
Android Application Collusion Attacks

Analysis

By

Hafiz Muhammad Arslan Maqsood

A thesis submitted to the faculty of Information Security
Department, Military College of Signals, National

University of Sciences and Technology, Rawalpindi in
partial fulfilment of the requirements for the degree of MS

in Information Security

December 2018

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Hafiz Muhammad Arslan Maqsood

Registration No. 00000199401, of Military College of Signals has been vetted by un-

dersigned, found complete in all respect as per NUST Statutes/Regulations, is free of

plagiarism, errors and mistakes and is accepted as partial, fulfillment for award of MS

degree. It is further certified that necessary amendments as pointed out by GEC mem-

bers of the scholar have been also incorporated in the said thesis.

Signature: ____________________________

Name of Supervisor:____________________

Date: ________________________________

Signature (HOD):______________________

Date: _____________________________

Signature (Dean/Principal):_______________

Date: _____________________________

i

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere

ii

Dedication

This thesis is dedicated to MY FAMILY, TEACHERS AND FRIENDS for their love,

endless support and encouragement

iii

Acknowledgement

I would like to convey my gratitude to my supervisor, Maj (R) Muhammad Faisal Am-

jad, PhD, for his supervision and constant support. His invaluable help of constructive

comments and suggestions throughout the experimental and thesis work are major con-

tributions to the success of this research. Also, I would thank my committee members;

Asst Prof Mian Muhammad Waseem Iqbal and Lect Madam Narmeen Shafqat for their

support.

I am thankful to my colleagues Lt Cdr Kaleem Ullah PN, Maj Shahid Rafiq, Mr. Asad

Mehdi, Mr. M Abdul Rahman and Mr. Adeel Shah who helped me out during my thesis

work.

iv

Copyright Notice

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with in-

structions given by the author and lodged in the Library of MCS, NUST. Details

may be obtained by the Librarian. This page must form part of any such copies

made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in MCS, NUST, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission

of MCS, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of MCS, NUST, Islamabad.

v

Abstract

Android applications can bypass current security model of Android OS, when working

together which is said to be application collusion. Android has no special check for in-

ter application communication. These capabilities can easily go unnoticed because only

individual application's permissions are shown. To overcome this weakness we devel-

oped a mechanism which can detect intent based inter-application data flow and found

if there is any collusion between applications. Our main focus is to detect data flow be-

tween applications and also extracts data which is being sent between applications. We

develop a tool, IADF Analyzer, which tells us which applications are sending data to

each other. After getting this information, we manually check if receiving application

has permissions to receive that data. As a proof of concept, we analyse a potentially

vulnerable application i.e. Sieve developed by MWRSecurity [15]. While analyzing

real world application from Google Play store we found one activity of GroupMe ap-

plication is prone to privacy leakage. IADF Analyzer can be used by developers and

security analysts while developing or analysing applications, respectively.

vi

Contents

1 Introduction 1

1.1 Application Fundamentals . 2

1.2 Application Components . 3

1.2.1 Activity . 3

1.3 The Manifest File . 3

1.4 Android Security Model . 4

1.4.1 Permissions . 4

1.4.2 Inter Component Communication Channels 5

1.5 Problem Statement . 6

1.6 Methodology . 6

1.7 Thesis Contribution . 7

1.8 Thesis Outline . 7

2 Literature Review 9

2.1 SEALANT . 9

vii

2.1.1 Analzer . 10

2.1.2 Interceptor . 10

2.1.3 Limitations . 11

2.2 ComDroid . 11

2.3 PermissionFlow . 12

2.4 FUSE . 12

2.5 IccTA . 13

3 Methodology 14

3.1 Overview . 14

3.2 Dependencies . 15

3.2.1 Dex2jar . 15

3.3 Flow Chart . 16

3.4 Reverse Engineering APK Flow Chart 17

3.5 Manifest Extractor . 18

3.6 Intent Data Extractor . 19

4 Analysis of SIEVE using DROZER 20

4.1 SIEVE . 20

4.2 DROZER . 21

4.3 Setting up Environment . 21

viii

4.4 Running Drozer . 22

4.5 Analyzing SIEVE . 22

4.5.1 Exploiting Activities . 22

4.5.2 Exploiting Content Providers 25

4.6 Results . 28

5 IADF Analyzer 29

5.1 Manifest Data Extractor . 29

5.2 Intent Data Extractor . 30

5.3 Results . 31

5.3.1 Explanation of Vulnerable Component GroupME 32

6 Conclusion 35

References 37

ix

List of Figures

3.1 Methodology . 16

4.1 Sieve Launch Activity . 21

4.2 Attack Surface . 23

4.3 Activity Information . 24

4.4 All Accounts saved in SIEVE . 25

4.5 All Exported Providers . 26

4.6 List of all URIs available . 27

4.7 Database of all Accounts saved . 27

5.1 Exported Activities and Attack Surface. Setting activity is exported . . 33

5.2 Setting activity. Attacker can change any of this setting 34

x

List of Tables

4.1 Number of Activities Exported and Non-Exported. 28

4.2 Number of Vulnerable Activities . 28

5.1 Number of Activities Exported and Non-Exported. 31

5.2 Number of Vulnerable Activities . 32

xi

List of Tables

xii

Chapter 1

Introduction

Android is exponentially growing mobile OS in market. Android is open source and

based on Linux kernel. In addition, android further launched their software for TV and

wearable devices. Android was first launched in 2007 and released 8 versions till now.

Currently android Oreo 8.1 is the latest release. Android Open Source Project (AOSP)

is the core source code which can be customize under Apache License.

Android has a large user base, there are two billion active users in May, 2017 and

3.3 million apps featured in Google Play store. Android is declared as the bestselling

mobile OS according to Statista [1] .

As Android is being widely accepted by big mobile devices manufacturers. Basic con-

cept of android is to reuse application components to reduce system processing, increase

efficiency and to minimise developer's burden. Due to this, apps can share their features

to other apps. This feature of android can be misused by developers to share sensitive

user or system data [7].

1

1.1 Application Fundamentals

Android apps can be written using Kotlin, Java, and C++ languages [2] . Android

builtin SDK tools automatically compile code and any other data associated with APK,

an Android package. All the resources and classes files are packaged to one archived

file named as APK. Android run all the applications in separate sandboxes and protect

all the following features:

• Each application is treated as a different user in Android, as Linux treats each

user.

• By default, each application is assigned a different user ID, known to only system.

• All applications run in isolation. Android create separate VM for each application

which start its own Linux process which starts when application starts and ends

its operation when user close the application.

The Android system follows Linux for implementation of the principle of least privi-

lege. That is, by default, each application has only access to the components that are

required for a particular task and no more. This feature creates a very secure environ-

ment, so that each application should have permission to access the resources. However,

Android offer ways to share data between applications

2

1.2 Application Components

Android applications have different components which are considered as the building

block of android application. User can interact with each component physically or by

implementing some piece of code. Four different types of components are explained

below:

• Services

• Activities

• Content providers

• Broadcast receivers

Below is the explanation of each component:

1.2.1 Activity

Activity is the entry point of an application. It act as user interface where user can

interact with application and perform specific task.

1.3 The Manifest File

Android manifest is the main and very important file. It consider as the backbone

of application. Before starting any operation on application, android first check the

properties and permission which a developer has mentioned in manifest. After this

consultation, android start any procedure.

3

• Mention the list of permissions, for example Internet access or read-access to the

user’s contacts

• In manifest developer should mention API level for application is designed

• Declares all the features which are provided by the application.

1.4 Android Security Model

Android framework depends on three basic security features:

• Permissions

• App Signing

• Sandbox

1.4.1 Permissions

Android is permission based OS. If an app wants to access system resources or user data

then it needs to ask for proper permissions. Developer should have to mention every

permission in manifest file before using it in app. For Example, if app developer wants

to access location information of user then he should mention

android.permission.ACCESS_COARSE_LOCATION

OR

android.permission.ACCESS_FINE_LOCATION in manifest.

4

1.4.2 Inter Component Communication Channels

There are two channel through which inter app communication is possible.

• Overt Channels

• Covert Channels

1.4.2.1 Overt Channels

Overt channels are legal channels provided by android to communicate with other apps.

Some overt channels are mentioned below:

• Intents

• Content Providers (Databases)

• Remote Method calls

1.4.2.2 Covert Channels

Covert channels are illegal practices used by hackers or security analysts to fetch private

data. These channels include:

• Timing Channels

• Storage Channels

5

1.5 Problem Statement

As each application should have permission to access resources. But to communicate

with other applications there is no mechanism to check for permissions. A malicious

application developer can misuse this mechanism to share sensitive information be-

tween apps. For Example, if one application has location information then he can send

this information to other application through intents or databases without any special

permission. Secondly, there is no comprehensive framework which can be follow by

security analyst to analyze inter application communication.

1.6 Methodology

Our main focus is to detect data flow between applications and also extracts data which

is being sent between applications. We divided our work into two parts, one is data flow

analysis and other other is validation by using existing tools.

For data flow analysis, we first reverse engineer all apps one by one by using dex2jar

and decompiler, will be discuss later in this chapter. After reverse engineering, we

extract intent based features and save that data into CSV. In second part, we reverse

engineer manifest file to human readable format then extract features from activities.

After extracting intent-filter from activities, cross match intents to check that which

activities are sharing data without permissions.

6

1.7 Thesis Contribution

To the best of our knowledge, the proposed technique in this thesis is not been used

previously. Moreover, we validate our work by using existing tools named as drozer.

Main Contribution of our work is as follows:

• First, we reverse engineer each app to extract intents data which is being sent by

one app to another.

• Second, drozer (application analyses framework) is used to verify that which ac-

tivity is sending or receiving sensitive data.

1.8 Thesis Outline

This thesis is divided into five chapters:

• Chapter 1: This chapter introduces the topic, describes research objectives and

importance of topic to the national needs. It also highlights contributions of this

research.

• Chapter 2: Contains literature review of inter app commination. In which re-

searchers mentioned threats mechanisms and possible prevention mechanisms

• Chapter 3: Proposed mechanism used to analyze data flow between apps and the

working of our custom software

• Chapter 4: Contains the Analysis of potentially vulnerable app called sieve de-

veloped by MWRinfosecurity as a proof of concept.

7

• Chapter 5: Covers the analysis of real world application downloaded from Google

Play store.

• Chapter 6: Conclude our thesis work and contains proposal for future work.

8

Chapter 2

Literature Review

Many techniques are developed by security researchers to detect and mitigate applica-

tion collusion attacks. Research use taint analysis, data flow analysis and source and

sink analysis to detect which app is sending data to other app [5].

In this chapter, we will review related work done by other researchers previously.

Mainly, we will cover their work, techniques and future work [6]. Below is the de-

tail of work done by other researchers:

2.1 SEALANT

SEALANT is an online software developed to detect inter app communication and iden-

tify vulnerabilities in ICCs. Moreover, a user can control those ICC channels on run-

time. SEALANT follow each ICC path based on sender, receiver and intents. It matches

sending data with receiving data, if there is any matched it consider it as a path. Re-

ceiving app mentions that what type of data can be received by an app, it sending data

9

is being matched by any intent filter then it mark it as ICC. Second main feature of

this software is that it visualizes the ICC paths. This feature is helpful for analyst to

visualize malicious paths quickly. There are two main parts pf SEALANT, Analyzer

and Interceptor. [4]

2.1.1 Analzer

Analyzer perform static analysis of targeted apps and extract features which is called

ICC paths. After extracting all these paths, Analyzer mark vulnerable paths. At the end

Analyzer generates a list of vulnerable paths to further match with intents on runtime.

Analyzer has four further modules listed below:

• Analyze target apps

• Build ICC Graph

• Find Vulnerable paths

• Generate SEALANT list

2.1.2 Interceptor

Interceptor module monitors and analyzes the vulnerable ICC paths. It analyzes each

instance of ICC, whenever ICC is requested, it checks ICC path with the pre generated

paths list. If that path is available in pre-generated list, then it is marked as vulnerable.

Interceptor is further divided into:

• Blocker

10

• ChoiceDataBase

• List Provider

2.1.3 Limitations

There are several limitations with this method. It does not work if code is dynamically

loading. Secondly app collusion attacks can be performed by covert channels like file

system sharing. SEALANT do not cover these types of attacks. In future, by combining

SEALANT with kernel level solutions may cover these weaknesses.

2.2 ComDroid

ComDroid detects application communication and find vulnerabilities by analyzing

message passing mechanisms. It divides its work into two modules. One is Intent

analysis and other is component analysis. It statically analyze intents and perform intra

procedural data flow analysis. It extracts features like Action, flags set, categories and

extra data [8]. Second part of this software analyses manifest file. It extracts each ac-

tivity and its associated data. Component analysis part treats each activity as a separate

part.

There are some limitation in this software. ComDroid tracks each intent and do not

differentiates if and switch statements. ComDroid generates warning but not verifying

the existence of vulnerability. Analyzing through this software do not infer the intention

of developer.

11

2.3 PermissionFlow

PermissionFlow statically detect the unauthorized access to permission protected in-

formation. They claim that PermissionFlow can detect three types of attacks, intent

spoofing, confused deputy and permission collusion [11].

Three core modules Permission Mapper, Rules generator and Decision maker collabo-

rate each other to detect vulnerabilities. Permission Mapper detects which component

requires permission. Second module, rule generator generates rules for tainting and

decision maker decides that which which component is vulnerable.

PermissionFlow generates many false positives because of repeated access of resources

which requires permission. Secondly it gives false negatives for those apps which are

transferring protected information.

2.4 FUSE

FUSE is another static analysis tool which analyze single app leveraging lint tool to

extend its operation to multi-apps analysis. First part of FUSE analyze single app then

based on security policies it analyses multi-apps. [4]

It analyses single app depending on its manifest data structure. Extended manifest can

generate information flow graphs from sources to sinks. In second step, for multi app

analysis, it collects all the manifest data to generate inter app information flow.

12

2.5 IccTA

For taint analysis [10] IccTA is software which claims that it is context aware taint

analysis tool. IccTA take APKs as input and converts it into intermediate representation

called jimple. After converting to intermediate representation if generates ICC graphs

and related information. For extracting ICC links, IccTA identifies sources and target

components. For control flow graph analysis, IccTA leverages FlowDroid [9]. IccTA

generates report for privacy leakage and store information in databases for further use.

[5]

13

Chapter 3

Methodology

3.1 Overview

In this chapter, we discuss our methodology and technique. We divided our work into

two parts, one is data flow analysis and other other is validation by using existing tools.

For data flow analysis, First we reverse engineer all applicatios one by one by using

dex2jar and procyon decompiler, will be discuss later in this chapter. After reverse

engineer we extract data sharing between activities and save that data into CSV.

Second, we reverse manifest file to human readable format then extracts features from

activities. After extracting intent-filter from activities, cross match intents to check that

which activity is communicating or sending data to which app.

Our customized software is based on Python 3.7 which is depending on dex2jar [12],

APKTool [13], and Procyon decompiler [14].

14

3.2 Dependencies

• Dex2jar

• APKTool

• Procyon Decompiler

3.2.1 Dex2jar

Dex2jar [12] is a tool that converts android .dex files to jar file or java .class files to

jar files. Those jar file can further be decompiled to convert code into human readable

format.

3.2.1.1 APKTool [13]

A reverse engineering tool for APK files. It converts resources to nearly original format.

User can rebuild the package after making some changes. It is developed by Sourcetoad.

3.2.1.2 Procyon Decompiler

A decompiler developed by PROCYON [14] is used in this project. This decompiler

efficiently converts jar files to java file which can be easily readable and modifiable by

human beings. There are following components of this suit.

1. Core Framework

2. Decompiler

15

3.3 Flow Chart

Below is the flow chart of technique which we follow to analyze application collusion.

Start
APK file to
be processed

Reverse
Engineer

Get Intents
Extra data

Data being
sent to other
application?

Receiving
Application

has Permission
to Receive
this data?

Benign

Malicious

Stop

Yes

No

Yes

No

Yes

No

Figure 3.1: Methodology

16

3.4 Reverse Engineering APK Flow Chart

Reversing an APK file contains 3 steps leveraging 3 tools to effectively decompile APKs

for further use.

Steps

1. First, a command line tool ?unzip? is used to unzip .apk file to extract resources

2. Then dex2jar software is used to convert classes.dex files to .jar file

3. At last, Procyon decompiler is used to reverse jar files to java file which will then

further used to extract features of our requirement.

17

3.5 Manifest Extractor

Module used for extracting manifest file?s data is divided into two step. First we used

APKTool to get manifest file. APKTool is a software used to reverse engineer APK

file to nearly original format. We use APKTool to get manifest file because it converts

manifest binary to human readable format.

Second, we develop a tool which further extracts activities intent-filter data and save it

as CSV file.

Below are the steps: Steps

1. Convert manifest file using APKTool

2. Extract intent-filter?s data

3. Save into CSV file

18

3.6 Intent Data Extractor

Data Flow analysis module is developed to extract intent based data which is being sent

from one app to another app. First this module reverses the app then extracts features.

Following are the steps used by this module:

Steps

1. Dex2jar is used to convert Classes.dex files of APKs into jar format.

2. Jar files needs to be convert to java format. Procyon Decompiler is used for this

purpose.

3. Extract data of each intent which is being used to start activity.

4. Save data to CSV file

19

Chapter 4

Analysis of SIEVE using DROZER

4.1 SIEVE

Sieve is the training application which is made for learning purposes containing in-

tentional vulnerabilities [15]. There are many such applications available online. We

selected sieve because it suites our interest. Sieve has many vulnerabilities regarding

inter app communication.

Sieve is basically a password manager app which allows users to save any online ser-

vices? username and password. It encrypts all passwords in database by using master

password and PIN provided by user. This app seems secure apparently but we can

bypass this app in many ways as discussed in detail later in this chapter.

NOTE: All passwords used in this app are hypothetical just to clear the concept.

20

Figure 4.1: Sieve Launch Activity

4.2 DROZER

Drozer is an open source framework for analyzing android applications available on

github [15]. We can extend its functionality by importing it into our python project.

Drozer can be used from command line to analyze applications on our live environment

i.e. Mobile phone.

4.3 Setting up Environment

Following are the requirements for drozer to analyze apps on device.

• Drozer

• Agent

• Sieve

21

• ADB [16]

• Java [17]

4.4 Running Drozer

Below four steps are required for drozer to run.

1. Open agent app and ON the server

2. Open terminal on PC and connect server by using command (Adb forward tcp:31415

tcp:31415)

3. Open drozer console (drozer console connect)

Now drozer is in working. We can analyze our app i.e. sieve

4.5 Analyzing SIEVE

Each component i.e. Activity, services, broadcast receivers and content providers are

analyzed separately.

4.5.1 Exploiting Activities

Exploiting activities through drozer requires following steps:

Steps

1. Check Attack surface

22

2. Get exported activities info

3. Start activity

NOTE: Not every activity is demonstrated here due to keep thesis work neat and easy

to understand. Only vulnerable activity is demonstrated

4.5.1.1 Demonstration

First we check attack surface. In android applications, attack surface means that which

activity is exported and what requirements it mentioned in manifest file. We can get this

information in by using following command:

$ run app . package . a t t a c k s u r f a c e com . mwr . example . s i e v e

We can see that 3 activities are exported

Figure 4.2: Attack Surface

23

Second, get information of each activity by using the command

$ run app . a c t i v i t y . i n f o −a com . mwr . example . s i e v e

Figure 4.3: Activity Information

we can see that all three activities are exposed what information is required to open each

activity. One activity named as com.mwr.example.sieve.PWLIST seems vulnerable.

Now we can open this activity and see what information we can get.

At the end, We start this activity by using the command:

$ run app . a c t i v i t y . s t a r t −−component com . mwr . example . s i e v e

com . mwr . example . s i e v e . PWLIST

Activity reveals all the accounts information saved in this app. Below is the screenshot

24

Figure 4.4: All Accounts saved in SIEVE

4.5.2 Exploiting Content Providers

We follow exactly the same steps as we follow in exploiting activities.

Steps

1. Check Attack surface

2. Get exported content provider info

3. Find Uri of each directory

4. Query that Uri to open database

25

4.5.2.1 Demonstration

While checking attack surface in exploiting activity, we get to know that 2 content

providers are exported. Now we need to know that what permissions those providers

require to access databases.

First get provider information by using the command:

$ run app . p r o v i d e r . i n f o −a com . mwr . example . s i e v e

Figure 4.5: All Exported Providers

As result shows, two content providers do not require any permission to access.

To find the exact URI of provider to be queried, we need to find URI of each dir. We

use the command below to check the URI.

$ run app . p r o v i d e r . f i n d u r i com . mwr . example . s i e v e

This commad reveals all the uri available

Here we can see that the URI ended with passwords is of our interest.

26

Figure 4.6: List of all URIs available

Now we try to query this URI and see what we get.

Figure 4.7: Database of all Accounts saved

This URI is accessible and reveals all the account with username and password hashes.

Now anyone can steal passwords or replace these hashes with new one OR can register a

new account with same password hash. Some other attacks like SQLi are also possible.

27

4.6 Results

This section include all the results found while analysing Sieve app. Following is the

number of exported and non-exported components.

Table 4.1: Number of Activities Exported and Non-Exported.

Activity Type Exported Non Exported

Activity 3 4
ContentProviders 2 3

Services 2 0
BroadcastReceivers 0 0

As shown in table above that 3 activities, 2 CP and 2 services are exported. so after

analysing all these we came to know that 1 activity and 1 CP is prone to attack.

Table 4.2: Number of Vulnerable Activities

Activity Type Number of Vulnerable Activities

Activity 1
ContentProviders 1

Services 0
BroadcastReceivers 0

28

Chapter 5

IADF Analyzer

IADF Analyzer is Inter Application Data Flow Analyzer which can detect intent based

data flow from one app to other. It has two major modules. First module extract data

from manifest file which is required by any app to access an activity, this module is

named as Manifest data extractor. Second module is used to extract extra data informa-

tion from intents. It also tells which apps are communicating with each other and what

data is carried by an intent. Intent is asynchronous message passing technique officially

supported by Android.

Extracted data is saved in CSV file which is further used to analyse sensitivity of data

and categorisation of data paths. Based on these paths we categorise activities.

5.1 Manifest Data Extractor

Manifest Data Extractor extract xml data from AndroidManifest.xml by parsing this file

to python module. To parse xml file in python we use lxml library which can efficiently

29

extracts xml data and save it to whatever format we require. For the sake of thesis,

we save parsed data in CSV file which can be easily read and analysed in MS Excel.

Visualisation of extracted data in Excel is also very handy because of built in support

by MS.

Extracted data contains below information:

• Sending Activity Name

• Receiving Activity Name

• Exported/Non-Exported

• Permissions

• Action

• Category

• Data Type and Scheme

All this information is required by sending app to match it’s intent data with this intent-

filter data if it wants to communicate.

5.2 Intent Data Extractor

Intent Data Extract extract intent’s information which is being sent through one app to

other. Intent’s information of sending app should match to the intent-filter’s information

mentioned by other app in manifest file. To extract this information, we first reverse all

30

classes of APK package. After reversing, intent’s information is extracted by searching

strings of predefined functions like setType, setAction, setCategory etc.

All below information is extracted and saved in CSV file.

• Activity name to be received

• Action

• Category

• Flags

• Extra Data

5.3 Results

All apps are real world applications downloaded from Google Play store. Total 2716

activities from 28 apps analysed. Out of 2716, only 179 activities are exported which

can be accessible from outside world. After analysing all these exported components

we came to know that only one activity is prone to attack.

Table 5.1: Number of Activities Exported and Non-Exported.

Activity Type Exported Non Exported

Activity 179 1404
Content Providers 0 654

Services 97 214
Broadcast Receivers 60 104

31

5.3.1 Explanation of Vulnerable Component GroupME

GroupMe is a social media app which allow users to make and join groups of interest,

find new friends and chat with each other.

Activity name "com.groupme.androidcom.groupme.android.settings.SettingsActivity"

is found exported. This activity contains all settings information regarding user. To

the best of our knowledge settings activity should not be exported so that no other app

or user can access it in any way. Exposing settings to other users is not a good practice.

Table 5.2: Number of Vulnerable Activities

Activity Type No. of Vulnerable Activities

Activity 1
Content Providers 0

Services 0
Broadcast Receivers 0

5.3.1.1 Analyzing

After reverse engineering and analyzing that which application is prone to attack we use

DROZER to send custom intents. As already explain that Drozer is open source android

testing framework which allows us to send custom intents to applications. we use this to

send intents to application activity which is prone to attack. After opening that activity,

we came to know that it reveals all settings information related to particular user.

Following is the procedure used to verify that GroupMe reveals settings. All the steps

are same as we follow in analyzing Sieve in chapter 4.

32

Steps

1. First we check which activities are exported. SettingsActivity is seems vulnera-

ble.

Figure 5.1: Exported Activities and Attack Surface. Setting activity is exported

33

2. Now we try open SettingsActivtiy and see we is behind this activity.

1.PNG

(a) label 1

2.PNG

(b) label 2

Figure 5.2: Setting activity. Attacker can change any of this setting

Now we can change or modify any of the settings to irritate user.

By following all these steps we can analyze any application to check application collu-

sion attacks. Application collusion can take place when two or more applications are

communicating with each other legally and sharing such data which other application

has not permission to access it. Android OS is not checking that which kind of data is

sending and either they have permissions or not. Our mechanism can help developers

and security analysts to check if their application is prone to such attack or not.

34

Chapter 6

Conclusion

Android application collusion attacks can compromise user privacy and can reveal sys-

tem information. We develop a tool which can detect intent based data flows and devel-

oper weaknesses in terms of defining components in android manifest files. Our tool is

robust and comprehensive. We can analyse as many apps as we want in one go. First it

reverses the app and extracts data required for inter app communication analysis. After

extracting all information it automatically save the data in CSV file which can be further

used for visualisation. It also tells the analyst that what data is sharing between applica-

tions. After knowing all this information we have to manually analyse data sensitivity

and data type. At the end we categorise all the vulnerabilities based on all possible

attacks which may be launched through Application collusion.

Future Work

In future we will enhance this tool by adding some more features. Data types, categori-

sation and Visualisation is not included as yet in this work. Before launching this tool

we are planning to add all these features in this tool.

35

List of Abbreviations and Symbols

Abbreviations

APK Android Package

CSV Comma Separated Version

URI Uniform Resource Identifier

CP Content Provider

IADF Inter App Data Flow

MS MicroSoft

OS Operating System

AOSP Android Operating System

TV Televission

SDK Software Development Kit

ID Identity

36

VM Virtual Machine

API Application Programming Interface

IPC Inter Process Communication

ICC Inter Component Communication

37

References

[1] Android Application Statistics, Statista, Available here,

https://www.statista.com/statistics/266210/number-of-available-applications-in-

the-google-play-store/

[2] Application Fundamentals, Android, Available here,

https://www.developers.android.com/

[3] Interacting with Other Apps, Android, Available here,

https://developer.android.com/training/basics/intents/

[4] Lee, Youn Kyu, et al. "A SEALANT for inter-app security holes in android."

Proceedings of the 39th International Conference on Software Engineering. IEEE

Press, 2017.

[5] Klieber, William, et al. "Android taint flow analysis for app sets." Proceedings of

the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java

Program Analysis. ACM, 2014.

[6] Li, Li, et al. "Apkcombiner: Combining multiple android apps to support inter-

38

app analysis." IFIP International Information Security Conference. Springer,

Cham, 2015.

[7] Felt, Adrienne Porter, et al. "Android permissions demystified." Proceedings of

the 18th ACM conference on Computer and communications security. ACM,

2011.

[8] Chin, Erika, et al. "Analyzing inter-application communication in Android." Pro-

ceedings of the 9th international conference on Mobile systems, applications, and

services. ACM, 2011.

[9] Arzt, Steven, et al. "Flowdroid: Precise context, flow, field, object-sensitive

and lifecycle-aware taint analysis for android apps." Acm Sigplan Notices 49.6

(2014): 259-269.

[10] Fritz, Christian, et al. "Highly precise taint analysis for android applications."

(2013).

[11] Holavanalli, Shashank, et al. "Flow permissions for android." Proceedings of the

28th IEEE/ACM International Conference on Automated Software Engineering.

IEEE Press, 2013.

[12] Fora, Pau Oliva. "Beginners guide to reverse engineering android apps." RSA

Conference. 2014.

[13] Winsniewski, R. "Android?apktool: A tool for reverse engineering android apk

files." (2012).

[14] Strobel, Mike. "Procyon/java decompiler." (2016).

39

[15] MWR Security, Drozer, Available here https://labs.mwrinfosecurity.com/tools/drozer/

[16] Android Debug Bridge, Available here https://developer.android.com/studio/command-

line/adb

[17] Java, Available here https://java.com/en/download/

40

	Main Title
	THESIS ACCEPTANCE CERTIFICATE
	Declaration
	Declaration
	Declaration
	Copyright Notice
	Abstract
	Contents
	Introduction
	Application Fundamentals
	Application Components
	Activity

	The Manifest File
	Android Security Model
	Permissions
	Inter Component Communication Channels

	Problem Statement
	Methodology
	Thesis Contribution
	Thesis Outline

	Literature Review
	SEALANT
	Analzer
	Interceptor
	Limitations

	ComDroid
	PermissionFlow
	FUSE
	IccTA

	Methodology
	Overview
	Dependencies
	Dex2jar

	Flow Chart
	Reverse Engineering APK Flow Chart
	Manifest Extractor
	Intent Data Extractor

	Analysis of SIEVE using DROZER
	SIEVE
	DROZER
	Setting up Environment
	Running Drozer
	Analyzing SIEVE
	Exploiting Activities
	Exploiting Content Providers

	Results

	IADF Analyzer
	Manifest Data Extractor
	Intent Data Extractor
	Results
	Explanation of Vulnerable Component GroupME

	Conclusion
	References

