shared\MSINFO\ 0 0 0 0 1 0 1 2
EC:
C:\Users\<<UserName>>\AppData\L 5 1 1 1 o o B 10
ocal\Temp\\
B C\WINDOWS\MSWDM.EXE , -
rICAWINDOWS\dev3337.tmp!C:\Us 0 57 0 0 0 0 0 57
ers\Emily\AppData\Local\Temp\,
B C:\WINDOWS\system32\, 0 0 0 1 4 3 0 8
. -
et It
rIC'C\WINDOWS\dev328B.tmp'! 5 5 5 5 5 5 5 5

C":\Users\Emily\AppData\Local\Tem
p\

Figure 17: Process Interactions belonging to seven different classes of malware that exploit heap based
overflow vulnerability

As per my graphical analysis of selected dataset it has been observed that mostly
malwares that exploits heap based overflow vulnerability perform 1 to 15 process
interactions. No such malwares makes more than 55 process interactions. Maximum

number of process interactions are made by backdoor malwares.

A B D Dr K R W
0 34 0 0 1 4 2 1
1to 15 6 68 3 3 I 11 7
45 to 55 0 0 1 0 0 0 1

37

Pie chart representation showing the percentage of malwares is shown below. As per the
graphical analysis it has been observed that most malwares use
C:\DOCUME~1\MilleN\LOCALS~1\Temp\\ path to perform malicious activities.

ProcessInteractions

® No Process

= C:\DOCUME~1\Miller\LOCALS~1\Te
mp\\

= C:\Program Files\Microsoft Office
15\Root\Office15\WINWORD.EXE /n
C\WINDOWS\mydoc.rtf /o

= C:\Program Files\Common
Files\Microsoft Shared\MSINFO\

» C:\Users\<<UserName>>\AppData\L
ocal\Temp\\

= C:\WINDOWS\MSWDM.EXE , -
rICAWINDOWS\dev3337.tmp!C:\Us
ers\Emily\AppData\Local\Temp\

Figure 18: Name of Process Interactions belonging to seven different classes of malware that exploit heap
based overflow vulnerability

7.6 Loaded Libraries

When a program running on the computer system needs a library to execute a
subroutine is loaded from the dynamic load library into main memory. As per my
graphical analysis of selected dataset it has been observed that mostly malwares that
exploits heap based overflow vulnerability loads 101 to 150 libraries from dynamic

load library.

38

Loaded Libraries

0 50 100 150 200 250 300 350

A B D Dr K R W Total
mo 21 0 0 0 1 2 0 24
m1lto25 10 0 0 0 1 0 1 12
W 26to 50 7 0 1 3 4 0 0 15
51to 100 2 1 0 0 2 0 0 5
B 101 to 150 0 46 1 0 1 1 0 49
N 150 Above 0 21 2 1 2 10 8 -

H Total 40 68 4 4 11 13 9 149

Figure 19: Loaded Libraries belonging to seven different classes of malware that exploit heap based
overflow vulnerability

7.7 DNS Queries

To get an IP address against the DNS name an inquiry is made by the computers
system or networking device. As per my graphical analysis of selected dataset it has
been observed that only few malwares that exploits heap based overflow vulnerability
perform DNS queries. Bar chart representation is given below.

DNS Queries
Total
W
R
K
Dr &
D mm
B I
A ——
0 20 40 60 80 100 120 140 160
A B D Dr K R W Total
m0 38 64 1 2 7 12 4 128
mito5 2 4 2 1 4 1 5 19
motol10 0] 0] 1 0] 0 0 1
10 to 15 0 0 0 1 0 0 1

Figure 20: DNS Queries belonging to seven different classes of malware that exploit heap based
overflow vulnerability

39

7.8 Strings

Strings stored in a heap area are known as heap strings. As per my graphical analysis
for selected data set it has been observed that most of the malwares that exploits heap
based overflow vulnerability has heap strings range between 1 to 50. Bar chart

representation is given below.

Total]
W
R
K
Dr
D
B I [C
A I |
0 20 40 60 80 100 120 140 160
B D Dr K R W Total
0 0 0 0 0 0 1 0 1
1to 50 32 37 3 2 6 11 8 99
51to 100 1 0 0 0 0 4
W 101 to 150 5 0 0 0 0 11
B 150 Above 0 23 0 0 0 0 23

Figure 21: Strings belonging to seven different classes of malware that exploit heap based overflow
vulnerability

7.9 Conclusion

As per above graphical analysis of features the following rules are generated for the

efficient detection of malwares that exploits heap overflow vulnerability.
Rule#1: (TypeofStringz = HeapStrings) and (Countofloadedlibr <= 32) and

(Numbercountofs <= 19) and (NumberofLoadedLibararies <= 0) =>
Overflow=HeapOverflow (25.0/1.0)

40

Rule#2: (TypeofMalware = Backdoor) and (TypeofStringz = HeapStrings) =>
Overflow=HeapOverflow (87.0/19.0)

Rule#3: (TypeofStringz = HeapStrings) and (Numbercountofs <= 11) and
(NumberofMutex >= 1) and (NumberofMutex <= 16) => Overflow=HeapOverflow
(32.0/9.0)

Rule#4: (NumberofProcessinteractions > 1) AND (TypeofStringz = HeapStrings)
AND (TypeofMalware = Backdoor) AND (MutexName = Local\) AND
(NumberofMutex <= 5) AND (NumberofProcessinteractions <= 5) AND

(NumberofProcessInteractions > 4) => Overflow=HeapOverflow (47.0/6.0)

Rule#5: (LoadedLibraries = No) AND (Numbercountofs > 0) => HeapOverflow
(23.0)

Rule#6: (TypeofStringz = HeapStrings) AND (MutexName = Local\) AND
(NumberofProcessinteractions > 5) => HeapOverflow (16.0/1.0)

Rule#7: (TypeofStringz = HeapStrings) AND (Mutexcount > 2) AND
(NetworkConnections <= 0) => HeapOverflow (11.0)

Rules#8: (TypeofStringz = HeapStrings) AND (MutexName = Global\)
=>HeapOverflow (4.0)

Rule#9: (TypeofStringz = HeapStrings) AND (MutexName = Local\) AND
(RegistryWrites = Yes) AND (RiskParameter = Autostart) AND (TypeofMalware =
Backdoor) AND (NumberofMutex <= 4) AND (NumberofLoadedLibararies <= 102)
AND (StigQueries = Yes) => HeapOverflow (4.0/1.0)

Using mining techniques to detect heap based overflow in a large dataset is much

easier and takes less time as compared to conventional reverse engineering technique.

41

Chapter 8

Detection of Heap Based Overflow by using

Classifiers

8.1 Introduction

Using classifiers to detect malwares that exploit heap based overflow vulnerability
can be accomplished using a direct process. This process can take as little as few
minutes or can be elongated to months, depending on the clarity of the objectives and
scope, availability of dataset, and the pre-processing trials related with the data. Two
rudiments of the analysis are collection of data and tool acquisition. The collected
data entails a pre-processing stage to move it into the form which is required for
classifier implantation and heap overflow detection. Result execution and analysis of

data is a significant step to comprehend the subsequent model and its rule sets.

8.2 Result Execution and Analysis of Data

For the result execution and analysis an open source weka tool has been used. Weka
is a best known data mining tool and provides a wide-ranging list of machine
learning algorithms. The created dataset of 747 malware files comprising of 22
features are converted in to .arff format. ARFF files known as Attribute-Relation File

Format used to work with weka machine learning software.

8.2.1 J48 Classifier

By implementing J48 classification algorithm we get an accuracy rate of 91.834%.

ime taken to build model: 0.03 seconds

tratified cross-validation ===

ummary ===

Incorrectly Classified Instances &1 2.166 =
Kappa statistic 0.7482

Mean sbsoclute error 0.1135

Root mean sguared error 0.z2672

Relative absclute error 35.6583 %

Root relative sguared error £7.0383 %

Total Number of Instances T4T

42

€2 Weka Explorer - X
Freprocess | Classify | Cluster | Associate | Select attributes | Visualize |
Classifier
| Choose ﬂnsrcn 25-M2
Test options Classifier output
() Use training set i
- Time taken to build model: 0.03 seconds r
() Suppliedtest set Set
=== Stratified cress-validation ===
(® Crosswvalidation Folds 10 —— Summary —
() Percentage spit % 6
Correctly Classified Instances 686 91.834 %
More options. Incorrectly Classified Instances &1 B.l66 %
Kappa statistic 0.7462
Mean abssclute error 0.1135
l (Nom) Overfiow r] ROOT mean squared error 0.2672
Relative absclute error 39.6583 §
Start Stop Root relative sgquared error 67.0383 %
Total Number of Instances 747
Result list (right-click for options)
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.811 0.055 0.784 0.811 0.797 0.746 0.923 0.746 HeapOverflow
0.945 0.189 0.953 0.945 0.949 0.746 0.923 0.973 No
Weighted Avyg. 0.918 0.163 0.919 0.918 0.918 0.746 0.923 0.928
=== Confusion Matrix ===

a b
120 28 |

33566 | b=1Ho

<-- classified as
a = HeapCverflow

v

J48 tree detect the malwares which exploit heap based overflow vulnerability on the

basis of following rules.

& 10:34:21 - trees.)48

LoadedLibraries = Yes

TypecfStringz
DNSQueries <= 0

HeapStrings

Mutexcount <= 2

HumbercfFrocessInteractions <= 4

|

| |

| | |

| | | |

| | | | | TypeocfMalware = RAdware

| | | | | | Mutexcount <= 0

| | | | | | | RegistryWrites = Yes: HeapOverflow (3.0)
| | | | | | | RegistryWrites = No: No (18.0/2.0)

| | | | | | Mutexcount > 0: HeapOverflow (14.0/3.0)

| | | | | TypecfMalware = Backdoor: HeapOverflow (10.0/3.0)
| | | | | TypecfMalware = Downloader: No (5.0/1.0)

| | | | | TypecfMalware = Dropper

| | | | | | RiskParameter = Anomaly: No (0.0)

| | | | | | BiskParameter = Autostart: No (22.0)

| | | | | | RiskParameter = Disable: No (0.0)

| | | | | | BiskParameter = Evasion: HeapOverflow (2.0)
| | | | | | RiskParameter = Execution: No (0.0)

| | | | | | RiskParameter = File: No (0.0)

| | | | | | BiskParameter = Memory: No (0.0}

| | | | | | RiskParameter = Network: No (0.0}

| | | | | | RiskParameter = No: No (0.0)

| | | | | | RiskParameter = Packer: No (0.0)

| | | | | | RiskParameter = Reputation: No (0.0}

| | | | | | RiskParameter = Search: No (0.0)

| | | | | | RiskParameter = Signature: No (1.0)

| | | | | TypecfMalware = Keylogger: No (29.0/5.0)

| | | | | TypecfMalware = Rootkit: No (20.0)

| | | | | TypecfMalware = Worm: No (10.0/1.0)

| | | | Mutexcount > 2

| | | | | RiskParameter = Rnomaly: HeapOverflow (0.0)

| | | | | RiskParameter = hutostart: HeapOverflow (11.0/1.0)
| | | | | RiskParameter = Disable: HeapOverflow (0.0)

| | | | | RiskParameter = Evasion: HeapOverflow (0.0)

| | | | | RiskParameter = Execution: HeapOverflow (0.0)

| | | | | RiskParameter = File: No (4.0)

| | | | | RiskParameter = Memory: HeapOverflow (0.0)

| | | | | RiskParameter = Network: HeapOverflow (0.0)

| | | | | RiskParameter = No: HeapOwverflow (0.0)

| | | | | RiskParameter = Packer: HeapOverflow (0.0)

RiskParameter = Beputation: HeanOwerflow (0.0)

43

| | RiskParameter = Reputation:

TypecfStringz = No: No (149.0)
TypeocfStringz = StackStrings: No
HumbercfProcessInteractions > 4

{121.0)

TypeocfStringz = HeapStrings
| RiskFarameter = Anomaly: HeapOverflow (0.0)
ERiskFarameter = Mutostart

HumberofMutex <= §
HumberofMutex <= 5:
HumberofMatex > 5

| HumberofFrocessInteractions
| 1 Humbercountofs <= 296&:

|
|
|
|
| | | Numbercountofs > 29a:
|

|

|

|

|

|

|

|

|

| NumberofMutex > &6: No (21.0/3.0)
I RiskParamseter =
|

|

|

|

|

|

|

|

|

LoadedLibraries = Ho
| Humbercountofs <= 0:
I Humbercountofs > 0O:

Ho (3.0/1.0)
HeapOverflow (23.0)

<= &
Ho {(6.0/1.0)
HeapOvwverflow (3.0)
| HumberofProcessInteractions > &:

HeapOwverflow (0.0)

|

| | | RiskParameter = Search: HeapOverflow (0.0}

| | | RiskFarameter = Signature: HeapUOverflow (1.0}
| DNSQueries > O0: No (135.0/57.0)

HeapOwverflow (70.0/510.0%

HeapOwverflow (7.0)

Dizsakble: HeapOverflow (0.0}
RiskParameter = Ewvasion: No (13.0)
RiskParameter = Executiocn: HeapOwverflow (0.0}
RiskParameter = File: HNo (1.0)
RiskParameter = Memory: HeapOverflow (0.0}
RiskParameter = Network: HeapOverflow (0.0)
RiskParameter = No: HeapOwerflow (0.0}
RiskParameter = Packer: HeapOverflow (0.0)
RiskParameter = Reputation: HeapOwverflow (0.0}
RiskPFarameter = Search: HeapOverflow (0.0)
| RiskParameter = Signature: HeapOwverflow (0.0}
IypecfiStringz = Ho: Mo (12.0)
| ITypecfStringz = StackStrings: No (23.0)

Figure 22: Rules Generated by J48 Algorithm to detect Heap-Based Overflow

Visual representation of J48 tree is shown below.

o Weka Classifier Tree Visualizer. 10:49:49 - trees.J48 (HeapOverflowDetection)
Tree View

/

HumberofProcessinteractions

LoadedLibraries

T

=Yes =No
—

Humbercountofs

ﬂﬂﬁffff”ﬁhﬁﬁﬁmﬂhh A
=4 =4 =0

-

Typeofstingg
A
= HeapSifkeBtings
7 | Y

g Mo (1 Mo ¢121.0)

A

H [
Tipeo [HeapOverflow (23.0)
A
= HeapSifkeBtings
AR
RiskPar Mo {1 No (23.0)

= MM\ P v,

=0
i oo R R BN e
iyt No (136.017.0) He® pyyr HeapOver | HeapOvert Heap Hear Hean Heap Heap Heap HeapOverlow (0.0)
A A
@=] B «=fFh
" T i

ot N (21,02,

Typeofidaliare RiskParameter
)
= AdwarB Ackdbonnloa el Rt = mmﬁﬂ%ﬂmwm =55
- P e O et S T M Moo S B
Wutexeo HeapOverow (1000 No (5.0 ° pyem, No (28 Mo i He Heap(h Heap Heap HeapOver! Heap Heap Heap Heap Heap Her ™ wumnerofProcessinteractions
A A
=0 = Attt pd it eie pelBionure =k
PR oo A B N S i
| HeapOverflov No (N0 (2 HeapOverf No (T Mo (0 No (C No (0 Ko (0 Na (€ No (0 No (€ Na (1.0) hyn HeapOverflow (7.0)
[[
=Yado = %6

i/ i

HeapQy No (18.0/2.0)

/ i

N HeapOverflaw (3.0)

Figure 23: J48 tree

44

8.2.2 Lazy K-Start Classifier

By implementing Lazy K-Star classification algorithm we get an accuracy rate of

90.3614%.

Time taken to build model

0 seconds

=== Stratified cross-validation ===
——— Summary ——=
Correctly Classified Inmstances 675 90.3614 %
Incorrectly Classified Instances T2 9.6386 %
Kappa statistic 0.7071
Mean absolute error 0.1122
Root mean sguared error 0.2836
Relative absclute error 35.2516 %
Root relative sguared error Tl.1526 %
Total Humber of Instances T47
=== Detailed Accuracy By Class =——
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area FPRC Area Class
0.g04 0.072 0.735 0.g804 0.768 0.708 0.934 0.785 HeapOverflow
0.928 0.196 0.950 0.928 0.939 0.708 0.934 0.980 Ho
Weighted Avg. 0.904 0.171 0.908 0.304 0.905 0.T708 0.934 0.9242
& Weka Explorer - o X
I [Preprocess [ciassity | cluster | Associate | select atributes | visuaiize |
Classifier
| choose ”Kstar-E 20-Ma
Test options Classifier output
() Use training set ¥Star options : -B 20 -M a]
3
(L) Supplied test set Set
A =une Time taken to build model: 0 seconds
(®) Cross-validation Folds 10
Stratified cross-validation ===
() Percentage split % == Surmary =—=
L MocEla s J Correctly Classified Inatances 675 50.3614 3
Incorrectly Classified Instances 72 9.6386 %
|| |Eappa statistic 0.7071
{ (Nom) Overflow E J Mean zbsclute error 0.1122
Root mean squared error 0.2836
Start Stop Relative absolute error 35.2516 %
— - 5 Root relative squered error 71.1526 %
Result list (right-click for options) Tozal It r of Instances 747
10:40:45 - lazy KStar === Detailed Accuracy By Class ===
TP Rate FP Rate FPrecision Recall F-Measure MCC ROC Rrea PRC Area Class
0.804 0.072 0.735 0.804 0.768 0.708 0.934 0.785 HeapOverflow
0.928 0.138 0.950 0.928 0.939 0.708 0.934 0.980 Yo
Weighted Avg. 0.904 0.171 0.908 0.904 0.905 0.708 0.934 0.942
=== Confusion Matrix ===
a b < classified as
119 23 | a = HeapOverflow
43 556 | b = No

8.2.3 Simple Logistic

By implementing Simple Logistic classification algorithm we get an accuracy rate of

90.8969%.

Time taken to build model:

=== Stratified creoss-wvalida
Summary

Correctly Classified Instam
Incorrectly Classified Inst
Kappa statistic

Mean absclute errcr

Root mean sguared error
Relatiwve absolute error
Root relative sguared error
Total Number of Instances

1.12 seconds

ticn

ces 673
ances]
0.6932
0.1401
0.2733
44.0313 %
B88.5698 %
747

45

0.8969 %
9.1031 %

=== Detailed Accuracy By Class ===

IF Rate FFP Rate FPrecision Recall F-Measure MCC ROC Area FRC Area Class
0.6882 0.035 0.828 0.882 0.748 0.698 0.930 0.788 HeapOverflow
0.9&5 0.318 0.925 0.9&5 0.944 0.698 0.930 0.981 o

Weighted Awvg. 0.909 0.2682 0.906 0.5809 0.906 0.698 0.5830 0.943

=== Confuszion Matrix ===

a b <-- classified as

101 47 | a = Heaplverflow
21 578 | b = No

G Weke Explorer - X
Preprocess | Classify | Cluster | Associate | Selectaffibutes | Visualize

Classifier

Choose | SimpleLagistic -1 0-M 500-H 50-W 0.0

Test options Classifier output

(J Use fraining set i
Tire taken to build model: 1.12 seconds P

| Supplied test set

- === Stratified cross-validation ==
(®) Crossvalidation Folds 10

=== Jummary ==
() Percentage spit
Correctly Classified Instances 679 90,8969 %
Wore options... Incorrectly Classified Instances [1] 9.1031 %
Kappa statistic 0.6932
— | |Mean abselute error 0.1401
| {Nom) Overflow ¥ Root mean squared error 0.2733
Relative abaolute error 44,0313 %
Sfar Root relative squared error 68.5698 &
Total Nurber of Instances 41

Resultlst {right-click for options)
=== Detailed Accuracy By Class ===

10:45:33 - unclions SimpleLogistic

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.682 0.035 0.828 0.682 0.748 0.698 0.930 0.788 HeapOverflow
0.365 0.318 0.929 0.965 0.344 0.69 0.930 0.981 o

Weighted Rvg. 0.909 0.262 0.906 0.908 0.906 0.698 0.930 0.943

=== Confusion Matrix ===

@ b < classified as
101 47| & = Heaplverflow
21578 | b=lo

-

8.3 Conclusion

Implemented data mining classification algorithms are used to classify new portions
of information into predefined groups. Classification algorithms use pre-classified
dataset to classify data, based on current trends and patterns. After rule generation,
the logic from the implemented algorithm can be combined into numerous intrusion
detection technologies including firewalls and IDS signatures. Out of 3 implemented
classifiers J48 algorithm shows highest accuracy rate of 91.834%.

Classification Algorithm J48 K-Star Simple Logistic

Accuracy Rate 91.834% 90.3614% 90.8969%

46

Chapter 9

Validation and Results

9.1 Introduction

To validate the performance of our proposed system 10-Fold cross validation is
implemented. Cross validation computes the accuracy of the implemented model by
dividing the dataset into training testing set. J48, K-Star and simple logistic
classification models are created from the training set and their accuracy is calculated

grounded on how well it classifies the testing set.

9.2 10-Fold Cross Validation

Three classifiers J48, KStar, Simple Logistic are trained and tested with 10 fold cross
validation i.e., the created dataset is divided arbitrarily into 10 subsets, where 1
subset is used for testing and 9 for training. For every combination the process is
repeated 10 times. This procedure aids in assessing the strength of a given approach
to detect malwares that exploits heap based overflow vulnerability without any

previous information.

For evaluation of the propose system the following quantities are considered:

e True Positives (TP): Number of malwares that exploit heap based overflow
vulnerability are classified as malicious executable
e False Positives (FP): Number of benign programs classified as malicious

malware that exploit heap based overflow vulnerability

Classification Algorithm J48 K-Star Simple Logistic
Accuracy Rate 91.834% 90.3614% 90.8969%
True Positives (TP) 0.918 0.904 0.909
False Positives (FP) 0.163 0.171 0.262

Table 3: Accuracy Rate of Classifiers

47

Implementation of 10-Fold Cross Validation technique has significantly increase the

accuracy rate of the system. The comparison of the modeled data is given below

Classification Algorithm J48 K-Star Simple Logistic
Accuracy Rate (10-Fold 91.834% 90.3614% 90.8969%
Cross Validation)

Accuracy Rate | 88.5827% 89.7638% 88.189%

(Percentage Split)

Table 4: Comparison of Accuracy rate before and after Data Modeling

9.3 Conclusion

By the implementation of proposed system a comprehensive detection technique is

presented for classification of malwares that exploits heap based overflow

vulnerability.

The logic from the implemented algorithm could be used to upsurge awareness of

APT strategies, and advance the complete security of the organizations. Details of

our work is concluded in this chapter and future work is discussed in detail in next

chapter.

48

Chapter 10

Future Work

10.1 Introduction

Polymorphic variants and generation of new malware families are forcing the Anti-
Malware industry to create automatic tools to classify the malwares ability to exploit
vulnerabilities and their corresponding class. In our proposed research work we have
presented a behavioral detection technique for the malwares exploiting heap
overflow vulnerability. In this chapter, our research work is concluded.

10.2 Future Work

The proposed methodology can be used by security analysts to protect systems from
memory manipulation errors. It can be used for the behavioral analysis of malwares
to detect APT treats. This approach can be used to detect Memory Leaks, Stack
Overflow, and Integer Overflow. This approach can be combined with Address
Space Layout Randomization (ASLR) technology to efficiently detect and prevent

heap based overflow malwares.

10.3 Conclusion

Our work presents a malware detection system using combination of data mining and
reverse engineering techniques. The proposed system is based on mining features of
the binary files for detecting malwares that can exploit heap based overflow
vulnerability. We developed a Feature parser to parse features from malware files
and store them in to a dataset. A labeled dataset is created representing the class of
malwares and their ability to exploit heap based overflow vulnerability. The created
feature set is used to train three classifiers J48, K-Star and Simple logistic for the

detection of heap based overflow. The proposed methodology is easy to implement

49

in operations of cyber security to comprehend the behavior of malwares targeting

their organizations.

50

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

Anitta Patience Namanya et al. “Detection of Malicious Portable Executables
Using Evidence Combinational Theory with Fuzzy Hashing.” In Proc. Future
Internet of Things and Cloud (FiCloud), 2016 IEEE 4th International
Conference on, 2016

Maryam Mouzarani et al. “Smart fuzzing method for detecting stack-based
buffer overflow in binary codes”. IET Software, vol. 10, pp. 96-107, 2016
Maryam Mouzarani et al. “A Smart Fuzzing Method for Detecting Heap-Based
Buffer Overflow in Executable Codes.” In Proc. Dependable Computing
(PRDC), 2015 IEEE 21st Pacific Rim International Symposium on, 2015
V.K.Gudipati et al. “Detection of Trojan Horses by the analysis of system
behavior and data packets.” In Proc. Systems, Applications and Technology
Conference (LISAT), 2015 IEEE Long Island, 2015

G.G.Sundarkumar et al. “Malware detection via API calls, topic models and
machine learning.” In Proc. Automation Science and Engineering (CASE), 2015
IEEE International Conference on, 2015

Muhammad N. Sakib et al. “Automated Collection and Analysis of Malware
Disseminated via Online Advertising.” In Proc. Trustcom/BigDataSE/ISPA,
2015 IEEE, 2015

Zhenyi Liao et al. “A stack-based lightweight approach to detect kernel-level

rookits.” In Proc. Progress in Informatics and Computing (PIC), 2015 IEEE
International Conference on, 2015

Zane Markel and Michael Bilzor. “Building a machine learning classifier for
malware detection.” In Proc. Anti-malware Testing Research (WATeR), 2014
Second Workshop on, 2014

Nir Nissim et al. “ALPD: Active Learning Framework for Enhancing the
Detection of Malicious PDF Files.” In Proc. Intelligence and Security
Informatics Conference (JISIC), 2014 IEEE Joint, 2014

51

[10]

[11]

[12]

[13]

[14]

Sandeep Kumar et al. “Malicious data classification using structural information
and behavioral specifications in executables.” In Proc. Engineering and
Computational Sciences (RAECS), 2014 Recent Advances in, 2014

S.K. Pandey et al. “Performance of malware detection tools: A comparison.” In
Proc. Advanced Communication Control and Computing Technologies
(ICACCCT), 2014 International Conference on, 2014

Mikhail Zolotukhin et al. “Detection of zero-day malware based on the analysis
of opcode sequences.” In Proc. Consumer Communications and Networking
Conference (CCNC), 2014 IEEE 11", 2014

U. Baldangombo, "A static malware detection system using data mining
methods," (IJAIA), Vol. 4, No. , July 2013

Szekeres, L., Payer, M., Wei, T., et al.: ‘Sok: Eternal war in memory’. Proc.
2013 IEEE Symp. on Security and Privacy (SP), 2013, pp. 48-62

52

53

