
Validation of Encryption Implementation in Software

through Reverse Engineering

By

Muhammad Waqas

A thesis submitted to the faculty of Information Security
Department, Military College of Signals, National

University of Sciences and Technology, Rawalpindi in
partial fulfilment of the requirements for the degree of MS

in Information Security

November 2018

Supervisor Certificate

This is to certify that Muhammad Waqas Student of MSIS-15 Course Reg.No 00000171582

has completed his MS Thesis title "Validation of Encryption Implementation in

Software through Reverse Engineering." under my supervision. I have reviewed

his final thesis copy and I am satisfied with his work.

Thesis Supervisor

(Dr. Mehreen Afzal)

i

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Muhammad Waqas Registration No.

00000171582, of Military College of Signals has been vetted by undersigned, found

complete in all respect as per NUST Statutes/Regulations, is free of plagiarism, errors

and mistakes and is accepted as partial, fulfillment for award of MS degree. It is further

certified that necessary amendments as pointed out by GEC members of the scholar

have been also incorporated in the said thesis.

Signature: ____________________________

Name of Supervisor:____________________

Date: ________________________________

Signature (HOD):______________________

Date: _____________________________

Signature (Dean/Principal):_______________

Date: _____________________________

ii

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

iii

Dedication

This thesis is dedicated to MY FAMILY, TEACHERS AND FRIENDS for their love,

endless support and encouragement.

iv

Acknowledgement

First of all, I would like to thank Allah Almighty for His countless blessings. After

that I want to express my appreciation to my family, my friends, colleagues and the

faculty for providing their enormous support to help me to do this research. Without

their relentless support, assistance and prayers, I would not have reached culmination

point in a peaceful state of mind.

I would like to convey my gratitude to my supervisor, Dr. Mehreen Afzal, for her

supervision and constant support. Her invaluable help of constructive comments and

suggestions throughout the experimental and thesis works are major contributions to

the success of this research. Also, I would thank my committee members; Dr. Fawad

Khan and Asst Prof Waleed Bin Shahid for their support and knowledge regarding this

topic.

I am also highly thankful to my parents who always stood by my dreams and aspirations

and have been a great source of inspiration for me. I would like to thank them for all

their care, love and support through my times of stress and excitement.

Last but not the least, I am grateful and thankful to Military College of Signals and

National University of Sciences and Technology for providing me a chance to help

achieve excellence by being associated with the prestigious institutions.

v

Copyright Notice

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with in-

structions given by the author and lodged in the Library of MCS, NUST. Details

may be obtained by the Librarian. This page must form part of any such copies

made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in MCS, NUST, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission

of MCS, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of MCS, NUST, Islamabad.

vi

Abstract

These days data security and communication are major concern for every organiza-

tion/individual and there are bundle of software available which uses cryptographic

primitives to protect internal data and to secure communication. Users want to know

that either the software they are using for their organization or data is really the one that

the developer has promised or mentioned in the specification because not every soft-

ware is open source. In case of close source software there need to be some parameters

that can guarantee that the software is implemented well as stated in the specification

secondly the best implementation practice is in place.

AES (Advance Encryption Standard) is FIPS approved cryptographic algorithm that

is basically used for data protection. It is widely used for encryption and decryption

of data in software as well as hardware. Reverse engineering is a technique used to

disassemble or discover the concept or code used in applications.

In this research, Different reverse engineering techniques were explored to discover

standard or otherwise implementation of AES encryption mechanism. This include

correct algorithm as defined in this work, key mechanism and modes of encryption.

This research also introduces a framework which can be used to achieve the goals using

design heuristics and AES signatures which were formulated over the period of time. To

automate and speed up the detection process a tool named “AES Crypto Scanner”was

developed, which will scan the assembly file against defined parameters.

vii

Contents

1 INTRODUCTION 1

1.1 Overview . 1

1.2 Motivation and Problem Statement . 2

1.3 Aims and Objectives . 2

1.4 Thesis Contribution . 3

1.5 Thesis Organization . 4

2 LITERATURE REVIEW 5

2.1 Introduction . 5

2.2 Advance Encryption Standard (AES) Overview 5

2.3 Reverse Engineering and Code Analysis 7

2.3.1 Static Analysis . 8

2.3.2 Dynamic Analysis . 8

2.4 Reverse Engineering and Binary Analysis Tools 9

2.5 Importance of Reverse Engineering 10

2.6 Challenges of Reverse Engineering . 11

2.7 Related Research . 12

2.8 Summary . 17

viii

3 Proposed Framework for Cryptographic Algorithm Detection 18

3.1 Introduction . 18

3.2 Proposed Framework . 18

3.2.1 Define Well Known and Standard Algorithm Implementations

of AES . 21

3.2.2 Compilation and Signature Extraction 21

3.2.3 Signature Extraction from Open-Source Applications 21

3.2.4 Design Heuristics . 22

3.2.5 Database Creation . 23

3.2.6 Perform Analysis on Real Applications 24

3.2.7 Development of Tool for Quick Detection 24

3.3 Selected Implementation of AES . 25

3.4 Significance of Proposed Framework 27

3.5 Limitation of Proposed Framework . 30

3.6 Summary . 31

4 Implementation & Results 32

4.1 Introduction . 32

4.2 Selected Applications for Analysis . 32

4.3 Analysis of Real Applications . 33

4.3.1 Analysis Platform . 33

4.3.2 Open-Source Applications Analysis 35

4.3.3 Close-Source Applications Analysis 46

4.4 AES Crypto Scanner: An Automated Approach 57

4.4.1 Tool Specification, GUI and Main Functions 57

4.4.2 Benefits of AES Crypto Scanner w.r.t Existent Tools 59

ix

4.5 Tools Comparison . 60

4.5.1 List of Tools/Plugins . 60

4.5.2 Results . 60

4.6 Summary . 63

5 Conclusion & Future Directions 64

5.1 Conclusion . 64

5.2 Future Directions . 65

5.3 Summary . 66

References 68

x

List of Figures

2.1 AES algorithm encryption structure 6

3.1 Schematic overview of proposed framework 20

3.2 EncFSMP lines of code . 25

4.1 VMware Workstation . 34

4.2 7-zip S-Boxs . 36

4.3 7-zip AES Instruction Set (Encryption) 36

4.4 7-zip AES Instruction Set (Decryption) 37

4.5 7-zip Modes . 37

4.6 7-zip compression info . 37

4.7 AxCrypt Code view . 38

4.8 AxCrypt Modes & padding . 39

4.9 VeraCrypt AES Instruction Set (Encryption) 41

4.10 VeraCrypt AES Instruction Set (Decryption) 42

4.11 VeraCrypt AES Instruction Set (Flow Encryption) 42

4.12 EncFSMP S-Box . 43

4.13 EncFSMP AES Instruction Set (Pattern1) 43

4.14 EncFSMP AES Instruction Set (Pattern2) 44

4.15 EncFSMP AES Instruction Set (Decryption) 44

xi

4.16 EncFSMP AES Instruction Set (vaesenc) 44

4.17 EncFSMP AES Instruction Set (Key Generation) 45

4.18 EncFSMP Modes . 45

4.19 EncFSMP GCM Mode . 46

4.20 Privacy Drive library . 47

4.21 Privacy Drive Crypto library . 47

4.22 LibTomCrypt Library directory . 48

4.23 Privacy Drive Mode (xts_decrypt.c function) 48

4.24 Privacy Drive Mode (xts_initt.c function) 48

4.25 Privacy Drive Mode (xts_encrypt.c function) 49

4.26 Privacy Drive Mode (xts_done.c function) 49

4.27 LibTomCrypt XTS Mode Functions 50

4.28 SensiGuard AES_Encrypt and AES_Encrypt_key function call 51

4.29 SensiGuard AES_Decrypt and AES_Decrypt_key function call 51

4.30 SensiGuard IGE Mode . 51

4.31 Boxcryptor Code View . 52

4.32 Boxcryptor Modes . 53

4.33 Rohos Mini Drive S-Box . 54

4.34 Rohos Mini Drive Decryption . 54

4.35 Rohos Mini Drive Last Round Decryption 54

4.36 Rohos Mini Drive AES Encryption including last round 55

4.37 Rohos Mini Drive Key Generation . 55

4.38 Rohos Mini Drive IMC Function . 55

4.39 BestCrypt S-Box . 56

4.40 BestCrypt AES Signatures . 56

xii

4.41 Private Disk S-Box . 57

4.42 AES Crypto Scanner . 58

xiii

List of Tables

4.2 Selected applications for analysis . 33

4.3 Open-Source applications result comparison 61

4.4 Close-Source applications result comparison 62

xiv

Chapter 1

INTRODUCTION

1.1 Overview

At the present time, the key emphases of organizations are on data/information secu-

rity and the leak of sensitive information can cost them both monetarily and reputation.

Although there are bunch of tools and techniques that are used by different organiza-

tions depending on their needs. Here detection of correct/standard implementation is an

evolving problem in the field of information security because the source code is usually

not available and getting information from low level/machine language is cumbersome

task. So, without defined perimeters the task of analyst is very difficult and sometime

impossible.

To protect the data, the use of cryptography in software is very popular in this insecure

world. Cryptography is said to be a science which investigates strategies for ensuring

data security i.e. data confidentiality, data integrity and data authenticity [1]. Here data

confidentiality means that only the authorized person can view the data, Data integrity

means that no unauthorized changes can be made in the data and only changes by au-

thorized person can be made, Data authenticity means that the receiver will be able

to correctly identify the sender of the data which means that the data will contain the

information of real sender of the data.

If standard cryptographic algorithm is implemented then it increases the security of

the tool and it can be verified by analysing source code. The standard or otherwise

1

implementation of cryptographic algorithms can be seen by analysing source code and

can verify that either it confirms to our security requirement or not, but this is not

always the case. The issue arises when there is no access to source code either lost

or it is close source application, then it gets really tough to identify the cryptography

and its parameters in software. The only method left is to reverse engineer the code,

get the binary out of it, analyse it and confirm it against the standard implementation

but it is not that easy as it sounds, because it requires labour intensive manual binary

analysis and skills. Binary code does not hold many comfortable features of high-

level code/programming languages like, there is no standard and defined processes or

distinction between data and code, variables and functions information‘s are usually lost

during reverse engineering and are represented using memory addresses and registers

[2].

1.2 Motivation and Problem Statement

Every developer declares their software to be the best and claims to provide the best

implementation that no other developer can provide, however user cannot verify their

claim. Similarly, in case of encryption software there are number of software that claim

to be the best and user has to believe their claim but cannot technically verify in the

absence of source code. For instance, CertainSafe Digital Safety Deposit Box, Folder

Lock, AxCrypt Premium are among the best encryption software available according

to the recent article [3]. To verify the correctness of cryptographic implementation in

a closed source software or in the absence of any clue about the source code, reverse

engineering of software remains the only option.

1.3 Aims and Objectives

The prime objectives of thesis are:

1. Exploration of reverse engineering tools and techniques for efficient disassembly

of crypto code in software.

2

2. Formulation of the framework for identification of encryption algorithm and its

different parameters including encryption/decryption routines, rounds, key size

and modes of encryption.

3. Experimental results on application of feasible open source tools on some open

source applications to verify the methodology.

4. Generalization of the obtained results on closed source application.

1.4 Thesis Contribution

To the best of our knowledge there is no work that is specifically done on AES and

on verification of AES against any standard implementation. Detection of crypto algo-

rithms are done in earlier work but this kind of specialized work is not stated earlier.

The main contributions of this work are as follows:

• Different reverse engineering tools and techniques for disassembly of applica-

tions are explored, analysed and strengths/weakness are reported.

• A framework for the detection of AES and its parameters is formulated which

will analyse the applications against standard implementation of AES.

• To check the effectiveness of the proposed framework, it was applied on few

open-source applications to verify the methodology.

• To speed up the detection, a tool named “AES Crypto Scanner”is developed that

identifies and highlight the AES parameters in software if found.

• The proposed framework is also generalized on close-source applications and few

close-source applications were also analyzed.

• Detailed experimental results gained by the proposed framework are compiled

which gives a clear comparison of this method versus other methods currently

used for the similar purpose.

3

1.5 Thesis Organization

The thesis is structured as follows:

• Chapter 1: This Chapter includes introduction to topic, brief explanation of re-

search area, problem statement, aim and objectives. It also highlighted the main

contribution of this research work.

• Chapter 2: It contains the literature review conducted during the thesis. This

chapter focuses on introduction of AES, different reverse engineering techniques,

challenges and already work carried out on crypto code detection and analysis.

Identification of cryptographic primitive is previously addressed and studied in

different motivation and different authors have presented their ways for identifi-

cation of cryptographic primitives in software. It also contains the weaknesses

and strength of each work.

• Chapter 3: This chapter contains the proposed framework to identify the AES in

binary code and the procedure of verification against the standard compliance.

• Chapter 4: This chapter covers the implementation detail as well as the results

acquired using this technique. It also consists of comparison between other simi-

lar solutions with proposed framework to show the effectiveness of this method.

• Chapter 5: This chapter marks the end of the document. The conclusion and

future work areas are revealed in this chapter.

4

Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter contains the AES introduction, different methods and techniques for re-

verse engineering and the detail analysis of the relevant work that is already been carried

out over the time. In this section different techniques, tools and methods used to detect

crypto code, its effectiveness and the weaknesses of each solution are highlighted.

2.2 Advance Encryption Standard (AES) Overview

Advance Encryption Standard (AES) is FIPS approved cryptographic algorithm that

can be used for electronic data protection [4]. It is widely used for encryption and

decryption of data in software as well as hardware. The algorithm of AES is symmetric

block cipher and is capable of using block size of 128 bits, key size of 128,192, 256 bits

and rounds 10, 12 and 14 respectively.

5

Figure 2.1: AES algorithm encryption structure

Figure 2.1 describes the encryption structure of AES algorithm. It contains rounds (10,

12 or 14), plain text, cipher text and keys. Each round except last (as shown in the figure

2.1) is consist of 4 elements i.e. ByteSub, ShiftRows, MixColumns and AddRoundKey.

Initially during encryption, the AddRoundKey is added at the start of the process and

that’s why there is no AddRoundKey at the end/last round.

Key Expansion: The round keys like shown in the Figure 2.1 are derived from the main

cipher key which uses Rijindael’s key scheduler.

AddRoundKey: It is the key for every round of AES algorithm that is combined with

each byte of the state using bitwise xor.

ByteSub: In ByteSub stage, each byte is replaced with another using a lookup table in

a non-linear way.

ShiftRows: In this stage, each row of a state gets a certain number of steps episodically

shifts.

MixColumns: At this step, the four bytes of each column are multiplied with a fixed

matrix and form a new column. It is similar to matrix multiplication of a columns.

6

The decryption process is also the same but in reverse order.

It is an easy task to check the software source code and verify it against the standard

compliance like FIPS 197 for AES. Secondly the tests are available to check the con-

formance to AES standard algorithm as started in FIPS 197 [5] but the problem arises

when the access to source code is restricted either lost or the application is close source

then there is no way to find that the code/application is as per the standard or not except

reverse engineering.

2.3 Reverse Engineering and Code Analysis

Reverse engineering is a technique used to disassemble or discover the concept or code

used in applications [6]. It is the method used when the access to the source code is

restricted either lost or the application source code is not public. So, in the absence

of source code, the only way to check the internal architecture or algorithm of code is

to reverse engineer it. Reverse engineering of code is not a tough job as there are few

tools that can easily give the low-level code of any application called binary code. The

problem is binary code is not familiar to most of the analyst/programmers and is not

easily understandable like the high-level code is, so looking for the desire functionality

in binary is tedious job and without parameters sometimes not possible to understand

the functionality of code.

Once the application is disassembled using any tool then the next step is the code anal-

ysis of that low-level code. There are two main methods of code analysis:

1. Static analysis

2. Dynamic analysis

So, the low-level code can then be analysed using any or all of the above-mentioned

methods.

7

2.3.1 Static Analysis

It is widely used analysis method for low-level and high-level programming code. In

Static analysis, the main focus is to locate the code sequence that possess some proper-

ties [7]. For this work, the target of static binary analysis was to locate specific param-

eters that can provide us desired information about the application under analysis.

There are few static analysis tools that use signatures for detection of the desired pa-

rameters [8]. That signatures are called magic constants and they can be anything like

s-boxes, any variable or any function call and using those tools, the signature is then

matched with x86 assembly code and if that signature is identified in that code it dis-

plays the message that the particular parameter is found in the targeted code.

2.3.2 Dynamic Analysis

Dynamic analysis is the type of analysis where the specific algorithm is revealed dur-

ing runtime, means the examination of code is performed after executing it. Then after

execution the different states are monitored and analysed against the reason that how

the application behaves. Unless static analysis, the dynamic analysis enables analyst to

see the true functionality of the application and secondly, the analyst can observe the

state changes by putting his values as input. It will enable the analyst to determine the

true functionality of application and will show the response, behavior and output of that

application [9]. This approach is very useful in case of malware analysis because it will

point out the kind of malware that hides in the code like keylogger etc., and will allow

to locate the location where it stores the data/information. In addition to that it is also

beneficial to analyse packed applications [8].

It is highly recommended to create a safe environment like sandbox or virtual machine

before selecting this approach because if the application is infected with malware then

it will damage the operating system and data. So, there should be different operating

system for dynamic analysis of application.

8

2.4 Reverse Engineering and Binary Analysis Tools

The following tools are used to reverse engineer applications, analysis of applications

against known parameters and perform binary analysis to identify cryptographic param-

eters. The following tools are used for reverse engineering and analysis of applications

during the course of our thesis.

IDA Pro: The Interactive DisAssembler (IDA) is very rich and effective tool to disas-

semble, debug and decompile the software programs. It is written in C++ language and

mainly operates on Microsoft Windows, Linux and Mac Operating System platforms

[21].

Given software application, it can disassemble it into low level code called assembly or

binary code. In addition to disassembly, it is very powerful debugger and disassembler

which gives a high-level code from the binary code but it does not give the actual high-

level code, it can only resolve the well-known and recognized procedures, API calls,

functions, loops and switches which make code easy to understand.

OllyDbg: OllyDbg is another great tool which is used for debugging the application

and it is usually used when the source code is not available. It is a 32-bit debugger

named after Oleh Yuschuk, who is the developer of this tool and it is available for Mi-

crosoft Windows [22]. The main benefit of OllyDbg is that it works best for dynamic

analysis means that the running state of application can be seen using this tool. Usually

it is not possible to analyse the program using static analysis as it will not show the

complete functionality, so it should be analysed dynamically to check the behavior.

WinDbg: WinDbg is similar tool like OllyDbg published by Microsoft but the main

difference is that WinDbg is for windows and used both for kernel mode debugging as

well as user mode debugging. This make it more powerful tool than OllyDbg in terms

of level of access [9].

9

FindCrypt: FindCrypt is a plugin designed for IDA Pro and coded in python language.

It provides static analysis of application and find common parameters, constants in ap-

plications [23]. The Find Crypt2 is the second version of FindCrypt which is stable and

works better as compare to FindCrypt. FindCrypt2 has a large database of constants

that is matched for any application under analysis. It contains signatures of almost all

the well-known hash functions and crypto algorithms like: Rijndael, DES, RawDES,

CAST, CAST256, Camellia, Blowfish, GOST, MARS, HAVAL, MD2, MD4, MD5,

RC2, RC5, RC6, SHA1, SHA256, SHA512, Whirlpool, Zlib.

FindCrypt2 does not comes with IDA Pro but it has to be added into the plugins direc-

tory to use it for analysis. So, whenever an application is set for analysis, it searches

for all the known constants from the database and match it against the one found in the

application binary code.

Signsrch: Signsrch is another very useful tool to scan for the cryptographic algo-

rithms in an application, program or process. This tool depends on cryptographic con-

stants/signatures to identify encryption parameters/algorithms [24]. The cryptographic

parameters are situated in a text file named, signsrch.sig. It can identify a huge number

of compressions & encryption algorithms as well as a lot of strings & anti-debugging

code.

SnD Crypto Scanner: SnD Crypto Scanner is also binary analysis plugin that is used

with OllyDbg. It also contains a list of well-known cryptographic signatures, constants

and hash functions. It is very powerful tool and its results are much better than Find-

Crypt2.

2.5 Importance of Reverse Engineering

Reverse engineering is very useful technique specially in software development and in-

formation security field. It is a way to verify specification, quality of product and known

bugs.

10

Aside from providing a means to assess software quality, reverse engineering has addi-

tional benefits [10][11]:

Extending the life of older procedures/method: Making an improved copy of some-

thing: Involves taking an existing part and extracting the design data or other informa-

tion and then creating an improved copy of it.

Malware Analysis: These days reverse engineering is frequently used to find malware

in applications. Viruses and malicious code can be found using identifying and recog-

nizing patterns or signatures in binary code.

Flaws Discovery: Reverse Engineering can be used to discover flaws and loopholes

in applications. Sometimes even well-implemented and well-designed systems have

loopholes that can be discovered after analysing binary code.

Flow Discovery: Using reverse engineering it can be seen that the program is behaving

normally or it has some other flow which is suspicious. For example, it is possible that

some application use keylogger and send the keystroke to some external server which

is a critical vulnerability in application.

Open Source Code detection: If the software is intended to be used for proprietary

use or for security then it is a point of concern that the software is using an open source

or shareware code. Reverse Engineering make it possible to find and detect replicated

code.

Improvement in Code: Reverse engineering similar apps can help in improving the

existing code by adopting the advance methodology and techniques used in the similar

apps.

2.6 Challenges of Reverse Engineering

Reverse engineering can be very beneficial in many cases as described in section 2.5 but

it also has some challenges which make it hard to use. These challenges are the barrier

for effective reverse engineering. The key challenges are:

11

Skill set: Reverse engineering requires a high-level of skill set in low-level language,

machine code and compiler architecture. It requires a clear understanding of different

fundamentals of reversing, code construct and flow analysis. When an application is

reversed, its losses the high-level representation, constants and functions information.

It tends to become very hard to understand and analyze component level design in deep.

Mining relevant data: In binary the execution traces become unmanageable and large

which make it very challenging to trace and mine relevant data [11].

Effectiveness of single method: No single method gives the complete and accurate

result i.e. static and dynamic analysis. For example, if the application is obfuscated,

packed or compressed then it is usually not possible to extract all the information using

static analysis of binary code so here dynamic analysis will come to aid. So, both the

methods should be used in parallel to get the complete overview of the source code

and to get the information of constants, libraries, loops, functions and any other coding

parameter.

Programming Language difference: The change of programming language has ef-

fects on the reversed engineered code. For instance, if an application is compiled using

java code than reversing that application will give us the java byte code which is way

better understandable than the low-level assembly language. Similarly, if .Net is used

to compile an application than the source code that is produced after disassembly is in

.Net assembly language which is also understandable. But if the application is compiled

using C++ or C language, it produces assembly code after being dissembled which is

complex and tough to understand.

2.7 Related Research

While analysing the software security, Special attention needs to be placed on the cryp-

tographic algorithm choice because the software security relies on it. Secondly, the

algorithm should be implemented using standard values and practices. For example,

MD5 function is not secure to use because practical collision can be found [25] but still

it is being used in software which is not a good choice. Another example is of GnuPG

12

that used a smaller nonce value for the faster implementation of DSA signature scheme

which is a major algorithm implementation flaw [12]. There is another purpose as well

for binary program analysis and that is to check that your program is not leaking your

data because it will be a serious threat to data security. It is possible that the algorithm

is implemented in a way which may leak your confidential data so the program should

be very carefully analysed to check for this kind of vulnerabilities because side channel

attack will be applicable in this scenario.

A work on this direction was carried out by Felix Grobert, Throsten Holz and Carsten

Willems [8]. The authors proposed few methods for the identification of crypto code/

primitive such as algorithm identification or just keys from the binary program. They

used dynamic binary analysis approach to for the detection of crypto code and extrac-

tion of keys from a malware binary program under analysis. In their work, the authors

did not only rely on signatures for the identification purpose but have presented heuris-

tics which are based on both generic characteristics of crypto code and the signatures.

They used dynamic binary instrumentation framework to generate an execution trace.

The system then identifies the cryptographic primitives via several heuristics and sum-

marizes the results of the different identification methods. They evaluated six tools that

were publicly available and noted that no tool was able to detect all the cryptographic

primitives. They also demonstrate that our system can be used to uncover cryptographic

primitives and their usage in off the-shelf and packed applications, and that it is able to

extract cryptographic keys from a real-world malware sample.

Another work is proposed by Leonard et al., on the detection of crypto algorithms and

for detection they used grap which is a YARA like tool which allow analyst to describe

rules on binaries or textual pattern so that it can be checked on binary programs [13].

Grap is open source tool which help analyst to define detection pattern that are based on

CFG (Control Flow Graph) to detect the algorithm by focusing on instructions and flow

in the executable program. They created rules and pattern for AES and ChaCha20 that

are based on parts of the assembly code produced by compiling popular implementa-

13

tions available in LibreSSL and libsodium. The requirement of this work is one should

have accurately defined pattern which will be used for the detection of crypto algorithm

because their approach do not rely on constants. Secondly, their technique also depends

on the disassemble code quality since detection is done at assembly level that’s why

the pattern is sensitive to the choice of compilation option like compiler choice or opti-

mizations etc.

The latest work is the similar direction is done by Giegory et al., on classification of

cryptographic primitive keeping focus on cryptovirology [14]. Cryptovirology is de-

scribed as the offensive nature of cryptography for extortion-based security threats.

The authors presented a novel approach for the classification of cryptographic code

in a compiled binary executable using deep learning.

Diane Duros Hosfelt presend did his thesis on “Automated detection and classification

of cryptographic algorithms in binary programs through machine learning”[15]. The

motivation of author was to automate the process of identification so that the process

can be speedy and more efficiently combat malware. The goal of his thesis was to uti-

lize machine learning technique to detect and classify crypto code in small and single

purpose program. The authors also focus on the importance of basic block detection for

successful detection, where a basic block is a sequence of instructions in a given order

that has a single entry and exit point. These are generated from the dynamic trace. The

author elected to use Pin which is Intel’s dynamic binary instrumentation (DBI) frame-

work. It enables an analyst to examine the behavior of binary program at runtime by

injecting instrumentation code. As the code executes, DBI tools analyze what actually

occurs, instead of considering what might occur (as in static binary analysis). As this

work only focus on small and single purpose application that’s why it has few limita-

tions. First, this method relies on dynamic analysis using Pin for feature extraction. If

the code of interest is not executed during instrumentation, then it will not be analyzed

and extracted. Therefore, it must be assumed that the cryptographic code is always

executed. Secondly, it will not work efficiently on real world examples because they

14

involve multiple crypto libraries and not small or single purpose.

A work in similar direction is proposed by Felix Matenaar, Andre Wichmann, Felix

Leder and Elmar Gerhards-Padilla [16]. They present the architecture of CIS, the crypto

intelligent system that provides a framework which is complemented with the selection

of suitable heuristics to detect crypto functions in malwares. The authors distinguished

between symmetric, asymmetric, and hash algorithms because each class has their own

set of properties that must be met in order to be secure.

Another contribution on the topic cryptographic primitive identification was made by

Pierre et al., using Data Flow Graph Isomorphism [17]. The purpose of their research

was to evaluate the security of the binary programs that involve cryptography So, the

first step is to locate the point and choice of algorithm used in the binary program. For

this purpose, they device a method to automatically identify cryptographic choice used

in the binary program because manual analysis requires a lot of expertise and it is a

cumbersome task to perform. The method consists of static analysis of binary program

using Data Flow Graph Isomorphism and it targets symmetric cryptographic algorithm.

The limitation of their work is that it does not address the problem of code obfusca-

tion because the purpose is to analyse the general software not the malware. In their

paper, they also present few results on sample programs and cryptographic algorithms,

libraries and their implementations using several compilers.

Another work on a similar direction was presented by Joan Calvet, Jose Fernandez,

Jean-Yves Marion [18]. Their work focused on obfuscated binaries which provides a

solid clue that the program can be a malware. The tools usually do not work on ob-

fuscated binaries/code because the actual implementation of the program is hidden in

this case so the tools are not able to analyse the binaries. The authors have presented

a tool that solves problem of obfuscated code by retrieving the input-output parameters

of programs and comparing them to standard functions. They successfully identified

few cryptographic functions using this tool including AES, RC4, MD5, TEA and basic

15

operations of RSA.

A work in a similar direction was proposed by Dongpeng et al,. They proposed a

novel approach for recognition of cryptographic function in an obfuscated binary pro-

gram using the technique of bit-precise loop mapping [19]. Their approach catches

the semantics of conceivable cryptographic algorithms with bit-exact representative ex-

ecution in a circle. Then they performed guided fuzzing to productively coordinate

Boolean equations with known reference executions. After their successful results they

built a model like prototype called CryptoHunt and assessed it with an arrangement of

obfuscated binary test cases, famous and best-known cryptographic libraries, and mal-

ware. Contrasted to current famous tools for this purpose, CryptoHunt is a general way

to deal with distinguishing generally used cryptographic algorithms like, RC4, AES,

TEA, MD5, and RSA under different types of controls and schemes for data obfusca-

tion.

Another work was proposed by Ruoxu Zhao, Dawu Gu, Juanru Li, & Ran Yu [20]. Their

paper proposes a novel automatic cryptographic data detection and analysis approach.

Their approach is based on execution tracing and data pattern extraction techniques,

searching the data pattern of cryptographic algorithms, and automatically extracting de-

tected Cryptographic algorithms and input-output data. They implemented and evaluate

their approach, and the result shows that their approach can detect and extract common

symmetric ciphers and hash functions in most kinds of programs with accuracy, effec-

tiveness and universality.

It can be seen that the detection and binary code analysis is not just a favorite area of

research for malware analyst but also for the those who care about data security. For this

purpose, different cryptographic parameters identifications techniques and solutions are

proposed by different authors. For instance, the work [8] uses dynamic binary analysis

of binary code using both signature and heuristics analysis method for packed appli-

cations while [14] [15] uses deep learning and machine learning to detect crypto code.

16

The motivation of the authors was also to provide a tool which can add in the detection

process as mentioned in [13] and many others has targeted obfuscated binaries [18] [19]

to retrieve the required data. The pattern analysis [20] or control flow graph analysis

[13] is useful for small programs but it can not be generalized well on real applications

while the signature plus heuristics [8] or even simple heuristics [16] method can be gen-

eralized on other applications and their success ratio is also better than other signature

based or pattern based analysis.

2.8 Summary

This chapter has briefly described AES and reverse engineering methodology including

the list of primary tools used for reverse engineer the applications and analysis. It also

explained the benefits and challenges of reverse engineering. The primary purpose of

this chapter was throughly research work done in similar direction, which is briefly

explained in the last section.

17

Chapter 3

Proposed Framework for

Cryptographic Algorithm Detection

3.1 Introduction

This is the most vital chapter as it describes the proposed framework which has been

recommended in this research. It will contain a detail proposed methodology, selected

algorithms of AES, significance of our approach as compare to other techniques used

for crypto algorithm detection and limitation of the proposed framework.

3.2 Proposed Framework

To identify cryptographic signatures, constants and known parameters one should either

have the database of the signatures and constants or one should have the flow informa-

tion. Both techniques have their advantages and disadvantages.

If static analysis is applied which means there should be a repository/database of con-

stants and using that repository the analysis of the application will be performed. The

advantage is this that the process of analysis became simple, easy to deploy, frequently

update the database and less time consuming. But the disadvantage is this that it might

not detect the valid implementation that is developed by developer himself rather than

18

using well known cryptographic libraries so, the analysis can fail in this case and this is

the limitation of this approach.

The flow information of program can be seen using dynamic analysis means one should

have to run the application on the binary analysis tool to see the flow operations, and

even constants of the code. The advantage of this approach is this that it gives a high

level of accuracy because it is possible that some information cannot be retrieved using

static analysis as the application might be packed or obfuscated but using dynamic anal-

ysis it will show true functionality, detailed understanding of the parameters and flow

of program. The disadvantage of this technique is this that getting flow information is

very tough and cumbersome task secondly the flow changes with the changes in source

code or even change of compiler.

This research approach relies on Static analysis of application where the focus will

not be only on the detection of AES algorithm in binary code but also its parameters

like S-Box, encryption & decryption routines, key length and mode of operation. To

effectively deploy the proposed method, a framework is developed which will help in

obtaining the desired results. The proposed framework consists of 2 main phases:

1. Planning

2. Analysis

The planning phase is the initial phase where analyst will prepare, define and refine our

approach. It mainly contains the following steps:

• Define Well Known and Standard Algorithm implementations for AES

• Compilation and signature extraction

• Signature extraction from open-source applications

• Design heuristic

• Database creation

19

The planning phase is the prerequisite for the analysis phase. The analysis phase will

use the output of phase 1 i.e. planning as an input and will analyse it against the real

applications. This phase will output our required results i.e. identification of AES,

Identification of standard algorithm, key length, S-Box and mode of operation. This

phase contains 2 main steps:

• Perform analysis on real applications

• Development of tool for quick analysis

Figure 3.1: Schematic overview of proposed framework

Here is the brief overview of every step and the tasks to be performed. The findings and

results of these steps will be discussed in chapter 4 when it will be implemented on real

applications.

20

3.2.1 Define Well Known and Standard Algorithm Implementa-

tions of AES

Standard algorithms like AES needs verified implementations which means that the

library is verified by FIPS or open source community. In the absence of this, verification

of correctness becomes even more difficult. Therefore, in this work we have focused on

finding standard libraries implementation in crypto applications.

3.2.2 Compilation and Signature Extraction

For signature extraction, it is very essential to have a compiled representation of re-

quired implementation as reversing that implementation will generate signature that

will be used for detection. These days, almost every famous implementation has its

compiled code, source code and even assembly code available on GitHub which can be

used to define signatures for detection.

It is beneficial to compile the code on multiple compilers as it is possible that the signa-

ture might vary with the change of compiler [12]. When the compilation is done then

the next step is signature extraction and that is possible when the executable and .dll

files will be reversed using tool like IDA pro or OllyDbg etc. Once the application is

reversed then the binary representation of the code will be available and the signatures

can be extracted from that binary code and execution traces can be found.

3.2.3 Signature Extraction from Open-Source Applications

Another approach is the use of open-source applications for signatures extraction as the

source code is available which can be used for verification. It will reduce the efforts of

compilation phase as the code will be already compiled and that compiled application

can be used for analysis.

21

3.2.4 Design Heuristics

This is very critical and main step of this framework which provides the heuristics

data that will be used for detailed manual analysis. During this research, a number of

signatures and patterns were found for AES that help in the analysis of applications and

determine the type of implementation used. The developed heuristics are related to s-

box detection, lookup-tables detection, number of rounds detection, mode of operations

and the type of file needs to be analysed.

Analyse exe and dll files: It was seen that the critical information regarding applica-

tion like libraries, functions etc. does not only resides in exe file of application but also

in dll file. Usually for implementing any crypto library, developers import the standard

and famous libraries which save them a lot of time for writing code for that library.

If this is the case then reverse engineering the dll files will give the information about

library uses. Exe file might only give the function call detail but other detail will be

found in the dll file so, it is highly recommended to analyze both dll and exe file while

performing analysis.

Signatures: It was found that the signatures for AES usually contain the AES key-

word like in encryption it was seen that aes_encrypt and aesenc both instructions were

used in different libraries. Although it is not the case always and is not the only method

but this trick is also useful and it can be used initially before any detailed analysis.

S-Box and lookup-tables: Finding standard s-box and lookup-table in assembly code

is relatively simple task as the values of standard can be check in the Hex view of IDA

Pro or even in the assembly code. Finding s-box or lookup-tables can also assist in

the detailed analysis as in the assembly code all calls to s-box or lookup-tables can be

seen which will highlight the key parameters of AES. For example, the s-box memory

location can be noted and then in assembly code all the calls made to that memory loca-

tion can be recorded, these calls to s-box represent that the calling might be encryption

function for AES which is utilizing this s-box in the function.

22

No. of Rounds: If AES encryption set [42] is used then the chunks of AES encryption

or decryption can be used for the detection of no of rounds. For example, it can be seen

that there is a specific chunk of encryption/decryption which is repeated 10 times, 12

times or 14 times. If this pattern is found it will clearly represent the total number of

rounds used like if 14 times repetition found than it means that 14 rounds are used for

encryption/decryption and it will ultimately give clue about the key size which is 256.

Mode of Operations: Although detecting mode of operations/encryptions can be best

found using dynamic analysis but the signatures can also be searched in the binary code

which is a rare case. It was found that the simple CBC mode utilized very few AES

instructions as compare to XTS which uses a number of instructions. Secondly in CBC

the same chunk that is repeated in rounds is small while in XTS it is large and the

repetitions is also more than simple CBC mode.

3.2.5 Database Creation

Here the signatures extracted from the above steps will be stored so that it can assist in

manual analysis as well as it can be used in the tool for detection purpose. In database,

all those signatures will be stored which will convey some meaning like it can be signa-

ture or constant for encryption/decryption routine or some other parameter. In simple

words it will be the signatures in the database which will actually be used for analysis.

The database will save the information of the signature, algorithm or library name and

the function of signature that will describe the signature. The signatures in the database

will now be the test cases for analyst which will be used to identify AES and its param-

eters.

The planning phase ends here and at this moment an analyst has the parameters that will

be used for the detection of AES in real application. The next phase after planning is

analysis, and here analyst will use all the knowledge gained in the planning phase and

will use the repository created to detect AES. The following two steps are from analysis

phase.

23

3.2.6 Perform Analysis on Real Applications

Perform analysis on real applications is the first step of analysis phase which states that

analyse and scan the real application against standard AES implementation. Here real

application means the desktop software that are sold by different companies or devel-

oper and it guarantees the best and standard implementation. In this step the analysis of

software will be performed to verify the implementation using the repository informa-

tion created in the last step of planning phase.

The key parameters of AES to be find in the application are:

• S-Box

• Lookup-Tables

• Key Length/Size

• No. of Rounds

• Implementation used

• Mode of Operations

Here if the signatures are found in the application it means that the application is using

the standard implementation specified by FIPS or the algorithm selected in this work

and if the signatures are not found then it means that no standard algorithm or library

is used in the code which is defined in this work. The reason could be the developer

has used his own implementation of AES in source code or used the library that is not

catered in this work.

3.2.7 Development of Tool for Quick Detection

As in the modern age the manual analysis is of less importance. For detection, it is rec-

ommended to deploy an automated way to analyse and detect the signatures in an ap-

plication under analysis. Secondly the modern programs/applications are very complex

24

and they generate millions of lines of code which is not possible to analyse manually

so, here the automated tool comes to aid. For example, during analysis of an application

EncFSMP it was observed that the binary file contains approx. 37 lac line of code after

it was reversed using IDA Pro as shown in Figure 3.2.

Figure 3.2: EncFSMP lines of code

So manual analysis in this case will take a lot of time, efforts and the tool will give a

quick analysis report.

The above proposed framework is designed for the AES but it can be used for any

cryptographic algorithm given that the signatures are stored in the repository.

3.3 Selected Implementation of AES

There are number of implementation available online and they are free to use in the

code but not all the implementations are correct and according to the standard. It is rec-

ommended to use the standard library as there is less chances of it being compromised

or to use the library which is tested by a large open-source community and it is being

used as industry standard.

It was found that there are number of libraries available for AES implementation which

is either approved by FIPS or being used as industry standard. For this work the follow-

25

ing libraries are selected that confirms the defined standard. This is not the complete list

as other implementations can also be added depending on the fact that they are tested

well by open-source community or standard body.

Intel® Advanced Encryption Standard (AES) New Instructions Set: Intel has pro-

vided instruction set which can be used in source code to improve the performance and

security of application [42] . It has 6 main instructions that perform the major opera-

tions of AES. Out of 6 instruction the first 4 instruction is used for performance while

remaining 2 instruction is used for key expansion.

• AESENC: It is used for one round encryption of AES.

• AESENCLAST:It is used for last round encryption of AES.

• AESDEC:It is used for one round decryption of AES.

• AESDECLAST:It is used for last round decryption of AES.

• AESIMC:It is used for mixing the column and performs transformation.

• AESKEYGENASSIST:It assists in the generation of AES round keys.

OpenSSL AES: OpenSSL is basically a toolkit that is used for SSL and TLS proto-

cols but it is also famous for its use in cryptographic libraries [43]. It is freely available

for developers to use in commercial or non-commercial applications. The implementa-

tion of OpenSSL’s AES uses table lookups which reduces the risk of successful cache

timing attack [44].

Bouncy Castle: Bouncy Castle is a package that contain the cryptographic implemen-

tation. It is a lightweight cryptographic API for C# and Java which contain a number

of cryptographic libraries including AES. It is a standard cryptographic library which is

approved by FIPS 140-2 as it meets level 1 requirement of FIPS 140-2 standard overall

Level 1 requirements [28].

26

LibTomCrypt: LibTomCrypt is very comprehensive cryptographic toolkit which en-

ables developers a huge set of Cryptographic algorithms and it contains support for

block ciphers, different chaining modes, hash functions and pseudo-random generator

[35]. It is free library and its code is publicly available on GitHub [34]. Although it is

not FIPS recognized but a large number of open-source community analyses the code

and its bugs are frequently fixed as found.

Gladman AES: Brian Gladman’s also developed a code in C/C++ languages for effi-

cient use in software. It is also freely available on GitHub repository for both commer-

cial and non-commercial purposes [45].

3.4 Significance of Proposed Framework

The purpose of the proposed framework is to contribute effectively in the improvement

of already existing solutions for Standard AES algorithm detection in applications. The

existing available solutions are generalized for a list of cryptographic algorithms and

there is no single solution or tool available which only checks AES and its parame-

ters. The disadvantage of generalized method is that the in-depth analysis cannot be

performed for any specific algorithm as the only purpose of those methods are only de-

tection. Keeping this in mind, a framework for AES has developed in this work which

will overcome the deficiencies of already existence methods and tools. The proposed

framework will add the following benefits to the already deployed methods and tools:

Identification of standard implementation: The existence solutions are for the pur-

pose of detecting crypto algorithms in applications but there is no solution which checks

the application against standard implementation. It is very important to check applica-

tion against standard compliance as it will give user the sense of surety that the imple-

mentation is bug free. There are many implementations freely available for AES but not

all the implementations are compliance with FIPS secondly any other implementation

which is widely used and tested is also a valid implementation as it is universally used

27

and tested against vulnerabilities and bugs. So, it is suggested to use the implementation

compliance with standard or the implementation which is universally followed.

Dedicated approach for AES: The existence research focused on the detection of

crypto algorithms and not only AES but all the well-known Crypto algorithms. The

benefit of this approach is this that all the algorithms detection can be performed un-

der the one umbrella but the constraint of this approach is in-depth analysis cannot be

performed and secondly there are a lot of false negatives. As the proposed framework

is dedicated for the detection of AES so it overcomes the constraints of existence ap-

proach by only having the heuristics related to AES algorithm in database which nearly

remove false negatives.

In-depth analysis: As the proposed framework is designed dedicatedly for only one

algorithm i.e. AES then it makes it easy to perform in-depth analysis, design and gen-

eralized a heuristic that work on nearly all the applications under analysis. As it is a

dedicated approach so, it will detect and identify maximum parameters of AES like

Standard S-Box, key size, no of rounds, and mode of operations used.

The major benefit of in-depth analysis is not only the identification of key size, rounds,

mode of operations or s-box used but also the implementation used. It is very impor-

tant to know which AES implementation is used in the application as it will be very

beneficial in the case when some AES implementation might encounter any bug. So, if

in future any implementation of AES found vulnerable to any attack, the knowledge of

implementation used will come to aid as analyst would be in a position to check if our

application is using the same implementation or not and if the same implementation is

in place then analyst should stop the use of that application and replace it with some

other standard application.

Easy to follow and scalable: The proposed framework is very simple in terms of

understanding and it can be easily followed. It has well defined phases and steps which

makes it easy to understand and follow. Secondly it requires one-time effort as once the

analyst has performed phase 1 completely then it can be used for all the applications

28

unless some other standard implementation found.

The proposed framework is also scalable for other cryptographic algorithms and the

same method can be used and deployed for the detection of other algorithms such as

DES etc. Although the same work will be repeated for the other algorithm and new

database will be created for that algorithm.

Automated approach: When it comes to the detection and identification of some

cryptographic algorithms in binary code then manual detection is out of question. The

detection part should be handled by some automated tool and further analysis then can

be performed manually if required. In this work, a tool named AES Crypto Scanner

was also developed which identify and locate the signatures found in the binary code

and if further analysis is required then the information displayed on the output screen

can be used as a base line for further manual analysis.

Comprehensive output/result: The output/result acquired using this framework is

very detailed against any application under analysis as compare to other tools/methods

available for the same purpose. Secondly the tool developed in this work does not only

output the statement that “AES is detected”but also display the detail result for other

parameters like:

• Standard S-Box detected (if used)

• Encryption Routine (if found)

• Decryption Routine (if found)

• Key mechanism (if found)

• Implementation used

• Mode of operations (if found)

The above information provide a complete insight of an application and it became easy

to rate any real application.

29

3.5 Limitation of Proposed Framework

Although the proposed framework has the above significance over existent work but

there are some limitations which keeps it away from being 100% accurate. These limi-

tations are actually inherent from the type of analysis method used in this research work

i.e. static analysis. The limitation of the proposed framework are as follows:

No dynamic analysis: The proposed framework only used static analysis for the de-

tection of cryptographic parameters. Although this approach is very common but it

cannot give an analyst a complete picture of the algorithm or flow. Dynamic analysis

gives more information about the code and flow which gives a better insight for analysis.

Obfuscation not handled: If the application is compressed, obfuscated or packed

then this technique will not work as the signatures will be hidden and cannot be found.

This is the main disadvantage of this approach means only relying on static analysis.

Real applications are complex: Real applications are complex means they are multi-

purpose so, sometimes it gets really tough to identify the different parameters or encryp-

tion/decryption routines as there is no coherence in the binary code. The same imple-

mentation of AES in two applications might give two different binary pattern because

the applications are usually multi-purpose. Although the signatures will be found that

will ensure that the same implementation is used in both applications.

Mode of operations: This is the limitation of choice of method used in this work

i.e. static analysis and using static analysis the mode of operations cannot always be

guaranteed. In static analysis it is possible to find signatures for mode used even the

flow of AES instructions can also give hint about the mode used but this method is

not successful for all the applications. It was found that using Intel AES Instruction

set [42], the simple CBC mode utilized very few AES instructions as compare to XTS

which uses a number of instructions. Secondly in CBC the same chunk that is repeated

in rounds is small while in XTS it is large and the repetitions is also more than simple

30

CBC mode but the issue arose when there are multiple modes used like if CBC and

CTR used then it gets complex to detect the mode used in assembly code.

3.6 Summary

In this chapter a framework has been suggested which contains multiple phases and

steps. The framework shows that how the detection and analysis of low-level code that

is acquired after reverse engineering of an application will be performed. This frame-

work uses both signatures detection and heuristic data to detect and analyse the appli-

cations. In addition to the framework, few popular implementations are also suggested

for AES along with significance and limitation of proposed framework.

31

Chapter 4

Implementation & Results

4.1 Introduction

This chapter is related to the implementation of proposed framework, analysis and re-

sults. It will contain the information of applications selected for analysis both open-

source and close-source, description of our automated tool, detailed analysis results

and different tools comparison with AES Crypto Scanner.

4.2 Selected Applications for Analysis

To check the effectiveness of proposed method a number of tools were analysed over

a period of time. Total of 11 applications were analysed in which 5 of them are open-

source and 6 of them are close-source.

32

Open-Source Tools Close-Source Tools
7-Zip Privacy Drive
AxCrypt Boxcryptor
EncFSMP Rohos Mini Drive
DiskCryptor Private Disk
VeraCrypt SensiGuard

BestCrypt

Table 4.2: Selected applications for analysis

The detailed analysis and results are discussed in the section 4.3.

4.3 Analysis of Real Applications

The purpose of this work is to design a framework that can effectively contribute in the

analysis of AES algorithm in real application. Here the term real applications are used

for those applications that are being used by users or organizations for various purposes

like data encryption etc. These applications can be either free or paid and open-source

or closed-source. Analysing open-source application has a benefit over close-source

that it does not need to be reverse engineer as the source code is publicly available but

in case of close-source application it has to be reverse engineered so that it can be anal-

ysed.

This section will provide the detail of the analysis that were carried out over the period

of this research. The analysis is divided into two sections, one for open-source software

and second for close-source software.

4.3.1 Analysis Platform

To perform analysis on real applications it was required to have at least 2 dedicated

machines that can be used. The purpose of using dedicated machine is this that it is

possible that few applications might behave differently than expected as it might be in-

33

fected with some malware. So, to be on a safer end it is always advise to use separate

machine for this kind of analysis.

VMware Workstation Pro was used to separate the work and operating system. The

complete process starting from downloading tool to final analysis was carried out in sep-

arate virtual machines which were installed on a VMware Workstation. The VMware

Workstation was installed on windows 10 and it contained 2 operating systems Win-

dows 10 (64 bit) and Windows 7 (32 bit) as shown:

Figure 4.1: VMware Workstation

Each machine contains the following applications and tools:

• All 11 applications under analysis

• IDA Pro

• OllyDbg

• WinDbg

• FindCrypt (version 1 and version 2)

• Signsrch

• SND Crypto Scanner

34

• And, AES Crypto Scanner

4.3.2 Open-Source Applications Analysis

In this work 5 open-source applications were selected for analysis. Those applications

were analyzed using our proposed framework and the results are than verified from the

source code to check the accuracy of our method.

The detailed findings were obtained from the heuristic‘s analysis of applications after

reverse engineering them on IDA Pro tool.

7-Zip

7-Zip is a free tool which is mainly used for compression and it is open source [26].

It is a powerful tool with number of supported formats. It was downloaded from the

official website, installed on the operating system and after installation its exes and dll

files were analysed using IDA Pro.

Findings: It was observed that 7-Zip contain the standard AES S-Box which was found

in Hex view of 7z.dll file.

35

Figure 4.2: 7-zip S-Boxs

It can be seen that the S-Box is found at the memory address 10135C10. Other than

this it was also found that 7-Zip is using AES instruction set which is a standard AES

implementation.

AES encryption routine found: Standard AES encryption routine found in the code.

Figure 4.3: 7-zip AES Instruction Set (Encryption)

AES decryption routine found: Standard AES decryption routine found in the code.

36

Figure 4.4: 7-zip AES Instruction Set (Decryption)

Mode of encryption: It can be seen that CBC mode is used in the application. Although

this kind of signature cannot guarantee the use of CBC but as the software code is

publicly available so it was confirmed either CBC is used or not and the results was the

same as found.

Figure 4.5: 7-zip Modes

Compression information: The analysis hinted that 7-zip is using pk-256, pk-192 and

pk-128 with some other compressions as well and it was confirmed form the source

code as well.

Figure 4.6: 7-zip compression info

AxCrypt

AxCrypt is an open-source software used for encryption. Its specification states that it

provides strong encryption by using 128/256-bit AES encryption [29]. It was down-

37

loaded from the official website, installed on the operating system and after installation

its exes and dll files were analysed using IDA Pro disassembler.

Its output is in Microsoft.Net assembly where AES implementation and other imple-

mentations can easily be found. This .Net is a portable reference library that is used for

the compilation of .Net language source code [27].

Findings: AxCrypt uses Bouncy Castle API that includes AES implementation. Here

the real challenge is to analyse the running state of application as the assembly code

will show all the available implementation used in the library.

AES Implementation: AES implementation can be seen along with other algorithms.

Figure 4.7: AxCrypt Code view

It can also be seen that multiple modes of encryption were found in the assembly code

of AxCrypt application like ECB with pkcs7 padding, CBC with pkcs7 padding, OFB

with no padding and CFB with no padding.

38

Figure 4.8: AxCrypt Modes & padding

Here the problem is this that bouncy crypto is a rich API which contain a number of

modes like shown in the Figure 4.8. It can only be seen through dynamic analysis that

which mode is being used with AES.

DiskCryptor

DiskCryptor is an open-source solution for full disk encryption. It supports AES-256,

Serpent and Twofish algorithms [30].

Findings: After reverse engineering using IDA Pro, it was confirmed that DiskCryptor

is using AES and also AES instruction set which is a standard instruction set approved

by FIPS.

Crypto Code: The following crypto code and pattern was found in the assembly code:

aesenc xmm4, xmmword ptr [r11+10h]

aesenc xmm4, xmmword ptr [r11+20h]

aesenc xmm4, xmmword ptr [r11+30h]

aesenc xmm4, xmmword ptr [r11+40h]

aesenc xmm4, xmmword ptr [r11+50h]

aesenc xmm4, xmmword ptr [r11+60h]

39

aesenc xmm4, xmmword ptr [r11+70h]

aesenc xmm4, xmmword ptr [r11+80h]

aesenc xmm4, xmmword ptr [r11+90h]

aesenc xmm4, xmmword ptr [r11+0A0h]

aesenc xmm4, xmmword ptr [r11+0B0h]

aesenc xmm4, xmmword ptr [r11+0C0h]

aesenc xmm4, xmmword ptr [r11+0D0h]

aesenclast xmm4, xmmword ptr [r11+0E0h]

It can be seen that how the above instructions are written in the assembly code. It gives

a clear clue that the application is AES with 14 rounds. Similar was the case for the

below instructions:

aesenc xmm0, xmm8

aesenc xmm1, xmm8

aesenc xmm2, xmm8

aesenc xmm3, xmm8

This chunk of instructions was also repeated like the above and same number of times.

It also ended with aesenclast instruction and same repetition was found in decryption

mechanism.

From the code it can easily be seen that the crypto code uses AES instruction set which

contains encryption, decryption and last rounds routines. It can also be guessed from

the code (by counting the blocks) that the number of rounds is 14 which means it uses

256-bit AES encryption. The IDA graph view also represents the flow of code which

shows the flow of instructions.

40

VeraCrypt

VeraCrypt is an improved version of TrueCrypt which fixes the vulnerabilities of True-

Crypt and provides more security by implementation AES. It is free software and its

code is open-source. It is used for full disk encryption [31].

Findings: VeraCrypt software was installed on windows 10 and its exe was analysed.

It was seen that VeraCrypt was using AES instruction set and it uses 256-bit AES en-

cryption.

Encryption routine was detected in assembly code which clearly shows number of

rounds used.

Figure 4.9: VeraCrypt AES Instruction Set (Encryption)

Decryption routine was also detected in assembly code.

41

Figure 4.10: VeraCrypt AES Instruction Set (Decryption)

In assembly code it was also seen that VeraCrypt is also using VAESENCLAST instruc-

tion which is used to perform last round flow encryption. It uses 3 operands as compare

to simple aesenc instruction which uses 2 instruction. This instruction uses 2 different

round keys which increase the security of last round.

Figure 4.11: VeraCrypt AES Instruction Set (Flow Encryption)

EncFSMP

EncFSMP creates an encrypted folder where user places and store their sensitive data.

Users can create and edit the password of EncFSMP folder. It is free and open-source

tool which has a user-friendly interface [32].

42

Findings: EncFSMP was downloaded from official site [32], installed on windows 10

and its exe was analyzed using IDA Pro tool.

S-Box: Found standard S-box in the hex dump.

Figure 4.12: EncFSMP S-Box

Encryption & decryption routine: The assembly code of EncFSMP was very de-

tailed containing more than 30 lac lines of codes. It contains multiple encryption and

decryption routines as compare to the other software and its pattern cannot be guessed.

The reason can be it uses multiple key length with multiple modes of encryption which

makes the pattern complex, but it was found that it uses AES instruction set in the

source code.

Figure 4.13: EncFSMP AES Instruction Set (Pattern1)

This is one of the patterns for encryption but there are number of patterns exists in EncF-

SMP assembly code for encryption like the one shown in Figure 4.14, which suggests

it can be encryption routine for 256-bit encryption call.

43

Figure 4.14: EncFSMP AES Instruction Set (Pattern2)

Similarly, there are number of patterns exists for decryption in the assembly code:

Figure 4.15: EncFSMP AES Instruction Set (Decryption)

In assembly code, vaesenc instruction was also found like shown in Figure 4.16:

Figure 4.16: EncFSMP AES Instruction Set (vaesenc)

Key Generation: Key generation instruction was also found in the assembly code:

44

Figure 4.17: EncFSMP AES Instruction Set (Key Generation)

Mode of Encryption: A number of modes were detected in the assembly code but

due to the complexity of code it cannot be guarantee that which mode is actually being

executed during run-time.

Figure 4.18: EncFSMP Modes

In the following Figure 4.19 it can be seen that the entry for GCM mode is found in the

assembly code:

45

Figure 4.19: EncFSMP GCM Mode

4.3.3 Close-Source Applications Analysis

This section contains the analysis detail of close-source applications that were analysed

using our proposed framework. The real target of this research was to analyse the close-

source applications against their specifications as every application announces that it is

developed using the standard library.

In this section all the findings of 6 close-source applications are mentioned including

figures from IDA Pro that were found during the analysis phase. Here the results are

based on the findings acquired from the analysis of open-source applications and re-

search.

Privacy Drive

Privacy drive is disk encryption software which is used to encrypt complete disk rather

than encrypting individual files and folders [33]. It has many features like hiding, lock-

ing and encryption. Its specification states that it supports standard industry encryption

algorithm which supports AES 128/256-bit.

Findings: The application was downloaded [33], installed and the exe file was ana-

lyzed against AES signatures. It was found that it is not using AES instruction set but

some other signatures for AES can be found in the assembly code. No standard S-box

46

for AES was detected but the detailed analysis revealed that the application is using

lookup-tables in AES implementation.

During analysis of the assembly code, it was also found that privacy drive is using

the LibTomCrypt cryptographic library which is freely available on GitHub [34]. The

following Figure 4.20 provides a hint that it uses LibTomCrypt library for AES.

Figure 4.20: Privacy Drive library

The highlighted code shows the library location from where it was included:

Figure 4.21: Privacy Drive Crypto library

It was found that library which is available at GitHub, also has the same directory like

shown below:

47

Figure 4.22: LibTomCrypt Library directory

Mode of Encryption: It uses XTS mode of encryption which can be seen in the assem-

bly code. Secondly it uses all the functions for XTS mode given at GitHub.

Figure 4.23: Privacy Drive Mode (xts_decrypt.c function)

It can be seen in the Figure 4.23 that xts_decrypt.c is detected in the assembly code.

Figure 4.24: Privacy Drive Mode (xts_initt.c function)

It can be seen in the Figure 4.24 that xts_init.c is detected in the assembly code.

48

Figure 4.25: Privacy Drive Mode (xts_encrypt.c function)

Figure 4.25 shows the signatures of xts_encrypt.c function and similarly Figure 4.26

also show another function used i.e. xts_done .

Figure 4.26: Privacy Drive Mode (xts_done.c function)

It can be seen that XTS mode in LibTomCrypt also uses all these functions which

gives clear hint the source code is using LibTomCrypt library and also XTS mode of

encryption.

49

Figure 4.27: LibTomCrypt XTS Mode Functions

SensiGuard

SensiGuard is encryption software which provides strong encryption using AES algo-

rithm. It uses 256-bit AES key which makes it a good choice to use for sensitive data

[36]. It is close-source application which offers encryption and folder locking features.

Findings: It was found that there were few functions calls for AES encryption, decryp-

tion and keys. By analysing the function call signatures, it looks like that the source

code is using OpenSSL Implementation of AES. Figure 4.28 shows the function calls

found in the assembly code:

50

Figure 4.28: SensiGuard AES_Encrypt and AES_Encrypt_key function call

Figure 4.29: SensiGuard AES_Decrypt and AES_Decrypt_key function call

Mode of Encryption: It was also found that the source code is using IGE cipher mode.

IGE stands for Infinite Garble Extension which has the property that errors in bits are

propagated indefinitely [37]. OpenSSL implemented this mode in 2006 which is mainly

used for AES algorithm.

Figure 4.30: SensiGuard IGE Mode

51

Boxcryptor

Boxcryptor is encryption software which offer end-to-end security that primarily pur-

pose is to provide security for cloud [38]. It is free if used for non-commercial purpose.

Findings: After reverse engineering, it was found that the application was compiled in

C# language that’s why after reverse engineering, it gave Microsoft.Net assembly code

for analysis. As the code is in .Net assembly language so it can be clearly seen that

which cryptographic library is used for encryption and decryption of file.

It was seen that the application used bouncy crypto API for encryption and decryption

but it can only be seen through dynamic analysis of application that which crypto rou-

tine is being executed for encryption and decryption as static analysis will list complete

cryptographic routines like AES, blowfish etc.

Figure 4.31: Boxcryptor Code View

Mode of Encryption: Multiple modes detected but it is not clear which mode will be

executed at runtime.

52

Figure 4.32: Boxcryptor Modes

Rohos Mini Drive

Rohos Mini Drive is a desktop software primarily used for securing USB drives by cre-

ating a hiding encrypted partition which will only be accessible using correct password

[39]. It has a number of features including browsers profile data encrypting, history and

even skype chat and profile encryption and hiding.

Findings: It was found after reverse engineering that Rohos Mini Drive is using AES

instruction set and standard s-box was also found in memory.

S-box: Standard S-box was found during the analysis of assembly code of Rohos Mini

Drive application that was acquired after reverse engineering of the Rohos Mini.exe file.

53

Figure 4.33: Rohos Mini Drive S-Box

Similarly, AES instruction set was also found in the assembly code. Figure 4.34 shows

AES decryption instruction.

Figure 4.34: Rohos Mini Drive Decryption

Figure 4.35 shows the instruction for last round decryption of AES.

Figure 4.35: Rohos Mini Drive Last Round Decryption

Similarly, AES encryption for all the rounds can be seen in Figure 4.36.

54

Figure 4.36: Rohos Mini Drive AES Encryption including last round

The instruction for key generation can also be seen in the assembly code:

Figure 4.37: Rohos Mini Drive Key Generation

The instruction for column mixing and transformation can also be seen in the Figure

4.38:

Figure 4.38: Rohos Mini Drive IMC Function

BestCrypt

BestCrypt is disk and file encryption software which is available for Windows, OS X

and Linux platform. It can be used for both volume and files encryption [40].

Finding: BestCrypt was downloaded from official website [40]. It was than installed

on a drive and all the exes, dll were analysed against AES signatures.

S-Box: Standard s-box was detected during analysis of assembly code as shown in the

Figure 4.39:

55

Figure 4.39: BestCrypt S-Box

Other Signatures: There are also few signatures found in the binary code but it did not

give any meaningful information about the algorithm used. Similarly, there are many

strings found the hex dump but the problem remains the same as it did not give any

information about the algorithm used.

Figure 4.40: BestCrypt AES Signatures

Private Disk

Private disk is also the similar software which is used for encrypting sensitive data and it

is only available for Windows platform [41]. Its specifications states that it uses 256-bit

AES data encryption. It also states that it is FIPS approved and the 256-bit encryption

algorithm was adopted by the NIST.

Findings: Except for only detecting the standard s-box, our analysis did not find any

other signature which can show the algorithm used in the source code. As there is cer-

tificate found from NIST on the official website [41] that it fulfils the requirement of

56

FIPS pub 197, it means that it is possible that they have deployed their own implemen-

tation of AES. As the source code is not available so it cannot be justified that which

algorithm is used in source code and secondly, the signature for existing algorithm can-

not developed for existing algorithm as the access to source code of that algorithm is

restricted.

Figure 4.41: Private Disk S-Box

4.4 AES Crypto Scanner: An Automated Approach

AES Crypto Scanner is the tool developed in this work for the purpose of automating

the detection of AES in real applications. It is designed specifically for the extraction

of AES different parameters from the binary code. It will take binary code as an input

and will output the analysis result.

4.4.1 Tool Specification, GUI and Main Functions

AES Crypto Scanner is a desktop tools designed for Microsoft Windows platform. It is

developed in visual studio using C# language. The libraries used in the development of

this tool are RegularExpressions, Linq, Drawing and Threading. RegularExpressions is

used to extract special characters from file. Linq is used to manipulate lists. Drawing is

57

used to highlight selected text i.e. AES constants found in the file.

Figure 4.42: AES Crypto Scanner

Upload: Click this button to add the file containing binary code. It supports .txt and

binary file format. By clicking upload, System takes input as a text file/ binary file

which contains the assembly code of the application under analysis.

Scan: Click this button to scan the uploaded file and locate AES signatures if any.

Display: Click this button to show the output of scan. If the AES is found in the

binary code then it will output the findings like which implementation is found, En-

cryption/Decryption routine used, mode of operations etc.

Show highlighted data: It will show the found signatures in assembly code so that an

analyst can see the assembly code and the section where this signature is found. The

signature will be highlighted so that it can be easily found.

Reset: This button will be used to reset and clear the main screen so that the tool can

be used for another application if required.

Main Screen: This area will be used to show output results and binary code.

58

4.4.2 Benefits of AES Crypto Scanner w.r.t Existent Tools

The AES Crypto Scanner is developed to identify and locate AES parameters in As-

sembly code that was acquired after reverse engineering of the application. There are

other tools like FindCrypt2, IDA Signsrch and SND Crypto Scanner that is used for the

same purpose but AES Crypto Scanner has few features that makes it unique.

Simple Interface: AES Crypto Scanner has user friendly interface which is very easy

to use even by novice user. The main menu is very simply designed which provide clear

instructions about the tool. It is fully GUI based and independent tool, means it is not a

plugin for any other tool. As compare to this FindCrypt2 and SND Crypto Scanner are

both plugins whereas IDA Signsrch is command line tool which is not comfortable to

uses at beginning.

Rich Interface: AES Crypto Scanner provide rich interface as compare to other simi-

lar tools. It can be used for scanning the file, Displaying the constants found in file and

even highlighting the signatures in code.

Categorization: This tool does not only output the string “AES found/not found ”but

also provide additional information like library used, s-box used, encryption and de-

cryption routine used etc. which can help analyst to look for the specific parameter if

required.

Aid in analysis: The option of highlighting crypto data in assembly code is very useful

feature specially for analyst as they can quickly skip the other data and can only focus

on the highlighted data which will reduce complexity of code and save time as well.

Scalable: This is not a final tool with final signatures. More signatures can be added

to its database which makes it scalable. If analyst found few signatures which is used

for AES, it can be added into the database and hence the database will increase and the

59

tool will become more powerful.

4.5 Tools Comparison

This section contains information of tools used for the detection of AES. It also shows

the performance of every tools as compare to other.

4.5.1 List of Tools/Plugins

There are number of tools used for the detection and analysis of binary code. Every

tool has strength and limitation as well. For this work 3 main tools were used other than

AES crypto Scanner. The tools/plugins used for the detection of AES were:

• FindCrypt2

• IDA Signsrch

• SND Crypto Scanner

• AES Crypto Scanner (Developed tool for this framework)

From the results it can be seen that both IDA Signsrch and SND Crypto Scanner have

very successful results as compare to FindCrypt2 plugin.

4.5.2 Results

The final results are divided in two potions. One for open-source applications and

second for close-source application. Secondly the tools comparison can also be seen in

the tables.

Open-Source Applications: A total of 5 open-source applications were analysed

using the proposed methodology and the results were confirmed as the source code was

available. The following results are obtained from 4 different tools i.e. AES Crypto

60

Applications Tools AES
Detection

S-Box\
Table-Lookup

Detection

Implementation
Detection

7Zip

AES Crypto Scanner 4 4 4

FindCrypt2 8 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 4 8 8

AxCrypt

AES Crypto Scanner 4 8 4

FindCrypt2 8 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 4 8 8

Diskcryptor

AES Crypto Scanner 4 8 4

FindCrypt2 8 8 8

IDA Signsrch 8 4 8

SND Crypto Scanner 4 8 8

VeraCrypt

AES Crypto Scanner 4 8 4

FindCrypt2 8 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 4 8 8

EncFSMP

AES Crypto Scanner 4 8 4

FindCrypt2 8 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 4 8 8

Table 4.3: Open-Source applications result comparison

Scanner, FindCrypt2, IDA Signsrch, SND Crypto Scanner.

It can be seen in Table 4.3 that FindCrypt2 plugin was not able to detect AES signatures,

not even in a single application whereas other 3 tools have successfully detected the

AES signatures.

Close-Source Applications: Other than open-source application, 6 close-source ap-

plications were also analysed using 4 different tools i.e. AES Crypto Scanner, Find-

Crypt2, IDA Signsrch, SND Crypto Scanner, and the final result of all the tools are

presented in the Table 4.4.

61

Applications Tools AES
Detection

S-Box\
Table-Lookup

Detection

Implementation
Detection

Privacy Drive

AES Crypto Scanner 4 4 4

FindCrypt2 4 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 4 8 8

SensiGuard

AES Crypto Scanner 4 8 4

FindCrypt2 8 8 8

IDA Signsrch 8 8 8

SND Crypto Scanner 8 8 8

Boxcryptor

AES Crypto Scanner 4 8 4

FindCrypt2 8 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 4 8 8

Rohos Mini

AES Crypto Scanner 4 4 4

FindCrypt2 8 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 4 8 8

BestCrypt

AES Crypto Scanner 4 4 8

FindCrypt2 8 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 4 8 8

Private Disk

AES Crypto Scanner 8 8 8

FindCrypt2 8 8 8

IDA Signsrch 4 4 8

SND Crypto Scanner 8 8 8

Table 4.4: Close-Source applications result comparison

The Table 4.4 shows the performance of all 6 tools. It can be easily seen that FindCrypt2

again has very poor performance and it has only detected AES in 1 application out of

6. Similarly, IDA Signsrch and SND Crypto Scanner has detected 5 applications out of

6 which shows a high detection ratio as compare to FindCrypt. AES Crypto Scanner

has detected AES in all applications which represent that it has better detection than all

other tools used for similar purpose.

62

4.6 Summary

This chapter provides the implementation detail of proposed framework. In this chap-

ter, a total of 11 applications were analysed in which 5 of them were open-source and 6

close-source. It can be seen that out of 11, 5 applications were using Intel AES Instruc-

tion set [42], 2 applications were detected using bouncy crypto library, 1 application

was using LibtomCrypt implementation, 1 application with OpenSSL implementation

and 2 application with unknown implementation but standard s-box exists in the binary

including some random signatures as well. The results section makes a good evaluation

of the 4 tools and it can be seen that AES Crypto Scanner performed convincingly well

as compare to other tools.

63

Chapter 5

Conclusion & Future Directions

5.1 Conclusion

It is a belief that increasing the key size has a direct effect on the security of applica-

tions which is not completely true as key length can only increase the mathematical

complexity and resist in mathematical and algebraic attack [46] but it does not consider

algorithmic attack nor implementation-related attacks that bypasses the mathematical

complexity of cipher. Secondly it also increases the computation time which decreases

the performance of application. Hence developing secure products/applications requires

standard key length and standard implementation which is flawless so that it can pro-

vide desired security and performance.

The purpose of this work was to evaluate the applications, look for the AES signatures

that provides information regarding rounds used, key size, algorithm used, s-box used

and mode used if possible. A framework was designed to prepare for evaluation pro-

cess and then perform analysis that provides meaningful information to analyst. Few

AES implementations were selected for this work and the proposed framework was im-

plemented on 5 open-source and 6 close-source applications. It was found that many

applications were using the standard implementation of AES and the real challenge was

to determining the mode in assembly code. Many applications used standard s-box

and it was found that for complete drive encryptions the applications used XTS mode

64

which is a standard approach. Different tools were also evaluated and the results shows

that FindCrypt2 plugin was not up to the mark whereas the other similar tools showed

good results. The tools developed for this work had the successful output as compare

to other tools. The main challenge of this work is to identify standard implementations

and acquiring signatures and if this stage is done correctly the entire framework become

successful and if these stages are not catered correctly than the framework will fail. So,

it is highly recommended to utilize maximum time/efforts in finalizing the algorithms

and signature which actually contribute in the success of this work.

5.2 Future Directions

Apart from contributing in the field of signature detection this work has also increased

the reliability of applications by conforming that secure implementation is used in the

applications. This work can also be strengthened by implementing the following fea-

tures:

• Add more libraries and signatures which confirms the defined standard of this

work.

• Increase the signature repository and include other cryptographic algorithms like

DES, Twofish etc. which will make this tool very rich.

• This work should be enhanced by adding known vulnerabilities into database.

• The proposed framework is based on the static analysis of code that’s why it is not

possible to acquire all the useful information correctly. For this reason, a hybrid

approach should be developed which uses both static and dynamic analysis of

code. It will help in the detection of modes, number of rounds and flow of code

as well.

65

5.3 Summary

This chapter has summarized the research work by providing a very brief overview

of the research conducted. It gave a complete sketch of the purposed framework and

implementation of proposed framework in this research. Furthermore, it has also set

future directions which will be useful for researchers of the same field.

66

List of Abbreviations and Symbols

Abbreviations

AES Advanced Encryption Standard

DES Data Encryption Standard

.EXE Extension for an Executable File Format

DLL Dynamic Link Library

RE Reverse Engineering

IDA Interactive DisAssembler

S-Box Substitution-Box

FIPS Federal Information Processing Standards

ECB Electronic Codebook

CBC Cipher Block Chaining

CFB Cipher Feedback

OFB Output Feedback

XTS XEX-based tweaked codebook mode with ciphertext stealing

IGE Infinite Garble Extension

DB Database

67

References

[1] Nazaruk, Vladislav, and Pavel Rusakov. “Implementation of Cryptographic Al-

gorithms in Software: An Analysis of the Effectiveness. ”Scientific Journal of

Riga Technical University. Computer Sciences 41.1 (2010): 97-105.

[2] Kinder, Johannes. Static analysis of x86 executables. No. THESIS_LIB. Tech-

nische Universitat Darmstadt, 2010.

[3] B.N.J. Rubenking, “The Best Encryption Software of 2018,”PCMAG. [On-

line]. Available: https://www.pcmag.com/article/347066/the-best-encryption-

software-of-2016. [Accessed: 12-Jul-2018].

[4] NIST, FIPS PUB. 197,“Advanced Encryption Standard (AES),”November 2001.

[5] Bassham III, Lawrence E. “The advanced encryption standard algorithm valida-

tion suite (AESAVS).”NIST Information Technology Laboratory (2002).

[6] “Reverse Engineering.”[Online]. Available:

https://ethics.csc.ncsu.edu/intellectual/reverse/study.php.[Accessed: 04-Nov-

2018].

[7] Vigna, Giovanni. “Static disassembly and code analysis.”Malware Detection.

Springer, Boston, MA, 2007. 19-41.

[8] Grobert, Felix, Carsten Willems, and Thorsten Holz. “Automated identification

of cryptographic primitives in binary programs.”International Workshop on Re-

cent Advances in Intrusion Detection. Springer, Berlin, Heidelberg, 2011.

68

[9] Sikorski, Michael, and Andrew Honig. Practical malware analysis: the hands-on

guide to dissecting malicious software. no starch press, 2012.

[10] Aabidi, M. H., et al. “Benefits of reverse engineering technologies in software de-

velopment makerspace.”ITM Web of Conferences. Vol. 13. EDP Sciences, 2017.

[11] Canfora, Gerardo, Massimiliano Di Penta, and Luigi Cerulo. “Achievements and

challenges in software reverse engineering.”Communications of the ACM 54.4

(2011): 142-151.

[12] Nguyen, Phong Q. “Can we trust cryptographic software? Cryptographic flaws

in GNU Privacy Guard v1. 2.3.”International Conference on the Theory and Ap-

plications of Cryptographic Techniques. Springer, Berlin, Heidelberg, 2004.

[13] Benedetti, Leonard, Aurelien Thierry, and Julien Francq. “Detection of crypto-

graphic algorithms with grap.”IACR Cryptology ePrint Archive (2017): 1119.

[14] Hill, Gregory D., and Xavier JA Bellekens. “Deep Learning Based Cryptographic

Primitive Classification.”arXiv preprint arXiv:1709.08385 (2017).

[15] Hosfelt, Diane Duros. “Automated detection and classification of crypto-

graphic algorithms in binary programs through machine learning.”arXiv preprint

arXiv:1503.01186 (2015).

[16] Matenaar, Felix, et al. “CIS: The crypto intelligence system for automatic detec-

tion and localization of cryptographic functions in current malware.”Malicious

and Unwanted Software (MALWARE), 2012 7th International Conference on.

IEEE, 2012.

[17] Lestringant, Pierre, Frederic Guihery, and Pierre-Alain Fouque. “Automated

identification of cryptographic primitives in binary code with data flow graph

isomorphism.”Proceedings of the 10th ACM Symposium on Information, Com-

puter and Communications Security. ACM, 2015.

[18] Calvet, Joan, Jose M. Fernandez, and Jean-Yves Marion. “Aligot: cryptographic

69

function identification in obfuscated binary programs.”Proceedings of the 2012

ACM conference on Computer and communications security. ACM, 2012.

[19] Xu, Dongpeng, Jiang Ming, and Dinghao Wu. “Cryptographic function detec-

tion in obfuscated binaries via bit-precise symbolic loop mapping.”Security and

Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017.

[20] Zhao, Ruoxu, et al. “Detection and analysis of cryptographic data inside soft-

ware.”International Conference on Information Security. Springer, Berlin, Hei-

delberg, 2011.

[21] “Welcome to Hex-Rays.”[Online]. Available: https://www.hex-rays.com/. [Ac-

cessed: 04-Mar-2018].

[22] “OllyDbg v1.10.”[Online]. Available: http://www.ollydbg.de/. [Accessed: 04-

Mar-2018].

[23] “FindCrypt - Hex Blog.”[Online]. Available: http://www.hexblog.com/?p=27.

[Accessed: 13-June-2018].

[24] Monnappa K A. “Malware Obfuscation Techniques”in Learning Malware Anal-

ysis, 1st ed., Birmingham: Packt Publishing, 2018

[25] T. Xie, F. Liu, and D. Feng. “Fast collision attack on MD5.”IACR Cryptology

ePrint Archive, 2013:170,2013.

[26] “7-Zip.”[Online]. Available: https://www.7-zip.org/. [Accessed: 21-July-2018].

[27] “Microsoft .NET Portable Library Reference Assemblies 4.6,”Microsoft

Download Center. [Online]. Available: https://www.microsoft.com/en-

pk/download/details.aspx?id=40727. [Accessed: 21-jul-2018].

[28] Edgar, Michael. (2016). Legion of the Bouncy Castle Inc. BC-FNA (Bouncy

Castle FIPS .NET API) FIPS 140-2 Cryptographic Module Security Policy.

10.13140/RG.2.2.20033.04969.

70

[29] “AxCrypt - File Security Made Easy,”AxCrypt - File Security Made Easy. [On-

line]. Available: https://www.axcrypt.net/. [Accessed: 01-Aug-2018].

[30] “DiskCryptor wiki.”[Online]. Available: https://diskcryptor.net/wiki/Main_Page.

[Accessed: 01-Aug-2018].

[31] “VeraCrypt,”[Online]. Available: https://sourceforge.net/projects/veracrypt/.

[Accessed: 01-Aug-2018].

[32] “EncFSMP homepage.”[Online].Available: https://encfsmp.sourceforge.io/.

[Accessed: 18-Aug-2018].

[33] “Privacy Drive encryption software: lock, hide & protect data.”[Online]. Avail-

able: http://www.cybertronsoft.com/products/privacy-drive/. [Accessed:21-Aug-

2018].

[34] “libtomcrypt Git at Google.”[Online]. Available:

https://android.googlesource.com/platform/external/dropbear/+/donut-

release/libtomcrypt/src/ciphers/aes/aes.c. [Accessed: 22-Aug-2018].

[35] “libtom,”[Online]. Available: https://www.libtom.net/LibTomCrypt/. [Accessed:

28-Aug-2018].

[36] “SensiGuard - File Encryption Software - Lock Files - Lock Folders.”[Online].

Available: https://www.sensiguard.com/. [Accessed: 28-Aug-2018].

[37] B. Laurie,“OpenSSL‘s implementation of Infinite Garble Extension”, 2006

[38] “Boxcryptor | Security for your Cloud.”[Online]. Available:

https://www.boxcryptor.com/. [Accessed: 28-Aug-2018].

[39] “Rohos Mini Drive - Rohos.”[Online]. Available:

https://www.rohos.com/products/rohos-disk-encryption/rohos-mini-drive/.

[Accessed: 02-Sep-2018].

[40] “Encryption Software & Wiping Software | Jetico.”[Online]. Available:

https://www.jetico.com/. [Accessed: 02-Sep-2018].

71

[41] “Disk encryption software - data protection and disk en-

cryption with Dekart Private Disk.”[Online]. Available:

https://www.dekart.com/products/encryption/private_disk/. [Accessed: 04-

Sep-2018].

[42] Gueron, Shay. “Intel® Advanced Encryption Standard (AES) New Instructions

Set.”Intel Corporation (2010).

[43] “OpenSSL Cryptography and SSL/TLS Toolkit.”[Online]. Available:

https://www.openssl.org/. [Accessed: 08-Sep-2018].

[44] D. J. Bernstein, T. Lange, and P. Schwabe, “The Security Impact of a New Cryp-

tographic Library,”in Progress in Cryptology - LATINCRYPT 2012, vol. 7533,

A. Hevia and G. Neven, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2012, pp. 159-176.

[45] “B. Gladman, AES code.”[Online]. Avail-

able:https://github.com/BrianGladman/aes. [Accessed: 02-Aug-2018].

[46] M. Neve and K. Tiri, “On the complexity of side-channel attacks on AES-256 –

methodology and quantitative results on cache attacks,”318, 2007.

72

	Main Title
	Supervisor Certificate
	THESIS ACCEPTANCE CERTIFICATE
	Declaration
	Declaration
	Declaration
	Copyright Notice
	Abstract
	Contents
	INTRODUCTION
	Overview
	Motivation and Problem Statement
	Aims and Objectives
	Thesis Contribution
	Thesis Organization

	LITERATURE REVIEW
	Introduction
	Advance Encryption Standard (AES) Overview
	Reverse Engineering and Code Analysis
	Static Analysis
	Dynamic Analysis

	Reverse Engineering and Binary Analysis Tools
	Importance of Reverse Engineering
	Challenges of Reverse Engineering
	Related Research
	Summary

	Proposed Framework for Cryptographic Algorithm Detection
	Introduction
	Proposed Framework
	Define Well Known and Standard Algorithm Implementations of AES
	Compilation and Signature Extraction
	Signature Extraction from Open-Source Applications
	Design Heuristics
	Database Creation
	Perform Analysis on Real Applications
	Development of Tool for Quick Detection

	Selected Implementation of AES
	Significance of Proposed Framework
	Limitation of Proposed Framework
	Summary

	Implementation & Results
	Introduction
	Selected Applications for Analysis
	Analysis of Real Applications
	Analysis Platform
	Open-Source Applications Analysis
	Close-Source Applications Analysis

	AES Crypto Scanner: An Automated Approach
	Tool Specification, GUI and Main Functions
	Benefits of AES Crypto Scanner w.r.t Existent Tools

	Tools Comparison
	List of Tools/Plugins
	Results

	Summary

	Conclusion & Future Directions
	Conclusion
	Future Directions
	Summary

	References

