Validation of Encryption Implementation in Software

through Reverse Engineering

Muhammad Wagqas

A thesis submitted to the faculty of Information Security
Department, Military College of Signals, National
University of Sciences and Technology, Rawalpindi in
partial fulfilment of the requirements for the degree of MS
in Information Security

November 2018

Supervisor Certificate

This is to certify that Muhammad Wagqas Student of MSIS-15 Course Reg.No 00000171582

has completed his MS Thesis title ''Validation of Encryption Implementation in

"

Software through Reverse Engineering." under my supervision. I have reviewed

his final thesis copy and I am satisfied with his work.

Thesis Supervisor

(Dr. Mehreen Afzal)

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Muhammad Waqas Registration No.

00000171582, of Military College of Signals has been vetted by undersigned, found

complete in all respect as per NUST Statutes/Regulations, is free of plagiarism, errors
and mistakes and is accepted as partial, fulfillment for award of MS degree. It is further
certified that necessary amendments as pointed out by GEC members of the scholar

have been also incorporated in the said thesis.

Signature:

Name of Supervisor:

Date:

Signature (HOD):

Date:

Signature (Dean/Principal):

Date:

i1

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

11

Dedication

This thesis is dedicated to MY FAMILY, TEACHERS AND FRIENDS for their love,

endless support and encouragement.

Y

Acknowledgement

First of all, I would like to thank Allah Almighty for His countless blessings. After
that I want to express my appreciation to my family, my friends, colleagues and the
faculty for providing their enormous support to help me to do this research. Without
their relentless support, assistance and prayers, I would not have reached culmination

point in a peaceful state of mind.

I would like to convey my gratitude to my supervisor, Dr. Mehreen Afzal, for her
supervision and constant support. Her invaluable help of constructive comments and
suggestions throughout the experimental and thesis works are major contributions to
the success of this research. Also, I would thank my committee members; Dr. Fawad
Khan and Asst Prof Waleed Bin Shahid for their support and knowledge regarding this

topic.

I am also highly thankful to my parents who always stood by my dreams and aspirations
and have been a great source of inspiration for me. I would like to thank them for all

their care, love and support through my times of stress and excitement.

Last but not the least, I am grateful and thankful to Military College of Signals and
National University of Sciences and Technology for providing me a chance to help

achieve excellence by being associated with the prestigious institutions.

Copyright Notice

* Copyright in text of this thesis rests with the student author. Copies (by any
process) either in full, or of extracts, may be made only in accordance with in-
structions given by the author and lodged in the Library of MCS, NUST. Details
may be obtained by the Librarian. This page must form part of any such copies
made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

* The ownership of any intellectual property rights which may be described in this
thesis is vested in MCS, NUST, subject to any prior agreement to the contrary, and
may not be made available for use by third parties without the written permission

of MCS, which will prescribe the terms and conditions of any such agreement.

* Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of MCS, NUST, Islamabad.

vi

Abstract

These days data security and communication are major concern for every organiza-
tion/individual and there are bundle of software available which uses cryptographic
primitives to protect internal data and to secure communication. Users want to know
that either the software they are using for their organization or data is really the one that
the developer has promised or mentioned in the specification because not every soft-
ware is open source. In case of close source software there need to be some parameters
that can guarantee that the software is implemented well as stated in the specification

secondly the best implementation practice is in place.

AES (Advance Encryption Standard) is FIPS approved cryptographic algorithm that
is basically used for data protection. It is widely used for encryption and decryption
of data in software as well as hardware. Reverse engineering is a technique used to

disassemble or discover the concept or code used in applications.

In this research, Different reverse engineering techniques were explored to discover
standard or otherwise implementation of AES encryption mechanism. This include
correct algorithm as defined in this work, key mechanism and modes of encryption.
This research also introduces a framework which can be used to achieve the goals using
design heuristics and AES signatures which were formulated over the period of time. To
automate and speed up the detection process a tool named “AES Crypto Scanner”was

developed, which will scan the assembly file against defined parameters.

vii

Contents

1 INTRODUCTION 1
I.1 Overview e 1

1.2 Motivation and Problem Statement 2

1.3 Aimsand Objectives e 2

1.4 Thesis Contribution 3

1.5 Thesis Organization i 4

2 LITERATURE REVIEW 5
2.1 Introduction 5

2.2 Advance Encryption Standard (AES) Overview 5
2.3 Reverse Engineering and Code Analysis 7
23.1 StaticAnalysis 8

2.3.2 Dynamic Analysis 8

2.4 Reverse Engineering and Binary Analysis Tools 9
2.5 Importance of Reverse Engineering 10
2.6 Challenges of Reverse Engineering 11
277 RelatedResearch 12
2.8 Summary L 17

viil

3 Proposed Framework for Cryptographic Algorithm Detection

3.1 Introduction
3.2 Proposed Framework,

3.2.1 Define Well Known and Standard Algorithm Implementations
of AES

3.2.2 Compilation and Signature Extraction
3.2.3 Signature Extraction from Open-Source Applications
3.2.4 Design Heuristics
3.2.5 Database Creation
3.2.6 Perform Analysis on Real Applications
3.277 Development of Tool for Quick Detection
3.3 Selected Implementationof AES,
3.4 Significance of Proposed Framework
3.5 Limitation of Proposed Framework

3.6 Summary e e e e e e

Implementation & Results

4.1 Introduction e

4.2 Selected Applications for Analysis

4.3 Analysis of Real Applications
43.1 Analysis Platform,
4.3.2 Open-Source Applications Analysis
4.3.3 Close-Source Applications Analysis

4.4 AES Crypto Scanner: An Automated Approach
4.4.1 Tool Specification, GUI and Main Functions

4.4.2 Benefits of AES Crypto Scanner w.r.t Existent Tools

X

4.5 ToolsComparison e 60

4.5.1 Listof Tools/Plugins 60

452 Results e 60

4.6 Summary e e e e 63
5 Conclusion & Future Directions 64
5.1 Conclusion e e 64
5.2 Future Directions e 65
53 Summary e 66
References 68

2.1

3.1

32

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

List of Figures

AES algorithm encryption structure 6
Schematic overview of proposed framework 20
EncFSMP linesofcode 25
VMware Workstation Lo 34
T-zip S-Boxs 36
7-zip AES Instruction Set (Encryption) 36
7-zip AES Instruction Set (Decryption) 37
T-zipModes 37
7-zip compressioninfo Lo oo 37
AxCryptCode view o e 38
AxCrypt Modes & padding 39
VeraCrypt AES Instruction Set (Encryption) 41
VeraCrypt AES Instruction Set (Decryption) 42
VeraCrypt AES Instruction Set (Flow Encryption) 42
EncFSMP S-Box 43
EncFSMP AES Instruction Set (Patternl) 43
EncFSMP AES Instruction Set (Pattern2) 44
EncFSMP AES Instruction Set (Decryption) 44

X1

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

EncFSMP AES Instruction Set (vaesenc) 44
EncFSMP AES Instruction Set (Key Generation) 45
EncFSMPModes 45
EncFSMPGCMMode 46
Privacy Drive library oo 47
Privacy Drive Crypto library 47
LibTomCrypt Library directory 48
Privacy Drive Mode (xts_decrypt.c function) 48
Privacy Drive Mode (xts_initt.c function) 48
Privacy Drive Mode (xts_encrypt.c function) 49
Privacy Drive Mode (xts_done.c function) 49
LibTomCrypt XTS Mode Functions 50
SensiGuard AES_Encrypt and AES_Encrypt_key functioncall 51
SensiGuard AES_Decrypt and AES_Decrypt_key functioncall 51
SensiGuard IGEMode 51
Boxcryptor Code Viewo 52
BoxcryptorModes 53
Rohos Mini Drive S-Box 54
Rohos Mini Drive Decryption 54
Rohos Mini Drive Last Round Decryption 54
Rohos Mini Drive AES Encryption including lastround 55
Rohos Mini Drive Key Generation 55
Rohos Mini Drive IMC Function 55
BestCrypt S-Box e 56
BestCrypt AES Signatures, 56

Xii

4.41 Private Disk S-Box

4.42 AES Crypto Scanner

Xiil

List of Tables

4.2 Selected applications for analysis
4.3 Open-Source applications result comparison

4.4 Close-Source applications result comparison

Xiv

Chapter 1

INTRODUCTION

1.1 Overview

At the present time, the key emphases of organizations are on data/information secu-
rity and the leak of sensitive information can cost them both monetarily and reputation.
Although there are bunch of tools and techniques that are used by different organiza-
tions depending on their needs. Here detection of correct/standard implementation is an
evolving problem in the field of information security because the source code is usually
not available and getting information from low level/machine language is cumbersome
task. So, without defined perimeters the task of analyst is very difficult and sometime

impossible.

To protect the data, the use of cryptography in software is very popular in this insecure
world. Cryptography is said to be a science which investigates strategies for ensuring
data security i.e. data confidentiality, data integrity and data authenticity [1]. Here data
confidentiality means that only the authorized person can view the data, Data integrity
means that no unauthorized changes can be made in the data and only changes by au-
thorized person can be made, Data authenticity means that the receiver will be able
to correctly identify the sender of the data which means that the data will contain the

information of real sender of the data.

If standard cryptographic algorithm is implemented then it increases the security of

the tool and it can be verified by analysing source code. The standard or otherwise

1

implementation of cryptographic algorithms can be seen by analysing source code and
can verify that either it confirms to our security requirement or not, but this is not
always the case. The issue arises when there is no access to source code either lost
or it is close source application, then it gets really tough to identify the cryptography
and its parameters in software. The only method left is to reverse engineer the code,
get the binary out of it, analyse it and confirm it against the standard implementation
but it is not that easy as it sounds, because it requires labour intensive manual binary
analysis and skills. Binary code does not hold many comfortable features of high-
level code/programming languages like, there is no standard and defined processes or
distinction between data and code, variables and functions information ‘s are usually lost

during reverse engineering and are represented using memory addresses and registers

[2].

1.2 Motivation and Problem Statement

Every developer declares their software to be the best and claims to provide the best
implementation that no other developer can provide, however user cannot verify their
claim. Similarly, in case of encryption software there are number of software that claim
to be the best and user has to believe their claim but cannot technically verify in the
absence of source code. For instance, CertainSafe Digital Safety Deposit Box, Folder
Lock, AxCrypt Premium are among the best encryption software available according
to the recent article [3]. To verify the correctness of cryptographic implementation in
a closed source software or in the absence of any clue about the source code, reverse

engineering of software remains the only option.

1.3 Aims and Objectives

The prime objectives of thesis are:

1. Exploration of reverse engineering tools and techniques for efficient disassembly

of crypto code in software.

2. Formulation of the framework for identification of encryption algorithm and its
different parameters including encryption/decryption routines, rounds, key size

and modes of encryption.

3. Experimental results on application of feasible open source tools on some open

source applications to verify the methodology.

4. Generalization of the obtained results on closed source application.

1.4 Thesis Contribution

To the best of our knowledge there is no work that is specifically done on AES and
on verification of AES against any standard implementation. Detection of crypto algo-

rithms are done in earlier work but this kind of specialized work is not stated earlier.

The main contributions of this work are as follows:

* Different reverse engineering tools and techniques for disassembly of applica-

tions are explored, analysed and strengths/weakness are reported.

* A framework for the detection of AES and its parameters is formulated which

will analyse the applications against standard implementation of AES.

* To check the effectiveness of the proposed framework, it was applied on few

open-source applications to verify the methodology.

* To speed up the detection, a tool named “AES Crypto Scanner”is developed that

identifies and highlight the AES parameters in software if found.

* The proposed framework is also generalized on close-source applications and few

close-source applications were also analyzed.

* Detailed experimental results gained by the proposed framework are compiled
which gives a clear comparison of this method versus other methods currently

used for the similar purpose.

1.5 Thesis Organization

The thesis is structured as follows:

* Chapter 1: This Chapter includes introduction to topic, brief explanation of re-
search area, problem statement, aim and objectives. It also highlighted the main

contribution of this research work.

* Chapter 2: It contains the literature review conducted during the thesis. This
chapter focuses on introduction of AES, different reverse engineering techniques,
challenges and already work carried out on crypto code detection and analysis.
Identification of cryptographic primitive is previously addressed and studied in
different motivation and different authors have presented their ways for identifi-
cation of cryptographic primitives in software. It also contains the weaknesses

and strength of each work.

* Chapter 3: This chapter contains the proposed framework to identify the AES in

binary code and the procedure of verification against the standard compliance.

* Chapter 4: This chapter covers the implementation detail as well as the results
acquired using this technique. It also consists of comparison between other simi-

lar solutions with proposed framework to show the effectiveness of this method.

* Chapter 5: This chapter marks the end of the document. The conclusion and

future work areas are revealed in this chapter.

Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter contains the AES introduction, different methods and techniques for re-
verse engineering and the detail analysis of the relevant work that is already been carried
out over the time. In this section different techniques, tools and methods used to detect

crypto code, its effectiveness and the weaknesses of each solution are highlighted.

2.2 Advance Encryption Standard (AES) Overview

Advance Encryption Standard (AES) is FIPS approved cryptographic algorithm that
can be used for electronic data protection [4]. It is widely used for encryption and
decryption of data in software as well as hardware. The algorithm of AES is symmetric
block cipher and is capable of using block size of 128 bits, key size of 128,192, 256 bits

and rounds 10, 12 and 14 respectively.

128 bit plan text

Rounc{ Keys
ByteSub 1 K¢
4]
ShiftRows Add Round Key K ———— Cipher Key
MixColumns I = (128, 192, or 256 bits)
< Round 1 </ ¢
AddRoundKey ——— _g
-
| A Round 2 k- ::I-(z S
it 3 10 128
@ =
® < 12 192
ByteSub ®
_ﬁ 14 256
ShiftRows |« Round n Kn
MixColumns

v
128 bit cipher text

Figure 2.1: AES algorithm encryption structure

Figure 2.1 describes the encryption structure of AES algorithm. It contains rounds (10,
12 or 14), plain text, cipher text and keys. Each round except last (as shown in the figure
2.1) is consist of 4 elements i.e. ByteSub, ShiftRows, MixColumns and AddRoundKey.
Initially during encryption, the AddRoundKey is added at the start of the process and

that’s why there is no AddRoundKey at the end/last round.

Key Expansion: The round keys like shown in the Figure 2.1 are derived from the main

cipher key which uses Rijindael’s key scheduler.

AddRoundKey: It is the key for every round of AES algorithm that is combined with

each byte of the state using bitwise xor.

ByteSub: In ByteSub stage, each byte is replaced with another using a lookup table in

a non-linear way.

ShiftRows: In this stage, each row of a state gets a certain number of steps episodically

shifts.

MixColumns: At this step, the four bytes of each column are multiplied with a fixed

matrix and form a new column. It is similar to matrix multiplication of a columns.

The decryption process is also the same but in reverse order.

It is an easy task to check the software source code and verify it against the standard
compliance like FIPS 197 for AES. Secondly the tests are available to check the con-
formance to AES standard algorithm as started in FIPS 197 [5] but the problem arises
when the access to source code is restricted either lost or the application is close source
then there is no way to find that the code/application is as per the standard or not except

reverse engineering.

2.3 Reverse Engineering and Code Analysis

Reverse engineering is a technique used to disassemble or discover the concept or code
used in applications [6]. It is the method used when the access to the source code is
restricted either lost or the application source code is not public. So, in the absence
of source code, the only way to check the internal architecture or algorithm of code is
to reverse engineer it. Reverse engineering of code is not a tough job as there are few
tools that can easily give the low-level code of any application called binary code. The
problem is binary code is not familiar to most of the analyst/programmers and is not
easily understandable like the high-level code is, so looking for the desire functionality
in binary is tedious job and without parameters sometimes not possible to understand

the functionality of code.

Once the application is disassembled using any tool then the next step is the code anal-

ysis of that low-level code. There are two main methods of code analysis:

1. Static analysis

2. Dynamic analysis

So, the low-level code can then be analysed using any or all of the above-mentioned

methods.

2.3.1 Static Analysis

It is widely used analysis method for low-level and high-level programming code. In
Static analysis, the main focus is to locate the code sequence that possess some proper-
ties [7]. For this work, the target of static binary analysis was to locate specific param-

eters that can provide us desired information about the application under analysis.

There are few static analysis tools that use signatures for detection of the desired pa-
rameters [8]. That signatures are called magic constants and they can be anything like
s-boxes, any variable or any function call and using those tools, the signature is then
matched with x86 assembly code and if that signature is identified in that code it dis-

plays the message that the particular parameter is found in the targeted code.

2.3.2 Dynamic Analysis

Dynamic analysis is the type of analysis where the specific algorithm is revealed dur-
ing runtime, means the examination of code is performed after executing it. Then after
execution the different states are monitored and analysed against the reason that how
the application behaves. Unless static analysis, the dynamic analysis enables analyst to
see the true functionality of the application and secondly, the analyst can observe the
state changes by putting his values as input. It will enable the analyst to determine the
true functionality of application and will show the response, behavior and output of that
application [9]. This approach is very useful in case of malware analysis because it will
point out the kind of malware that hides in the code like keylogger etc., and will allow
to locate the location where it stores the data/information. In addition to that it is also

beneficial to analyse packed applications [8].

It is highly recommended to create a safe environment like sandbox or virtual machine
before selecting this approach because if the application is infected with malware then
it will damage the operating system and data. So, there should be different operating

system for dynamic analysis of application.

2.4 Reverse Engineering and Binary Analysis Tools

The following tools are used to reverse engineer applications, analysis of applications
against known parameters and perform binary analysis to identify cryptographic param-
eters. The following tools are used for reverse engineering and analysis of applications

during the course of our thesis.

IDA Pro: The Interactive DisAssembler (IDA) is very rich and effective tool to disas-
semble, debug and decompile the software programs. It is written in C++ language and

mainly operates on Microsoft Windows, Linux and Mac Operating System platforms

[21].

Given software application, it can disassemble it into low level code called assembly or
binary code. In addition to disassembly, it is very powerful debugger and disassembler
which gives a high-level code from the binary code but it does not give the actual high-
level code, it can only resolve the well-known and recognized procedures, API calls,

functions, loops and switches which make code easy to understand.

OllyDbg: OllyDbg is another great tool which is used for debugging the application
and it is usually used when the source code is not available. It is a 32-bit debugger
named after Oleh Yuschuk, who is the developer of this tool and it is available for Mi-
crosoft Windows [22]. The main benefit of OllyDbg is that it works best for dynamic
analysis means that the running state of application can be seen using this tool. Usually
it is not possible to analyse the program using static analysis as it will not show the

complete functionality, so it should be analysed dynamically to check the behavior.

WinDbg: WinDbg is similar tool like OllyDbg published by Microsoft but the main
difference is that WinDbg is for windows and used both for kernel mode debugging as
well as user mode debugging. This make it more powerful tool than OllyDbg in terms

of level of access [9].

FindCrypt: FindCrypt is a plugin designed for IDA Pro and coded in python language.
It provides static analysis of application and find common parameters, constants in ap-
plications [23]. The Find Crypt2 is the second version of FindCrypt which is stable and
works better as compare to FindCrypt. FindCrypt2 has a large database of constants
that is matched for any application under analysis. It contains signatures of almost all
the well-known hash functions and crypto algorithms like: Rijndael, DES, RawDES,
CAST, CAST256, Camellia, Blowfish, GOST, MARS, HAVAL, MD2, MD4, MDS5,
RC2, RC5, RC6, SHA1, SHA256, SHAS12, Whirlpool, Zlib.

FindCrypt2 does not comes with IDA Pro but it has to be added into the plugins direc-
tory to use it for analysis. So, whenever an application is set for analysis, it searches
for all the known constants from the database and match it against the one found in the

application binary code.

Signsrch: Signsrch is another very useful tool to scan for the cryptographic algo-
rithms in an application, program or process. This tool depends on cryptographic con-
stants/signatures to identify encryption parameters/algorithms [24]. The cryptographic
parameters are situated in a text file named, signsrch.sig. It can identify a huge number
of compressions & encryption algorithms as well as a lot of strings & anti-debugging

code.

SnD Crypto Scanner: SnD Crypto Scanner is also binary analysis plugin that is used
with OllyDbg. It also contains a list of well-known cryptographic signatures, constants
and hash functions. It is very powerful tool and its results are much better than Find-

Crypt2.

2.5 Importance of Reverse Engineering

Reverse engineering is very useful technique specially in software development and in-
formation security field. It is a way to verify specification, quality of product and known

bugs.

10

Aside from providing a means to assess software quality, reverse engineering has addi-

tional benefits [10][11]:

Extending the life of older procedures/method: Making an improved copy of some-
thing: Involves taking an existing part and extracting the design data or other informa-

tion and then creating an improved copy of it.

Malware Analysis: These days reverse engineering is frequently used to find malware
in applications. Viruses and malicious code can be found using identifying and recog-

nizing patterns or signatures in binary code.

Flaws Discovery: Reverse Engineering can be used to discover flaws and loopholes
in applications. Sometimes even well-implemented and well-designed systems have

loopholes that can be discovered after analysing binary code.

Flow Discovery: Using reverse engineering it can be seen that the program is behaving
normally or it has some other flow which is suspicious. For example, it is possible that
some application use keylogger and send the keystroke to some external server which

is a critical vulnerability in application.

Open Source Code detection: If the software is intended to be used for proprietary
use or for security then it is a point of concern that the software is using an open source
or shareware code. Reverse Engineering make it possible to find and detect replicated

code.

Improvement in Code: Reverse engineering similar apps can help in improving the

existing code by adopting the advance methodology and techniques used in the similar

apps.

2.6 Challenges of Reverse Engineering

Reverse engineering can be very beneficial in many cases as described in section 2.5 but
it also has some challenges which make it hard to use. These challenges are the barrier

for effective reverse engineering. The key challenges are:

11

Skill set: Reverse engineering requires a high-level of skill set in low-level language,
machine code and compiler architecture. It requires a clear understanding of different
fundamentals of reversing, code construct and flow analysis. When an application is
reversed, its losses the high-level representation, constants and functions information.

It tends to become very hard to understand and analyze component level design in deep.

Mining relevant data: In binary the execution traces become unmanageable and large

which make it very challenging to trace and mine relevant data [11].

Effectiveness of single method: No single method gives the complete and accurate
result i.e. static and dynamic analysis. For example, if the application is obfuscated,
packed or compressed then it is usually not possible to extract all the information using
static analysis of binary code so here dynamic analysis will come to aid. So, both the
methods should be used in parallel to get the complete overview of the source code
and to get the information of constants, libraries, loops, functions and any other coding

parameter.

Programming Language difference: The change of programming language has ef-
fects on the reversed engineered code. For instance, if an application is compiled using
java code than reversing that application will give us the java byte code which is way
better understandable than the low-level assembly language. Similarly, if .Net is used
to compile an application than the source code that is produced after disassembly is in
.Net assembly language which is also understandable. But if the application is compiled
using C++ or C language, it produces assembly code after being dissembled which is

complex and tough to understand.

2.7 Related Research

While analysing the software security, Special attention needs to be placed on the cryp-
tographic algorithm choice because the software security relies on it. Secondly, the
algorithm should be implemented using standard values and practices. For example,
MDS5 function is not secure to use because practical collision can be found [25] but still

it is being used in software which is not a good choice. Another example is of GnuPG

12

that used a smaller nonce value for the faster implementation of DSA signature scheme
which is a major algorithm implementation flaw [12]. There is another purpose as well
for binary program analysis and that is to check that your program is not leaking your
data because it will be a serious threat to data security. It is possible that the algorithm
is implemented in a way which may leak your confidential data so the program should
be very carefully analysed to check for this kind of vulnerabilities because side channel

attack will be applicable in this scenario.

A work on this direction was carried out by Felix Grobert, Throsten Holz and Carsten
Willems [8]. The authors proposed few methods for the identification of crypto code/
primitive such as algorithm identification or just keys from the binary program. They
used dynamic binary analysis approach to for the detection of crypto code and extrac-
tion of keys from a malware binary program under analysis. In their work, the authors
did not only rely on signatures for the identification purpose but have presented heuris-
tics which are based on both generic characteristics of crypto code and the signatures.
They used dynamic binary instrumentation framework to generate an execution trace.
The system then identifies the cryptographic primitives via several heuristics and sum-
marizes the results of the different identification methods. They evaluated six tools that
were publicly available and noted that no tool was able to detect all the cryptographic
primitives. They also demonstrate that our system can be used to uncover cryptographic
primitives and their usage in off the-shelf and packed applications, and that it is able to

extract cryptographic keys from a real-world malware sample.

Another work is proposed by Leonard et al., on the detection of crypto algorithms and
for detection they used grap which is a YARA like tool which allow analyst to describe
rules on binaries or textual pattern so that it can be checked on binary programs [13].
Grap is open source tool which help analyst to define detection pattern that are based on
CFG (Control Flow Graph) to detect the algorithm by focusing on instructions and flow
in the executable program. They created rules and pattern for AES and ChaCha20 that

are based on parts of the assembly code produced by compiling popular implementa-

13

tions available in LibreSSL and libsodium. The requirement of this work is one should
have accurately defined pattern which will be used for the detection of crypto algorithm
because their approach do not rely on constants. Secondly, their technique also depends
on the disassemble code quality since detection is done at assembly level that’s why
the pattern is sensitive to the choice of compilation option like compiler choice or opti-

mizations etc.

The latest work is the similar direction is done by Giegory et al., on classification of
cryptographic primitive keeping focus on cryptovirology [14]. Cryptovirology is de-
scribed as the offensive nature of cryptography for extortion-based security threats.
The authors presented a novel approach for the classification of cryptographic code

in a compiled binary executable using deep learning.

Diane Duros Hosfelt presend did his thesis on “Automated detection and classification
of cryptographic algorithms in binary programs through machine learning”[15]. The
motivation of author was to automate the process of identification so that the process
can be speedy and more efficiently combat malware. The goal of his thesis was to uti-
lize machine learning technique to detect and classify crypto code in small and single
purpose program. The authors also focus on the importance of basic block detection for
successful detection, where a basic block is a sequence of instructions in a given order
that has a single entry and exit point. These are generated from the dynamic trace. The
author elected to use Pin which is Intel’s dynamic binary instrumentation (DBI) frame-
work. It enables an analyst to examine the behavior of binary program at runtime by
injecting instrumentation code. As the code executes, DBI tools analyze what actually
occurs, instead of considering what might occur (as in static binary analysis). As this
work only focus on small and single purpose application that’s why it has few limita-
tions. First, this method relies on dynamic analysis using Pin for feature extraction. If
the code of interest is not executed during instrumentation, then it will not be analyzed
and extracted. Therefore, it must be assumed that the cryptographic code is always

executed. Secondly, it will not work efficiently on real world examples because they

14

involve multiple crypto libraries and not small or single purpose.

A work in similar direction is proposed by Felix Matenaar, Andre Wichmann, Felix
Leder and Elmar Gerhards-Padilla [16]. They present the architecture of CIS, the crypto
intelligent system that provides a framework which is complemented with the selection
of suitable heuristics to detect crypto functions in malwares. The authors distinguished
between symmetric, asymmetric, and hash algorithms because each class has their own

set of properties that must be met in order to be secure.

Another contribution on the topic cryptographic primitive identification was made by
Pierre et al., using Data Flow Graph Isomorphism [17]. The purpose of their research
was to evaluate the security of the binary programs that involve cryptography So, the
first step is to locate the point and choice of algorithm used in the binary program. For
this purpose, they device a method to automatically identify cryptographic choice used
in the binary program because manual analysis requires a lot of expertise and it is a
cumbersome task to perform. The method consists of static analysis of binary program
using Data Flow Graph Isomorphism and it targets symmetric cryptographic algorithm.
The limitation of their work is that it does not address the problem of code obfusca-
tion because the purpose is to analyse the general software not the malware. In their
paper, they also present few results on sample programs and cryptographic algorithms,

libraries and their implementations using several compilers.

Another work on a similar direction was presented by Joan Calvet, Jose Fernandez,
Jean-Yves Marion [18]. Their work focused on obfuscated binaries which provides a
solid clue that the program can be a malware. The tools usually do not work on ob-
fuscated binaries/code because the actual implementation of the program is hidden in
this case so the tools are not able to analyse the binaries. The authors have presented
a tool that solves problem of obfuscated code by retrieving the input-output parameters
of programs and comparing them to standard functions. They successfully identified

few cryptographic functions using this tool including AES, RC4, MD5, TEA and basic

15

operations of RSA.

A work in a similar direction was proposed by Dongpeng et al,. They proposed a
novel approach for recognition of cryptographic function in an obfuscated binary pro-
gram using the technique of bit-precise loop mapping [19]. Their approach catches
the semantics of conceivable cryptographic algorithms with bit-exact representative ex-
ecution in a circle. Then they performed guided fuzzing to productively coordinate
Boolean equations with known reference executions. After their successful results they
built a model like prototype called CryptoHunt and assessed it with an arrangement of
obfuscated binary test cases, famous and best-known cryptographic libraries, and mal-
ware. Contrasted to current famous tools for this purpose, CryptoHunt is a general way
to deal with distinguishing generally used cryptographic algorithms like, RC4, AES,
TEA, MDS5, and RSA under different types of controls and schemes for data obfusca-

tion.

Another work was proposed by Ruoxu Zhao, Dawu Gu, Juanru Li, & Ran Yu [20]. Their
paper proposes a novel automatic cryptographic data detection and analysis approach.
Their approach is based on execution tracing and data pattern extraction techniques,
searching the data pattern of cryptographic algorithms, and automatically extracting de-
tected Cryptographic algorithms and input-output data. They implemented and evaluate
their approach, and the result shows that their approach can detect and extract common
symmetric ciphers and hash functions in most kinds of programs with accuracy, effec-

tiveness and universality.

It can be seen that the detection and binary code analysis is not just a favorite area of
research for malware analyst but also for the those who care about data security. For this
purpose, different cryptographic parameters identifications techniques and solutions are
proposed by different authors. For instance, the work [8] uses dynamic binary analysis
of binary code using both signature and heuristics analysis method for packed appli-

cations while [14] [15] uses deep learning and machine learning to detect crypto code.

16

The motivation of the authors was also to provide a tool which can add in the detection
process as mentioned in [13] and many others has targeted obfuscated binaries [18] [19]
to retrieve the required data. The pattern analysis [20] or control flow graph analysis
[13] is useful for small programs but it can not be generalized well on real applications
while the signature plus heuristics [8] or even simple heuristics [16] method can be gen-
eralized on other applications and their success ratio is also better than other signature

based or pattern based analysis.

2.8 Summary

This chapter has briefly described AES and reverse engineering methodology including
the list of primary tools used for reverse engineer the applications and analysis. It also
explained the benefits and challenges of reverse engineering. The primary purpose of
this chapter was throughly research work done in similar direction, which is briefly

explained in the last section.

17

Chapter 3

Proposed Framework for

Cryptographic Algorithm Detection

3.1 Introduction

This is the most vital chapter as it describes the proposed framework which has been
recommended in this research. It will contain a detail proposed methodology, selected
algorithms of AES, significance of our approach as compare to other techniques used

for crypto algorithm detection and limitation of the proposed framework.

3.2 Proposed Framework

To identify cryptographic signatures, constants and known parameters one should either
have the database of the signatures and constants or one should have the flow informa-

tion. Both techniques have their advantages and disadvantages.

If static analysis is applied which means there should be a repository/database of con-
stants and using that repository the analysis of the application will be performed. The
advantage is this that the process of analysis became simple, easy to deploy, frequently
update the database and less time consuming. But the disadvantage is this that it might

not detect the valid implementation that is developed by developer himself rather than

18

using well known cryptographic libraries so, the analysis can fail in this case and this is

the limitation of this approach.

The flow information of program can be seen using dynamic analysis means one should
have to run the application on the binary analysis tool to see the flow operations, and
even constants of the code. The advantage of this approach is this that it gives a high
level of accuracy because it is possible that some information cannot be retrieved using
static analysis as the application might be packed or obfuscated but using dynamic anal-
ysis it will show true functionality, detailed understanding of the parameters and flow
of program. The disadvantage of this technique is this that getting flow information is
very tough and cumbersome task secondly the flow changes with the changes in source

code or even change of compiler.

This research approach relies on Static analysis of application where the focus will
not be only on the detection of AES algorithm in binary code but also its parameters
like S-Box, encryption & decryption routines, key length and mode of operation. To
effectively deploy the proposed method, a framework is developed which will help in

obtaining the desired results. The proposed framework consists of 2 main phases:

1. Planning

2. Analysis

The planning phase is the initial phase where analyst will prepare, define and refine our

approach. It mainly contains the following steps:

Define Well Known and Standard Algorithm implementations for AES

Compilation and signature extraction

 Signature extraction from open-source applications

Design heuristic

Database creation

19

The planning phase is the prerequisite for the analysis phase. The analysis phase will
use the output of phase 1 i.e. planning as an input and will analyse it against the real
applications. This phase will output our required results i.e. identification of AES,
Identification of standard algorithm, key length, S-Box and mode of operation. This

phase contains 2 main steps:

* Perform analysis on real applications

* Development of tool for quick analysis

Input

Close-Source

application
Planning Analysis Exes & .dlls
Standard implementation B
- Reverse engineer
[] application
L Binary cod
Compilation Inary e
h i
Reverse enginger
executables & dils Perform manual analysis
heuristics LE Output
—
* L | Result
Signature Design m
extraction Heuristics Signatures
Automated tool analysis
F 3
Database creation
Binary code

Figure 3.1: Schematic overview of proposed framework

Here is the brief overview of every step and the tasks to be performed. The findings and
results of these steps will be discussed in chapter 4 when it will be implemented on real

applications.

20

3.2.1 Define Well Known and Standard Algorithm Implementa-
tions of AES

Standard algorithms like AES needs verified implementations which means that the
library is verified by FIPS or open source community. In the absence of this, verification
of correctness becomes even more difficult. Therefore, in this work we have focused on

finding standard libraries implementation in crypto applications.

3.2.2 Compilation and Signature Extraction

For signature extraction, it is very essential to have a compiled representation of re-
quired implementation as reversing that implementation will generate signature that
will be used for detection. These days, almost every famous implementation has its
compiled code, source code and even assembly code available on GitHub which can be

used to define signatures for detection.

It is beneficial to compile the code on multiple compilers as it is possible that the signa-
ture might vary with the change of compiler [12]. When the compilation is done then
the next step is signature extraction and that is possible when the executable and .dll
files will be reversed using tool like IDA pro or OllyDbg etc. Once the application is
reversed then the binary representation of the code will be available and the signatures

can be extracted from that binary code and execution traces can be found.

3.2.3 Signature Extraction from Open-Source Applications

Another approach is the use of open-source applications for signatures extraction as the
source code is available which can be used for verification. It will reduce the efforts of
compilation phase as the code will be already compiled and that compiled application

can be used for analysis.

21

3.2.4 Design Heuristics

This is very critical and main step of this framework which provides the heuristics
data that will be used for detailed manual analysis. During this research, a number of
signatures and patterns were found for AES that help in the analysis of applications and
determine the type of implementation used. The developed heuristics are related to s-
box detection, lookup-tables detection, number of rounds detection, mode of operations

and the type of file needs to be analysed.

Analyse exe and dll files: It was seen that the critical information regarding applica-
tion like libraries, functions etc. does not only resides in exe file of application but also
in dll file. Usually for implementing any crypto library, developers import the standard
and famous libraries which save them a lot of time for writing code for that library.
If this is the case then reverse engineering the dll files will give the information about
library uses. Exe file might only give the function call detail but other detail will be
found in the dll file so, it is highly recommended to analyze both dll and exe file while

performing analysis.

Signatures: It was found that the signatures for AES usually contain the AES key-
word like in encryption it was seen that aes_encrypt and aesenc both instructions were
used in different libraries. Although it is not the case always and is not the only method

but this trick is also useful and it can be used initially before any detailed analysis.

S-Box and lookup-tables: Finding standard s-box and lookup-table in assembly code
is relatively simple task as the values of standard can be check in the Hex view of IDA
Pro or even in the assembly code. Finding s-box or lookup-tables can also assist in
the detailed analysis as in the assembly code all calls to s-box or lookup-tables can be
seen which will highlight the key parameters of AES. For example, the s-box memory
location can be noted and then in assembly code all the calls made to that memory loca-
tion can be recorded, these calls to s-box represent that the calling might be encryption

function for AES which is utilizing this s-box in the function.

22

No. of Rounds: If AES encryption set [42] is used then the chunks of AES encryption
or decryption can be used for the detection of no of rounds. For example, it can be seen
that there is a specific chunk of encryption/decryption which is repeated 10 times, 12
times or 14 times. If this pattern is found it will clearly represent the total number of
rounds used like if 14 times repetition found than it means that 14 rounds are used for

encryption/decryption and it will ultimately give clue about the key size which is 256.

Mode of Operations: Although detecting mode of operations/encryptions can be best
found using dynamic analysis but the signatures can also be searched in the binary code
which is a rare case. It was found that the simple CBC mode utilized very few AES
instructions as compare to XTS which uses a number of instructions. Secondly in CBC
the same chunk that is repeated in rounds is small while in XTS it is large and the

repetitions is also more than simple CBC mode.

3.2.5 Database Creation

Here the signatures extracted from the above steps will be stored so that it can assist in
manual analysis as well as it can be used in the tool for detection purpose. In database,
all those signatures will be stored which will convey some meaning like it can be signa-
ture or constant for encryption/decryption routine or some other parameter. In simple
words it will be the signatures in the database which will actually be used for analysis.
The database will save the information of the signature, algorithm or library name and
the function of signature that will describe the signature. The signatures in the database
will now be the test cases for analyst which will be used to identify AES and its param-

eters.

The planning phase ends here and at this moment an analyst has the parameters that will
be used for the detection of AES in real application. The next phase after planning is
analysis, and here analyst will use all the knowledge gained in the planning phase and
will use the repository created to detect AES. The following two steps are from analysis

phase.

23

3.2.6 Perform Analysis on Real Applications

Perform analysis on real applications is the first step of analysis phase which states that
analyse and scan the real application against standard AES implementation. Here real
application means the desktop software that are sold by different companies or devel-
oper and it guarantees the best and standard implementation. In this step the analysis of
software will be performed to verify the implementation using the repository informa-

tion created in the last step of planning phase.

The key parameters of AES to be find in the application are:

S-Box

Lookup-Tables

Key Length/Size

No. of Rounds

* Implementation used

Mode of Operations

Here if the signatures are found in the application it means that the application is using
the standard implementation specified by FIPS or the algorithm selected in this work
and if the signatures are not found then it means that no standard algorithm or library
is used in the code which is defined in this work. The reason could be the developer
has used his own implementation of AES in source code or used the library that is not

catered in this work.

3.2.7 Development of Tool for Quick Detection

As in the modern age the manual analysis is of less importance. For detection, it is rec-
ommended to deploy an automated way to analyse and detect the signatures in an ap-

plication under analysis. Secondly the modern programs/applications are very complex

24

and they generate millions of lines of code which is not possible to analyse manually
so, here the automated tool comes to aid. For example, during analysis of an application
EncFSMP it was observed that the binary file contains approx. 37 lac line of code after

it was reversed using IDA Pro as shown in Figure 3.2.

[&f cr\users\wagasi\Desktop\EncFSMP.asm - Notepad++ -] x
File Edit Search View Encoding Language Settings Tools Macre Run Plugins Window 7 X
a = ooﬂEﬂ D| ‘ﬂ%ﬁ”"g '3'|~'|.~"—'|.|i~' é?LJB-—"“E‘ B |w
[EncFSMP asm E3 l
378908 lea rcx, [rsp+itarg_90] ~
MOV [rsp+i+arg 30],
call sub_94D510
lea rox, [rsp+it+arg BFO]
MoV csigword C336B0, rax
call sub 940820
cmp cs:gword C336EB0,
jz loc 52E326
lea rdx, off ACE112
lea rex, [rsp+it+arg CO8]
MoV [rsp+it+arg 30],
call zub_ 9401EC
lea rdx, [rsp+it+arg CO8]
lea rox, [rsp+i+arg 90]
mowv [rsp+i+arg 301,
call sub_94D510
lea rox, [rsp+S+arg CO8]
MoV cs:qword C336A8, rax
3 26 call sub 940820 v
Assembly language source file |ength:120,16.7,093|Iines:3,1.70,462I_n:3.78,920 Col: 45 Sel: 0|0 Windows (CRLF) UTF-8-BOM INS

Figure 3.2: EncFSMP lines of code

So manual analysis in this case will take a lot of time, efforts and the tool will give a

quick analysis report.

The above proposed framework is designed for the AES but it can be used for any

cryptographic algorithm given that the signatures are stored in the repository.

3.3 Selected Implementation of AES

There are number of implementation available online and they are free to use in the
code but not all the implementations are correct and according to the standard. It is rec-
ommended to use the standard library as there is less chances of it being compromised
or to use the library which is tested by a large open-source community and it is being

used as industry standard.

It was found that there are number of libraries available for AES implementation which

is either approved by FIPS or being used as industry standard. For this work the follow-

25

ing libraries are selected that confirms the defined standard. This is not the complete list
as other implementations can also be added depending on the fact that they are tested

well by open-source community or standard body.

Intel® Advanced Encryption Standard (AES) New Instructions Set: Intel has pro-
vided instruction set which can be used in source code to improve the performance and
security of application [42] . It has 6 main instructions that perform the major opera-
tions of AES. Out of 6 instruction the first 4 instruction is used for performance while

remaining 2 instruction is used for key expansion.

AESENC: It is used for one round encryption of AES.

AESENCLAST:It is used for last round encryption of AES.

AESDEC:It is used for one round decryption of AES.

AESDECLAST:It is used for last round decryption of AES.
* AESIMC:It is used for mixing the column and performs transformation.

* AESKEYGENASSIST:It assists in the generation of AES round keys.

OpenSSL AES: OpenSSL is basically a toolkit that is used for SSL and TLS proto-
cols but it is also famous for its use in cryptographic libraries [43]. It is freely available
for developers to use in commercial or non-commercial applications. The implementa-
tion of OpenSSL’s AES uses table lookups which reduces the risk of successful cache

timing attack [44].

Bouncy Castle: Bouncy Castle is a package that contain the cryptographic implemen-
tation. It is a lightweight cryptographic API for C# and Java which contain a number
of cryptographic libraries including AES. It is a standard cryptographic library which is
approved by FIPS 140-2 as it meets level 1 requirement of FIPS 140-2 standard overall

Level 1 requirements [28].

26

LibTomCrypt: LibTomCrypt is very comprehensive cryptographic toolkit which en-
ables developers a huge set of Cryptographic algorithms and it contains support for
block ciphers, different chaining modes, hash functions and pseudo-random generator
[35]. It is free library and its code is publicly available on GitHub [34]. Although it is
not FIPS recognized but a large number of open-source community analyses the code

and its bugs are frequently fixed as found.

Gladman AES: Brian Gladman’s also developed a code in C/C++ languages for effi-
cient use in software. It is also freely available on GitHub repository for both commer-

cial and non-commercial purposes [45].

3.4 Significance of Proposed Framework

The purpose of the proposed framework is to contribute effectively in the improvement
of already existing solutions for Standard AES algorithm detection in applications. The
existing available solutions are generalized for a list of cryptographic algorithms and
there is no single solution or tool available which only checks AES and its parame-
ters. The disadvantage of generalized method is that the in-depth analysis cannot be
performed for any specific algorithm as the only purpose of those methods are only de-
tection. Keeping this in mind, a framework for AES has developed in this work which
will overcome the deficiencies of already existence methods and tools. The proposed

framework will add the following benefits to the already deployed methods and tools:

Identification of standard implementation: The existence solutions are for the pur-
pose of detecting crypto algorithms in applications but there is no solution which checks
the application against standard implementation. It is very important to check applica-
tion against standard compliance as it will give user the sense of surety that the imple-
mentation is bug free. There are many implementations freely available for AES but not
all the implementations are compliance with FIPS secondly any other implementation

which is widely used and tested is also a valid implementation as it is universally used

27

and tested against vulnerabilities and bugs. So, it is suggested to use the implementation

compliance with standard or the implementation which is universally followed.

Dedicated approach for AES: The existence research focused on the detection of
crypto algorithms and not only AES but all the well-known Crypto algorithms. The
benefit of this approach is this that all the algorithms detection can be performed un-
der the one umbrella but the constraint of this approach is in-depth analysis cannot be
performed and secondly there are a lot of false negatives. As the proposed framework
is dedicated for the detection of AES so it overcomes the constraints of existence ap-
proach by only having the heuristics related to AES algorithm in database which nearly

remove false negatives.

In-depth analysis: As the proposed framework is designed dedicatedly for only one
algorithm i.e. AES then it makes it easy to perform in-depth analysis, design and gen-
eralized a heuristic that work on nearly all the applications under analysis. As it is a
dedicated approach so, it will detect and identify maximum parameters of AES like

Standard S-Box, key size, no of rounds, and mode of operations used.

The major benefit of in-depth analysis is not only the identification of key size, rounds,
mode of operations or s-box used but also the implementation used. It is very impor-
tant to know which AES implementation is used in the application as it will be very
beneficial in the case when some AES implementation might encounter any bug. So, if
in future any implementation of AES found vulnerable to any attack, the knowledge of
implementation used will come to aid as analyst would be in a position to check if our
application is using the same implementation or not and if the same implementation is
in place then analyst should stop the use of that application and replace it with some

other standard application.

Easy to follow and scalable: The proposed framework is very simple in terms of
understanding and it can be easily followed. It has well defined phases and steps which
makes it easy to understand and follow. Secondly it requires one-time effort as once the

analyst has performed phase 1 completely then it can be used for all the applications

28

unless some other standard implementation found.

The proposed framework is also scalable for other cryptographic algorithms and the
same method can be used and deployed for the detection of other algorithms such as
DES etc. Although the same work will be repeated for the other algorithm and new

database will be created for that algorithm.

Automated approach: When it comes to the detection and identification of some
cryptographic algorithms in binary code then manual detection is out of question. The
detection part should be handled by some automated tool and further analysis then can
be performed manually if required. In this work, a tool named AES Crypto Scanner
was also developed which identify and locate the signatures found in the binary code
and if further analysis is required then the information displayed on the output screen

can be used as a base line for further manual analysis.

Comprehensive output/result: The output/result acquired using this framework is
very detailed against any application under analysis as compare to other tools/methods
available for the same purpose. Secondly the tool developed in this work does not only
output the statement that “AES is detected”’but also display the detail result for other

parameters like:

Standard S-Box detected (if used)

Encryption Routine (if found)

Decryption Routine (if found)

* Key mechanism (if found)

Implementation used

Mode of operations (if found)

The above information provide a complete insight of an application and it became easy

to rate any real application.

29

3.5 Limitation of Proposed Framework

Although the proposed framework has the above significance over existent work but
there are some limitations which keeps it away from being 100% accurate. These limi-
tations are actually inherent from the type of analysis method used in this research work

1.e. static analysis. The limitation of the proposed framework are as follows:

No dynamic analysis: The proposed framework only used static analysis for the de-
tection of cryptographic parameters. Although this approach is very common but it
cannot give an analyst a complete picture of the algorithm or flow. Dynamic analysis

gives more information about the code and flow which gives a better insight for analysis.

Obfuscation not handled: If the application is compressed, obfuscated or packed
then this technique will not work as the signatures will be hidden and cannot be found.

This is the main disadvantage of this approach means only relying on static analysis.

Real applications are complex: Real applications are complex means they are multi-
purpose so, sometimes it gets really tough to identify the different parameters or encryp-
tion/decryption routines as there is no coherence in the binary code. The same imple-
mentation of AES in two applications might give two different binary pattern because
the applications are usually multi-purpose. Although the signatures will be found that

will ensure that the same implementation is used in both applications.

Mode of operations: This is the limitation of choice of method used in this work
i.e. static analysis and using static analysis the mode of operations cannot always be
guaranteed. In static analysis it is possible to find signatures for mode used even the
flow of AES instructions can also give hint about the mode used but this method is
not successful for all the applications. It was found that using Intel AES Instruction
set [42], the simple CBC mode utilized very few AES instructions as compare to XTS
which uses a number of instructions. Secondly in CBC the same chunk that is repeated

in rounds is small while in XTS it is large and the repetitions is also more than simple

30

CBC mode but the issue arose when there are multiple modes used like if CBC and

CTR used then it gets complex to detect the mode used in assembly code.

3.6 Summary

In this chapter a framework has been suggested which contains multiple phases and
steps. The framework shows that how the detection and analysis of low-level code that
is acquired after reverse engineering of an application will be performed. This frame-
work uses both signatures detection and heuristic data to detect and analyse the appli-
cations. In addition to the framework, few popular implementations are also suggested

for AES along with significance and limitation of proposed framework.

31

Chapter 4

Implementation & Results

4.1 Introduction

This chapter is related to the implementation of proposed framework, analysis and re-
sults. It will contain the information of applications selected for analysis both open-
source and close-source, description of our automated tool, detailed analysis results

and different tools comparison with AES Crypto Scanner.

4.2 Selected Applications for Analysis

To check the effectiveness of proposed method a number of tools were analysed over
a period of time. Total of 11 applications were analysed in which 5 of them are open-

source and 6 of them are close-source.

32

Open-Source Tools Close-Source Tools
7-Zip Privacy Drive
AxCrypt Boxcryptor
EncFSMP Rohos Mini Drive
DiskCryptor Private Disk
VeraCrypt SensiGuard
BestCrypt

Table 4.2: Selected applications for analysis

The detailed analysis and results are discussed in the section 4.3.

4.3 Analysis of Real Applications

The purpose of this work is to design a framework that can effectively contribute in the
analysis of AES algorithm in real application. Here the term real applications are used
for those applications that are being used by users or organizations for various purposes
like data encryption etc. These applications can be either free or paid and open-source
or closed-source. Analysing open-source application has a benefit over close-source
that it does not need to be reverse engineer as the source code is publicly available but
in case of close-source application it has to be reverse engineered so that it can be anal-

ysed.

This section will provide the detail of the analysis that were carried out over the period
of this research. The analysis is divided into two sections, one for open-source software

and second for close-source software.

4.3.1 Analysis Platform

To perform analysis on real applications it was required to have at least 2 dedicated
machines that can be used. The purpose of using dedicated machine is this that it is

possible that few applications might behave differently than expected as it might be in-

33

fected with some malware. So, to be on a safer end it is always advise to use separate

machine for this kind of analysis.

VMware Workstation Pro was used to separate the work and operating system. The
complete process starting from downloading tool to final analysis was carried out in sep-
arate virtual machines which were installed on a VMware Workstation. The VMware
Workstation was installed on windows 10 and it contained 2 operating systems Win-
dows 10 (64 bit) and Windows 7 (32 bit) as shown:
@
File Edit View VM Tabs Help > | & | O O |0 e I O
Library x

{nt Home ELl Windows 10 x64
C, Type here to search

- [My Computer
Kali
@ Windows 7 is PC FindCrypt2 Testing dcapi IDA Pro

20-bit
Eﬁ Windows 10 xf4 (32-bit)

CH Shared VIVIs
m i . 10!

decapi IDA Pro
instructions (B64-bit)

Recycle Bin Gpgdwin

Figure 4.1: VMware Workstation

Each machine contains the following applications and tools:

All 11 applications under analysis

IDA Pro

OllyDbg

WinDbg

FindCrypt (version 1 and version 2)

Signsrch

SND Crypto Scanner

34

* And, AES Crypto Scanner

4.3.2 Open-Source Applications Analysis

In this work 5 open-source applications were selected for analysis. Those applications
were analyzed using our proposed framework and the results are than verified from the

source code to check the accuracy of our method.

The detailed findings were obtained from the heuristic‘s analysis of applications after

reverse engineering them on IDA Pro tool.

7-Zip

7-Zip is a free tool which is mainly used for compression and it is open source [26].
It is a powerful tool with number of supported formats. It was downloaded from the
official website, installed on the operating system and after installation its exes and dll

files were analysed using IDA Pro.

Findings: It was observed that 7-Zip contain the standard AES S-Box which was found

in Hex view of 7z.dll file.

35

D DA - 72.dll CA\Users\wagas\ Desktoph Testing\ 7-ZiphTz.dll
File Edit Jump
HE e

Search View Debugger Options Windows Help

B 5% 3 w0

aft o @ oF v 2% g X p @O O nodebugger

MIESIEJHE N 'S

Library function [l Regular function Il Instruction || Data [Unexplored | External symbal
[F] Functions windaw o0& x IDA View-A B Hex view-1 [E] structures E Eums 5 Imports 2 Exports
Function name ~ |[eeeecoBe10135C10 7C 77 78 F2 6B 6F C5 3@ @1 67 2B FE D7 AB 76 c|w[okehe. gipxuy ~
—_ CA B2 C9 7D FA 59 47 F@ AD D4 A2 AF 9C A4 72 C@ E,E}avGO0¢ wHrA
7] sub_10036E34 87 FD 93 26 36 3F F7 CC 34 AS E5 F1 71 D8 31 15 -y“262+14¥4fq01.
\; sub_10038861 @4 C7 23 (3 18 96 @5 OA @7 12 8@ E2 EB 27 B2 75 .C#E.-.3..€48'%u
(7] sub_0038BCS @9 83 2C 1A 1B 6E 5A A@ 52 38 D6 B3 29 E3 2F 84 .f,..nZ-R;0°)d/,
£1 sub_100388F4 53 D1 @@ ED 20 FC Bl 58 6A CB BE 39 4A 4C 58 CF Sii.i-Ut[jEX9I0Ld
tf sub_10038C6C D@ EF AA FB 43 4D 33 85 45 F9 @2 7F 58 3C 9F AS Y
] o_toooss $0 0c 13 £C 5% 97 24 17 Ca A7 7E 30 68 50 19 75
7] sub_10036040 6@ 81 4F DC 22 2A 90 88 46 EE BS 14 DE S5E @B DB
£] sub 100384 E6 32 3A @A 49 @6 24 5C (2 D3 AC 62 91 95 E4 79
£ sub_10038058 E7 (8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 88 cE7m.0NElVéEez®.
[f] sub_100380E0 BA 78 25 2E 1C A6 B4 (5 ES DD 74 IF 4B BD 8B 8A ox¥..| A&Vt.Ki<3
[] sub_100380DC 78 3E BS 66 48 @3 F6 @E 61 35 57 B9 86 C1 1D 9E piy
[F] sub_100380E8 £1 F8 98 11 69 DI 8E 94 95 1E 87 E9 CE 55 28 DF ¢ .
[7] sub_1003e0F4 8C Al 89 @D BF E6 42 68 41 99 2D @F BB 54 BB 16 (k. ;zBhA™-.°T».
aprae= 9016204001020 40 810350000 60 00 00 ... BLG...-.
[F] sub_10038ESC A 2;
[7] sub_10038ER4 v 2 5 . 6. lep
< >

Line 1134 of 3953

00134410 0000000010135C10: .rdata:unk_10135C10 (Synchronized with IDA View-A)

=] output window

Command "JumpText" failed

Python

AU: idle Down Disk: 74GB

Figure 4.2: 7-zip S-Boxs

It can be seen that the S-Box is found at the memory address 10135C10. Other than

this it was also found that 7-Zip is using AES instruction set which is a standard AES

implementation.

AES encryption routine found: Standard AES encryption routine found in the code.

.text:000000001011BEE4
Ltext:0000000010115E8E9
. text:000000001011BEBE
.text:000000001011BBC3
.text:000000001011BBCD

sub_10038834
sub_10038EB1
sub_10038BCS
sub_1003BEF4
sub_1003BC6C

sub_10038D34 text:000000001011BBD2
sub_10038D40 text:000000001011BBDF
sub_1003804C .text:000000001011BBDC
sub_10038D58 text:000000001011BBE7
sub_100380B0 text:000000001011BBEC

.text:00000000101166F 1
.text:000000001011BEF&

sub_1003BDDC
sub_1003B0E3

] e Y i

sub_10038DF4 «text:000000001011BC0O6
sub_10038E00 text:000000001011BC0OB
sub_1003BESC .text:000000001011BC10
sub_1003BEA4 “ || text:000000001011BC15

x*mmQ, xmm7
®mml, xmm7
wmmz2, xmm7

aesenc
BESENC
BESENC
aesenc xmm3, xmm7
aesenc xmmd, xmm7
aesenc xmm1, xmm7
BESENC ¥Mm2, xmm7
*mm3, xmm7
xmmQ, xmm7

wmm1, xmm7?

aesenc
FESENC
BESENC
aesenc xmm2, xmm7
Zesenc xmm3, xmm7

aesendlast xmmQ, xmm7
aesenclast xmm1, xmm7
aesendast xmm2, xmm7

aesendast xmm3, xmm7

Figure 4.3: 7-zip AES Instruction Set (Encryption)

AES decryption routine found: Standard AES decryption routine found in the code.

36

sub_1003BE34 .text:000000001011B971 sub_1011B910 aesdec xmm0, xmm7
sub_1003BBE 1 .text:000000001011B975 sub_1011E910 aesdec xmm1, xmm7
sub_1003BBCS .text:000000001011B978 sub_10118910 aesdec xmm2, xmm7
sub_1003BEF4 .text:0000000010116980 sub_1011B910 aesdec xmm3, xmm7
sub_1003BC6C .text:000000001011B98A sub_1011E910 aesdec xmm0, xmm7
sub_1003BD34 .text:000000001011B98F sub_1011B910 aesdec xmm1, xmm7
sub_1003BD40 .text:0000000010118994 sub_1011B910 aesdec xmm2, xmm7
sub_1003BD4C .text:0000000010116999 sub_1011E910 aesdec xmm3, xmm7
sub_1003BD58 .text:000000001011B9A4 sub_1011E910 aesdec xmm0, xmm7
sub_1003BDB0 .text:000000001011B9A9 sub_1011B910 aesdec xmm1, xmm7
sub_1003BDDC .text:000000001011B9AE sub_1011B910 aesdec xmm2, xmm7
sub_1003BDES .text:0000000010116963 sub_1011E910 aesdec xmm3, xmm7
sub_1003BDF4 .text:000000001011B9C2 sub_1011E910 aesdedast xmm0, xmm7
sub_1003B8E00 .text:0000000010 1169C7 sub_10116910 aesdedast xmm1, xmm7
sub_1003BESC .text:000000001011B9CC sub_1011E910 aesdedlast xmm2, xmm7
sub_1003BEA4 v || .text:000000001011B9D1 sub_1011E910 aesdedlast xmm3, xmm7

S R

Figure 4.4: 7-zip AES Instruction Set (Decryption)

Mode of encryption: It can be seen that CBC mode is used in the application. Although
this kind of signature cannot guarantee the use of CBC but as the software code is
publicly available so it was confirmed either CBC is used or not and the results was the

same as found.

.rdata:esesesee1e135738 dq offset ames2sechbc 3 TAES256CBC
.rdata: eeeeppesl18135738 db 1
.rdata:eeeese8818135739 db g
.rdata:eeeesees1a135734 db 2
.rdata:eeeeseesl8135738 db 2
.rdata: eeeeseesl813573C db 1
.rdata:e2ee2e881813573D db g
.rdata:eeeesees1813573E db 2
db 2
2 aAes256chc db 'AES25ECEC",@ ; DATA XREF rdata:eseeeeee1013573810
align 12h

2 stru_1e135758 FuncInfo V1 <19938528h, 1, rva stru_1816982C,

Figure 4.5: 7-zip Modes

Compression information: The analysis hinted that 7-zip is using pk-256, pk-192 and
pk-128 with some other compressions as well and it was confirmed form the source

code as well.

.rdata:eefepeeeslel32348 aPkaes2se db 'pkAES-256°,8 s DATA XREF rdata: eseeeeeglell22BETO
I align 1&h

. 2 aPkaesl92 db 'pkAES-192°,8 3 DATA XREF rdata: eseeeeedlall22AETo
I align 2&h

I aPkaes12s db 'pkAES-128°,8@ ; DATA XREF rdata:ees

I . alien 12h

Figure 4.6: 7-zip compression info

AxCrypt

AxCrypt is an open-source software used for encryption. Its specification states that it

provides strong encryption by using 128/256-bit AES encryption [29]. It was down-

37

loaded from the official website, installed on the operating system and after installation

its exes and dll files were analysed using IDA Pro disassembler.

Its output is in Microsoft.Net assembly where AES implementation and other imple-
mentations can easily be found. This .Net is a portable reference library that is used for

the compilation of .Net language source code [27].

Findings: AxCrypt uses Bouncy Castle API that includes AES implementation. Here
the real challenge is to analyse the running state of application as the assembly code

will show all the available implementation used in the library.

AES Implementation: AES implementation can be seen along with other algorithms.

fall e =]
.method private static hidebysig class org.BouncyCastle.Crypto.ICipherParameters GetCipherrarameters(char[] password, valuetype PemBasealg basealg, unsigned ints[] salt)
{
.maxstack &
.locals init (int3z ve,
string vi,
class org.BouncyCastle.Crypto.Generators.opensslPbeParameterseenerator v2)

1darg.1
switch loc_71413, loc_71424, loc_71435, loc_71446, loc_71457, loc_71465, loc_71476, loc_71487, loc_71498, loC_714A6

il e =] =] ol i =] il e =
loc_71413: loc_71435: loc_71446: loc_71457:
1dc.i4 1dc.i4 1dc.i4 1dc.id.s

stloc.@ stloc.e stloc.@ stloc.e

ldstr BAES192 AES192 1dstr BAES256_8 AES256 1dstr aBlowfish BLOWFLSH' ldstr abes
stloc.1 stloc.1 stloc.1 stloc.1

br loc_71486 br loc_71486 br loc_71486 br loc_71486 br loc_71486

Figure 4.7: AxCrypt Code view

It can also be seen that multiple modes of encryption were found in the assembly code
of AxCrypt application like ECB with pkcs7 padding, CBC with pkes7 padding, OFB
with no padding and CFB with no padding.

38

Address Function Instruction

seg000: 71A47 Org.BouncyCastle. Security. ... |dstr amesCbcPkes7pad Jf "BESCBC/PKCS7PADDING™

5eqg000: 71A56 Org.BouncyCastle.Security. .. |dsfid dlass Org.BouncyCastle. Asn1.DerObjectIdentifier Org.Bouncy...
5egl00: 71480 COrg.BouncyCastle, Security. ... ldstr amesCbcPkecsTpad ff "AES/CBC PKCS7PADDING™

seg000: 71AGF Org.BouncyCastle. Security. ... |dsfid class Org.BouncyCastle. Asnl.DerObjectIdentifier Org.Bouncy...
seg000: 71A7S Org.BouncyCastle.Security. .. ldstr amesCbcPkes7pad Jf "BES fCBC PKCS7PADDING™

seg000: 71ABE Org.BouncyCastle. Security. ... |dsfid class Org.BouncyCastle. Asnl.DerObjectIdentifier Org.Bouncy...
5eg000: 71432 QOrg.BouncyCastle.Security. .. ldstr amesOfbNopaddin Jf "AES fOFBNOPADDING™

5eg000: 71AA1 Org.BouncyCastle.Security. .. |dsfid class Org.BouncyCastle. Asn1.DerObjectIdentifier Org.Bouncy...
seg000: 7 1AAB Org.BouncyCastle. Security. ... ldstr amesOfbNopaddin J{ "AES fOFB/NOPADDING™

5eq000: 71ABA Org.BouncyCastle.Security. .. |dsfid dlass Org.BouncyCastle. Asn1.DerObjectIdentifier Org.Bouncy...
5egl00: 71ACS COrg.BouncyCastle, Security. ... ldstr amesOfbMopaddin ff "AESfOFE NOPADDING™

seg000: 71AD3 Org.BouncyCastle. Security. ... |dsfid class Org.BouncyCastle. Asnl.DerObjectIdentifier Org.Bouncy...
5eg000: 71ADD Org.BouncyCastle.Security. .. ldstr amesCfbMopaddin /f "BES/CFE/MNOPADDING"

seg000: 71AEC Org.BouncyCastle. Security. ... |dsfid class Org.BouncyCastle. Asnl.DerObjectIdentifier Org.Bouncy...
5eg000: 7 1AFG QOrg.BouncyCastle.Security. .. ldstr amesCfbMopaddin Jf "BES/CFE/MNOPADDING™

5eg000: 71605 Org.BouncyCastle.Security. .. |dsfid class Org.BouncyCastle. Asn1.DerObjectIdentifier Org.Bouncy...
seg000: 71B0F Org.BouncyCastle. Security. ... ldstr amesCfbMopaddin Jf "AES/CFE/MOPADDING™

Figure 4.8: AxCrypt Modes & padding

Here the problem is this that bouncy crypto is a rich API which contain a number of
modes like shown in the Figure 4.8. It can only be seen through dynamic analysis that

which mode is being used with AES.

DiskCryptor

DiskCryptor is an open-source solution for full disk encryption. It supports AES-256,

Serpent and Twofish algorithms [30].

Findings: After reverse engineering using IDA Pro, it was confirmed that DiskCryptor
is using AES and also AES instruction set which is a standard instruction set approved

by FIPS.

Crypto Code: The following crypto code and pattern was found in the assembly code:
aesenc xmm4, xmmword ptr [r11+10h]
aesenc xmm4, xmmword ptr [r11+20h]
aesenc xmm4, xmmword ptr [r11+30h]
aesenc xmm4, xmmword ptr [r11+40h]
aesenc xmm4, xmmword ptr [r11+50h]

aesenc xmm4, xmmword ptr [r11+60h]

39

aesenc xmm4, xmmword ptr [r11+70h]
aesenc xmm4, xmmword ptr [r11+80h]
aesenc xmm4, xmmword ptr [r11+90h]
aesenc xmm4, xmmword ptr [r11+0AOh]
aesenc xmm4, xmmword ptr [r11+0BOh]
aesenc xmm4, xmmword ptr [r11+0COh]
aesenc xmm4, xmmword ptr [r11+0DOh]

aesenclast xmm4, xmmword ptr [r11+0EOh]

It can be seen that how the above instructions are written in the assembly code. It gives
a clear clue that the application is AES with 14 rounds. Similar was the case for the
below instructions:

aesenc xmmQ, xmm8

aesenc xmm/l, xmm§

aesenc xmm?2, xmm§

aesenc xmm3, xmm8

This chunk of instructions was also repeated like the above and same number of times.
It also ended with aesenclast instruction and same repetition was found in decryption

mechanism.

From the code it can easily be seen that the crypto code uses AES instruction set which
contains encryption, decryption and last rounds routines. It can also be guessed from
the code (by counting the blocks) that the number of rounds is 14 which means it uses
256-bit AES encryption. The IDA graph view also represents the flow of code which

shows the flow of instructions.

40

VeraCrypt

VeraCrypt is an improved version of TrueCrypt which fixes the vulnerabilities of True-
Crypt and provides more security by implementation AES. It is free software and its

code is open-source. It is used for full disk encryption [31].

Findings: VeraCrypt software was installed on windows 10 and its exe was analysed.
It was seen that VeraCrypt was using AES instruction set and it uses 256-bit AES en-

cryption.

Encryption routine was detected in assembly code which clearly shows number of

rounds used.

Function name | Address Function Instruction

E sub_140023200 ext:0000000140094C73 sub_1400463E0 aesenc xmml, xmm0
E sub_140023320 text:0000000140094C7D sub_1400463E0 aesenc xmml, xmmi
E sub_140023340 text:0000000140094C87 sub_1400463E0 aesenc xmml, xmm0d
E sub_140023420 Jtext:0000000140094C91 sub_1400463E0 aesenc xmml, xmmid
:f- sub_140023480 text:0000000140094C58 sub_1400463E0 aesenc xmml, xmmd
Iz sub_1400234E0 text:0000000140094CA5 sub_1400463E0 aesenc xmml, xmmd
=f- sub_140024510 ext:0000000140094CAF sub_1400463E0 aesenc xmml, xmmd
z sub_1400246F0 v text:0000000140094CEC sub_1400463E0 aesenc xmml, xmmd
'(’ S = text:0000000140094CCT sub_1400463E0 aesenc xmml, xmmd
JGext0000000140094CD6 sub_1400463E0 aesenc xmml, xmmd
—TEienienn text:0000000140094CE3 sub_1400463E0 aesenc xmm1, xmm0
A8, Graph overview O & X | .text:0000000140094CF0 sub_1400463E0 aesenc xmmil, xmmid
Jtext:0000000140094CFD sub_1400463E0 aesenc xmml, xmmQ

Jtext: 0000000 140094004 sub_1400463E0 aesendast xmm1, xmmi
: Jtext:0000000140094E 1D sub_ 140094014 aesenc xmml, xmmQ
| L text: 0000000 140094E22 sub_ 140094014 aesenc xmmz, xmmid
O [i‘]j """" © | .text:0000000140094E27 sub_140094D14 aesenc xmm3, xmmo0

Figure 4.9: VeraCrypt AES Instruction Set (Encryption)

Decryption routine was also detected in assembly code.

41

bl
c
=1
ol
=
Q
=1
=1
o
m

sub_140023200
sub_140023320
sub_1400233A0
sub_140023420
sub_1400234B0
sub_140023AE0
sub_140024510
sub_1400246F0

N | [e e |

Line 339 of 2346

,fsui', Graph overview

Address

Function

Instruction

text:000000014009440C sub_1400465E0 aesdec xmm1, xmmQ

ext:0000000140094415
text:0000000140094420
text:0000000140094424
text:0000000140094434
text:000000014009443E
ext: 0000000 140094443
Jtext:0000000140094455
text:0000000140094462
text:000000014009446F
text:000000014009447C
ext: 0000000 140094439
text:0000000140094456
text:00000001400944A3
text:00000001400945B6
text:0000000 140094566
text: 0000000 1400945C0

sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400465E0
sub_1400944AD
sub_140094440
sub_140094440

aesdec xmml, xmmd
aesdec xmml, xmmd
aesdec xmm1, xmmd
aesdec xmm1, xmm0
aesdec xmm1, xmmd
aesdec xmml, xmmd
aesdec xmml, xmmd
aesdec xmm1, xmmd
aesdec xmm1, xmm0
aesdec xmm1, xmmd
aesdec xmml, xmmd
aesdec xmml, xmmd
aesdedast xmm1, xmmd
aesdec xmm1, xmm0
aesdec xmm2, xmmd
aesdec xmm3, xmmd

Line 19 of 917

Figure 4.10: VeraCrypt AES Instruction Set (Decryption)

In assembly code it was also seen that VeraCrypt is also using VAESENCLAST instruc-
tion which is used to perform last round flow encryption. It uses 3 operands as compare
to simple aesenc instruction which uses 2 instruction. This instruction uses 2 different

round keys which increase the security of last round.

sub_140023420
sub_140023480
sub_140023AE0
sub_140024610
sub_1400246F0

S Y Y Y o o e |

.text: 000000014008 2BEE
text:00000001400B26F 3
.text:00000001400B26F3
text:00000001400B 268FD
text:00000001400B2C02
text:00000001400B2F67

sub_1400B2380
sub_1400B2380
sub_1400B2380
sub_1400B2380
sub_1400B2380
sub_1400B2380

Function name Address Function Instruction
sub_1400232D0 Ltext: 000000014008 2BDF sub_1400B2880 vaesendast xmm0, xmmad, xmm12
sub_140023320 Ltext: 000000014008 2BE4 sub_1400B2830 vaesendast xmm7, xmm7, xmm12
sub_1400233A0 text:00000001400B26E9 sub_1400B2380 vaesencast xmm1, xmm1, xmm12

vaesencast xmm4, xmm4, xmm 12
vaesencast xmm2, xmm2, xmm12
vaesenclast xmm5, xmm5, xmm12
vaesendast xmm3, xmm3, xmm12
vaesencast xmmé, xmmé, xmm 12
vaesencast xmm4, xmm4, xmm 12

? .text:00000001400B2F6C sub_1400B2380 vaesendast xmm3, xmm3, xmm12

Uiz ol text:00000001400B2F71 sub_1400B2880 vaesenclast xmms5, xmm5, xmm12
'urﬁ Graph overview O & x .text:00000001400B2F 75 sub_1400B2380 vaesendast xmm0, xmmQ, xmm12
L text:00000001400B 2F 7B sub_1400B2380 vaesendast xmmé, xmmé, xmm12

I;I_I L text:00000001400B2F30 sub_1400B2380 vaesendast xmm1, xmm1, xmm12
'—l—la'—'—"{.[;:‘ .text:0000000 1400B2F85 sub_1400B2580 vaesendast xmm7, xmm7, xmm12

| Ltext: 0000000 1400B2F2A sub_1400B2380 vaesendast xmm2, xmm2, xmm12

..... ’fﬂ]j . text:00000001400B32EF sub_1400B2380 vaesendast xmm0, xmmQ, xmm12

Figure 4.11: VeraCrypt AES Instruction Set (Flow Encryption)

EncFSMP

EncFSMP creates an encrypted folder where user places and store their sensitive data.
Users can create and edit the password of EncFSMP folder. It is free and open-source

tool which has a user-friendly interface [32].

42

Findings: EncFSMP was downloaded from official site [32], installed on windows 10

and its exe was analyzed using IDA Pro tool.

S-Box: Found standard S-box in the hex dump.

BEREERER0eT 37208 c|w{dkoka. g+hxay
BEBEAREREETITILE E,E}ivaaded “eHrA
PEGBGEIBETI7I2E RGP+ I4%ARDL .
PEEOBEEIEE7I7II0 JCBRL -5, €882y
PEGEEEEERTI7I48 (o Fy..nZ-R;0%)E/,
BEBBABRBBETITOSE S 1-ut[jEX9ILXT
PEEEERREAETITIEE N5 Bi2OCM3.LED. WPV
BEEEAREREET7ITI7E Sl QE@. * . 83%90! .60
PEEEERREAETI7IEE (NN i..i —D.A§~=d].s
PEEEERREAE7ITI08 (5 sLo0m*, FLL Ll
PEEEERREAETITIAD (5 32:.1.50A0-b edy
BAREAG0A0E737000 (3 cE7m.ON@lVAEez?,
BAREAGRREE7370Ce [ox¥. .| TERVE .S
PEEEBRBRBETITIDE prufH. 5. asWith. 3
POBBABREEETI7IES dg.i0E" cteIu(R
PEEEBRRREATITIFE &, ;®@BhA™- . %Tn.

Figure 4.12: EncFSMP S-Box

Encryption & decryption routine: The assembly code of EncFSMP was very de-
tailed containing more than 30 lac lines of codes. It contains multiple encryption and
decryption routines as compare to the other software and its pattern cannot be guessed.
The reason can be it uses multiple key length with multiple modes of encryption which
makes the pattern complex, but it was found that it uses AES instruction set in the

source code.

zl sub_401010 <text:000000000073AE 1A aesenc xmma2, xmml
El sub_401060 text:000000000073AE26 aesenclast xmm2, xmm1
zl sub_401130 +text:000000000073AERA aesdec xmm2, xmml
E start Ltext:000000000073AE TR aesdeclast xmm2, xmm1
zl sub_4014E0 +text: 00000000007 3AECD sub_73AEAD aesenc xmm2, xmml
E sub_401500 text:000000000073AECS sub_73AEAD SESENC XmMim 3, xmml
zl sub_401510 Jtext:000000000073AED2 sub_73AEAD aesenc ¥mm2, xmmd
E sub_4018E0 text:000000000073AEDT sub_73AEAD @ESENC Xmm 3, xmmd
zl sub_401E30 Jtext:000000000073AEES sub_73AEAD aesenc ¥mmz2, xmml
E sub_402580 . text:000000000073AEES sub_73AEAD aesenc xmm3, xmml
zl sub_4026E0 Jtext:000000000073AEED sub_73AEAD aesendast xmm2, xmm0
zl sub_4026F0 +text:000000000073AEF2 sub_73AEAD aesenclast xmm3, xmm0

Figure 4.13: EncFSMP AES Instruction Set (Pattern1)

This is one of the patterns for encryption but there are number of patterns exists in EncF-
SMP assembly code for encryption like the one shown in Figure 4.14, which suggests

it can be encryption routine for 256-bit encryption call.

43

sub_401010 .text:00000000007654C3 sub_7547C0

sub_401060 L text:000000000075551F sub_7847C0 aesenc xmm2, xmm1
sub_401180 Ltext:000000000076555F sub_7847C0 aesenc x¥mm2, xmmd
| start .text:00000000007555CA sub_7547C0 aesenc xmm2, xmm1
sub_4014E0 Ltext:0000000000755615 sub_7847C0 @esenc xmm2, xmmd
sub_401500 Ltext:000000000075564F sub_7647C0 aesenc xmm2, xmm1
sub_401510 «text:0000000000765604 sub_7647C0 aesenc xmm2, xmm0
sub_4018E0 Ltext:0000000000785714 sub_7847C0 aesenc ¥mm2, xmm1l
sub_401E30 .text:0000000000765761 sub_7647C0 aesenc xmm2, xmmQ
sub_402580 Ltext:0000000000755782 sub_7847C0 a@esenc xmma2, xmml
sub_4026E0 Ltext: 000000000075 57BC sub_7547C0 aesenc xmm2, xmmd
sub_4026F0 .text:00000000007557C3 sub_7647C0 aesenc xmma2, xmm1
sub_402700 Ltext:00000000007557D2 sub_7847C0 @esenc xmm2, xmmd
sub_402710 .text:00000000007657D7 sub_7647C0 aesenclast xmm2, xmm1

1 1 [

Figure 4.14: EncFSMP AES Instruction Set (Pattern2)

Similarly, there are number of patterns exists for decryption in the assembly code:

nullsub_5 Jtext:000000000073AEF2 sub_73AEAQ gesendast xmm3, xmmd
sub_401010 text:000000000073AF 20 sub_73AF00 gesdec xmm2, xmm1
sub_401060 text:000000000073AF 25 sub_73AFD0 aesdec xmm3, xmm1
sub_401180 text:000000000073AF 32 sub_73AF00 aesdec xmm2, xmm0
start text:000000000073AF 37 sub_73AF00 aesdec xmm3, xmm0
sub_4014E0 text:000000000073AF43 sub_73AFD0 aesdec xmm2, xmm1
sub_401500 text:000000000073AF 45 sub_73AFD0 aesdec xmm3, xmm1
sub_401510 text: 0000000000 73AF 4D sub_73AFD0 aesdedast xmm2, xmmd
sub_4013E0 Jtext: 0000000000 73AF52 sub_73AFD0 aesdedast xmm3, xmmd

o [

Figure 4.15: EncFSMP AES Instruction Set (Decryption)

In assembly code, vaesenc instruction was also found like shown in Figure 4.16:

Function name A || Address Function Instruction

E nullsub_5 . text:000000000074568 1 sub_745800 vaesenc xmm$s, xmm3, xmm2
E sub_401010 text:0000000000745897 sub_745800 vaesenc xmm 10, xmm10, xmm2
E sub_401060 Ltext:0000000000745B8A8 sub_745800 vaesenc xmmll, xmmll, xmm2
E sub_401180 . text:0000000000745689 sub_745800 vaesenc xmm12, xmm12, xmm2
E start . text:000000000074568CC sub_745800 vaesenc xmm13, xmm13, xmm2
E sub_4014E0 L text:00000000007458E4 sub_745800 vaesenc xmm 14, xmml4, xmm2
E sub_401500 . text: 00000000007 456F 3 sub_745800 vaesenc xmm3, xmm$S, xmm15
E sub_401510 Ltext:0000000000745C0A sub_ 745800 vaesenc xmm 10, xmm10, xmm15
E sub_4018ED Ltext:0000000000745C 15 sub_745800 vaesenc xmm1l, xmm11, xmm1l5
E sub_401E30 L text:0000000000745C20 sub_745800 vaesenc xmml2, xmml2, xmml5
E sub_402580 Ltext:0000000000745C2A sub_ 745800 vaesenc xmm 13, xmm13, xmm15
E sub_4026ED et 0000000000745C3A sub_745800 vaesenc xmm 14, xmm14, xmm15
E sub_4026F0 L text:0000000000745C4E sub_745800 VEESENC XmmS, xmmS, xmml5
E sub_402700 . text:0000000000745C50 sub_745800 vaesenc xmm 10, xmm10, xmm15
E sub_402710 ,text:0000000000745C6C sub_745800 vaesenc xmmll, xmm1l, xmmi5
E sub_402770 W (| L text:0000000000745C70 sub_745800 vaesenc ¥mm 12, xmml2, xmml5
£ > Ltext:0000000000745C32 sub_745800 vaesenc xmm13, xmm13, xmm15

Figure 4.16: EncFSMP AES Instruction Set (vaesenc)

Key Generation: Key generation instruction was also found in the assembly code:

44

Instruction

aesimc xmmd, xmmQd
aeskeygenassist xmm1, xmm0, 1
aeskeygenassist xmm1, xmmQ, 2
aeskeygenassist xmm1, xmm0, 4
aeskeygenassist xmm1, xmm0,
aeskeygenassist xmm 1, xmm0, 10k
aeskeygenassist xmm 1, xmm0, 20h
aeskeygenassist xmm 1, xmm0, 40k
aeskeygenassist xmm1, xmm0, 80h
aeskeygenassist xmm1, xmmd, 1Bh
aeskeygenassist xmm1, xmmd, 35h

Function name || Address Function

E nullsub_5 L text: 00000000007 3E356 sub_73E330
E sub_401010 L texct: 00000000007 3E40E sub_73E3A0
E sub_401060 L text:000000000073E419 sub_73E3A0
z sub_401130 Ltext:000000000073E424 sub_73E3A0
E start L text: 00000000007 3E42F sub_73E3A0
z sub_4014E0 Ltext:000000000073E43A sub_73E3A0
z sub_401500 L text:000000000073E445 sub_73E3A0
z sub_401510 Ltext: 00000000007 3E450 sub_73E3A0
z sub_4018E0 L text:000000000073E458 sub_73E3A0
z sub_401E30 . text: 00000000007 3E466 sub_73E3A0
E sub_402580 Ltext:000000000073E471 sub_73E3A0

Figure 4.17: EncFSMP AES Instruction Set (Key Generation)

Mode of Encryption: A number of modes were detected in the assembly code but

due to the complexity of code it cannot be guarantee that which mode is actually being

executed during run-time.

IDA View-A @ ‘; Occurrences of: aes @ Hex View-1 Structures EEE Enums I
.text:esoeoe2082648701 call sub_EESEZ22
.text:eseseeee886A8706 lea rcx, arc2cbe 3 "RC2-CBC
.text:esesepae805A8700 mov cs:gword_CS53FDe, rax
text:eoee080888EA87ES call sub_EESE42
.text:esee082828E6487E9 1ea rex, anAesldsCbl ; AEs-llo-LBEC
.text:eepeooa000ca87FR mov cs:gword_CS3FDE, rax |
.text:esepee80205A87F7 mov cs:gword_CS3FER, @
text:egosoeoesgcagse call sub_EESE42
.text:esesoeaeaaca8387 lea rex, aAes2selbc ; TAES-25&-CBC
.text:esceoespRcARE0E mov cs:gword_CS53FFE, rax
.text:esesepee20548315 call sub GEZE48
text:eoeeseaeagcagslA lea rex, aCamellial2BCbc ; "CAMELLIA-12E-CBC
text:egosoe2088648321 mov cs:gword_CS58FFE, rax
.text:eeopoo2oocaRE28 call sub_EESEZ22
.text:esepepaee06A832D lea rcx, aCamellia25eCbe ; "CAMELLIA-256-CBC
text:eseeseaeagcags34 mov csigmord_C59888, rax
text:e202082028E548838 call sub_EESEZL2
.text:esooooaoacagsse lea rex, acGostsoacnt ; “gostag-cont
.text:eeepepeeR06AR347 mov cs:gwerd_C59888, rax
.text:esepope0005A834E call sub_gESE4e
text:e2e2022828E48853 lea rcx, aseedCbe 3 "SEED-CBC
.text:esee0e2088E64835A mov cs:gmord_C59818, rax
.text:eseseeee886A2861 call sub_gESEa8
text:eeepope0006A8366 lea rex, aldAaesl2aGom ; "id-aesl2B-GOM

0029FBFD 00000000006A0FFD: sub_6AODFA04+50 (Synchronized with Hex View-1)

Figure 4.18: EncFSMP Modes

In the following Figure 4.19 it can be seen that the entry for GCM mode is found in the

assembly code:

45

IDA View-A @ a’ Occurrences of: aes @ Hex View-1 @ Structures LE Enums

text:eeseoeenepsazel12 cmp eax, 48gh
.text:esopa002008502817 lea ri2, aGostE9256 ; "GOSTEI(256
text:eeseoee0e8sA281E jz short loc_gAzess
.text:esopa0020852028 jbe loc_gA2248
text:eeseogesetca2ee cmp gax, leaeh
.text:esopa0000852828 lea ri2, aAesgcml2s ; "AESGCM({128
text:eeeeosenetca2e32 jz short loc_sgA2es4
.text:eosopa00208520234 cmp eax, 288gh
text:eeeeosesetcA2839 lea ri2, aAesgCm2se ; “AESGCM{25E
.text:eeopa0e20085A2840 jz short loc_gA2es4
text:eeeeosenetca2es cmp gax, seeh
.text:eeopaoea085A2847 Tea 12, ooceulin y SEED 128
text:eeeeoee0e8cA284E jnz loc_BAZ22EE

Figure 4.19: EncFSMP GCM Mode
4.3.3 Close-Source Applications Analysis

This section contains the analysis detail of close-source applications that were analysed
using our proposed framework. The real target of this research was to analyse the close-
source applications against their specifications as every application announces that it is

developed using the standard library.

In this section all the findings of 6 close-source applications are mentioned including
figures from IDA Pro that were found during the analysis phase. Here the results are
based on the findings acquired from the analysis of open-source applications and re-

search.

Privacy Drive

Privacy drive is disk encryption software which is used to encrypt complete disk rather
than encrypting individual files and folders [33]. It has many features like hiding, lock-
ing and encryption. Its specification states that it supports standard industry encryption

algorithm which supports AES 128/256-bit.

Findings: The application was downloaded [33], installed and the exe file was ana-
lyzed against AES signatures. It was found that it is not using AES instruction set but

some other signatures for AES can be found in the assembly code. No standard S-box

46

for AES was detected but the detailed analysis revealed that the application is using

lookup-tables in AES implementation.

During analysis of the assembly code, it was also found that privacy drive is using

the LibTomCrypt cryptographic library which is freely available on GitHub [34]. The

following Figure 4.20 provides a hint that it uses LibTomCrypt library for AES.

Figure 4.20: Privacy Drive library

Functions window o8 x IDA View-A W ocaurrencesofi aes [D] Hex View-1 Structures] Enums Imports
Function name ~ || Address Function Instruction

E sub_401A00 .text:004B4DEB0 sub_4B4C70 push offsetafes ; "aes”

z sub_401420 text:004C564A sub_4C55C0 push offsetafes ; jumptable 004C5643 case O

E sub_401A80 text:004C5654 sub_4C55C0 push offsetades ;jumptable 004C5643 case 1

z sub_4014F0 text:004C5676 sub_4C55C0 push offsetafes ;jumptable 004C5643 case 2

z sub_401B20 .text:0052890 1 sub_5289C0 push offset aSrcCiphersAesA ; "srcl\cdphers\\aes)\aes.c”
z sub_401B30 text:0052B9EF sub_52B9C0 push offset a3rcCiphersaesAf "src\\dphers\\aes'\aes.c”
z sub_401B70 text:0052C0ED push offset aSrcCiphersAesAf "srcl\cphers)\aes)\aes.c”
z sub_401B50 text:0052C 141 sub_52C130 push offset a3rcCiphersaesAf "src\\dphers\\aes!\aes.c”
z sub_401C40 text:0052C162 sub_52C130 push offset aSrcCiphersAesAf "srcl\dphers\\aes)\aes.c”
z nullsub_1 text:0052C 180 sub_52C130 push offset a3rcCiphersaesAf "src\\dphers\\aes!\aes.c”
z sub_401D30 .text:0052C725 sub_52C710 push offset aSrcCiphersAesAf "srcl\dphers\\aes)\aes.c”
z sub_401E80 text:0052C743 sub_52C710 push offset aSrcCiphersAesAf "srcl\cphers'\aes)\aes.c”
z sub_401F10 text:0052C751 sub_52C710 push offset aSrcCiphersAesAf "srcl\dphers\\aes)\aes.c”

The highlighted code shows the library location from where it was included:

Figure 4.21: Privacy Drive Crypto library

.text:easiEE1A jnz short loc_S51EE38

text:eesiEELC push 44h

.text:@851EELE push offset aFPd3Privacydri_e ; "f:%\\pd3\\privacydrive\\libtomcrypth\src
text:@851EE23 push offset amdNull ; "md != NULL

text:@851EE28 call sub_S2CF1@

.text:easiEE2D add esp, 8ch

.text:eesilEE3e

text:@851EE32 loc_S1EE3E: 3 CODE XREF: sub_S1EE@@+1AT]

text:@a51EE3R test edi, edi

text:@851EE32 jnz short loc_S1EE48

.text:eas1EE34 push 45h

text:eesiEEzE push offset aFPd3Privacydri_& ; "f:‘\\pd3\\privacydrive\\libtomcrypth\src
text:@8s1EEZE push offset aOutNull ; "out != NULL

text:@a51EE4R call sub_S2CF1@

text:8851EE45 add esp, 8Ch

tevt @ACIFFAR

It was found that library which is available at GitHub, also has the same directory like

shown below:

47

Branch: develop ~ | libtomcrypt} src / ciphers / aes / aes.c

karel-m rename macro byte == LTC_BYTE - related to #439
4 contributors ':' j:l

747 lines (67% sloc) 19.2 KB

/¥ LibTomCrypt, modular cryptographic library -- Tom 5t Denis

3
¥ LibTomCrypt is a library that provides various cryptographic

* glgorithms in & highly modular and flexible manner.
* The library is free for all purposes without any express

Figure 4.22: LibTomCrypt Library directory

Mode of Encryption: It uses XTS mode of encryption which can be seen in the assem-

bly code. Secondly it uses all the functions for XTS mode given at GitHub.

STENT IS H 4% jnz SNOFT LOC_S2B/5A

text:ees2e746 push 47h

.text:@85268748 push offset aSrcModesXts¥ts @ ; “sro\\modes)\xts\\xts_decrypt.c
text:ee528740 push offset aPtNull ; “pt !'= NULL

.text:ees2e7s2 call sub_S52CF1e

.tewt:ees28757 add esp, ech

text:ees2e7sA

.text:@852875A loc_52B75A: ; CODE XREF: sub S52B728+241j
text:ees2B75A mav edi, [ebparg_8]

.text:ees2e75D test edi, edi

.text:@852B875F jnz short loc_52B775

text:ees2e7el push 48h

.text:ees28763 push affset aSrcModesxtsxts @ ; "src\'\modes'\‘\xts\\xts_decrypt.c
.text:@8528768 push offset actiull ; "ct != wULL

text:2@52B8760 call sub_52CF18@

text:ees2e772 add esp, ech

.text:@e8528775

Figure 4.23: Privacy Drive Mode (xts_decrypt.c function)

It can be seen in the Figure 4.23 that xts_decrypt.c is detected in the assembly code.

P LnALswwoeUu o pus con
.text:ee52BEFB push offset asrcModesxtsxts 1 ; "srch\‘modes'\xts'\\oats_init.c
.text:eesipoes push offset akeylNull ; “keyl != NULL

.text:ee52B985 call sub_52CF18

.text:88526984 add esp, ch |

.text:eas2898D

.text:ee52B9eD loc_52B89eD: ; CODE XREF: sub_S52BEF@+71]
.text:ees2B9eD cmp [ebp+arg_&], &

.text:ee52B911 jnz short loc_52B927

Ltext:ees2e913 push 2gh

.text:ee528915 push offset asrcModesxtsxts 1 ; "srch\‘modes'\xts'\\oats_init.c
.text:eec2B91A push offset akey2Null ; "key2 != NULL

.text:eecIB91F call sub_52CF18

.text:eec2p924 add esp, &ch

e s OO AR AT

Figure 4.24: Privacy Drive Mode (xts_initt.c function)

It can be seen in the Figure 4.24 that xts_init.c is detected in the assembly code.

48

» LCAL.DTIILLD S Jus I L AL Dauuw o

text:ees2cpsg push 4ah

text:ees52CDE6 push offset aSrcModesXtsXts_2 ; "src\'\modes\\xts\\xts_encrypt.c
text:eesacooe push offset aPtNull ; "pt != NULL

text:e8520095 call sub_S2CF1@

text:easacooa add esp, &ch

Jtext:ees2coon

text:ee52C090 loc_520090: ; CODE XREF: sub_S52CD&8+271])
text:eas2coen test ebx, ebx

text:ees2cD9F jnz short loc_52CDBS

text:eas2cpal push 48h

text:eesacpaz push offset asrcMmodesxtsxts 2 ; "srch\\modes\\xts\\xts_encrypt.c
text:eesacpas push offset aCtNull ; "ct != NULL

text:eas2Coan call sub_S2CFi1@

text:ees2cDE2 add esp, 8ch

.tewt i ARSICTIRG

Figure 4.25: Privacy Drive Mode (xts_encrypt.c function)

Figure 4.25 shows the signatures of xts_encrypt.c function and similarly Figure 4.26

also show another function used i.e. xts_done .

LTEXT iDLy pusn eop

text:@e529291 mov ebp, esp

Jtext:ee529293 push esi

text:ees29294 mov esi, [ebp+targ @]
text:@es529297 test esi, esi

.text:ees29299 jnz short loc_52924F
.text:@@529298 push 18h

text:88529290 push offset aSrcModesXtsXts ; "src xtsh\h\xts_done.c
Jtext:essigzaz push offset axtsveoide ; "xts != ((
.text:@e529247 call sub_52CF18

text:ess292ac add esp, ach

Jtext:ess2g24F

Figure 4.26: Privacy Drive Mode (xts_done.c function)

It can be seen that XTS mode in LibTomCrypt also uses all these functions which
gives clear hint the source code is using LibTomCrypt library and also XTS mode of

encryption.

49

nabto / unabto

<» Code ssues 1 Pull requests 0 Projects 0 Insights

Branch: master» | unabto / 3rdparty / libtomcrypt / src | modes / xts /

mkm Move uMNabto to github.

[E] xts_decrypt.c Mowe uMabto to github.
[E] xts_done.c Mowve uMabto to github.
[E] xts_encrypt.c Move uMabto to github.
[E] xts_init.c Mowe uMabto to github.
E] xts_mult_x.c Mowe uMNabto to github.
] xts_test.c Mowve uMabto to github.

Figure 4.27: LibTomCrypt XTS Mode Functions

SensiGuard

SensiGuard is encryption software which provides strong encryption using AES algo-
rithm. It uses 256-bit AES key which makes it a good choice to use for sensitive data

[36]. It is close-source application which offers encryption and folder locking features.

Findings: It was found that there were few functions calls for AES encryption, decryp-
tion and keys. By analysing the function call signatures, it looks like that the source
code is using OpenSSL Implementation of AES. Figure 4.28 shows the function calls

found in the assembly code:

50

.text:eees0081E3808EEFS lea o i)

text:o80808212888EEFF call I CSIAES_set_encrypt_key I
.text:2eaee8212088EFEG cmp p——
.text:2ee000010088EFRT jb short loc_13888EF3ID
.text:eeee08010028EF2E mov riad, 1gh
text:oeo808212888EF11 sub ri4, rbx
text:2e2e28212088EF14 nop dword ptr [rax+22h]
.text:2ee000010080EF18 nop dword ptr [raxsrax+esesessch]
.text:2cecepeloe28EF28

.text:eee000012828EF28 loc_1S888EF28: ; CODE XREF: sub_12eeeEl3e+28B1]
text:oeo808212088EF28 lea rg, [rbp+i12sh+var_178]
.text:2e2ee8212088EF24 mov rdx, rbx
.text:eeoeeRe18080EF27 mov Cox, rhx
.text:2eeee8015888EF 24 call | CSIAES_encrypt |
text:oeo808212088EF28 add TRy 1o
.text:2e2e28212088EF24 lea rax, [rldsrbx]
.text:200000010088EF38 cmp rax, rsi
.text:2oe000010028EF 2B jbe short loc_1Z@eeEF28
.text:2eee08013888EF 2D

Figure 4.28: SensiGuard AES_Encrypt and AES_Encrypt_key function call

text:oseeeselseeereAl call CSIAES_set_decrypt_key
text:oseeeselseeereAT lea P
text:oeeeeeels088FEAF lea rbx, [rsp+lcshdpata]
text:ooeeeeelE088FEET sub rdi, rax
text:ocesepel5888FEBA nop word ptr [raxs+rax+22h]
text:ecesepelieeeFeCe

.text:ecesepelieeersCe loc_lEBB8FcCe: ; CODE XREF: sub_128@BFSFe+EDI]
.text:esepepe1E2888FeC0 lea rg, [rsp+lsEh+var_1428]
.text:eeepe8813888F6C5 mov rdx, rbx
Jtext:oegeeselEetereCs mov i, hx
.text:PeEE08013008F6CE call | Cs:AES decrypt |
text:eeseeselsaearell add Ly
Jtext:eesee8218888FE05 lea rax, [rdi+rbx]
Jtext:eeseesels888FeD9 cmp rax, 12h

Figure 4.29: SensiGuard AES_Decrypt and AES_Decrypt_key function call

Mode of Encryption: It was also found that the source code is using IGE cipher mode.
IGE stands for Infinite Garble Extension which has the property that errors in bits are
propagated indefinitely [37]. OpenSSL implemented this mode in 2006 which is mainly
used for AES algorithm.

LTENT I BB L BB LS S LE MOVAQS | FOp+28EN+VEr_su], Xmmd
.text:eee08881308257D5 =
text:ecesseelse82570C call CSiAES_ige_encrypt
dext:eeee2881888257E2 TeE TR) R 2
text:e00828281888257E9 lea rcx, [rsp+3ggh+var_24C]
.text:eceooee1880257EE mov edx, 2eh
tewt:eceoeee1888257F3 call CSI5SHAZEE
Jdext:eeee2881888257F9 lea rdx, [rbp+288h+Buf2] ; Buf2
text:sopeee0150825808 lea rcx, [rsp+3ggh+Bufl] ; Bufl
text:oooee80138825885 mov red, 2ah 3 Size
text:eee8888158825288 call memcmo

Figure 4.30: SensiGuard IGE Mode

51

Boxcryptor

Boxcryptor is encryption software which offer end-to-end security that primarily pur-

pose is to provide security for cloud [38]. It is free if used for non-commercial purpose.

Findings: After reverse engineering, it was found that the application was compiled in
C# language that’s why after reverse engineering, it gave Microsoft.Net assembly code
for analysis. As the code is in .Net assembly language so it can be clearly seen that

which cryptographic library is used for encryption and decryption of file.

It was seen that the application used bouncy crypto API for encryption and decryption
but it can only be seen through dynamic analysis of application that which crypto rou-
tine is being executed for encryption and decryption as static analysis will list complete

cryptographic routines like AES, blowfish etc.

il e =]

.methed private static hidebysig class Org.BouncyCastle.Crypto.ICipherParameters GetCipherParameters(char[] password, valuetype PemBaseAlg baseAlg, unsigned intgs[] se
{
-maxstack 4
.locals init (string ve,
int3z v1)
ldarg.1
switch loc_21303, lec_213E1, loc_213EF, lec_213FD, loc_214@B, loc_21416, loc_21424, loc_21432, loc_2144@, loc_2144B

I ‘%

| |
loc_21456
loc_213D3: loc_213EF: loc_213FD:
ldc.i4 ldc.i4 ldc.i4
stloc.1 stloc.1 stloc.1
ldstr 3Ae5128 AES128 ldstr 3Ae5192 AES192 ldstr 8AE5256 AES256 ldstr aBlowfish
stloc.e stloc.e stloc.@ stlec.@
br.s loc_21458 br.s loc_21458 br.s loc_21458 br.s loc_21458

Figure 4.31: Boxcryptor Code View

Mode of Encryption: Multiple modes detected but it is not clear which mode will be

executed at runtime.

52

Address Function Instruction

52g000:219A5 Org.BouncyCastle. Security. CipherUtilities: : .cctor ldstr aAesPkess /f TAES/ffPKCSS”

2eg000: 21944 Org.BouncyCastle. Security. CipherUtilities:: .cctor Idstr aAesEcbPkcs7pad /f "AES/ECE/PKCSTPADDING™

seg000: 21969 Org.BouncyCastle, Security, CipherUtilities: ;. cotor ldstr aAesPkcsSpaddin /i "BES//PKCSSPADDING”
seg000:219BE Org.BouncyCastle. Security. CipherUtilities: :.cctor ldstr aAesEcbPlkes7pad /i "AESECEPKCS7PADDING”™
5eg000:215CD Org.BouncyCastle. Security . CipherUtilities: :.cctor ldsfld dass Org.BouncyCastle. Asn1.DerObjectldentifier Org.Bouncy..
seg000:215D7 Org.BouncyCastle. Security. CipherUtilities: :.cctor ldstr aAesChcPkes7pad {f "AES/CBC PKCSTRPADDING™
segl00:219E6 Org.BouncyCastle. Security. CipherUtilities: :.cctor ldsfld dass Org.BouncyCastle. Asn1.DerObjectldentifier Org.Bouncy ...
seg000:215F0 Org.BouncyCastle. Security . CipherUtilities: :.cctor ldstr aAesChcPkes7pad {f "AES/CBC [PECSTPADDING™
seg000:219FF Org.BouncyCaste. Security. CipherUtilities: :.cctor ldsfld dass Org.BouncyCastle. Asn1.DerObjectldentifier Org.Bouncy ...
seg000:21A09 Org.BouncyCastle. Security. CipherUtilities:: .cctor ldstr aAesCbcPkes7pad /f "AES/CBC /PKCSTPADDING™
5eg000:21A18 Org.BouncyCastle. Security. CipherUtilities: : .cctor ldsfld dass Org.BouncyCastle.Asnl.DerObjectidentifier Org.Bouncy ...
seg000:21A22 Org.BouncyCastle. Security. CipherUtilities:: .cctor ldstr aAesCfbMopaddin {f "AES/OFE MNOPADDING™
2eg000:21A31 Org.BouncyCastle. Security. CipherUtilities:: .cctor Idsfld dass Org.BouncyCastle. Asnl.DerObjectldentifier Org.Bouncy...
5eg000: 21436 Org.BouncyCastle, Security, CipherUtilities: ;. cotor ldstr aAesOfbMopaddin {f "BES/OFB MNOPADDING™

seg000: 21444 Org.BouncyCastle. Security. CipherUtilities: :.cctor ldsfld dass Org.BouncyCastle. Asn1.DerObjectldentifier Org.Bouncy...
seg000:21A54 Org.BouncyCastle. Security . CipherUtilities: :.cctor ldstr aAesOfbMopaddin /i "AES/OFB NOPADDING”
segl00:21A63 Org.BouncyCastle. Security. CipherUtilities: :.cctor ldsfld dass Crg.BouncyCastle. Asni.DerObjectldentifier Org.Bouncy ...

Figure 4.32: Boxcryptor Modes

Rohos Mini Drive

Rohos Mini Drive is a desktop software primarily used for securing USB drives by cre-
ating a hiding encrypted partition which will only be accessible using correct password
[39]. It has a number of features including browsers profile data encrypting, history and

even skype chat and profile encryption and hiding.

Findings: It was found after reverse engineering that Rohos Mini Drive is using AES

instruction set and standard s-box was also found in memory.

S-box: Standard S-box was found during the analysis of assembly code of Rohos Mini

Drive application that was acquired after reverse engineering of the Rohos Mini.exe file.

53

64 6F 60 B8 B8 668 &8 B8e IEB 7C 77 7B F2 6B 6F C5 Jdom..... c|w{6koﬁ

S8 @1 67 26 FE D7 AB 76 LA B2 (9 7D FA 59 47 F@ |@.g+hxevE,E1ivGa
AD D4 A2 AF 9C A4 72 C@ B7 FD 93 26 36 3F F7 CC |O¢ eHrh-y &e2+1

34 A5 ES F1 71 D8 31 15 @4 C7 23 (3 18 96 85 9A |4¥dfiqll..C#A.-.3
@7 12 8@ E2 EB 27 B2 75 @9 83 2C 1A 1B 6E 54 A0 |..€42'2u.f,..nZ-
52 3B D6 B3 29 E3 2F 84 53 D1 @@ ED 28 FC Bl 5B [R;02)a/,SN.i-ut[
6A CB BE 39 4A 4C 58 CF D@ EF AA FB 43 4D 33 85 [JEX9ILXIDiz20CM3..
45 F9 @2 7F 50 3C 9F A8 51 A3 4@ 8F 92 9D 38 F5 |EU..P<V QE@.’ .85
BC B6 DA 21 18 FF F3 D2 €D 8C 13 EC 5F 97 44 17 [4¥90!.ys01I..1 -D.

Py}

T
T

Py}

T
o

Py}

T T
[T Ns]
[V WYy

[R o i

Py}

mn ™
[T Ts]
=l

] =

d =] J =]
M M MmMmIOoIomTomTmim
il il
[Tl 0
ca

n
s
O

L I cw I I I R T O T Y %
J

[~ I I I o R I o o R o o I o o

JBFOA C4 A7 7E 3D 64 5D 19 73 &8 BL 4F DC 22 24 98 88 |A§~=d].s” .00"*."
7EFOB® |46 EE B8 14 DE SE @B DB E@ 32 3A @A 49 66 24 5C [Fi, .p~.0&2:.1.%\
BVEFSCE JC2 D3 AC 82 91 95 E4 79 EV C8 37 6D 8D D5 4E A9 ﬁﬂﬂhciﬁycﬁ?m.ﬁN®
B7EFODE® | 6C 56 F4 EA 65 74 AE 88 BA 78 25 2E 1C A6 B4 (6 |lvdéez®.=x%. .| &
@7EFSE® JES DD 74 1F 4B BD 88 8A 7@ 3E B5 66 48 @3 Fe @E é?t.KE(§p>pr.ﬁ.
@76F9F@ |61 35 57 B9 86 C1 1D 9E E1 F8 98 11 69 D9 8E 94 [aswWitA.zae™.ilF™
@7EFAGBE | 9B 1E 87 E9 CE 55 28 DF 8C Al 89 @0 BF E6 42 68 }.iéiU(EEik.EEBh
B7EFALG |41 99 2D @F B8 54 BB 16 |52 @3 B6A D5 38 36 A5 38 A"—.“Tn.R.jﬁEE¥S
B7EFAZG BF 4@ A3 9E 81 F3 D7 FB 7C E3 39 82 9B 2F FF B7 EEZ.ox0|89,:/¥%

Figure 4.33: Rohos Mini Drive S-Box

Similarly, AES instruction set was also found in the assembly code. Figure 4.34 shows

AES decryption instruction.

et 0040 5F 5F sub_4D5SEFD aesdec xmm0, xmm1
JSext: 0040 5F6A sub_4DSEFD aesdec xmmd, xmm1
Sext: 0040 5F 7S sub_4D5EFD aesdec xmmd, xmm 1
Jtewt:00405F30 sub_4D5EFD aesdec xmm0, xmm1

Figure 4.34: Rohos Mini Drive Decryption

Figure 4.35 shows the instruction for last round decryption of AES.

text: 0040 5FOF sub_405EFO aesdedast xmmad, xmm1
et 004D 5F AL sub_4D5EFD aesdeclast xmm0, xmm 1
text:00405FBS sub_<4D5EFD aesdeclast xmma, xmm 1
Stext:004D5FCO sub_4D5EFQ aesdeclast xmma, xmm 1

Figure 4.35: Rohos Mini Drive Last Round Decryption

Similarly, AES encryption for all the rounds can be seen in Figure 4.36.

54

Sdext:004De0AF sub_40a040 aesenc xmmd, xmml

Sdext:004Do0BA sub_40a040 aesenc xmmd, xmiml
Sdext:004De0CS sub_40a040 aesenc xmmd, xmiml
Sext:004Da00D0 sub_40a040 aesenc xmmd, xmiml
text:004D60EF sub_40a040 aesenclast xmmid, xmm1
Sext:004Da0FA sub_40a040 aesenclast xmmid, xmm1
Sext: 00406105 sub_40a040 aesenclast xmmid, xmm1
gext: 00406110 sub_4Da0<40 aesendast xmm0, xmm 1

Figure 4.36: Rohos Mini Drive AES Encryption including last round

The instruction for key generation can also be seen in the assembly code:

JSext: 0040 TAS0 sub_407980 aeskeygenassist xmm0, xmm1, 0
JSext: 0040 FAFD sub_40D73E0 aeskeygenassist xmmd, xmmi, 0
JSext:0040 7B 3IF sub_4073B0 aeskeygenassist xmm0, xmml, 0

Figure 4.37: Rohos Mini Drive Key Generation

The instruction for column mixing and transformation can also be seen in the Figure

4.38:

Jtext:004D7EED sub_4D7IE0 aesimc xmm0, xmmword ptr [edx+eax 4]
text: 0040 7BES sub_4079B0 aesimc xmm1, xmmword ptr [edx+ecc™4]

text: 004D 7BFE sub_4D7aE0 aesimc xmmi, xmmword ptr [edx+ecc™4]

Figure 4.38: Rohos Mini Drive IMC Function

BestCrypt

BestCrypt is disk and file encryption software which is available for Windows, OS X

and Linux platform. It can be used for both volume and files encryption [40].

Finding: BestCrypt was downloaded from official website [40]. It was than installed

on a drive and all the exes, dll were analysed against AES signatures.

S-Box: Standard s-box was detected during analysis of assembly code as shown in the

Figure 4.39:

55

sub_40100F
sub_401028
sub_401082
sub_40109E
sub_4010B3
sub_4010E3
sub_40113F
sub_401153
sub_40117C

sub_4011E9
sub_401208
sub_401222
sub_401270

sub_401294
b AN IRE

e

CPaneContainerGC:: ~CPaneContainer

FEEEEEEEEEEEEE RS
[R R R R R B

EA

[&2 7¢

i

DF

CA 82
B7 FD
a4 C7
a9 a3
53 D1

8C Al

16

[52 a0

Figure 4.39: BestCrypt S-Box

F¢2.3548c|w{dkoh
8. g+pxavE, EHived
O¢ “eHrA-yoae?+1

A¥EAqOL. .C#A. - 2
LLEEETIULF, . .nE-
R;02)3/,50.1-ut]
JEX9ILXIDI=GHCM3...
Eii. .P<VQE@.’ .88
¥90!.y60. .1 -D.
A§e=d].s”.00"*."
Fi, .p~.082:.1.8\
AG-b*edycE7m.ONE
lvdgez®. ex¥. .| &
EVE. K¢ SprpfH. &,
aSWtA.zde™. 107"
».+EIU(RE;%. ;=Bh
A™-_ ®Tn.R.jOBE¥3

Other Signatures: There are also few signatures found in the binary code but it did not

give any meaningful information about the algorithm used. Similarly, there are many

strings found the hex dump but the problem remains the same as it did not give any

information about the algorithm used.

sub_401028
sub_401082
sub_40109F
sub_401089
sub_4010E3
sub_40113F
sub_401159
sub_40117C
CPaneContainerGC:: ~CPaneContainer
sub_4011E9
sub_401206
sub_401222
sub_401270
sub_401294
sub_4012BE

ey e

.rdata:004E3518 aBenchmarksuppo db 'BenchMark_SupportAESHardwareAcceleration’, 0

aBenchmarkSetae db '‘BenchMark_SetAESHardwareAcceleration’,0

.rdata:004E3544
.rdata:004E4600
.rdata:004F005C
.rdata:004F00B0
.rdata:004F00C4
.rdata:004F00D3
.rdata:004F00EC
.rdata:004F0100
.rdata:004F0114
Jrdata:004F0123
.rdata:004F013C
.rdata:004F014C
.rdata:004F015C
.rdata:004F0 16C
.rdata:004F121C

db’

ahes256CTHh
ahes2560fh
aAes256Che
ahAes256Ech
ahes192CH
ahes1920fh
ahes192Chc
aAes192Ech
ahes128CHh
ahes1230fb
ahes123Chc
ales128Ech

db 'aes256-CFE',0
db 'aes256-0FE',0
db 'aes256-CBC',0
db 'aes256-ECE',0
db 'aes192-CFE',0
db 'aes152-0FF',0
db 'aes192-CBC',0
db ‘aes192-ECE',0
db 'aes123-CFE',0
db 'aes128-0FB',0
db 'aes128-CBC',0
db 'aes123-ECE',0

aldRsaesOaep db id-RSAES-OAEF',0

-a <name=",9,'- name of encryption algorithm, defaultis...

Figure 4.40: BestCrypt AES Signatures

Private Disk

Private disk is also the similar software which is used for encrypting sensitive data and it

is only available for Windows platform [41]. Its specifications states that it uses 256-bit

AES data encryption. It also states that it is FIPS approved and the 256-bit encryption

algorithm was adopted by the NIST.

Findings: Except for only detecting the standard s-box, our analysis did not find any

other signature which can show the algorithm used in the source code. As there is cer-

tificate found from NIST on the official website [41] that it fulfils the requirement of

56

FIPS pub 197, it means that it is possible that they have deployed their own implemen-
tation of AES. As the source code is not available so it cannot be justified that which
algorithm is used in source code and secondly, the signature for existing algorithm can-
not developed for existing algorithm as the access to source code of that algorithm is

restricted.

C@ F7 70 @7 |63 7C 77 7B F2 6B 6F (5 3@ @1 67 2B [A:p.c|w{dkohe.g+
FE D7 AB 76 CA B2 (9 7D FA 50 47 F@ AD D4 A2 AF |pxavE,ElivGaig-
9C A4 72 (@ B7 FD 93 26 36 3F F7 CC 34 AS ES F1 |eHrd-y"&67:14¥aR
71 D8 31 15 @4 C7 23 (3 18 96 @5 9A 87 12 80 E2 |q01..C#A.-.3..€3
EB 27 B2 75 @9 83 2C 1A 1B E 5A A@ 52 3B D& B3 |&'2u.f,..nZ-R;i®
29 E3 2F 84 53 D1 @@ ED 28 FC Bl 5B 6A CB BE 39 |)a/,SN.i-ut[jEX9
4A 4C 58 CF D@ EF AA FB 43 4D 33 85 45 F9 @2 7F |JLXTDizGCM3..Ed. .
4@
13

Lo I IO e s T O O O s T O L %
Lo I Y w IO IO e O s T T O I O O O L %
L o I L T T O I I O O S L

[= =y gy
WO sl o L

S8 3C OF AS 51 A3 48 8F 92 9D 38 F5 BC B6 DA 21 [P<VQf@.’.85%90!
FF F3 D2 (D @C 13 EC SF 97 44 17 C4 A7 7E 3D |.§60I..1 —D.A§~=
64 5D 19 73 6@ 81 4F DC 22 2A 9@ 88 46 EE B3 14 [d].s".00"*."Fi. .
DE SE @B DB E@ 32 3A @A 49 @6 24 5C C2 D3 AC 62 [p~.0a2:.I.$\A6-b
91 95 E4 79 E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA |edycE7m.ONBlvoe
65 7A AE @8 BA 78 25 2E 1C A6 B4 C6 ES DD 74 1F [ez®.ox%..! “g&Vt.
4B BD 8B BA 7@ 3E BS5 66 48 @3 F6 OE 61 35 57 B9 [K%«3p>pfH.o.as5ut
86 C1 1D 9E E1 F8 98 11 69 D9 BE 94 9B 1E 87 E9 [tA.3de™.ilF"».1é
CE 55 28 DF 8C Al 89 @D BF E6 42 68 41 99 2D @F |IU(RE;%. ;zBha™-.
[B0 54 B5 16 |2 00 6A D5 30 36 A5 38 BF 40 A3 OE °T».R.j0@6¥s.@e:

nmm 3 m

[~
[x]

m i rmrmrm rm/rrm oo omrmemomrmm
L O ™ IO ™ I O T T % I U T S
[R T T T B R T R B S B o B
=
®

o ld R

Figure 4.41: Private Disk S-Box

4.4 AES Crypto Scanner: An Automated Approach

AES Crypto Scanner is the tool developed in this work for the purpose of automating
the detection of AES in real applications. It is designed specifically for the extraction
of AES different parameters from the binary code. It will take binary code as an input

and will output the analysis result.

4.4.1 Tool Specification, GUI and Main Functions

AES Crypto Scanner is a desktop tools designed for Microsoft Windows platform. It is
developed in visual studio using C# language. The libraries used in the development of
this tool are RegularExpressions, Ling, Drawing and Threading. RegularExpressions is

used to extract special characters from file. Linq is used to manipulate lists. Drawing is

57

used to highlight selected text i.e. AES constants found in the file.

85! AES Crypto Scanner - X

AES Crypto Scanner

Main Menu

Upload | |

Upload file (_bin / txt)

| Scan ‘ ‘ Display |

il Show highlighted data |

Figure 4.42: AES Crypto Scanner

Upload: Click this button to add the file containing binary code. It supports .txt and
binary file format. By clicking upload, System takes input as a text file/ binary file

which contains the assembly code of the application under analysis.
Scan: Click this button to scan the uploaded file and locate AES signatures if any.

Display: Click this button to show the output of scan. If the AES is found in the
binary code then it will output the findings like which implementation is found, En-

cryption/Decryption routine used, mode of operations etc.

Show highlighted data: It will show the found signatures in assembly code so that an
analyst can see the assembly code and the section where this signature is found. The

signature will be highlighted so that it can be easily found.

Reset: This button will be used to reset and clear the main screen so that the tool can

be used for another application if required.

Main Screen: This area will be used to show output results and binary code.

58

4.4.2 Benefits of AES Crypto Scanner w.r.t Existent Tools

The AES Crypto Scanner is developed to identify and locate AES parameters in As-
sembly code that was acquired after reverse engineering of the application. There are
other tools like FindCrypt2, IDA Signsrch and SND Crypto Scanner that is used for the

same purpose but AES Crypto Scanner has few features that makes it unique.

Simple Interface: AES Crypto Scanner has user friendly interface which is very easy
to use even by novice user. The main menu is very simply designed which provide clear
instructions about the tool. It is fully GUI based and independent tool, means it is not a
plugin for any other tool. As compare to this FindCrypt2 and SND Crypto Scanner are
both plugins whereas IDA Signsrch is command line tool which is not comfortable to

uses at beginning.

Rich Interface: AES Crypto Scanner provide rich interface as compare to other simi-
lar tools. It can be used for scanning the file, Displaying the constants found in file and

even highlighting the signatures in code.

Categorization: This tool does not only output the string “AES found/not found "but
also provide additional information like library used, s-box used, encryption and de-
cryption routine used etc. which can help analyst to look for the specific parameter if

required.

Aid in analysis: The option of highlighting crypto data in assembly code is very useful
feature specially for analyst as they can quickly skip the other data and can only focus

on the highlighted data which will reduce complexity of code and save time as well.

Scalable: This is not a final tool with final signatures. More signatures can be added
to its database which makes it scalable. If analyst found few signatures which is used

for AES, it can be added into the database and hence the database will increase and the

59

tool will become more powerful.

4.5 Tools Comparison

This section contains information of tools used for the detection of AES. It also shows

the performance of every tools as compare to other.

4.5.1 List of Tools/Plugins

There are number of tools used for the detection and analysis of binary code. Every
tool has strength and limitation as well. For this work 3 main tools were used other than

AES crypto Scanner. The tools/plugins used for the detection of AES were:

FindCrypt2

IDA Signsrch

SND Crypto Scanner

AES Crypto Scanner (Developed tool for this framework)

From the results it can be seen that both IDA Signsrch and SND Crypto Scanner have

very successful results as compare to FindCrypt2 plugin.

4.5.2 Results

The final results are divided in two potions. One for open-source applications and
second for close-source application. Secondly the tools comparison can also be seen in

the tables.

Open-Source Applications: A total of 5 open-source applications were analysed
using the proposed methodology and the results were confirmed as the source code was

available. The following results are obtained from 4 different tools i.e. AES Crypto

60

Applications

Tools

AES
Detection

S-Box\
Table-Lookup
Detection

Implementation
Detection

7Zip

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

AxCrypt

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

Diskcryptor

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

VeraCrypt

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

EncFSMP

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

RAXKNUxKAxxNRUx RN xS

X QAUXX XXX XXX XS XXX XS

N XXX XXX XXX XXX X X

Table 4.3: Open-Source applications result comparison

Scanner, FindCrypt2, IDA Signsrch, SND Crypto Scanner.

It can be seen in Table 4.3 that FindCrypt2 plugin was not able to detect AES signatures,

not even in a single application whereas other 3 tools have successfully detected the

AES signatures.

Close-Source Applications:

Other than open-source application, 6 close-source ap-

plications were also analysed using 4 different tools i.e. AES Crypto Scanner, Find-

Crypt2, IDA Signsrch, SND Crypto Scanner, and the final result of all the tools are

presented in the Table 4.4.

61

Applications

Tools

Detection

AES

S-Box\
Table-Lookup
Detection

Implementation
Detection

Privacy Drive

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

SensiGuard

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

Boxcryptor

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

Rohos Mini

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

BestCrypt

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

Private Disk

AES Crypto Scanner

FindCrypt2

IDA Signsrch

SND Crypto Scanner

XUXXCAUX(NAXKCUx{|xxx NN

XUXX XX XAXXCAX X XXX XX X

X X X XX XX XXXXXXXSKXXXXXXS

Table 4.4: Close-Source applications result comparison

The Table 4.4 shows the performance of all 6 tools. It can be easily seen that FindCrypt2

again has very poor performance and it has only detected AES in 1 application out of

6. Similarly, IDA Signsrch and SND Crypto Scanner has detected 5 applications out of

6 which shows a high detection ratio as compare to FindCrypt. AES Crypto Scanner

has detected AES in all applications which represent that it has better detection than all

other tools used for similar purpose.

62

4.6 Summary

This chapter provides the implementation detail of proposed framework. In this chap-
ter, a total of 11 applications were analysed in which 5 of them were open-source and 6
close-source. It can be seen that out of 11, 5 applications were using Intel AES Instruc-
tion set [42], 2 applications were detected using bouncy crypto library, 1 application
was using LibtomCrypt implementation, 1 application with OpenSSL implementation
and 2 application with unknown implementation but standard s-box exists in the binary
including some random signatures as well. The results section makes a good evaluation
of the 4 tools and it can be seen that AES Crypto Scanner performed convincingly well

as compare to other tools.

63

Chapter 5

Conclusion & Future Directions

5.1 Conclusion

It is a belief that increasing the key size has a direct effect on the security of applica-
tions which is not completely true as key length can only increase the mathematical
complexity and resist in mathematical and algebraic attack [46] but it does not consider
algorithmic attack nor implementation-related attacks that bypasses the mathematical
complexity of cipher. Secondly it also increases the computation time which decreases
the performance of application. Hence developing secure products/applications requires
standard key length and standard implementation which is flawless so that it can pro-

vide desired security and performance.

The purpose of this work was to evaluate the applications, look for the AES signatures
that provides information regarding rounds used, key size, algorithm used, s-box used
and mode used if possible. A framework was designed to prepare for evaluation pro-
cess and then perform analysis that provides meaningful information to analyst. Few
AES implementations were selected for this work and the proposed framework was im-
plemented on 5 open-source and 6 close-source applications. It was found that many
applications were using the standard implementation of AES and the real challenge was
to determining the mode in assembly code. Many applications used standard s-box

and it was found that for complete drive encryptions the applications used XTS mode

64

which is a standard approach. Different tools were also evaluated and the results shows
that FindCrypt2 plugin was not up to the mark whereas the other similar tools showed
good results. The tools developed for this work had the successful output as compare
to other tools. The main challenge of this work is to identify standard implementations
and acquiring signatures and if this stage is done correctly the entire framework become
successful and if these stages are not catered correctly than the framework will fail. So,
it is highly recommended to utilize maximum time/efforts in finalizing the algorithms

and signature which actually contribute in the success of this work.

5.2 Future Directions

Apart from contributing in the field of signature detection this work has also increased
the reliability of applications by conforming that secure implementation is used in the
applications. This work can also be strengthened by implementing the following fea-

tures:

* Add more libraries and signatures which confirms the defined standard of this

work.

* Increase the signature repository and include other cryptographic algorithms like

DES, Twofish etc. which will make this tool very rich.
* This work should be enhanced by adding known vulnerabilities into database.

* The proposed framework is based on the static analysis of code that’s why it is not
possible to acquire all the useful information correctly. For this reason, a hybrid
approach should be developed which uses both static and dynamic analysis of
code. It will help in the detection of modes, number of rounds and flow of code

as well.

65

5.3 Summary

This chapter has summarized the research work by providing a very brief overview
of the research conducted. It gave a complete sketch of the purposed framework and
implementation of proposed framework in this research. Furthermore, it has also set

future directions which will be useful for researchers of the same field.

66

List of Abbreviations and Symbols

Abbreviations

AES Advanced Encryption Standard

DES Data Encryption Standard

EXE Extension for an Executable File Format
DLL Dynamic Link Library

RE Reverse Engineering

IDA Interactive DisAssembler

S-Box Substitution-Box

FIPS Federal Information Processing Standards
ECB Electronic Codebook

CBC Cipher Block Chaining

CFB Cipher Feedback

OFB Output Feedback

XTS XEX-based tweaked codebook mode with ciphertext stealing
IGE Infinite Garble Extension

DB Database

67

References

[1] Nazaruk, Vladislav, and Pavel Rusakov. “Implementation of Cryptographic Al-
gorithms in Software: An Analysis of the Effectiveness. ”Scientific Journal of

Riga Technical University. Computer Sciences 41.1 (2010): 97-105.

[2] Kinder, Johannes. Static analysis of x86 executables. No. THESIS_LIB. Tech-

nische Universitat Darmstadt, 2010.

[3] B.N.J. Rubenking, “The Best Encryption Software of 2018,”"PCMAG. [On-
line]. Available: https://www.pcmag.com/article/347066/the-best-encryption-
software-of-2016. [Accessed: 12-Jul-2018].

[4] NIST, FIPS PUB. 197,“Advanced Encryption Standard (AES),”November 2001.

[5] Bassham III, Lawrence E. “The advanced encryption standard algorithm valida-

tion suite (AESAVS).”NIST Information Technology Laboratory (2002).

[6] “Reverse Engineering.”[Online]. Available:
https://ethics.csc.ncsu.edu/intellectual/reverse/study.php.[Accessed: ~ 04-Nov-
2018].

[7] Vigna, Giovanni. “Static disassembly and code analysis.”Malware Detection.

Springer, Boston, MA, 2007. 19-41.

[8] Grobert, Felix, Carsten Willems, and Thorsten Holz. “Automated identification
of cryptographic primitives in binary programs.”’International Workshop on Re-

cent Advances in Intrusion Detection. Springer, Berlin, Heidelberg, 2011.

68

[9] Sikorski, Michael, and Andrew Honig. Practical malware analysis: the hands-on

guide to dissecting malicious software. no starch press, 2012.

[10] Aabidi, M. H., et al. “Benefits of reverse engineering technologies in software de-

velopment makerspace.”ITM Web of Conferences. Vol. 13. EDP Sciences, 2017.

[11] Canfora, Gerardo, Massimiliano Di Penta, and Luigi Cerulo. “Achievements and
challenges in software reverse engineering.”Communications of the ACM 54.4

(2011): 142-151.

[12] Nguyen, Phong Q. “Can we trust cryptographic software? Cryptographic flaws
in GNU Privacy Guard v1. 2.3.”International Conference on the Theory and Ap-
plications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2004.

[13] Benedetti, Leonard, Aurelien Thierry, and Julien Francq. “Detection of crypto-

graphic algorithms with grap.”IACR Cryptology ePrint Archive (2017): 1119.

[14] Hill, Gregory D., and Xavier JA Bellekens. “Deep Learning Based Cryptographic
Primitive Classification.”arXiv preprint arXiv:1709.08385 (2017).

[15] Hosfelt, Diane Duros. “Automated detection and classification of crypto-
graphic algorithms in binary programs through machine learning.”arXiv preprint

arXiv:1503.01186 (2015).

[16] Matenaar, Felix, et al. “CIS: The crypto intelligence system for automatic detec-
tion and localization of cryptographic functions in current malware.”Malicious
and Unwanted Software (MALWARE), 2012 7th International Conference on.
IEEE, 2012.

[17] Lestringant, Pierre, Frederic Guihery, and Pierre-Alain Fouque. “Automated
identification of cryptographic primitives in binary code with data flow graph
isomorphism.”Proceedings of the 10th ACM Symposium on Information, Com-

puter and Communications Security. ACM, 2015.

[18] Calvet, Joan, Jose M. Fernandez, and Jean-Y ves Marion. “Aligot: cryptographic

69

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

function identification in obfuscated binary programs.”’Proceedings of the 2012

ACM conference on Computer and communications security. ACM, 2012.

Xu, Dongpeng, Jiang Ming, and Dinghao Wu. “Cryptographic function detec-
tion in obfuscated binaries via bit-precise symbolic loop mapping.”Security and

Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017.

Zhao, Ruoxu, et al. “Detection and analysis of cryptographic data inside soft-
ware.”International Conference on Information Security. Springer, Berlin, Hei-

delberg, 2011.

“Welcome to Hex-Rays.”[Online]. Available: https://www.hex-rays.com/. [Ac-
cessed: 04-Mar-2018].

“OllyDbg v1.10.”[Online]. Available: http://www.ollydbg.de/. [Accessed: 04-
Mar-2018].

“FindCrypt - Hex Blog.”[Online]. Available: http://www.hexblog.com/?p=27.
[Accessed: 13-June-2018].

Monnappa K A. “Malware Obfuscation Techniques”in Learning Malware Anal-

ysis, 1st ed., Birmingham: Packt Publishing, 2018

T. Xie, F. Liu, and D. Feng. “Fast collision attack on MD5.”IACR Cryptology
ePrint Archive, 2013:170,2013.

“7-Zip.”[Online]. Available: https://www.7-zip.org/. [Accessed: 21-July-2018].

“Microsoft .NET Portable Library Reference Assemblies 4.6,”Microsoft
Download Center. [Online]. Available: https://www.microsoft.com/en-

pk/download/details.aspx 7id=40727. [Accessed: 21-jul-2018].

Edgar, Michael. (2016). Legion of the Bouncy Castle Inc. BC-FNA (Bouncy
Castle FIPS .NET API) FIPS 140-2 Cryptographic Module Security Policy.
10.13140/RG.2.2.20033.04969.

70

[29] “AxCrypt - File Security Made Easy,” AxCrypt - File Security Made Easy. [On-
line]. Available: https://www.axcrypt.net/. [Accessed: 01-Aug-2018].

[30] “DiskCryptor wiki.”[Online]. Available: https://diskcryptor.net/wiki/Main_Page.
[Accessed: 01-Aug-2018].

[31] “VeraCrypt,’[Online]. Available: https://sourceforge.net/projects/veracrypt/.
[Accessed: 01-Aug-2018].

[32] “EncFSMP homepage.”[Online].Available: https://encfsmp.sourceforge.io/.
[Accessed: 18-Aug-2018].

[33] “Privacy Drive encryption software: lock, hide & protect data.”’[Online]. Avail-
able: http://www.cybertronsoft.com/products/privacy-drive/. [Accessed:21-Aug-
2018].

[34] “libtomcrypt Git at Google.”[Online]. Available:
https://android.googlesource.com/platform/external/dropbear/+/donut-

release/libtomcrypt/src/ciphers/aes/aes.c. [Accessed: 22-Aug-2018].

[35] “libtom,’[Online]. Available: https://www.libtom.net/LibTomCrypt/. [Accessed:
28-Aug-2018].

[36] “SensiGuard - File Encryption Software - Lock Files - Lock Folders.”[Online].
Available: https://www.sensiguard.com/. [Accessed: 28-Aug-2018].

[37] B. Laurie,“OpenSSL ‘s implementation of Infinite Garble Extension”, 2006

[38] “Boxcryptor | Security for your Cloud.”[Online]. Available:
https://www.boxcryptor.com/. [Accessed: 28-Aug-2018].

[39] “Rohos Mini Drive - Rohos.”[Online]. Available:
https://www.rohos.com/products/rohos-disk-encryption/rohos-mini-drive/.

[Accessed: 02-Sep-2018].

[40] “Encryption Software & Wiping Software | Jetico.”[Online]. Available:
https://www.jetico.com/. [Accessed: 02-Sep-2018].

71

[41]

[42]

[43]

[44]

[45]

[46]

“Disk encryption software - data protection and disk en-
cryption with Dekart Private Disk.”[Online]. Available:
https://www.dekart.com/products/encryption/private_disk/. [Accessed: 04-
Sep-2018].

Gueron, Shay. “Intel® Advanced Encryption Standard (AES) New Instructions
Set.”Intel Corporation (2010).

“OpenSSL Cryptography and SSL/TLS Toolkit.”[Online]. Available:
https://www.openssl.org/. [Accessed: 08-Sep-2018].

D.J. Bernstein, T. Lange, and P. Schwabe, “The Security Impact of a New Cryp-
tographic Library,’in Progress in Cryptology - LATINCRYPT 2012, vol. 7533,
A. Hevia and G. Neven, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 159-176.

“B. Gladman, AES code.”’[Online]. Avail-
able:https://github.com/BrianGladman/aes. [Accessed: 02-Aug-2018].

M. Neve and K. Tiri, “On the complexity of side-channel attacks on AES-256 —

methodology and quantitative results on cache attacks,”318, 2007.

72

	Main Title
	Supervisor Certificate
	THESIS ACCEPTANCE CERTIFICATE
	Declaration
	Declaration
	Declaration
	Copyright Notice
	Abstract
	Contents
	INTRODUCTION
	Overview
	Motivation and Problem Statement
	Aims and Objectives
	Thesis Contribution
	Thesis Organization

	LITERATURE REVIEW
	Introduction
	Advance Encryption Standard (AES) Overview
	Reverse Engineering and Code Analysis
	Static Analysis
	Dynamic Analysis

	Reverse Engineering and Binary Analysis Tools
	Importance of Reverse Engineering
	Challenges of Reverse Engineering
	Related Research
	Summary

	Proposed Framework for Cryptographic Algorithm Detection
	Introduction
	Proposed Framework
	Define Well Known and Standard Algorithm Implementations of AES
	Compilation and Signature Extraction
	Signature Extraction from Open-Source Applications
	Design Heuristics
	Database Creation
	Perform Analysis on Real Applications
	Development of Tool for Quick Detection

	Selected Implementation of AES
	Significance of Proposed Framework
	Limitation of Proposed Framework
	Summary

	Implementation & Results
	Introduction
	Selected Applications for Analysis
	Analysis of Real Applications
	Analysis Platform
	Open-Source Applications Analysis
	Close-Source Applications Analysis

	AES Crypto Scanner: An Automated Approach
	Tool Specification, GUI and Main Functions
	Benefits of AES Crypto Scanner w.r.t Existent Tools

	Tools Comparison
	List of Tools/Plugins
	Results

	Summary

	Conclusion & Future Directions
	Conclusion
	Future Directions
	Summary

	References

