
Identification of Security Mechanism in Java Based
Crypto Apps Using Reverse Engineering

By

Muhammad Haseeb Javed

A thesis submitted to the faculty of Information Security
Department, Military College of Signals, National

University of Sciences and Technology, Rawalpindi in
partial fulfilment of the requirements for the degree of MS

in Information Security

November 2018

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Muhammad Haseeb Javed Registra-

tion No. 00000172051, of Military College of Signals has been vetted by undersigned,

found complete in all respect as per NUST Statutes/Regulations, is free of plagiarism,

errors and mistakes and is accepted as partial, fulfillment for award of MS degree. It

is further certified that necessary amendments as pointed out by GEC members of the

scholar have been also incorporated in the said thesis.

Signature: ____________________________

Name of Supervisor:____________________

Date: ________________________________

Signature (HOD):______________________

Date: _____________________________

Signature (Dean/Principal):_______________

Date: _____________________________

i

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

ii

Dedication

This thesis is dedicated to MY FAMILY, TEACHERS AND FRIENDS for their love,

endless support and encouragement.

iii

ACKNOWLEDGMENTS

First of all, I would like to thank Allah Almighty for his countless blessings. After that

I want to express my appreciation to my family, my friends; Muneeb Ahmad and Asad

Mehdi, colleagues and the faculty for providing their enormous support to help me to

do this research. Without their relentless support, assistance and prayers, I would not

have reached culmination point in a peaceful state of mind.

I am very grateful to my supervisor, Dr. Mehreen Afzal who provided me a platform

and gave me the liberty to work in the area of my interest and continuously supported

me during the course of this research. Her technical guidance, encouragement, ideas

and perspective were vital for completion of this tedious task. Her support gave me

confidence and helped me to understand the subject matters deeply and inspired me

towards my goals.

I would also like to thank Dr. Fawad Khan and Asst. Professor Mian Muhammad

Waseem Iqbal for being an important part of my Research Supervisory Committee.

Their scholarly guidance, assistance and knowledge have been meaningful for success-

ful completion of my research. Finally, I am grateful and thankful to Military College of

Signals and National University of Sciences and Technology for providing me a chance

to help achieve excellence by being associated with the prestigious institutions.

Muhammad Haseeb Javed

November 2018

iv

COPYRIGHT NOTICE

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with in-

structions given by the author and lodged in the Library of MCS, NUST. Details

may be obtained by the Librarian. This page must form part of any such copies

made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in MCS, NUST, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission

of MCS, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of MCS, NUST, Islamabad.

v

ABSTRACT

Cryptographic algorithms are used in number of applications to provide different se-

curity services. Correctness of algorithm and their implementation is a question in the

face of today's threat perspective. In the situation where companies are involved in ma-

nipulating the security algorithms, it becomes important that code used for providing

security is analyzed for its correctness before they are being used. For open source ap-

plications, the subject analysis is possible but for proprietary applications and devices

user has to trust the respective company. In recent years, some work can be found in the

direction of reverse Engineering for the analysis of algorithms in researches as well as

by companies. Reverse Engineering process involves disassembling the Binary code.

Binary code of applications can be reverse engineered to get the working information,

which can then be modified according to the requirements. Moreover, these can be

tested for conformance that they are working according to expectations or otherwise.

This research will focus on the disassembly and de-compilation of Cryptographic ap-

plication to get the code. Then the decompiled code obtained can be used to analyze

the correctness of implemented cryptographic algorithms and key management system.

A solution is proposed in this research in which once we have the apk file we use

ApkTool to decode the apk. Then extract the java code from the jar file. Now the next

challenge is to get to the right code from thousands of java files, for this we introduced

a tool “Crypto Surveillance” which in return give us only the files in which crypto

code potentially exists, Then the code obtained can be used to analyze the correctness

of implemented cryptographic algorithms and key management system. The second

approach used in this research is using reflection API provided by java.it is useful in

case when decompiled source code is not available and we have to work on .class files

vi

ACRONYMS

DEFINITION ACRONYM

Java Development Kit JDK

Java Runtime Enviroment JRE

Java Cryptographic Extension JCE

Reverse Engineering RE

Software Reverse Engineering SRE

Application Program Interface API

Advance Encryption Standard AES

Secure Hash Algorithm SHA

Extended Triple Diffie-Hellman X3DH

Pseudo Random Number Generator PRNG

Message Authentication Code MAC

National Institute of Standards and Technology NIST

National Security Agency NSA

Public Key Crypto System PKCS

vii

Contents

1 INTRODUCTION 1

1.1 Introduction . 1

1.2 Research Overview . 1

1.3 Motivation and Problem Statements 3

1.4 Aims and Objectives . 3

1.5 Research Methodology . 3

1.6 Relevance to National Needs . 4

1.7 Advantages . 4

1.8 Area of Application . 4

2 LITERATURE REVIEW 5

2.1 Introduction . 5

2.2 Java Programming language . 5

2.2.1 Java-Based Mobile Applications 6

2.2.2 Java-Based Desktop Applications 8

2.3 Reverse Engineering . 8

2.3.1 Malware Reversing . 9

2.3.2 Firmware Reversing . 10

2.3.3 Cryptographic Algorithms Reversing 11

viii

2.4 Related Work . 12

2.5 Conclusion . 13

3 TARGETTED APPS AND PROPOSED SOLUTION 14

3.1 Tools for Reverse Engineering of Android App 14

3.1.1 Static Analysis Tools . 15

3.1.2 Dynamic Analysis Tools . 16

3.2 Methodology . 17

3.2.1 Getting Targeted Apks . 17

3.3 Source Code Extraction . 18

4 Code Searching and Refinement 22

4.1 Introduction . 22

4.2 Others Code Searching Techniques . 22

4.3 Developed tool for Code Searching . 23

4.4 Java Reflection API . 29

4.4.1 Reflection Use cases . 29

4.4.2 Use of reflection in code identification 30

4.5 Conclusion . 30

5 EXPLORATION OF ENCRYPTION KEY 31

5.1 Introduction . 31

5.2 Whatsapp and Signal . 31

5.2.1 Results (Signal and Whatsapp) 37

5.3 IMO . 39

5.3.1 Results (IMO) . 41

5.4 CONCLUSION AND FUTURE DIRECTIONS 41

ix

5.4.1 Conclusion . 42

5.4.2 Future Directions . 42

References 43

x

List of Figures

2.1 Java Applications. 6

2.2 Android Low-Level System Architecture 7

3.1 Decoding Apk . 18

3.2 Apk Reversed . 19

3.3 Converting .dex to .jar . 19

3.4 .jar File Successfully Retrieved . 19

3.5 Extracted Code by JD-GUI De-Compiler 20

3.6 Extracted Code by Luyten De-Compiler 20

3.7 Extracted Code of Selected Apps (JD-GUI - Luyten) 21

4.1 "Crypto-Surveillance" Flow Chart . 24

4.2 Java Files in Whatsapp Package . 25

4.3 Java Files in Signal Package . 25

4.4 Crypto Surveillance Tool UI . 26

4.5 All Selected Applications Source Folders 26

4.6 All Java Files from Package Selected 27

4.7 "AESEngine" Class from Signal Code 27

4.8 Imports in AESEngine Class in Signal 28

4.9 Imports in AES Class in Whatsapp . 28

xi

4.10 Reflection Method Output . 30

5.1 Message Send Function Against the “send” Button Click 32

5.2 Key Exchange Function in Signal Application 32

5.3 "sendTextMessage" Function in Signal Application 33

5.4 "deliver" Function in Signal Application 33

5.5 Un-Readable Form of Actual Key . 34

5.6 Secure Random Secret Bytes . 34

5.7 Padded Message and Encrypted Message Body 35

5.8 "encrypt" Method of "CiphertextMessage" Class 36

5.9 Final Shape of Message to be Send 37

5.10 All Java Files in IMO Package . 39

5.11 All Crypto-related files in IMO Package 40

5.12 "AES" class in IMO application . 40

xii

List of Tables

5.1 Session Key Types . 38

5.2 Public Key Types . 38

5.3 Comparison of Application . 42

xiii

Chapter 1

INTRODUCTION

1.1 Introduction

This introductory chapter will help in giving a brief introduction of this research thesis.

It begins with the power of reverse engineering. It will put some light on emerging java

based applications and introduce the advancement of cryptographic algorithms used

in those applications. The last section will includes the significance of study to the

industry and academia.

1.2 Research Overview

Cryptographic algorithms are used in number of applications to provide different secu-

rity services. Correctness of algorithms and their implementations is a question in the

face of today’s threat perspective. Nowadays, cryptography is considered as best and

powerful way of security. Its power can represented via the fact that correctly imple-

mented cryptographic algorithms are considered secure and are only breakable with a

successful brute force attack which might taking decades. In the situation where com-

panies are involved in manipulating the security algorithms, it becomes important that

code used for providing security is analyzed for its correctness before they are being

used. For open source applications, the subject analysis is possible but for proprietary

applications and devices user has to trust the respective company. In recent years, some

1

work can be found in the direction of reverse Engineering for the analysis of algorithms

in researches and by the companies as well.[1] Reverse Engineering is the process of

getting the implementation and design information of any application, and reproduce

it based on the extracted information. This process involves disassembling the Binary

code. Binary code of applications can be reverse engineered to get the working infor-

mation, which can then be modified according to the requirements. Moreover, these

can be tested for conformance that they are working according to expectations and the

cryptographic properties used are according to latest standards or otherwise. Reverse

engineering tools[2] have been used for Vulnerability and threat detection, Source code

recovery and App Modding. However, there are some limitations for reverse engineer-

ing tools such as Possible loss of some code, lack of accuracy in code recovery, and

some times Custom framework are required to do reverse engineering.

When assessing a mobile app, it is important to make sure that it does not use cryp-

tographic algorithms and protocols that have known weaknesses or insufficient for

modern cryptography requirements. Algorithms becomes insecure over time that were

reckoned enough secure in the past; Hence the important task needs to be done is con-

tinuously checking the available best practices and adjust our security configurations

accordingly. It is important to verify the cryptographic algorithms are up to date and in-

line with industry standards. Cryptographic Algorithms are meant to provide enhanced

security however correct version needs to be implemented correctly Vulnerable algo-

rithms include outdated block ciphers (such as DES), stream ciphers (such as RC4),

hashing functions (such as MD5), and broken random number generators. Note that

even algorithms that are certified (for example, by NIST) can become insecure over

time. A certification does not replace periodic verification of an algorithm’s soundness.

Algorithms with known weaknesses should be replaced with more secure alternatives.

The following algorithms are recommended[3]. In Confidentiality algorithms AES-

GCM-256 or Poly1305[4]. In Integrity algorithms SHA-256[5], SHA-384, SHA-512,

Blake2. In Digital signature algorithms RSA (3072 bits and higher), ECDSA with NIST

P-384. And in Key establishment algorithms RSA (3072 bits and higher), DH (3072

bits or higher), ECDH with NIST P-384.

2

1.3 Motivation and Problem Statements

Android operating system has become the most popular and used operating system

for smart phones, with an estimated market share of 70% to 80%,[6], and in the past

several years, the popularity of smart phones has risen significantly. There are a lot of

applications which are in use in our daily routines and user have no knowledge what it

actually going on with in the apps and user just trust the developers.

Analysis of the malicious behavior of app is generally carried out through traffic analy-

sis or behavior of the app[7]. However, any weakness in the crypto mechanism cannot

be detected through these techniques. It is therefore important to analyze the crypto-

graphic code for its correctness. Few researches can be found in this direction however

there is a need to further explore this domain.

1.4 Aims and Objectives

The objectives of this research include

1) Exploring reverse engineering tools for disassembly and de-compilation of crypto

implementations of Android applications

2) De-compilation of the Assembly code through appropriate open source tools and

finding their limitations

3) Find Cryptographic properties from code.

4) Analyze the strength of crypto implementations including Key generation mecha-

nism.

1.5 Research Methodology

At first literature review is conducted to find out the existing mechanisms and tech-

niques used to analyze the behavior of applications. Applications are then chosen for

applying reverse engineering and then we get our desired information like information

of encryption and key mechanism from code. The libraries used in code for crypto-

3

graphic implementation are either open source or closed source. Based on our findings

a proposed output has been presented.

1.6 Relevance to National Needs

Pakistan is the user of most of the foreign-based technologies and has developed a few.

Analysis of the implementations up to the code level is very challenging and very less

explored area. This research is related to an important area of cyber security.

1.7 Advantages

1) It will help in analyzing the applications in different perspectives.

2) It will provide awareness to the user to understand how their personal data can be

exploited for example by having extra permission or by sending data insecurely.

3) It will help in letting user know that how to have a check on key generation mecha-

nism used in code whether is good enough or outdated.

1.8 Area of Application

It will be helpful for the organizations who wish to build a secure mobile product or to

secure themselves from malicious activities on their Java based desktop application or

mobile application.

4

Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter extensively addresses about Java programming language, Java Applica-

tions working. In section 2.3, Reverse engineering is explained that how reverse engi-

neering can help in code retrieval. In section 2.3, types of tools that are commonly used

in reverse engineering are introduced and also provide an outline of the technical basics

that are important to apprehend before start reversing and in the later part some related

work discussed.

2.2 Java Programming language

Java is designed explicitly to have few implementation dependencies. The idea behind

this is to let developers “write Once Run Anywhere”.

Sun Micro-systems developed Java in 1995 and nowadays Java has turned out as back-

bone of millions of applications over numerous platforms. According to Oracle, Java

currently installed on more than 3 billion devices[8].

5

Figure 2.1: Java Applications.

2.2.1 Java-Based Mobile Applications

When talking about Java mobile development there are two branches, Java ME, and

Android development. Java ME on mobile devices is pretty much dead or dying, while

Android is still good to work.

Android is a Linux-based operating system for smart phones, which is open source. It

was created by the Open-Handset-Alliance, led by Google, and other organizations. An-

droid programming is based on Java language[9]. Android phones are usually equipped

with pre-installed applications and at the same time also support applications by third-

parties. Android applications can be developed by using free Android SDK[10]. Java[9]

is used to write Android programs and run on Java virtual machine which is optimized

for mobile devices. The “Dalvik” JVM was utilized through Android 4.4 and was re-

placed by Android Runtime[11] or “ART” in Android 5.0. One can easily download

and run Android apps from online app store such as Google Play[12], although there

are also other online app stores. Android operating system is a bundle of software com-

ponents that are divided into five categories and four main layers as shown in Figure 2.2.

6

Figure 2.2: Android Low-Level System Architecture

Android uses .apk (Android Package Kit) file format for distribution and installation of

applications. Similar to Windows applications which uses .exe file for installation of

applications on a system. There are several significant components in an .apk file.

Android Manifest: AndroidManifest.xml file is the essential part of all android ap-

plications in its root directory, the file contains necessary information belonging the app

to the Android System e.g. content providers, services, broadcast, unique identifier and

activities. The AndroidManifest.xml declares the permissions for an application that of

which protected parts of the API it has access to and communicate with other applica-

tions. Minimum level of the API an application requires and the lists of libraries with

which the application must be linked are also declared in this file.

Classes.dex: A program in Android programming language is first compiled to make

an apk file, and after that the majority of its components are bundled into the only file

which holds all of the program's code, assets, certificates and App Manifest file. These

7

are .dex files of the application. Projects are generally written in Java and compiled to

bytecode. They are then changed over from “.class” files to “.dex” files. The compact

Dalvik Executable configuration is intended to be reasonable for frameworks that are

constrained as far as memory and processor-speed concerns.

App Resources: Android Apk contains a directory named as “res” contains all the

resources added into application. Resources are extra files and static content that are use

in application code, such as bitmaps, user interface strings, layout definitions, animation

instructions, and others. As we add app resources the more app size will increase.

Signature: Application signing provides unique identification of the author of an ap-

plication and helps them update the application without creating complicated permis-

sions and interfaces. Application must be signed by the author before running on an

android platform. Google Play and the package installer both on Android device do not

allow installation of any application of unsigned application.

2.2.2 Java-Based Desktop Applications

When we talk about java desktop applications there are many softwares and application

comes in our mind which is based on Java language e.g. Many popular Desktop Inte-

grated Development Environments (IDEs) are built using Java programming language.

Some examples are Eclipse, IntelliJ and NetBeans. Gmail is a popular free email ser-

vice by Google. It uses Java as the back-end and Java-Script/Ajax on the front-end[13].

so we can easily reverse engineer any of the application or software to get its source

code. and then later on IDA pro can be use to convert machine code into assembly and

then its Java readable form.

2.3 Reverse Engineering

Reverse Engineering (RE) or (SRE) is the process of getting the implementation and

design information of any application, and reproduce it based on the extracted infor-

8

mation. This process involves disassembling the Binary code, then binary code of ap-

plications can be reverse to get the working information, which can then be modified

according to the requirements. Reverse engineering is performed in order to acquire

missing information, getting design philosophy and core ideas of an application if not

available. Such information is normally made unavailable, may be because someone

does not want to share it or some time the information has been lost.

Reverse engineering tools have been used for Vulnerability and threat detection, Source

code recovery and App Modding. However, there are limitations for reverse engineering

tools such as Possible loss of some code, lack of accuracy in code recovery, and some

times Custom framework are required to do reverse engineering.

2.3.1 Malware Reversing

Reverse Engineering can be use in Malware analysis. Nowadays organizations face one

of the greatest threats in the shape of Malwasre and they know their Antivirus tools can

only protect them from malware but they dont know what malware might have done and

what they might have lost if malware were executed. Answers to such questions can

be difficult to find, but the only hope in such conditions can be reverse engineering of

malware because its the only case where we get the internal code of malware and then

we can analyze its working and the damage it might have done if executed. Multiple

researches can be found in this field, one of them is briefly explained below.

In a research[14], researchers were trying on nugache worm to understand the attacker's

methodology for discovering the vulnerable sites in the system and also they were try-

ing to know is behaviour and basic design philosophy, to solve this problem they used

reverse engineering methodology and they were successful in their intentions. The nu-

gache worm came in early 2006 when it came as a simple Trojan horse, simple as

compared to a more dangerous worm of the time called as Storm worm[16]. The re-

searcher kept on reversing 49 more malware executables and successfully extracted

many of the properties like printable strings, number of API calls made, URLs, MD5

Hash etc. By using these highlighted properties they create a dataset and because of the

9

multi-dimensional nature of dataset, they used a tool BLEM2[17] to create a dynamic

patterns which would be helpful in analyzing a obscure malware. The results were not

so satisfactory because of the small in size of dataset and very few decision rules were

created.

2.3.2 Firmware Reversing

The combination of a hardware device, computer instructions and data which is con-

sidered to be read-only software on that device is Firmware[18]. The ability analyze

and read the data from a firmware is extremely useful. It allows to test an embedded

device for bugs without having access to the device. The code inside every executable

binary is Machine Code for to be processed by the CPU. A disassembler can be used to

go through the binary and convert it into assembly code which is not like the original

code, but at least it's human readable. There are many dis-assemblers for popular archi-

tectures; some are comparably better in usability and functionality.These three are the

popular, robust and effective dis-assemblers available in the market.

IDA Pro is undoubtfully the most popular disassembler and debugger in the market.

The reason behind is its multi-platform behaviour and also there are many users, tuto-

rials, plugins available to learn about it. Sadly, it is very expensive; License of the Pro

version costs over $1000 for a single person [19]

Radare2 is disassembler which is open source having advanced command line inter-

face. It is available for many different architectures. It can run on all platforms OSX,

windows, Linux, iOS, Android, solaris and Haiku.[20]

Binary Ninja is Not open source, but for a personal license it has reasonable priced at

$149.[21] it is a middle way between IDA and radare. It's still a very new and simple

tool. it is improving raidly and gaining popularity. it contain fully featured Hex editor

and also provide 1 year of updates.

10

2.3.3 Cryptographic Algorithms Reversing

Cryptography means secrecy: person-1 encrypt a message by the secret key known to

both person-1 and person-2 and then send this message to person-2. Cryptographic

algorithms generally break down into two groups one is restricted algorithms and sec-

ond is key-based algorithms. Restricted algorithms are like composing a letter to a

companion with each letter moved a few letters up or down. the secret of this type of

algorithms is algorithm itself, if the algorithm exposed it’ll be no longer secure. It has

very poor securoty because oce the reverser the the code or sequence of algorithm it

will be matter of few seconds to disclose the algorithm. In contrast to this algorithm

we have key-based algorithms in which secret is a key not the algorithm itslef. key

is based on some numeric value to encrypt and decrypt the message. user encrypt the

message by private key. The algorithm often made public and the keys are kept private,

this make the reversing process useless. but still its possible to get the key by reversing

only in case if the programmer have hard coded the key or the key is generating within

the code (luck for reversers).In key-based cipher if we want to decipher a message, we

would have to either:

1) get the key.

2) we have to try all the possible combinations in expecting to get the key. 3) try to find

a flaw or vulnerability in algorithm, that can lead you to the key or more luckily to the

plain text

so we can conclude that encryption algorithms are mild and a little mistake or imple-

mentation error can completely disprove the level of security. The only way to confirm

about the working of implemented security algorithm is to go through the code or re-

verse the code if not available.

11

2.4 Related Work

Currently, the erroneous use of cryptographic protocols and functionalities by applica-

tions has attained serious attention of researchers. Georgiev and others have proved that

correct use of conventional or hardened security protocol such as Transport Layer Secu-

rity (TLS) is a challenging task. Particularly, malformed certificate validation makes the

widely used applications a soft target for Man-in-the-Middle (MITM) attacks. Besides

identifying these issues, several techniques for mitigation are also proposed. Several

PC and mobiles device have been analyzed by Georgiev et al. on the other hand Fah

et al. have targeted the same issue in Android Applications. They developed a tool

named MalloDroid[22] and analyzed over 13,500 android applications, out of which

1,074 applications were caught using TLS with deficient certificate validation. Out

of those Fahl et al. performed manual analysis of 100 applications and successfully

launched MITM attacks on 41 apps. MalloDroid is build on Androguard reverse en-

gineering framework[23] to detect use of TLS through static code analysis. Semdroid

incorporates machine learning techniques to recognize cryptographic implementations

in a code.

One way of verifying cryptographic implementations is the use of verification tools

such as Microsoft Crypto Verification Kit[24], Murphi[25] and others. The advantage

of such tools is that they ensure strong guarantees but on the other hand they are heavy-

weight, require expertise and a lot of manual effort. These limitations make such a

tool unwanted for huge experiments and a software developer who has no knowledge

of cryptographic mechanisms. Therefore, a lightweight yet effective approach for static

analysis to identify common flaws. The tool used in this research, is named CryptoLint,

build upon Androguard Android program analysis framework[23].

In another research Egele-et-al (2013) have examined the Android applications for

programming faults while using cryptographic features. For that they have created

CryptoLint[26], a tool that employ static code analysis to point out the applications

that utilization cryptographic features and decides the parameters with which the ap-

plication conjures this cryptographic features. CryptoLint can check these parameters

12

against an arrangement of guidelines characterizing basic programming faults. Their

test demonstrates that of the 145,095 Google Play Store applications they inspected,

15,134 utilize cryptographic features, of which CryptoLint could effectively dissect

11,748. Just 1,421 of these applications did not oppose any tenets. Like Semdroid,

CryptoLint utilizes static code examination on compiled android applications.

2.5 Conclusion

This chapter highlights some of previous work related to identification of crypto imple-

mentations. Some of the work is in static analysis and the others in dynamic analysis.

it can be concluded that most of the tools used in the above mentioned researches are

CryptoLint, SemiDroid, Murphi, MalloDroid and others which perform code identifi-

cation on binary-level only.

13

Chapter 3

TARGETTED APPS AND

PROPOSED SOLUTION

In this chapter,we explain about some available tools which can help us in reversing the

android applications then we explain the applications chosen for analysis and what are

the possible ways through which we can get the actual Apk (without any modification).

At the end of this chapter we discuss about the extraction of source code from Apks.

As we have to select some application for analysis so we select Whatsapp, Signal

and IMO for analysis as these are the apps with more chances of having cryptographic

implementations.

3.1 Tools for Reverse Engineering of Android App

In this section we discuss about the static and dynamic analysis tools for android apps.

Apps can be statically or dynamically analyzed to check its behavior or working. Ap-

pliations are statically analysed utilizing few techniques aiming at un-packaging and

disassembling apps. this process usually performed by Androguard. We use ApkTool

and dex2jar tools for un-packaging and re-packaging applications into a modified ap-

plication. JD-GUI and Luyten are graphical utilities that display java code. We can

also use dynamic analysis tool known as name Droidbox to keep monitoring different

activities to get the app behavior, later in this section we also discuss about Taintdroid.

14

3.1.1 Static Analysis Tools

Androguard is a static analysis tool for Android applications. Through its API we can

disassemble applications and also we can have acess to its components. Androguard's

API [23] gives access to every attribute (classes, methods, variables) of the binary code.

The Java Runtime Environment (JRE) is a platform where we have set of tools for

Java applications development. It combines the Java Virtual Machine, core classes and

libraries. For using ApkTool one must have atleast JRE 1.7 installed

ApkTool is a tool for reverse engineering for Android applications. It can decode re-

sources from the Apk to nearly original form and recompile those resources after mak-

ing potential modifications.

1) Disassembling all resources (classes.dex, Xmls, pngs etc.) to nearly original form

2) converting the decoded resources back into binary APK-JAR form

3) Organizing and handling framework-resources dependent APKs

4) Smali Debugging

dex2jar is used to create .jar file. it will create a file with a name like “someApk-

dex2jar.jar” in the working directory. In other words, tools such as undx ande dex2jar[27]

can be used to convert the Dalvik-VM-bytecode into JVM-bytecode to obtain the java

code and a Java de-compiler can then be used to decompile the Java code and then code

like in original form will be available.

JD-GUI[28] is a standalone graphical based java decompiler that displays Java source

codes of “.class” files. It also provides an option to open the de-compiled source code

in JD-GUI for quick access to code.

Luyten[29] is an Open Source Java De-compiler Gui for java , All in all, Luyten is a

useful and efficient Java de-compiler GUI for Procyon that does exactly what a tool like

15

this should do, with the added benefit of multiple customization features.

Further information about the tools briefly explained above can be found in the refer-

ences given at the end of document.

3.1.2 Dynamic Analysis Tools

Droid-box is an android base dynamic analysis tool, that allows the applications execu-

tion and provides a variety of running data about the app behavior. Through this tool it

can analyze or monitor the execution of 11 various activities: crypto, netopen, netread,

netwrite, fileopen, fileread, filewrite, leak, call, sms, dexload. crypto activity generated

when cryptographic API called, netopen, netread, netwrite is for network activities, sms

is for text message sending or receiving, call activity generated whenever a call is made

etc.

Taint-Droid is for dynamic taint analysis to track sensitive information. TaintDroid au-

tomatically labels (taints) data from privacy-sensitive sources applies labels and prop-

agate through program variables, files, and messages. TaintDroid always logs the data

labels whenever the tainted data leave or enter the system, the application responsible

for transmitting the data, and the data destination. Such realtime feedback givessecurity

researcher a greater insight into what applications are doing, and can identify misbehav-

ing applications.

16

3.2 Methodology

In this section we explain the applications chosen for analysis and what are the possible

ways through which we can get the actual Apk (without any modification)

3.2.1 Getting Targeted Apks

Apks can easily be downloaded from web, but it'll not be sure of apk being real and

un-malicious. So here are some clean ways of getting real and un-malicious app Apk

right from our mobile phones.

APKOptic: APKoptic is an application manager that empowers you to launch or

uninstall applications from your phone. You can likewise make a backup of the ap-

plication on SD card and in addition restore or install the APK from SD card.

Astro File Manager: Astro File Manager can Connect all our storages in single

place internal memory, SD Card, cloud services like Google Drive, Dropbox, Microsoft

OneDrive, or local networks PC, Linux and Mac. Apk can be extracted from installed

application in your phone by Astro file manager in few seconds.

17

3.3 Source Code Extraction

The first step is to get the apk file of the app which is needed to be analyze. The ways

of getting the apk are explained in the above section. Once you have the apk file the

second step is to use ApkTool to decode the apk for this open cmd and go to the folder

where APK file is placed, type “apktool d -m Threema.apk” and hit enter button to start

decoding process.

Figure 3.1: Decoding Apk

it will extract the dex and the resources file here d is for decode and Threema.apk is the

app name needs to be decode. -m is for match option if there is no need to rebuild the

apk once you have modified it. So if only the exact same xml files and resource files are

required then this command with the match option i.e -m is useful.

18

Figure 3.2: Apk Reversed

Here in the Figure 3.2 it can be seen that Android Manifest file is present. There is

lib directory and resources directory present as well and it has all the images so all the

resources can be properly extracted.

Now open Cmd and type “d2j Threema.apk”

Figure 3.3: Converting .dex to .jar

Figure 3.4: .jar File Successfully Retrieved

Now java code can be extracted from the jar file but since the conversion from android

dex code to jar file is not perfect so at this stage certain information potentially lost

which might lead to Improper java code. we will use two applications to convert jar

file into java code, So in case if a particular file is not decoded properly by the first

application then we will check the code generated by second application

1) JD-GUI

2) Luyten

19

Figure 3.5: Extracted Code by JD-GUI De-Compiler

Figure 3.6: Extracted Code by Luyten De-Compiler

20

There is an option in both of the de-compilers to save all extracted sources, In this

research all the apks been extracted and saved the source code at one place for analysis.

As the extracted code of selected applications shown in Figure 3.7 now code analyzation

can be done on these files.

Figure 3.7: Extracted Code of Selected Apps (JD-GUI - Luyten)

21

Chapter 4

Code Searching and Refinement

4.1 Introduction

In this section, we describe some of the previous approaches employed by researchers

for detecting the useful code from the bulk. There are various methods in the literature

having various strategies to identify the useful code. These can be roughly grouped into

binary level code searching and high leve code searching. Below, we briefly review

the different approaches of these two categories. In the later part we also discuss our

approach used in this research.

4.2 Others Code Searching Techniques

There is a research work which confronted a test in distinguishing the cryptographic

features embeded in code by assuming that it is (for the most of the parts) not possible

to analyse the entire functionalities of binary programs through static analysis. In this

paper they present a novel methodology for distinguishing particular cryptographic al-

gorithm through control flow examination based on symbolic execution. The creation

of control flow graph and symbolic execution done by the angr framework[30]. In the

proof of concept implementation they could recognize and separate DES, Triple-DES

and a few variations of the AES. Their solution can recognize the presence of these

calculations without access to the source code of the program.

22

There is another research introducing K-Hunt[31], which is working on Binary exe-

cutables to spot in-secure keys. K-Hunt takes advantages form the properties on crypto

operations for identifying the memory buffer(a place to store crypto keys).

One way of verifying cryptographic implementations is the use of verification tools

such as Microsoft Crypto Verification Kit[24], Murphi[25] and others. The advantage

of such tools is that they ensure strong guarantees but on the other hand they are heavy-

weight, require expertise and a lot of manual effort. These limitations make such a

tool unwanted for huge experiments and a software developer who has no knowledge

of cryptographic mechanisms. Therefore, a lightweight yet effective approach for static

analysis to identify common flaws. The tool used in this research, is named CryptoLint,

build upon Androguard Android program analysis framework[23].

4.3 Developed tool for Code Searching

The searching method introduced in this research is to create a list of keywords that can

be used in cryptography e.g. AES, ECC, ElGamal, MD5, SHA256, PRNG, CPRNG

etc. Then there is a tool programmed in java language named as “Crypto Surveil-

lance”.Using this tool, all the keywords listed in the keyword list will search in all the

extracted java file and in return this tool tell us how many java files are there in the

extracted folder and only the files in which crypto code potentially exist will be shown

in table. the source code of this tool is also available on gitlab[32].

In figure 4.2 there is a flow chart of the tool used in this research named as “Crypto

Surveillance”. the tool have two options one is with .java files and the other is with

.class files.

23

Start

Take Folder containing
all decompiled resources

of App

Search for
all java files

Return Java files having
crypto code

is code
obfuscated?

Apply
Java’s

Reflection
Method

Display
Code

End

yes

no

Figure 4.1: "Crypto-Surveillance" Flow Chart

When tested it on “Whatsapp” extracted folder 5865 java source code files were found

shown in Figure 4.1.

24

Figure 4.2: Java Files in Whatsapp Package

And when the same thing applied on “Signal” extracted files, 3632 java source code

files were found as shown in Figure 4.2.

Figure 4.3: Java Files in Signal Package

As 5865 java files were found from Whatsapp apk and 3632 java files from Signal

Apk which is not possible to read one by one in quick time. So this tool “Crypto

Surveillance” will help us getting only the files in which there is a chance of crypto

code. So first the tool will ask to select a folder in which all the files related to an app

placed.

25

Figure 4.4: Crypto Surveillance Tool UI

here the data set containing some app sources that were extracted by apktool can be

seen in Figure 4.4.

Figure 4.5: All Selected Applications Source Folders

After providing the root folder to this tool here it can be seen that the tool will prompt

about the number of java files found as seen in Figure 4.5.

26

Figure 4.6: All Java Files from Package Selected

In the Figure 4.6, For “Signal” app after selecting the files it will display them in the

form of table. Here it can be seen in class “AESEngine.java” the keyword AES in

the function “decrypt block” so we can have a guess that it is using AES for encryp-

tion/decryption process.

Figure 4.7: "AESEngine" Class from Signal Code

27

Figure 4.8: Imports in AESEngine Class in Signal

In the figure 4.7 At the top of "AESEngine" class where we include some classes/libraries

that we have to use in particular class. Here in the Signal app “AESEngine” class, it

can be seen a package named as spongycastle[33] which is open source and publically

available on github[34].

Same is the case in “Whatsapp” it can be seen that the package imported in one to

the class named “AES” which shows that both the apps are using same cryptographic

library i.e. spongycastle as shown in figure 4.8.

Figure 4.9: Imports in AES Class in Whatsapp

28

The bundle “spongycastle” is used in both the app for security related tasks and this

package contains a light weight API works in any condition or environment with the

additional infrastructure to conform the algorithms to the Java Cryptographic Extension

(JCE) framework[35].

4.4 Java Reflection API

Reflection is normally used in programs to read and adjust the runtime behavior of ap-

plication while running in JVM. This is an advanced feature and used only by program-

mers having a strong knowledge of the particular language. Reflection is a powerful

technique it can enable applications for performing such operations which is not possi-

ble in any other way. It is often used as part of software testing, such as for the runtime

creation of mock objects. Reflection is also a key technique for metaprogramming[36].

In some object oriented programming languages like C-Sharp and Java, reflection can

be used to override member accessibility rules. using Reflection in Java, it is possible

to inspect Attributes, Classes, Functions, Interfaces, Constructors, Getter, Setter, Enum,

Collections, Arrays etc

4.4.1 Reflection Use cases

Despite the limitations, security researcher and tester uses reflection because it is very

powerful tool that can be useful in several use-cases.

1) Reflection is used in debuggers to inspect dynamic behaviour of code.

2) Reflection is used in some of test tools like Junit or Mockito for calling methods

containing specific syntax.

3) External tools which utilize code dynamically, may use reflection.

4) Reflection is used in code analysis tools like PMD or Findbugs, to analyze the code

against the code violations list that were found earlier.

29

4.4.2 Use of reflection in code identification

In this research reflection API is used to get original class name, class constructors,

properties and method signature (method name, return type, input parameters and any

exceptions that a function may throws) and any class or interface that a given class

overrides or implements. Name of crypto-libray used in a particular app can be found

easily using reflection method. Here is the result of our tool after applying reflection

method to .class files on one of our app.

Figure 4.10: Reflection Method Output

4.5 Conclusion

This chapter highlights some of previous code searching techniques and few tools such

as K-Hunt and Murphi have been discussed. In our research we build a tool named

as "Crypto Surveillance" which can search through thousands of files and in return

will provide only the files having crypto code in it. The other technique used is Java

Reflection API. we used this API to get some important parts of code from .class files.

30

Chapter 5

EXPLORATION OF ENCRYPTION

KEY

5.1 Introduction

This is the most important chapter of this research work as it describes the way of

analyze the keys generation mechanism in our selected applications. There are various

methods or functions in the sequence, calling one another to generate the key. we

discuss about the key and the other parameters on which the key is dependent. first

we discuss about Whatsapp and Signal application and then in the later part we discuss

about IMO and Threema applications.

5.2 Whatsapp and Signal

In the previous chapter we have seen that how we can get the apk file of an application

and also how can we get our hands directly to the crypto code when we have lines of

code in thousands. Now we are looking for the key and its generation mechanism.

In the previous chapter “spongycastle” was the package name imported in the classes of

both apps, which shows that both the apps are using same cryptographic library. So any

one of the apps can be tested for getting to know about its key generation mechanism

31

and encryption and decryption ways.

“Signal” application been chosed for verification because its open source and code can

be easily verified, the source code is available on Github and compiled after download-

ing using android studio to run on device for debugging. its important to resolve few

dependencies in the source code in order to compile and run the application.

Signal app contain various screens (Activities) but we were interested in send Message

screen.This screen contains a message typing area and a send button on the action of

this button we got a method named as “send” which take plain text message and get its

recipient and also check for the key that its already exchanged or not in the figure 5.1.

Figure 5.1: Message Send Function Against the “send” Button Click

Figure 5.2: Key Exchange Function in Signal Application

As in the Figure 5.2, it was noticed that the method "isKeyExchange()" always returns

false and each time the "send" buttton is pressed a new key exchange process would

occurs.

In the Figure 5.1, it can be noticed that "sendTextMessage" is called which in turn calls

sendTextPush message after validating that message had already not been sent.

32

Figure 5.3: "sendTextMessage" Function in Signal Application

In the above method a "PushTextSendJob" object was added in the jobManager queue.

PushTextSendJob class contain a deliver method shown in Figure 5.4 that gets called

when a message is to be sent from the messages queue.

Figure 5.4: "deliver" Function in Signal Application

Deliver method do following things

1) Get recipient address.

2) Get profile key

3) Create a SignalServiceDataMessage object from the message object received from

database.

4) Pass the message and address to sendMessage methid of MessageSender class.

Since key generation mechanism is the important part in this research therefore we are

going to describe how a profile key is generated. Here the profile key is returned from

getProfileKey method from ProfileKeyUtil class.

This method first tries to fetch the profile key from TextSecurePreferences (if present)

else it create a new profile key, save it into TextSecurePreferences and then return the

newly generated profile key in base64 format. In the Figure 5.5 it can be seen that

the actual key is not in a readable format this is because randomly 32 bytes (256 bits)

33

were selected as shown in Figure 5.6. so thatswhy we prefer the key in base64 encoded

format.

Figure 5.5: Un-Readable Form of Actual Key

Figure 5.6: Secure Random Secret Bytes

Next some function calls were skipped that start from function getEncryptedMessages()

which calls getEncryptedMessage(), that will create a cipher object of class "SignalSer-

viceCipher" and from here is our next point of interest that can be seen in the Figure 5.7.

34

Figure 5.7: Padded Message and Encrypted Message Body

First, the SessionCipher object was created. It is the main entry point for encrypt/decrypt

operations in signal protocol, next PushTransportDetails object were created using the

session cipher object. PushTransportDetails is responsible for converting the unpadded

message body into padded message body. Finally the padded message body been en-

crypted using the SessionCipher object as shown in Figure 5.8.

35

Figure 5.8: "encrypt" Method of "CiphertextMessage" Class

Below is the explanation of the code mentioned in Figure 5.8:

1) Retrieve the current session in a SessionRecord object. A SessionRecord object

maintained the state of an ongoing session.

2) Get the state of the current session from the SessionRecord object.

3) Get the sender's ChainKey from the session state.

4) Get MessageKeys from ChainKey. MessageKey is composed of a cipherKey, macKey

and an IV(initialization vector).

5) Get a one time use only Ephemeral key from the session state.

6) Get the cipher text for the given padded message using MessageKeys.

7) Create a CipherTextMessage object using chain key, message keys, sender ephemeral,

cipher text and the session state.

8) Set the next chain key into the session state.

9) Store the session state back into the session record.

10) Return the CipherTextMessage object.

36

Figure 5.9: Final Shape of Message to be Send

Figure 5.9 illustrates the final form of message to be send. The message is first padded,

then encrypted and finally encoded into base64 format before being sent. On the re-

ceiver end the reverse of that process is done to get a readable message. This protocol

is known as Signal Protocol the details of signal protocol are mentioned in next chapter.

5.2.1 Results (Signal and Whatsapp)

Signal protocol is defined by Open Whisper Systems to ensure anonymity and secrecy

of messages. The general philosophy behind the signal protocol is to send encrypted

messages through one server, while keys are maintained and transferred using a separate

key distribution center (Server). Since the messages are encrypted and their keys are

unknown therefore they cannot be decrypted at server end. And since the keys are sent

through the key distribution center without the information about the message, there-

fore they are useless without a message. This makes signal protocol flawless and hard

to break.

The first step is to generate a set of long term identity key pairs, medium term signed

key pair, and various other ephemeral pre-key pairs on the client side. Next the public

keys (long term and medium term) are bundled along with registration Id (usually mo-

bile number) and are sent to the key distribution center(Server). For example, if Alice

wants to communicate with Bob then she must first register herself to key distribution

center, and also should know Bob's registration ID and public keys.

Alice receives Bob's public keys (long term and short term) along with the ephemeral

key. The ephemeral key is removed from server since it is a one-time use key. Alice

generates ephemeral Curve25519 key pair. Alice then calculate a master secret using

the ECDH of Bob's public keys and her own keys. Alice finally creates a root key and

chain key from the master secret using HKDF. Alice then send this master shared secret

37

to Bob for validation. Upon successful validation Alice and Bob can send messages to

each other. Signal protocol uses X3DH key Agreement that provides forward secrecy

and cryptographic deniability along with asynchronicity. This allows Alice and Bob

to send off-line messages.Each created message results in the creation of a new set of

ephemeral keys that are used to encrypt/decrypt the next message. During a session, Al-

ice sends encrypted messages using the master shared secret along with the previously

generated ephemeral key. This create a root key, a chain key and a message chain.

Session Key Types Description
Root Key A 32 byte key for creating Chain Keys.
Chain Key A 32 byte key for creating Message Keys.
Message Key Message contents encryption (80 byte), AES-256 key (32-

bytes), HMAC-SHA256 key (32 bytes) and IV (16-bytes)

Table 5.1: Session Key Types

Public Key Types Description
Identity-Key Pair A long-term Curve25519 key pair, generated at install time.
Signed Pre Key A medium-term Curve25519 key pair, generated at install

time, signed by the Identity Key, and rotated on a periodic
timed basis.

One-Time Pre Keys A queue of Curve25519 key pairs for one time use, gener-
ated at install time, and replenished as needed

Table 5.2: Public Key Types

X3DH (Key Agreement Protocol):

This thing happens, by generating all the necessary keys between two communicating

parties. It establishes the crucial shared secret key between the two parties who mutu-

ally authenticate each other based on their public key pairs. X3DH also allows for key

exchange to occur where one party is “offline”, and will instead exchange it through a

third party server. X3DH involves 3 primary parties: Sender, Receiver, and Server.

X3DH has 3 phases: Sender registers his identity key and prekeys to a server, second

is Receiver retrieves Sender’s prekeys bundle from the server uses it to start a session

then send an initial message to Sender, and last one is Sender receives and decrypts

Receiver's message.

38

5.3 IMO

Crypto Surveillance[32] found 5450 source code files when searched for java files in

IMO packages shown in Figure 5.10.

Figure 5.10: All Java Files in IMO Package

Only 11 files shown in Figure 5.11 found that were potentially having crypto code in

them. The highlighted words found out in the code were mainly Cast, AES, UTF-8 and

SSL. In cryptography, CAST-128 (Created in 1996) is a symmetric key block cipher

used in a number of products. Additionally It has been approved to use for Government

of Canada by the Communications Security Establishment[37]. but here in the IMO

package its not used in cryptographic context, it was just an exception message of type

"java.lang.ClassCastException".

39

Figure 5.11: All Crypto-related files in IMO Package

Figure 5.12: "AES" class in IMO application

40

The class shown in Figure 5.12 is declared in "com.google.android.gms.internal" pack-

age. GMS stands for Google Mobile Services[38], which is the set of apps that come

pre-installed with any android device.The code in the class as shown in Figure 5.12 is

the encryption code of google which is used for google’s own mobile services. so it

can easily justify that there is not even single line of cryptographic code exists in IMO

mobile application.

5.3.1 Results (IMO)

As its proved in previous chapter that IMO hasn’t implemented any sort of cryptography

or security in its main and core part i.e. messaging or communication. Unlike Signal

and Whatsapp, who have adopted recent trends in cryptography to make their messaging

and communication secure.

5.4 CONCLUSION AND FUTURE DIRECTIONS

This section has concluded the research work by providing a brief overview of the

research conducted. It has given a sketch of the findings from this research. Furthermore

it has set future directions for the researchers in the fields of Information Technology,

Information Security and Programming.

41

5.4.1 Conclusion

Applictaions properties result
Signal Whatsapp IMO

Cryptographic-
Library

SpongyCastle SpongyCastle nil

Algorithm AES-256 AES-256 nil
mode of encryption CBC with padding(

PKCS#5) and CTR
without padding

CBC mode with PKCS
#5 padding scheme
and CTR mode without
padding

nil

Hashing Algo SHA 256 SHA 256 nil
padding scheme PKCS #5 (mode CBC) PKCS #5 (mode CBC) nil
keys and their sizes Root-Key(32bytes),

Chain-Key(32bytes),
Message-Key(80bytes)

Root-Key(32bytes),
Chain-Key(32bytes),
Message-Key(80bytes)

nil

Initialization Vector 16 bytes Random IV 16 bytes Random IV nil
Encoding format base64 base64 utf-8

Table 5.3: Comparison of Application

5.4.2 Future Directions

This research has provided open research areas for future researchers as there is still

room for further research in this field. Following future directions are provided to the

researchers as a result of this research work.

1) Need to identify new code analyzing techniques to ensure that application is secure

and upto the latest standards of cryptography.

2) Apply the same practice to application developed for Desktop, Web and other mobile

platforms.

42

References

[1] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain Fouque. Automated iden-

tification of cryptographic primitives in binary code with data flow graph isomor-

phism. In Proceedings of the 10th ACM Symposium on Information, Computer

and Communications Security, pages 203–214. ACM, 2015.

[2] Re-tools. https://resources.infosecinstitute.com/top-8-reverse-

engineering-tools-cyber-security-professionals/{#}gref. Accessed:

2018-11-05.

[3] Recommended-algos. https://sushi2k.gitbooks.io/the-owasp-mobile-

security-testing-guide/content/0x04g-Testing-Cryptography.html.

Accessed: 2018-11-05.

[4] poly1305. https://en.wikipedia.org/wiki/Poly1305. Accessed: 2018-11-

05.

[5] Sha-256. https://www.movable-type.co.uk/scripts/sha256.html. Ac-

cessed: 2018-11-05.

[6] Mobile future. comScore Inc. 2012 Mobile Future in Focus, February

2012. Accessed: 2018-11-05.

[7] Anshul Arora, Shree Garg, and Sateesh K Peddoju. Malware detection using net-

work traffic analysis in android based mobile devices. In Next generation mobile

apps, services and technologies (NGMAST), 2014 eighth international conference

on, pages 66–71. IEEE, 2014.

43

https://resources.infosecinstitute.com/top-8-reverse-engineering-tools-cyber-security-professionals/{#}gref
https://resources.infosecinstitute.com/top-8-reverse-engineering-tools-cyber-security-professionals/{#}gref
https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x04g-Testing-Cryptography.html
https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x04g-Testing-Cryptography.html
https://en.wikipedia.org/wiki/Poly1305
https://www.movable-type.co.uk/scripts/sha256.html
comScore Inc. 2012 Mobile Future in Focus, February 2012
comScore Inc. 2012 Mobile Future in Focus, February 2012

[8] Java-devices. https://www.google.com.pk/search?q=According+

to+Oracle,+Java+currently+installed+on+more+than+3+billion+

devices.&rlz=1C1CHBD_enPK799PK799&tbm=isch&source=lnms&sa=X&

ved=0ahUKEwjy_9Wsm9PeAhUhSY8KHTZ1APMQ_AUICygC&biw=1366&bih=657&

dpr=1#imgrc=uLe3ca6qRjDmXM:, . Accessed: 2018-11-05.

[9] Android-java. https://www.developer.com/java/j2me/java-mobile-

programming-for-android.html, . Accessed: 2018-11-19.

[10] Android-sdk. https://stuff.mit.edu/afs/sipb/project/android/docs/

sdk/index.html, . Accessed: 2018-11-05.

[11] Android-runtime-art. https://en.wikipedia.org/wiki/Android_Runtime.

Accessed: 2018-11-05.

[12] Google-play. https://play.google.com/store?hl=en. Accessed: 2018-11-

05.

[13] Softwares-powered-by-java. https://www.linkedin.com/pulse/12-

examples-popular-software-powered-java-doug-purcell. Accessed:

2018-11-05.

[14] Ravindar Reddy Ravula. Classification of Malware using Reverse Engineering

and Data Mining Techniques. PhD thesis, University of Akron, 2011.

[15] Nugache-worm. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Worm:Win32/Nugache.F.

Accessed: 2018-11-05.

[16] Sam Stover, Dave Dittrich, John Hernandez, and Sven Dietrich. Analysis of the

storm and nugache trojans: P2p is here. USENIX; login, 32(6):18–27, 2007.

[17] Chien-Chung Chan and Santhosh Sengottiyan. Blem2: Learning bayes’ rules

from examples using rough sets. In Fuzzy Information Processing Society, 2003.

NAFIPS 2003. 22nd International Conference of the North American, pages 187–

190. IEEE, 2003.

44

https://www.google.com.pk/search?q=According+to+Oracle,+Java+currently+installed+on+more+than+3+billion+devices.&rlz=1C1CHBD_enPK799PK799&tbm=isch&source=lnms&sa=X&ved=0ahUKEwjy_9Wsm9PeAhUhSY8KHTZ1APMQ_AUICygC&biw=1366&bih=657&dpr=1#imgrc=uLe3ca6qRjDmXM:
https://www.google.com.pk/search?q=According+to+Oracle,+Java+currently+installed+on+more+than+3+billion+devices.&rlz=1C1CHBD_enPK799PK799&tbm=isch&source=lnms&sa=X&ved=0ahUKEwjy_9Wsm9PeAhUhSY8KHTZ1APMQ_AUICygC&biw=1366&bih=657&dpr=1#imgrc=uLe3ca6qRjDmXM:
https://www.google.com.pk/search?q=According+to+Oracle,+Java+currently+installed+on+more+than+3+billion+devices.&rlz=1C1CHBD_enPK799PK799&tbm=isch&source=lnms&sa=X&ved=0ahUKEwjy_9Wsm9PeAhUhSY8KHTZ1APMQ_AUICygC&biw=1366&bih=657&dpr=1#imgrc=uLe3ca6qRjDmXM:
https://www.google.com.pk/search?q=According+to+Oracle,+Java+currently+installed+on+more+than+3+billion+devices.&rlz=1C1CHBD_enPK799PK799&tbm=isch&source=lnms&sa=X&ved=0ahUKEwjy_9Wsm9PeAhUhSY8KHTZ1APMQ_AUICygC&biw=1366&bih=657&dpr=1#imgrc=uLe3ca6qRjDmXM:
https://www.google.com.pk/search?q=According+to+Oracle,+Java+currently+installed+on+more+than+3+billion+devices.&rlz=1C1CHBD_enPK799PK799&tbm=isch&source=lnms&sa=X&ved=0ahUKEwjy_9Wsm9PeAhUhSY8KHTZ1APMQ_AUICygC&biw=1366&bih=657&dpr=1#imgrc=uLe3ca6qRjDmXM:
https://www.developer.com/java/j2me/java-mobile-programming-for-android.html
https://www.developer.com/java/j2me/java-mobile-programming-for-android.html
https://stuff.mit.edu/afs/sipb/project/android/docs/sdk/index.html
https://stuff.mit.edu/afs/sipb/project/android/docs/sdk/index.html
https://en.wikipedia.org/wiki/Android_Runtime
https://play.google.com/store?hl=en
https://www.linkedin.com/pulse/12-examples-popular-software-powered-java-doug-purcell
https://www.linkedin.com/pulse/12-examples-popular-software-powered-java-doug-purcell
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Worm:Win32/Nugache.F
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Worm:Win32/Nugache.F

[18] Firmware. https://en.wikipedia.org/wiki/Firmware. Accessed: 2018-11-

05.

[19] Hex-rays(ida). https://www.hex-rays.com/products/ida/. Accessed:

2018-11-05.

[20] Radare2. https://rada.re/r/. Accessed: 2018-11-05.

[21] Binary-ninja. https://binary.ninja/purchase/. Accessed: 2018-11-05.

[22] Mallodroid. https://github.com/sfahl/mallodroid. Accessed: 2018-11-

05.

[23] Androguard. https://github.com/androguard/androguard, . Accessed:

2018-11-05.

[24] Crypto-verification-kit. https://docs.microsoft.com/en-us/windows/

desktop/seccrypto/cryptography-tools, . Accessed: 2018-11-05.

[25] Murphi verification system. http://seclab.stanford.edu/pcl/mc/mc.html.

Accessed: 2018-11-05.

[26] Cryptolint. https://sgros-students.blogspot.hk/2017/03/cryptolint.

htm, . Accessed: 2018-11-05.

[27] dex2jar. https://www.nccgroup.trust/us/about-us/newsroom-

and-events/blog/2010/october/decompiling-android-apps-undx-

dex2jar-and-smali/. Accessed: 2018-11-05.

[28] Jd-gui. http://jd.benow.ca/. Accessed: 2018-11-27.

[29] Luyten. https://github.com/deathmarine/Luyten. Accessed: 2018-11-27.

[30] Angr framework. https://github.com/angr/angr. Accessed: 2018-11-05.

[31] Juanru Li, Zhiqiang Lin, Juan Caballero, Yuanyuan Zhang, and Dawu Gu. K-hunt:

Pinpointing insecure cryptographic keys from execution traces. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security,

pages 412–425. ACM, 2018.

45

https://en.wikipedia.org/wiki/Firmware
https://www.hex-rays.com/products/ida/
https://rada.re/r/
https://binary.ninja/purchase/
https://github.com/sfahl/mallodroid
https://github.com/androguard/androguard
https://docs.microsoft.com/en-us/windows/desktop/seccrypto/cryptography-tools
https://docs.microsoft.com/en-us/windows/desktop/seccrypto/cryptography-tools
http://seclab.stanford.edu/pcl/mc/mc.html
https://sgros-students.blogspot.hk/2017/03/cryptolint.htm
https://sgros-students.blogspot.hk/2017/03/cryptolint.htm
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2010/october/decompiling-android-apps-undx-dex2jar-and-smali/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2010/october/decompiling-android-apps-undx-dex2jar-and-smali/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2010/october/decompiling-android-apps-undx-dex2jar-and-smali/
http://jd.benow.ca/
https://github.com/deathmarine/Luyten
https://github.com/angr/angr

[32] Crypto-surveillance. https://gitlab.com/Haseebjaved/crypto-

surveillance, . Accessed: 2018-11-05.

[33] Spongycastle. SpongyCastle : https://github.com/rtyley/

spongycastle. Accessed: 2018-11-05.

[34] Github. https://github.com/. Accessed: 2018-11-05.

[35] Java-cryptographic-extension-(jce). https://en.wikipedia.org/wikiJava_

Cryptography_Extension, . Accessed: 2018-11-05.

[36] Metaprogramming. https://en.wikipedia.org/wiki/Metaprogramming.

Accessed: 2018-11-12.

[37] Cast-128. https://en.wikipedia.org/wiki/CAST-128. Accessed: 2018-11-

05.

[38] Gms. https://www.android.com/gms/. Accessed: 2018-11-05.

46

https://gitlab.com/Haseebjaved/crypto-surveillance
https://gitlab.com/Haseebjaved/crypto-surveillance
SpongyCastle : https://github.com/rtyley/spongycastle
SpongyCastle : https://github.com/rtyley/spongycastle
https://github.com/
https://en.wikipedia.org/wikiJava_Cryptography_Extension
https://en.wikipedia.org/wikiJava_Cryptography_Extension
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/CAST-128
https://www.android.com/gms/

	Main Title
	THESIS ACCEPTANCE CERTIFICATE
	Declaration
	Declaration
	Acknowledgments
	Copyright Notice
	Abstract
	ACRONYMS
	Contents
	INTRODUCTION
	Introduction
	Research Overview
	Motivation and Problem Statements
	Aims and Objectives
	Research Methodology
	Relevance to National Needs
	Advantages
	Area of Application

	LITERATURE REVIEW
	Introduction
	Java Programming language
	Java-Based Mobile Applications
	Java-Based Desktop Applications

	Reverse Engineering
	Malware Reversing
	Firmware Reversing
	Cryptographic Algorithms Reversing

	Related Work
	Conclusion

	TARGETTED APPS AND PROPOSED SOLUTION
	Tools for Reverse Engineering of Android App
	Static Analysis Tools
	Dynamic Analysis Tools

	Methodology
	Getting Targeted Apks

	Source Code Extraction

	Code Searching and Refinement
	Introduction
	Others Code Searching Techniques
	Developed tool for Code Searching
	Java Reflection API
	Reflection Use cases
	Use of reflection in code identification

	Conclusion

	EXPLORATION OF ENCRYPTION KEY
	Introduction
	Whatsapp and Signal
	Results (Signal and Whatsapp)

	IMO
	Results (IMO)

	CONCLUSION AND FUTURE DIRECTIONS
	Conclusion
	Future Directions

	References

