
A HEURISTIC ALGORITHM FOR NESTING

PROBLEMS WITH IRREGULAR SHAPES

By

Muhammad Asif Bashir

A thesis submitted to the faculty of Electrical Engineering Department,
Military College of Signals, National University of Sciences and Technology,

Islamabad, Pakistan, in partial fulfilment of the requirements for the degree of MS in
Electrical (Telecommunication) Engineering

MAY 2019

ABSTRACT

The irregular nesting problem, also known as stock placement problem has been stud-
ied and investigated over many decades where convex/non-convex pieces have to be
placed inside the main sheet such that no piece overlap and cross the boundary of
sheet. Nesting problem is widely used in raw material industries, like clothing, wood,
metal, leather and paper making industries. The objective is to maximize the utiliza-
tion of sheet and minimize the waste of sheet keeping the sheet width constant. There
are many heuristic techniques in the literature used to solve the nesting problems. In
nesting problem, there are two basic categories that are used by the researchers; one
is placement strategy and second one is sorting strategy. Geometric constraints are the
fundamental problems in nesting problems.

In this thesis, a heuristic algorithm is used to solve nesting problems which uses the
concept of optimal groups of unique shapes based on placement routine which is a com-
bination of three optimization functions, boundary overlap, convex hull and wastage.
Overlap detection is performed to check the polygons overlap. Iterative method is used
to generate a list of polygons placement and an objective function is measured against
each placement which is again a combination of three optimization functions: boundary
overlap, compaction and wastage. The polygon is placed at the placement which has
maximum value of boundary overlap, maximum compaction and minimum wastage.

The proposed technique is tested with few examples of convex and non convex
shapes. Our proposed algorithm’s results are compared with previous benchmark algo-
rithms already available in the literature. Our proposed algorithm’s results are superior
to previous works in the literature and is a strong candidate for real industries.

ii

Copyright c© 2019

by

Muhammad Asif Bashir

iii

DEDICATION

This thesis is dedicated to

MY BELOVED FAMILY MEMBERS,

RESPECTABLE TEACHERS AND FRIENDS

for their support, love and encouragement

iv

ACKNOWLEDGEMENTS

I am very thankful to Allah Almighty who has blessed me with the strength and the
spirit to complete my thesis and giving me patience to successfully conclude my Master
research thesis.

With fondness and intense appreciation I acknowledge my thesis supervisor Dr. Has-
nat khurshid, PhD who not only supervised and guided me during my thesis but also
encouraged my spirits to successfully and effectively complete my thesis. I am also
very thankful to all my committee members including Dr. Adil Masood Siddiqui, PhD
and Dr. Attiq Ahmad, PhD for their kind and moral support.

I would also like to thank to all my friends specially Mr. Muhammad Shahzad and
Mr. Naveed Ahmad Chughtai for their help and cooperation to complete this thesis.

Finally, I would like to thank to my wife to encourage my spirits to successfully
complete this thesis.

v

TABLE OF CONTENTS

ABSTRACT ii

DEDICATION iv

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS v

LIST OF FIGURES ix

LIST OF TABLES xi

1 INTRODUCTION 1
1.1 Overview . 1
1.2 Problem Statement . 3
1.3 Motivation and Objectives . 3
1.4 Contributions of Thesis . 5
1.5 Thesis Outline . 5

2 LITERATURE REVIEW 7
2.1 Review of Stock Placement Problems 7
2.2 Nesting Problem Types . 8

2.2.1 Bin Packing . 8
2.2.2 Knapsack Packing . 8
2.2.3 Capacity Allocation . 9
2.2.4 Strip Packing . 9
2.2.5 Trim Loss Problem . 9
2.2.6 Loading Problem . 9
2.2.7 Nesting Problem . 9

2.3 Stock Placement Problem Surveys and Bibliographies 10
2.4 Geometric Representation . 11

2.4.1 Pixel/Raster Method . 11
2.4.2 D-Function . 12
2.4.3 No-Fit Polygon (NFP) . 13
2.4.4 Phi-Function . 14

2.5 Search Methods . 15
2.5.1 Iterative Improvement Search 15
2.5.2 Hill Climbing . 16
2.5.3 Tabu Search . 16
2.5.4 Random Search Algorithm . 16

2.6 Heuristic and Metaheuristic Methods 17
2.6.1 Bottom Left Algorithm . 17
2.6.2 Simulated Annealing . 18

2.6.2.1 SA Algorithm Example 19

vi

2.6.3 Genetic Algorithms . 20
2.6.3.1 Initialize Population 21
2.6.3.2 Fitness Function . 21
2.6.3.3 Selection . 22
2.6.3.4 Crossover . 22
2.6.3.5 Mutation . 23
2.6.3.6 Termination . 24

2.6.4 Linear Programming . 24
2.6.5 Cuckoo Search Algorithm . 25
2.6.6 Pairwise Clustering . 26

3 EXPERIMENTAL SETUP 29
3.1 Overview . 29
3.2 Data Sets . 29

3.2.1 Data Set 1 . 29
3.2.2 Data Set 2 . 30
3.2.3 Data Set 3 . 30
3.2.4 Data Set 4 . 30
3.2.5 Data Set 5: SHAPES0 . 31
3.2.6 Data Set 6: Dighe1 . 31
3.2.7 Data Set 7: Dighe2 . 32

4 METHODOLOGY AND PROPOSED TECHNIQUE 34
4.1 Problem Formulation . 34
4.2 Proposed Technique . 35

4.2.1 Pseudo Code of Proposed Algorithm 37
4.2.2 Initialization . 39
4.2.3 Group Unique Polygons . 39

4.2.3.1 Boundary Overlap 40
4.2.3.2 Convex Hull . 41
4.2.3.3 Wasted . 43

4.2.4 Geometric Transformations 43
4.2.5 Boundary Extraction . 44
4.2.6 Overlap Detection . 45
4.2.7 Objective Function . 45

5 RESULTS AND DISCUSSION 47
5.1 Result and Analysis . 47
5.2 Model Parameters . 47
5.3 Experimental Results . 48

5.3.1 Experiment 1 . 48
5.3.2 Experiment 2 . 49
5.3.3 Experiment 3 . 50
5.3.4 Experiment 4 . 51

5.4 Benchmark Problems . 52

vii

6 CONCLUSION AND FUTURE WORKS 56
6.1 Conclusion . 56
6.2 Future Works . 57

BIBLIOGRAPHY 58

viii

LIST OF FIGURES

1.1 General solution to nesting problem 2
1.2 Overview of nesting/cutting problem 3
1.3 Structure of different problem fields 4

2.1 Nesting problem types . 8
2.2 Polygons matric representation based on Raster method 11
2.3 INFP of P relative to the rectangular sheet 12
2.4 Polygon vertex and edge . 13
2.5 D-Function method . 13
2.6 Working principle of NFP . 14
2.7 Intersection test between polygon A and B using NFP 15
2.8 Polygon and Phi-function representation of polygon 15
2.9 Bottom-left process . 18
2.10 Flow chart diagram of Genetic Algorithm 21
2.11 Chromosomes, Genes and Population of GA 22
2.12 Crossover in GA . 22
2.13 Exchanging genes of parents . 23
2.14 New offspring . 23
2.15 Mutation . 24
2.16 Basic rules of Cuckoo search algorithm 25
2.18 Matched features of polygons . 27
2.17 Flow chart diagram of Cuckoo search algorithm 28

3.1 Shapes of data set 1 . 29
3.2 Shapes of data set 2 . 30
3.3 Shapes of data set 3 . 31
3.4 Data set : SHAPES0 . 33
3.5 Data set : Dighe1 . 33
3.6 Data set : Dighe2 . 33

4.1 Example of sheet layout . 34
4.2 Algorithm flow chart diagram . 36
4.3 Boundary Overlap of polygon A with sheet 40
4.4 Some boundary overlap orientations of two polygons 41
4.5 Convex hull of a polygon . 41
4.6 Polygon’s placement with minimum convex hull area 42
4.7 Placement routine optimization with convex hull 42
4.8 Overlap detection, (a) No area overlap (b) Area overlap 45

5.1 Experiment 1: Polygon shapes with area: 8, 3, 4 and 4 respectively . . . 48
5.2 Experiment 1: Same convex hull value for all orientations 49
5.3 Experiment 1: Placement of shapes in 6 x 10 rectangular sheet a) Do-

raid Dalalah [3] with sheet utilization of 90% b) Proposed approach
with sheet utilization of 93.33% . 50

ix

5.4 Experiment 2: a) Polygon shapes with area: 4, 7, 5, 6, 4, 7 and 6
respectively b) Non convex sheet with each step of 5 units long 51

5.5 Experiment 2: a) Doraid Dalalah [3] with sheet utilization of 89.7% b)
Proposed approach with sheet utilization of 93% 52

5.6 Experiment 3: Polygon shapes with area: 4, 2, 3, 3.75, 4, and 7 respec-
tively . 53

5.7 Experiment 3: Same convex hull value for two orientations 53
5.8 Experiment 3: Placement of shapes in 8 x 12 rectangular sheet with

utilization of 96% . 54
5.9 Experiment 4: Placement of hexagons in hexagon shaped sheet with

utilization of 84% . 54
5.10 Stock placement of data set shapes0 with proposed approach 55
5.11 Stock placement of data set Dighe2 with proposed approach 55

x

LIST OF TABLES

2.1 Stock placement problem surveys . 10

3.1 Coordinates of data set 1 . 30
3.2 Coordinates of data set 2 . 31
3.3 Coordinates of data set 3 . 32
3.4 Coordinates of hexagon . 32

5.1 Experiment 1: Results of Doraid Dalalah [3] and proposed algorithm . . 49
5.2 Experiment 2: Results of Doraid Dalalah [3] and proposed algorithm) . 50
5.3 Results of previous literature and proposed algorithm for shape0 53

xi

Chapter 1

INTRODUCTION

Nesting problem is faced in many industries where a list of polygons are placed within

a sheet of fixed width and varying length without overlapping and no polygon crosses

the boundary of sheet. The objective may change based on the application, however

the purpose of this research is to minimize the waste and maximize the profits. Nesting

problem is a type of irregular stock placement problems which are not only signifi-

cant for raw material industries, such as clothing, wood, metal, leather and so on but

also economically and environmentally important and reduce the use of raw materials.

Economically, the solution reduces the amount of material that is required for polygon

pieces and reduces the production cost. Nesting problem is a NP hard problem where

we do not have an exact form of solution. We would have multiple solutions and we

have to choose most appropriate solution for our problem. In most of the literatures,

heuristic techniques are used to solve these kinds of problems. Section 1.1 describes

the overview of Nesting Problem.

1.1 Overview

Irregular Nesting problem, also known as stock placement problem widely exists in raw

material industries where large pieces are divided into small pieces and these pieces are

placed inside the main sheet such that no piece overlaps and crosses the boundary of

main sheet. The main goal is to maximize the sheet utilization [2]. Fig. 1.1. illustrates

the basic solution to the problem [1].

Nesting problem is NP hard problem where no exact method has been proposed in

literature and we do not have a close form solution and only heuristic approaches are

used to solve these problems [3]. Bin packing problem is a type of nesting problem

where we have only one bin and the items that have to be placed inside the bin are

characterized by area or some other value and the objective is to fit maximum items

1

Figure 1.1: General solution to nesting problem

inside the bin that relates to our work.

Two must important strategies that are followed by researchers are placement strat-

egy and the second one is sorting strategy. In placement strategy, researcher have main

focus on minimizing the area, maximizing the length of sheet, minimizing the over-

lap and evaluation criteria such as measuring waste overlap. Sorting strategy deals

with placement order and selection of piece to be placed next [4]. One of the main

challenges in nesting problem is overlap detection method. From human prospective,

overlap detection is a simple task but computationally it is really hard task and gets

more complexed as the complexity of polygon increases. In literature, many methods

were used for overlap detection. In most of the literatures, a method of No Fit polygon

was used to detect the overlap between polygon and sheet. No Fit polygon method has

advantages on traditional overlap detection methods due to its low computational time

which has significant effect on the overall placement computational time.

Another heuristic technique was developed that was based on simple search where

the neighborhood was horizontal or vertical translation of previous placed polygon [5].

Pairwise clustering and Guided cuckoo search techniques have also significant role

in nesting problem in which polygons are used in pair based on the features that are

2

mostly matched in multiple polygons [6]. Fig. 1.2. illustrates the overview of nesting

problem [7].

Figure 1.2: Overview of nesting/cutting problem

1.2 Problem Statement

Due to very importance of nesting problem in many industrial applications such as

leather, wood, clothing, metal and papers, Heuristic algorithms are promising solutions

to solve these problems. Nesting problem is a basic part of cutting and packing prob-

lems and also known as combinatorial optimization problem and deals with different

type of polygons geometry i.e. regular, irregular, convex and rectangular. The problem

deals with the placement of large number of polygons inside a rectangular sheet in such

a way that no polygon overlaps and crosses the boundary of rectangular sheet.

1.3 Motivation and Objectives

Computational optimization problem also known as stock placement problem is faced

in many industries and solution to this problem is quite important for industries which

require development of good algorithms. Development of such algorithms is not an

easy task. Researchers had started working on these algorithms a long time ago and

3

last few years algorithms deserved real investment of researcher in this field. Nesting

problem has a wide range of applications and many problems are being solved with

these techniques in industries. Problem has many practical variants and is very impor-

tant for researchers where they do not have a good attempt to solve these problems.

These problems are open for researchers and need more techniques to be developed in

future. Our aim is to study and investigate all these problems and develop state of the

art algorithm that could produce good results for industries in less computational time.

Fig. 1.3. illustrates the structure of different problem fields (adapted from Dyckhoff

1990).

Figure 1.3: Structure of different problem fields

The objectives of this study are listed below:

• Primary objective of the research is to find most prominent solution for 2 dimen-

sional nesting problem.

• Secondary objective of the study is to maximize the sheet utilization or minimize

the wastage of sheet while placing all the polygons inside the sheet. Maximum

utilization is requested in many industries to reduce the waste material and this

4

reduction in waste can save the production cost since material cost is major con-

tribution to production cost.

• Tertiary objective is to improve the efficiency of algorithm in term of computa-

tional time of algorithm.

So nesting problem is quite important for many industries and in industrial environ-

ment this problem is dealt by workers who have built the nesting layout and techniques.

The principle motivation behind nesting problem is to minimize the stock wastage

which reduces the production cost and quite beneficial for industries.

1.4 Contributions of Thesis

This thesis makes several contributions to stock placement problem. We propose a

heuristic algorithm for nesting problem based on: optimal groups of unique polygons

follow by placement routine for optimal placement. Overlap detection is used to elim-

inate the overlap of polygons. A short description of each contribution is illustrated in

this section (each contribution is discussed in detail in chapter 3).

Optimal groups of unique polygons are used to produced optimal placement results.

The unique polygons are first grouped into two, three and maximum four polygons

based on three functions: boundary overlap, compaction and wastage. These grouped

polygons are used to place inside the sheet.

Placement routine function (max boundary overlap, min convex hull and min

wastage) is used to place the polygon at optimal placement. This function extracts

the most suitable placement for next piece to be placed inside the sheet.

1.5 Thesis Outline

Chapter 1 is the introduction of nesting problem which consists of overview of nest-

ing problems, problem statement, motivation and objectives of study and contributions

of this thesis to nesting problem. Chapter 2 is literature review of nesting problems.

Chapter 3 is about experimental setup. Chapter 4 deals with the methodology and pro-

posed technique used in this thesis. Chapter 5 deals with the results and discussion

5

which comprises of model parameters, experimental results and benchmarks problems.

Chapter 6 provides the conclusion and future works.

6

Chapter 2

LITERATURE REVIEW

2.1 Review of Stock Placement Problems

Stock Placement problems have different forms and versions. These versions were first

arranged in categories byDyckho and Finke. These categories were based on four cri-

teria: dimensionality, kind of assignment, assortment of large objects, and assortment

of small item. These categories are further divided into sub categories [8]. Dyckho and

Finke scheme was further extended by Wäscher et al. (2007) and fifth criteria ”shape

of small items” was added [9].

The dimensionality deals with the number of dimensions of the problems which

can have one dimension, two dimensions, three dimensions and N dimensions. Kind

of assignment consists of output value maximization and input value minimization.

Small pieces can be assorted in three categories: strongly heterogeneous (many pieces

of different types), weakly heterogeneous (many pieces of few shapes) and identical

(single type pieces). Large pieces can be assorted in two main categories: single large

piece with fixed or variable dimensions and several large pieces with fixed dimensions.

In case of more than one dimensions, the items can be divided into categories of regular

(rectangles, boxes, circles) and irregular.

According to the typology proposed by Wäscher et al. (2007), two dimensional

irregular nesting problem can be divided into six main categories: (i) Identical item

packing problem, (ii) Placement problem, (iii) Knapsack problem, (iv) Cutting stock

problem, (v) Bin packing problem, (vi) Open dimension problem. Fig. 2.1. illustrates

the nesting problem types which was adapted from Wäscher et al.(2007 [9].

This chapter discussed the basics of nesting problem. Section 2.1 describes the ge-

ometric representation of pieces and how this geometry can be used to solve the geo-

metric limitations of the problem.

7

Figure 2.1: Nesting problem types

2.2 Nesting Problem Types

The cutting and packing problem has a wide range of problem types which are listed

below:

2.2.1 Bin Packing

Bin packing problem deals with maximum number of items that could be placed inside

the bins. The goal is to use less number of bins that contain maximum number of items.

Bin packing problem has different variants and items and bins could be single dimen-

sion or multidimensional. Problem has a wide range of industrial applications such as

manufacturing, vehicle scheduling, loading and vehicle routing. Garey, Coffman and

Johnson had done a detailed survey of bin packing problem [10].

2.2.2 Knapsack Packing

Knapsack is an important type of stock placement problems and very similar to bin

packing problem. The problem consists of fixed capacity knapsack and different types

of objects. The main goal is to put maximum number of objects inside the knapsack by

keeping in mind the maximum capacity of knapsack [11].

8

2.2.3 Capacity Allocation

Capacity allocation problem is also called Space allocation problem and closely related

with bin packing and knapsack problems. The objective is to allocate space to all

objects by keeping in mind all constraints. The problem can be explained with a real

life example. Let say, we have a small office with fixed capacity/space and 10 office

people. Now the objective is to assign space to all people of this office. More detail of

this problem can be viewed in [12, 13].

2.2.4 Strip Packing

The strip packing problem deals with the packing of rectangles where only 900 rotation

is allowed. The sheet should be of limited height. Unlimited height sheets consist of

roll of material.

2.2.5 Trim Loss Problem

Trim packing problem is also called sheet wastage problem which occurred as result of

cutting irregular parts from sheet. The problem is quite important and complicated for

industries when these irregular parts are planned to be used in future packing problems.

2.2.6 Loading Problem

Loading problem is a two or three dimensional regular packing problem where regular

boxes are placed within a container. It contains many industrial objectives and con-

straints. The problem can be explained more with an example where a delivery lorry is

loaded to deliver customer requested objects.

2.2.7 Nesting Problem

Nesting problem is very important type of stock placement problems and gains interest

of researchers. Due to its wide range of industrial applications, research area is open

for researchers and it needs more work has to be done in this area. Nesting problem

mostly represent two dimensional problems where irregular shapes has to be placed

inside rectangular or non-rectangular sheets. The main focus of our research is on

nesting problem.

9

2.3 Stock Placement Problem Surveys and Bibliographies

Facts of stock placement problem can be used to in different areas. As mentioned by

Dyckhoff, the research area is opened for different applications and research is con-

ducted in following areas: manufacturing, mathematics, optimization, industries, en-

gineering science, operation research etc. Huge library of surveys and bibliographies

has been conducted so far on stock placement problems. Table 2.1 illustrates the list of

surveys and bibliographies derived from [14, 15, 16].

Author(s) Year Author(s) Year

Brown [17] 1971 Rode and Rosenberg [32] 1987

Salkin and de Kluyver [18] 1975 Dyckhoff, Finke and Kruse [33] 1988

Golden [19] 1976 Coffman and Shore [34] 1990

Hinxman [20] 1980 Dyckhoff and Wacher [35] 1990

Garey and Johnson [21] 1981 Dowsland [36] 1991

Israni and Sanders [22] 1982 Haessler and Sweeney [37] 1991

Sarin [23] 1983 Dowsland [38] 1992

Rayward-Smith and Shing [24] 1983 Dyckhoff and Finke [39] 1992

Coffman, Garey and Johnson [25] 1984 Haessler [40] 1992

Berkey and Wang [26] 1985 Lirov [41] 1992

Dowsland [27] 1985 Ram [42] 1992

Dyskhoff, Kruse, Abel and Gal [28] 1985 Lodi, Martello and Vigo [43] 2002

Israni and Sanders [29] 1985 Cagan, Shimada and Yin [44] 2002

Dudzinski and Walukiewicz [30] 1987 Lodi, Martello and Monaci [45] 2003

Martello and Toth [31] 1987 Oliveria [46] 2003

Table 2.1: Stock placement problem surveys

10

2.4 Geometric Representation

Nesting problem has two important constraints: (i) polygon pieces are placed inside

the sheet with no overlap (ii) no polygon cross the boundary of sheet. Geometry of

pieces has a direct relation with the solution of nesting problem and to deal with these

constraints. Bennell and Oliveira (2009) had done a detailed survey of geometric prob-

lems. In literature, geometric problems are represented by different techniques and

approaches. The most common geometric methods are pixel/ raster method, D func-

tion, No fil polygon and phi- function [47].

2.4.1 Pixel/Raster Method

Polygon pieces and sheet can be represented by pixel matrices. The continuous data

sheet and polygons are divided into discrete values and polygons and sheet grids are

represented by a set of pixels. Different authors used different techniques to represent

the geometry of pieces and sheet. Oliveira and Ferreira (1993) proposed a very simple

scheme in which pixel value 1 denoted the existence of piece and pixel value 0 denoted

empty space [48]. Fig. 2.2. illustrates polygons matric representation based on the

Raster method.

Figure 2.2: Polygons matric representation based on Raster method

Maximum utilization can be achieved by placing the polygons close to each other and

no polygon cross the boundary of sheet. Polygons can also be represented by number

of vertices and a reference point is used to control the placement of piece on sheet.

11

Inner no fit polygon method is used to make sure that no polygon cross the boundary

of rectangular sheet. Let say we have a polygon A which has to be placed inside the

sheet. A reference point is selected and the reference point could be any vertices of

the polygon. The INFPA can be defined as one or several closed polygons formed by

moving reference point of polygon A along the internal side of polygon, by keeping

sheet stationary and A reference point always touches the sheet without overlap. The

inner no fit polygon of rectangular sheet is also a rectangle. In most of the literature,

INFP is used with NFP to extract the feasible position points. Fig. 2.3. illustrates the

INFP of P relative to the rectangular sheet [49].

Figure 2.3: INFP of P relative to the rectangular sheet

2.4.2 D-Function

Raster method has more accurate results with regular shapes. Instead of using discrete

values, direct polygon can be used for irregular shapes. A polygon can be represented

by number of vertexes and edges. Fig. 2.4.illustrates the vertex and edge of a polygon

[50].

In computer language, measuring the overlap between polygon pieces is very com-

plex task and takes much computational time. One of the techniques used in the lit-

erature to detect overlap between polygons is D-Function. A line is oriented in any

12

Figure 2.4: Polygon vertex and edge

direction and D-function determines whether a point is on left side or right side of this

line. The overlap can be detected by using the information of vertices and edges that

make a polygon. Fig. 2.5. illustrates the basic concept of D-function.

Figure 2.5: D-Function method

2.4.3 No-Fit Polygon (NFP)

The most important technique to detect the overlap between pieces is no fit polygon.

NFP polygon technique has importance due to its less computational time. The first

use of no fit polygon technique was done by Art (1966) and in his research Art used

the term shape envelop instead of no fit polygon [51]. Later in 1976 Adamowicz and

Albano replaced the term shape envelop with no fit polygon and the technique was

used in stock placement problem to detect the overlap between pieces using minimum

13

rectangular enclosure [52]. The main function of NFP is to measure the places where

two polygons intersect with each other.

NFP can be made by moving a polygon over the perimeter of stationary polygon.

Given two polygons A and B where A is stationary and B is moving polygon. The first

step in NFP is to mark a reference point on moving polygon B which will be identified

when B moves over the outer boundary of polygon A. The reference point could be

any vertex of moving polygon B. Start moving polygon B around the outer boundary

of stationary polygon such that polygon always touch and do not overlap. As polygon

B traced over the stationary polygon A the output polygon is called NFPAB. The

resulting NFPAB and reference point of B is used to test whether Polygon A and B

overlap or not. In case reference point of polygon B is inside the NFPAB then polygon

A and B overlaps. In case the reference point of polygon B is on the boundary of

NFPAB then polygon A and B touches. And finally if the reference point of polygon

B is outside the NFPAB then polygon A and B do not overlaps. Fig. 2.6. illustrates the

function of NFP. Fig. 2.7. illustrates the intersection test of polygon B with polygon A

using NFP [53].

Figure 2.6: Working principle of NFP

2.4.4 Phi-Function

Phi function is a latest technique that deals the geometric issues in nesting problem. Phi

function is a linear or non-linear function which is used in stock placement problem to

represent the mutual position between pieces. The Phi function was first invented in

cutting and packing problem by Stoyan et al (2001) in which he purposed that the

value of Phi function should be less than zero when two pieces overlap, equal to zero

14

Figure 2.7: Intersection test between polygon A and B using NFP

when their boundaries touch and greater than zero when two pieces do not overlap [54]

. Fig. 2.8. illustrates the polygon and its Phi function representation. In figure left side

is polygon and right side is phi function representation of polygon.

Figure 2.8: Polygon and Phi-function representation of polygon

2.5 Search Methods

This section discusses some search methods that are used in stock placement problems.

A brief description of searching techniques and their examples is given in this section.

2.5.1 Iterative Improvement Search

The first search technique is iterative improvement search where the next iteration to be

evaluated belongs to the neighborhood of current iteration. This search requires most

suitable neighborhood which can fit in next iteration. In rectangular packing problems,

the rectangles can be placed on the sheet in a given sequence. The number of these

sequences can be used to generate a suitable neighborhood solution and the sequence

15

number can be swapped. Most of the search methods need an initial solution. This

initial solution is based on the quick heuristics. The sequences are first sorted based

on height or area of the piece. In our case, the pieces are sorted based on descending

order of polygon areas. The large size polygons can be placed first and small size

polygons can be placed inside the holes and at small places and it produces a good

quality solution.

2.5.2 Hill Climbing

Hill climbing is a very simple optimization research, where a neighborhood of current

solution is generated and then this neighbor is evaluated. If the neighborhood solu-

tion has a good quality than the current solution then current solution is replaced with

neighborhood solution and process continues. If the neighborhood solution has bad

quality than the current solution then neighborhood is discarded and original solution

is adapted. At the end of the search, best solution is finalized and this should be the

current solution of hill climbing.

2.5.3 Tabu Search

Tabu search is a next extension of Hill climbing search technique and was first proposed

by Glover [55]. Tabu search is slightly different from Hill climbing and unlike hill

climbing, Tabu search evaluates a group of neighborhoods at each iteration and choose

the solution which has best evaluation value. Current solution is always replaced with

new solution which has better evaluation value. The history of last solution is also

maintained in a list. This list is used to avoid the revisiting of last areas which has

already been covered in previous searches.

2.5.4 Random Search Algorithm

Random search algorithm is a very common algorithm that is used in literature. In

random search algorithm, the polygons/pieces are saved in a list and each polygon

is represented by an index number. Random permutation of index is created in each

iteration and this permutation represents the order of pieces. First piece is selected

from the list of random permutation. Then second piece is selected from the remaining

16

list of random permutation. The NFP of these two pieces is calculated which gives a list

of points where second polygon can be placed. Second polygon is placed at each point

of NFP and bounding box area is calculated. Bounding box is the minimum area which

can cover the whole piece. Second polygon is placed at point which has minimum

bounding box area. Now the convex hull of first and second polygon is calculated and

this convex hull should be used as static polygon for next iteration [56]. Details about

convex hull can be found in next section.

2.6 Heuristic and Metaheuristic Methods

In literature, many heuristic and meta heuristic methods are used for solving irregular

stock placement problems. In heuristic methods, we dont have an exact solution to the

problem, instead we have multiple solutions available in list and we choose one more

suitable solution to the problem. Heuristic methods are optimization methods which

have less computational time than exact approaches. Bennell and Oliveira presented

the first review of heuristic methods in 2009. There are different heuristic methods used

in the literature. Some methods are constructive heuristics and some are improvement

heuristics.

Next section describes some heuristic methods which are used in the literature.

2.6.1 Bottom Left Algorithm

Bottom left heuristic algorithm was first presented by Art in 1966. In bottom left al-

gorithm, heuristic is applied in each step and one piece is placed inside the sheet. To

place a piece inside the sheet, piece is first placed at top right side of the sheet (Figure

2.9 (a)) then it is moved horizontally to the left side until it cant be moved left further

(Figure 2.9 (b)). Then, the piece is moved vertically down until it can be moved to left

side again (Figure 2.9 (c)). This process continues until the piece can be moved further

left or down (Figure 2.9 (d)). (Figure 2.9 (e)) shows the place where piece 5 is placed

inside the sheet using bottom left heuristic [57].

The bottom left heuristic depends upon the order and sequence of pieces which needs

more investigation. For sequences of pieces, different investigations by authors can be

17

Figure 2.9: Bottom-left process

found in literature. In [58], Oliveira describes some rules to arrange the sequence of

pieces. More than 120 variants of bottom left heuristic were derived from these rules.

In [59], Dowsland proposed nine rules to arrange the pieces in sequence and then these

rules are used in efficient implementation of bottom left heuristic. In [60], Gomas

and Oliveira introduced the search over the sequence of pieces. In each iteration, the

position of two shapes in the sequence was alternated and then bottom left heuristic

was performed.

2.6.2 Simulated Annealing

Simulated annealing is the most efficient algorithm for search over the sequence. The

concept of SA was first developed by Metropolis et al. [61] in which he presented an

algorithm to measure the cooling of heating bath. Kirkpatric et al. [62] first time pro-

posed the simulated annealing to solve the combinatorial optimization problems. After

that many researcher had started working on simulated annealing and there has been

many applications where simulated annealing has been applied to different optimiza-

tion problems. Simulated annealing is an advance version of local optimization where

initial solution is evaluated and then some iterations are performed to improve this

18

initial solution until no such iteration produced better results. Simulated annealing is

random search procedure in which the probability of getting stuck at poor iteration is

very low. Because it avoids to get stuck at poor local optima, it produces better results.

2.6.2.1 SA Algorithm Example

To understand the simulated annealing algorithm, consider a simple example de-

rived from [63].Let P = {c1, c2, c3,cn} is a tour among n countries, where

ci ∈ {1, 2, 3,n}. Let F(P) denotes the function of tour P, then function can be

written as:

F (P) =
n−1∑
i=1

dci,ci+1
+ dcn,c1 (2.1)

where d is distance between two countries. The objective of simulated annealing is to

minimize the equation (2.1) by choosing random order of closed tour.

The detail procedure of simulated annealing algorithm is given as follows:

Step 1: Initialization : Setup initial temperature Tini−1 and end temperature Tend−1 and

cooling coefficient α

Step 2: Initial solution : Randomly select the a country x from the closed tour and set

it as the first country co1(co1 = x) of the tour. Now mark the most closed city of co1 as

the second city co2 of the tour and do the same process until the last city c0
n of tour is

selected. Finally, the initial solution of tour is created P = {co1, co2, co3,con}. Now,

measure the objective value V0 = F (P0) according to the equation (2.1).

Step 3 : Create a new solution : Randomly select three solution x1, x2andx3 from the

closed tour where x1, x2, x3 ∈= {1, 2, 3,, n}.Let

dccoun1,ccoun1mod(n)+1
= Max{dcx1,cx1mod(n)+1

, dcx2,cx3mod(n)+1
, dc31,c31mod(n)+1

} (2.2)

Now randomly select three positive integers y1, y2andy3 from the closed tour where

y1, y2, y3 ∈= {1, 2, 3,, n}.Let

dccoun1,ccoun2 = Min{dccoun1,cy1
, dccoun2,cy2

, dccoun2,cy2
} (2.3)

Where coun2∈ {1, 2, 3,, n} , coun2 6=coun1, coun2 6= (coun1-2+n) mod (n)+1,

19

coun2 6= coun1 mod (n)+1. If coun 1 < coun2, then

ći =

ci 1 ≤ i ≤ coun1

count2 i = coun1 + 1

ci−1 coun1 + 1<i ≤ coun2

ci coun2<i ≤ n

otherwise

ći =

ci 1 ≤ i ≤ coun2

ci+1 coun2 ≤ i<coun1

ccoun2 i = coun1

ci coun1<i ≤ n

Step 4: Get new objective value: Calculate the new objective value F (Ṕ). If F (Ṕ)<V0

then V0 = F (Ṕ)andP0 = Ṕ

Step 5: Selection of new solution: Let ∆F is the relative difference of two objective

values, then ∆F = F (Ṕ)− F (P0), if ∆F ≤ 0, P0 = Ṕ then Ṕ is accepted. Otherwise

if ∆F > 0, then calculate the probability to accept the new solution Ṕ by using this

equation:

ρ = e−∆F/t (2.4)

And Ṕ is only accepted this probability ρ.

Step 6: Continuous or end of SA: Check out the current temperature T, if T <Te−1 then

SA will end otherwise go back to step 3.

2.6.3 Genetic Algorithms

Genetic algorithms are based on the concept of evolution of population within the

world. First time genetic algorithms were proposed by Fraser in 1957 [64]and Bre-

mermann in 1958 [65]. Genetic algorithms consist of several solutions known as chro-

mosomes/individuals. Each chromosome consists of several parts known as genes. A

value is assigned to each gene and that value is called alleles. It’s important to mea-

sure the quality of each chromosome called fitness as these chromosomes represent a

solution. The flow chart diagram of genetic algorithm is illustrated in Fig.2.10. [66].

20

Initialize PopulationInitialize Population

Fitness Calculation

Terminate? End

Yes

Selection

No

Crossover

Mutation

Figure 2.10: Flow chart diagram of Genetic Algorithm

2.6.3.1 Initialize Population

Genetic algorithms initialize with population; a set of individuals. Each individual

is actually a solution of the problem which we want to solve. These individuals are

characterized by set of variables known as genes. A joint combination of genes is

called a chromosome. In GA, the genes are represented by a set of binary digits (a

string of 1s and 0s) then we encode and decode these genes in chromosome as shown

in Fig.2.11.

2.6.3.2 Fitness Function

Fitness function is a function that compares all the individuals and determines how fit

an individual is among all individuals. It assigns a fitness score to individuals which

calculates the probability for each individual that can be used for the reproduction.

21

Figure 2.11: Chromosomes, Genes and Population of GA

2.6.3.3 Selection

In the selection phase, those individuals are selected which has maximum value of

fitness score and these individuals are used for next generation. Two pairs of individuals

are selected based on their fitness function, these pairs are known as parents.

2.6.3.4 Crossover

Crossover is the most fundamental part of generic algorithm. Crossover point is se-

lected randomly from the genes for each parent’s pair. Consider an example in which

crossover point is selected 3 as shown in Fig.2.12.

Figure 2.12: Crossover in GA

Now offspring are created by exchanging all the binary values of genes of parents

22

until crossover point is reached as shown in Fig.2.13 and Fig.2.14. And then these

offspring are added to the population.

Figure 2.13: Exchanging genes of parents

Figure 2.14: New offspring

2.6.3.5 Mutation

Once the offspring formed, some of the genes of parents can be selected for mutation

with low random probability. It means that some of the bites can be flipped as shown

in Fig.2.15. Mutation prevents the premature concurrence.

23

Figure 2.15: Mutation

2.6.3.6 Termination

If the offspring of new generation is not different from the previous one then population

has converged and algorithm terminates. Finally, these are the solutions to our problem.

2.6.4 Linear Programming

Linear programming is a latest approach to solve stock cutting problems. In simplex

Linear programming method, we look for a new column or activity to improve our

solution. So instead of looking at all columns to pick out best one, we insert a new

useful column to solve the problem. For stock placement problems, consider a simple

example in which an order is placed forNi number of pieces of length li of the material,

for i = 1, 2, 3,,m. We have a stock of standard lengths L1, L2, L3,, Lk from

which lengths have to be cut off to fill the customer order. Consider large number of

pieces are available in stock for each length L1, L2, L3,, Lk. For some value j and i,

as long as Lj ≥ li, an order can be filled. Each length in stock has a predefined cost.

The cost to fill an order is the total cost of a material to be cut off the stock. Here the

problem is fill the stock order at least cost.

Here the activity means cutting a specific stock length from available stock. For

example, the customer placed an order of cutting three pieces one of length 5 and

two of length 4 from a stock of length 17, this is an activity. Now assign a value

to each activity that ordered the cutting of length l1, l2,, lm from a stock of length

L1, L2, L3,, Lk, so this cutting problem is a linear programming problem, where the

24

each value of a variable indicated the number of times the activity is performed. The

variables assigned to activities are v1, v2, v3,, vn and these variable should fulfill the

m inequalities. Thus,

a1x1 + a2x2 + a3x3 ++ anxn ≥ Ni, (i = 1, 2, 3,,m) (2.5)

Let say, an order of Ni pieces of length li to be satisfied, then the cost function to be

minimized is given as [67];

C1x1 + C2x2 + C3x3 ++ Cnxn (2.6)

2.6.5 Cuckoo Search Algorithm

Cuckoo search was first time proposed by Yang and Deb in 2009 [68]. The algorithm

was sparked by the reproductive concept of cuckoos in which the female lays her fer-

tilized eggs in the nests of other species so that surrogate parents unintentionally raise

her brood. Three basic rules of cuckoo search are shown in Fig.2.16.

Each cuckoo lays only one egg
at a time and placed it in a
randomly selected nest;

The best nest which contains
high quality eggs will be used
for next generations;

The number of host nests is
fixed, and the probability of
align egg is (0,1)

Figure 2.16: Basic rules of Cuckoo search algorithm

Following steps describes the cuckoo search algorithm:

25

• Start with initial population of n host nests.

• Lay the egg (aḱ, bḱ in the k nest where k is a randomly selected nest. Cuckoo

egg is quite similar to host egg.

• Compare the fitness score of cuckoo egg with the fitness value of host egg and

calculate the root main square error.

• If the fitness score of cuckoo egg is better than the fitness score of host egg then

replace the kth nest egg by cuckoo’s egg.

• If the host nest notice it, the nest is discarded and a new nest is built.

• Repeat 2nd step to step 5 until termination criteria is satisfied.

Flow chart diagram of cuckoo search algorithm is depicted in Fig.2.17 [69].

2.6.6 Pairwise Clustering

Piarwise clustering is also an important technique used in nesting problems. Pair-

wise clustering is based on the concept of matched features. Making the pair of these

matched features in a case where large number of pieces have to be cut out of a stock

can yield good results [70]. The polygons first segregated into pairs of convex and con-

cave polygons. Then only pairs of concave polygons are used to produce better results.

Fig.2.18. depicts match features of polygons.

26

Figure 2.18: Matched features of polygons

27

Start

Initialize Cuckoo with
eggs

Lay eggs in nest

Some eggs could be
detected and killed

Population < max

value?

Check eggs which
survived in the nest

Yes

End

Kill cuckoos in
worst case

No

Yes

End criteria is
satisfied?

Lets egg grow up

No

Find nests with best
fitness score

Determine best
environment

Move cuckoo towards
best environment

Determine the radius of
egg for each cuckoo

Figure 2.17: Flow chart diagram of Cuckoo search algorithm

28

Chapter 3

EXPERIMENTAL SETUP

3.1 Overview

The proposed algorithm is simply implemented by using MATLAB R2018a and Mi-

crosoft Visio 2016. Different data sets are created and used to validate our proposed

algorithm. Some data sets are already available on ESICUP website [71] and these data

sets are used by the researchers to check the effectiveness of their solutions to the stock

placement problem. Next section describes the coordinates and physical shapes of all

these data sets.

3.2 Data Sets

This section describes the coordinates and shapes of all data sets that are used in our

proposed algorithm.

3.2.1 Data Set 1

This data set is created by us and used in our proposed algorithm. Fig.3.1. shows the

basic shapes of this data set. The data set contains 4 shapes with area of 8, 3, 4 and

4 and each step is 1 unit. The average number of vertices by piece are 6.5. Table 3.1.

describes the basic coordinates of this data set.

Figure 3.1: Shapes of data set 1

29

Shape 1 X 0 2 2 10 10 12 12 0
Y 0 0 2 2 0 0 4 4

Shape 2 X 0 -4 -4 -2 -2 2
Y 0 0 4 4 2 2

Shape 3 X 0 2 2 4 4 6 6 0
Y 0 0 -2 -2 0 0 2 2

Shape 4 X 0 4 4 0
Y 0 0 4 4

Table 3.1: Coordinates of data set 1

3.2.2 Data Set 2

This data set contains 7 shapes with area of 4, 7, 5, 6, 4 , 7 and 6. Each step is 1 unit in

length. Average number of vertices by piece are 7.2. Fig.3.2. shows the basic shapes

of this data set. Coordinates of this data set are given Table 3.2.

Figure 3.2: Shapes of data set 2

3.2.3 Data Set 3

The data set contains 6 shapes with area of 4, 2, 3, 3.75, 4 and 7 and each step is 1 unit.

The average number of vertices by piece are 6.6. Fig.3.3. shows the basic shapes of

this data set. Coordinates of this data set are given Table 3.3.

3.2.4 Data Set 4

A data set hexagon is used to experiment the results of proposed approach. Each length

is 2 units. Number of vertices are 6. The area of hexagon is 10.39. Table 3.4. shows

the coordinates of hexagon.

30

Shape 1 X 0 2 2 4 4 6 6 0
Y 0 0 -2 -2 0 0 2 2

Shape 2 X 0 2 2 6 6 0
Y 0 0 2 2 6 6

Shape 3 X 0 4 4 6 6 0
Y 0 0 -4 -4 2 2

Shape 4 X 0 4 4 2 2 6 6 0
Y 0 0 2 2 4 4 6 6

Shape 5 X 0 4 4 0
Y 0 0 4 4

Shape 6 X 0 2 2 4 4 6 6 4 4 0 0 2 2 0
Y 0 0 2 2 4 4 6 6 8 8 6 6 4 4

Shape 7 X 0 12 12 0
Y 0 0 2 2

Table 3.2: Coordinates of data set 2

Figure 3.3: Shapes of data set 3

3.2.5 Data Set 5: SHAPES0

Data set SHAPES0 is presented on the ESICUP website [71] and we used this data set

to experiment and benchmark our proposed algorithm. The data set contains 4 different

pieces and total number of pieces are 43. Average number of vertices by piece are 8.75.

Sheet width used is 40. Fig.3.4 shows the basic shapes of this data set. The coordinates

of these shapes are extracted from the ESICUP website [71].

3.2.6 Data Set 6: Dighe1

This data set is also presented on the ESICUP website [71] and we used this data set

to experiment and benchmark our proposed algorithm. The data set contains total 16

unique pieces. Sheet width used is 100. Fig.3.5 shows the basic shapes of this data set.

31

Shape 1 X 0 2 2 4 4 6 6 0
Y 0 0 -2 -2 0 0 2 2

Shape 2 X 0 4 4
Y 0 0 2 2

Shape 3 X 0 4 4 2 2 0
Y 0 0 4 4 2 2

Shape 4 X 0 2 2 4 4 1 1 2 2 0
Y 0 0 2 2 4 4 5 5 6 6

Shape 5 X 0 4 4 0
Y 0 0 4 4

Shape 6 X 0 6 6 2 2 6 6 0
Y 0 0 2 2 4 4 6 6

Table 3.3: Coordinates of data set 3

Shape 1 X 0 2 4 4 2 0
Y 0 -1 0 2 1 2

Table 3.4: Coordinates of hexagon

The coordinates of these shapes are extracted from the ESICUP website [71].

3.2.7 Data Set 7: Dighe2

This data set is also presented on the ESICUP website [71] and we used this data set

to experiment and benchmark our proposed algorithm. The data set contains total 10

unique pieces. Sheet width used is 100. Fig.3.6 shows the basic shapes of this data set.

The coordinates of these shapes are extracted from the ESICUP website [71].

32

Figure 3.4: Data set : SHAPES0

Figure 3.5: Data set : Dighe1

Figure 3.6: Data set : Dighe2

33

Chapter 4

METHODOLOGY AND PROPOSED TECHNIQUE

4.1 Problem Formulation

This section explains the mathematical formulation of nesting problem. Consider a

set of polygons denoted by a set P = {p1, p2, p3, p4,, pn}, the possible permitted

angles A = {a1, a2, a3, a4,, an} and a rectangular sheet S(Wfxd,Lused) with Wfxd ≥

0 andLused ≥ 0 where Wfxd denotes the fixed width of polygon and Lused denotes the

length that is actually used after the placement of all polygons. For simplicity, the sheet

edges are set parallel to x and y axis as shown in Fig.4.1.

Figure 4.1: Example of sheet layout

A polygon pi|pi ∈ P with angle ai|ai ∈ A is denoted by pi(ai) which may be

written as pi for convenience. The position of pi is described by vector Vi = (xi, yi).

The translation of a polygon by position vector Vi can be defined by Minkowski sum

pi ⊕ Vi. The main objective of nesting problem is to maximize the sheet utilization

34

or minimized the sheet length L such that no pieces overlap and cross the boundary of

sheet. The sheet nesting problem is mathematically described as follows:

minLused = max{x|(x, y) ∈ (pi ⊕ Vi)} −min{x|(x, y) ∈ (pi ⊕ Vi)} (4.1)

maxU =
n∑

i=1

Areapieces/Wfxd ∗ Lused

s.t.(pi(ai)⊕ Vi) ∩ (pj(aj)⊕ Vj) = ∅,

(pi(ai)⊕ Vi) ⊆ S(Wfxd, Lused)

(4.2)

Where maxU describes the maximum utilization of sheet.

4.2 Proposed Technique

A heuristic algorithm is used for proposed optimization problem. This is an iterative

algorithm which performs iterations until all the polygons are placed inside the main

sheet. The objective of each iteration is to find an optimal placement where maxi-

mum boundary of floating polygon overlap with sheet boundary and placed polygons

followed by minimum convex hull value and minimum sheet wastage. The algorithm

starts with fixing the first polygon at any placement inside the main sheet however in

our case mostly the first polygon is fixed at the top left corner of the stock. In the next

step, the area of each polygon is calculated and these polygons are saved in a variable

Xflt in the descending order based on their areas. Multiple polygons from variableXflt

are used at a time to place at the most feasible placement inside the stock. The multiple

polygons that are used at a time to place inside the sheet can yield better results because

the are much chances that one of these polygons might fit properly at the feasible place-

ment. The flow chart diagram explaining the complete algorithm is shown in Fig.4.2.

The most important steps of algorithm are Group unique polygons, Boundary extrac-

tion, overlap detection and Objective function. All the steps of algorithm are explained

in detail in next section.

35

Initialization
 Stock,

Boundary

Extraction

β(A) = (A B) - B

Group Unique

Polygons

 𝑛𝑪𝑟

Area Sorting

Rotate

𝑋𝑓𝑙𝑡

Translate

𝑝𝑡𝑒𝑚𝑝 = Rotate (𝑝𝑓𝑙𝑡 ,)
Area Overlap

(𝑝𝑡𝑒𝑚𝑝 ,𝑋𝑓𝑥𝑑)

YES

NO

Obj_function
(i) Max (BDRY_Overlap (𝑝𝑡𝑒𝑚𝑝 ,𝑋𝑓𝑥𝑑 ,

(ii) Min CONVH (𝑝𝑡𝑒𝑚𝑝 ,𝑋𝑓𝑥𝑑)
𝑆𝑡𝑜𝑐𝑘))

(ii) Min WASTED (𝑝𝑡𝑒𝑚𝑝 ,𝑋𝑓𝑥𝑑)

𝛽 𝑝𝑡𝑒𝑚𝑝 ,𝛽(𝑆,𝑝𝑓𝑥𝑑))

 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 Placement

Place 𝑝𝑓𝑙𝑡 𝑎𝑡

 REMAINIG? 𝑝𝑓𝑙𝑡
YES

Exit with Optimum

Utilization

NO

Figure 4.2: Algorithm flow chart diagram

36

4.2.1 Pseudo Code of Proposed Algorithm

This section explains the pseudo code of our proposed algorithm that is built using

MATLAB R2018a. The coordinates of stock and polygons are saved in Excel sheet.

Basic variables and functions of variables used in the algorithm are explained as:

Stock : The main stock sheet.

Xflt : Set of all floating polygons.

Xfxd : Set of all fixed polygons.

pflt : A floating polygon where pflt ∈ Xflt .

Grouped(˙pflt, ¨pflt) : A function that grouped the unique polygons.

pg : A grouped polygon.

Area(ṗg, desc) : A function that calculates the area of grouped
polygons and arrange them in descending order.

Bound Ext(Stock,Xfxd) : A function that extracts the boundary of Stock
and fixed polygons.

Rotate(pflt, θ) : A function that rotates the pflt by angle θ .

ptemp : A temporary polygon achieved with the rotation
of pflt by angle θ .

β(A) : Boundary of polygon A.

A⊕B : Dilation of polygon A with B.

Translate(pflt, ptemp, Stock) : A function that moves the pflt on the extracted
boundary of Stock and pfxd.

pfxd : A fixed polygon where pfxd ∈ Xfxd .

OverlapDetection(ptemp, Xfxd, Stock) : A function that detects the overlap of ptemp

polygon with all fixed polygon as well as stock.

BDRY Overlap(ptemp, Xfxd, Stock) :
A function that calculates the boundary overlap
of ptemp polygon with all fixed polygon as well
as stock.

CONVH(ptemp, Xfxd) : A function which calculated the convex hull for
the polygons ptemp and X .

WASTED(ptemp, Xfxd) : A function that returns the wastage after the
placement of ptemp.

Pseudo code is given as:

\\ Initialization:

37

Input the polygon’s coordinates and save in variable Xflt.

Save stock coordinates in variable Stock.

Choose number of polygons that should be tried at

a time to place inside the stock.

Choose the angles θ.

Choose the first piece to be placed inside the stock

and place it at top left side of the stock.

\\ Placement Process:

Do {

For ∀ pflt : pflt ∈ Xflt

{

ṗg = Grouped(˙pflt, ¨pflt)

For ∀ ṗg : ṗg ∈ ˙Xflt

{

p̈g = Area(ṗg, desc)

β = Bound Ext(Stock,Xfxd)

For ∀ values of θ

{

ptemp = Rotate(p̈g, θ)

For ∀ βi(ptemp) : βi(ptemp) ∈ β(ptemp)

{

For ∀ β(Stock)

{

For ∀ βi(pfxd) : βi(pfxd) ∈ β(pfxd)

{

pt = Translate(ptemp, Stock, pfxd)

Area overlap(pt, Xfxd) =?No

{

Max BDRY Overlap(pt, Xfxd, Stock)

38

Min CONVH(pt, Xfxd)

Min WASTED(pt, Xfxd)

}

}

}

}

}

}

}

Best Placement = pflt \\ Save best placement.

pflt ⇐ Xflt \\ Remove the pflt from Xflt

Update Xflt

}

While pflt remaining in Xflt

4.2.2 Initialization

In the initialization step, input the main sheet coordinates and save in sheet. The poly-

gons coordinates are saved in variable Xflt. In our case, the polygon coordinates are

read from a file. The algorithm assumes that one polygon must be placed at known

placement with orientation that yields maximum overlap with sheet boundary, so that

the remaining polygons should be placed on maximum boundary overlap of fixed poly-

gon.

4.2.3 Group Unique Polygons

In any 2-D nesting problem, the goal is to place as many as pieces inside the sheet

such that no piece overlap with each other and cross the boundary of main sheet. In

our approach, the concept of minimizing the the waste depends upon the concept of

placing the optimal grouped polygons inside the sheet. The grouped polygons would

be a combination of two, three, four and a maximum of five unique polygons depending

39

upon the placement routine. The polygons are grouped using the following formula:

C(n, r) =
n!

(n− r)!r!
(4.3)

Placement routine is a function that returns maximum value of boundary overlap, min-

imum value of convex hull and minimum value of wastage. Placement routine function

is described in detail below:

4.2.3.1 Boundary Overlap

The first and the most important component of placement routine is boundary overlap.

Boundary overlap is maximum pixel/perimeter overlap of floating polygon with bound-

ary of sheet and boundary of placed polygons inside the sheet. Fig. 4.3. depicts the

maximum boundary overlap of polygon A with sheet.

Figure 4.3: Boundary Overlap of polygon A with sheet

Consider a polygon placement example in which polygon A has an area of 7 and

perimeter of polygon A is 16. The perimeter of the polygon is the sum of lengths of

the side of the closed polygon. It can be seen in Fig.4.3. that maximum perimeter of 7

overlaps with the boundary of sheet at given orientation. Consider an other placement

example where a rectangular polygon B is placed at the boundary of polygon A such

that polygon A and B do not overlap, Fig.4.4. Whenever a polygon B is placed at the

40

boundary of polygon A, new configuration is made. The configuration with maximum

boundary overlap will be considered as the final placement. Fig.4.4 depicts some con-

figuration and clearly, when the polygon B is placed at hole (right fig) it will result in

maximum boundary overlap of polygon B with polygon A.

Figure 4.4: Some boundary overlap orientations of two polygons

4.2.3.2 Convex Hull

Second component of placement routine is convex hull. Convex hull of a set P of points

is the smallest set which consists of all the points of P. Convex hull is described by an

example shown in Fig.4.5. In this example, area of polygon A is 7 and it’s convex hull

area is 10.

Figure 4.5: Convex hull of a polygon

Consider an other example where polygon B has to place on the boundary of polygon

A with minimum convex hull value Fig.4.6. Only those configurations are shown in

Fig.4.6. which has minimum convex hull area. Clearly, configuration 1 has minimum

convex hull area so this will be considered as final placement.

From the placement routine, it’s more convenient to group more than two polygons

for better compaction, Fig.4.7. It can been seen that of all possible positions, placing

41

Figure 4.6: Polygon’s placement with minimum convex hull area

the polygons B and C as shown in Fig.4.7. is more suitable as it yields minimum convex

hull area. So in our proposed methodology, our objective is to group two or more than

two polygons for better compaction.

Figure 4.7: Placement routine optimization with convex hull

42

4.2.3.3 Wasted

The third component of placement routine is minimizing the sheet wastage. Wastage

is minimized by finding the holes in sheet after placement of polygons. It can be seen

in Fig.4.4. (right side) when the polygon B is placed at hole it will cover the hole and

wastage is zero in this case. In placement routine optimization Fig.4.7., the wastage is

also zero.

4.2.4 Geometric Transformations

Translation and rotation are required to place the polygon on each other. Suppose we

want to translate (x,y) coordinates of a Polygon in the Cartesian coordinate system to

another place with coordinates (X,Y), where X= x+r and Y=y+s. For translation and

rotation, we use homogeneous solution in which third component of the column is 1.

The relationship between (X,Y) and (x,y) can be written in matrix as:
X

Y

1

 =

1 0 r

0 1 s

0 0 1

 ·

x

y

1

 (4.4)

Rotational transformation can be used to rotate (x,y) coordinates by some angle θ and

it yields a new point (X,Y), the matrix relationship can be expressed as:
X

Y

1

 =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ·

x

y

1

 (4.5)

where

X = x cos θ − y sin θ (4.6)

Y = x sin θ + y cos θ (4.7)

43

In some cases, it is required to translate and rotate polygon’s coordinates (x,y) simulta-

neously. The combined function of translation and rotation can be written as follows:
X

Y

1

 =

cos θ − sin θ r

sin θ cos θ s

0 0 1

 ·

x

y

1

 (4.8)

4.2.5 Boundary Extraction

In our proposed algorithm, boundary of sheet and placed polygon is extracted for opti-

mal placement. Boundary is extracted by using dilation and erosion equations. Equa-

tion 4.9 and 4.10 illustrates the mathematical forms of dilation and erosion respectively.

A⊕B = {z|(B̂)z ∩ A 6= ∅}

A⊕B = {z|[(B̂)z ∩ A] ⊆ A}
(4.9)

In this equation,B is reflected around it’s origin then shifted by z. The dilation of A and

B is simply a set of all placements z, such that B̂) and A overlap contains at least one

element.

A	B = {z|(B)z ⊆ A}

A	B = {z|(B)z ∩ Ac = ∅}
(4.10)

The erosion equation shows that erosion of A and B is set of all placements z, such that

translation of B is a subset of A.

In dilation rule, the boundary of set A denoted by β(A) can be extracted by first

dilating A by B then measuring the difference between set A and it’s dilation with B.

That is,

β(A) = (A⊕B)− A (4.11)

In erosion rule, the boundary of set A denoted by β(A) can be extracted by first eroding

A by B then measuring the difference between set A and it’s erosion with B. That is,

β(A) = A− (A	B) (4.12)

44

4.2.6 Overlap Detection

In our proposed algorithm, we place the new polygons on the boundary of already

placed polygons. In this placement procedure, no polygon should be overlapped with

already placed polygons. If any polygon overlaps with already placed polygons then a

overlap detection alarm will be triggered pointing that such orientation is not allowed.

In our proposed technique, overlap detection is checked by polygons area. This can

be explained by a simple example. Consider a Polygon A is already placed inside the

sheet and it’s area is denoted by Aarea. A new polygon B has to be placed inside the

sheet such that it should not overlap with the polygon A. Polygon B area is denoted

by Barea. The combined area of A and B after B placement is denoted by ABarea as

shown in Fig.4.8 . If one polygon placed at some boundary of another polygon then

following condition shows that two polygons are overlapping:

ABarea < Aarea +Barea (4.13)

Figure 4.8: Overlap detection, (a) No area overlap (b) Area overlap

4.2.7 Objective Function

The objective function proposed in our approach is comprised of three elements. The

first element is boundary overlap, which aims to maximize the pixel/ perimeter overlap

of a polygon with sheet and existing polygons as illustrated in section 4.2.2.1. The

45

better compaction is achieved by maximizing the polygon’s overlap with the sheet and

existing polygons.

Second, the convex hull which tends to minimize the convex hull of a polygon with

existing polygons as illustrated in section 4.2.2.2. Convex hull is the smallest set of

points which contains all the points of a polygon.

Third, the wasted which tends to minimize the holes in sheet after placement of

polygons as illustrated in section 4.2.2.3.

46

Chapter 5

RESULTS AND DISCUSSION

5.1 Result and Analysis

Experimental results of this work are obtained with MATLAB R2018a setup to opti-

mize equation 4.1 and 4.2 . Results include some experimental examples and bench-

mark problems. The results of different nesting problems available in the literature

are used to evaluate and compare with our results. Some experimental examples are

used in the next sections to validate our approach and these examples allow us to make

decisions about parameters tuning and implementation of heuristic algorithm.

5.2 Model Parameters

By using some empirical examples, it is noted that good choice of a few parameters

of algorithm may yield better results. For example, the number of polygons used in

grouping significantly effect the quality of solution and computational time. As we

increase the number of polygons used in the group, the computational time increases a

lot, but the groups of large number of polygons may improve the stock utilization. The

number of grouped polygons that are tried at a time to place the most suitable polygon

at most optimal placement significantly improves the results but it increases the com-

putational time. Additionally, the some angles can yield better results in some cases

however it can produce bad results in other cases. If the shapes have some similarities

then a small angle may yield worse output than large angle and it effects the sheet uti-

lization. It is also noted from the experimental results that in case of orthogonal shapes,

90◦ incremental angle is a good angle and can produce better results, see Fig.5.3. This

is because in case of orthogonal shapes, 90◦ may ensure better match between different

shapes of polygons. Algorithm performs very well in case of orthogonal shapes be-

cause the shapes will be grouped perfectly without any confirm wastage. Further, the

large list of shapes may increase the computational time because it will take more time

47

at the grouping stage. In most cases, the first polygon is placed at the left upper corner

of rectangular sheet. Although the position of first polygon may effect the solution and

should be set carefully. This will only change no more than 5 % of the sheet utilization.

5.3 Experimental Results

The proposed algorithm is verified on nesting problem. Few experiments are done to

validate the feasibility of our algorithm. Later we also compare the results with best

known benchmark problem available in the literature.

5.3.1 Experiment 1

This experiment is used to prove that single objective function with only convex hull

is not a good optimization criteria as it may result in wastage. Consider an example in

which we have a set of orthogonal shapes as shown in Fig.5.1. Clearly, when the item

1 is placed on the same item, it results in four orientations with same value of convex

hull, see Fig.5.2.

Figure 5.1: Experiment 1: Polygon shapes with area: 8, 3, 4 and 4 respectively

Piece 1 is placed initially inside the sheet and when we place piece 2, there are 4 pos-

sible orientations with minimum convex hull value of 28. Obviously, some orientations

may be discarded due to overlap with polygons or piece 2 cross the boundary of main

sheet. Since all the orientations have same value of convex hull so piece 2 can be placed

at any orientation. But as we can see in Fig.5.2.(a), (b), (d) when piece 2 is placed in-

side the main sheet there is a confirm wastage. So single objective function with only

convex hull is not a good optimization criteria as it results in wastage. Fig.5.3. shows

the placement of shapes with Doraid Dalalah [3] and proposed algorithm. In proposed

approach the unique shapes are grouped first based on the placement routine and these

48

Figure 5.2: Experiment 1: Same convex hull value for all orientations

grouped shapes are represented by dotted lines. Total 12 shapes are placed inside the

sheet with sheet utilization of 93.33%. Table 5.1 shows the results comparison of pro-

posed algorithm and Doraid Dalalah [3].

Reference Sheet area # of shapes # of used shapes Unused area Utilization (%)
Doraid Dalalah [3] 60 13 11 6 90
Proposed Algorithm 60 13 12 4 93.33

Table 5.1: Experiment 1: Results of Doraid Dalalah [3] and proposed algorithm

5.3.2 Experiment 2

Here the shapes shown in Fig.5.4. a) has to be placed inside the non convex sheet

Fig.5.4. b). Each shape has 5 pieces and each mark is 1 unit long. The sheet used here

is non convex with each step of 5 units. Fig.5.5. shows the placement of these shapes

with Doraid Dalalah [3] and our algorithm. In our case total 30 pieces are placed inside

the main sheet with maximum utilization of 93% which makes our approach superior

to Doraid Dalalah [3]. Table 5.2 shows the results comparison of our algorithm and

Doraid Dalalah [3] for these shapes and stock.

49

Figure 5.3: Experiment 1: Placement of shapes in 6 x 10 rectangular sheet a) Doraid
Dalalah [3] with sheet utilization of 90% b) Proposed approach with sheet utilization
of 93.33%

Reference Sheet area # of shapes # of used shapes Unused area Utilization (%)
Doraid Dalalah [3] 175 35 29 18 89.7
Proposed Algorithm 175 35 30 13 93

Table 5.2: Experiment 2: Results of Doraid Dalalah [3] and proposed algorithm)

5.3.3 Experiment 3

In this experiment, the shapes shown in Fig.5.6. has to be placed inside the rectangular

sheet of 8 x 12. Practical placement of some items is shown in Fig.5.7. and it can be

seen that that among all the possible configurations where item 2 is placed with item 1,

positioning the item 2 as shown in Fig.5.7 is more preferred as it has minimum value of

convex hull. But in this situation, the convex hull value is same for both configurations,

although there might be chances that one configuration yields better results than other

one and have preference over other. Again, single objective function with only convex

50

Figure 5.4: Experiment 2: a) Polygon shapes with area: 4, 7, 5, 6, 4, 7 and 6 respec-
tively b) Non convex sheet with each step of 5 units long

hull is not a good optimization criteria as it conflicts the results. Fig.5.8. shows the

results of our algorithm where unique shapes are grouped together and these grouped

shapes are represented by dotted lines. These grouped shapes are then placed inside

the sheet at most feasible positions where the shapes have maximum boundary overlap,

maximum compaction and minimum wastage. Maximum utilization of 96% is achieved

in this case due to orthogonal shapes. So our approach performs very well in case of

orthogonal shapes. Here the unused area is 3.25 and shown by colored areas.

5.3.4 Experiment 4

In this experiment, hexagon shapes has to be placed inside the hexagon shaped stock.

The length of one side of hexagon is 2 units and length of one side of stock is 10 units.

One hexagon is fixed at the left side of the stock. Fig.5.9. shows the placement of all

possible hexagons that could be placed inside the stock. Some spots are unused due

to shape of stock and these unused ares are denoted by colored areas. In this case the

utilization is 84% which is maximum utilization for this type of problem.

51

Figure 5.5: Experiment 2: a) Doraid Dalalah [3] with sheet utilization of 89.7% b)
Proposed approach with sheet utilization of 93%

5.4 Benchmark Problems

This section describes the basic comparison of our algorithm’s results with some lit-

erature results. Data set shapes0 and Dighe2 which are presented on the ESICUP

website [71] are used to validate our proposed algorithm. Data set Dighe2 contains

10 unique pieces and sheet width is 100. Fig.5.10 shows the results of proposed ap-

proach for data set shapes0. Table.4.3. compares our proposed algorithm’s results with

some other literature’s results. In the listed problem, the goal is to place all the items

inside the stock while using minimum length of stock. It can be seen in the table.5.3

that our proposed algorithm results for data set shapes0 are superior to all literature

results except GLSHA: Gomes and Oliveira [60] which used the sheet length of 62.

Fig.5.11. shows proposed algorithm results for data set Dighe2. The used length is 100

and utilization is 84%.

52

Figure 5.6: Experiment 3: Polygon shapes with area: 4, 2, 3, 3.75, 4, and 7 respectively

Reference Sheet width # of item types # of items Length Time (s)
Hill climb: Burke et al. [72] 40 4 43 65 332.39
GLSHA: Gomes and Oliveira [60] 40 4 43 62 621
TOPOS: Oliveira et al. [58] 40 4 43 66.75 35.9
SAHA: Gomes and Oliveira [60] 40 4 43 63.15 3914
HAPE: Xiao and Jia [73] 40 4 43 67.55 79)
2DNEST: Egeblad et al. [5] 40 4 43 66 6(h)
Doraid Dalalah [3] 40 4 43 66 65
Proposed approach 40 4 43 64 2150

Table 5.3: Results of previous literature and proposed algorithm for shape0

Figure 5.7: Experiment 3: Same convex hull value for two orientations

53

Figure 5.8: Experiment 3: Placement of shapes in 8 x 12 rectangular sheet with utiliza-
tion of 96%

Figure 5.9: Experiment 4: Placement of hexagons in hexagon shaped sheet with uti-
lization of 84%

54

Figure 5.10: Stock placement of data set shapes0 with proposed approach

Figure 5.11: Stock placement of data set Dighe2 with proposed approach

55

Chapter 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

This thesis addressed the stock placement problem. To solve this problem, a heuristic

algorithm is proposed to minimize the wastage. The objective of this algorithm is to

place the convex/non convex polygons inside the main stock such that no piece overlaps

with each other and cross the boundary of stock. The objective of this research is to

maximize the sheet utilization and minimize the stock wastage after placement of all

polygons.

The heuristic algorithm used in this research is based on the concept of optimal

groups of unique shapes based on placement routine which is a combination of three

optimization functions: boundary overlap, compaction and wastage. Overlap detection

algorithm is used to check the polygon’s overlap. The algorithm starts with positioning

the first polygon at random place inside the sheet, then iterative scheme is used to

generate a list of placement positions and an objective function is measured against

each placement which is again a combination of three optimization functions: boundary

overlap, compaction and wastage. The polygon is placed at the placement which has

maximum value of boundary overlap, minimum value of convex hull and minimum

wastage.

The algorithm has been built in MATLAB R2018a with available data sets. Many

examples with different polygons and stock shapes are tested with our algorithm, it

is found that our approach yields good results. Different benchmark algorithms that

are available in the literature are bench marked with our approach and found that our

proposed technique is superior to the previous techniques used in the literature and

makes our algorithm a very strong candidate for real industries.

56

6.2 Future Works

The algorithm proposed in this thesis has produced best results and successfully

achieved the best known solutions on all the readily available benchmark problems.

However, the author believes that several modifications in this algorithm may yield fur-

ther improvements in the quality and computational time of the solution. Accordingly,

to avoid the overlaps of polygon/stock, further geometry check is required for feasible

polygons placement. It was beyond the scope of this thesis to provide full complex-

ity analysis of the algorithm and it shows direction to researcher to further investigate

the algorithm. In future, it is required to black list the boundary pixels on which the

algorithm should not be tried to save computational time.

57

BIBLIOGRAPHY

[1] http://hjemmesider.diku.dk/˜jegeblad/

[2] Jiang-jiang Xu, Xin-sheng Wu, Hai-ming Liu, Mei Zhang “An Optimization
Algorithm based on No-fit Polygon Method and Hybrid Heuristic Strategy for
Irregular Nesting Problem”, in 36th Chinese Control Conference (CCC), 2017.

[3] Doraid Dalalah, Samir Khrais, Khaled Bataineh,“Waste minimization in irregu-
lar stock cutting”, Journal of Manufacturing Systems, 33, pp.27-40, 2014.

[4] Jiang-jiang Xu, Xin-sheng Wu, Hai-ming Liu, Mei Zhang “An Optimization
Algorithm based on No-fit Polygon Method and Hybrid Heuristic Strategy for
Irregular Nesting Problem”, in 36th Chinese Control Conference (CCC), 2017.

[5] Egeblad J, Nielsen BK, Odgaard A. “Fast neighborhood search for two-and three
dimensional nesting problems.”, European Journal of Operational Research,
183(3), pp.1249-1266, 2007.

[6] Ahmed Elkeran. “A new approach for sheet nesting problem using guided
cuckoo search and pairwise clustering”, European Journal of Operational Re-
search, 231(3), pp.757-769, 2013.

[7] Asvany Tandabani, KalaiPriyan, S. Janakiraman, Sujatha Pothula “A Compar-
ative Study of Meta Heuristic Approach for Cutting Stock Problem”, in 2016
International Conference on Communication and Electronics Systems (ICCES),
2016.

[8] Dyckhoff, H “A typology of cutting and packing problems.”, European Journal
of Operational Research, 44, pp.145-159, 1990.

[9] Gerhard Wascher, Heike HauBner, Holger Schumann, “An improved typology
of cutting and packing problems”, European Journal of Operational Research,
183, pp.1109-1130, 2007.

[10] Coffman, E.G., Garey, M.R., Johnson, D.S., “Approximation Algorithms for
BinPacking ”, A Survey, in Approximation Algorithms for Bin Packing for NP-
Hard Problems, Hochbaum, D.S. (eds), PWS Publishing Company, Boston,
pp.46-93, 1997.

[11] Martello, S. and Toth, P., “Knapsack Problems ”, Wiley and Sons, Chich-
ester,1990.

[12] Landa Silva, J.D. and Burke, E.K., “Hybrid Metaheuristics Based on Coopera-
tive Local Search for the Space Allocation Problem”, Accepted for INFORMS
Journal on Computing, 2005.

[13] Landa Silva, J.D.,“Metaheuristics and multiobjective approaches for space al-
location”, Ph.D Thesis, School of Computer Science and Information Technol-
ogy,The University of Nottingham, UK, 2003.

58

http://hjemmesider.diku.dk/~jegeblad/

[14] Kendall, G.,“Applying Meta-Heuristic Algorithms to the Nesting Problem Uti-
lizing the No Fit Polygon”, Ph.D Thesis, School of Computer Science and Infor-
mation Technology, The University of Nottingham, 2000.

[15] Dyckhoff, H “A typology of cutting and packing problems.”, European Journal
of Operational Research, 44, pp.145-159, 1990.

[16] Hopper, E., “Two Dimensional Packing utilizing Evolutionary Algorithms and
other Meta-heuristic Methods ”, Ph.D Thesis, School of Engineering, University
of Wales, Cardiff, 2000.

[17] Brown, A.R., “Optimum Packing and Depletion”, The Computer in Spare and
Resource Usage Problems, New York, London, 1971.

[18] Salkin, H.M. and de Kluyver, C.A., “The Knapsack Problem: A Survey”,Naval
Research Logistics Quarterly, 22 , pp.127-144 1975.

[19] Golden, B.L., ”Approaches to the cutting stock problem”, IIE Transactions, 8,
pp.265-274, 1976.

[20] Hinxman, A.I., “The trim loss and assortment problem - a survey”, Operations
Research, 5,8, pp.8-18, 1980.

[21] Garey, M.R. and Johnson, D.S., “Approximation algorithms for bin packing
problems: A survey ”, in Analysis and Design of Algorithms in Combinatorial
Optimization, Ausiello, D. and Lucertini, M. (eds), Wien, pp.147-172, 1981.

[22] Israni, S.S. and Sanders, J., “Two-Dimensional Cutting Stock Problem Research:
A Review and a New Rectangular Layout Algorithm”, Journal of Manufacturing
Systems, 1,2, pp.169-182, 1982.

[23] Sarin, S.C., “Two Dimensional Stock Cutting Problems and Solution Method-
ologies”, ASME Journal of Engineering for Industry, 104,3, pp.155-160, 1983.

[24] Rayward-Smith, V.J. and Shing, M.T., “Bin packing”, Bulletin of the IMA, 19,
pp.142-146, 1983.

[25] Coffman, E.G., Garey, M.R., Johnson, D.S., “Approximation algorithms for bin
packing - An updated survey”,in Algorithm Design for Computer System Design,
Ausielo, G., Lucertini, N., Serafini, P. (eds), Springer-Verlag, Vienna, pp.49-106,
1984.

[26] Berkey, J.O. and Wang, P.Y., “Two-Dimensional Finite Bin-Packing Algo-
rithms”, Journal of the Operational Research Society,38, pp.423-449,1985.

[27] Dowsland, W.B., “Two and Three Dimensional Packing Problems and Solution
Methods”,New Zealand Journal of Operational Research,13, pp.1-18,1985.

[28] Dyckhoff, H., Kruse, H.J., Abel, D., Gal, T., “Trim Loss and Related Problems”,
Omega,13, pp.59-72,1985.

59

[29] Israni, S.S. and Sanders, J.L., “Performance testing of rectangular parts-
nesting heuristics”, International Journal of Production Research,23,3, pp.437-
456,1985.

[30] Dudzinski, K. and Walukiewicz, S., “Exact methods for the knapsack problem
and its generalizations”, European Journal of Operational Research, 28, pp. 3-
21, 1987.

[31] Martello, S. and Toth, P, “Knapsack Problems”, Wiley and Sons, Chichester,
1990.

[32] Rode, M. and Rosenberg, O., “An Analysis of Heuristic Trim-Loss Algorithms”,
Engineering Costs and Production Economics,12, 1-4, pp.71-78, 1987

[33] Dyckhoff, H., Finke, V., Kruse, H.J., “Standard Software for Cutting Stock Man-
agement”, Essays on Production Theory and Planning, pp. 209-221, 1988.

[34] Coffman, E.G. and Shor, P.W., “Average-case analysis of cutting and packing in
two dimensions”, European Journal of Operational Research, 44, pp. 134-144,
1990.

[35] Dyckhoff, H. and Wascher, G., “Special Issue on Cutting and Packing”, Euro-
pean Journal of Operations Research, 44, 2, 1990.

[36] Dowsland, W.B., “Three Dimensional Packing Solution approaches and Heuris-
tic Development” International Journal of Production Research, 29, 8, pp. 1673-
1685, 1991.

[37] Haessler, R.W. and Sweeney, P.E., “Cutting stock problems and solution proce-
dures”, European Journal of Operational Research, 54, pp. 141-150, 1991.

[38] Dowsland, K.A. and Dowsland, W.B., “Packing Problems”, European Journal
of Operations Research, 56, pp. 2-14, 1992.

[39] Dyckhoff, H. and Finke, V., “Cutting and Packing in Production and Distribu-
tion”, Physica-Verlag, Heidelberg, Germany, 1992.

[40] Haessler, R.W., “One-dimensional cutting stock problems and solution proce-
dures”, Mathematical Computer Modelling, 16,1, pp. 1-8, 1992.

[41] Lirov, Y., “Knowledge Based Approach to the Cutting Stock Problem”, Mathe-
matical Computer Modelling, 16,1, pp. 107-125, 1992.

[42] Ram, B., “The Pallet Loading Problem: A survey”, International Journal of
Production Research, 28, pp. 217-225, 1992.

[43] Lodi, A., Martello, S., Vigo, D., “Recent advances on two-dimensional bin pack-
ing problems”, Discrete Applied Mathematics, 123, pp. 379-396, 2002.

[44] Cagan, J., Shimada, K., Yin, S., “ survey of computational approaches to three-
dimensional layout problems”, Computer Aided Design, 34, pp. 597-611, 2002.

60

[45] Lodi, A., Martello, S., Monaci, M., “Two-dimensional packing problems: A
survey”, European Journal of Operations Research, 141, pp. 241-252, 2003.

[46] Oliveira, J.F., “Solving nesting problems with metaheuristics: a survey”, ES-
ICUP Meeting: 6-10 July,Istanbul, Turkey 2003.

[47] Bennell, J. A., and Oliveira, J. F., “A tutorial in irregular shape packing prob-
lems.”, Journal of the Operational Research Society, 60, pp. 93-105, 2009.

[48] Oliveira, J.F., Ferreira, J.S., “Algorithms for nesting problems, Applied Sim-
ulated Annealing”, In: Vidal, R.V.V.(Ed.), Lecture Notes in Econ. and Maths
Systems), 396. Springer Verlag, pp. 255-274, 1993.

[49] Andr Kubagawa Sato, Thiago Castro Martins, Marcos Sales Guerra Tsuzuki,
“An algorithm for the strip packing problem using collision free region and exact
fitting placement”, Computer-Aided Design, 44, pp. 766-777, 2012.

[50] https://www.mathworld.wolfram.com/polygonvertex.com/

[51] Art, R.C., “An approach to the two dimensional irregular cutting stock problem”,
IBM Cambridge Scientific Centre, Report 36-Y08, 1966.

[52] Adamowicz, M., Albano, A., “Nesting two dimensional shapes in rectangular
modules”, Computer Aided Design, 8(1), pp. 27-33, 1976.

[53] Burke EK, Hellier RSR, Kendall G, Whitwell G, “Complete and robust no-fit
polygon generation for the irregular stock cutting problem”, European Journal
of Operational Research, 179(1), pp. 27-49, 2007.

[54] Stoyan, Y.G., Terno, J., Scheithauer, G., Gil, N., Romanova, T., “Phi-functions
for primary 2D objects”, Studia Informatica Universalis, 2(1), pp. 1-32, 2001.

[55] Glover, F., “Heuristics for Integer Programming using Surrogate Constraints”,
Decisions Science, 8, pp. 156-166, 1977.

[56] D. Domovi, T. Rolich, D. Grundler and S. Bogovi, “Algorithms for 2D Nesting
Problem Based on the No-Fit Polygon”, MIPRO 2014, 26-30 May 2014, Opatija,
Croatia, 2014

[57] Art, R.C., “An approach to the two dimensional irregular cutting stock prob-
lem”, Technical Report 36. Y08; IBM Cambridge Scientific Center,Cambridge,
Massachusetts, USA 1966.

[58] Oliveira, J.F., Gomes, A.M., Ferreira, J.S.. TOPOS, “A new constructive algo-
rithm for nesting problems”, OR Spektrum,22(2), pp. 263-284, 2000.

[59] Dowsland, K.A., Vaid, S., Dowsland, W.B, “An algorithm for polygon place-
ment using a bottom-left strategy”, European Journal of Operational Re-
search,141(2), pp. 371-381, 2002.

[60] Gomes, A.M., Oliveira, J.F, “A 2-exchange heuristic for nesting problems.”, Eu-
ropean Journal of Operational Research,141(2), pp. 359-370, 2002.

61

https://www.mathworld.wolfram.com/polygonvertex.com/

[61] Metropolis, N., Rosenbluth, A., Rosenbluth, M.N., Teller, E., Teller, E., “Equa-
tion of state calculations by fast computing machines.”, Journal of Chemical
Physics, 21, pp. 1087-1092, 1953.

[62] Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P, “Optimization by simulated an-
nealing”, Science, 220, pp. 671-680, 1983.

[63] Zicheng Wang, Xiutang Geng, Zehui Shao, “An Effective Simulated Annealing
Algorithm for Solving the Traveling Salesmen Problems”, Journal of Computa-
tional and Theoretical Nanoscience, Vol 6, pp. 1680-1686, 2009.

[64] Fraser, A.S, “Simulation of genetic systems by automatic digital computers”,
Australian Journal of Biological Science, 10, pp. 492-499, 1957.

[65] Bremermann, H.J, “The Evolution of Intelligence: The Nervous System as a
Model of its Environment, Technical Report, Technical Report No 1, Contract
No. 477(17)”, Department of Mathematics, University of Washington Seattle,
1958.

[66] https://www.towardsdatascience.com/
introduction-to-genetic-algorithm

[67] Ralph Gomory, “A Linear Programming Approach to Cutting Stock Problem”,
Article in Operations Research, 1963.

[68] Yang, X. S., & Deb, S, “Cuckoo search via Levy flights”, World congress on
nature & biologically inspired computing (NaBIC). IEEE Publications, pp. 210-
214, 2009.

[69] https://www.slideshare.net/AnujaJoshi6/
cuckoo-o-ptimization-ppt

[70] Ahmed Alkeran”, “A new approach for sheet nesting problem using guided
cuckoo search and pairwise clustering”, European Journal of Operational Re-
search, 231, pp. 757-769, 2013.

[71] Euro Special Interest Group on Cutting and Packing (ESICUP)”,
https://paginas.fe.up.pt/ esicup/datasets.

[72] Burke EK, Hellier RSR, Kendall G, Whitwell G”, “A new bottom-left-fill heuris-
tic algorithm for the two-dimensional irregular packing problem.”, Operations
Research, 54(3), pp. 587-601, 2006.

[73] Xiao L, Jia WY”, “Heuristic algorithm based on the principle of minimum total
potential energy (HAPE): a new algorithm for nesting problems.”, Applied and
Engineering Physics, 12(11), pp. 860-872, 2011.

62

https://www.towardsdatascience.com/introduction-to-genetic-algorithm
https://www.towardsdatascience.com/introduction-to-genetic-algorithm
https://www.slideshare.net/AnujaJoshi6/cuckoo-o-ptimization-ppt
https://www.slideshare.net/AnujaJoshi6/cuckoo-o-ptimization-ppt

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Overview
	Problem Statement
	Motivation and Objectives
	Contributions of Thesis
	Thesis Outline

	LITERATURE REVIEW
	Review of Stock Placement Problems
	Nesting Problem Types
	Bin Packing
	Knapsack Packing
	Capacity Allocation
	Strip Packing
	Trim Loss Problem
	Loading Problem
	Nesting Problem

	Stock Placement Problem Surveys and Bibliographies
	Geometric Representation
	Pixel/Raster Method
	D-Function
	No-Fit Polygon (NFP)
	Phi-Function

	Search Methods
	Iterative Improvement Search
	Hill Climbing
	Tabu Search
	Random Search Algorithm

	Heuristic and Metaheuristic Methods
	Bottom Left Algorithm
	Simulated Annealing
	SA Algorithm Example

	Genetic Algorithms
	Initialize Population
	Fitness Function
	Selection
	Crossover
	Mutation
	Termination

	Linear Programming
	Cuckoo Search Algorithm
	Pairwise Clustering

	EXPERIMENTAL SETUP
	Overview
	Data Sets
	Data Set 1
	Data Set 2
	Data Set 3
	Data Set 4
	Data Set 5: SHAPES0
	Data Set 6: Dighe1
	Data Set 7: Dighe2

	METHODOLOGY AND PROPOSED TECHNIQUE
	Problem Formulation
	Proposed Technique
	Pseudo Code of Proposed Algorithm
	Initialization
	Group Unique Polygons
	Boundary Overlap
	Convex Hull
	Wasted

	Geometric Transformations
	Boundary Extraction
	Overlap Detection
	Objective Function

	RESULTS AND DISCUSSION
	Result and Analysis
	Model Parameters
	Experimental Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Benchmark Problems

	CONCLUSION AND FUTURE WORKS
	Conclusion
	Future Works

	BIBLIOGRAPHY

