
Uncovering Router Protocol Vulnerabilities through
Intelligent Fuzzing

By

Asad Mehdi

A thesis submitted to the faculty of Information Security
Department, Military College of Signals, National

University of Sciences and Technology, Rawalpindi in
partial fulfilment of the requirements for the degree of MS

in Information Security

October 2018

THESIS ACCEPTANCE CERTIFICATE

It is certified that final copy of MS Thesis written by Asad Mehdi Registration No.

00000170761, of Military College of Signals has been vetted by undersigned, found

complete in all respect as per NUST Statutes/Regulations, is free of plagiarism, errors

and mistakes and is accepted as partial, fulfillment for award of MS degree. It is further

certified that necessary amendments as pointed out by GEC members of the scholar

have been also incorporated in the said thesis.

Signature: ___________________________

Name of Supervisor:____________________

Date: ________________________________

Signature (HOD):______________________

Date: ________________________________

Signature (Dean/Principal):_______________

Date: _________________________________

i

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

ii

Dedication

This thesis is dedicated to MY FAMILY, TEACHERS AND FRIENDS for their love,

endless support and encouragement.

iii

Acknowledgement

First of all, I would like to thank Allah Almighty for His countless blessings. After

that I want to express my appreciation to my family, my friends, colleagues and the

faculty for providing their enormous support to help me to do this research. Without

their relentless support, assistance and prayers, I would not have reached culmination

point in a peaceful state of mind.

I would like to convey my gratitude to my supervisor, Dr.Mehreen Afzal, for her su-

pervision and constant support. Her invaluable help of constructive comments and sug-

gestions throughout the experimental and thesis work are major contributions to the

success of this research. I’m greatly admired by her dedication, sincerity towards work

and humble attitude with her students.

I’m thankful to my committee members; Dr.Fawad Khan, Asst Prof Mian Muhammad

Waseem Iqbal for their support.

I am highly thankful to my friend Capt Arslan Shah and course mates Maj Shahid Rafiq,

Lt Cdr Kaleemullah, Mr. Arsalan, Mr. Abdul Rehman, Mr. Haseeb Javed, Mr. Akash

Gerard, Mr. Muhammad Waqas and Mr. Syed Adeel Shah who helped me during

different phases of this research and course work.

Asad Mehdi

October 2018

iv

Copyright Notice

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with in-

structions given by the author and lodged in the Library of MCS, NUST. Details

may be obtained by the Librarian. This page must form part of any such copies

made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in MCS, NUST, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission

of MCS, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of MCS, NUST, Islamabad.

v

Abstract

Simple Network Management Protocol(SNMP) is a renown network management pro-

tocol. In an IP network, it is used for gathering information from, and configuring

network devices. Due to its extensive usage and presence in critical network devices

such as routers, switches,servers etc, its security preservation is a major concern. Any

security flaw in software implementation of such protocol may lead to catastrophic sit-

uations. A lot of SNMP vulnerabilities have been reported in the past. The modern

vulnerability assessment tools only look for known vulnerabilities but lack zero-day

detection.

Fuzzing, is an automated software security testing technique which is typically known

for finding zero-day, buffer-overflow and memory corruption vulnerabilities effectively.

Researches on finding unknown flaws in protocol implementations of network devices

through fuzzing is still immature. The existing open-source tools do not cater fuzz

testing of complex protocols due to their data modeling complexity.

In this research, fuzz testing of Simple Network Management Protocol(SNMP) imple-

mentation in Cisco routers is performed. A simple approach for generating malformed

test-cases is also proposed. During fuzz testing experiments several memory corrup-

tion and a known DoS vulnerability is exposed. Analysis of SNMP vulnerabilities for

renown vendors in scope of fuzz testing and evaluation of prominent network protocol

fuzzing tools based on certain criteria is also part of this thesis.

vi

Contents

1 INTRODUCTION 1

1.1 Introduction . 1

1.2 Network Protocols . 1

1.3 Attacks on Router . 4

1.4 Fuzz Testing . 6

1.5 Motivation and Problem Statement . 6

1.6 Aims and Objectives . 7

1.7 Thesis Contributions . 7

1.8 Thesis Organization . 8

2 LITERATURE REVIEW 10

2.1 Introduction . 10

2.2 Fuzzing - A software vulnerability testing technique 10

2.3 Network Protocols Fuzzing . 11

2.3.1 Stateful Protocol Fuzzing . 11

2.3.2 Checksum Aware and Encrypted Protocol Fuzzing 11

2.3.3 Wireless Fuzzing . 12

2.3.4 AutoFuzz: Automated Network Protocol Fuzzing 12

2.3.5 Application Layer Protocol Fuzzing 12

vii

2.4 Cisco Router Exploitation and Fuzzing 13

2.5 Conclusion . 14

3 Fuzzing and Evaluation of Network Protocol Fuzzing Tools 15

3.1 Introduction . 15

3.2 Fuzzing . 15

3.2.1 Types Of Fuzzing . 16

3.2.2 Test-case Generation Approaches 17

3.2.3 Structure of a Fuzzer . 17

3.2.4 Fuzzing Process . 18

3.3 State of the Art Fuzzing Tools . 19

3.4 Types of Fuzzers . 20

3.4.1 File Format Fuzzers . 20

3.4.2 Remote Fuzzers . 20

3.4.3 Network Protocol Fuzzers . 21

3.4.4 Web Application Fuzzers . 21

3.5 Well-Known Fuzzing Tools . 22

3.6 Comparison of Network Protocol Fuzzers 24

3.6.1 Selected Fuzzers . 25

3.6.2 Individual Evaluation of Network Protocol Fuzzers 25

3.6.3 Fuzzers Evaluation Summary and Common Drawback 29

3.7 Fuzzing Limitations . 30

3.8 Conclusion . 31

4 SNMP Vulnerabilities Exploitation through Fuzzing 32

4.1 Introduction . 32

viii

4.2 Simple Network Management Protocol (SNMP) 32

4.2.1 SNMP Versions . 33

4.2.2 Basic Terms and Components of SNMP 34

4.2.3 SNMP Messages and Protocol Data Units (PDUs) 35

4.2.4 SNMP Architecture . 37

4.2.5 General SNMP Message Format 38

4.3 Factors Behind Choosing SNMP as Target Protocol 39

4.4 SNMP vulnerabilities by Design . 40

4.5 Analysis of Vulnerable fields in SNMP 40

4.6 Products Specific SNMP Vulnerabilities 42

4.7 Conclusion . 49

5 Experimental Results 50

5.1 Introduction . 50

5.2 Methodology of Experiments . 50

5.3 Flowchart . 51

5.3.1 Generation of Test-Cases . 52

5.3.2 Test-Cases Injection . 52

5.4 Tools and Utilities . 52

5.5 Experimental Setup . 53

5.6 Fuzzing SNMP in Cisco Router . 54

5.6.1 Capturing SNMP Traffic and Test-Cases Generation 54

5.6.2 Target Prepration . 57

5.6.3 Injection of Test-Cases to Target 58

5.6.4 Target Monitoring . 59

5.7 Testing Results . 59

ix

5.7.1 Memory Corruption Vulnerability 59

5.7.2 Denial of Service vulnerabilities 63

5.7.3 SNMPv3 Fuzzing . 65

5.8 Conclusion . 66

6 Conclusion and Future Work 67

6.1 Conclusion . 67

6.1.1 Network Protocol Fuzzers Evaluation 67

6.1.2 Products Specific SNMP Vulnerabilities Analysis 68

6.1.3 SNMP Fuzzing . 68

6.2 Limitations . 68

6.3 Future Work . 69

References 72

x

List of Figures

1.1 Dynamic Routing Protocols . 2

3.1 Generic Fuzzer model . 18

3.2 Example fuzz test cases and resulting responses from an SUT [28] . . . 19

4.1 SNMP Operation Model [31] . 35

4.2 Simplified SNMP architecture . 38

4.3 SNMP Message Format [31] . 38

5.1 Methodology flow chart . 51

5.2 Topology of Experimental Setup . 54

5.3 SNMP traffic capture with wireshark 55

5.4 SNMP PDU encoding and packet fields identified 57

5.5 GDB server thread activated . 58

5.6 Test Cases injection with Protos UDP Injector 58

5.7 Test-case-1 caused memory corruption 60

5.8 Test-case-2 caused memory corruption 61

5.9 Test-case-3 caused memory corruption 61

5.10 Test-case-4 caused memory corruption 62

5.11 Test-case-5 caused memory corruption 62

xi

5.12 Router Console: Memory Corruption Error 63

5.13 Empty UDP packets generation with Scapy 64

5.14 CPU utilization: C2600 router . 64

5.15 Large Number of SNMP requests generation with Scapy 65

5.16 CPU utilization for large number of requests 65

5.17 SNMPv3 Malformed test-case . 66

xii

List of Tables

3.2 Well-Known Fuzzing Tools. 23

3.4 Criterion for Ease-of-Use of the Fuzzer 24

3.6 Criterion for Practical features of the Fuzzer 25

3.8 Criterion for Fuzzing Intelligence . 25

3.10 Evaluation of Peach Fuzzer . 26

3.12 Evaluation of Kitty Fuzzer . 28

3.14 Evaluation of Sulley Fuzzer . 29

3.16 Evaluation of Spike Fuzzer . 29

4.2 SNMP PDU types and Classes . 37

4.3 Cisco Products Specific SNMP Vulnerabilities 47

4.4 Juniper Products Specific SNMP Vulnerabilities 48

4.5 Huawei Products Specific SNMP Vulnerabilities 48

5.2 ASN.1 with BER . 56

5.4 Target Details . 59

xiii

Chapter 1

INTRODUCTION

1.1 Introduction

This chapter gives an overview of the basic concepts underlying behind this research

such as Fuzz testing, Router Protocols with their brief working and different forms of

attacks on them. Aim, motivation, scope and contributions have been explained later in

the chapter and finally the thesis organization.

1.2 Network Protocols

Protocols, in context of digital networks, are the set of rules that are needed to be fol-

lowed by any two entities on a network to communicate with each other. Since this

research revolves around the routers, it only discuss the different types of network pro-

tocols which are implemented in a router which extends its limited capability of per-

forming routing of packets only to serving application layer communication. Protocols

in routers are mainly of two types: Routing Protocols and Application layer Protocols

Routing Protocols: Routing protocols form the rules that allow the exchange of rout-

ing and data information. These are layer-3 i.e. network layer protocols hence routers

are also referred as layer-3 network devices. Efficiency of a router is most critical to

any network. Routing protocol has vital impact on efficiency of router. The purpose of

1

any routing protocol is to determine the best path for a packet to reach its final desti-

nation. Routing protocols also called as Dynamic Routing Protocols because of their

adaptive nature. They have the flexibility to adapt to all sorts of conditions, such as

traffic congestion, poor link speed, or a complete disconnection of a particular route.

Dynamic Routing protocols are further differentiated based on what and how much in-

formation they share with other nodes in the network and upon which attributes routing

decisions are made. Figure 1.1 shows a diagram of how routing protocols are differen-

tiated.

Figure 1.1: Dynamic Routing Protocols

Data networks are mainly divided into private and public network. The private part is

an internal network of an organization while the public part is internet. To facilitate

communication between these two networks there are different set of protocols. A

protocol used to enable communication within a local network is referred as Interior

Gateway Protocol whereas for data transactions outside the network is achieved with

the help of Exterior Gateway Protocol.

Interior Gateway Protocol is a generalized term for the protocols used inside a LAN.

As mentioned earlier, different protocols use different attributes, network information

2

and approaches to perform routing. Hence, there are two main classes of IGPs. DVRPs

make routing decisions based on the distance or hop count, hence named so. The dis-

tance from one router to the other is counted as one hop. For instance, if there exist

more than one path to the same destination, the path with less number of routers or

hops is preferred. These protocols don’t have full knowledge of network topology.

are commonly used DVRPs inside an AS. There exists two versions of RIP. The latter

version i.e. RIPv2 only differs, that it supports VLSM. EIGRP is Cisco’s proprietary

protocol with VLSM support for LAN routing. Due to interoperability issues, network

administrators avoid the deployment of proprietary protocols.

LSRPs are widely deployed in enterprise networks due to their enormous capacity of

handling larger networks. As compared to DVRPs they don’t just rely on hop count to

make routing decisions rather collect other metrics, such as reliability, bandwidth, delay

and path-cost to build their routing tables. Combining all these metrics enable them to

make efficient routing decisions. Open Shortest Path First(OSPF) is a LSRP which uses

Dijkstra algorithm for finding shortest path between two nodes. It is a non-proprietary

routing protocol that uses a number of advertisement and acknowledgment packets to

inform only its neighbors regarding routing information.

Exterior Gateway Protocols play their role when it comes to traversing of packets over

the internet or public network. Path Vector Routing Protocol is the only class of EGP.

Application Layer Protocols: Application Layer takes the seventh position in OSI

model. It is the only layer with which the humans can interact. There are tens of

application layer protocols which set the rules for software applications to communicate

or exchange the data with their peers or to avail the desired service. A few well known

application layer protocols are:HTTP/HTTPS, FTP, SMTP, TELNET, SSH, SNMP,

DHCP, DNS and others. Take an example of a user wants to access a specific web page.

To accomplish this task, the browser application at the back-end uses an HTTP/HTTPS

request message to fetch that content from the web server. Similarly, for remotely

accessing any device TELNET or SSH protocol is used. Email communication is setup

by SMTP, FTP facilitates transferring of files, SNMP is used to remotely manage the

3

nodes on a network. For dynamic allocation of ip addresses DHCP plays its role and

DNS to resolve domain names to ip addresses. The list is never ending, but the focus is

only on those application layer protocols which are made a part of routers and the need

for making them so.

TELNET, is a famous utility among network administrators to access different nodes

on network, which eases the task of making any configuration changes without being

physically there. SSH does the same but with added security. Both of these protcols

justify their place to be a part of any routing device because of the services they of-

fer. DHCP enabled routers makes it easier to allocate ip addresses to other hosts on

the network but it is not commonly practiced. HTTP/HTTPS are also implemented

in router OS to receive vendor specific updates. Simple Network Management Pro-

tocol(SNMP) helps to remotely manage the network devices, to check configurations,

current state of the device and any modifications due to topological changes. The clients

or agents can also be set to report the server if there happens any change. Network pro-

fessionals widely adopt SNMP for centralized management of routers and other devices

on the network. There are lots of other features offered by SNMP which are briefly dis-

cussed in Chapter No. 4

1.3 Attacks on Router

Routers are the core components of any packet-switching network. A security breach

or compromise of these devices may result in catastrophic situation. Routers can be

compromised either by DoS/DDoS attacks, gaining access and modifying their config-

urations, poisoning the routing table or flooding the bandwidth. All of these attacks can

be hit-and-run or persistent which are discussed below.

Denial of Service Attacks: DoS/DDoS attack is one of the common type of attack in

the wild. The prime objective of this attack is to put a device at halt in-order to prevent

it from entertaining any legitimate requests. Such an attack on router may result in

complete network jam for the subnets connected to it. The situation can be even worse

4

if the attack victim is border router or firewall.

Hit-and-Run Attacks: Hit-and-Run Attacks are referred to the type of attack in which

a single or few malformed packets result in compromise of a device. The attack may

also result in complete device crash or making certain service unavailable. Such attacks

require high level of expertise and thorough knowledge of the victim. Due to the same

reason, these attacks are harder to spot than DoS attack.

Persistent Attacks: Persistent Attacks are the ones in which an attacker gains unau-

thorized access to system or network and remains there undetected, for a long period.

The detection possibility of these attacks is much higher because for an attacker to

maintain access there is an ongoing stream of packets to analyze. These attacks can be

carried out through routing table poisoning or by leveraging the protocol implementa-

tion vulnerabilities.

Packet Mistreating Attacks: Packet Mistreating Attacks involve modification of ac-

tual data packets and then injecting them. These malformed packets introduce confu-

sion and result in mishandling or mistreating of legitimate packets by the router. Such

an attack is confined to a part of network and does not affect the whole network. The

outcome of such an attack may include DoS and network congestion.

Routing Table Poisoning: Routers make routing decisions with help of routes stored

in a database known as Routing Table. RTP attacks occur when an attacker injects

fake routes into a routing table. When these fake routes are cycled throughout the

network, the routing table of neighboring nodes also get affected. This series of events

have drastic impact on the network components and may result in suboptimal routing,

congestion, partition, overwhelmed host and unauthorized access to data.

Protocol Attacks: Protocol Attacks involve leveraging by design vulnerabilities and

injection of control protocol messages to attack routing protocols. Disruption of internal

communication is achieved when such an attack occurs. Most common examples are:

5

DNS Poisoning, Interior Routing Protocols Injections (OSPF and EIGRP Injections),

ARP Poisoning and BGP Hijacking.

1.4 Fuzz Testing

Fuzzing or Fuzz testing, a proven black-box testing technique which is used to find

known and unknown software vulnerabilities where a target is fed with fuzzed data to

process, and then monitored in parallel for any unexpected behavior [3] .The technique

is favorable for automated testing of the products for which the source code is not avail-

able such as Cisco IOS (Internetwork Operating System) which runs as a single binary

image and decompressed at boot-time only [4]. One of the main challenge of fuzz test-

ing is to generate efficient test cases which may produce reliable verdicts. Test cases

are normally constructed in one of the three fashions: totally random input, mutation

of existing data and generation of malformed data from scratch with prior knowledge

of target [3]. The latter approach is complex to implement but results in better code

coverage, hence yields fruitful result [5].

1.5 Motivation and Problem Statement

Routers are the core component of any digital network which primarily act as a gate-

way for any data to be travelled in or outside the network. Due to advancements in

technology there are multiple features being integrated into routers which turns it into a

complex device. With several vendors in the market and tens of protocols implemented

to aid respective services, manufacturers and developers often miss on considering the

security flaws that are embed in those devices at development phase due to flawed cod-

ing practices, complex architecture of protocols and improper testing. In current era

of cyberwar, these neglected flaws may aid hackers and across the border agencies and

enemies to carry out cyber-attacks such as network hijacking, data exfiltration, covert

monitoring, network sabotage and others. As earlier disclosed by Wikileaks in its Vault

7 series how CIA was in control of 318 different models of Cisco switches and routers

6

[6]. Therefore, there is greater need to develop and adopt effective testing techniques

which must be practiced prior to utilization of such products.

1.6 Aims and Objectives

1. To explore the effectiveness of Fuzzing technique for vulnerability analysis of

network protocols.

2. Evaluation of well-known fuzzing frameworks for uncovering router protocol

vulnerabilities.

3. To propose generalized fuzzing methodology for exposing known/unknown vul-

nerabilities of router protocols.

4. Practical validation of proposed methodology by targeting Simple Network Man-

agement Protocol (SNMP) in Cisco routers.

1.7 Thesis Contributions

This section enlists the major contributions of this thesis.

Fuzzing effectiveness for Network Protocols: Fuzzing technique in its current state

is thoroughly studied with the prime focus on measuring its effectiveness and feasibil-

ity to fuzz network Protocols. Evaluation of renowned Open Source fuzzing frame-

works(Peach, Spike, Kitty and Sulley) is performed based on certain metrics.

Generalized Methodology for Fuzzing Network Protocols: A generalized approach

is proposed to fuzz test network protocols after encountering a common limitation of-

fered by current open source fuzzing tools. The approach utilizes a free-ware network

traffic sniffer: Wireshark and a binary editor to mutate the protocol fields.

7

Fuzz testing Cisco router: The proposed methodology is adopted to fuzz test Cisco

router by emulating the real-world Cisco IOS in Dynamips. SNMP with all its three ver-

sions is tested. Several memory corruption and a known DoS vulnerability is exposed

during the test process.

1.8 Thesis Organization

This research document is divided into six chapters. Following is the summary of each

chapter.

• Chapter 1: This chapter includes introduction to topic, brief explanation of net-

work protocols and their attacks, research aims and objectives. It also highlights

contributions of this research.

• Chapter 2: Comprehensive literature review of the topic is covered in this chap-

ter. Fuzzing in its current state and its different approaches proposed over the

time are touched. Also, survey of the potential risk carried by Cisco routers and

their exploitation methods presented by different researchers are discussed.

• Chapter 3: This chapter contains detailed insight of the Fuzzing technique and

its different types. Various open-source fuzzers with their purpose are discussed.

Evaluation of open source network protocol fuzzing frameworks is the dominant

excerpt of this chapter.

• Chapter 4: The chapter elaborates our target protocol i.e. SNMP, its all three ver-

sions with detailed working and also the analysis of potential vulnerable points in

SNMP to fuzz efficiently. To the date reported SNMP vulnerabilities of different

vendors are also analyzed in scope of their exploitation possibility through fuzz

testing.

• Chapter 5: This chapter includes the proposed methodology for fuzzing net-

work protocols, fuzzing experiments, obtained results and exploitation of SNMP

vulnerabilities in Cisco routers.

8

• Chapter 6: Concludes this research and proposes future directions.

9

Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter contains comprehensive review of fuzzing and different techniques adopted

to maximize its efficiency. Fuzzing applicability for network protocols and challenges

in path of fuzzing complex protocol with their existing solutions are discussed. Later

in the chapter, cisco router exploitation methods proposed by different authors and the

recent researches for fuzzing Cisco routers are reviewed.

2.2 Fuzzing - A software vulnerability testing technique

This section includes compact review of fuzzing origin, evolution of fuzz testing tech-

niques over the time, its different approaches, areas of application and potential protocol

vulnerabilities exposed with the aid of fuzzing.

Fuzzing is a dynamic software vulnerability testing technique which can effectively be

used for hunting bugs in network protocols as well. Barton Miller developed the first

ever fuzzer for robustness testing of UNIX utilities which used random input mutations

[7]. The main challenge of fuzz testing is the generation of input test cases which may

produce reliable verdicts. There exist three approaches for generating test cases: Ran-

dom, mutation-based and generation based. The generation-based approach is proven

to be more effective and time saving but requires handful knowledge of the target [8].

10

Over the time different test case generation techniques have been introduced to fuzzing

for improving its efficiency which includes Grammar Representation, Scheduling Al-

gorithms, Dynamic Symbolic Exectuion, Coverage Feedback and Dynamic Taint Anal-

ysis. Apart from evolution of test case generation techniques, modern day fuzzers are

also featured to monitor the targets, restart the target if a crash occurs, log test-cases

which produced exception and provide summary at the end of fuzzing session.

2.3 Network Protocols Fuzzing

Fuzzing as an automated testing technique for finding bugs and vulnerabilities has also

been widely adopted for testing network protocols to ensure reliable communication.

2.3.1 Stateful Protocol Fuzzing

When it comes to fuzzing network protocols there exist several challenges which are

needed to be addressed and overcome in order to develop an effective fuzzer. Complex

protcols are usually comprised of different protocol states. SNOOZE: a stateful net-

work protcol fuzzer was developed in [9]. Session Initiation Protocol(SIP) was tested

with initial prototype of SNOOZE and successfully exposed several real-world vulner-

abilities. PULSAR [10] is another stateful protocol fuzzer which is able to fuzz generic

as well as proprietary protocols. The proprietary protocol fuzzing by PULSAR is per-

formed by inferring a protocol model from captured protocol traces. Several known

and unknown vulnerabilities were exposed while testing OSCAR, a proprietary proto-

col implemented in many instant messengers.

2.3.2 Checksum Aware and Encrypted Protocol Fuzzing

Network Protocols usually contain fields which keep on updating such as checksums

and hashes. An intelligent fuzzer should incorporate such features for in depth testing

of complex protocols. In [11] a checksum aware fuzzing tool named TaintScope was

developed by incorporating dynamic taint analysis and symbolic execution techniques.

11

Evaluation was done on real world applications which included Adobe Acrobat, Google

Picasa, Microsoft Paint, ImageMagick and exposed 27 unknown vulnerabilities. Simi-

lary for encrypted protcols, a light-weight, yet effective technique is proposed in [12].

IKE(Internet Key Exchange) protocol was tested and found two new vulnerabilities.

2.3.3 Wireless Fuzzing

Fuzzing can also be performed for security testing of wireless protocols. Laurent Butti

at Black Hat Europe(2007) made a practical demonstration of fuzzing 802.11 (wi-fi)

and revealed several unknown vulnerabilities [13]. A case study of fuzzing Bluetooth,

Wi-fi and WiMAX technologies is performed in [14] with aim of exploring their imple-

mentation vulnerabilities.

2.3.4 AutoFuzz: Automated Network Protocol Fuzzing

Serge Gorbunov and Arnold Rosenbloom introduced an open source automated network

protocol fuzzing tool named AutoFuzz [15]. The tool works by adopting man-in-the-

middle approach and captures the traffic between client and server. Autofuzz learns

a protocol implementation by constructing a Finite State Machine(FSM). The authors

were able to discover all known and few unknown vulnerabilities in a variety of FTP

server implementations. The major limitation of this tool is its ability to fuzz only

text-based protocols such as FTP, SMTP and HTTP.

2.3.5 Application Layer Protocol Fuzzing

Fuzzer developement of application layer protocolos is quite usual among security re-

searchers because it is the only layer with which humans directly interact. In [16] TFTP

fuzzer was developed and tested on a number of windows based TFTP applications. A

number of open source HTTP, SMTP and FTP fuzzers are available in the wild but cur-

rently there exist no open source fuzzing tool which can fuzz complex binary protocols.

12

2.4 Cisco Router Exploitation and Fuzzing

This section focuses on different methods and techniques suggested by security pro-

fessional for exploiting Cisco routers and also includes to the date literature review of

fuzzing for router vulnerability mining.

In the last ten years or so, methods for discovering vulnerability and similar study on

routers have been advancing rapidly, and most research focuses on Cisco router. Felix

Linder from Phenoelit examines various Cisco IOS vulnerabilities and different ex-

ploitation techniques [17]. Michael Lynn proposed a technique which showed how to

completely hijack an IOS-based router, with the help of buffer overflow or a heap over-

flow, two types of memory vulnerabilities [18]. Gyan Chawdhary and Varun Uppal

proposed a method which shows how to write shell codes with GNU debugger and de-

bug Cisco IOS, which makes router attack feasible [19]. Sebastian Muniz and Alfredo

Ortega presented a tool which facilitates debugging and reverse engineering process of

Cisco IOS by allowing the integration with widely used debugging and disassembler

tools such as GDB and IDA Pro [23]. The tool is basically modification of original dy-

namips version. This research utilizes the same tool for IOS emulation and debugging

purpose.

Fuzzing applicability on routers is not much explored. There exists only few researches

for mining router vulnerabilities through fuzzing. In [24] an ICMP fuzzer was devel-

oped and validated on cisco router which resulted in successful disclosure of buffer

overflow vulnerability. The test-cases were generated by adopting SFTCG(Simple

Fuzzing Test Case Generation) approach. RPFuzzer [25], a closed source fuzzer for dis-

covering protocol vulnerabilities in routers was developed. TFTCG(Two Stage Fuzzing

Test Case Generation) method was adopted for creating malformed inputs. SNMP pro-

tocol in Cisco router was targeted for practical validation and claimed to uncover four

known and two unknown vulnerabilities across all three versions of protocol.

The major limitation of above two researches is: the tools are not made open source

which leaves a question mark on their practical validation by research community.

13

2.5 Conclusion

This chapter highlights the most effective fuzz testing tools and frameworks proposed

for performing implementation test of network protocols. It can be concluded from

existing researches that fuzzing can be handy in finding unknown flaws in network pro-

tocol implementations. But specific to the routers, researches only focus on how to ex-

ploit them instead of automated discovery of zero-day vulnerabilities. A lot of research

is still needed to be done for implementation testing of complex network protocols.

14

Chapter 3

Fuzzing and Evaluation of Network

Protocol Fuzzing Tools

3.1 Introduction

This chapter is one of the vital pieces of this research because the whole work revolves

around the technique being explained in this chapter. At first the basic idea of fuzzing

is described with its different types. The fuzzing engine, its different parts which make

up an actual fuzzer and also the techniques adopted to improve fuzzing efficiency are

briefly explained. Later in the chapter, an evaluation of network protocol fuzzing tools

is also performed based on some metrics which may aid the penetration testers and QA

assurance professionals to choose the right tools as per their skills and requirements.

3.2 Fuzzing

Fuzzing is an automated testing technique for exposing potential vulnerabilities in soft-

ware or network protocol by intentionally feeding malformed data to system under test

(SUT). The technique involves from sending totally random data to specifically crafted

packets which can effectively discover flaws in the code.

In other words, the prime purpose of fuzz testing is to reveal security critical flaws

15

which may result in service degradation, denial of service, or other anomalous behavior.

During fuzz testing, the main focus is to find such inputs which can trigger unexpected

behavior. Combining randomness and protocol knowledge coupled with certain degree

of automation may yield fruitful results with low labor cost. As compared to manual

testing, such attempts may expose promising flaws.

The first ever fuzzer was developed by Barton Miller in 1989 for robustness testing of

UNIX utilities[7]. The provoking incident behind the concept of fuzz testing was line

noise induced in author‘s cable modem during a storm. The randomness introduced by

noise caused the program to crash. This observed behavior was later termed as ‘fuzz’.

Currently, fuzz testing is adopted by computer security analysts to expose and report

bugs, by Quality Assurance professionals to enhance the quality of their software prod-

ucts and by hackers to uncover and exploit the hidden flaws. Fuzz testing is also adopted

by renown software companies in their development lifecycle of softwares[26] to come

up with better products.

3.2.1 Types Of Fuzzing

The three basic types of Fuzzing are differentiated as below:

White-box Fuzzing: The source code of the target is known to the analyst in white-

box fuzzing. Fuzz testing of applications developed in-house and open source applica-

tions comes under umbrella of white-box fuzzing.

Grey-box Fuzzing: Grey-box fuzzing is performed on targets for which the source

code is not available. Testing is done by injecting binary/assembly code using a de-

bugger and monitored in parallel. Most of the vendor developed softwares are closed

source, this is what fuzzing is mainly focused at.

Black-box Fuzzing: In black-box fuzzing, the testing is performed by randomly send-

ing the input to the target because no source code or information about the target is

16

available.

3.2.2 Test-case Generation Approaches

One of the challenging task in process of finding vulnerabilities through fuzzing is

generation of test-cases. In-order to produce reliable and meaningful verdicts, test cases

can be generated in one of the following two fashions:

Mutation Based: In mutation based fuzzing test cases are generated by mutating

fields of already available data samples or packet traces.

Generation Based: Test cases are generated from scratch by modeling target protocol

or file format with the help of RFCs or available documentation.

Research proves, the latter approach to be more efficient in finding loopholes, but

its more complex to implement as it requires complete knowledge of the target [27].

Fuzzers are also differentiated based on their test-cases generation approach (i.e. Mu-

tation based, or Generation based fuzzers)

3.2.3 Structure of a Fuzzer

Moder day fuzzers do not just focus completely on techniques for generating test-cases.

Fuzzers nowdays are equipped with several features such as automation, reporting, fail-

ure analysis and others.

Protocol Modeler: To incorporate the ability of modeling various data types, mes-

sage formats and protocol messages, protocol modeler is used. The trivial models are

based on templates, on the contrary complex models can make use of context-free gram-

mars.

Anomaly Library: It is the collection of inputs known for triggering the vulnerabili-

ties in software. Modern day fuzzers include this feature to expose existing vulnerabil-

17

ities.

Attack Simulation Engine: Utilizes existing anomalous data heuristics or learns from

them. The heuristics available in the tool coupled with randomness are applied to form

malformed test cases for fuzz test.

Runtime Analysis Engine: Performs monitoring of target during fuzz test. Several

methods can be utilized to interact with the target under test.

Reporting: The testing results are needed to be presented in a meaningful way, which

can help identify the exact loopholes. Few tools do not facilitate report while others

perform complex bug reporting.

Figure 3.1: Generic Fuzzer model

3.2.4 Fuzzing Process

A common process of fuzz test comprises stream of messages (requests and responses)

which are sent to the target. The resulting modifications and unexpected behavior can

then further analyze or can be completely ignored as shown in Figure 3.2. Following

are the responses of a typical fuzz test:

Valid response: A normal behaviour.

Error response: (Can be a legit reply from protocol point of view).

18

Anomalous response: (unexpected behavior but not critical).

Crash or other failure: Due to unexpected input or memory corruption.

Fuzzing is way more than just sending and receiving messages. Generation of test cases

is first done and then sent to the target. Target is constantly under monitoring during the

test.

Figure 3.2: Example fuzz test cases and resulting responses from an SUT [28]

3.3 State of the Art Fuzzing Tools

A number of fuzzing tools have been developed for a wide range of protocols and

different scopes. Over 300 tools are available in the wild which aid fuzz testing of

different targets [29]. Fuzzer can be divided into two types: fuzzing frameworks and

fuzzers which target specific protocols. Fuzzing frameworks facilitate fuzzer develop-

ment. Peach, Spike and Kitty are well known examples of network protocol fuzzing

19

frameworks.

3.4 Types of Fuzzers

Fuzzers are mainly differentiated based on the type of target they can fuzz. Following

are the main classes of fuzzers.

3.4.1 File Format Fuzzers

Every application both server or client, deal with input and output file. For example,

antivirus gateways often need to parse com-pressed files to diagnose what lies within

them. Another example is an office productivity suite that needs to open a document.

Such applications can be susceptible to vulnerabilities that occur when parsing mali-

ciously crafted files.

This is where file format fuzzing comes in. A file format fuzzer will dynamically create

different malformed files that are then launched using the target application. Although

the specific methods used in file fuzzing are not exactly the same as other types of

fuzzing, the general idea is the same.

3.4.2 Remote Fuzzers

Softwares that listens on a network interface can be target through remote fuzzers.

Network-enabled applications are likely the most targeted fuzzing target. With the

growth of Internet, virtually all corporations now have publicly accessible servers to

deliver Web pages, e-mail, Domain Name System (DNS) resolution, and so on. Such

vulnerability could provide an attacker with access to confidential data or a launch pad

to carry out further attacks.

20

3.4.3 Network Protocol Fuzzers

Network protocol fuzzers can be broken into two major categories: those that target

simple protocols and those designed for complex protocols. Following definitions dif-

ferentiate between each type.

Simple Network Protocols: Simple network protocols mostly contain simple authen-

tication or no authentication at all. They are often based on ASCII printable text as

opposed to binary data. A simple protocol will not contain length or checksum fields.

Additionally, there are typically not many states within the application.

An example of a simple protocol is FTP. In FTP, all control channel communications

are in plain ASCII text. For authentication, only a plain text user-name and a password

is required.

Complex protocols: Complex network protocols are typically comprised of binary

data with the occasional human-readable ASCII string. Authentication might require

encryption or some form of obfuscation and there might be several complex states in-

volved.

As in this research, the targeted protocol i.e. SNMP is a good example of a complex

protocol despite the name “Simple Network Management Protocol”. SNMP is a binary

protocol. The protocol requires length description fields and fragmentation, encryp-

tion and authentication (SNMPV3). Overall, it is not a fun protocol to implement for

fuzzing.

3.4.4 Web Application Fuzzers

Web applications have become popular as a convenient way to access back-end ser-

vices such as e-mail and bill paying. With the advent of Web 2.0, traditional desktop

applications such as word processing are moving to the Web.

When fuzzing Web applications, the researcher is primarily looking for vulnerabilities

unique to Web applications such as SQL injection, Cross Site Scripting (XSS), and so

21

on. This necessitates fuzzers capable of communicating via Hypertext Transfer Pro-

tocol (HTTP) and capturing responses for further analysis to identify the existence of

vulnerabilities.

3.5 Well-Known Fuzzing Tools

A number of renowned fuzzing tools are listed in below table . The table also contains

the type of target they can fuzz and the nature of the product i.e. Open/closed-source.

22

Fuzzing Tools Target Open/ Closed Source
QuickFuzz

File Open Source

American Fuzzy Loop (AFL)
BFF
FOE
go-Fuzz
OFuzz
Radamsa
Backfuzz

Protocol Open Source

Dizzy
Spike
Sulley
Pulsar
Netzob
Kitty
Peach Protocol Closed Source
beStorm Protocol+File Closed Source+Paid
Wfuzz

Web Open SourceFilebuster
Rfuzz
TriforceAFL

OS Open Source
Passive Fuzz Framework OSX
Syzkaller

OS Kernel Open SOurce
Kernel Fuzzer
Trinity
IOCTL
Wadi

Browser Open SourceGrinder
NodeFuzz
LibFuzzer Library Open Source
Csmith

Compiler Open Source
LangFuzz
Syntribos API Open Source
KEMU Fuzzer Visual Machine Open Source
Diffy Service Open Source
Dranzer ActiveX Open Source
Js-Fuzz Java Script Open Source
PyJFuzz JSON data Open Source
Nightmare

Distributed Open Source
BrundleFuzz
FuzzFlow
ClusterFuzz
Regex-Fuzzer Regular Expressions Open Source

Table 3.2: Well-Known Fuzzing Tools.

23

3.6 Comparison of Network Protocol Fuzzers

Since the objective of this thesis is mainly to test network protocols through fuzzing

technique, a comprehensive comparison of few well-known network protocol fuzzers

is performed in-order to make it easier for the readers to get an insight of the features

of each tool and help penetration testers to pick up the right tool for fuzzing network

protocols based on their skill set and distinguished features of fuzzers.

Fuzzers Comparison Factors: Factors and criteria are derived based on the require-

ments of target user: A software developer or penetration tester with little experience of

security testing beforehand, no financial assistance for security testing and a little time

to acquaint himself with the tool, and with the objective of hunting at least most triv-

ial security loopholes of already implemented or custom network protocols. The three

factors are Ease of Use, Practical Features of the Fuzzer and Fuzzing Intelligence.

Criterion for each of the factors is mapped with description in the following tables:

1. Ease of Use

Ease of use criteria Description
Executable availability Ready to install executable or needed to compile?
Documentation Readme or PDF document about components and

usage of the tool with trivial examples.
Tool Assistance Yes
Environmental requirements Platform independent or OS/hardware limitations?

Table 3.4: Criterion for Ease-of-Use of the Fuzzer

24

2. Practical features of the Fuzzer

Practical features criteria Description
Automation Support Support for automation of test runs?
Target Monitoring Built-in support for monitoring the target during the

test available or not?
Customization Options for tool customization?

Table 3.6: Criterion for Practical features of the Fuzzer

3. Fuzzing Intelligence

Fuzzing intelligence criteria Description
Test data generation options Totally random, data mutation or generation of data

from scratch.
Fuzzing heuristics utilization Yes
Data modeling complexity Feasibility to perform generation-based fuzzing.

Table 3.8: Criterion for Fuzzing Intelligence

3.6.1 Selected Fuzzers

Selection of the fuzzers to be compared was made as an exploratory research using most

dominant search engine, Google and on the experience gained during the experimen-

tal phase of this thesis for implementing or testing the widely adopted SNMP proto-

col. Since the research focus is on network protocols, therefore only network protocol

fuzzers and fuzzing frameworks which allow to build own fuzzer are selected. Based on

their popularity and search engine results, the selected contenders for network protocol

fuzzers comparison are: Peach, Spike, Kitty and Sulley.

3.6.2 Individual Evaluation of Network Protocol Fuzzers

The tools are first evaluated independently based on above mentioned three factors

25

PEACH: Peach is a cross-platform smart fuzzing framework capable of performing

both generation and mutation-based fuzzing. The framework lets you develop your own

file and network protocol fuzzers. Peach has been under active development for seven

years and is in its third major version, actively developed by Michael Eddington of Deja

vu Security. Initial version was written in Python, later moved on to Microsoft .NET

Framework, primarily C#.

Criteria and possible advantages of Peach:

Ease of Use Possible advantage
Executable availability Yes(Binaries). Source code is available for previous

versions which are buggy.
Documentation Yes. Comprehensive documentation with tutorials.
Tool Assistance Yes.
Environmental prerequisites Cross-platform i.e. runs under Windows, Mac OS-

X and Linux.
Practical Features of Fuzzer Possible Advantage
Automation Support Yes. Multiple fields mutation.
Target Monitoring Yes, through agents which can be run locally or re-

motely.
Customization Yes.
Other features Fuzzer is extensible, Distributed Fuzzing, Error log-

ging
Fuzzing Intelligence Possible Advantage
Test data generation options All three approaches available i.e. Random, muta-

tion, data-modeling.
Fuzzing heuristics utilization Yes. Both smart and random mutations are in-

cluded.
Data modeling complexity Fairly easy. XML editor is used to create Pitfiles

which contain all the information needed for Peach
to perform fuzzing.

Table 3.10: Evaluation of Peach Fuzzer

KITTY: Kitty is an open-source modular and extensible fuzzing framework written

in python by Cisco SAS team. Just like Peach, Kitty is a fuzzing framework which

includes common functionality of every fuzzing process required to write your own

fuzzer. It doesnâĂŹt contain implementation of specific protocol or communication

26

channel but provides a baseline for developing custom protocol fuzzers.

27

Criteria and possible advantages of Kitty:

Ease of Use Possible advantage
Executable availability Yes. Source code is available.
Documentation Yes. Comprehensive documentation with few ex-

amples.
Tool Assistance Yes.
Environmental prerequisites Cross-platform i.e. runs under Windows, Mac OS-

X and Linux.
Practical Features of Fuzzer Possible Advantage
Automation Support Yes. Multiple fields mutation.
Target Monitoring Yes, through agents which can be run locally or re-

motely.
Customization Yes.
Other features Stateful fuzzing, fuzzer is extensible, error-logging
Fuzzing Intelligence Possible Advantage
Test data generation options All three approaches available i.e. Random, muta-

tion, data-modeling.
Fuzzing heuristics utilization Yes. Both smart and random mutaions are included.
Data modeling complexity Moderate. Requires good knowledge of Python and

its associated libraries.

Table 3.12: Evaluation of Kitty Fuzzer

SULLEY: Sulley is a python based fuzzing framework that can be used to fuzz file

formats, network protocols, command line arguments, and other codes.

Criteria and possible advantages of Sulley:

28

Ease of Use Possible advantage
Executable availability Yes. Source code is available. Lots of dependencies

are required for installation.
Documentation Yes. Comprehensive documentation with no exam-

ples.
Tool Assistance Through Mail. No active development.
Environmental requirements Cross-platform i.e. runs under Windows, and Linux

only.
Practical Features of Fuzzer Possible Advantage
Automation Support Yes.
Target Monitoring Yes, through agents.
Customization Yes.
Other features Stateful fuzzing, fuzzer is extensible, error logging,

Parallel fuzzing.
Fuzzing Intelligence Possible Advantage
Test data generation options All three approaches available i.e. Random, muta-

tion, data-modeling.
Fuzzing heuristics utilization Yes. Both smart and random mutaions are included.
Data modeling complexity Moderate. Requires good knowledge of Python and

its associated libraries.

Table 3.14: Evaluation of Sulley Fuzzer

SPIKE: Spike is one of the basic and pioneer fuzzer creation kit, providing an API

that allows a user to create their own fuzzers for network-based protocols using the C

programming language.

Criteria and possible advantages of Spike:

Ease of Use Possible advantage
Executable availability Yes. Source code is available.
Documentation Poorly documented.
Tool Assistance Through Mail. No active development.
Environmental requirements Linux only.
Practical Features of Fuzzer Possible Advantage
Automation Support Yes.
Target Monitoring No.
Customization Yes.
Other features Very basic fuzzer but extensible.
Fuzzing Intelligence Possible Advantage
Test data generation options All three approaches available i.e. Random, mu-

tation, data-modeling.
Fuzzing heuristics utilization Yes. Both smart and random mutaions are in-

cluded
Data modeling complexity Moderate. Requires good knowledge of C lan-

guage and its associated libraries.

Table 3.16: Evaluation of Spike Fuzzer

3.6.3 Fuzzers Evaluation Summary and Common Drawback

The above thorough evaluation of fuzzing tools may help an individual to opt for the

right fuzzer which may suit their skills and requirements. After analyzing the above

tables, one will choose the Peach fuzzer due to its rich features,ease of use and simple

data modeling approach. Kitty is also suggested because it was specially designed for

protocol fuzzing, have active team members available on IRC (one may reach anytime.).

But there is one common disadvantage shared by all the above fuzzers including the

ones which are not even mentioned. None of them have built in support for binary pro-

tocols. They have built in support for only text-based protocols i.e. the protocols for

29

which the data or packets are transmitted in human readable form (ASCII characters).

Examples of text-based protocols are FTP ,SMTP and HTTP. Perhaps due to same rea-

son Peach has its commercial version of fuzzer which lets one to fuzz binary as well as

plain-text protocols.

Due to the same mutual drawback no fuzzing tool is used to fuzz the target protocol i.e.

SNMP with these tools and had to adopt manual packet mutations for testing the target

protocol (SNMP). Details for which can be found in subsequent chapters.

3.7 Fuzzing Limitations

Fuzzing has limitation in types of vulnerabilities it can find. Following are the vulnera-

bilities which typically go undiscovered by a fuzzer.

Access Control Flaws: Some applications have privilege layers to support multi ac-

counts. Consider a software which has read only rights for normal user while read/write

rights for administrator. While fuzzing such software there is no way for the fuzzer to

detect that at some point during fuzzing it has got administrator privileges due to access

control flaw. Because fuzzers are not aware of the logic of the software.

Implementing logic-aware functionality into the fuzzer is plausible.

Poor Design Logic: Fuzzers are also not the best tools for identifying poor design

logic. Consider a software that has a database to store users information. If there

exist no authentication mechanism for accessing the database, this is a security flaw by

software design logic. There is no way for the fuzzers to detect such design logic flaws.

Back-doors: For a fuzzer with limited or no knowledge of target application logic, a

back-door is seen no different. While fuzzing, there is no way for the fuzzer to identify

if there is backdoor embed in the target software like hard-coded passwords, any data

ex-filtration mechanism or others.

But if one think the other way, Fuzzing is also famous for uncovering the zero-days. It

30

is efficient in finding DoS, buffer overflow, integer overflow, coding flaws which might

have been made a part of an application intentionally to be exploited at later stage. It can

be concluded that due to ability of fuzzing for finding only certain flaws, the technique

might not be able to explore some specific back-doors but not all.

Multistage Vulnerabilities Exploitation is not always as simple as attacking a single

weakness. Fuzzing might be useful for identifying the individual flaws but not generally

be valuable for chaining together a series of minor vulnerabilities to identify multi-

vector attack.

3.8 Conclusion

In light of advantages and limitations offered by fuzzing, it can be concluded that the

said technique can be fruitful for automated discovery of unknown flaws in network

protocols. But, based on the evaluation of open-source network protocol fuzzing tools

performed in this chapter, they lack several features for fuzzing a complex target. Im-

provements in the existing tools are still required to make them feasible utility for re-

searchers to fuzz test network protocol target.

31

Chapter 4

SNMP Vulnerabilities Exploitation

through Fuzzing

4.1 Introduction

This chapter is all about SNMP and its vulnerabilities. At first SNMP protocol is com-

prehensively explained covering all three versions, SNMP architecture, its operational

model and components, internals of SNMP packets etc. Later in the chapter SNMP is

analyzed from security point of view to uncover its by design vulnerabilities and poten-

tially weak areas in SNMP packets. Cisco, Juniper, Huawei products specific SNMP

vulnerabilities are also discussed and their feasibility to be explored through fuzzing is

also inspected.

The chapter is of great importance as it will help to design test cases for fuzzing SNMP

and also the performed analysis will aid to narrow down the scope of exploring the

vulnerabilities which are exploitable through fuzzing.

4.2 Simple Network Management Protocol (SNMP)

Modern networks are larger in size, robust in processing and more advance than their

predecessors. Networks become more complex and difficult to manage as they expand,

32

speed up and enhance. To manage such huge and complicated network infrastructure

there is an immense need for decent network management technologies which may en-

able centralized, robust and reliable management and monitoring of the network. Sim-

ple Network Management Protocol (SNMP) is an Internet Standard protocol which al-

lows to organize and gather information from managed devices on TCP/IP networks and

modification of that information to remotely change device behavior. SNMP operates

at application layer of OSI model and takes advantage of UDP port 161 and 162 (trap

messages) for transmission and reception of SNMP messages. Three major versions

of SNMP have been developed and deployed so far with SNMPv1 being the original

version of protocol. Latest versions include SNMPv2c (c stands for “community”) and

SNMPv3 with improvements in features, performance and security.

4.2.1 SNMP Versions

SNMP version developed in 1988 is the “Old Faithful” SNMP version which was

widely adopted. Despite several revisions introduced to the initial standards and ad-

ditional MIB modules incorporated over time, but for several years the base technology

remained unchanged.

As with the passage of time and advancement in technology and growing attack vector

of cyber threats, SNMPv1 was labelled as insecure by its users. By design “trivial”

(as RFC 3410 defines) authentication scheme used by SNMP version 1 called as a

“community string” [34]. Community string is a field in a SNMP packet which enables

the agent or manager to authenticate if the request is from valid user or not. Another

drawback which makes SNMPv1 more vulnerable is transmission of packets involving

no encryption. An insider may obtain community string by sniffing the packets and can

later impersonate as administrator which may lead to retrieval of sensitive information

and configuration modification of managed network devices.

In-order to add more features and to overcome above mentioned security issues SNMP

version 2 was published in April 1993 with the idea of party-based security, documented

in RFCS 1441 through 1452. This feedback and confusion lead to the advent of vari-

33

ants of SNMPv2. There came SNMPv1.5, SNMPv2c (Community-Based SNMPv2),

SNMPv2u (User-Based SNMPv2) but none of the variant was universally adopted.

To return the universality of SNMP and to resolve the outstanding issues a work be-

gan in 1996. SNMP version 3 was introduced in 1998, incorporated with significant

enhancements in previous versions of SNMP and received universal acceptance.

The latest version of SNMP is SNMPv3 which is still under active revisions. The

dominant change in SNMPv3 is a more organized and robust way of handling various

security approaches to SNMP. SNMPv3 adopts SNMPv2 PDU (Protocol Data Unit)

message format and protocol operations. The protocol is enriched with distinguished

security methods such as encryption and authentication.

4.2.2 Basic Terms and Components of SNMP

There are few basic terminologies which must be explained in-order to grasp operational

working of SNMP.

Managed Nodes: Regular or conventional TCP/IP devices which can be managed

through SNMP.

SNMP Agent: A piece of software resides on managed devices for implementing

SNMP. It allows to share manageable information with NMS and receive instructions

from it.

Network Management Station (NMS): A dedicated node on a network equipped

with particular software which permits to manage the SNMP enabled entities.

SNMP Manager: It is a software implementation of SNMP protocol, which enables

the NMS to instruct and obtain information from SNMP enabled agents.

SNMP Manager, SNMP Agent, SNMP Application, MIB comes under a single um-

brella and are called as SNMP entities. Figure 4.1 illustrates a simple SNMP operational

34

Model.

Figure 4.1: SNMP Operation Model [31]

4.2.3 SNMP Messages and Protocol Data Units (PDUs)

Like any other network protocol, the information flow in SNMP protocol is carried

out by exchanging SNMP packets. The term SNMP PDUs is also referred for SNMP

packets because it uses UDP.

Six different PDUs were initially defined for SNMPv1. The introduction of new fea-

tures and changes in SNMPv2 and SNMPv3 expanded the count of PDUs. Table 4.2

shows the main SNMP PDUs with respect to their versions.

GetRequest: A request made by manager to an agent for obtaining value of variable

or variables list.

35

SetRequest: A request by manager to change variable value or list of variables in an

agent.

GetNextRequest: A request by manager to find out the available variable and their

values.

GetBulkRequest: A manager initiated request for various iterations of GetNextRe-

quest.

Response: Manager initiated requests such as GetRequest, GetNextRequest, SetRe-

quest, InformRequest and GetBulkRequest are entertained by agent through response

messages. For error reporting, error-index and error-status fields are used.

Trap: Asynchronous alert by an agent to a manager.

InformRequest: Acknowledged asynchronous notification.

36

SNMP PDU
Classes

Description SNMPv1
PDUs

SNMPv2/
SNMPv3
PDUS

Port

Read To perform
management
information
retrieval

GetRequest-
PDU, Get-
Next-Request-
PDU

Get-Request-
PDU, Get-
Next-Request-
PDU, Get-
Bulk-Request-
PDU

UDP (161)

Write To modify
management
informa-
tion(effects
device‘s
operation)

SetRequest-
PDU

Get-Request-
PDU, Get-
Next-Request-
PDU, Get-
Bulk-Request-
PDU

UDP (161)

Response Packet sent in
response of re-
quest

GetResponse-
PDU

Response-
PDU

UDP

Notification Packet sent
to SNMP
manager
containing
interrupt-like
alert

Trap-PDU Trapv2-PDU,
InformRequest-
PDU

UDP (162)

Table 4.2: SNMP PDU types and Classes

4.2.4 SNMP Architecture

In an SNMP architecture, there are two prominent entities (Manager and Agent) and

two channels for communication (UDP port 161 and 162). The following figure shows

communication flow between a Manager and an Agent and the ports they use depending

on type of PDUs.

37

Figure 4.2: Simplified SNMP architecture

4.2.5 General SNMP Message Format

An SNMP packet has two major fields, SNMP message and SNMP PDU. It is important

to know the difference between these interchangeably used terms because these are not

the same. SNMP PDU is contained within an SNMP message which also has message

header. The following figure illustrate general SNMPv1 message format.

Figure 4.3: SNMP Message Format [31]

38

Version number identifies the SNMP version while community string field in the mes-

sage header is used for authentication.

PDU Control Fields: Communication between two SNMP enable entities is done

with PDU Control Fields. It also describe SNMP PDU.

PDU Variable Bindings: Variable bindings field in SNMP PDU describes MIB ob-

ject.

All the fields, except SNMP version number field which is 32-bit fixed value, are vari-

able in size. Version number=0 in the above message indicates SNMPv1. Number of

fields and their sizes may vary from version to version due to more features and added

security.

4.3 Factors Behind Choosing SNMP as Target Protocol

As discussed in the earlier chapters that our target for fuzz testing a network protocol in

routers is SNMP with all three versions. There are certain factors for which the protocol

has been chosen as our test target which are discussed below.

SNMP is renown protocol for managing individual and network devices in IP networks.

Due to this fact, there are various implementations and abundant of installation across

different vendor products of it. Although, if SNMP is not enabled inside a network,

there is fair chance of its presence in individual devices operating on default configura-

tions.

SNMP enabled devices can be of greater concern for network infrastructure. Because a

simple DoS attack against these devices may have serious threats to network availabil-

ity. Therefore, uncovering and fixing flaws in protocol implementation should be taken

seriously.

Flaws in decoding unexpected BER encoding fields can be critical because they may

lead to conditions where access control mechanism such as authentication becomes

39

useless. Since, parsing of the packets takes place before authentication.

4.4 SNMP vulnerabilities by Design

Apart from product or vendor specific vulnerabilities which will be discussed later, there

exist some by design vulnerabilities of SNMP which are as under.

SNMP uses UDP on port 161 which is connectionless protocol. No prior setup is re-

quired by SNMP agents and trap-aware NMS to accept incoming requests and traps.

This makes it a feasible target for packet injection attacks [32].

For first two versions i.e. SNMPv1 and SNMPv2c, community string which is used for

authentication is being sent in plain-text with each SNMP packet.

Connectionless communication makes it vulnerable to brute force attack. An attacker

can keep guessing the community string by spoofing the Ip-address.

The above vulnerabilities favor impersonation attack: An attacker may act as NMS and

can retrieve sensitive information from Agent devices.

ASN.1 (Abstract Syntax Notation 1) with BER (Basic Encoding Rule) is the required

encoding scheme for SNMP PDUs, which also has some vulnerable points in it (dis-

cussed later in detail).

4.5 Analysis of Vulnerable fields in SNMP

The below mentioned vulnerable areas in SNMP are analyzed manually and empiri-

cally. Fuzzing is not able to find certain vulnerabilities, such as poor design logic,

access control flaws, backdoors and multistage vulnerabilities [3]. For this reason, we

just consider the vulnerabilities that Fuzzing can find. In accordance with the analysis

on historical vulnerabilities and the SNMP protocol, there are five types of vulnerable

points on SNMP.

40

ASN.1 BER parse: ASN.1 with BER is the required scheme by SNMP for encoding

its PDUs. In BER rules, possible vulnerable points are invalid encodings, including in-

valid types, abnormal lengths and malformed values [33]. An invalid type/length/value

encoding means replacing right encodings with malformed encodings. For example, the

encoding of Integer is 0x02, we can replace it with 0x04(OCET String) or 0x05(NULL).

Integer overflow: Integer overflow is caused by malformed Integer values includ-

ing boundary value, large Integer number and other values than Integer, besides, the

transformation from signed Integer value to unsigned may lead to anomaly. E.g. large

Integer number 256+1 or (-256)-1 is likely to cause Integer overflow. Although Integer

overflow never happened on SNMP before, it is indispensable for Fuzzing test.

Buffer overflow: Buffer overflow is caused by incorrect input strings, which include

long character strings and format character strings. For SNMP, vulnerable points about

buffer overflow could be the field Variable-Bindings according to historical statistics.

So, we can test this field with zero-length Object Identifier (OID), overlong single or

multiple format character strings, overlong OIDs with many branches.

Empty UDP packets: Empty packets include empty UDP packets, empty IP packets,

and empty SNMP packets. The data of above packets can be tested with 0x00. There

are a lot of vulnerabilities caused by empty packets. Such as CVE-2001-0566, its root

cause is to send an empty packet to port 161(SNMP).

A large number of packets: Sending abundant packets to routers could allow attack-

ers to launch denial of service or gain privileges, such as CVE-2002-0012 and CVE-

2002-0013. This is a significant cause for denial of service attack. Hence, we should

test routers with a large number of all kinds of SNMP packets.

41

4.6 Products Specific SNMP Vulnerabilities

The following tables will list down the SNMP vulnerabilities specific to Cisco, Juniper

and Huawei products and their possibility of exploitation through fuzzing. The CVE

(Common Vulnerability Exposure) data has been take from NVD’s (National Vulnera-

bility Database) official website [2].

Note: Comments and exploitability chances of vulnerabilities listed in the below table

are based upon the knowledge acquired about Fuzzing during this thesis work. Not

all but few vulnerabilities of Cisco products are exploited practically (results and

methodology can be found in subsequent chapter).

42

Cisco Products Specific SNMP Vulnerabilities Analysis

No. CVE ID Vulnerability

Type

Score Exploitability

through Fuzzing

Comments

01 CVE-2018-0329 +Info 5.0 Yes. By fuzzing

the community

string field only.

03 CVE-2018-0161 DoS 6.3 Yes. By fuzzing

OID (Object

Identifier Field)

04 CVE-2018-0160 DoS 6.3 Yes, but not rec-

ommended.

Credentials

required.

05 CVE-2017-12278 DoS 5.2 Yes. Credentials

required.

06 CVE-2017-12211 Mild DoS 6.3 Yes. By Polling

IPv6 info.

07 CVE-2017-6783 +Info 4.0 No.

08 CVE-2017-6744

to 6736

Execution

code over-

flow

9.0 Yes. Fuzzing

is good at find-

ing buffer over-

flow vulnerabili-

ties

Credentials

required

09 CVE-2017-6615 DoS 6.3 Maybe. By

fuzzing OID field

Under

certain

conditions.

10 CVE-2017-3820 DoS 6.8 Maybe Not enough

information

available

43

11 CVE-2016-6366 Execution

Code over-

flow

8.5 Yes. Fuzzing

is good at find-

ing buffer over-

flow vulnerabili-

ties

12 CVE-2016-1473 +Info 10.0 No. Fuzzing

cannot iden-

tify hardcoded

passwords/strings

13 CVE-2016-1452 Integrity 6.4 No.

14 CVE-2016-1432 Dos 6.8 No.

15 CVE-2016-1428 Dos 6.8 Yes.

16 CVE-2016-1333 Dos 6.8 Yes. By Fuzzing

OID field for un-

specified Bridge

MIBs

17 CVE-2015-6308 Dos 4.0 Yes. By Fuzzing

OID field that

doesnâĂŹt exist

18 CVE-2015-6260 Dos 7.8 Yes

19 CVE-2015-4238 DoS 6.8 Yes. By perform-

ing stress testing

through fuzzing

20 CVE-2015-4204 DoS 6.8 No.

21 CVE-2015-0687 DoS 6.3 Yes.

22 CVE-2015-0686 DoS 6.3 No.

23 CVE-2015-0661 DoS 4.0 Yes.

24 CVE-2015-0617 DoS 5.0 Yes.

25 CVE-2014-3377 DoS 4.0 Yes.

44

26 CVE-2014-3341 +Info 5.0 No.

27 CVE-2014-3269 DoS 6.8 Yes. By frequent

fuzzing

28 CVE-2014-2103 DoS 6.8 Maybe. Not Enough

information

available.

29 CVE-2013-6700 DoS 5.0 Yes. By Fuzzing

OID field for un-

specified MIB.

30 CVE-2013-1217 DoS over-

flow

6.8 Yes. By frequent

Fuzzing

31 CVE-2013-1216 DoS +Info 4.0 Yes.

32 CVE-2013-1204 DoS 5.0 Yes. By sending

UDP on port 162

33 CVE-2013-1180 Execution

Code over-

flow

9.0 Yes. Only over-

flow can be

caused through

Fuzzing.

34 CVE-2013-1179 Execution

Code over-

flow

9.0 Yes. Only over-

flow can be

caused through

Fuzzing

35 CVE-2013-1105 Auth. Bypass 9.0 No.

36 CVE-2012-5030 DoS 6.8 Yes. Can be

exploited through

legit input.

37 CVE-2012-1365 DoS 4.0 Yes.

38 CVE-2011-4023 DoS 7.8 Maybe.

39 CVE-2010-2982 +Info 7.1 No.

40 CVE-2010-2976 +Info 10.0 No.

45

41 CVE-2010-1574 +Info 10.0 No.

42 CVE-2009-0625 DoS 7.8 Yes.

43 CVE-2009-0624 DoS 6.8 Yes.

44 CVE-2008-3807 +Info 9.3 No.

45 CVE-2008-1746 DoS 7.8 Yes.

46 CVE-2007-2036 +Info 10.0 No. Hardcoded

strings are

not detected

by Fuzzing

47 CVE-2007-1257 Code Execu-

tion

10.0 No.

48 CVE-2007-0967 DoS 7.8 Maybe. Not enough

information

available.

49 CVE-2006-4950 +Info 10.0 No.

50 CVE-2005-3803 +Info 5.0 No. Hardcoded

strings are

not detected

by Fuzzing

51 CVE-2005-0612 DoS 7.5 No. Hardcoded

strings are

not detected

by Fuzzing

52 CVE-2004-1434 DoS 5.0 Yes.

53 CVE-2004-0714 DoS Memory

Corruption

5.0 Yes.

54 CVE-2003-1003 DoS 7.8 Yes.

55 CVE-2003-1002 DoS 5.0 Yes.

46

56 CVE-2002-1555 +Info 6.8 No. Hardcoded

strings are

not detected

by Fuzzing.

57 CVE-2002-0013

CVE-2002-0012

DoS 5.0 Yes.

58 CVE-2001-0711 DoS 5.0 No.

59 CVE-2001-0566 DoS 5.0 Yes

60 CVE-2000-0955 +Priv 7.5 No.

Table 4.3: Cisco Products Specific SNMP Vulnerabilities

The above listed vulnerabilities are across different Cisco products such as Routers,

Switches, IP-Phones, Firewalls and ASAs. There is no software available which can

emulate all these devices. Thus, it is impossible to test all of them in scope of fuzzing.

The comments and probability of exploitation remarks for these vulnerabilities are made

keeping in view the ability and limitations of fuzzing. Not all, but few of the above

vulnerabilities have been exposed through fuzzing in chapter 5.

Juniper Products Specific SNMP Vulnerabilities Analysis

No. CVE ID Vulnerability

Type

Score Exploitability

through Fuzzing

Comments

01 CVE-2018-0019 DoS 4.3 Maybe. Not enough

information

available

02 CVE-2017-

10611

DoS 4.3 No. Not enough

information

available.

47

03 CVE-2017-2345 DoS Code

Execution

7.5 No. Not enough

information

available.

04 CVE-2009-3487 XSS 3.5 Yes. Cross-site

Scripting

vulnerabilities

can be spotted

by Fuzzing

05 CVE-2008-0960 Bypass 10.0 No. Fuzzing in no

way can de-

tect authenti-

cation bypass.

Table 4.4: Juniper Products Specific SNMP Vulnerabilities

Huawei Products Specific SNMP Vulnerabilities Analysis

No. CVE ID Vulnerability

Type

Score Exploitability

through Fuzzing

Comments

01 CVE-2013-4613 DoS over-

flow

7.8 Yes

02 CVE-2012-3268 +Info 8.5 No.

Table 4.5: Huawei Products Specific SNMP Vulnerabilities

In comparison to Cisco, Juniper and Huawei products specific SNMP vulnerabilities

are quite few in number. The reason being Cisco is the first and leading network device

manufacturer in market. Also, their products are extensively deployed under different

environmental conditions which result in exposure of these vulnerabilities. For the same

reason and due to availability of Cisco emulator we chose Cisco as our target product

for fuzzing.

48

4.7 Conclusion

The significance and extensive usage of SNMP protocol in digital network infrastruc-

ture makes it one of the most sought after target by attackers. To make it zero-day

prone, fuzzing can be utilized to discover unknown flaws by targeting vulnerable fields

in SNMP protocol as identified in this chapter. Our analysis of existing SNMP vulner-

abilities exploitation in scope of fuzzing for renown vendor products shows that these

vulnerabilities could have been exposed prior to deployment if careful fuzz testing had

been performed.

49

Chapter 5

Experimental Results

5.1 Introduction

This chapter initially discusses the methodology adopted to carry out fuzz testing of

all three versions of SNMP. All the steps involved in fuzz testing are briefly explained

with the tools and their usage. Afterwards, experimental setup and the step-by-step

procedure of testing process with visual graphics is demonstrated. Later part of this

chapter consist of the results and vulnerabilities exposed during this whole process of

testing.

5.2 Methodology of Experiments

The methodology adopted to perform fuzz testing of SNMP protocol in Cisco router is

straight forward. The target router is first configured with SNMP protocol and then fed

with the malformed test cases, generated by mutating the vulnerable fields in SNMP

packets. The target is monitored in parallel for any exceptions. In case of an exception,

the test-case resulted in anomalous behavior marked as malicious and further analysis

is carried out with the help of attached debugger. If the target device crash, router is

rebooted manually. The technical explanation of each step-followed to perform testing

is elaborated in later sections along with the tools used.

50

5.3 Flowchart

Below is the flowchart of the methodology followed to perform fuzz testing of SNMP

in Cisco router.

Start

Generate
Test cases

Send test
cases to
router

Exception? stop

Reboot target if
required

End
Debug and
Store Test

case

no

yes

Figure 5.1: Methodology flow chart

51

5.3.1 Generation of Test-Cases

As discussed in chapter 4, SNMP is a complex protocol as compared to other plain-

text protocols such as FTP, SMTP and TFTP. SNMP uses ASN.1 Basic Encoding

Rules(BER).The available open-source fuzzing tools are not equipped with BER en-

coder and decoder thus, prevent SNMP fuzzing. Due to this drawback mutation based

fuzzing is adopted i.e first capturing handful of legit SNMP messages and then mutating

the vulnerable fields identified in section 4.5.

5.3.2 Test-Cases Injection

Following the generation of test-cases the next step is injection of test case to the target.

For this purpose an existing UDP injector tool is utilized, which was developed by

researchers at University of OULU in Finland while testing SNMPv1 implementation

across different products [35]. The tool is fully automated i.e. it reads the malformed

test cases from database and sends them to specified ip address.

Rest of the steps pictured in flow chart can be well understood by going through imple-

mentation process in subsequent sections.

5.4 Tools and Utilities

Wireshark: Wireshark is utilized for capturing SNMP traffic and extracting applica-

tion layer data from sniffed packets.

Dynamips: Dynamips is an emulator computer program that was written by Christophe

Fillot to emulate Cisco routers. It can run on FreeBSD, Linux, Mac OS X or Windows.

Dynamips emulates Cisco routing series hardware which allows booting of actual Cisco

IOS. Cisco router platforms that can be emulated with Dynamips are 1700, 2600, 2691,

3600, 3725, 3745 and 7200.

A modified version of Dynamips proposed in [4] is used which allows to attach external

52

debugger such as GDB or IDA-Pro.

SNMP MIB Browser: SNMP MIB Browser is specifically utilized as SNMP server

i.e. generates snmp queries to SNMP agent in Cisco router. Those queries and their

replies from agent router were sniffed with wireshark which aided in collection of le-

gitimate SNMP packets.

Hex Editor: Hex editor is a binary editor which allows editing of byte level data.

Mutations in SNMP packets is performed using this tool.

Protos UDP Packet Injector: The packet injection is performed with Protos tool. It

was developed by Oulu University Secure Programming Group (OUSPG), Finland dur-

ing security testing of different applications and protocols. It is a command line utility

with different switches available to perform extended function. The tool is developed

in java.

Scapy: Scapy is an open-source Python based tool, developed for manipulating data

packets. It can be used to craft and decode packets, transmit, capture, and match replies

and requests.

5.5 Experimental Setup

The fuzzing experiments are carried out on Intel Core-i5 machine with Windows 10 as

host operating system. Ubuntu 16.04 LTS and Kali Linux (2017 release) are installed

on virtual machines, created with VMware workstation. Host and the guest machines

are connected via virtual switch in VMware, having same network address.

Wireshark, SNMP MIB Browser, Hex Editor and Protos UDP Injector are installed in

Windows 10 while modified version of Dynamips in Ubuntu 16.04 LTS to emulate our

target router. The purpose of Kali Linux is to utilize built-in version of Scapy in it. The

topology of experimental setup is shown in below figure.

53

Figure 5.2: Topology of Experimental Setup

5.6 Fuzzing SNMP in Cisco Router

This section dives into the technical details on how fuzz testing of SNMP implementa-

tion in Cisco router is performed.

5.6.1 Capturing SNMP Traffic and Test-Cases Generation

As mentioned earlier that mutation based fuzz testing approach is adopted to fuzz the

target, for this legitimate SNMP traffic is required. All types of SNMP PDUs exchanged

between SNMP MIB Browser(acting as SNMP server) and SNMP agent(configured in

Cisco 2600 series router) are first captured with wireshark as shown in below figure.

54

Figure 5.3: SNMP traffic capture with wireshark

The above snapshot shows capture of SNMP version 2c PDUs. Same procedure is

followed for capturing SNMP-v1 and SNMP-v3 traffic.

After traffic capture, application layer data i.e. SNMP bytes are extracted from captured

packets of each type. Wireshark offers this feature of extracting the data for any of the

layers. The extracted data packets are saved as binary file i.e. in .bin format. Binary

data packets are then opened with Hex editor to perform desired byte level mutations.

In order to perform intelligent mutation potential vulnerable fields analyzed in section

4.5 are targeted. For identification of the same vulnerable fields in binary data, ASN.1

BER chart (shown in below Table) along with byte level highlighting feature of wire-

shark is used.

55

Primitive ASN.1 Types Identifier in Hex
Integer 02
Bit String 03
Octet String 04
Null 05
Object Identifier 06
Constructed ASN.1 Type Identifier in Hex
Sequence 30
Primitive SNMP Application Types Identifier in Hex
Ip Address 40
Counter (Counter 32 in SNMPv2) 41
Guage (Guage 32 in SNMPv2) 42
Time Ticks 43
Opaque 44
NaapAddress 45
Counter64 (only in SNMPv2) 46
Uinteger32 (only in SNMPv2) 47
Context-Specific Types within an SNMP Message Identifier in Hex
GetRequest-PDU A0
GetNextRequest-PDU A1
GetResponse-PDU A2
SetRequest-PDU A3
Trap-PDU A4
GetBulkRequest-PDU A5
InformRequest-PDU A6
SNMPv2-Trap-PDU A7

Table 5.2: ASN.1 with BER

An example of SNMP Get-Request PDU with fields highlighted by referring the above

chart is shown in below figure.

56

Figure 5.4: SNMP PDU encoding and packet fields identified

It can be clearly seen in above figure that every SNMP field has some encoding byte

before it. These encoding bytes are as per ASN.1 Basic Encoding Rules(shown in

Figure 5.5). Every field is represented in TLV (Type, Length, Value) format.

5.6.2 Target Prepration

Before starting actual fuzzing process, it is to be made sure that the target is up and

debugger is successfully attached. The below figure shows that the target is up, gdb

server is listening on port:4321 and thread is activated.

57

Figure 5.5: GDB server thread activated

5.6.3 Injection of Test-Cases to Target

Once the malformed test cases are generated and target is ready, the next step towards

fuzzing is injection of test-cases.For feeding malformed packets, Protos UDP Packet

Injection tool is used. The below figure shows injection of packets through Protos tool.

Figure 5.6: Test Cases injection with Protos UDP Injector

58

5.6.4 Target Monitoring

The System Under Test must be monitored in parallel with fuzzing process to identify

any anomalous behavior or a device crash. One way to check if the target still alive is to

continuously ping the target. To verify the proper working of the target protocol, Protos

has the feature of sending zero-test-case, which can be thought of as an SNMP ping.

5.7 Testing Results

The procedure described in previous section is adopted to carry out fuzzing of all three

versions of SNMP in cisco routers. There are almost 60 vulnerabilities reported to the

date for SNMP across all Cisco devices. Due to software and hardware limitations it is

not possible to test all these vulnerabilities in scope of fuzzing. The target router details

are mentioned in below table.

Target Cisco Router
IOS version 12.10 & 15.2
Platforms C2600 & C7200
Tested Protocol SNMP
Adapter tap device
GDB Port 4321

Table 5.4: Target Details

All experiments were carried out on Cisco C2600 and C7200 series routers by emulating

these platforms in Dynamips. Tap device is used to bind router interface with Ubuntu’s

ethernet interface.

5.7.1 Memory Corruption Vulnerability

Memory corruption refers to type of vulnerability in computer system when its mem-

ory is altered without explicit assignment. Programming errors result in modification of

memory contents which enables arbitrary code execution. Memory corruption vulnera-

59

bilities are severe in nature because they may result in program crash causing denial of

service or complete compromise of a device through remote code execution.

During the fuzzing experiments Protos test cases for SNMP-v1 are used. The same test

cases are referred to test SNMP-V2c. Because, the packet structure of SNMP-V1 and

V2c is similar except some additional PDUs , same vulnerabilities were reproduced

as in SNMP-v1 testing on Cisco router. The following figures show test cases which

caused memory corruption during SNMP-V1 and SNMP-V2c testing.

Figure 5.7: Test-case-1 caused memory corruption

The packet is of total 178 bytes out of which 129 bytes field (highlighted) is the fuzzed

OID field of SNMP version-2 packet.

60

Figure 5.8: Test-case-2 caused memory corruption

Packet size 675 bytes with 629 bytes of fuzzed OID field.

Figure 5.9: Test-case-3 caused memory corruption

Packet size of 1315 bytes with 1270 bytes of fuzzed OID field.

61

Figure 5.10: Test-case-4 caused memory corruption

Packet size of 1321 bytes with 1273 bytes of fuzzed OID field.

Figure 5.11: Test-case-5 caused memory corruption

The above test case is formed by manipulating the encoding bits which, when injected,

also produced router crash. It can be inferred from the results that memory corruption

can be caused by fuzzing SNMP fields as well as encoding bits.

62

Figure 5.12: Router Console: Memory Corruption Error

The output at router console when each of the above test-cases injected is shown in

above figure.

5.7.2 Denial of Service vulnerabilities

Empty UDP Packets: As stated in CVE-2001-0566 and CVE-2001-1097 , when

empty UDP packets i.e UDP packets with no payload are sent on port 161(SNMP) re-

sults in DoS or Mild DoS for IOS version series 12. For exposing the same vulnerability

Scapy is used to generate and send large number of UDP packets to Cisco 2600 router

with IOS version 12.10 which resulted in Mild-DoS.

Mild-DoS is a variation of DoS in which the victim device CPU utilization is less than

100% but equal or greater than 60%. The unusual CPU utilization causes device to

go unresponsive for certain periods in time. The below figures show the generation of

empty UDP packets through scapy and corresponding CPU utilization.

63

Figure 5.13: Empty UDP packets generation with Scapy

Figure 5.14: CPU utilization: C2600 router

A large number of SNMP Requests As stated in CVE-2002-0013 that: A large num-

ber of GetRequest, SetRequest, GetNextRequest, GetBulk Request (SNMPv1) requests

cause denial of service. In order to test this vulnerability we generated and sent these

packets through Scapy but could not encounter DoS condition except CPU utilization

around 30-40%. Packet generation and CPU utilization are shown in below figure.

64

Figure 5.15: Large Number of SNMP requests generation with Scapy

Figure 5.16: CPU utilization for large number of requests

5.7.3 SNMPv3 Fuzzing

SNMPv3 offers three different modes in terms of security i.e. Authentication only,

Authentication + Data Privacy or No Authentication + No Data Privacy. As discussed

earlier in Chapter.No.2 protocols with such features are a real challenge for a fuzzing

task. Because these fields are dynamic.

In order to test SNMPv3 implementation No-Authentication + No-Privacy mode is

used. The packets were first generated and captured then manual mutations were per-

65

formed with HexEditor. Several malformed test-cases are generated with long strings

of OID field but could not find any flaw in Cisco router(c7200) with IOS version 15.2.

The snapshot of malformed sample is shown in below figure.

Figure 5.17: SNMPv3 Malformed test-case

5.8 Conclusion

In this chapter, fuzz testing on all three versions of SNMP is performed. It demonstrates

how malformed test-cases can be generated through legitimate traffic and the injection

process as well. By following the said methodology several memory corruption vulner-

abilities in SNMPv1 and SNMPv2 are exposed. An existing Mild-DoS vulnerability is

also exposed while fuzzing SNMPv1 with empty UDP packets.

66

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In modern world of rapid technology evolution, the concentrations and energies of

the manufacturers and developers are highly directed towards bringing new and effi-

cient equipment which usually results in negligence of proper security testing of their

products. In a globally connected network infrastructure, the devices such as routers,

switches and servers which form critical part of any network are at greater risk. There-

fore, proper security testing of these devices is a topmost concern. Techniques and

procedures are needed to be adopted which not only ensure that these devices are not

prone to existing vulnerabilities but to the zero-days as well.

Fuzzing, an automated software testing technique, is renowned for finding known and

unknown flaws. For its ability to find zero-days, we tried to explore this technique for

finding vulnerabilities in protocol implementations in Cisco routers.

6.1.1 Network Protocol Fuzzers Evaluation

While choosing an open-source network protocol fuzzer to test Simple Network Man-

agement Protocol(SNMP) in Cisco routers a major mutual drawback was encountered.

The available open-source fuzzers lack the fuzzing ability for complex protocols. Al-

though, commercial fuzzing solutions are available for complex protocol fuzzing but

67

the cost of those products is a major barrier for research community. To ease the task of

choosing suitable fuzzer for the researchers in future, a comparison of famous network

protocol fuzzing tools on the basis of certain criteria is performed in chapter 3.

6.1.2 Products Specific SNMP Vulnerabilities Analysis

Along with fuzzers comparison, analysis of to the date reported SNMP vulnerabilities

in major network equipment manufacturers: Cisco, Juniper and Huawei is carried out.

Based on the details provided by National Vulnerability Database(NVD) [2] for those

vulnerabilities, an analysis for the probability of their exploitation in scope of fuzzing

is performed.

6.1.3 SNMP Fuzzing

SNMP falls under the category of complex protocols. Due to same reason none of the

available open source network protocol fuzzing frameworks are found useful to per-

form fuzz testing of SNMP. Therefore, a simple yet effective methodology is adopted

by utilizing free of cost available tools as demonstrated in chapter 5. All three versions

of SNMP protocol are tested. Several memory corruption vulnerabilities are exposed

in Cisco C2600 router with IOS version 12.10. A known Mil-DoS vulnerability is also

encountered when empty UDP packets injected to the target router. SNMPv3 imple-

mentation is found flawless.

6.2 Limitations

Although the proposed methodology is simple and can be adopted to fuzz any of the

standard protocol. There comes some limitations with it. The manual mutations to

generate malformed test cases is the major limitation. Moreover, it also does not cater

the encrypted protocols and the protocols with dynamically changing packet fields such

as checksum and hashes. For the same reason fuzz testing of SNMPv3 is done in no-

authorization and no-privacy mode.

68

6.3 Future Work

For future work the proposed approach can be extended for fuzz testing of any other

UDP based protocols. Another step forward can be to find the possibility of carrying

out remote-code execution for the memory corruption vulnerabilities exposed in the

experiments.

Extending open source fuzzing frameworks for fuzz testing complex protocols can also

be a huge contribution to research community.

69

List of Abbreviations and Symbols

Abbreviations

AS Autonomous System

ISP Internet Service Provider

IGP Interior Gateway Protocol

DVRP Distance Vector Routing Protocol

RIP Routing Information Protocol

VLSM Variable Length Subnet Mask

EGP Exterior Gateway Protocol

BGP Border Gateway Protocol

SSH Secure Shell

DHCP Dynamic Host Control Protocol

DNS Domain Name Service

SNMP Simple Network Management Protocol

SMTP Simple Mail Transfer Protocol

IOS Internetwork Operating System

SIP Session Initiation Protocol

70

OSCAR Open System for Communication in Realtime

SUT System Under Test

71

References

[1] Group, S.R. Cisco‘s Dominant Share of Switching and Routers Holds Steady.

[Accessed 24 Dec 2017]https://www.srgresearch.com/articles/ciscos-dominant-

share-switching-routersholds-steady.

[2] NVD. http://nvd.nist.gov/

[3] M. Sutton, A. Greene, and P. Amini, “Fuzzing: Brute Force Vulnerability Dis-

covery,”Pearson Education, 2007.

[4] S. Muniz and A. Ortega. Fuzzing and debugging Cisco IOS. Barcelona, Spain,

2011.

[5] MILLER, C., AND PETERSON, Z. N. J. “Analysis of Mutation and Generation-

Based Fuzzing.”Tech. rep., Independent Security Evaluators, Mar. 2007.

[6] https://arstechnica.com/information-technology/2017/03/a-simple-command-

allows-the-cia-to-commandeer-318-models-of-cisco-switches/

[7] Bryan So Barton P. Miller Lars Fredriksen. An Empirical Study of the Reliability

of UNIX Utilities. Tech. rep. University of Wisconsin-Madison, Dec. 1990.

[8] MILLER, C., AND PETERSON, Z. N. J. “Analysis of Mutation and Generation-

Based Fuzzing.”Tech. rep., Independent Security Evaluators, Mar. 2007.

[9] Banks, Greg, et al. “SNOOZE: toward a Stateful NetwOrk prOtocol

fuzZEr.”International Conference on Information Security. Springer, Berlin, Hei-

delberg, 2006.

72

[10] Gascon, Hugo, et al. “Pulsar: Stateful black-box fuzzing of proprietary network

protocols.”International Conference on Security and Privacy in Communication

Systems. Springer, Cham, 2015.

[11] Wang, Tielei, et al. “TaintScope: A checksum-aware directed fuzzing tool for au-

tomatic software vulnerability detection.”Security and privacy (SP), 2010 IEEE

symposium on. IEEE, 2010.

[12] Tsankov, Petar, Mohammad Torabi Dashti, and David Basin. “SECFUZZ: Fuzz-

testing security protocols.”Proceedings of the 7th International Workshop on Au-

tomation of Software Test. IEEE Press, 2012.

[13] Butti, Laurent. “Wi-Fi advanced fuzzing.”Black Hat Europe (2007).

[14] Petajasoja, Sami, et al. “Case Studies from Fuzzing Bluetooth, WiFi and

WiMAX.”ISSE/SECURE 2007 Securing Electronic Business Processes. Vieweg,

2007. 188-195.

[15] Gorbunov, Serge, and Arnold Rosenbloom. “Autofuzz: Automated network pro-

tocol fuzzing framework.”IJCSNS 10.8 (2010): 239.

[16] LIU, Qi-xu, and Yu-qing ZHANG. “TFTP Vulnerability Exploiting Technique

Based on Fuzzing [J].”Computer Engineering 20 (2007): 051.

[17] Felix Lindner, “Cisco vulnerabilities-yesterday, today and tomorrow,”in Proc. of

BlackHat, Virginia, USA, September 29-October 2, 2007

[18] M. Lynn, “The holy grail: Cisco IOS shellcode and exploitation techniques,”in

Proc. of BlackHat, Las Vegas, USA. July, 2005

[19] Gyan Chawdhary and Varun Uppal, “Cisco IOS shellcode,”in Proc. of BlackHat,

Las Vecas, USA, August, 2008.

[20] Felix Linder, “Cisco IOS attack and defense the state of art,”in Proc. of 25th

Chaos Communication Congress (25C3), Berlin, Germany, December, 2009.

73

[21] Felix Linder, “Cisco IOS router exploitation,”in BlackHat, Las Vecas, USA, July,

2009.

[22] A. Cui, J. Kataria and S.J. Stolfo, “Killing the myth of Cisco IOS diversity,”in

Proc. of USENIX Worshop on Offensive Technologies, San Francisco, CA, USA,

August, 2011.

[23] S. Muniz and A. Ortega, “Fuzzing and debugging Cisco IOS,”in Proc. of Black-

Hat, Barcelona, Spain, March, 2011.

[24] Li, Fengjiao, Luyong Zhang, and Dianjun Chen. "Vulnerability mining of Cisco

router based on fuzzing." Systems and Informatics (ICSAI), 2014 2nd Interna-

tional Conference on. IEEE, 2014.

[25] Wang, Zhiqiang, Yuqing Zhang, and Qixu Liu. "RPFuzzer: A Framework for

Discovering Router Protocols Vulnerabilities Based on Fuzzing." KSII Transac-

tions on Internet and Information Systems 7.8 (2013).

[26] Microsoft.com. Microsoft Security Development Life Cycle. Feb. 2012. url:

http://www.microsoft.com/security/sdl/discover/verification.asp.

[27] Zachary N. J. Peterson Charlie Miller. Analysis of Mutation and Generation-

Based Fuzzing. Tech. rep. ISE Independent Security Evaluators, 2007.

[28] Takanen A, Demott JD, Miller C. Fuzzing for software security testing and qual-

ity assurance. Artech House; 2008.

[29] softscheck.com. Fuzzelarbeit - Identifizierung unbekannter Sicher-

heitsluecken und Softwarefehler durch Fuzzing. Mar. 2012. url:

http://www.softscheck.com/publications/ProfDrHartmutPohl_Identifizierung

_unbekannter_Sicherheitsluecken_und_SoftwareFehler_durch_Fuzzing_kes20115.pdf.

[30] Mauro, Douglas, and Kevin Schmidt. Essential SNMP: Help for System and

Network Administrators. " O’Reilly Media, Inc.", 2005.

[31] Kozierok, Charles M. The TCP/IP guide: a comprehensive, illustrated Internet

protocols reference. No Starch Press, 2005

74

[32] Jiang, G., 2002. Multiple vulnerabilities in SNMP. Computer, 35(4), pp.supl2-

supl4.

[33] O.Tal, S.Knight and T.Dean, âĂIJSyntax-based vulnerability testing of frame-

based network protocols,âĂİ in Proc. of 2nd Annual Conference on Privacy, Se-

curity and Trust, pages 155âĂŞ160. Citeseer, 2004.

[34] Case, J., R. Mundy, D. Partain, and B. Stewart. “Introduction and Applicability

Statements for Internet-Standard Management Framework - RFC 3410.” Internet

Engineering Task Force (2002).

[35] https://www.ee.oulu.fi/roles/ouspg/PROTOS_Test-Suite_c06-snmpv1

75

	Main Title
	THESIS ACCEPTANCE CERTIFICATE
	Declaration
	Declaration
	Declaration
	Copyright Notice
	Abstract
	Contents
	INTRODUCTION
	Introduction
	Network Protocols
	Attacks on Router
	Fuzz Testing
	Motivation and Problem Statement
	Aims and Objectives
	Thesis Contributions
	Thesis Organization

	LITERATURE REVIEW
	Introduction
	Fuzzing - A software vulnerability testing technique
	Network Protocols Fuzzing
	Stateful Protocol Fuzzing
	Checksum Aware and Encrypted Protocol Fuzzing
	Wireless Fuzzing
	AutoFuzz: Automated Network Protocol Fuzzing
	Application Layer Protocol Fuzzing

	Cisco Router Exploitation and Fuzzing
	Conclusion

	Fuzzing and Evaluation of Network Protocol Fuzzing Tools
	Introduction
	Fuzzing
	Types Of Fuzzing
	Test-case Generation Approaches
	Structure of a Fuzzer
	Fuzzing Process

	State of the Art Fuzzing Tools
	Types of Fuzzers
	File Format Fuzzers
	Remote Fuzzers
	Network Protocol Fuzzers
	Web Application Fuzzers

	Well-Known Fuzzing Tools
	Comparison of Network Protocol Fuzzers
	Selected Fuzzers
	Individual Evaluation of Network Protocol Fuzzers
	Fuzzers Evaluation Summary and Common Drawback

	Fuzzing Limitations
	Conclusion

	SNMP Vulnerabilities Exploitation through Fuzzing
	Introduction
	Simple Network Management Protocol (SNMP)
	SNMP Versions
	Basic Terms and Components of SNMP
	SNMP Messages and Protocol Data Units (PDUs)
	SNMP Architecture
	General SNMP Message Format

	Factors Behind Choosing SNMP as Target Protocol
	SNMP vulnerabilities by Design
	Analysis of Vulnerable fields in SNMP
	Products Specific SNMP Vulnerabilities
	Conclusion

	Experimental Results
	Introduction
	Methodology of Experiments
	Flowchart
	Generation of Test-Cases
	Test-Cases Injection

	Tools and Utilities
	Experimental Setup
	Fuzzing SNMP in Cisco Router
	Capturing SNMP Traffic and Test-Cases Generation
	Target Prepration
	Injection of Test-Cases to Target
	Target Monitoring

	Testing Results
	Memory Corruption Vulnerability
	Denial of Service vulnerabilities
	SNMPv3 Fuzzing

	Conclusion

	Conclusion and Future Work
	Conclusion
	Network Protocol Fuzzers Evaluation
	Products Specific SNMP Vulnerabilities Analysis
	SNMP Fuzzing

	Limitations
	Future Work

	References

