
Self-Healing Intrusion Detection in Networks Using

Blockchain

By

Ahmed Salman

A thesis submitted to the Department of Information Security, Military College of Signals,

National University of Sciences and Technology, Rawalpindi in partial fulfillment of the

requirements for the degree of MS in Information Security

Oct 2018

CERTIFICATE

This is to certify that Ahmed Salman, Student of MSIS-15 Course Reg. No: 00000201399 has completed

his MS Thesis title “Self Healing Intrusion Detection In Networks Using Blockchain” under my

supervision. I have reviewed his final thesis copy and am satisfied with his work.

Thesis Supervisor

(Brig. Imran Rashid, PhD)

Dated: ____________

i

ABSTRACT

Host based Intrusion Detection Systems rely on a database to indentify threats to the computer

system. The intrusion detection process in a protected system depends entirely on the integrity

of this database and is therefore a preferred target of attackers. Existing techniques to secure

this database either lack flexibility or the desired level of protection. Hence, there is a need to

explore new techniques to protect the database in a better way. In this research thesis, we have

explored the blockchain technology to secure the IDS database by storing the system checksum

on blockchain immutable ledger. Secure updates for operating system are also proposed to be

tackled through the blockchain distributed consensus. Since blockchain is a very new

technology, therefore this research is a first attempt to secure IDS database integrity in a

distributed manner.

The research work explores various IDS types and techniques along with existing blockchain

projects related to scalability, storage and malware detection. In our proposed IDS design, we

identified some integrity related threats and expect that the proposed system will be secure

against such attacks through use of blockchain technology.

ii

ACKNOWLEDGMENTS

I would like to extend sincere gratitude to my supervisor, Brig Imran Rasheed PhD, whose

insight on technical matters and research approaches made this work achievable. His gracious

supervision and professional opinion have been very useful through all stages of research work.

I also feel indebted to Maj Muhammad Faisal Amjad (retd) PhD, for extensive deliberations

and important suggestions which contributed to a great extent in improving my work. This

thesis also benefited greatly from the valuable suggestions made by Asst Prof Mian Waseem

Iqbal and Major Asad Khan Sadozai. I take this opportunity to thank them.

Special thanks are due to my family, for their continuous support and understanding, for putting

up with unusual study hours and their patience. This thesis has been written during my stay at

the Military College of Signals for the Masters Degree, which defines a wonderful phase of my

life. Here I got the opportunity to improve my knowledge and understanding of information

systems and security. I would also like to express thanks to my institute for providing excellent

working conditions and study environment.

Lastly, all praise to Almighty Allah to give me the strength and knowledge to embark on this

research work. I am ever indebted to Allah for his countless blessings upon me.

iii

TABLE OF CONTENTS

ABSTRACT .. i

ACKNOWLEDGMENTS .. ii

TABLE OF CONTENTS .. iii

LIST OF FIGURES .. v

LIST OF TABLES .. vi

1. INTRODUCTION

1.1 Introduction .. 1

1.2 Motivation .. 1

1.3 Problem Statement ... 2

1.4 Research Objectives ... 2

1.5 Contributions .. 2

1.6 Research Methodology ... 3

1.7 Thesis Outline .. 3

2. INTRUSION DETECTION

2.1 Introduction .. 4

2.2 Reasons to use IDS ... 4

2.3 Types of IDS .. 4

2.4 IDS Strengths and Weaknesses .. 13

2.5 Additional Literature on HIDS ... 13

3. FILE INTEGRITY CHECKING IDS

3.1 Introduction .. 17

3.2 Types of File Integrity IDS .. 19

3.3 Attacks against File Integrity HIDS ... 20

3.4 Database Protection .. 21

3.5 Using Blockchain for DB protection .. 22

iv

4. BLOCKCHAIN INTRODUCTION AND LITERATURE REVIEW

4.1 Introduction .. 24

4.2 Blockchain Technology .. 26

4.3 Components of Blockchain .. 27

4.4 Classification of Blockchain .. 29

4.5 Blockchain Challenges ... 31

4.6 Research Landscape ... 33

4.7 Blockchain study for DB protection ... 37

5. PROPOSED IDS DESIGN

5.1 Introduction .. 39

5.2 Background and related work .. 41

5.3 System Design .. 42

5.4 Blockchain integration with IDS system .. 50

5.5 Selection of files for protection .. 52

5.6 IDS Algorithms .. 54

5.7 Challenges .. 59

6. FUTURE WORK AND CONCLUSION

6.1 Future Work ... 61

6.1 Conclusion .. 61

REFERENCES ... 62

v

LIST OF FIGURES

FIGURE# ... CAPTION………………………….......……PAGE

 2.1 DEPLOYMENT OF IDS IN A NETWORK .. 5

 3.1 SELECTION METHOD FOR BLOCKCHAIN ... 22

 4.1 STEP BY STEP BLOCKCHAIN PROCESSING .. 27

 4.2 NEW BLOCK FORMATION IN BLOCKCHAIN .. 27

 5.1 TYPICAL INTEGRITY CHECKING IDS ... 41

 5.2 PROPOSED DESIGN LAYERS .. 44

 5.3 CHECKING USER ROLES ... 48

 5.4 COLLABORATIVE MALWARE DETECTION .. 49

 5.5 SYSTEM STARTUP ALGORITHM ... 55

 5.6 READ FILE ALGORITHM ... 56

 5.7 WRITE FILE ALGORITHM ... 57

 5.8 BLOCKCHAIN QUERY ALGORITHM... 58

 5.9 BLOCKCHAIN DETECTION ALGORITHM .. 59

vi

LIST OF TABLES

TABLE#...CAPTION………………………….......……PAGE

3.1 COMPARISON OF BLOCKCHAIN AND DB .. 23

5.1 DATABASES AND SCHEMA ... 45

5.2 COMPARISON OF BITCOIN AND ETHEREUM 51

 1

Chapter 1

INTRODUCTION

1.1 Introduction

 With the exponential increase in use of computer systems in all fields of technology,

the number of attacks has also increased. In recent years, cyber security products and services

have seen increasing use in all business and processes to secure against such threats. With

every passing day the threats are evolving and gaining new forms. This necessitates that the

security apparatus is also upgraded according to new threat patterns and techniques. Intrusion

detection systems at both Network and Hosts level form an essential part of a network's

security posture.

Intrusion detection systems come in many shapes and forms, each using different

techniques and analysis mechanisms. Systems at network and host level have their own

significance. In any network, intrusion detection should be implemented at both levels for

wholesome security. Intrusion detection systems at host level are commonly known as host-

based intrusion detection systems or HIDS. These systems generally have a database of

signatures or a profile to carry out the detection analysis. In all host-based systems, the

detection is completely dependent upon the integrity of the database. An attacker can easily

defeat the IDS if he is able to modify the database as per his own designs.

Different techniques are used to secure the databases in hosts based IDSs. Some

experts suggest storing the signature DB remotely, some keep it in write protected media etc.

However, each solution has its advantages and weaknesses. In this work, we will focus on

achieving database integrity through use of blockchain distributed ledger. Blockchain is a

new technology to store value or information in an immutable form. In its existing form,

blockchain is still facing some limitations with regards to storage and scalability. We will

endeavor to arrive at a solution where balance between blockchain efficiency and IDS

integrity is achieved. Furthermore, secure updates in systems with installed IDS are also a

cause of concern due to malware injected updates. We will also try to develop a framework to

use blockchain to analyze updates for presence of malwares traces in a collaborative manner.

We will focus on file integrity checking HIDS for our framework due to their simpler design

and requirements.

1.2 Motivation

The motivation behind this work has two distinct facets. First is that intrusion

detection is a very important field in this digital age. Every legacy system is converting into a

 2

digital platform with multiple sensors e.g. it is expected that by year 2020, around 30 billion

IoT devices will be integrated in digital systems. Many critical systems will depend on the

correct value inputs from such devices, therefore it is imperative to keep the inputs safe from

compromise. In such a scenario, intrusion detection systems gain even more importance.

Therefore, a study on IDS can provide new avenues to secure existing and new networks.

Secondly, blockchain is an emerging technology and being hailed as the next internet

revolution. There has been a quantum increase in blockchain research the world over in last

few years. However, blockchain research landscape in Pakistan is not very active and

requires a lot of attention to remain in step with the world. Blockchain is deemed to provide

solutions to all threats related to centralization in digital world. This warrants that blockchain

research initiatives must be generated and encouraged. In this work, it will be endeavored to

undertake detailed study of blockchain research landscape and reach upon a possible solution

to IDS integrity as stated earlier.

1.3 Problem Statement

The problem statement for our research thesis is as follows: -

A HIDS which uses files integrity checksums to detect intruder activity, can be

evaded by tempering the checksum DB [1], [2] and updates in such hosts are difficult due

to increase in false positive rate.

1.4 Research Objectives

The purpose of this research work is to recommend a framework for an Intrusion

Detection System based on Blockchain with following objectives: -

a. Anomaly based intrusion detection by comparing system states on Blockchain

distributed ledger.

b. Self-healing in hosts if anomaly is found.

c. Malware detection in updates using a suitable Blockchain consensus model.

1.5 Contributions

With the stated motivation and research objectives above, we aim to contribute

following to the research landscape in Pakistan: -

a. Detailed study of Blockchain research and applications.

b. Study of blockchain usability to secure intrusion detection systems in

computer systems.

c. Study of blockchain based malware detection mechanisms.

d. Study of intrusion detection design with system recovery capability.

 3

1.6 Research Methodology

The research has been carried out in following phases: -

a. Phase 1 - Study of publications and surveys on HIDS and its Database

protection mechanisms.

b. Phase 2 - Study of publications on Blockchain technology and applications.

c. Phase 3 - Study of blockchain projects related to intrusion detection, malware

detection, data storage and blockchain scalability.

d. Phase 4 - Designing a novel IDS architecture levering blockchain technology

for DB security.

1.7 Thesis Outline

The thesis is organized in five chapters, brief description of next chapters is as

follows: -

a. Chapter 2 - Presents introduction to Intrusion Detection System and its types.

Advantages and Disadvantages of each type are also given. Lastly, some

research considerations for Host based intrusion detection systems are also

given.

b. Chapter 3 - It focuses on File integrity checking HIDS and its types. Basic

introduction to attacks on such HIDs and existing protection mechanisms for

its databases are also discussed.

c. Chapter 4 - Basic introduction to Blockchain technology is given along with

various application scenarios. The chapter ends with a brief study of existing

work related to our thesis objectives.

d. Chapter 5 - This chapter presents our IDS framework based on blockchain

technology to achieve the stated objectives.

 4

Chapter 2

INTRUSION DETECTION

2.1 Introduction

Intrusion detection systems (IDS) are a significant part of security in a computer

network or a standalone system. These systems analyze events in a network or a computer

system for indicators of security breaches. Due to recent explosion of cyber attacks on

computer systems and networks, IDSs have become an integral part of computer security

paraphernalia. Hackers or attackers attempt intrusions to compromise confidentiality,

integrity and availability of systems. Attackers may attempt an attack from outside the

network or they may be insiders trying to gain additional privileges or misuse their privileges.

IDS are the software or hardware products used to detect or prevent such attacks from

succeeding using various techniques.

2.2 Reasons to use Intrusion detection systems

One can find numerous compelling reasons to use IDS in their systems to ensure

security, some are listed below: -

a. To deter potential intruders by enhancing risk of detection and subsequent

punishment.

b. To detect new security attacks and threats.

c. Detect pre-attack scanning activities like probes.

d. Log encountered attacks.

e. Compliance with standard security design especially in large enterprises.

f. Provide useful data for analysis and improve security architecture for future

attacks.

2.3 Types of Intrusion Detection Systems

Present day IDSs come in different forms and types. These systems are based on

various techniques dependent upon their use. Before going into types of IDSs, we will briefly

describe the basic IDS model: -

2.3.1 Basic IDS Model

Most IDS systems can be conveniently described in following three modules: -

a. Source of Information - All intrusions lead to generation of events in network

and hosts. These events are used by IDSs to detect intrusion attempts. These

events are compiled from different levels of system i.e. network, host or

application etc.

 5

b. Analysis engine - This part of the intrusion detection system performs the

important task of performing analysis on events information and detecting

signs of intrusion attempts. Analysis engines use various techniques i.e.

signature and anomaly detection.

c. Response to intrusion attempts - These form the actions unleashed on

detecting an intrusion. Two types are actions are taken on signs of intrusion

i.e. active and passive response. Active response involves automated system

on part of detection system to stop the intrusion. Active response systems are

generally known as intrusion prevention systems (IPS). Passive response

systems generate alerts or reports and involve human intervention to further

stop the detection or removing threat.

 Figure 1.1 Deployments of Intrusion Detection Systems in a Network

2.3.2 Types based on information source

This is the most common method to classify IDSs. Some detection systems use

packets captured from network segments to analyze and detect signs of intrusion while others

use operating system events inside a host or at application to detect threats. Detail is as under:

-

 6

2.3.2.1 Network Intrusion Detection Systems

Most detection systems used in commercial entities are network intrusion detection

systems. These systems capture data packets from various locations in a network and analyze

them for threats. A network intrusion detection system monitoring a network segment will

protect all host systems connected on that network segment from malicious data traffic.

Network detection systems may consist of sensors performing a single task or multiple hosts

at various points of network to monitor traffic. Such hosts capture traffic and perform

analysis locally. Threats detected are then reported to a central management system for

further action. Events or traffic sensors are generally initiated in stealth mode and remain

hidden from attackers. As these sensors are only communicating with the IDS, so securing

these is easier than other network elements.

2.3.2.1.1 Advantages

a. A large network can be monitored for threats by using some well-located

sensors.

b. The deployment such IDSs carry no impact on normal working of the

network. The network IDSs are passive devices which only sniff data traffic

without effecting the network communications. Thus, such systems can be

incorporated in a network with minimal modifications to network design.

c. These systems can be secured against attacks by hiding from attacker’s

view.

2.3.2.1.2 Disadvantages

a. Network IDS may fail to detect an attack in high traffic networks or in

periods of high traffic. These systems may face failure when faced with

processing high volume of traffic owing to limited processing resources. A

possible solution to this problem is by implementing the system in

hardware completely to provide more processing power and memory

resources. This is relatively much faster but expensive solution.

Researchers are endeavoring to achieve high detection rates with minimal

resources by using various detection techniques.

b. Network IDSs do not provide information if an attack detected was a

success or not. Merely attack detection information is provided by the

system and then an administrator must manually see the effects of attack or

extent of penetration on the victim host.

 7

c. Some systems face difficulty in detecting more advanced attacks involving

fragmented data packets. Generally, these packets interact with IDS in a

hostile way and cause these systems to crash or become unstable.

d. Modern switched data networks sometimes do not allow network IDS to

function at maximum potential. These switches divide network in small

local networks and reduce the range of network IDSs. Some switches also

do not provide a universal monitoring port and limit the traffic monitoring

to single host segment. The encrypted communication between network

elements also cannot be analyzed by IDS, even with a universal port. With

exponential increase in use of VPNs, this problem is becoming more

pronounced and increases the chances of intrusion manifolds.

2.3.2.2 Hosts Intrusion Detection Systems

Host based intrusion detection systems make use of internal system events and

information to detect attacks. Being closest to an OS, these systems are best placed to

determine the exact processes and profiles involved in an intrusion. Also, these systems can

also monitor the effects of an intruder attack being closely located. This ability is not

available to network IDSs.

Generally, these systems use two types of information from within a host to perform

intrusion analysis i.e. system logs and audit trails. Audit trails generated in kernel of a

system, provide best details of an intrusion as this is the inner most level of an OS. These are

also better protected than logs files. On the contrary logs are less complex and smaller and

are very easy to analyze. Some Host IDSs are connected to a single management console to

control these many hosts, while some are designed to output reports compatible with a

Network based management system.

2.3.2.2.1 Advantages

a. These have better visibility on attacks on a host than network IDSs.

b. Host IDSs are also in a better position to analyze encrypted traffic than

network IDSs. Such systems can analyze the suspicious traffic before it is

encrypted in a host and on decryption on the receiver host.

c. Host IDSs are not limited by network switches due to their independence from

such network elements.

d. Host IDSs can even detect Trojan horse attacks within a system by analyzing

the OS audit trails and checking files for integrity. The discrepancies found in

the process execution can alert a host-based IDS.

2.3.2.2.2 Disadvantages

 8

a. These systems are a little complex to manage as configuration must be done

in every host.

b. Host based IDSs are more prone to attacks as these depend on information

from within a system and sometimes even the analysis engine is in the same

host. A targeted attack may be able to block or modify the information

sources or even shut down the analysis engine.

c. Host IDS cannot be used for network level detection scans as these systems

can only detect traffic coming into their respective systems.

d. A denial of service attack can effectively shut down the Host based intrusion

protection.

e. Audit trails are massive and require additional storage within the protected

system.

f. The protected system's resources are used by the host IDS to perform

analysis on the audit trails and logs thus taking an undesirable toll on system

performance.

2.3.2.3 Application level IDS

Such systems may be considered a type of Host intrusion detection systems. These are

meant to analyze events happening within applications i.e. application transactions logs. The

database of such system is populated with application and domain specific data and

effectively detects suspicious application's behavior due to users misusing their authorization.

2.3.2.3.1 Advantages

a. Application based IDSs analyze user - application interaction and can detect

any malicious activity with user identity.

b. As with most Host IDSs, application IDSs can also operate in encrypted

system environment as these interact with application and analyze information

presented to the user in unencrypted form by the respective application.

2.3.2.3.2 Disadvantages

a. Application based IDS are more prone to attacks than host based IDSs as these

depend on application transaction logs which are less protected than system

audit trails. An intruder might find a way to feed fake transaction logs to the

IDS and bypass such systems.

b. Such systems operate at the highest level in an OS and thus cannot find any

threats based on Trojan horses or malwares based at lower levels i.e. kernel.

Therefore, these systems must be used in conjunction with Host and Network

level IDSs.

 9

2.3.3 Types based on analysis engine

Events in a host or network are analyzed by using two types of analysis approaches

i.e. misuse and anomaly detection. Most enterprise systems use misuse detection approach

and analyze any event perceived to be malicious. Such event will be in signature database of

the detection engine and provide detection capability. On the contrary, anomaly detection

approach tries to find traces of abnormal behavior by a process etc. The anomaly DB consists

of event profile known to be good. Any deviation is considered to be bad. Anomaly detection

approach relatively less used than misuse detection. Each type has advantages and

weaknesses, but it appears that mostly misuse approach is used in systems and networks with

some elements using anomaly approach.

2.3.3.1 Misuse detection

These systems look for system activity against known patterns of malicious behavior.

These patterns are known as signature and as stated earlier, these systems are also known as

signature detection systems. Common misuse detection systems used in enterprises look for

separate signatures in single pattern of events in an attack but there are also advanced systems

which can detect groups of attacks by analyzing a single signature (state-based detectors).

2.3.3.1.1 Advantages

a. Rate of false detections in a misuse detection system is very low. These are

very fast and diagnose an attack if a known pattern is found. This can

provide a lot of breathing space to administrators to stop an ongoing attack.

b. These systems allow users to quickly identify security issues due to exact

matching of mal activity pattern. The user can initiate the counter measure

more efficiently at any level.

2.3.3.1.2 Disadvantages

a. Misuse detectors cannot detect new attacks or attacks for which these do

not have any known pattern. Therefore, the DB must be updated quickly.

b. These systems might not be able to detect variants of known patterns of mal

activity as these are mostly trained to find exact matches of signatures.

However, state-based detectors might be able to overcome such threats but

not commonly used.

2.3.3.2 Anomaly Detection

As against misuse detection engines, these systems detect anomalous or unusual

behavior in a system or network. These make use of the fact that attacks generate different

 10

activities and event than a normal system or network and can be easily and distinctly detected

by anomaly systems. These systems use historical data from a system or network to build

profiles for normal users and network. Then the current events and activities are collected and

analyzed for anomalous behavior against these constructed profiles. Various techniques are

used in anomaly detection approach, some are listed as under: -

a. Statistical measures - It uses parametric data and non-parametric data.

Parametric data is where distribution of the documented attributes of an entity

is taken to match a single pattern. Non-parametric data is where the said

distribution is learned from historic data collected over time.

b. Threshold detections - It segregates selected user behavioral attributes into

permissible and non-permissible levels. The attributes are expressed in terms

of repetitions or counts i.e. file access frequency, failed login attempts, CPU

usage by a process etc. The threshold may remain static or be heuristic, which

change over time with change in observed patterns.

c. Rule based detection - It is quite similar to non-parametric detection, however

it differs in the way the values are analyzed. In non-parametric detection,

values are in expressed in numeric quantities but these systems, value

observed are expressed in terms of rules.

d. Misc - Certain other detection models include genetic algorithm, neural

networks and immune systems.

Only the first two models are commonly used in enterprise or commercial

solutions. Anomaly detection systems can detect new forms or zero-day

attacks due to perceived deviation from known attack patterns, but these also

produce a lot of false positives due to natural usage patterns of users. At the

same time, opposite is true for signature or misuse detection systems.

Sometime both types of systems can be used in combination. An anomaly

system based on threshold detection can produce a user profile giving access

frequency of a user. The same data can then be used by a misuse detection

engine to generate an alarm if the frequency exceeds from this built profile.

Generally, we do not find systems using anomaly detection other than a few.

Whenever used, it is generally utilized for port scanning or analyzing network

based anomalous behavior.

2.3.3.2.1 Advantages

a. These can detect unusual behavior and thus can detect new forms of attacks

without specific knowledge about such attacks.

 11

b. The produced information about newly detected attacks can then be used by

misuse detectors for fast detection.

2.3.3.2.2 Disadvantages

a. These systems have a great false positive rate due to deviations in natural user

patterns and network traffic.

b. A lot of training is required to make profiles in these systems from historical

data and a lot of data is required to build these profiles.

2.3.4 Types based on Response options

After an intrusion is detected using different detection methods, IDSs generate

responses in systems and networks to stop or eliminate these attacks. Some generate alerts

and update logs for the intrusion records, while some might have more active responses to

deal with the threat. Response of IDS has great bearing on the normal working of an attacked

system. Enterprise level systems might have passive response or active response. Some might

even have a combination of the two. Details are as under: -

2.3.4.1 Active response systems

These systems have automated responses, which are taken when some intrusion is

detected. Following three types of active responses exist: -

a. Collecting more information - Harmless but sometimes most effective

response is to collect additional information on a suspected attack. It is always

better to look more deeply into the suspected attack to confirm if an actual

attack is taking place. This can include enhancing the sensing level to get more

data i.e. capturing more data packets through a network monitor, increasing

quantum of events recorded for the audit trail etc. Extra information gathered

like this can also assist the user to investigate and finally apprehend the

attacker and support legal and criminal proceedings.

b. Environment Change - In this type of response, an attack is halted and ability

to intrude again is blocked by changing the environment. Normally, the access

is not blocked instead the IP address launching the attack packets is detected

and blocked. An expert attacker can be very difficult to block, however some

actions can effectively hamper the attacker's movement i.e. Terminate

connection by injecting TCP reset packets, Block attacker's IP address, opened

network ports, protocols and services by reconfiguring firewalls and routers.

In extreme conditions, all network connections can be terminated temporarily.

c. Acting against the intruder

 12

This includes launching against the attacker after gaining information about its

location and where about. However, this is not advisable by moist experts due

to legal considerations. Many users use fake spoofed IP addresses, therefore

probability to identify the true attacker is very low. It might happen that a

counter attacker is launched on a wrong user and sites. Also, an attacker can

be provoked to intensify its attack following this option. Only if a confirmed

location and identity is found, this option can be exercised with an expert

supervision only.

2.3.4.2 Passive response systems

These systems only provide attack information to alert users and expect users to act

against the attack. Most enterprise systems use this response only. Details are as follows: -

a. Alerts and notifications - These are generated to inform the user about a

detected attack. Most typical is a pop up or an alarm on a system screen. A

user can configure the IDS for alerts to a great deal. The information in an

alert can also vary to a great deal depending upon the configuration settings by

the user. Some IDSs can also send remote alerts through SMS or emails to

incident response team members. This feature is extremely useful in large

enterprises and commercial establishments. Email alert is not advisable as the

only alert method as an attacker might block the administrator emails.

b. Plug-in and SNMP traps - Some advanced IDS are configured to generate

alerts for a network NMS. SNMP traps are used to launch these alerts in NMS,

where such alerts are handled by the security staff. The biggest advantage of

this kind of alert scheme is that the entire infrastructure can be configured to

respond to the attack. Other advantages are shifting the processing load from

the attacked system to a safe system and ability to use the existing

communications infrastructure for reporting using known protocols.

2.3.4.3 Archiving and Reporting capability

Almost all enterprise level IDS have capability to produce information and reports on

a routine basis. Some can provide report of events in a system or about intrusion detection

data over a certain reporting period. Some also produce logs or statistics in suitable forms for

inclusion in IDS DB for future detection reference.

2.3.4.4 Failsafe features in IDS response

Failsafe features are meant to protect the IDS process from being bypassed by an

attacker. Several types of functions require failsafe features. These include reliable and silent

monitoring to remain hidden from attacker by avoiding sending alerts and messages in plain

 13

text. Otherwise it can alert the attacker and IDS itself can be attacked. IDS communication

can be protected by using encrypted tunnels and cryptographic steps and enhances the system

reliability.

2.3.4.5 Misc detection tools

Some other tools are also regarded as intrusion detection system as these perform

similar work. These include Honey pots, vulnerability scanning systems, padded cells etc.

These systems can be used in addition to traditional IDS to enhance the security posture of an

enterprise.

2.4 IDS Strengths and Weaknesses

 While selecting IDS for security in an organization, it is vital to know about its

capability as it may not be able to perform all security functions. Selecting IDS for security

therefore, depends largely on company's needs and its capability. Detail is as under: -

2.4.1 Strengths of IDS

a. Keep track of security configurations and detect any changes.

b. Detecting patterns of known attacks.

c. Detecting different variants of known attacks.

d. Management of OS logs and audit data.

e. Provide default information on security policies.

f. Provide a convenient way to non-experts to monitor & protect the system.

g. Alerting security staff about a detected attack.

h. Monitoring and analyzing system events for information on attack patterns.

i. Tracking any changes to baseline security settings of a system.

2.4.2 Limitations of IDS

a. IDSs cannot perform functions of missing or weak necessary security

peripherals like firewalls, access management systems, Virus detection and

elimination and link encryption.

b. These systems cannot detect report and respond to an attack instantaneously

under periods of heavy processing and network loads.

c. Some systems cannot detect new attacks or previous attack variants.

d. May have limited response to expert hackers.

e. Automatic investigation of attacks without human intervention may not be

possible.

f. May fall victim to bypass or circumventing attacks.

2.5 Additional literature on Host intrusion detection system

 14

 As our thesis is primarily focused on host intrusion detection systems and their

security, therefore some additional discussion is necessary before proceeding further on

security issues.

2.5.1 Reasons for less research on Host intrusion detection system

Authors in [3] provide an in-depth analysis on why Network intrusion detection

systems are the focus in latest researches. Authors have enhanced the argument put forth by J.

Hu in [4] and have given following reasons for less study on Host intrusion detection

systems: -

a. Resource constraint and real time - The most desirable feature of an intrusion

detection system should be the real time detection capability. However, typical

HIDS techniques like periodic integrity checking and log analysis cause

undesirable delays in detection and slow down the system.

b. Ground truth factor - An attacker can easily feed wrong information to a user

level HIDS if he takes control of the underlying OS. An attacker who succeeds

to get the administrator access can easily configure any aspect of the system

including kernel and programmable hardware. Systems logs can also be

altered to hide attacker's activity.

c. Network factor - These days, most applications are hosted from a centralized

location to the entire network and hence become a desirable attack vector for

hosts. This in view, most efforts to protect hosts are made at network level by

securing these network-based applications.

d. Deployment factor - Finding a standard intrusion detection tool for an entire

network of heterogeneous hosts is very difficult. Therefore, it is thought to be

attackslogical to deploy a network level intrusion detection system.

e. Single system attack limitation - Detecting some attacks is only possible by

observing multiple hosts and collating the information for observing pattern of

attack i.e. horizontal port scans). As HIDS are deployed only on one system,

therefore detecting this kind of attack is not possible. Network IDS are better

suited for this purpose but HIDS deployed in collaborative form can

sometimes also detect this attack.

2.5.2 Arguments to support development of Host IDS

Authors in [3] also provide arguments to support development and research in area of

host intrusion detection systems, which are as follows: -

a. Network traffic analysis and interpretation - if the ground truth issue can be

solved than the network information generated at host level is more integral

 15

and authentic than network level data and traffic. This more authentic

information can lead to an accurate analysis of any malicious activity

happening within or originating from the target system. HIDS interpret data

packets in same way as system applications. Techniques like data obfuscation,

encryption is not possible against a host IDS.

b. Semantic data - Alerts in HIDS can be very precise as the detection engine is

located very close to the source of malicious activity by the operating system

or application. It can precisely generate the exact name of malicious process or

user.

c. Best effort factor - In some cases, a detected attack may not be published by

network security administrator to protect against and in such a case, HIDS can

provide minimal level of system protection.

2.5.3 Data sources used in HIDS

Authors in [5] have produced a valuable survey on classification of HIDS as per data

sources. Various kinds of data sources, which can be used by HIDS for detection may include

following: -

a. System audit information and logs - Audit data consists of files which are

produced because of activity by a user or an application i.e. successful or

failed authentication logs, system calls and user command logs. Similarly, log

files produced because of system operation are known as system logs. These

records save detailed sequence of events in an OS. The data is then analyzed

for traces of intrusion. A log file produced by OS usually contains events

happening at system level i.e. warnings, errors and system failures. Data at

both system and application level records sequence of events of systems and

applications and provide valuable information about a possible intrusion.

b. System Calls - This is the primary source of information on any activity within

the kernel. System calls invoked by a process can give valuable information

about the authenticity of the process. The system call artifact is a produced at

OS level and hence very close to the source. Popular system calls include

open, close, write, read, wait exit etc. However, analyzing system calls for

detection have performance overhead.

c. Windows Registry - For windows systems, a registry holds data on

configuration settings on both software and hardware components in form of

key value pair. All processes in a windows system use registry. Therefore, it is

also prime target for malwares to hide their tracks.

 16

d. File System - File system in a computer has access to executable files, file

Meta data and stored data which is used to support file system operations and

requests. Often, malware seeks to add malicious files or modify old files or

file's metadata to achieve their intents. File system is an effective way to

monitor files and their integrity. File integrity IDS are separated from OS and

thus harder to turn off. Their drawback is limited visibility of the file system.

 17

Chapter 3

FILE INTEGRITY CHECKING IDS

3.1 Introduction

This chapter will focus around the study of File integrity checking IDSs. As stated in

section 2.5.3, file system is a useful type of Host intrusion systems. However, it may not be

an area of active research. The reasons for less research and arguments to perform greater

research on Host intrusion detection systems are already given at section 2.5.1 and 2.5.2

respectively. As our research deals with security of HIDS Databases, we have selected file

integrity HIDS for our research. The reasons to select file integrity HIDS against other types

include: -

a. Simpler design requirements which can aid in focused research on integrity

protection aspect.

b. Requires no training dataset or period as the DB must be populated from the

file system.

c. No external data is required to update the DB i.e. malware signatures.

File integrity checking may not be a glamorous research area but nevertheless

important. We will discuss some additional literature on importance of file

integrity IDS before going into more detail about DB protection etc.

3.1.1 Importance of File integrity IDS

File integrity IDS have been considered as an essential part of information security

best practices. Almost all security standards promote use of integrity checkers, but PCI DSS

is the most popular of them all. PCI DSS recommends using file integrity monitoring in its

clause no 11.5 to protect against unauthorized modifications of critical files. There is a

constant debate that an anti-virus can perform the same functions of file integrity checker

however, the argument is not that simple. Although an anti-virus is quite effective in

removing a malware on introduction to a system but only when a valid signature or a profile

is available. In contrast, a file integrity checker doesn't need a profile or signature DB.

Instead, it can call upon its indigenous integrity DB to detect any change to file system.

Hence file integrity IDS is better to detect zero-day malwares.

Using a file integrity checker also implements the concept of defense in depth. The

authors point out that if a machine without an integrity checker is compromised, then a

careful intruder may never be detected due to latest hiding techniques. However, some files

will be changed in such a case and can easily be detected by a file integrity IDS.

 18

3.1.2 HIDS Functionality and issues

Authors in [6], List down HIDS functionality into three broad categories. These

include perimeter control, host access control and Change control mechanism. The authors

further note that all these functions can be easily be bypassed by intruders given certain

conditions. In solutions to these attacks, the authors recommend using file integrity IDS

ensure integrity of the attacked system. They also refer such systems as Change Auditing

Systems.

3.1.3 Fundamental Qualities of File Integrity IDS

Authors in [7] have carried out a very detailed survey on types of File integrity

monitors in the market. Before surveying the types, they also give a list of fundamental

qualities in a FIM inspired by work in [8], which are: -

a. Checks on Meta information - File integrity monitors must also check the

Meta data of a file in addition to file data as a trusted non-super user

executable may fall in the category of a non-trusted executable for the root or

super user.

b. Automated process - The system must not depend on user input to initiate

response action, or significant damage space is given to the malicious activity

to occur.

c. Self-Protected - If system files are being modified by an attacker then it means

that he has gained escalated privileges on the machine. In that case, modifying

the IDS DB is trivial task. Therefore, mechanisms to maintain the IDS DB

must be in place to ensure secure detection of malicious activity.

d. Relevance - With automation comes, great deal of output info. This info is

later used by users to analyze attacks and reach other important decisions. The

more the quantum of output, the more the chance of mistakes on part of

human user. Therefore, the output must only be relevant for the human user

and in a convenient form.

e. Repetitive Checking - Most File Integrity IDSs are periodic IDS, which leave

an opportunity gap for the attacker to modify files and take actions to hide

himself. Such systems are less effective than systems which are real time and

can handle access requests based on security policy.

f. Upgradeable Systems - A system is upgraded with new updates to secure

against new vulnerabilities. However, if the related File IDS is not upgraded as

well with new file integrity DB, even trusted executables will not be executed.

 19

Therefore, a file integrity checker must be upgradeable with little or no human

intervention.

Authors in [9] differentiate between 'weak' and 'strong' forms of intrusion.

When an intrusion can colonize a system, then a strong intrusion has taken

place and on the contrary, a weak intrusion is the one when the intruder is

unable to completely take over the system. A good file checker with above

qualities continuously reduces a strong intrusion to the level of weak intrusion.

3.2 Types of File Integrity IDS

While discussing various File integrity HIDS, we will use the language of Linux OS

to describe the functions and level of operations. Linux is open standard and be easily

modified, therefore a rewarding discussion can be generated to move towards a perfect file

integrity monitor.

Authors in [7] have carried out a good survey of File integrity HIDS types as stated earlier.

The Integrity HIDS have been segregated with respect to the location of File integrity checker

operation. Following types have been defined: -

3.2.1 User-space Checkers

 Such systems operating at user space are much more vulnerable the systems at kernel

space as these are more prone to modifications by malicious intruders. These rely heavy on

the safety mechanisms of the system they are protecting. Therefore, valid security issues exist

for such systems. Furthermore, these systems must carry out integrity check periodically as

these can't intercept calls at lower levels of OS. Also, this kind of periodic checking has a

performance toll on the system on every check. However, they are much easier to implement

due to libraries and resources available at this level and operate just like an application. Most

popular FIM at user level is Tripwire [10]. Other examples are YAFIC, AFICK, and AIDE

etc.

3.2.2 Nonresident Checkers

 Such systems are located at a separate system and check integrity of one or more

systems at other locations. These systems are secure in the sense that hosts have no method to

intrude into the server or remote IDS system. However, there are few problems associated

with it like actions to be done by the host if the contact between hosts and server is severed or

period between checks provide opportunity gaps to intruders and nevertheless securing the

client program from compromise. Popular nonresident checker is Osiris but other examples

are Radmind, Veracity and Samhain.

3.2.3 Kernel Space checkers

 20

 These systems are more complex and very difficult to develop. They also have

significant performance overhead if not properly designed. However, such systems are best

suited for integrity checking than any other type. Since the system is located at the lowest

level of OS, therefore it is not entirely dependent on system protections. It can provide real

time integrity monitoring as all file requests must process through the kernel. Furthermore, it

can allow or deny access to file depending upon the security policy. Examples are I3FS,

DigSig, WLF, SOFFIC umbrella etc.

3.2.4 Kernel and User space hybrid checkers

 Such systems check files in kernel space and user space as well. One example of such

a system is available as described in [11]. A hybrid checker can have advantages of both

types of file integrity checkers i.e. checking files in different executable formats like ELF etc.

However, it is difficult to maintain an updated DB to check all formats. Furthermore, security

of communications between kernel and user space can be compromised.

3.3 Attacks against File Integrity HIDS

Authors in [12] have given very precise challenges for File integrity checkers and

how to counter these. Detailed challenges to HIDS security have also been given but here we

will focus only on file integrity HIDS. The authors have segregated the file integrity HIDS in

three modes i.e. initialize mode, check mode and update mode. Attacks have been given

against each as follows: -

a. Attacks against Initialize mode - If a system is already compromised then in

initialize mode a compromised DB will be created and used in subsequent

phases of operation. The counter measure could be to run the HIDs right after

installing the OS and in offline mode to ensure absence of any compromised

system component.

b. Attacks against Update mode - In base level integrity checking programs, an

attacker can run the update mode on modified system or simply modify the

DB. But this can occur if DB is stored in the same system. The solution to this

problem may be to protect the update mode with a password, encrypt DB or

ideally the DB can be stored at a remote location. This can protect against

insider and physical attack.

c. Attack against Check mode - Attacks in this mode are found in many forms.

Some are listed here: -

i. Trojan Binary - An intruder can replace the existing standard system

binary to check integrity with a malicious one to report correct results

of certain files. Counter measure is using own hash checking binary.

 21

ii. Loadable Kernel module - An intruder can load his own LKM to hijack

system calls and direct them to open a malicious program stored

elsewhere. It can be countered by implementing more checks, which

can cause to attacker to remap greater number of system calls which is

not trivial.

iii. Faked report - Attacker can hijack the reporting channel between the

checking module and the reporting module and feed a fake report.

Furthermore, he can also replace the system binary with an ok report

generator. This can be stopped by using secure channel between

modules or checking the system binary for integrity as well.

iv. Checking gap attack - An astute attacker can quickly do his work

periodic checking IDS and replace the malicious file with the original

after completion of work. It is not logical to perform periodic checks in

short intervals therefore, this is likely avenue of attack. Counter this

attack by using kernel level checkers to intercept the file access request

and check integrity on call. Also, daemon checker like samhain also

exist, which keep on running in back ground.

3.4 Database protection

As we have seen so far that location of HIDS itself, HIDS DB and DB integrity are of

great importance for the wellbeing and correct operation of the system. Author in [7] propose

to place the integrity checker at kernel level and check selective files for efficiency. For DB

security, it gives few options like storing the DB offline on external write only media or on

the hard disk. External media is safer but complex in terms of updates whereas later is vice

versa. Authors in [13] deal with this subject of DB protection more elaborately. They define

three techniques to protect the DB integrity, which are as follows: -

a. Read only Media - Storing the DB on a write protected CD or floppy can force

the user to have physical possession of the DB media for operation. It is useful

in computers with very less changes in files DB, however this technique is

very tedious when updating in highly frequent changing environment.

b. Use of Signature - The file information DB can be protected by using hash

function or a digital signature to ensure integrity of the DB. This is more

efficient with respect to file updates, but it increases system complexity due to

encryption overhead.

c. Remote DB Storage - The DB can be stored on a remote server and accessed

via a secure channel. This also provides operational advantages since all hosts

 22

can be updated for policy from a single server and protected. However, it still

provides a single point of failure if the server is compromised itself.

3.5 Using Blockchain for DB protection

After going through the above discussion, it is quite clear that none of the solution to

protect DB is flawless and has some compromises. In this research we recommend the novel

approach of using Blockchain for ensuring DB integrity in File integrity checking HIDS. We

will discuss DB security in File integrity checking HIDS as a test case, however we think that

this technology can be implemented for all HIDS or NIDS which maintain some sort of DB

for detection. To confirm our approach, we will use the method given by [14], to know the

exact type of blockchain solution suitable for our Host based integrity checkers.

Detailed discussion on Blockchain will follow in the next chapter. However, we will

use this space to find out the suitable type of blockchain for our research. Authors give the

result through a flowchart which is reproduced herein: -

Need to Store
Value?

Multiple
Writers?

Yes
Can use always

Online TTP?
Yes

All writers
known?

No

All writers
trusted?

Yes

Public
Verifiability Req?

No
Public Permission

Blockchain
Yes

Permission less
Blockchain

No

Private
Permissioned

Blockchain

Don’t Use
Blockchain

No Yes

Yes

No

No

Figure 3.1 Selection Method for Blockchain [14]

Most people take blockchain as a storage technology, whereas it is infact the worst DB in the

world. The prime advantage of using blockchain is Immutability and Decentralization. We

will delve in this detail in the next chapter. As we can see from the above shown flowchart,

we can use blockchain for HIDS DB integrity protection. For the initial test case, we will use

Private Permissioned Blockchain for our discussion in later chapters to avoid complexity of

 23

online blockchain presence. A comparison of Permissioned, Permission less blockchains and

a Central DB is given below to put technical aspects in perspective.

Permission less

Blockchains

Permissioned

Blockchains
Centralized Database

Throughput Low High Very High

Latency Slow Medium Fast

Readers High High High

Writers High Low High

Un-trusted writers High Low 0

Consensus protocol PoW, some PoS BFT protocols [15] Nil

Central

Management
No Yes Yes

Table 3.1 Comparison of Blockchain and Central DB [14]

So, we can conclude that blockchain at present suffer from low throughput to match high

transaction environments. However, it is worthwhile to experiment with this technology for

securing the HIDS DBs. We will take our discussion on Blockchains further in the next

chapter.

 24

Chapter 4

BLOCKCHAIN INTRODUCTION AND LITERATURE REVIEW

4.1 Introduction

The internet revolution in recent times has brought about a paradigm shift in how man

and machines communicate with each other. Digital transactions, may it be for business or

educations etc. are being carried out through the internet with an ever increasing rate. Digital

transactions or communications in coming time is expected to take a new shape with the full

blown advent of IoT, where huge number of intelligent devices will swarm the digital

landscape. Even today, digital communication has reached a well developed stage but

requires a central agency or authority for maintaining trust in the system. Electronic payments

and e-commerce are obvious examples of such communications with central authorities

maintaining trust. However, the central agency can be easily compromised. Further, Satoshi

[16] maintains that in present financial models, the cost of mediation by a central financial

institution to establish trust inevitably increases transaction costs and some amount of fraud

between participants is taken as unavoidable. The cost and required trust in the central

institution can be reduced or eliminated by using a true de-centralized trust mechanism i.e.

trust distributed among the participants. Same is true for non-financial sectors as well.

In [17], the author points out that endeavors to achieve a truly de-centralized currency

were started as early as 1980s but every model proposed required a central agency as in [18],

[19] .Then models like Karma [20], B-money [21] and Bitgold [22] used concept of a

cryptographic puzzle to generate digital currency and replace a bank but still required some

central involvement to maintain possession records. The first truly de-centralized system was

proposed by Satoshi Nakamoto [16] and announced on Cryptography mailing list [23] in

2008. Satoshi combines research in recent times in a novel way to achieve a de-centralized

trust environment in Bitcoin system.

The Bitcoin uses as a core element, Blockchain technology to maintain trust in the

system, by validating records and keeping track of all digital transactions in a distributed

manner. Bitcoin can be called the first implementation of Blockchain technology and

understanding Bitcoin is essential to understand Blockchain. In [24], authors explain that

although Bitcoin enables multibillion dollar global market of transactions, it is still the most

controversial application of Blockchain Technology due to lack of governmental control and

oversight. However, the underlying technology of Blockchain is not contentious and has

operated perfectly to achieve a de-centralized trust model in Bitcoin. But Blockchain is much

 25

more than Bitcoin. For the first time in digital history, there is an understanding among

thinkers that online P2P transactions or communications may be possible without a central

institution. These may include online contracts, digital records keeping, email services,

intelligent device identity and privacy protection, hence it can be applied to both financial

and non-financial applications and the opportunities are limitless. Authors in [24] mention

Marc Andreessen, a Silicon Valley capitalist, listing blockchain distributed trust model as the

most important development after Internet. They also mention Johann Palychata, BNP

Paribas, who equates invention of Blockchain to that of a combustion engine in Quintessence

magazine and hints that it has the potential to transform the digital world. Briefly speaking,

[24] a blockchain is a distributed ledger available publicly of all digital transactions shared

among participating parties. Every entry in the ledger is confirmed by a majority consensus

mechanism among participants. Information confirmed and introduced in the chain cannot be

erased. So, in a nutshell, a Blockchain contains a certifiable copy of every single transaction

ever made in the system. One of the most dynamic applications of Blockchain technology is

deemed to "smart contracts", computer codes which can execute the contract terms

themselves without mediating oversight. These smart contracts can be applied in the field of

notary, asset transactions involving properties, cars etc. and ownership of money and shares.

As authors in [25] mention, despite its capability to maintain de-centralized trust in a

system, Blockchain technology, at present faces multitude of challenges in mass scale

adoption. Due to its envisaged role in future internet based transactions, these challenges

along with implementation scenarios merit further study to pave way for embracing

Blockchain at a large scale. In this paper, a holistic view of Blockchain technology is

intended to be taken resembling a survey by studying its challenges and areas of application.

The inspiration for research methodology comes from [25], in which a systematic mapping

process [26] is used to study and recognize pertinent publications in the Blockchain domain.

This systematic research methodology uses a structured approach, where papers are identified

against a criterion. Furthermore, as in [25], focus of research will remain on Blockchain

technical and application domains only and will exclude Bitcoin except for technology

reference. From here the paper leads to Section 2 which explains Blockchain technology

briefly. In Section 3, challenges and advantages of blockchain will be discussed. Section 4

will give research landscape of Blockchain along with discussion on major application areas.

Section 5 will indicate the area of future research and concludes the paper.

 26

4.2 Blockchain technology

As already stated blockchain is a distributed ledger system where each event or

transaction is recorded and can be used later for verification and auditing. A blockchain

defines a chain of blocks, where each block holds several events recorded in it. This chain of

blocks is formed by linking each new block with a previous block by using a cryptographic

hash function. Each transaction in a block is verified and included in a block by nodes known

as miners. Further, a block is included in a Blockchain only after a certain mathematical

proof is achieved. As mentioned before, Blockchain is intrinsically related to Bitcoin and

understanding Bitcoin technology is necessary for understanding Blockchain. Infact, no

defined standard for Blockchain components exists yet but we can generally take the Bitcoin

technology of distributed trust as THE BLOCKCHAIN technology. Now since the trust or

record of transaction is recorded in a Blockchain after some computational work is carried

out by miners, there must be some incentive for the miners. In Bitcoin, this incentive comes

in the shape of getting 12.5 Bitcoins on reaching the mathematical solution of a block first.

Hence, a block is appended to blockchain periodically when a miner reaches the required

mathematical solution for a block and Bitcoin is generated in the system. Briefly a Bitcoin

Blockchain passes through following processes [16] as depicted in Fig 1: -

a. Events or transactions are broadcast in the network on occurrence.

b. Each node forms a new block by accumulating received transactions in said

block.

c. Each node endeavors to reach the mathematical proof of the block or proof of

work first to receive the incentive described above.

d. On finding the proof, a node broadcasts it’s found block to entire Network.

e. The broadcast block is agreed to by other nodes if every transaction in it is

valid.

f. If accepted, all nodes try to form new blocks using the hash of this newly

accepted block.

g. Hence all the accepted blocks form a blockchain.

 27

 Fig. 4.1 Step by Step Blockchain processing [27]

 Fig. 4.2 New Block Formation in Blockchain [16]

In Fig 1, formation of a blockchain has been further elaborated. Every new block will be

formed with three major inputs: Hash of previous or last validated block, a nonce using which

solution to the mathematical proof will be reached and a Merkle root of all the transactions of

this new block. When the right nonce is identified, the block with trace of its transactions and

the same nonce is broadcast in the network for validation and acceptance by other nodes and

this process continues forming a chain.

4.3 Components of Blockchain

Although no specific structure of blockchain has been defined but most researchers

agree that a blockchain may be divided into following components [28]: -

a. User application - The major component in a blockchain system is the

computer application or software which will enable a user to participate in the

desired ecosystem. This application will define the rules of the ecosystem and

 28

how users will interact with each other on the chain. Most pertinent example

can be Bitcoin wallet, which is the mandatory application software required to

carry out trading on a bitcoin blockchain.

b. Events ledger or Blockchain - This is the core component of a blockchain

system, which is primarily a logical entity. It is populated inside a node as the

life of a blockchain system progresses. This is the component which provides

the immutability in a blockchain ecosystem and provides the vital

functionality in a distributed trust environment. All transactions ever

performed can be verified using this historic ledger. Each new application will

require a new or separate ledger. A node may run many different applications

based on blockchain at any single time, but all will have their own events

ledger.

c. Consensus Mechanism - The consensus mechanism plays an important role in

blockchain ecosystem. This functionality guides the ecosystem to reach a

consensus and how to form the chain of blocks. Any conflicts are also

resolved with this mechanism. This component of a blockchain system will

probably see many mutations in future as the research in blockchain

technology progresses. In Bitcoin, this mechanism is sufficient to deal with the

quantum of transactions but as we try to introduce blockchain in other system,

it is the consensus mechanism that will be modified the most to fit into the

desired ecosystem. We might take example of lightening networks, in which

two communicating parties after achieving trust through blockchain do not

broadcast all transactions in the system and only interact with blockchain on

establishing and terminating interaction. Other prominent examples are proof-

of-stake, proof-of-work and proof-of-elapsed-time.

d. Virtual machine - The last module in blockchain ecosystem is the virtual

machine. It is also a logical component which collaborates with user

application to participate in a blockchain ecosystem. It is a logical

representation of a machine created by the blockchain application. Again, we

can see Ethereum as an example. It implements a virtual machine in its

blockchain ecosystem. Its virtual machine can understand a wider range of

instructions making it possible to manage the status of a digital contract in

contrast to Bitcoin, which is not so flexible due to underlying application.

These generic components will always be present in a blockchain ecosystem

taking some form dependent on the desired application. However, there will

 29

always be other factors, which will have some bearing on the effective

performance of the desired blockchain application. These factors may include

the communications network, underlying hardware for the virtual machine etc.

4.4 Classification of Blockchain

As stated earlier, there are no established standards available for the Blockchain yet.

However, endeavors are at hand to formulate a standard to guide future work on the

technology. International experts from over 30 countries have recently participated in the

opening session of ISO TC 307 blockchain and electronic distributed ledger technologies

chapter, held in Australia in April 2017.The goal was to discuss standardization in

Blockchain Technology. Five groups for development of standards have been formed:

taxonomy and ontology, reference architecture, use cases, identity and smart contracts,

security and privacy.

Few Blockchain classification schemes have been defined using different

perspectives. Many have classified Blockchain on the permission model. Authors of [29]

classify blockchain in following permission types: -

a. Public blockchains - Such blockchain systems are open to users for active

participation. Generally, a public blockchain system allows anyone to write to

the blockchain. There can be two aspects to it: Any entity can write to the

blockchain on being granted permission by someone or any entity can read

from the blockchain on being granted permission by someone.

b. Private Blockchains - Such blockchains are held by private entities or groups

and do not require establishing trust among themselves: for example, a group

of companies owned by a single bigger company. In such a case, the processes

will differ widely from a public blockchain. It might not need the consensus

mechanism at all to write to the blockchain. The incentive might also take a

different form.

Authors in [30] propose blockchain classification based on Authority and Incentive

Dimensions. Following classifications have been proposed: -

a. Blockchains without an authority and market-based - This type of blockchain

is un-regulated and gets the momentum from the market to extract some

incentive for miners. The market can help in establishing a price for the

Coinbase or the prevalent incentive form. In a blockchain which does not

receive regulation from any authority, it is necessary to have an established

market.

 30

b. Blockchains under an authority and market-based - Such ecosystem can

benefit from the market to incentivize their miners or the participants for

carryout the block validation work for the system. Further, the ecosystem is

regulated in some way by an authority. Authors in [30] suggest that a market

for circulation of currency or the Coinbase can be established for a blockchain

ecosystem under an authority like systems without an authority such as

Bitcoin. The currency will have a value which will be the main incentive for

joining the blockchain. However, the characteristics of the ecosystem will be

heavily regulated by the authority.

c. Blockchains under an authority and non-market-based - In a non-market

based blockchain there needs to be a compelling alternative incentive to join

and remain in the system. Without a market surrounding it —without a price

mechanism— it would be preferable for consensus to be based on some other

grounds besides POW or similarly costly algorithms. Rather, it is more

sensible to take an approach based on other methods of agreement between the

parties that are more energy efficient compared to POW consensus. In this

case, the authority can facilitate the implementation of these alternative

methods by exerting control over participation in the system.

d. Blockchains without an authority and non-market based - Without a market to

provide the incentive of price of the currency, and without an authority to

enforce and administrate participation in the system through contracts, the

long term continuance of a blockchain becomes complicated. Therefore, this

last type of blockchains is perhaps difficult to contemplate. In its early years

Bitcoin could have fit this classification. However, without the monetary

incentive and without the possibility of enforcing regulations, incentivizing

participation would remain a challenge, although ideological, social or ethical

considerations can play a part as incentives.

In the later classification, we can equate authority to permission and market to

incentive. This classification may be useful in understanding the machinations of a

blockchain protocol but fundamentally it is like permission model. Incentive of participating

in blockchain proof of work will always be there. However, it might take different shapes

under varying scenarios i.e. financial incentive or attainment of organizational or ideological

aims. As per [31], another type of blockchain follow a hybrid architecture, which allows for

different blockchains (public or private) to communicate with each other, enabling

transactions between participants across blockchain networks.

 31

4.5 Challenges of Blockchain

4.5.1 Technical Challenges

Blockchain still faces daunting challenges to achieve mass scale adoption. Authors in

[25] have carried out some useful research on technical challenges identified by Swan [31]

identifying the current research directions in following challenge areas: -

a. Throughput - The possible throughput of transactions, a Bitcoin network can

handle is 7 tps (transaction per sec). Examples of transactions handling

networks are Twitter (5000 tps), VISA (2000 tps). There are still questions

about how the blockchain with current architecture will behave once the

transactions level will reach the same magnitude as VISA or Twitter. There

will most likely be an emergent requirement of increasing the transactions

throughput of the desired network.

b. Latency - As we have discussed earlier, the proof of work mechanism

establishes the authenticity of a block after reaching a mathematical solution

to problem. This ensures security in the ecosystem against a double spending

attack where a user might be able to spend the same coins twice. A single

block takes around 10 minutes in bitcoin network to get validated. As the

block validation capability grows, the difficulty of mathematical proof is also

adjusted. This is necessary to achieve security in the system. Double spending

is a consequence of successfully transferring same coin more than one time

[32]. Bitcoin protects itself against such an attack by verifying every

transaction sent to the blockchain. All this comes at the price of latency in the

ecosystem. Validating a block and confirming the contained transactions

should be less time consuming while keeping the required security intact. If

we look at contemporary systems, VISA network requires only few seconds,

which is a great advantage as compared to Bitcoin or Blockchain.

c. Bandwidth and Size - As of December 2016, size of Bitcoin blockchain is

100GB. Imagine the scenario when the transaction rate will increase from 7

tps to that like VISA or Twitter, the blockchain is expected to grow at an

enormous rate of 214 PB every year. The Bitcoin and blockchain community

suggests that the size of each bitcoin block is 1 MB, and new block is formed

every ten minutes [33]. Therefore, each block is limited to handle a prescribed

no of transactions (average five hundred transactions) [34]. This scalability

issue of blockchain must be resolved if wide spread adoption of blockchain is

to be undertaken.

 32

d. Security - Blockchain faces few security challenges as well. These include the

51% attack, where any party controlling most of mining capability can control

the ecosystem and can validate the blocks. Another type of attack is block

withholding attack where a selfish miner can create a longer blockchain to

race the main blockchain, creating an opportunity for manipulating the main

blockchain. Such issues also require due research for adoption of blockchain

in other fields.

e. Wasted resources - It is estimated that Bitcoin mining wastes USD 15 million

worth of energy daily due to its Proof of Work protocol. Proof of Stake

protocol is being promoted as a useful alternative [35]. This issue of resource

wastage must be solved before efficient mining of Bitcoin can be carried out

further.

4.5.2 Non-technical challenges

There are also some non - technical challenges hindering mass adoption of

Blockchain. Some of the non-technical challenges identified by [36] are as follows: -

a. Uncertain regulatory status - A big advantage of blockchain bitcoin is its un-

regulated status but at the same time, it is probably its biggest hurdle in

widespread adoption. National institutions are still skeptical about how a

blockchain ecosystem will turn out without any regulation and monitoring.

b. Energy utilization - The bitcoin mining process consumes enormous amount

of energy on annual basis. The miners attempt approximately four hundred

and fifty thousand trillion solutions to the proof of work problem each second

to validate event or transaction, expending substantial computer power. A

more efficient validation mechanism can reduce this enormous energy

consumption.

c. Integration concerns - The lack of any blockchain standard leads to

integration issues with present systems. To move a business or process on

blockchain, complete or significant changes or replacement to existing

systems are required. Formation of a blockchain standard is therefore, needed

to be expedited.

d. Cultural adoption - Blockchain presents a complete departure from a

centralized and regulated enterprise. This will require quite some motivation

on part of users and operators to start adopting blockchain for their respective

operations.

 33

e. Cost - Where blockchain offers great savings on transaction costs by

eliminating the middle man, it does incur great initial expense for adoption of

a Blockchain ecosystem. This could be a deterrent for the time being as users

or enterprises might not immediately be interested in expending so much

capital without any visible motivation. [37]

4.5.3 Advantages

 Authors in [37] have summarized the advantages of blockchain as following: -

a. Trustless and Decentralized exchange - Parties interact or transact without any

regulator or middle man, hence completely removing the third party.

b. User Control - Users control all their data or transactions. Data privacy is

achieved.

c. Quality of data - Data in blockchain is timely, accurate, consistent, widely

available and complete.

d. Durability, longevity and Reliability - No single or central point of failure

exists in a blockchain ecosystem. Danger of malicious attack altering the

information is greatly reduced.

e. Process Reliability - Users remain assured that their trust in the system

remains intact and transactions are executed as protocol dictates.

f. Immutability - Any change in public blockchains can be viewed by all users

providing complete transparency, and transactions are indisputable due to

intrinsic cryptographic functions, meaning these cannot change or be deleted.

g. Faster transactions - Presently, Bitcoin blockchain can transfer any capital in

little over an hour whereas, interbank transactions take few days to clear and

finalize a single settlement. This provides a fundamental advantage to

blockchain in financial sector as the long transfer channel is significantly

shortened bringing down the time consumed.

h. Lower transaction costs - By eliminating third party or the bank, transfer costs

or overheads are reduced significantly for exchanging holdings or assets.

4.6 Research Landscape

 Research on blockchain has really taken off in the last three years. Bitcoin was the

area of primary research on blockchain in the early years i.e. since 2008. This new-found

interest in blockchain has given rise to an increased number of publications in the last few

years. Below we discuss few popular areas of active research in Blockchain: -

a. Internet of Things - It is one of most researched areas of present era. It has

enormous potential to revolutionize the digital world. In [38], four main

 34

challenges to IoT facing today are: Security, Privacy, Connectivity and

Compatibility. A blockchain can be an effective method to address security

and privacy concerns in IoT in particular. In [39], IBM has identified IoT for

Blockchain implementation trends in 2017. Most of research publications

analyzed are related to IoT security and privacy. Some other aspects of IoT

have also been touched but these are very limited. Blockchain in its classical

form i.e. bitcoin is resource intensive itself and cannot be used for IoT. In [40],

the authors have attempted to comprehend whether the blockchain and P2P

mechanisms can be used to build a decentralized IoT. As a first step, they

embarked upon a Literature Review to accumulate data on the present

implementation scenarios of blockchain technology and observe its current

level of adaptability, integrity and anonymity. They discovered eighteen

scenarios of blockchain out of which four were exclusively related to IoT.

They also observed few issues in the anonymity, integrity and adaptability of a

blockchain. They found that blockchain just ensures pseudonymity.

b. Adaptability of Blockchain - Authors in [16] have proposed a lightweight

blockchain design for IoT which practically eliminates the overhead of a

traditional Blockchain, while keeping its security and protection benefits. IoT

gadgets use a private ledger which works like a Blockchain however it is

centrally managed to reduce energy expenditure. High resource entities make

an overlay network to execute a permission less or public Blockchain that

ensures end to end protection and security. The design utilizes decentralized

trust to reduce time required for block verification. Analysis of a smart home

use case has been carried out to assess the proposed framework. Results show

that processing overhead is reduced significantly when compared with a

traditional Blockchain used in Bitcoin.

In [42], same authors have continued their work in [41] and outline the core

elements and their functionalities in a smart home environment. Every smart

home will have an always alive device with greater resources, called a miner

which will act as a gateway to handle all traffic in and out of smart home. This

miner also maintains a private blockchain, which will aid in controlling and

auditing all traffic. The authors also conclude that their proposed blockchain

smart home is safe, by analyzing the performance considering fundamental

goals of confidentiality, availability and integrity. They also presented results

 35

to conclude that overhead in the proposed framework, are insignificant as

compared to its achieved privacy and security gains.

In [43], author has recommended a framework that securely integrates the

blockchain with smart IoT devices in smart city to provide a secure

communication.

Further in [44], authors describe a user-centric framework to share the data

from IoT devices with other users and enterprises. This approach uses access

lists, access rights and capabilities. They describe an auditable, decentralized,

transparent, distributed mechanism and their automation in the IoT scenario.

Using blockchain, it makes users in control of their sensors' data and chooses

whoever accesses it. The storage is again based on blockchain technology with

access layer based on publish and subscribe methodology.

c. Secure updates and firmware - Broadcasting updates and firmware securely

are another potential application area for blockchain in IoT. With the

distributed consensus mechanism in Blockchain, we can be sure of using the

authentic copy the desired update or firmware. In [45], authors have

investigated how a blockchain can securely deploy updates for IoT devices.

They observed that a blockchain improves availability of updates significantly

due to its immutability and intrinsic protection against DoS.

Another scheme to update firmware based on blockchain technology is

proposed in [46]. It observes the firmware's version, verify the firmware's

integrity, and retrieves the latest firmware version for its devices. The design

encompasses asking collaborating nodes for latest firmware version. If own

version is modified, then latest version is downloaded from nodes by P2P file

transfer mechanism.

In [47], authors again propose a blockchain based framework for configuration

of IoT devices. They have used a blockchain platform for smart contracts,

Ethereum, to manage keys in RSA public key cryptosystems. In this design

public keys are stored in Ethereum platform and private keys are stored in

respective devices. Using smart contracts, IoT devices' configuration is easily

managed and a key management system is built. They have used a few IoT

devices instead of a full system for proof of concept of their proposed design.

d. Data privacy in IoT - Connected devices in IoT, will exchange highly

insightful data about a person or entity. Routing such data through regulatory

 36

companies presents a serious risk to user’s privacy. Economic interests could

result in undesirable use of personal information. Authors in [48] have

proposed to develop software systems for IoT, which are decentralized

private-by-design. The basic idea is to safely store sensitive data produced by

numerous IoT sensors or devices in a distributed system. Such a system is

designed to ensure privacy of data, thus making people the real owner of their

data. To achieve this goal, they propose a P2P storage network in combination

with a blockchain.

Another approach has been proposed in [49], in which an IoT device is

registered in a cloud eco-system. The device proves its OEM origin without

any third party's involvement. The design introduces the Chain anchor

architecture which supports this mechanism for registration.

Another angle to P2P communications is in e-commerce using Blockchain

[50]. In this article, the authors: 1) propose a framework for IoT based e-

businesses, 2) traditional e-business elements are redesigned, 3) Use

blockchain to evaluate property transactions in IoT.

e. Secure service sharing - In [51], authors discuss how sharing services based

on blockchain can add to development of smart cities using a theoretical

design. A similar proposal is presented in [52] which forwards the idea of

using virtual resources with permissioned blockchain to use IoT services.

f. Device authentication - Authors in [53] have embarked on a novel approach to

ensure trust worthiness of Devices and Data. Verifiers use remote attestation

to see if a Trusted Computing Base (TCB) under study is trustworthy.

However, the prevalent remote attestation has cannot be deployed in IoT due

to limitations. To address such limitations, authors have presented a

trustworthy administration of TCB measurements known as TM-Coin

leveraging the blockchain. The TM-Coin use blockchain technology for TCB

measurements of IoT elements. Using TM-Coin, data attestation by verifiers

for IoT devices is carried out remotely using the blockchain without attesting

to the TCB.

g. Blockchain as a service - Due to its distributed and decentralized organization,

researchers are contemplating using blockchain in IoT for device

configuration, storage of data from sensors and to support payments at micro

level. In [54], the authors evaluate cloud and fog platforms as hosting

 37

environments. The performance analysis of both systems is carried out and

clearly indicates that network latency plays an important part when both used

for hosting the blockchain. Finally, the fog platform outperforms the cloud.

h. Other Areas of Blockchain research - Extensive research is being carried out

in the areas of Healthcare, Governance, Smart contracts, Social Networks,

Supply chain, Cloud computing, DNS and DHCP, Smart Energy, Big Data,

Asset and ID management and Critical Information Infrastructure Protection.

4.7 Blockchain study for DB protection

As stated in chapter 2, our aim is to secure HIDS by using blockchain for DB security.

After careful consideration, we have shortlisted following three areas of blockchain research

to achieve our aim: -

a. Blockchain Storage - The purpose to study blockchain based storage is to

gauge its suitability for storing HIDS DBs. We have observed that storage for

blockchain based applications is one of the biggest hindrances for mass scale

blockchain adoption. However, many startups are working on the blockchain

storage issue and we may find many good projects available for blockchain

based storage in next couple of years. Presently, we have concluded that

storing entire DB on blockchain may be a farfetched idea and only some

values can be stored on few available platforms like Ethereum. Let's discuss

some of the good projects we have studied for storage. Most notable is

Bluezelle [55]and their aim is to develop a blockchain system to store data for

decentralized blockchain applications. They propose making swarms of nodes

to store data. These swarms join to form a meta swarm. Data is distributed

among various swarms and replicated within a swarm. Downloading of data is

done from nearest swarm. They have proposed the use of SHARDING for

efficient and failsafe data storage and retrieval. Another good storage project

is Phantasma [56]. Basically, it is decentralized content sharing platform to

enable communications and data exchange between decentralized applications.

It uses concept of relay nodes to send data across the network. Resource

intensive tasks like data transfer is done off chain while only locations are

stored on chain.

At present, no storage application is ready for client usage and is in

development phase.

b. Blockchain Antivirus - We studied this category of papers to find a solution for

secure updates in a system. As with blockchain storage, these systems are

 38

mere proposal and in development or trial stage. However, we found

Polyswarm [57] to be promising. It aims to provide a decentralized market

place for security analysis and malware detection. It combines clients with

geographically diverse detection engines through detection offers. It also

supports a system of reputation to assess the result and build confidence vote

for the correct detector. Another proposed system is [58]. It is more pertinent

to our desired system. An update from one system is broadcasted to all

systems in a network for individual analysis. The result is compiled, and a

consolidated decision based on majority vote is reached. We will consider this

system in our design to securely update the OS. Rest of these papers proposed

use of blockchain for collaborative detection, where a threat detected by one

system will be communicated to all joined systems through blockchain.

c. Blockchain Scalability - Along with storage, Scalability is also one of the

biggest obstacle in blockchain mass adoption. Present Blockchain platform do

not support large transaction rates, which can cause slow response of

applications. Some noteworthy projects targeting greater transactions rates are

Quarkchain and Zilliqa. Quarkchain [59] is trying to achieve a transaction

throughput of 100,000 tps. Transactions are distributed in side chains for

confirmation and root chain is used for confirmation of blocks from side

chains. There are no transactions in root chain. Zilliqa [60] is quite like

Quarkchain and aims to increase the transaction rate. Again, transactions are

divided among miners to achieve efficiency and faster transaction rates.

In the next chapter, we will propose an IDS design to achieve our objectives as

stated in chapter 1.

 39

Chapter 5

PROPOSED IDS DESIGN

5.1 Introduction

In previous chapters, we discussed that IDSs based on File integrity monitoring make

use of a distinct fingerprint of protected files calculated from a file's contents [61]. This

digital fingerprint is also referred to as file checksum or hash value. This unique file

information is recorded in a database and retrieved only to validate the protected file's

integrity against change or modification. Hashing or checksum generation algorithms have

very important place in such an IDS. These algorithms must be resistant to collision

generation and pre-image attacks, failing which integrity of the entire system can be

jeopardized. Well known algorithms with fixed length outputs are MD5 and SHA etc. [62].

Any intruder, who has already gained entry in a protected system, can modify system

utilities, modify file attributes or contents or install backdoors etc. Such attacks can be easily

detected by an integrity checking IDS and thus significantly enhance system security.

However, all such systems may be bypassed by modifying the file integrity database or

system binary. This vulnerability exists not only in user level programs but also in kernel

level programs. Generally, file restoration mechanism if an infected file is found, is also not

found in majority of programs baring some research projects. Furthermore, file and operating

systems updates hinder operational response of these systems.

In this chapter, we recommend a novel design for a File integrity-based IDS to overcome

above mentioned weaknesses in existing systems. Following broad contours for the proposed

system have been set to carry out further research: -

a. Proposed system should provide real time detection through implementation at

kernel level.

b. Backup of protected critical files should be maintained in protected storage or

off the system.

c. System should be able to restore critical protected files from backup if

modification is detected.

d. System integrity is checked against modification by using tamper proof record

of system fingerprint stored on Blockchain.

e. Occasional file updates be checked against presence of malware through

collaborative Blockchain detection mechanism.

 40

We propose to implement our system at user and kernel level to ensure enhanced

system security as compared to similar systems implemented at user level only. Most well-

known of such IDSs is tripwire, which is a user level system. User level systems have

following disadvantages: -

a. Any intruder can tamper such a system by operating at a lower level of

system.

b. Serious degradation issues when such systems carryout periodic checks and

interfere with systems performance.

c. These systems are not real time thus providing sufficient space to intruder to

perform their activity.

These issues are appropriately catered for by implementing the system at kernel level.

The kernel checks against security constraints during system operations like file access.

Normal kernel operation can be enhanced and provided with a mechanism to check and

validate file digital finger prints or checksums before access is granted. There are various

ways to achieve kernel extension as described above. Few of these are as follows: -

a. System calls - Normal calls are modified or changed with new custom system

calls ensuring secure access. However, this approach has few weaknesses [63].

It has race conditions, may also need code duplication and has limited security

context expression.

b. Stackable file system - It is an efficient approach to implement secure file

access in kernel space. An additional layer is added between an existing file

system and virtual file system for security. It intercepts file system calls from

virtual file system and passes them on to actual file system at a lower level.

However, in this case, the file integrity checking module and kernel is

separated and hence may be fed malicious data.

c. Linux Security Modules (LSM) - LSM [63] is a Linux framework designed to

provide access control to kernel objects. It is executed as a loadable kernel

module (LKM) and uses hooks to intercept system calls for access. These

hooks call Linux security functions to validate or invalidate the access request

to an object. It is used in SELinux [64] and Apparmor.

We suggest using LSM as it provides a well-constructed API providing easy

integration of modules with Linux kernel for security functions. It also ensures that any

hooked module cannot be removed by the intruder as the extension module is hooked to the

Linux kernel.

 41

5.2 Background and related work

5.2.1 Typical File Integrity Checking IDS

Figure 5.1 shows operation of a typical Integrity checking IDS. Most of these

systems follow same basic steps to achieve the goals. Common steps in file integrity

checking IDSs are as follows: -

a. Scan configuration data to check about file protection information.

b. Calculate and store digital fingerprints of protected files and store in a

database.

c. To check file integrity, calculate integrity of accessed file again and compare

against value stored in database.

d. Grant/ Deny access to file or initiate appropriate action based on comparison

result. Actions may include alerting the administrator, generating a report,

logging the action or shutting the system down.

DATABASE OF
INITIAL HASHES

CONFIG FILE
OF

PROTECTED
FILES

GENERATE CURRENT
HASHES OF FILES

IS THE HASH
SAME FOR

DESIRED FILE?

DENY ACCESS

GRANT ACCESS

NO

YES

 Figure 5.1 Typical Integrity Checking IDS

As we have already discussed that the Linux OS has user and kernel level space. This

notion has a lot of bearing on file integrity checking as some tools run in user space with

escalated or administrator privileges and some tools are executed in kernel space.

Codes at kernel level give better control of system resources as these include applications for

process management, file operations and memory management. While user level codes

generally include routine applications, GUIs, text applications and user OS commands.

 42

A usual hazard for system security due to user level code is an error like buffer

overflow which can be used to take administrative control of the system. Today's large

number of applications is a great obstacle to deal with such a threat due to their distinctive

complex architecture. Codes at user level are also run periodically so real time detection is

not possible and are not meant for prevention from intrusions. Examples are Tripwire

[65],AIDE, Veracity and Integrit [66].

As discussed earlier, kernel level file integrity IDSs can be based on file systems,

custom system calls or LSM. I3FS [67] is based on a stackable file design used for kernel-

based systems. It blocks access to modified files and alerts the user. It implements four

Berkeley databases due to their encrypted nature for database security. The databases are (i)

File policy DB, (ii) File data fingerprint or hash DB (iii) File Meta data DB, and (iv) Access

frequency DB.

SOFFIC [68], Secure on the Fly File Integrity Checker manages file access based on

modified system calls. It main weaknesses are its storage of policy and file Hash DB in

regular files, which can easily be modified or deleted by an intruder. Needless to say, that

despite being based at kernel level both I3FS and SOFFIC are vulnerable to database

modification or OS kernel.

Another example of kernel level IDS system is a research project ICAR. It uses LSM

for file access validation, real time integrity checking and provides a system to store backup

copies of OS kernel and protected files in write protected media. However, storage of

protected files / DBs on write protected media is a big obstacle in updating the system.

In a nutshell, balance between protection and system efficiency must be struck to

design a smooth system capable of protecting selected files with recovery opportunity.

Both ICAR and I3FS are closest to our objectives and few of their features can be used in

designing own system with similar objectives.

5.3 System Design

5.3.1 Functional layers

Potential targets of an intruder in a functioning operating system can be files and

processes both. Current security mechanisms in Linux provide sufficient protection for

running processes, therefore we will only focus on file protection in our design. Important

files to protect include system and configuration files. System is proposed to be implemented

in Linux as it is open source with readily available source and binary codes of all

distributions. It provides a convenient way to extend and modify existing functionality. The

File integrity IDS is proposed to be implemented at three layers (Fig 5.2) as follows: -

5.3.1.1 Kernel Layer

 43

It is the actual functional part of the proposed system, which is responsible to

validate protected files' integrity along with some cache functions. During startup, it is

loaded in RAM with the Kernel module. Details are as follows: -

a. Hashing - SHA 256 is good option to be used for hashing function at this

layer but aspect of CPU performance must also be kept in mind in choosing a

suitable hash function. It is used to calculate fresh hashes of protected files

for integrity checks.

b. Cache - Numerous cache as shown in figure have also been implemented in

this layer. These include Blockchain, Read, policy and logging caches. The

caches can significantly improve system efficiency by storing results of

already performed computations and avoiding same computations again.

c. Authentication function - This module has following functions: -

 Granting write access to encrypted databases.

 Permitting updates to files protected by policy.

 Secure mounting of Kernel and IDS backup media.

 Check user roles for IDS operation.

 Check system integrity by comparing Blockchain value and system

Merkle value.

d. User Roles - This module will check file access against user privileges of

read and write permissions and grant / deny access to protected files.

e. Hash checking - It is responsible to compare stored and freshly calculated

hashes of protected files.

5.3.1.2 Database and Backup layer

Stores numerous databases for system functionality and backup copies of selected

files. Included databases are Policy, file info, frequency, Merkle root, Blockchain detection,

Authentication, Hash info, user roles Data Bases. Backup of selected critical files is also stored

at this layer to initiate recovery of such files. The OS kernel with IDS module may also be

backed up in write protected media for recovery if required. The databases are encrypted being

Berkeley DBs and require authentication on startup to grant access.

5.3.1.3 User Layer

It will provide user with an interface to interact with system and handle policy

configuration, authentication and file updating tasks. It will also allow the administrator to

monitor the system for protection and simplify work for intrusion detection in short.

 44

Figure 5.2 Proposed Design-Layers

5.3.2 Threat Model

Proposed IDS is mainly designed to detect following threats: -

 Detect replacement of critical files in system i.e. / bin folder to check integrity

of useful programs like ps or ls. These may be replaced with Trojans for

malicious purposes.

 Detect modification of critical files by malicious intruders.

 Prevent malicious OS updates to critical files before these are executed in the

system.

 Detect attacks against kernel / IDS integrity to ensure system in a true state.

5.3.3 Databases

A
P

I

EV
M

UTILITY / USER

POLICY AUTH

B.C API DETECTION

U
SER

HASH CHECKING

K
ER

N
EL

B.CHAIN

O
TH

ER
 E

TH
ER

EU
M

 N
O

D
ES

D
A

TA

D
A

TA
B

A
SES

META
INFO

B
A

C
K

U
P

KERNEL
and IDS -

write
protected

media

SYSTEM, SEL
CONFIG AND
USER FILES

DATA INFO

MERKEL

DETECTION

ACCESS

USER ROLE

POLICY

AUTH

BACKUP DB

USER ROLES

AUTH

HASH FUNCTION

CACHES

POLICY

READ
WRITE

LOGGING

 45

Proposed design's configuration data is stored in nine Berkeley Databases [69]. These

are extremely high performance and scalable DBs and stores Key, value pairs. DBs use

following schema for operation: -

Database Key Value

Policy db Inode # Policy bits, freq #

Meta db Inode # Hash value

Data db Inode #, page # Hash value

Access db Inode # Counter value #

Merkle db Respective Timestamp

Hash value,

Comparison result

Detection db Inode #

Hash value, Detection

Result

User roles db Inode #, usernames Roles, permissions

Back up db Timestamp Restore pts

Authentication db Usernames

Hash value of

Password

Table 5.1 Databases and Schema

We propose to use separate schemas for various operations to achieve efficiency and

better performance (Back up DB is a separate DB). Detail of DBs is as under: -

a. Policy Database - It will hold the policy options related to protected files

along with the permitted check frequency before re-calculation of fresh hash.

In most schemas, we will use inode number as the key to do away with an

additional step of string comparison. Data can be in the form of 8 bytes of

value to represent policy options.

b. Merkle Database - Hash value of OS kernel including IDS module and

optional protected files will be hashed together to obtain the value of Merkle

Hash of the protected system. This Merkle value is critical in the entire

scheme of IDS design as it will be calculated on each startup and compared

with the same stored on immutable Blockchain. This will ensure that the

 46

proposed IDS system is not tempered with and is in true state. The result of

comparison along with timestamp will be stored in this DB for audit purpose

only.

c. Detection Database - It will hold compiled results of malware analysis from

Blockchain, updated from time to time. Each OS update file submitted or

analyzed for presence of malware by each node, will have its entry in this DB

for quick reference. This DB is critical in securely updating the OS.

d. Access freq Database - It will hold a counter representing the opening

frequency of a file after it was checked last for integrity violation. This

frequency option increases the system efficiency as relatively less important

files can be checked after a number is achieved. Frequency for each file will

be indicated in policy DB through policy bits.

e. Metadata Database - Checking metadata for protected files is more efficient

than checking entire file data. Any changes in a file will be reflected in the

metadata and calculating hash for metadata only is far less time consuming.

However, policy configuration will give option to use full data hash checking

if desired by user.

f. Data Database - Although less efficient than metadata checking but still gives

an option to the user to get the entire data hash calculated. However, it will

involve more Input/output operation and less efficient utilization of cache as

file data will also be called along with metadata.

g. User roles Database - It will hold privilege / permission data for users other

than file owner and administrator. On requesting read or write access to a

protected file, values from this database will be used to compare the requested

permission and granted / denied access to file.

h. Authentication Database - This DB will hold passwords hash value for each

user for DB access and updating protected files. Being encrypted, the DBs

require a password to grant access to DB data. File updating is also password

protected to safely ensure if the user is authorized for such action or not. The

password will be asked as part of startup authentication mechanism. Only

during Blockchain detection operation, authentication is required during IDS

process.

i. Backup of Database - It is important to backup DBs to protect the system from

failure if these DBs are deleted or inaccessible. This back up DB will be a

 47

separate DB and not a schema of previously mentioned DB to ensure security

through segregation.

5.3.4 Securing Databases and OS Kernel module

Securing databases is a critical operation for the wellbeing and correct operation of

the proposed system. As stated before, all integrity checking IDSs face common problem of

DB security. Furthermore, an authorized user might update a file and requires write access to

same. In this case, the system must follow a secure channel to allow the write operation and

segregate authorized and unauthorized requests and update the related DBs.

Our design proposes use of Berkeley DBs, which are encrypted by AES using 128

bits key. We use Berkeley DBs as these are convenient to configure and encrypt by using an

inbuilt API. A password is required from user to gain access to the encrypted DBs. This

password is acquired on system initialization through a user level application and stored in

authentication DB in checksum form. Furthermore, OS kernel with IDS may be backed up in

a write protected device like USBs separately. Keeping backup in the same machine will

require more storage and less secure, hence a separate device may be used. Since OS updates

are not very frequent, therefore using an external device for safety makes sense.

To further ensure security, the restoration from backup will be protected by requiring

administrator level authorization on system startup.

5.3.5 Caching

Generally, the protected files are much less than unprotected files in an IDS secured

system. Furthermore, protected files having frequent access requests should not have repeated

hash calculation. These factors can be easily used to enhance system efficiency by

constructing a cache. Our proposed system will have following cache operations as part of

system kernel: -

a. Policy - It will hold results of previous policy look up for protected files. If

policy exists in cache, then this cache will also hold the policy details of the

file to avoid looking up in the DB and hence increase system efficiency.

b. Read data - On getting positive policy result, a file is granted access. As stated

earlier, frequent access must not cause recalculation of hash values, therefore

files present in read cache will not be re-calculated for hash unless they meet

the frequency number. Each file write operation to such a file will remove the

entry from the read cache.

c. Blockchain result - Secure updates to OS are handled in a unique way in the

proposed system. All updates are broadcasted to every blockchain node in the

IDS network to analyze for presence of malware. Detail of this mechanism

 48

will be given later. However, each node will submit its result on the

blockchain and cache the result for quick reference, if same file is submitted

by another node again.

5.3.6 Authentication

Authentication is required due to following reasons: -

a. Granting access to encrypted Databases - As stated earlier, the DBs at data

layer are encrypted and require a password to gain access. The authentication

at this layer ensures that no malicious user can access the DBs without going

through a secure channel. Password acquired on each startup is compared to

the user provided password stored during initialization.

b. Allowing secure OS and file updates - Users should be able to securely update

the protected files and saving of new OS updates should be done through a

secure channel only. In this case, our design allows updates to take place only

after authenticating the valid user. This is a necessary step to avoid re-

initializing the system for updates to take effect.

c. Secure restore from external Backup media - Kernel and IDS module binaries

are optionally backed up in a write protected external media like a USB, CD-

R/DVD-R. If required, recovery of OS can be done from such a media. The

restoration will be initiated on administrator authentication, after the Kernel

and IDS binary fail the Blockchain comparison test.

d. Check user roles - On system start up, users will be asked to enter their

credentials and compared with data in authentication DB. Once authenticated,

each file access will be granted as per user permissions in user roles DB.

START
SYSTEM CALL

INTERCEPTION
CHECK USER ROLES

CHECK USER
PRIVILAGES

STOP

READ FILE
ROUTINE

WRITE FILE
ROUTINEOWNER / WRITER

READER

 Figure 5.3 Checking User Roles

 49

e. Check system integrity - System integrity will be checked on each startup by

calculating the Merkle value of kernel, IDS and selected files. This value will

be compared with Merkle value from blockchain. System will only boot

completely if test is successful or will prompt the user to authenticate for

system restore from external media.

5.3.7 Secure Updates

Due to scalability issues, we are limiting ourselves to design IDS system for a server,

which must undergo very few updates. Normally there are two types of updates. OS updates

and file updates by users. Our design proposes a novel approach to ensure that updates are

not malicious and are carried out through a secure channel. Details are as under: -

5.3.7.1 OS updates

Our novel approach to analyze each OS update is based on use of blockchain.

Normally, updates in a network are sent to client systems from a FTP server. However, this

arrangement is not very secure as any intruder can infect the centralized server for malicious

updates and infect all systems in a network. Authors in [58] propose a novel method to check

updates for malware.

a. Any update file in a system or blockchain node is broadcast to all other nodes

to analyze for presence of malware. Here we are not using any specific

detection engine, but all nodes may use different techniques for detection. The

result from all nodes is added to the blockchain and is compiled. Majority vote

principal is applied to the update file to know if it carries malware or not.

Blockchain provides diversification and decentralization to this process

ensuring better result probability and avoiding single point of failure.

b. Update is applied to OS if blockchain majority vote indicates that no traces of

malware were present in the update file.

External HDD

Fil
e B

ro
ad

ca
st

fo
r a

na
lys

is

 Figure 5.4 Collaborative Malware Detection

 50

5.3.7.2 User updates to protected files

Users will be checked for roles to obtain read and write privileges to protected files.

Users will only be able to write to files after authentication on startup. Such files can also be

broadcasted to blockchain nodes before saving, however such an arrangement is deemed to

be very resource intensive as user file updates may be relatively frequent than OS updates.

Therefore, policy option will be given to a user to check file for written traces of malware or

just use authentication mechanism to assess user roles for protection. Later option is proposed

to be the default option.

5.4 Blockchain Integration with IDS system

Existing file integrity IDSs face common threats to DB security and managing secure

updates to OS. In our design, we have endeavored to address both issues using the new

blockchain technology. Blockchain not only provides immutable record for a system state but

can also be used for maintaining a decentralized malware detection network. In the start of

this research, we wanted to use blockchain for following purposes: -

a. Ensuring true system state by using Merkle root value of all files, stored on

blockchain. The decentralized and immutable nature of blockchain ensures

that recorded Merkle value is true and cannot be hacked.

b. Ensuring safe updates to OS and few cases of file updates by collaborative

malware analysis.

c. Storing backup copies of protected files and OS on blockchain nodes for

recovery if intrusion detected.

First two uses have been incorporated in the design to some extent, however the third

use may not be possible at this technological age of blockchain due to scalability and storage

issues. Large scale blockchain adoption is currently hampered due to these issues of mass

storage and transaction speed. Several blockchain startups are working on increased

transaction speeds and scalability like Quarkchain or Zilliqa and many more are also

researching to provide mass storage for blockchain applications i.e. Bluezelle or Phantasma.

We propose to use Ethereum smart contract platform to implement the system. Ethereum is a

second generation blockchain and provides users with smart contract writing facility. We

propose to use Ethereum as it is widely used in blockchain world with several online

resources available. Almost all other smart contract platforms are in development stage

baring few like Neo, but these have very less resources available online. Furthermore,

 51

Ethereum development is quite efficiently integrated with Microsoft Azure platform for

testing and deployment.

Ser Specification Bitcoin Ethereum

1. Block time 10 minutes 15 seconds

2. TPS max 2000 tps 2000 tps

3. Blockchain size 173 Gb > 1 Tb

4. Block size 1 Mb Variable

5. Monthly growth 4.4 Gb 187 Mb

 Table 5.2 Comparison of Bitcoin and Ethereum

5.4.1 Blockchain Merkle root

Due to scalability issues and simplicity, only Merkle root value from OS kernel with

IDS module will be stored on the blockchain along with timestamp as a default. The root is a

resource intensive step and will be carried out once on initialization. Files will not be included

in Merkle root on file updating as new Merkle value will have to be calculated and updated on

blockchain. The new Merkle value calculated will be non-persistent and not stored on the

system.

OS updates are less frequent, so Merkle root value updating on blockchain after

authentication will not be required often. To check system integrity on startup, OS kernel and

IDS module root value will be recalculated and compared with same value from blockchain as

stated earlier. Since recalculating Merkle root for every startup may be time consuming,

therefore an option in policy can be constructed to carry out this step after a set frequency or

on start up by an administrator.

5.4.2 Value exchange through API

A custom API will be used to transfer values between blockchain virtual machine and

the IDS module. This API will have following functions: -

a. Provide Merkle root value from IDS module to blockchain and vice versa.

b. Provide files data to blockchain for nodes involved in malware detection.

c. Getting detection results of each node from blockchain and calculating

majority vote.

 52

d. Updating majority vote result on blockchain.

e. Updating detection DB by getting all previous results of majority votes from

blockchain.

f. P2P transfer of files between detection nodes for malware analysis.

5.4.3 Ethereum smart contract process

Developing exclusive blockchain for the proposed IDS is not viable due to

development costs involved. Therefore, we will use Ethereum platform of smart contracts to

develop the required blockchain application. This will eliminate all development steps for

nodes, consensus protocol, value storage etc. The Ethereum web application developed

through a smart contract, will just be used as an online storage platform by custom API for

IDS functionality.

5.4.4 File data exchange for Malware detection

As stated earlier, a custom API will exchange values between the IDS module and the

blockchain network. What values are exchanged for an operation, is critical. Detail about

values is as under: -

5.4.4.1 System validation check on start up

Only Merkle root value calculated from OS kernel, IDS module along with timestamp

is stored on the blockchain on system initialization. On each startup, the calculated value less

timestamp will be compared with the blockchain value.

5.4.4.2 Malware detection

a. File metadata and hash sent to blockchain and vice versa.

b. Result of malware analysis to blockchain.

c. Result of majority vote result to blockchain.

d. List of available nodes for malware detection from blockchain.

e. Confirmation of P2P file reception to blockchain.

f. Complete list of analyzed files with result from blockchain to update detection

DB.

g. Results of individual malware analysis by nodes from blockchain.

5.5 Selection of Files for protection

It is imperative that we build the file protection list with care. The selection depends

largely on the system’s tasks and objectives. Almost every research publication recommends

protecting system and configuration files, however there may be other files which might be

important for correct system operation. The file selection is important not only from security

point of view but also for balanced performance. It is not possible to guard all files in a

system or frequently changing files i.e. log files due to performance issues. But at the same

 53

time, there might be some data files like personal or financial information which require

protection. Frequency of file access and security significance are the main factor to select a

file for protection.

5.5.1 Types of files

In modern OSs, all system components such as instructions, drivers and data are

stored as files. The quantity of files in an OS is huge and these are the prime target of an

attacker to intrude into the operating system. Attacks on operating systems are carried out by

modifying or replacing the original files. It is important to understand the importance of each

file type along with its effect on system security. Detail is as under: -

a. OS, program and app files - These files are vital for correct operation of a

system and only change during a patch or upgrade implementation, hence

must be protected. If an intruder is successful in replacing one of these files,

he can conveniently hijack the system or install a malware. In every intrusion,

a malware is copied into the target system behaving like a system file i.e.

Trojan. A file integrity checker can easily detect such a threat. Examples of

system files may include executables, libraries supplied with OS and

directories of other applications.

b. Configuration files - These are also important to secure but their modification

may not result in a security emergency. Configuration settings restrict access

to services and objects through user privileges and should be monitored for

modification. These may be required to modify frequently, therefore to ensure

better system performance, only selected configuration files be protected. The

selection may depend on system tasks and software type being configured.

c. Temporary files and User data - These files update frequently and have

reduced privileges, therefore may not be selected for protection. Although

these may be attacked by an intruder but due to reduced permissions, do not

pose a grave threat to system functionality. A user may select a data file for

protection if deemed necessary, when configuring the IDS policy. Few file

classification algorithms can aid a user in selecting a data file for protection.

5.5.2 File classification algorithms

As stated earlier, system files are prime focus of intruders and must be protected for

security. There are other files as well, which might be important for a user such as files

related to online banking services, medical records, military sensitive data files or files

related to web hosting. It is useful to classify these files for protection as per every user’s

 54

unique requirements. In [70], authors have classified files as per their security weight. The

formula is: -

wi= (α * ƒi) + {βi * di (α + β = 1)}

Where,

wi= weight of file i

ƒi= access frequency of file i

di=significance of the directory containing the file i

α and β are related with proportion of directory significance and frequency

Microsoft also provides File Classification Infrastructure (FCI) in [71] Windows

Server edition 2008 R2. It is to aid in selecting user files for protection. It is more focused

towards selecting business data files than system files and depends on business impact due to

intrusion.

Another algorithm in [72] is provided which is more related to security posture of a

system. Files are classified into three types; read only, write free and log-on files and are

related to security levels. The security levels are also classified into high, medium and low

levels. High security files require real-time checking i.e. system files. Medium level files may

be checked for integrity periodically and low-level files may be ignored for checking.

In [73], authors provide another angle to classify files. Threshold values for sensitive

and significant files are defined by tsig and tsen. If wi is greater than threshold values, then

the file is placed in the related group i.e. ssig or ssen, otherwise it belongs to ordinary files

group sord. Files in significant group can be read or executed by a user but not modified even

by a root i.e. executables. Files in sensitive group can be modified but the activity must be

logged i.e. configuration files. All other files like temporary files fall under ordinary group

and do not require integrity checking for intrusion.

5.5.3 Recommendation

After analyzing different protection models and rationale, we arrive that all system

files must be protected. Few important configuration files be selected depending on the

system role. Lastly all other files may be analyzed by user for business or security needs by

himself or above mentioned algorithms.

5.6 IDS Algorithms

5.6.1 System Start up

The system may face a threat of kernel or IDS modification. This threat is averted

with a novel solution by checking the system integrity on start up. Figure 5.5 below presents

the startup protection algorithm. After the OS is loaded in RAM by Linux loader, the system

 55

undergoes integrity check as shown in the flowchart. As the Merkle checksum value is non-

persistent, it is not saved in the same system. Therefore, a fresh Merkle value is calculated as

per configured security policy and compared with the value from blockchain.

System boot process will resume only if the value is correct otherwise the system will

ask the user to undergo administrator authentication to restore system from external backup.

The system will shut down if user fails to enter the administrator password correctly.

POWER ON

POWER ON SELF
TEST

CHECK MASTER
BOOT RECORD FOR

BOOT PRIORITY

GRAND UNIFIED
BOOT LOADER /

LINUX LOADER TO
LOAD OS

OTHER BOOT
SUPOORTING FILES

/sbin, /init, /etc/
inittb, /etc/rc.local, /

runlevel

CHECK OS
INTEGRITY

CHECK KERNEL, IDS
MODULE AND

OPTIONAL FILES
INTEGRITY

GET MERKEL
CHECKSUM VALUE

FROM BLOCKCHAIN

API

CALCULATE SYSTEM
MERKEL CHECKSUM

VALUE AS PER
POLICY

VALUE SAME?

RESUME SYSTEM
BOOT PROCESS

YES

SYSTEM BOOTUP
COMPLETE

INITIATE SYSTEM
RECOVERY FROM

EXTERNAL BACKUP
NO

CHECK
ADMINISTRATOR
AUTHENTICATION

PASSWORD
CORRECT

YES
BACKUP

AVAILABLE?
RESTORE FORM

BACKUP
YES

SYSTEM SHUTDOWN

NO

NO

EXTERNAL
STORAGE

AUTHENTICATION
DATABASE

 Figure 5.5 System Start up Algorithm

5.6.2 File Read

After file operation are segregated as per user permission as explained in section 5.3.6

(d), the file read or write processes will initiate. Figure 5.6 presents file read operation. File

integrity is checked during file read request if a related protection policy is found in the

protection DB. Access permission against each user is detected and file access is granted or

denied after updating the file access logs for later auditing.

 56

To eliminate repetitive calculation of file checksum for integrity, it is checked if the

file has been read before by scanning the read cache. Access is instantly granted if an entry

for the same file is found in the cache. On the contrary, absence of file entry will show that

the file is being checked for the first time and system will initiate the checksum calculation

mechanism. Access to file is controlled based on result of Hash comparison from meta or

data DB (depends on policy) and fresh value. It is important to lock and unlock cache to

avoid race conditions in multi user environment.

READ FILE REQUEST
CHECK FILE

PROTECTION
IS THE FILE

PROTECTED?
CHECK POLICYYES

POLICY CACHED?
ACCESS

GRANTED?
YES

GET POLICY

NO

ADD TO POLICY
CACHE

UPDATE FILE DENY
LOGS

DENY ACCESS

NO

UPDATE FILE ACCESS
LOGS

GRANT ACCESS

NO

UPDATE READ
CACHE

CHANGE ACCESS DB
VALUE IF

APPLICABLE

IS FILE PRESENT
IN READ CACHE?

YES

COMPUTE FILE
HASH

NO

ARE THE
CALCULATED &

STORED HASHES
EQUAL?

CAN FILE BE
RESTORED?

NO

RESTORE FILE FROM
BACKUP

Yes

LOCK READ CACHE

YES

UNLOCK READ
CACHE

YES

NO

Figure 5.6 Read File Algorithm

5.6.3 File Write

Figure 5.7 gives the file write algorithm. This algorithm is critical to permit writing to

protected files. After segregating owners and writers, if a write request is received then policy

will be checked and access to file will be granted as configured.

It is important to consider that the file is going to be written to, so its checksum will

change. Therefore, the file entry from read cache will be removed to perform the hash check

on next read operation. Furthermore, the checksum and other related DBs are also updated

after the file write operation is completed or the file is saved.

 57

WRITE FILE
REQUEST

CHECK FILE
PROTECTION

IS FILE
PROTECTED?

CHECK POLICY
CACHE

YES

POLICY CACHED?GET POLICY NO
ADD POLICY TO
POLICY CACHE

ACCESS
GRANTED?

YES

UPDATE FILE ACCESS
LOGS

GRANT ACCESS

YES

LOCK READ CACHE

IS FILE PRESENT
IN READ CACHE?

REMOVE FILE FROM
READ CACHE

UNLOCK READ
CACHE

UPDATE FILE DENY
ACCESS LOGS

NO DENY ACCESS

NO

YES

NO

UPDATE
META,DATA,MERKEL

AND BACKUP DBs
WHERE APPLICABLE

 Figure 5.7 Write File Algorithm

5.6.4 BC Query

Our design follows a novel approach to check OS updates for presence of malware.

Authentication is required after receiving the file open request to check if the user wants to

undertake the blockchain detection mechanism. This step is required as the user might be

confident of having the update copy from authentic source and not require detection.

If detection is required, then the file is broadcast to all nodes in blockchain network to

carryout detection. On receiving results from all nodes, a majority vote is calculated, and

result is also uploaded on blockchain for record of other nodes. File open is controlled based

on majority vote.

 58

START OPEN FILE REQUEST

GET USER
PASSWORD AND
COMPARE WITH

STORED PASSWORD
FROM AUTH DB

MALWARE
ANALYSIS REQ?

CHECK DETECTION
DB

YES

STATUS
AVAILABLE?

MALWARE
DETECTED?

YES

GRANT OPENNO

BROADCAST ON BC
FOR DETECTION

NO

GET NODES’
RESULTS

API

CALCULATE
MAJORITY VOTE

UPDATE MAJORITY
VOTE ON

BLOCKCHAIN

DENY OPENYES

NO

PASSWORD
CORRECT?

YES

NO
UPDATE

BLOCKCHAIN CACHE
AND DETECTION DB
FROM BLOCKCHAIN

 UPDATE HASHES IN
META,DATA DB

 IF REQ UPDATE BACKUP
DB & MERKEL VALUE ON
BLOCKCHAIN

 Figure 5.8 Blockchain Query Algorithm

5.6.5 BC Collaborator

A blockchain collaborator node aids other nodes to detect if the OS update is malware

free. On receiving the file from the query node, each collaborator node will use own detection

engine and upload result on blockchain. An entry about the result will also be made in the

blockchain cache. The file will be deleted after the analysis is complete. Figure 5.9 presents

the collaborator mechanism.

 59

START

FILE RECEPTION
AND

CONFIRMATION
FROM BC

READ FILE
ATTRIBUTES AND
HASH FROM BC

CHECK BLOCKCHAIN
CACHE

RESULT IN BC
CACHE?

DETECTION DB

CHECK DETECTION
DB

NO

STATUS AVAIL IN
DETECTION DB?

USE DETECTION
ENGINE

NO

UPDATE
BLOCKCHAIN CACHE

SEND DETECTION
RESULT TO

BLOCKCHAIN
DELETE FILE

YES

YES

BLOCKCHAIN
API

 Figure 5.9 Blockchain Detection Algorithm

5.7 Challenges

The proposed system comes with several challenges. Few are listed below: -

a. Scalability - Integrity based IDS face a big problem of scalability.

Performance overhead increase with the increase in the number of files to be

protected. If OS kernel is added, the performance is even more degraded.

Additional features will further reduce the system efficiency. We feel that our

design will be resource intensive and will require simplification to reduce

performance overhead. I3FS [67] causes an overhead of 4%, whereas ICAR

[74] causes a performance overhead of 10% on the system.

b. Files selection - Selecting files for protection is complex as different

applications have different critical files. We do not want to select all files for

protection due to scalability reasons, therefore limited files only will be

protected for integrity. Due to difference in relevance of files for different

applications, it is difficult to establish a default pattern for selecting protected

files.

c. Blockchain integration - Blockchain is still in its infancy. A great solution to

secure IDS DB would have been backup storage on blockchain, however

blockchain storage is not currently at the level of required scale. At the

 60

moment, blockchain can only be used for minimal value storage and

consensus.

d. Linux extensibility - LSM is an access control mechanism for files in Linux

OS. It uses hooks to call functions to validate user access permissions to

Linux objects. However, recently the hooks have been removed due to

security reasons. Therefore, our entire real time call interception design will

have to be custom developed.

 61

Chapter 6

FUTURE WORK AND CONCLUSION

6.1 Future Work

As stated earlier, Blockchain is an emerging technology. A lot can be done to improve

the proposed design with the use of Blockchain. Possible roadmap for the future work related

to this thesis is given below: -

a. Development of smart contract for system integrity check and malware

detection in Ethereum.

b. Development of proposed IDS system in Linux.

c. Selection of an efficient Hashing algorithm for proposed design.

d. System design validation by carrying out intensive benchmarking tests.

e. Leveraging Blockchain technology to improve system design by incorporating

Blockchain based storage for backup.

f. Incorporate Blockchain based collaborative DDoS protection mechanism.

g. Study development of a private Blockchain platform for IDS operation only.

h. Using the same framework for other types of IDS for database protection.

6.2 Conclusion

The idea behind this research work was to asses new Blockchain technology for

securing the integrity of IDSs database and operating system updates. During our research,

we studied various existing IDS solutions and established that available techniques to secure

the databases and updates suffer from either flexibility or security issues. In our research we

developed a novel IDS framework levering Blockchain technology and predicted that

protection algorithms thus developed will provide the desired protection levels in IDSs. We

used file integrity checking IDSs for our research due to their simplicity, but we also envisage

that our framework and related algorithms will also work for other IDS techniques.

 We established a threat pattern specific to IDS security and developed our algorithms

to counter these threats. We are positive that these algorithms and framework will deliver the

required protection from these threats.

We plan to build a prototype of the proposed system to establish benchmarks and will also

use other IDS techniques to validate the viability of the framework design.

 62

REFERENCES

[1] Kim, Gene H, and Eugene H. Spafford. "The design and implementation of

tripwire: A file system integrity checker", Proceedings of 2nd ACM Conference on

Computer and Communications Security. ACM, 1994.

[2] Ken, Bypassing Tripwire and MD5 Hash Checking”, internet:

http://caffeinesecurity.blogspot.com/2013/05/bypassing-tripwire-and-md5-

hash.html, Jan 5, 2013 [Jan 27,2018].

[3] Bukac V, Tucek P, Deutsch M. (2012), "Advances and Challenges in

Standalone Host-Based Intrusion Detection Systems". In Fischer-Hübner S.,

Katsikas S, Quirchmayr G. (eds) Trust, Privacy and Security in Digital

Business. TrustBus 2012. Lecture Notes in Computer Science, vol 7449.

Springer, Berlin, Heidelberg.

[4] Hu, J: Host-Based Anomaly Intrusion Detection. In Handbook of Information and

Communication Security, pp. 235–255. Springer, Heidelberg (2010).

[5] Swapnil Patel , Gopalan Sivathanu, Anand Kashyap, Erez Zadok, FS : "An In-

Kernel Integrity Checker and Intrusion Detection File System", Proceedings of the

18th USENIX conference on System administration, November 14-19, 2004,

Atlanta, GA.

[6] Mosley, D. (2006). "Implementation of a File Integrity Check System". East

Carolina University.

[7] Motara, YM and Irwin, BVW. "File Integrity Checkers: State of the Art and Best

Practices". Information Security South Africa (ISSA). Sandton Conference Centre,

Johannesburg. July 2005.

[8] Gerco Ballintijn, William A and Leendert van Doorn. Arbaugh. "Design and

Implementation of Signed Executables for Linux". Technical Report CS-TR-4259,

June 2001.

[9] Ivan Visconti and Luigi Catuogno. "An Architecture for Kernel-Level Verification

of Executables at Run Time". The Computer Journal, 47(5), September 2004.

[10] Tripwire, Inc. Tripwire for Servers Datasheet. Technical report, Tripwire, Inc.,

2005.

[11] Gerco Ballintijn, William A and Leendert van Doorn. “Design and Implementation

of Signed Executables for Linux". Technical Report CS-TR- 4259, June 2001.

https://dl.acm.org/citation.cfm?id=1052684
https://dl.acm.org/citation.cfm?id=1052684
https://dl.acm.org/citation.cfm?id=1052684
https://dl.acm.org/citation.cfm?id=1052684

 63

[12] A. Chuvakin, "Ups and Downs of UNIX/Linux Host Based Security Solutions",

login: The Magazine of USENIX & SAGE, Apr. 2003, pp. 57-62, vol. 28, No. 2.

[13] Del Armstrong. (2003). "An Introduction to File Integrity Checking on Unix

Systems" (Global Information Assurance Certification Paper). Retrieved from

http://https://www.giac.org/paper/gcux/188/introduction-file-integrity-checking-

unix-systems/104739.

[14] K. Wüst, A. Gervais, "Do you need a blockchain?", pp. 375, 2017, [online]

Available: http://eprint.iacr.org/2017/375.

[15] Barbara Liskov and Miguel Castro. "Practical byzantine fault tolerance". In

Proceedings of the Third Symposium on Operating Systems Design and

Implementation, OSDI ’99, pages 173–186, Berkeley, CA, USA, 1999. USENIX

Association.

[16] "Bitcoin: A peer-to-peer Electronic Cash System", Available:

https://bitcoin.org/bitcoin.pdf.

[17] Björn Scheuermann and Florian Tschorsch, “Bitcoin and Beyond: A Technical

Survey on Decentralized Digital Currencies,” in IEEE Communications Surveys &

Tutorials, vol. 18, 2016.

[18] D. Chaum, “Blind signatures for untraceable payments,” in Proc. 2nd Conf. Adv.

Cryptol, Aug. 1982, pp. 199–203.

[19] S. Sabett, L. Law and J. Solinas, “How to make a mint: The cryptography of

anonymous electronic cash,” Amer. Univ. Law Rev, vol. 46, no 4,1996.

[20] S. Chandrakumar, V. Vishnumurthy and E. G. Sirer, “KARMA: A secure

economic framework for peer-to-peer resource sharing,” in Proc.1st Workshop

Econ. Peer 2 Peer Syst. (P2PEcon’03), Jun. 2003.

[21] W.Dai (1998)." B-Money",[Online],Available: http://www.weidai.com/bmoney.txt.

[22] H. Finney. (2004). "Rpow", [Online]. Available : http://cryptome.org/rpow.html.

[23] S. Nakamoto. (2008). "Bitcoin P2P e-Cash Paper", [Online].Available:

https://www.mail-archive.com/cryptography@metzdowd.com/msg09959.html.

[24] "Blockchain Technology: Beyond Bitcoin", Available: scet.berkeley.edu/wp-

content/uploads/BlockchainPaper.pdf.

[25] Ko D, Choi S,Yli-Huumo J, Park S and Smolander K, "Where Is Current Research

on Blockchain Technology? A Systematic Review". PLoS ONE 11(10): e0163477.

doi:10.1371/journal. pone.0163477, 2016.

[26] Charters S and Kitchenham B. "Guidelines for performing Systematic Literature

Reviews in Software Engineering",2007.

http://eprint.iacr.org/2017/375

 64

[27] "Blockchain: Powering the Internet of Value". Available:

https://www.evry.com/globalassets/insight/bank2020/bank2020blockchainpowerin

gtheinternetofvaluewhitepaper.pdf.

[28] "The logical components of Blockchain", Available:

www.linkedin.com/pulse/logical-components-blockchain-tony-willenberg.

[29] "A Gentle Introduction to Blockchain Technology", Available:

bravenewcoin.com/assets/Reference-Papers/A-Gentle-Introduction/A-Gentle-

Introduction-To-Blockchain-Technology-WEB.pdf.

[30] Shigeichiro Yamasaki, Hitoshi Okada and Vanessa Bracamonte," Proposed

Classification of Blockchains Based on Authority and Incentive Dimensions" .

ICACT2017 February 19 ~ 22, 2017.

[31] Swan M. "Blockchain: Blueprint for a New Economy" O'Reilly Media, Inc.; 2015.

[32] "Double-spending", 2016. Available: https://en.bitcoin.it/wiki/Double-spending.

[33] Bitcoinwiki; 2015. Available: https://en.bitcoin.it.

[34] Antonopoulos AM. "Mastering Bitcoin: unlocking digital cryptocurrencies",

O'Reilly Media, Inc, 2014.

[35] "Proof-of-Stake",2016. Available :https://en.bitcoin.it/wiki/Proof_of_Stake.

[36] Dhiren Patel, Jay Bothra and Vasudev Patel "Blockchain exhumed "ISEA Asia

Security and Privacy (ISEASP),2017.

[37] "Blockchain technology: 9 benefits & 7 challenges", Available:

http://www2.deloitte.com/nl/nl/pages/innovatie/artikelen/blockchaintechnology-9-

benefits-and-7-challenges.html.

[38] "4 major technical challenges facing IoT developers", Available

:www.sitepoint.com/4-major-technical-challenges-facing-iot-developers/.

[39] IBM Blockchain trend report 2017, Available:

www.slideshare.net/HorizonWatching/blockchain-trend-report-2017.

[40] Marco Conoscenti, Antonio Vetro and Juan Martin," Blockchain for the Internet of

Things: A systematic literature review", IEEE/ACS 13th International Conference

of Computer Systems and Applications (AICCSA) , 2016.

[41] Ali Dorri, Salil Kanhere and Raja Jurdak-Praveen Gauravaram "Blockchain for IoT

security and privacy: The case study of a smart home",IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom

Workshops) ,2017 .

 65

[42] Ali Dorri, Salil Kanhere and Raja Jurdak,” Towards an Optimized Blockchain for

IoT", Proceedings of the Second International Conference on Internet-of-Things

Design and Implementation - IoTDI '17 , 2017.

[43] Kamanashis Biswas and Vallipuram Muthukkumarasamy ," Securing Smart Cities

Using Blockchain Technology", IEEE 18th International Conference on High

Performance Computing and Communications; IEEE 14th International

Conference on Smart City; IEEE 2nd International Conference on Data Science

and Systems (HPCC/SmartCity/DSS), 2016.

[44] Sayed Hashemi, Faraz Faghri, Paul Rausch and Roy Campbell ," World of

Empowered IoT Users " , IEEE First International Conference on Internet-of-

Things Design and Implementation (IoTDI) , 2016.

[45] Aymen Boudguiga, Nabil Bouzerna, Louis Granboulan, Alexis Olivereau, Flavien

Quesnel, Anthony Roger and Renaud Sirdey ," Towards Better Availability and

Accountability for IoT Updates by Means of a Blockchain", IEEE European

Symposium on Security and Privacy Workshops (EuroS&PW), 2017.

[46] Boohyung Lee, Jong and Hyouk Lee ," Blockchain-based secure firmware update

for embedded devices in an Internet of Things environment", The Journal of

Supercomputing , 2016.

[47] Seyoung Huh, Sangrae Cho and Soohyung Kim , " Managing IoT devices using

blockchain platform", 19th International Conference on Advanced Communication

Technology (ICACT) , 2017.

[48] Marco Conoscenti, Antonio Vetro and Juan Martin ," Peer to Peer for Privacy and

Decentralization in the Internet of Things", IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C) , 2017.

[49] Thomas Hardjono and Ned Smith ," Cloud-Based Commissioning of Constrained

Devices using Permissioned Blockchains ",Proceedings of the 2nd ACM

International Workshop on IoT Privacy, Trust, and Security - IoTPTS '16 , 2016.

[50] Yu Zhang and Jiangtao Wen ," The IoT electric business model: Using blockchain

technology for the internet of things", Peer-to-Peer Networking and Applications ,

2016.

[51] Jianjun Sun, Jiaqi Yan and Kem Zhang ," Blockchain based sharing services: What

blockchain technology can contribute to smart cities ",Financial Innovation , 2016.

[52] Mayra Samaniego and Ralph Deters ," Using Blockchain to push Software-Defined

IoT Components onto Edge Hosts", Proceedings of the International Conference on

Big Data and Advanced Wireless Technologies - BDAW '16 , 2016.

 66

[53] Jaemin Park and Kwangjo Kim ," TM-Coin: Trustworthy management of TCB

measurements in IoT", IEEE International Conference on Pervasive Computing

and Communications Workshops (PerCom Workshops) , 2017.

[54] Mayra Samaniego and Ralph Deters," Blockchain as a Service for IoT

 ", in Internet of Things (iThings) and IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and

IEEE Smart Data (Smart Data), 2016.

[55] Bains.P , Murarka.N (2017) . Bluzelle: A Decentralized Database for the Future.

[Online] Available from: https://crushcrypto.com/wp-

content/uploads/2018/01/BLZ-Whitepaper.pdf .

[56] Flores.S, Ferreira. M, Paixão.A, Pinho,B (2018). Phantasma Protocol. [Online]

Available from: https://phantasma.io/phantasma_whitepaper.pdf.

[57] PolySwarm (2018). PolySwarm: A Decentralized Cyber Threat Intelligence

Market.[Online] Available from: https://polyswarm.io/polyswarm-whitepaper.pdf.

[58] S. Raje, N. Wilson, S. Vaderia and R. Panigrahi, " Decentralized firewall for

malware detection," 2017 International Conference on Advances in Computing,

Communication and Control (ICAC3), Mumbai, 2017, pp. 1-5.

[59] Quarkchain Foundation (2018). Quarkchain: A High Capacity Peer to Peer

Transactional System. [Online] Available from:

https://quarkchain.io/QUARK%20CHAIN%20Public%20Version%200.3.4.pdf.

[60] The Zilliqa Project (2017). Zilliqa: A Secure, Scalable Blockchain Platform

.[Online] Available from: https://docs.zilliqa.com/whitepaper.pdf.

[61] Bace R, Mell P . "NIST special publication on intrusion detection systems". DTIC

Document, 2001.

[62] Preneel, B. "State of the art ciphers for commercial applications", Computer

Security, 1999, 18, (1), pp. 67–74.

[63] Wright C, Cowan C, Smalley S, Morris J, Kroah and Hartman G."Linux security

modules: General security support for the Linux kernel". In: Proc. 11th USENIX

Security Symposium, San Francisco,CA, 2002, vol. 2, p. 44.

[64] Z.C, McGill and Payne C., "Empowering end users to confine their own

applications: the results of a usability study comparing SELinux, AppArmor, and

FBAC-LSM", ACM Trans. Inf.Syst. Secur. (TISSEC), 2011, 14, (2), p. 19.

[65] Kim, G.H. and Spafford E.H.: ‘The design and implementation of tripwire: a file

system integrity checker’. In: Proc. Second ACM Conf. Computer and

Communications Security, ACM, 1994, pp. 18–29.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mayra%20Samaniego.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ralph%20Deters.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7916868
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7916868
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7916868

 67

[66] Rocke, A.J and DeMara: "CONFIDANT: Collaborative object notification

framework for insider defense using autonomous network transactions". Agents

Multi-Agent Syst., 2006, 12, (1), pp. 93–114.

[67] Patil, S., Sivathanu, G., Kashyap and Zadok E."I3FS: An in-kernel integrity

checker and intrusion detection file system". In: Proc. 18th Annual Large

Installation System Administration Conf. (LISA04), 2004.

[68] Da Silveira Serafim and Weber R.F."Restraining and repairing file system damage

through file integrity control", Comput. Secur., 2004, 23, (1), pp. 52–62.

[69] O. Yigit and Seltzer M, ‘‘A New Hashing Package for UNIX,’’ Proceedings of the

Winter USENIX Technical Conference, pp. 173-84, http://www.sleepycat.com ,

January 1991.

[70] Jin, H. "A guest-transparent file integrity monitoring method in virtualization

environment" Computers and Mathematics with Applications, 2010. 60(2): p. 256-

266.

[71] "Microsoft. File classification infrastructure, technical white paper". 2009;

Available from: http://www.microsoft.com/windowsserver2008/en/us/fci.aspx.

[72] R. Mahmod, Z. H. Abdullah, N. I. Udzir and K. Samsudin. 2011. "Towards a

dynamic file integrity monitor through a security classification". Internal Journal of

New Computer Architectures and Their Applications (IJNCAA) 1, 3, 766-779.

[73] Jin, H., Xiang G., Zou D., Zhao F., Li M. and Yu C. " A guest-transparent file

integrity monitoring method in virtualization environment". Computers &

Mathematics with Applications 60(2), 256–266 (2010).

[74] Wrobel MR and Kaczmarek J. "Operating system security by integrity checking

and recovery using write-protected storage". IET Information Security. 2014;

8(2):122–31.

	Tittle Page
	Abstract
	Thesis

