
Detection of Heap-Based Overflow in

binary Codes

by

 Huma Siddiquie

A thesis submitted to the faculty of Information Security Department, Military College

of Signals, National University of Sciences and Technology, Rawalpindi in partial

fulfilment of the requirements for the degree of MS in Information Security

August 2018

Abstract

According to SANS Common weakness Enumeration Heap Overflow vulnerability is among

twenty five most dangerous software errors which if exploited in an organized manner aids the

attacker to gain privilege escalation. Detection of malwares that can exploit this vulnerability

requires the combination of datamining and machine learning techniques.

Our work presents a hybrid malware detection technique that is the combination of both data

mining and machine learning approach. For overcoming the absence of typical anti-virus

software we have used static analysis technique to extract features of malwares. We extracted

features from malware binaries then calling frequencies of the raw features are collected to

select valuable features. Feature engineering technique is used for the reduction of the selected

features. The created feature set is used to train three classifiers J48, K-Star and Simple logistic

for the detection of malwares that exploit heap based overflow vulnerability. By embracing the

notion of machine learning and datamining a static malware detection technique is proposed.

The proposed technique is easy to implement in operations of cyber security to comprehend the

behavior of malwares targeting their organizations.

 i

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

ii

Dedication

“In the name of Allah, the most Beneficent, the most Merciful who bestow me with

knowledge and favors me with opportunities to prove myself"

I dedicate this thesis to my parents, siblings, and teachers who had always been

so encouraging and loving. Who always show their full confidence in me and

make me to believe in myself.

 iii

Acknowledgments

I am thankful to ALMIGHTY ALLAH, the most Powerful and Gracious, Who helped me

and guide me to successfully complete this thesis.

I wish to express my sincere thanks to my supervisor, Major. Muhammad Faisal Amjad,

PhD, for his expert and valuable guidance, suggestions and ¬¬humbleness. Also, I would

thank my committee members; Lecturer Waleed Bin Shahid and Asstt Prof. Mian

Muhammad Waseem Iqbal for their support and knowledge regarding this topic.

Last, but not the least, I am highly thankful to my parents. They have always stood by my

dreams and aspirations and have been a great source of inspiration for me. I would like to

thank Sir Omer and Madam Anum for helping me in my tough time and this dissertation

would have not been possible without their help.

iv

Table of Contents
Page

Abstract ……………………………………………………………………….……… i

Acknowledgements ……………………………………….…….……………………. iv

Thesis Acceptance Certificate ……………………………………….………………….. v

Table of Contents …………………………………..…………………………….......…. vi

List of Figures ……………………………………………………..………...……….…. ix

List of Tables ……………………………………………………..………...………..…. xi

Chapter

Chapter 1 .. 1

Introduction .. 1

1.1 Overview ... 1

1.2 Motivation and Problem Statement ... 2

1.3 Objectives .. 3

1.4 Relevance to National and Army Needs .. 3

1.5 Thesis Contribution ... 3

1.6 Thesis Organization ... 4

Chapter 2 .. 6

Literature Review ... 6

2.1 Overview ... 6

2.2 Origin of Malwares .. 6

2.3 Malware Detection Techniques ... 7

2.4 Detection of Heap-Based Overflow .. 8

2.5 Conclusion ... 9

Chapter 3 .. 11

Architecture of Proposed Malware Detection Technique .. 11

3.1 Introduction ... 11

3.2 Components of Architecture .. 11

3.3 Conclusion ... 14

Chapter 4 .. 15

Malware Dataset Collection and Generation ... 15

vi

4.1 Introduction ... 15

4.2 Malware Dataset .. 15

4.3 Online Sandbox Configuration .. 16

4.4 Report Generation .. 16

4.5 Conclusion ... 16

Chapter 5 .. 17

Feature Engineering ... 17

5.1 Introduction ... 17

5.2 Feature Extraction .. 17

5.3 Feature Parser .. 17

5.4 Feature Selection ... 18

5.4.1 Malware Signature ... 19

5.4.2 Risk Parameter ... 19

5.4.3 Network Connections... 20

5.4.4 Mutex ... 21

5.4.5 Process Interactions ... 21

5.4.6 Strings .. 22

5.5 Conclusion ... 23

Chapter 6 .. 24

Reverse Engineering .. 24

6.1 Introduction ... 24

6.2 Disassembler .. 24

6.3 Debugger ... 26

6.4 Conclusion ... 31

Chapter 7 .. 32

Detection of Heap Based Overflow by using Extracted Features 32

7.1 Introduction ... 32

7.2 Risk Parameter ... 32

7.3 Network Connection .. 34

7.4 Mutex ... 35

7.5 Process Interactions ... 36

7.6 Loaded Libraries .. 38

7.7 DNS Queries .. 39

7.8 Strings .. 40

vii

7.9 Conclusion ... 40

Chapter 8 .. 42

Detection of Heap Based Overflow by using Classifiers ... 42

8.1 Introduction ... 42

8.2 Result Execution and Analysis of Data ... 42

8.2.1 J48 Classifier .. 42

8.2.2 Lazy K-Start Classifier .. 45

8.2.3 Simple Logistic .. 45

8.3 Conclusion ... 46

Chapter 9 .. 47

9.1 Introduction ... 47

9.2 10-Fold Cross Validation... 47

9.3 Conclusion ... 48

Chapter 10 .. 49

Future Work ... 49

10.1 Introduction ... 49

10.2 Future Work ... 49

10.3 Conclusion ... 49

References .. 51

viii

List of Figures

Figure 1: Popular Malwares .. 7

Figure 2: Components of proposed Architecture ... 11

Figure 3: Architecture of Proposed Malware Detection Technique 13

Figure 4: Risk Parameter ... 20

Figure 5: Range of Network connections made by different classes of malware 20

Figure 6: Network connections made by different classes of malware 20

Figure 7: Mutex used by different classes of malware .. 21

Figure 8: Number of Process Interactions of different classes of malware 21

Figure 9: String types and their count .. 22

Figure 10: Heap strings belonging to different classes of malware 22

Figure 11: Risk Parameter of malwares that exploit heap based overflow vulnerability 32

Figure 12: Count of Risk Parameter of malwares that exploit heap based overflow

vulnerability ... 33

Figure 13: Subcategories of Risk parameters .. 34

Figure 14: Range of Network Connection of malwares that exploit heap based overflow

vulnerability ... 35

Figure 15: Mutex range of malwares that exploit heap based overflow vulnerability 35

Figure 16: Mutex belonging to seven different classes of malware that exploit heap based

overflow vulnerability .. 36

Figure 17: Process Interactions belonging to seven different classes of malware that exploit

heap based overflow vulnerability ... 37

Figure 18: Name of Process Interactions belonging to seven different classes of malware

that exploit heap based overflow vulnerability .. 38

Figure 19: Loaded Libraries belonging to seven different classes of malware that exploit

heap based overflow vulnerability ... 39

Figure 20: DNS Queries belonging to seven different classes of malware that exploit heap

based overflow vulnerability .. 39

ix

Figure 21: Strings belonging to seven different classes of malware that exploit heap based

overflow vulnerability .. 40

Figure 22: Rules Generated by J48 Algorithm to detect Heap-Based Overflow 44

Figure 23: J48 tree ... 44

x

List of Tables

Table 1: Malware Dataset .. 15

Table 2: Extracted and Selected features ... 19

Table 3: Accuracy Rate of Classifiers ... 47

Table 4: Comparison of Accuracy rate before and after Data Modeling 48

xi

1

 Chapter 1

Introduction

1.1 Overview

A heap overflow is a well-known type of buffer overflow occurring in heap data area.

Memory on heap usually comprises of program data and is dynamically allocated by the

application at run-time. Heap is a segment of memory that is used for keeping global

variables and dynamically allocated data. It can be exploited by corrupting the program

data located at heap. It usually happens when a pointer or its index is step-down to a

position before the buffer or when a destructive index is used, which produces a position

before the buffer. Each portion of memory in heap comprises of boundary tags that

enclose information related to memory management [1].

When a heap buffer is over run, the control statistics in these tags is overwritten. Access

violation occurs when a memory address overwrite takes place. When the overflow is

executed in an organized manner, the vulnerability would permit an attacker to overwrite

a memory location with a carved input.

This vulnerability directly affects the CIA triad and can result in different consequences

as specified below:

a. Confidentiality. By exploiting CWE-122 the attacker can read memory, execute

unauthorized programs and can evade protection mechanism.

b. Integrity. It is mostly used by attackers to run arbitrary or unauthorized programs

to modify memory. The memory modification can be done by overwriting

function pointer residing in memory or pointing it to the exploiter's code

c. Availability. It can be used to crash the systems, generated D-Dos Attacks,

resource consumption and can lead to put the program in to an infinite loop.

2

Several techniques have been recommended to identify this software vulnerability, but all

of them rely on deep code analysis and run time execution which is a tedious process.

Data mining and machine learning techniques have introduced new dimensions in the

field of malware analysis. We have a proposed a hybrid detection technique that is the

combination of both data mining and machine learning. Machine Learning technique is

used to find patterns in data and then prediction of the outcome is done by using

datamining technique [2].

We extracted twenty one features from malware executables which are File name, Risk

Parameter, Network Connections, Number of Mutex, Number of Loaded libraries,

Number of Process Interactions, DNS Queries, Frequent API Calls, Downloaded Files,

Process Interactions, Registry Writes, Registry Reads, Mutex Count, Mutex Name, File

Queries, Type of Strings, Total Count of Strings, Strings, Total Count Loaded Libraries

(.dll format), Loaded Libraries (.dll format) and Type of Malware by self-written code in

php language. Our work presents a heap based over flow vulnerability detection system

using data mining technique such as three classifiers: J48, KStar and Simple Logistic. For

overcoming the absence of typical anti-virus software we have used static analysis

technique to extract features of malwares. Then feature engineering technique is used for

decreasing the selected features. By embracing the notion of machine learning and

datamining, we created a malware detection technique.

1.2 Motivation and Problem Statement

Buffer overflow is among the 25 Top most Dangerous Software Errors. It ranks high in

the Common Weakness Enumeration. It can cause direct memory manipulations. A

cautiously crafted input by a malicious actor can overwrite a register that stores important

information and thus by doing so gain access to the program or in worst cases gain access

to the root or admin account.

Hence, there is a need for an effective detection technique that can effectively detect heap

based overflow vulnerability. Assessment of Heap based Vulnerability along with the

3

implementation of proposed hybrid technique can be used by the programmers to develop

secure applications.

1.3 Objectives

The main objectives of thesis are: -

• Proposition of new technique for the detection of heap-based overflow.

• To create a dataset that highlights heap based overflow vulnerability in different

classes of malware

• Implementation of detection technique which is the combination of both machine

learning and datamining approach.

1.4 Relevance to National and Army Needs

a. National Needs. No industry can progress without such system that alerts

them about their weaknesses. If such weaknesses are exploited by users

having malicious intent it can badly affect the reputation of the industry.

An efficient detection system that can detect memory attacks and can help

industries to protect them self from malware that is capable of using their

machines by manipulating or by corrupting the sensitive data.

b. Military Needs. A military data center contains confidential and important

data. If the securities of such systems are compromised it will directly

affect the security of our nation. A detection system that can effectively

detect heap-based overflow attack can improve the security of such

systems.

1.5 Thesis Contribution

It is stated that our work is unique because after extensive research we have found that

there is no single dataset that gives the detailed information about the malware showing

their identified class and the heap based overflow vulnerability. We have not only created

a dataset but also proposed a hybrid malware detection technique.

4

Our contributions in this research are listed below:

 Proposition of a hybrid detection technique that is the combination of both data

mining and machine learning approach

 Creation of a program to automatically extract feature from malwares files

 Creation of a program for data cleaning

 Identification of heap based overflow vulnerability of seven classes of malware

which are Adware, Backdoor, Downloader, Dropper, Keylogger, Rootkit and

worm.

 Three Classifiers in WEKA are trained by extracted features dataset for detection

of heap based overflow vulnerability.

 Results are generated and accuracy is calculated of each classifier for our created

dataset.

1.6 Thesis Organization

The thesis is structured as follows:

• Chapter 2 comprises of literature review. In this chapter evaluation of existing

tools and diverse techniques proposed by different researcher have been presented

that includes evidence combination techniques, smart fuzzing, concolic execution

and anomaly detection.

• Chapter 3 comprises of Architecture of Proposed Malware Detection Technique.

In this chapter details of proposed technique architecture is discussed. The

technique is to accurately detect malwares that exploit heap based overflow

vulnerability from malware binaries belonging to seven different classes by using

data mining and machine learning approach.

• Chapter 4 covers the Malware Dataset Collection and Report Generation. In this

chapter malware dataset creation, mechanism of online sandbox configuration and

the procedure of report generation is discussed in detail.

5

• Chapter 5 comprises of Feature Engineering. In this chapter process of feature

selection and feature extraction is discussed in detail.

• Chapter 6 covers Reverse Engineering techniques .In this chapter details of heap

based overflow malware detection technique by using reverse engineering is

discussed in detail.

• Chapter 7 covers Detection of Heap Based Overflow by using Extracted Features.

In this chapter by using datamining techniques, extracted features are analyzed to

detect heap based overflow.

• Chapter 8 covers Detection of Heap Based Overflow by using Classifiers. In this

chapters three classifiers are trained and then tested to detect heap based

overflow.

• Chapter 9 covers Validation and testing. It comprises of performance validation of

our proposed system.

• Chapter 10 concludes the document. It comprises of conclusion and future work.

6

Chapter 2

Literature Review

2.1 Overview

This chapter includes the literature review of malware analysis. It discusses origin of

malwares, their types followed by the evolution of malware detection techniques. These

detection techniques helped in developing malware detection tools to detect malwares

that exploit heap based overflow vulnerability.

2.2 Origin of Malwares

Technological advancements have made our small globe equivalent to a global village.

Internet, complex computer networks along with the intelligent software advancement

has become a crucial element to keep individuals, businesses and organizations together.

This setup has led to an increased rate of cyber-crimes with every passing day.

Cyber criminals use malicious software to launch cyberattacks on computers to realize

malicious goals. Designing malwares to meet certain goals that may include stealing of

data, encrypting sensitive file, corrupting information, displaying unwanted

advertisement or to gain control of a computer system. Malwares use vulnerabilities of

the system to exploit data. Users are tempted into running a useful code that is often

displayed on a site, malware is attached with this useful code & that it is activated on the

host system.

Over time, malwares have evolved each has its unique technique to exploit the user or

businesses and can be classified into categories depending upon what type of malicious

activity they perform on their host.

7

Symantec’s 2018 Internet Security Threat Report (ISTR) reveals that 600 percent

increase in IoT attacks is recorded. Cryptojacking explodes by 8,500 percent, stealing

resources and increasing vulnerability. It further says that malware implants grow by 200

percent, exploiting the software supply chain. Mobile malware variants are increased by

54 percent, and according to their sensors record about 126.5 million of threat events are

logged every second from 157 countries and territories. Fig. 2.1 shows the pi-chart (%) of

different popular malwares.

Figure 1: Popular Malwares

2.3 Malware Detection Techniques

Malware detection techniques are implemented through malware detector. The malware

detector attempts to help protect the system by detecting malicious behavior. The detector

may or may not reside on the same system it is trying to protect from malicious code.

Using manifested malware detection techniques malware detector performs its protection,

and serves as an experimental means of evaluating malware detection technique’s

detection capability.

Techniques used for malware detection largely categories into three parts: Static

Analysis, Dynamic analysis and Hybrid analysis. The malware analysis that Anti-virus

companies do, can be classified broadly into two categories; the static analysis techniques

and the dynamic analysis techniques. The static techniques involve looking into the

binaries directly or reverse engineering the code for patterns in the same.

8

The dynamic analysis techniques involve capturing the behavior of the malware sample

by executing it in a sandboxed environment or by program analysis methods and then use

that for extracting patterns for each family of virus.

Rossow, et al., presented a survey on literatures for malicious software detection

techniques. Muazzam, et al., also presented a survey on mining techniques to detect

malwares on the basis of file features. CWSandbox was proposed by Willems, et al., and

it is a well-known tool which can run malware samples in a virtual environment.

Choudhary and Saharan also used data mining technique to detect malicious software.

They use abstract assembly and selected top features. IDApro was used to generate the

assembly code. SVM and Neural net classifiers are considered.

Malware detection tools can be categorized in to the following three groups. 1. Static

Malware Detection Tools 2. Dynamic Malware Detection Tools 3. Online Malware

Detection Tools. Many different types of malware detection tools are available in the

market and are used with variant approaches. Their names and approaches are given as

under:

i. IDA Pro Anomaly Based Approach

ii. OllyDbg Heuristic Based Approach

iii. Regshot String Matching

iv. Process Monitor Probabilistic Approach

v. Process explorer Address space randomization

vi. Virus Total Heuristic Based Approach

vii. Anubis Behavioral Based Approach

viii. Threat Expert Behavioral Based Approach

ix. Comodo Signature Based Approach

2.4 Detection of Heap-Based Overflow

Buffer overflow is a reputed software vulnerability. In the past two decades, numerous

approaches have been recommended to detect this vulnerability.

9

Anitta Patience Namanya et al. in “Detection of Malicious Portable Executables Using

Evidence Combinational Theory with Fuzzy Hashing” presented the techniques to,

calculate the similarity of the Portable Executable files and according to researcher by

using evidence combination techniques, detection rates can be improved [1].

Maryam Mouzarani et al. in “Smart fuzzing method for detecting stack-based buffer

overflow in binary es” presented the concolic execution to determine the factors that can

cause stack-based buffer overflow in binary codes [2].

Maryam Mouzarani et al. in “A Smart Fuzzing Method for Detecting Heap-Based Buffer

Overflow in Executable Codes” presented the concolic execution based smart fuzzer to

determine the factors that can cause heap-based buffer overflow in executable codes [3].

Zane Markel and Michael Bilzor. in “Building a machine learning classifier for malware

detection” researcher has presented a machine learning technique for the detection of

malware. With the varied malware prevalence the researchers calculate variations in

classifier performance [8].

S.K. Pandey et al. in “Performance of malware detection tools: A comparison”

presented the evaluation of existing tools and procedures for malware detection and

concluded that top three tools are Regshot, Process Monitor and Process Explorer [11].

Mikhail Zolotukhin et al. in “Detection of zero-day malware based on the analysis of

opcode sequences” presented the anomaly detection technique to detect malwares. A

software behavior model is proposed to detect the unseen malwares [12].

2.5 Conclusion

Many researchers has used different techniques for the detection of malwares that exploit

overflow vulnerability but failed to inspect the run time performance of malwares and the

methods proposed by them are also ineffective against encrypted features. In our

proposed framework we have extracted and used more than twenty features for efficient

http://ieeexplore.ieee.org/document/6866599/
http://ieeexplore.ieee.org/document/6866599/

10

detection of malwares that exploit heap based overflow vulnerability. The propose

methodology is automatic and flexible to be deployed in any operational environment.

11

Chapter 3

Architecture of Proposed Malware Detection

Technique

3.1 Introduction

In this chapter details of proposed architecture of malware detection technique is

discussed in detail. The technique is to accurately detect malwares that exploit heap based

overflow vulnerability from malware binaries belonging to seven different classes by

using data mining and machine learning approach.

3.2 Components of Architecture

Our proposed architecture has five main components:

a. Component 1: Feature Extraction

b. Component 2: Feature Selection

c. Component 3: Reverse Engineering

d. Component 4: Data Cleaning and Transformation

e. Component 5: Learning Algorithm

Figure 2: Components of proposed Architecture

12

Component 1: Feature Extraction

Feature parser extract data from all JSON files of malware dataset. JSON files are created

by using IBM X-Force Exchange Tool. After extracting features, parser stores the

extracted features in a CSV file.

Component 2: Feature Selection

Extracted Raw Features with calling frequencies greater then threshold are selected.

Component 3: Reverse Engineering

Type of software vulnerability has been identified by code analysis by executing malware

in a sandbox environment. OllyDbg and IDA Pro tools are used for code analysis.

Component 4: Data Cleaning and Transformation

Self-Written VBA Macro code is used for data cleaning which will be explained in detail

in next section.

Component 5: Learning Algorithm

Learning algorithms are used to drive a classification results from the created labeled

dataset.

13

Evaluation

Data Pre-processing

and Data

Transformation

32 and 64

bit windows

based

Malware

Report

Generation

Online Sandbox

Configuration

Reverse

Engineering

Feature

Handling

Learning Algorithm

 Figure 3: Architecture of Proposed Malware Detection Technique

Malware Data

Set Collection

Labeled

Malwares

belonging to

7 different

classes

IBM X Force

Exchange

Hybrid analysis

Submission of

Malware files

Creation of

Report in JSON

format

Feature Extraction

Feature Selection

OllyDBG Debugguer

IDA Pro Disassembler

Handling

Missing Data

Data Cleaning

Decision Tree

K Star

Simple

Logistic

Precision and

Accuracy

14

3.3 Conclusion

This chapter describes the major components and architecture of proposed detection

technique which is the combination of both datamining and machine learning approach. It

gives a summarize view of complete dissertation.

15

Chapter 4

Malware Dataset Collection and Report

Generation

4.1 Introduction

This chapter comprises of three sections that discuss in detail about the malware dataset,

mechanism of online sandbox configuration and the procedure of report generation.

4.2 Malware Dataset

Malware dataset comprises of malware executables is taken from online malware and

URL scanner that is from Virus Total.

Our selected Malware dataset has following characteristics:

a. Windows based Malware executables supports 32-bit and 64-bit Operating System.
b. High detection rate and can be detected by more than 20 antiviruses.

c. Labeled Malware files belonging to seven different classes including Adware,

Backdoor, Downloader, Dropper, Keylogger, Rootkit and Worm.

Type of Malware Total Count

Adware 146

Backdoor 100

Downloader 100

Dropper 96

Keylogger 110

Rootkit 96

Worm 99

Total 747

Table 1: Malware Dataset

16

4.3 Online Sandbox Configuration

To analyze malwares executables we have selected two online sandboxes that are hybrid

analysis and IBM X-Force Exchange tool. Hybrid Analysis use hybrid analysis

technology and falcon sandbox to analyze malware files and summarize the result by

generating report. IBM X-Force Exchange tool has malware analysis components that

uses cloud-based threat intelligence distribution podium to generate malware reports.

Malware Analysis of IBM X-Force is a component of larger Security Operations and

Response platform. Initial registration of subscription of services is required to use both

the sandboxes.

4.4 Report Generation

IBM X-Force tool is used for report generation. Total 747 malware executables

belonging to seven different classes have been uploaded on IBM tool for analysis. The

generated report is created in JSON format. The report contains the detail analysis of

each and every feature of malware and rate the malware according to its level of severity.

4.5 Conclusion

This chapter gives an overview of the selected platform and dataset for the

implementation of detection technique. Platform selection is the most important step as

the report generated by the selected platform will be used to extract features as discussed

in detail in next Chapter. The accuracy of the results will be directly dependent on the

generated reports.

17

Chapter 5

Feature Engineering

5.1 Introduction

One of the most important phase in machine learning is defining the suitable feature

illustration. The process of feature selection and feature extraction is known as feature

engineering. Feature engineering is used for converting raw data into features that

present the problem to the logical models, ensuing in enhanced model accuracy on testing

data. The features in dataset directly affect the learning algorithm used to predict the

results. The more time and importance given to select features will result in better

features. Better features results in agility, simpler model and accuracy.

5.2 Feature Extraction

Some dataset are too big in their raw state to be modeled by learning algorithms directly.

So, to reduce the dimensionality of dataset, process of feature extraction is used. For

feature extraction the key is that the methods used should be automatic. To automate the

process of feature extraction feature parser is used. Feature parser is a self-written

program in .php language.

In order to extract features from malware executables we first required the malware

report in JSON format that we have generated with the help of IBM X-Force Exchange

malware analysis tool. X-Force Exchange Malware Analysis is an IBM tool that can

analyze multiple malware executables within a minute. The generated malware report is

save in a JSON format is fed as an input to the feature parser.

5.3 Feature Parser

Twenty one features are extracted by using self-written feature parser and one feature is

extracted by using reverse engineering technique. Feature parser takes multiple input files

read them one by one, decode them in standard json format, extract all the required

18

features, save them in a tabular form and display the result of all 747 files in html file.

The html file can be saved in to a CSV file both options are available for the user.

--
Algorithm 1: Extracting features from created JSON files

--
Input: JSON file created from IBM X-Force tool

Output: Extracted features from a raw JSON file

Begin

1. Read all JSON file saved in a folder.

2. Get the index of the file then decode it in a standard json format.

3. Foreach (Selected Decoded feature we get a value)

 If (value == selected feature)

 Write the feature in a tuple in a row

 If (data against feature ≠empty)

 Write all data in a next tuple of a same row

 End if

 End if

 End for

End

5.4 Feature Selection

Feature selection is a procedure to address the problem by selecting a subset that is useful

to a problem. Important features are selected to extract from malware executables.

Features that are unrelated to the problem are removed. The features that are important

and improves the accuracy of the model are selected. Total 21 features are selected. List

of features selected from malwares executables and their total count is given in Table 2.

Extracted and Selected Feature Total Count

Malware signature 747

Risk Parameter 79

Network Connections 179815

19

Number of Mutex 4924

Number of Loaded libraries 85998

Number of Process Interactions 2564

DNS Queries 1622

Process Interactions 589

Registry Writes 271

Registry Reads 274

Mutex Count 938

Mutex Name 41

File Queries 565

Type of Strings 2

Total Count of Strings 64406

Strings 284

Total Count Loaded Libraries (.dll

format)

28133

Loaded Libraries (.dll format) 476

Type of Malware 7

Table 2: Extracted and Selected features

5.4.1 Malware Signature

It is a SHA-256 signature of a malware file.

5.4.2 Risk Parameter

Risk parameter is a factor of classifying and investigating potential issues that could have

a negative impact on system security. There are twelve risk parameters detected in our

selected dataset of malware and each risk parameter is further classified into sub

categories. Bar chart representation showing the risk parameter and their total count is

given below.

20

Figure 4: Risk Parameter

5.4.3 Network Connections

The Network Connection is a factor that identifies that the malware makes a network

connection or not. Bar chart showing the number of network connection and their total

count is given below.

Figure 5: Range of Network connections made by different classes of malware

As per my graphical analysis of selected dataset it has been observed that downloader and

worm creates many network connections which can range up to 100 and backdoor creates

least number of network connections.

Figure 6: Network connections made by different classes of malware

21

5.4.4 Mutex

To synchronize access to a resource, mutex is used and is also known as locking

mechanism. At a time one task that can be a thread or process based on OS abstraction

can acquire the mutex. It means there is an ownership associated with mutex, and only

the owner can release the lock (mutex). Graphical Analysis of extracted mutex of selected

dataset is shown in a graph below.

Figure 7: Mutex used by different classes of malware

5.4.5 Process Interactions

Operating systems provides a communication technique to allow different processes to

communicate with each other to enable better performance and to achieve certain tasks

by using code and data injection methods. Malware use process interactions to perform

malicious activities. As per my graphical analysis of selected dataset it has been observed

that mostly malwares perform 1 to 25 process interactions. Only downloader makes more

than 100 process interactions.

Figure 8: Number of Process Interactions of different classes of malware

22

5.4.6 Strings

String generally means an ordered arrangement of characters. It can be divided in to two

sub categories i.e. Heap Strings and Stack Strings. Heap is a large pool of memory also

known as dynamic memory and used for run time operation. Strings stored in a heap area

are known as heap strings. As per my graphical analysis for selected data set that 24% of

adware, 20% of backdoor, 16% of downloaders, 10% of droppers, 13% of keyloggers,

11% of rootkits and only 6% of worms use heap strings. So, maximum number of heap

strings are used by adware and minimum number of heap strings are used by worms.

Figure 9: String types and their count

Figure 10: Heap strings belonging to different classes of malware

23

5.5 Conclusion

Feature parser is used to extract features from 747 malware files. Crucial features

extracted with the help of feature parser are File name, Risk Parameter, Network

Connections, Number of Mutex, Number of Loaded libraries, Number of Process

Interactions, DNS Queries, Frequent API Calls, Downloaded Files, Process Interactions,

Registry Writes, Registry Reads, Mutex Count, Mutex Name, File Queries, Type of

Strings, Total Count of Strings, Strings, Total Count Loaded Libraries (.dll format),

Loaded Libraries (.dll format) and Type of Malware. Feature extracted with the help of

reverse engineering is overflow which will be discuss in detail in next chapters.

24

Chapter 6

Reverse Engineering

6.1 Introduction

In this chapter details of heap based overflow malware detection technique is

discussed in detail. The technique is to use reverse engineering tools like ollyDbg

and IDA Pro to accurately detect heap based overflow vulnerability from malware

binaries. Malware reverse engineering is a process to minutely explore the working

of malware and to determine its effect on the environment after its execution. In our

technique we have used both static and dynamic analysis for the detection of heap

based overflow vulnerability in malwares.

6.2 Disassembler

IDA Pro also known as Interactive Disassembler is a disassembler which converts

machine language code to assembly language source code. It is used to comprehend

the functionality of the code by swapping between hex code and graph view. Its code

view and string section gives a swift illustration of the mapping of flow of

implementation.

To verify that the selected malware binary file is vulnerable to heap based overflow

vulnerability or not it is disassembled in to assembly source code by using IDA-Pro.

To identify it disassemble an adware into assembly source code. The shah 256 hash

of the selected adware is

1fb9cb60b11165df3298dee55b59517e3ed15957b820b19b4ca0d8f9f2e20173. Move

to string window of the dissembled adware binary file. The string windows contain

all the strings of the loaded disassembled program.

25

It shows that at segment 00038C44 to segment 00039080 contains run time error

strings. At segment 00037418 it shows insufficient memory string.

When we try to execute the assembly code in IDA Pro it gives an access violation.

The access violation exception occurs only when an unapproved application attempts

to access unauthorized memory fragments of your system.

26

6.3 Debugger

Olly Debugger is an assembler-level investigating Debugger. It is used to analyze

binary codes and to execute the application in a controlled environment that is useful

to find and list the effects of malicious binaries on an environment.

To verify that the selected malware binary file is vulnerable to heap based overflow

vulnerability or not load the malware binary file in to primary memory by using olly

debugger. When it is loaded the value of EIP=770EAE14 and the value of EAX

register is at stack position 0019FFF4. The shah 256 hash of the selected adware is

1fb9cb60b11165df3298dee55b59517e3ed15957b820b19b4ca0d8f9f2e20173.

CPU
Registers

Stack

Debug
Status

 Memory Viewed
as data

Virtual
address of

instructions

Information
of Resolved

API

Runtime Error

27

The flag register hold the information of official flags of processing in the central

processing unit. These flags are affected by the processes in the Arithmetic logic unit.

They are changed as a result of arithmetic and logic process. Flag O is an Overflow flag

and it holds a flag resulting from an instruction that is needed in order to make decision

in another instruction. Initially when an adware binary is loaded it shows LastErr

ERROR_ENVVAR_NOT_FOUND (000000CB). This error occurs when the system

does not find the environment option that was entered.

Enable OllyHeap trace and execute the code. OllyHeap trace is a plugin by Stephen

Fewer. It is used to view heap allocations and deallocations for multiple heaps, as well as

operations such as creating and destroying heaps. OllyHeap trace is used to depict the

behavior of heap trace. Initially no heap is allocated till address 0041A39B.

First heap allocation takes place when EIP value is equal to 0041A3A1. The allocated

size of heap chunk is 94. The GetProcessHeap function is used to get a handle to the

default heap for the calling process. The handle can be used by the process to assign

memory from the process heap without having to first create a private heap.

28

The 32-bit Kernel32 dynamic link library found in the kernel of Windows operating

system. It is used to manage memory, I/O operations, and interrupts. kernel32.dll is

located in protected memory space. The code at address 004A3A8 shows that get

heap buffer of size 94 that is 148 bytes from protected memory. If a string larger than

147 bytes passed to it will thereby overwrite the data coincidental to this memory

block which is, actually, a header of the following memory block because memory is

allocated without bound checking. At this point following heap traces are generated.

At EIP 0041A3BF Heap overflow takes place. The value which is overflown to EBX

is 77047910 which points to value at stack. EBX is a non-volatile register which has

no particular use but mostly used to set a common value to speed up calculations.

29

At virtual address 0042A489 we can see the error in resolved API information

window. Error_NOT_ENOUGH_MEMORY this error occurs when the free space is

not available or if the memory is fragmented.

The lookaside list contains the information of heap buffers it has two pointers

pointing before and after the lookaside entries. These pointers are FLINK and

BLINK.

Heap Overflow

30

After complete execution of adware when we observe CPU window it appears as

follow:

The complete Heap trace is given below:

Overflow prefix

It shows the place where
the lookaside list is being
modified with the value

overflown into FLINK
pointer of the allowed

block

31

The call stack window appears after complete execution as given below:

6.4 Conclusion

In reverse engineering the most observable method is to entirely engineer a malware

but this obviously takes a great amount of time. So, in an environment where there

are more than 100's of malware this approach is not practical. Another approach to

detect malwares that exploit overflow vulnerabilities in big dataset efficiently with

respect to time is, to use datamining technique for malware detection.

Initialize Critical Section

Delete Critical Section

Delete Boundary
Descriptors

32

Chapter 7

Detection of Heap Based Overflow by using

Extracted Features

7.1 Introduction

By adopting the concepts of datamining techniques extracted features are analyzed to

detect whether the file under observation is vulnerable to heap based overflow

vulnerability or not. Detailed Graphical analysis of each extracted features of 747

malware file of selected dataset is inspected in detail and rules are created for the

efficient detection of heap based overflow.

7.2 Risk Parameter

Risk Parameter is a factor of categorizing and examining possible issues that could

have an undesirable impact on system security. Malwares that exploit heap based

overflow vulnerability use six risk parameters and each risk parameter is further

classified into sub categories. Pie chart representation showing that about 63% of

such malwares use autostart, 7% use execution and evasion, 5% has signatures, 1%

generates traffic and use popular applications to exploit heap vulnerability.

Figure 11: Risk Parameter of malwares that exploit heap based overflow vulnerability

33

Figure 12: Count of Risk Parameter of malwares that exploit heap based overflow vulnerability

Subcategories of the risk parameter and their total count is shown in the bar chart

representation given below. There are total nineteen subcategories that belongs to six

different categories of risk parameter. About 60% of malwares that exploit heap based

overflow vulnerability use autostart risk parameters subcategory that is registering for

autostart during Windows boot. This features set the malware to run on start up. This

means the malware does not need the permission to execute it and will start automatically

after windows boot.

34

Figure 13: Subcategories of Risk parameters

7.3 Network Connection

 A factor that determines that the malware makes a network connection or not. About

50% of malwares that exploit heap based overflow vulnerability makes network

connection ranging between 1 to10. Bar chart representation of malwares showing

network connections belonging to seven different classes is given below.

35

Figure 14: Range of Network Connection of malwares that exploit heap based overflow vulnerability

7.4 Mutex

Mutex is a locking mechanism to synchronize access to resources. About 60% of

malwares that exploit heap based overflow vulnerability use mutex ranging between

1 to 15. Bar chart representation of seven different classes of malwares showing

mutex range is shown below.

Figure 15: Mutex range of malwares that exploit heap based overflow vulnerability

36

Malwares that exploit heap based overflow vulnerability use five mutex and each mutex

parameter is further classified into sub categories.

Mutex Name A B D Dr K R W Total

No Mutex 27 4 4 1 3 2 4 45

DBWinMutex 0 0 0 0 0 6 0 6

Global\ 0 0 0 0 1 0 3 4

Local\ 8 63 0 1 5 1 2 80

OSSProxyAlreadyRunning 2 0 0 0 0 0 0 2

ShimCacheMutex 3 1 0 2 2 4 0 12

Grand Total 40 68 4 4 11 13 9 149

Bar chart representation of mutex is given below.

Figure 16: Mutex belonging to seven different classes of malware that exploit heap based overflow

vulnerability

7.5 Process Interactions

Malware use process interactions to perform malicious activities. Most common

processes used by malwares that exploits heap based overflow vulnerability are

shown in bar chart representation given below.

37

Figure 17: Process Interactions belonging to seven different classes of malware that exploit heap based

overflow vulnerability

As per my graphical analysis of selected dataset it has been observed that mostly

malwares that exploits heap based overflow vulnerability perform 1 to 15 process

interactions. No such malwares makes more than 55 process interactions. Maximum

number of process interactions are made by backdoor malwares.

 A B D Dr K R W

0 34 0 0 1 4 2 1

1 to 15 6 68 3 3 7 11 7

45 to 55 0 0 1 0 0 0 1

38

Pie chart representation showing the percentage of malwares is shown below. As per the

graphical analysis it has been observed that most malwares use

C:\DOCUME~1\Miller\LOCALS~1\Temp\\ path to perform malicious activities.

Figure 18: Name of Process Interactions belonging to seven different classes of malware that exploit heap

based overflow vulnerability

7.6 Loaded Libraries

When a program running on the computer system needs a library to execute a

subroutine is loaded from the dynamic load library into main memory. As per my

graphical analysis of selected dataset it has been observed that mostly malwares that

exploits heap based overflow vulnerability loads 101 to 150 libraries from dynamic

load library.

39

 Figure 19: Loaded Libraries belonging to seven different classes of malware that exploit heap based

overflow vulnerability

7.7 DNS Queries

To get an IP address against the DNS name an inquiry is made by the computers

system or networking device. As per my graphical analysis of selected dataset it has

been observed that only few malwares that exploits heap based overflow vulnerability

perform DNS queries. Bar chart representation is given below.

 Figure 20: DNS Queries belonging to seven different classes of malware that exploit heap based

overflow vulnerability

40

7.8 Strings

Strings stored in a heap area are known as heap strings. As per my graphical analysis

for selected data set it has been observed that most of the malwares that exploits heap

based overflow vulnerability has heap strings range between 1 to 50. Bar chart

representation is given below.

 Figure 21: Strings belonging to seven different classes of malware that exploit heap based overflow

vulnerability

7.9 Conclusion

As per above graphical analysis of features the following rules are generated for the

efficient detection of malwares that exploits heap overflow vulnerability.

Rule#1: (TypeofStringz = HeapStrings) and (Countofloadedlibr <= 32) and

(Numbercountofs <= 19) and (NumberofLoadedLibararies <= 0) =>

Overflow=HeapOverflow (25.0/1.0)

41

Rule#2: (TypeofMalware = Backdoor) and (TypeofStringz = HeapStrings) =>

Overflow=HeapOverflow (87.0/19.0)

Rule#3: (TypeofStringz = HeapStrings) and (Numbercountofs <= 11) and

(NumberofMutex >= 1) and (NumberofMutex <= 16) => Overflow=HeapOverflow

(32.0/9.0)

Rule#4: (NumberofProcessInteractions > 1) AND (TypeofStringz = HeapStrings)

AND (TypeofMalware = Backdoor) AND (MutexName = Local\) AND

(NumberofMutex <= 5) AND (NumberofProcessInteractions <= 5) AND

(NumberofProcessInteractions > 4) => Overflow=HeapOverflow (47.0/6.0)

Rule#5: (LoadedLibraries = No) AND (Numbercountofs > 0) => HeapOverflow

(23.0)

Rule#6: (TypeofStringz = HeapStrings) AND (MutexName = Local\) AND

(NumberofProcessInteractions > 5) => HeapOverflow (16.0/1.0)

Rule#7: (TypeofStringz = HeapStrings) AND (Mutexcount > 2) AND

(NetworkConnections <= 0) => HeapOverflow (11.0)

Rules#8: (TypeofStringz = HeapStrings) AND (MutexName = Global\)

=>HeapOverflow (4.0)

Rule#9: (TypeofStringz = HeapStrings) AND (MutexName = Local\) AND

(RegistryWrites = Yes) AND (RiskParameter = Autostart) AND (TypeofMalware =

Backdoor) AND (NumberofMutex <= 4) AND (NumberofLoadedLibararies <= 102)

AND (StigQueries = Yes) => HeapOverflow (4.0/1.0)

Using mining techniques to detect heap based overflow in a large dataset is much

easier and takes less time as compared to conventional reverse engineering technique.

42

Chapter 8

Detection of Heap Based Overflow by using

Classifiers

8.1 Introduction

Using classifiers to detect malwares that exploit heap based overflow vulnerability

can be accomplished using a direct process. This process can take as little as few

minutes or can be elongated to months, depending on the clarity of the objectives and

scope, availability of dataset, and the pre-processing trials related with the data. Two

rudiments of the analysis are collection of data and tool acquisition. The collected

data entails a pre-processing stage to move it into the form which is required for

classifier implantation and heap overflow detection. Result execution and analysis of

data is a significant step to comprehend the subsequent model and its rule sets.

8.2 Result Execution and Analysis of Data

For the result execution and analysis an open source weka tool has been used. Weka

is a best known data mining tool and provides a wide-ranging list of machine

learning algorithms. The created dataset of 747 malware files comprising of 22

features are converted in to .arff format. ARFF files known as Attribute-Relation File

Format used to work with weka machine learning software.

8.2.1 J48 Classifier

By implementing J48 classification algorithm we get an accuracy rate of 91.834%.

43

J48 tree detect the malwares which exploit heap based overflow vulnerability on the

basis of following rules.

44

Figure 22: Rules Generated by J48 Algorithm to detect Heap-Based Overflow

Visual representation of J48 tree is shown below.

Figure 23: J48 tree

45

8.2.2 Lazy K-Start Classifier

By implementing Lazy K-Star classification algorithm we get an accuracy rate of

90.3614%.

8.2.3 Simple Logistic

By implementing Simple Logistic classification algorithm we get an accuracy rate of

90.8969%.

46

8.3 Conclusion

Implemented data mining classification algorithms are used to classify new portions

of information into predefined groups. Classification algorithms use pre-classified

dataset to classify data, based on current trends and patterns. After rule generation,

the logic from the implemented algorithm can be combined into numerous intrusion

detection technologies including firewalls and IDS signatures. Out of 3 implemented

classifiers J48 algorithm shows highest accuracy rate of 91.834%.

Classification Algorithm J48 K-Star Simple Logistic

Accuracy Rate 91.834% 90.3614% 90.8969%

47

Chapter 9

Validation and Results

9.1 Introduction

To validate the performance of our proposed system 10-Fold cross validation is

implemented. Cross validation computes the accuracy of the implemented model by

dividing the dataset into training testing set. J48, K-Star and simple logistic

classification models are created from the training set and their accuracy is calculated

grounded on how well it classifies the testing set.

9.2 10-Fold Cross Validation

Three classifiers J48, KStar, Simple Logistic are trained and tested with 10 fold cross

validation i.e., the created dataset is divided arbitrarily into 10 subsets, where 1

subset is used for testing and 9 for training. For every combination the process is

repeated 10 times. This procedure aids in assessing the strength of a given approach

to detect malwares that exploits heap based overflow vulnerability without any

previous information.

For evaluation of the propose system the following quantities are considered:

 True Positives (TP): Number of malwares that exploit heap based overflow

vulnerability are classified as malicious executable

 False Positives (FP): Number of benign programs classified as malicious

malware that exploit heap based overflow vulnerability

Classification Algorithm J48 K-Star Simple Logistic

Accuracy Rate 91.834% 90.3614% 90.8969%

True Positives (TP) 0.918 0.904 0.909

False Positives (FP) 0.163 0.171 0.262
Table 3: Accuracy Rate of Classifiers

48

Implementation of 10-Fold Cross Validation technique has significantly increase the

accuracy rate of the system. The comparison of the modeled data is given below

Classification Algorithm J48 K-Star Simple Logistic

Accuracy Rate (10-Fold

Cross Validation)

91.834% 90.3614% 90.8969%

Accuracy Rate

(Percentage Split)

88.5827% 89.7638% 88.189%

Table 4: Comparison of Accuracy rate before and after Data Modeling

9.3 Conclusion

By the implementation of proposed system a comprehensive detection technique is

presented for classification of malwares that exploits heap based overflow

vulnerability.

The logic from the implemented algorithm could be used to upsurge awareness of

APT strategies, and advance the complete security of the organizations. Details of

our work is concluded in this chapter and future work is discussed in detail in next

chapter.

49

Chapter 10

Future Work

10.1 Introduction

Polymorphic variants and generation of new malware families are forcing the Anti-

Malware industry to create automatic tools to classify the malwares ability to exploit

vulnerabilities and their corresponding class. In our proposed research work we have

presented a behavioral detection technique for the malwares exploiting heap

overflow vulnerability. In this chapter, our research work is concluded.

10.2 Future Work

The proposed methodology can be used by security analysts to protect systems from

memory manipulation errors. It can be used for the behavioral analysis of malwares

to detect APT treats. This approach can be used to detect Memory Leaks, Stack

Overflow, and Integer Overflow. This approach can be combined with Address

Space Layout Randomization (ASLR) technology to efficiently detect and prevent

heap based overflow malwares.

10.3 Conclusion

Our work presents a malware detection system using combination of data mining and

reverse engineering techniques. The proposed system is based on mining features of

the binary files for detecting malwares that can exploit heap based overflow

vulnerability. We developed a Feature parser to parse features from malware files

and store them in to a dataset. A labeled dataset is created representing the class of

malwares and their ability to exploit heap based overflow vulnerability. The created

feature set is used to train three classifiers J48, K-Star and Simple logistic for the

detection of heap based overflow. The proposed methodology is easy to implement

50

in operations of cyber security to comprehend the behavior of malwares targeting

their organizations.

51

References

[1] Anitta Patience Namanya et al. “Detection of Malicious Portable Executables

Using Evidence Combinational Theory with Fuzzy Hashing.” In Proc. Future

Internet of Things and Cloud (FiCloud), 2016 IEEE 4th International

Conference on, 2016

[2] Maryam Mouzarani et al. “Smart fuzzing method for detecting stack-based

buffer overflow in binary codes”. IET Software, vol. 10, pp. 96-107, 2016

[3] Maryam Mouzarani et al. “A Smart Fuzzing Method for Detecting Heap-Based

Buffer Overflow in Executable Codes.” In Proc. Dependable Computing

(PRDC), 2015 IEEE 21st Pacific Rim International Symposium on, 2015

[4] V.K.Gudipati et al. “Detection of Trojan Horses by the analysis of system

behavior and data packets.” In Proc. Systems, Applications and Technology

Conference (LISAT), 2015 IEEE Long Island, 2015

[5] G.G.Sundarkumar et al. “Malware detection via API calls, topic models and

machine learning.” In Proc. Automation Science and Engineering (CASE), 2015

IEEE International Conference on, 2015

[6] Muhammad N. Sakib et al. “Automated Collection and Analysis of Malware

Disseminated via Online Advertising.” In Proc. Trustcom/BigDataSE/ISPA,

2015 IEEE, 2015

[7] Zhenyi Liao et al. “A stack-based lightweight approach to detect kernel-level

rookits.” In Proc. Progress in Informatics and Computing (PIC), 2015 IEEE

International Conference on, 2015

[8] Zane Markel and Michael Bilzor. “Building a machine learning classifier for

malware detection.” In Proc. Anti-malware Testing Research (WATeR), 2014

Second Workshop on, 2014

[9] Nir Nissim et al. “ALPD: Active Learning Framework for Enhancing the

Detection of Malicious PDF Files.” In Proc. Intelligence and Security

Informatics Conference (JISIC), 2014 IEEE Joint, 2014

52

[10] Sandeep Kumar et al. “Malicious data classification using structural information

and behavioral specifications in executables.” In Proc. Engineering and

Computational Sciences (RAECS), 2014 Recent Advances in, 2014

[11] S.K. Pandey et al. “Performance of malware detection tools: A comparison.” In

Proc. Advanced Communication Control and Computing Technologies

(ICACCCT), 2014 International Conference on, 2014

[12] Mikhail Zolotukhin et al. “Detection of zero-day malware based on the analysis

of opcode sequences.” In Proc. Consumer Communications and Networking

Conference (CCNC), 2014 IEEE 11th, 2014

[13] U. Baldangombo, "A static malware detection system using data mining

methods," (IJAIA), Vol. 4, No. , July 2013

[14] Szekeres, L., Payer, M., Wei, T., et al.: ‘Sok: Eternal war in memory’. Proc.

2013 IEEE Symp. on Security and Privacy (SP), 2013, pp. 48–62

53

