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Abstract

Cyber Security has become a significant concern in corporate web usage, which

includes risks of both internal and external computer attacks. The purpose of

this study is to introduce and investigate an application of the Cortical Learning

Algorithm (CLA) in minimizing potential threats to a web server using machine

learning based anomaly detection. The results are compared with 2 major and 3

minor state-of-the-art conventional algorithms. Approximately 38,000 web usage

samples were collected over a 6-month time period. This data was organized

as an input to CLA through encoders to standardize individual data formats.

The output of each encoder is assigned priority weights based on the nature and

significance of data. CLA performed exceptionally with an almost 99% rate of

anomaly detection, checked manually on unsupervised data. It also helped in

processing data as quickly as it arrives in a continuous fashion unlike conventional

methods that store and process it offline. This spontaneous and effective approach

of CLA proves its potential in enhancing security against computer attacks in the

corporate sector.

Keywords: Cyber Security, Web Services, Cortical Learning Algorithm, Machine

Learning
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Chapter 1

Introduction

1.1 Description

Computer network security in the contemporary era [1] depends mostly on efficient

techniques to detect anomalies in the routine usage, which preferably should not

hinder commercial or personal activities of the user [2]. Currently implemented

rule or history-based anomaly detection systems are becoming less effective as

attack patterns are getting more accurate, customized and adaptive. The same

aforementioned nature of attack vectors also needs to be made part of attack-

preventing techniques. Adaptive and dynamic techniques need to be considered

if computer usage, security has to move with the same pace as improvements in

attacking methods or even better. This purpose can be fulfilled by enhancing

anomaly detection to a level where an attack’s potential is predicted beforehand

[3].

If it was just a question to handle anomalies in computer usage like the outlier’s

detection in an offline manner, it seems greatly answered by Cluster Analysis,

OSV Machines and other Encoder-based methods [4].

The factor that differentiates this graduate thesis from already implemented al-

gorithms is that it suggests and anomaly detection technique that works on se-

quences of data being fed as a stream on-the-go. It suggests that online detection

of anomalies is possible while each new entry is passed at least once for sequence
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Chapter 1: Introduction

processing [5].

Commercial or corporate networks usually carry web usage data in huge log files

which later becomes sequences as users take action with the time. On such servers,

huge traffic or large amount of data carries a constraint of storing it and processing

online, therefore it is processed offline. The time delay linked to offline processing

adds to the limitations of web usage security. Hence there needs to be an online

scheme or algorithm to detect and even predict anomalies beforehand.

This specific constraint has not been given much importance in existing literature.

Recent developments in Hierarchal Temporal Memory with the addition of Cortical

Learning Algorithm have opened the door for future considerations in Computer

Networks Security. This thesis covers analysis of Cortical Learning Algorithm as

an application to predict anomalous behavior by users of a web server.

1.2 Problem Statement, Objectives and Scope

This Graduate Thesis tries to emphasize the application of a Cortical Learning

Algorithm in anomaly detection; predicting behavior of a user visiting some partic-

ular website. A temporarily sequence of URLs is ordered as an input to categorize

activities as anomalous or normal behavior. These sequences are passed in the

form of streams, making sure online processing is carried out with least possible

resources consumed.

This application of the CLA covers following properties: hostnames and subdo-

mains visited, referrer domain, frequency and recency taken as frecency, time of

the visit and the type of visit made. Most of the times, a URL is possibly a very

large string which for resource management purpose has been reduced to only

the hostname and the subdomain. On the same grounds, for a web server, log

files are very huge that their storing and instant processing (to analyze normal or

anomalous behavior) is not easily possible. CLA has a promising nature to learn

and decide in parallel algorithms. Its performance is enhanced when used with the

Hierarchical Temporal Memories (HTM) [8]. The Major purpose of this research
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Chapter 1: Introduction

is to introduce Cortical Learning Algorithm in Cyber Security. Initially, a user’s

web usage pattern has been monitored for a reliable period of time. It is then

passed to unsupervised anomaly detection in sequences through the CLA. As the

results are achieved after close fine tuning of several factors (mentioned in later

parts) in the algorithm, they are then compared with some traditional algorithms

in order to make sure our efforts are placed in the right direction. In the later

part of this thesis, emphasis has been made on the future potential of CLA.

This algorithm has been highly customized in this research to cater all resource

constraints and privacy considerations. For a local testing a generic user web usage

history is used while for an efficient and precise result, a web server’s history can

do wonders.

1.3 Outline

This thesis comprises of 5 comprehensive chapters, each carrying its own signifi-

cance, gradually elaborating the idea of introducing CLA into detecting anomalous

web service usage. Chapter 1 already covered introduction and brief description of

the research work without much technical consideration. Chapter 2 covers back-

ground knowledge and previously carried out research on algorithms being suitable

for anomaly detection. Chapter 3 elaborates all the considerations made while

implementation of the algorithm. Chapter 4 covers all important results which

are also compared with state-of-the-art traditional anomaly detection methods.

Chapter 5 being final chapter to this research work has all my inferences and

interpretations of results from chapter 4.
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Chapter 2

Literature Review

2.1 Related Work

We do not see any particular applications of CLA in Web usage, security, but

there are few other methods currently in action at large [2]. These methods focus

on anomaly detection via the nature of an outlier; based on set rules, learned

history or supervised training. There are very few that offer unsupervised machine

learning for anomaly detection, but those either consume extra resources or offer

an offline solution [6]. In this section of Related Work, we will look into all possible

variants of what we are going to implement through this research.

2.1.1 General Anomaly Detection

With any given dataset, any known machine learning algorithm can do the trick

of getting customized into detecting an out-lier, the point that does not follow

static repartition of its dataset. This anomaly detection is based on Non-temporal

techniques where a whole dataset is analyzed and global parameters are set for

the cause. The most common examples of this general anomaly detection are a

deep approach used in OCSVM with both supervised and unsupervised learning

methods [7]. KOAD is an important Online anomaly detection technique that

uses dynamic dictionaries in order to approximate a common state for a given
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Chapter 2: Literature Review

dataset.

2.1.2 Sequential Anomaly Detection

This is more effective method of detecting anomaly in context of web service usage.

The dataset is precisely divided into sequences; windowed and fixed-length inputs,

and later used with aforementioned machine learning anomaly detection tech-

niques. But such methods only generate results with simple sequenced datasets

and are less reliable when it comes to temporal dependencies as the state space

grows exponentially.

Hidden Markov Model is specifically designed to cater sequences in temporal mem-

ory, but this HMM does not cover the online part of anomaly detection as it re-

quires to work on dataset as a whole [9]. This technique also performs process

several times, thus adding latency to the cause [10]. For this purpose, t-stide has

been chosen as a competitor with its ability of having a Window-based technique

and HMM with its online compatibility.

2.2 Cortical Learning Algorithm Fundamentals

HTM basically comes from deep knowledge of neuroscience in biological brain.

This memory technique has been utilized in the software domain by Numenta;

thus this algorithm is being used under their Open-Source license code name

Nupic. High Order Sequences can be generated by storing, learning and inferring

inputs using learning methods devised in HTM. One of those methods is Cortical

Learning Algorithm that suits its application in web services security with several

customizations. Having an almost real biological model of human neuron, CLA

has drastic results due to its SDRs (Sparse Distribution Representations).

CLA comprises of 2 core steps- generation of an SDR via SP (Spatial Pooling) and

then learning to predict from complex sequences over generated Sparse Distributed

Representations. A fixed number of minicolumns are active against any particular
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input and there is almost a zero chance for a perfect overall against two inputs if

column length and state space are chosen appropriately. In every next step, each

already existing multicolumn becomes some previous state. Thus a cell can be

in an inactive, active or predictive state. In the SDR generation phase, similar

patterns of the dataset inputs bear similar or close overlapping thus making it

feasible for the algorithm to decide its predictions.

2.2.1 Is it an Artificial Neural Network?

ANN are quite different from CLA in a way that ANNs follow a very few synapses

in order to conclude a prediction. Unlike a biological neuron, an ANN does not

carry any dendrites structure, whereas CLA has dendrites as core elements of the

algorithm [11]. CLA also has the capacity to accommodate thousands of synapses

without any delays. ANNs learn with the variations in the weights of synapses

while CLA adopts/ molds itself to the growth of fresh synapses throughout the

process. CLA also offers active cells in multi columns to recognize thousands of

patterns individually.

Therefore, Cortical Learning Algorithm being closer to a Neocortical Neuron or

the real neuron is more feature enriched and performance oriented than Artificial

Neural Networks.

2.2.2 Hierarchical Temporal Memory and CLA

Recent developments in Hierarchical Temporal Mempory have shown some re-

markable and promising experiences, but its worth has not yet been brought out

in the Cyber Security domain. Successful usage of HTM in few practical life based

scenarios of pattern recognition has led me carry out tests using webservices usage

data.

A simple structure of an HTM can be divided into two adjacent blocks: Pat-

tern and Transitional Memory. All the learning from Spatial Pooler (SP) takes

place under the label of Pattern Memory while the transitional memory learns on
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transient patterns and later categorizes them on SP patterns.

2.2.2.1 Spatial Pooler Pattern Memory

This step has a significant impact on the Cortical Learning Algorithm as it creates

and works over the SDR (Sparse Distribution Representation). Pattern Memory

consists of a set of Boolean inputs with approximately around 2

Each SDR is actually a unique and random representation of an input from the

synapse. A set of synapses from neurons further combine together to form the

Pattern Memory. The algorithm has a couple of parameters such as permanence

value and certain threshold for the synapse. The default value of the former

is either 0 or 1 associated with sensitivity of the input while the latter has a

general value of 0.2 which can later be varied according to the conditions to where

that synapse is linked. Values for both of the above parameters are adjusted with

excessive trainings. There is only a chance of a neuron being active if a set number

of its synapses are connected to the input and thus it intrigues nearby neurons

to propagate to the next level. In this way of propagations, patterns are learned

according to the sparse nature over an SDR.

We use brains to understand how we use our brains to understand how we use

our brains. It seems complicated, and it actually is. This paragraph will cover

elaboration of Spatial Pooling as a significant subprocess of CLA. Once the input

space is ready, a new spatial Pooler is instantiated, it randomly sets up its columns

to be connected to that input space. This is divided into two steps: activation

of columns by calculating the columns’ overlaps of the input representation with

the input space and how each of those columns learns to represent specific spatial

characteristics of that data that’s been encoded in the input space over time. Each

of the column has an entirely specific relationship with input space compared to

its previous and next column’s relationship. Selection of the right column to be

activated is done by their overall score, which means how many of the cells overlap

in input space. As more than one columns happen to overlap, they are graded

based on rankings (under number of cell overlaps). This representation finds its

roots in global inhibition area where every column is a neighbor of another column.
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For an instance, generally, top 40 ranked columns are considered in that particular

compute cycle. For implementation details, in case of tiebreakers, that is if there

are a bunch that have same overlap, random selection is done.

Each of the individual connections of cells from spatial Pooler to input space

is called a dendritic segment. There are three dendritic segments based on the

algorithm: actual, possible and impossible cells.

Moving to the learning in Spatial Pooling, let’s consider a timestamp at a partic-

ular cell. First of all, none of the columns that are inactive will learn anything, no

state changes happen to columns that have not been activated so the only learning

that goes on happens in these above mentioned 40 columns. In this case, these are

all going to increment and decrement the permanence values based on how many

and what connections they have in the input space in this timestamp. Increment

or decrement in the permanence values means that those particular connections

will become stronger or weaker. And further the increase in permanence values is

learning about the connections; something that column is to recognize for future

references. Any connections that fall outside of the input for an activated column,

those permanence values will be decremented. Connections are calculated simply

whether they are above a certain threshold of the permanence value for that cell.

In a simpler way, as the permanence value goes up and down, connections can be

created or destroyed.

So, as it learns from each compute cycle, some of these connections will go away,

some of them will appear and some of them will go away and reappear, depending

upon the input space of the random initialized state of the system, what it learned

so far and how its connections are. If it sees a lot of input over connections that

it has well-established, those are going to get reinforced. This is an overview of

how learning works and carries very simple learning rules. Considering this in the

implementation phase, how much the values are incremented and decremented

and what should be a threshold for certain case are also parameters to the spatial

Pooler. If we carry out Spatial Pooling to generate SDRs on the same input

spacing with Random SP Active Columns and Learning SP Active Columns, it
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is realized that one with the learning one produces SDRs that match previous

SDRs unlike random SDRs in the other method that is without learning when

appropriate.

2.2.2.2 Temporal Memory

Outputs from the aforementioned step are then fed into the Transition Memory

Process. With the activation of a column due to the output of the SP, there are

two chances to take place: either few of the columns occurred being in a predictive

phase or none of the columns happened in predictive phase thus turning on all

columns then. With at least one dendrite to the neuron being active, it gets its

neuron into a predictive state, meaning thereby it predicts the chances of this

neuron to be the next sample are higher in percentage, compared to the rest

possible states.

In this way, the algorithm forms blocks carrying boolean function: either the

columns are active or the columns are expected to turn on in the next step.

As the Spatial Pooling translates columns from an input space to a normalized

representation with a fixed sparsity that contains all the semantic information of

the original encoding. We will now look into the temporal patterns and how the

temporal memory algorithm CLA recognizes sequences of spatial patterns over

time.

The temporal memory algorithm does two things [12]:

• Learns sequences of active columns from Spatial Pooler over time

• Makes predictions about upcoming pattern based on the temporal context

of each input.

It does this by activating individual cells within many columns. Once the active

cell space has been identified, the second phase is to choose a set of cells to put

into a predictive state which means that these cells will be primed to fire on the

next timestamp..

We can notice that with this first timestamp in the sequence every cell within

every active column is active because it has never seen this spatial input within

9



Chapter 2: Literature Review

any context before. It has no predictive cells to activate. The other reason is cells

within active columns activate is because they have been put into a predictive state

by some previous context of this spatial input. Lets take example of sequenced

alphabets, Spatial Pool can start with any alphabet with its SDR.

Predicting next alphabet in this out of context sequence is impossible, therefore

all cells become active as each cell has equal probability of occurrence. The second

alphabet is exactly the next alphabet of the previous one in English order. Third

cell before instantiation has some cells bursting as it may be the next alphabet from

English order and roots of certain context have been imagined by the algorithm.

It is the first phase of temporal memory, deciding which cells to become active in

predictive mode: either they all become active in a column because there are no

cells in a predictive state that means we are sort of kicking off this sequence and

seeing it for the first time and the other is that there are cells in the predictive

state within a column and those will be switched to active if they were correctly

predictive because for the current set of active columns it basically validates that

prediction.

The second phase of the temporal memory algorithm covers how these cells be-

come predictive. After we have identified which cells are currently active in this

timestamp based upon their predictive states within the active columns, we will

look closer into an HTM-CLA neuron and learn more about it in its distal segment

later.

The comparison of the biological neuron to the HTM-CLA neuron shows a feed-

forward input, which is the proximal dendritic input from the input space on both

sides. The distal input is from the lateral connections to other cells within the

space and context is the identified root of the sequence. An HTM neuron shows

that it can have more than one distal connections. These are the distal segments

where each one of these segments could potentially have one or more synapses or

connections to other cells within the HTM Structure. Each one of those cells may

be in an off or on state. So that any time a cell has to decide whether it should go

into predictive state or not, it can look at all of its segments and its connections
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across all of their synapses. If one of these synapses breach some threshold which

is configurable, then that cell goes into a predictive state based upon its contextual

connections to the other cells within the structure.

Each one of these coincidence detectors could potentially cause the cell to fire

in the next timestamp if it is right. In a simple attempt of explanation, all the

specific cells connected to a cell are in active state, there are greater chances of

that new cell turning into busting more and then becoming active if it is right.

2.3 Conventional Algorithms

Following are few of the conventional algorithms implemented in network security

that may come handy in deciding the percentage of anomalies being accurate or

false positive:

2.3.1 The Stide Model

The stide model algorithm uses a pretrained model that finds anomalies according

to the dataset provided earlier. It actually works on sequences like the cortical

learning algorithm and if any sequence happens to be anomalous compared to

the learnt patterns then the stide model generates an alarm. The sequences as

number of steps are fixed beforehand. This model works basically on the hamming

distance in order to find mismatching anomaly or pattern. The implementation

and processing of this algorithm will be elaborated in the coming chapters of this

thesis. This thesis will also cover the importance of cortical algorithm when it is

compared with his tied model.

2.3.2 HMM

It is the sequences that make HMM or hidden Markov model significant enough to

compete the results of the cortical learning algorithm. Only difference of hidden

Markov model from the above Stide model is its nature of being trained online. In
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this thesis, I will compare HMM on the basis of its prediction on forward algorithm

before training. This model works with the parameters such as hidden state and

total number of possible states. It has a limitation [13] that the URL of given

dataset is only considered as one state or observation.

In a further step the possibility of a sequence to occur is compared to the average

of previous sequences in log space to find its likelihood of occurrence. Once the

percentage is ready, it is then mapped on a threshold to make it one of the normal

behaviors or the anomalies.

2.3.3 Analysis of HTTP Requests

Quite recently this approach has been adopted where all the http logs are collected

from normal day use at both the server and user end. A fresh dataset is used to

train the algorithm to understand them as normal http request which does not

carry any attacks. Once all the data from web service usage has been learned

by the algorithm, several anomaly detection methods are implemented to classify

all the Learn Data as normal user usage. After the learning process this model

is implemented in the network at the online mode. It basically works on the

deviation of normal traffic from the learnt set. Although it has promising results,

but it also carries some limitations such as it does not learn about the online data,

but just compare the online data with the patterns it is already sequenced.

2.3.4 XML-Structured SOAP

XML structure anomaly detection uses tree based Association to gain knowledge

from the training data set which is then compared with a live data set of network

traffic [14]. It is a high rate of anomaly detection and very low for longer, but it

does not provide online learning.

Another limitation to examine structured soap messages is that reduces only soap

messages. So basically this technique is a way of mining knowledge about the

normal behavior of soap messages.
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2.3.5 SAD: Web Session Anomaly Detection

SAD is an estimation technique to detect anomaly in web sessions, it uses profile

building technique from normal usage[15] and plots it against the frequencies.

Later these frequencies are used to expect the outputs of Forward algorithm that

has the potential of detecting new possible attacks on the integrity infrastructure,

but it is not precise enough to differentiate between a new person’s usage pattern

or a fresh anomaly.
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Methodology

3.1 Data: Web Services Usage Log

3.1.1 Log Stream Content

The dataset used for this Cortical Learning Algorithm based anomaly detection

is the stream of URLs along with their attributes visited by a particular person

in the test. Typically, a web server logs following details of web service usage:

• Date of Visit

• Time of Visit

• Referrer Website

• Reffered Website

• Protocol Details

• Request Size

• Size of the Resposnse

• Frecency

• Last Visit Made

14
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• Visit Type

Most of the information mentioned above has been used by different research

projects and technical papers in sets such that similar or relevant data is used

according to the needs of the anomaly type. Such as request size and type can be

used to identify SQL attacks, referrer website can be used to identify if the culprit

was a previous move made by the user etc.

This thesis being based on web service usage caters all the factors that add to

the behavior of the user while he makes a request. The behavior is most likely a

subjective term, but the time stamp of the visit, its last visit time and frecency

add to the digital analysis of the activities being made, on the other hand referred

and referring URLs and visit types compile a string input to the algorithm.

In this way, aforementioned five factors of information are supposed to help in

making credible predictions about the anomalies expected to occur in forward

algorithm.

3.1.2 Specific problem constraints

Real time learning and control algorithm preparation and implementation should

cater for extensive data size, possible delay, data stream updating and more.

Therefore, following are the major constraints that Cortical Learning Algorithm

will try to cut-down in all possible attempts of fine tuning.

3.1.2.1 Unsupervised Learning

First and foremost constraint for any future algorithm is that the usage supervision

is not ensured, meaning thereby algorithm will be working on data streams which

are not in any way categorized as anomalous or normal, beforehand. Therefore,

the suggested algorithm should learn and monitor in parallel. As the algorithm

learns with every passing second, it needs to create a statistical profile of the data

set elements and sequences.

3.1.2.2 Online Learning Once the problem of Unsupervised Learning is ac-

knowledged, it needs powerful equipment to process logs online. These logs range
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from thousands of URLs to even millions for just a few days. Therefore, the data

stream being too large, suggested algorithm should not involve or add any delays

or even processing data streams in batches, as concurrent algorithms do, is not an

option. Hundreds of URLs must be processed in the earliest possible.

3.1.2.3 Incremental Complexity

A freshly implemented algorithm does not need much data to learn and process

them into categories, but with every passing day, data gets added to the learning

phase. This ultimately results in an excessive data to process online, making the

system slower and slower gradually. The suggested algorithm should have enough

efficiency to maintain stable compatibility against any added level of complexity.

It should work without any hindrance for above mentioned constraints.

3.1.3 DataSet Preprocessing

The original stream of data taken in the raw form contains all the succession of

websites visited by the user. It is as if all the information is stored to process and

prioritize according to the needs of the algorithm.

As a server is taking thousands of requests with high level of attributes it seems

impossible for the server to preprocess and then feed it to the algorithm. Therefore,

we are making an assumption that the data is being processed at a different level.

It is not that similar requests are grouped into a single sequence, but requests at

the same time can be regrouped based on the factors mentioned in the chapter.

Keeping it simple algorithm to decide normal and anomalous behavior in the real

time and what delays are added.

At times there is a possibility that a URL is very wrong. In that case this particular

URL consumes enough time and resources. This happens to be a constraint from

the list of constraints mentioned in the above section. Therefore, this thesis already

suggests controls to reduce time delays and other factors into a negligible influence.
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3.2 DataSet Attributes

A huge chunk of traffic has been arranged from the usage pattern of a subject user.

Whereas due to security and privacy reasons the data file of the user will not be

made public under the domain of this thesis. Even if the data is very large, the

algorithm designed for this purpose has been modified in a way that it does not

create any un-affordable delays. Another way of generating data is through Marco

methods which produce a generalized ETA and give more realistic conditions to

formally place anomalies. Therefore, we will be choosing natural behavior-based

data from the real life scenario of the user. It contains both normal uses and

Anomalous usage by the user, for example, visiting a social media website or

platform early in the morning is the behavior of the user, visiting the same website

in the late hours of the evening can be considered an anomaly. If an office has

working hours of daytime, use of the Internet Services during the night is an

anomaly which may generate an alarm. One of the significant attribute of this

algorithm is that it also caters percentage of chances when a user may visit any

website in any particular time of the day, day of the week, or anytime that may

appear anomalous to conventional cyber security measures.

The data stream in context consists of several rows with each row containing

preferably a unique or similar visit made by the user. The stream of rows is

ordered or sorted based on the time of the visit. As this is a dataset generated

from user’s live visits, anomaly detection will also be live and potentially fast.

There is no such hard and fast rule that some data being trained is a normal while

the data to be tested on the forward algorithm will have anomalies. The fact is

that this data in itself contains normal traffic as well as otherwise. The attributes

of the data sets have been detailed below:

• It has more than 38000 URL visits

• Time duration of visits is 1 year

• URL lengths have been cut-down to sub-domains level to save time and

resources
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• Frecency of each visit is also considered as it defines a factor based on both

the frequency of the visit as well as its recency.

• around 0.0156% of the visits are anomalies.

3.3 CLA in action on Data Stream

Once the data are raised in an order just same as mentioned above, it is then

passed to the cortical learning algorithm. This algorithm works on each URL in

the data stream in following particular order:

• First of all deactivate all neurons to bring a fresh state

• Convert string URL into an SDR

• Once the SDR stream is ready, input it in to htm

• Machine learning algorithm runs repeatedly

• CLA keeps learning and predicting for the forward algorithm

• It also generates percentage occurrence of new URL for an existing URL in

the prediction phase without calling it an anomaly.

At the end, if the percentage is below threshold, the sample is considered as an

anomaly. But if the percentages are above the set threshold for an anomaly, such

sample is considered as normal traffic.

The categorization on the basis of set threshold is carried out by the classifier

maintaining the prediction and anomaly scores, segregating anomalies from the

normal traffic usage.

3.3.1 CLA Encoders

All the inputs from the dataset in the raw form cannot be fitted into the CLA

[16]. Therefore, this algorithm needs a middle state of inputs called the sparse
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distributed representation or simply SDR. Any input can be converted into an

SDR by passing it through an encoder. Following is the list of encoder is provided

by numenta:

• Scalar Encoder

• Date Encoder

• Category Encoder

• Coordinate Encoder

• Pass Through Encoder

• Multi Encoder

3.3.1.1 Scalar Encoder

Scalar encoded as linear encoding and converts numeric float point value to an

array of binaries. Most of the weights are converted into 0s while a continuous

block of 1s represents unique SDR [17] for a particular input. Scalar encoder’s

input depends on several factors:

• w - width of on bits (Odd value helps in avoiding middle value problems)

• minval - lower input boundary

• maxval - upper input boundary

• periodic - wrapping around values

• n - total number of SDR output

• radius - Threshold for two non-overlapping representations

• resolution - minimum difference of two different representations

• name - Optional name for encoder as in description

• clipInput - trimming down any non-periodic input to a standard length.
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• forced - skipping default safety checks on the input

3.3.1.2 Date Encoder

Edit encoder converts date into a tangible form for the cortical learning algorithm.

It is actually a concatenation generated by different sub-encodings dependent on

aspect of the day and time.

• season - Season of the year

• dayOfWeek - Day of the week

• weekend - Decide if it is weekend or not.

• timeOfday - Time of day

• customDays - Custom operation for specific days

• forced - skipping default safety checks on the input

3.3.1.3 Category Encoder

String values are encoded through a category encoder. Most of the times, the

string inputs are in mixed formats that are not linked to each other in an apparent

way. Therefore, we need to adopt an encoder that deals this particular case. The

followings are significant parameters for a category encoder:

• categoryList - all possible categories for the string inputs

• forced - skipping default safety checks on the input

3.3.1.4 Coordinate Encoder

If the input space is N-dimensional, depending on the radius, we use coordinate en-

coder to represent an SDR position for this. Followings are significant parameters

for a coordinate encoder:

• scale - demostrating distance between 2 points on map
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• timestep - Time between units

• longitude - Position Longitude

• latitude - Position Latitude

• altitude - Position Altitude

3.3.1.5 Pass Through Encoder

Once the data have been encoded through different encoders, it is then passed

through this encoder to get a standard state of Sparse Distributed Representation.

Parameters for Pass Through Encoder are:

• n - total number of bits

• w - width of on bits to normalize sparsity

• forced - skipping default safety checks on the input

3.3.1.6 Multi Encoder

Multi Encoder comprises of several encoders, each of them working of different

aspect of the same data. It actually forms a dictionary and later compares multiple

components accordingly. Multi encoders are the simplest of all and comprise of

one major parameter:

• encoderDefinitions - a dictionary of dictionaries, mapping field names

against their field parameters.

3.3.2 Encoding of the URLs

The cortical learning algorithm does not take urls in their native form, therefore for

the processing of urls in the machine learning algorithm, it is needed to convert the

urls into CLA tangible form. Each input for the CLA is encoded in an appropriate

encoder suggested by numenta under their nupic platform. Initially the URL is
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divided into the hostname, subdomain and the TLD.. Each portion of this division

is then passed individually to the relevant encoder.

URLs have been divided into visiting hostname, subdomain and referring address,

while removing all the long url strings to avoid unwanted delays and processing

overload. A user who visits a normal subdomain is supposed to stay in the normal

usage category. Following factors play significant role in fine tuning the encoding

of URLs:

• w: 33

• categoryList: raw[‘category’].unique()

• fieldname: ‘stringInput’

• verbosity: 0

• forced: False

• type: CategoryEncoder

3.3.3 Encoding of the date

Encoding of date has been divided into two encodings named as timestamp and

weekend. The Major reason behind this division is that weekend and time of visit

cannot have same effective weights in the algorithm.

Here is the list of parameters set for Date time encoding using a date encoder:

• enc_timestamp: fieldname: ’timestamp’ name: enc_time

timeOfDay: [21, 1]

type: DateEncoder

• enc_weekend:

fieldname: ’timestamp’

name: enc_weekend
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weekend: 21

type: DateEncoder

3.3.4 Encoding of Frecency

Frecency is one of the major components in our algorithm implementation as it

gives an effective support to prediction. Frecency comes from the words Frequency

and Recency of that particular visit. If a user has stopped visiting a URL, his

frecency starts dropping with each passing day, This helps the machine learning

process to weight if very low if the user has stopped visiting it.

As frecency is a scalar quantity, I have considered Randomly Distributed Scalar

Encoder with following attributes:

• enc_Frecency:

fieldname: ’Frecency’

name: enc_Frecency

categoryList: raw[’Frecency’].unique()

resolution: 0.25

seed: 20

type: RandomDistributedScalarEncoder

3.3.5 Encoding of VisitType

Visit type is also a string, hence we will use the string encoder name as Category

Encoder. This encoder takes various types of inputs and normalize them into

similar SDRs.

Following parameters have been suggested for Encoding of VisitType using Cate-

gory Encoder of strings:

• w: 21
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categoryList: raw[’VisitType’].unique()

fieldname: ’VisitType’

verbosity: 0

forced: False

type: CategoryEncoder

3.3.6 Encoding of Referrer

Slight importance has been suggested for the referrer of some hostname visit as it

may be the reason of an anomaly. Such case is also a string, therefore Category

Encoder will be implemented. Referrer encoding has the same parameters as the

URL Encoder:

• enc_Referrer:

w: 31

categoryList: raw[’Referrer’].unique()

fieldname: ’Referrer’

verbosity: 0

forced: False

type: CategoryEncoder

3.3.7 CLA Anomaly Measurement

Once the output of Transition and Spatial Memory is then passed into measure-

ment phase to predict the percentage of possible expectation of that URL visit.

This prediction is done in 2 ways: 1 step anomaly detection and 5-steps anomaly

detection. The 1step anomaly detection compares the nature of URL visited at

time t to the nature of the visit made at time t-1 or in simple words, the current

visit being compared to the most immediate previous visit.
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This type of 1-step anomaly detection has been elaborated with undermentioned

formula: FORMULA INSERTION where: This anomaly measurement formula

produces an output that ranges from 0 to 1 depending on the probability of non-

predictive nature of the event occurred. In this way, such anomaly can be extended

to a broader perspective of sequences just as in this thesis it is raised to 5 steps

of URL visits.

3.4 CLA Model Parameters

Cortical Learning Algorithm follows some scenariobased parameters to analyze all

the input vectors from a given column and produce a pattern against particular

scenario’s active bits. These parameters are placed under the ’Compute’ Class.

Here is the list of all 15 parameters that are specified depending on the subject

scenario:

3.4.1 Parameters

• inputDimensions - Input Vector Dimensions. Format: (height, width,

depth,...)

• columnDimensions - Column Dimensions. Format: (height, width, depth,...)

• potentialRadius - Defines extent of input bit or the global coverage of the

input space. Format: Any integer

• potentialPct - Defines column’s potential pool. Format: 0 to 1 i-e 0.5

means half the bits are being considered.

• globalInhibition - Selection of winning columns on basis of being most

active or being related to neighbors. Format: Boolean

• localAreaDensity - Desired density of active columns. Format: Real value

• numActiveColumnsPerInhArea - Alternative way of controlling active

columns’ density. Format: Real Value
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• stimulusThreshold - Minimum number of active synapses in an active

column. Format: Integer Value

• synPermInactiveDec - Parameter to decrement number of inactive bits

in each round. Format: Real Value

• synPermActiveInc - Parameter to increment active synapse in each round

• synPermConnected - Potential of synapse to contribute to cell’s firing

strength. Format: Real Value

• minPctOverlapDutyCycle - A floor value when reached, that particular

column gets boosted again. Format: 0 to 1.0 (Default=0.001)

• dutyCyclePeriod - Higher or shorter duty cycles either slowing down or

making system unstable respectively. Format: Real Number(Default =

1000)

• boostStrength - Boosting encourages columns to have similar activeDuty-

Cycles as their neighbors. Format: Real value

• seed - initiation for the pseudo-number generator. Default = -1

• spVerbosity - Verbosity level. Format: 0 to 3

• wrapAround - Determines if inputs at the beginning and end of an input

dimension should be considered neighbors when mapping columns to inputs.

Format: Boolean

3.4.2 Adopted CLA Parameters

After a rigorous testing of inputs with different CLA Spatial Pooling Parameters,

I reached this below mentioned set of spatial pooling parametric values 3.1 for our

special case of anomaly detection in web services usage:

And table 3.2 delivers list of Temporal Memory Parameters bearing values specific

to our case study:
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Parameter Adopted Value Range Default

inputDimensions (27, 32) - (32,32)

columnDimensions (2048, 32) - (64,64)

potentialRadius 16 - 16

potentialPct 0.5 0-1 0.5

globalInhibition False Boolean False

localAreaDensity -1.0 - -1.0

numActiveColumnsPerInhArea 40 - 10.0

stimulusThreshold 0 - 0

synPermInactiveDec 0.02 0-1 0.008

synPermActiveInc 0.03 0-1 0.5

synPermConnected 0.650 0-1 0.1

minPctOverlapDutyCycle 0.005 0-1 0.001

dutyCyclePeriod 500 - 1000

activeDutyCycles 0.01 =>0 0.0

wrapAround True Boolean True

Table 3.1: Spatial Pooling Parameters
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Parameter Adopted Value

verbosity 0

columnCount 2048

cellsPerColumn 3

inputWidth 2048

seed 1960

temporalImp cpp

newSynapseCount 20

initialPerm 0.5

permanenceInc 0.250

permanenceDec 0.01

maxAge 0

globalDecay 0.0

maxSynapsesPerSegment 32

maxSegmentsPerCell 128

minThreshold 4

activationThreshold 9

outputType normal

pamLength 1

Table 3.2: Temporal Memory Parameters
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In the end, there are Cortical Learning Parameters that adjust learning according

to set methods and do the mathematics of prediction based on Spatial Pooling

and Temporal Memory. Values for clParams in our case study as given in table

4.1.

Parameter Adopted Value [0.5ex]

verbosity 0

regionName SDRClassifierRegion

alpha 0.075

steps ’1,5’

maxCategoryCount 1000

implementation cpp

Table 3.3: Cortical Learning Parameters

3.5 Comparison of the Model

Most suitable algorithm for comparison is the Sequence Time Delay Embedding

Algorithm that detects anomaly in the patterns online.

3.5.1 The Stide(Sequence Time-Delay Embedding) Algo-

rithm

Stide works closely in methodology with Cortical Learning Algorithm but it needs

to be trained first. It is trained on a dataset comprising of normal sequences. Later,

this normal learning is compared to sub-sequences, keeping the input length same.

Meeting these conditions, stide produces a list of all possible mismatches.

CLA, in the first comparison does not require any prior learning with a normal

dataset, takes lead by working with inputs of different lengths and adjusts them

to a standard in case needed.
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Stide is also not applicable to our problem because it involves a pregenerated

dataset, while we do not offer any such data set to CLA for learning.

3.5.2 Hidden Markov Model(Baun-Welch Forward Algo-

rithm)

Hidden Markov Model has also been considered in this scenario under the Forward

Algorithm in Baun-Welch Algorithm. This approach seems suitable because it

uses an online approach to the case. A deep analysis of this method suggests that

HMM Baun-Welch Algorithm slows down and even may stop processing with the

increase in the number of state samples [10]. As our sequence dataset may rise

more than 50000 samples in a month in the corporate sector, HMM does not seem

to accommodate such a huge number.

3.6 Performance Measures

Final results from the algorithm should divide a dataset into two classes: normal

or anomaly. In our dataset, anomaly data are less than 1%, while normal data

ranges above 99%, therefore a plain accuracy of boolean decision is not a suitable

approach. It is one of the reasons for choosing CLA over other conventional

algorithms that it caters the results under a threshold to differentiate anomaly

from normal URLs. There is one drawback to any algorithm (including CLA) we

implement in our scenario that behavior will be poor at first, therefore dataset

adaptation is necessary in this case. Discarding initial 2000 sequences appear to

be a way to avoid misleading results and declared as the training period of the

algorithm. The rest of the sequences are considered in performance measures.

The time complexity is also one of the significant factors when it comes to analysis

of big datasets for any machine learning algorithm. For example HMM is one of

the algorithms that may slow down and fall behind once the dataset approaches

HMM threshold. HTM can readjust its internal states as the learning gets bigger.
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Results

I could not find any algorithm than HTM-CLA that best matches our case scenario

of web usage security under given constraints:

• Anomaly Detection is done online

• No major time delay is expected in processing

• Dataset can be huge

• No normal dataset is available for prelearning phase

• Incorporate 6 significant factors of an input pattern

4.1 HTM-CLA

The results are mostly generated by weight-changing method applied to all the

significant factors of data in Cortical Learning Algorithm. Initially we will look

into the specifications of giving data stream.

4.1.1 Data Attributes

Following are the major data attributes considered in my case scenario:

• timestamp
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• visitType

• Frecency

• Referrer

• hostname

• tld

• subdomain

We will look into all of them and analyse their apparent behavior. Later this

behavior is passed to the CLA for anomaly detection.

4.1.1.1 timestamp

First of all, the timestamp is in general detailed form as given below:

9/2/2017 15 : 55

It is then divided into day of the week, day of month, weekend and hour of day to

visualize the general pattern followed in Internet service usage.

• Day of the Week: From graphics given in figures 4.1 and 4.2, we can surely

say that most of the internet service is used on Sunday followed by Monday

and the rest of days every week in our samples. Therefore, the probability of

an anomalous usage is the highest on a Tuesday and the lowest on a Sunday,

but this is just the beginning.

• Day of the Month: From graphics given in figures 4.3 and 4.4, Internet

service usage increased in the mid and end of each month. While at the

closer end of month, figures show that this is the time usage can hit an

anomaly. Our anomaly rating is increased if it is a Tuesday and closer to

the end of the month. Throughout this analysis of data attributes, we will

look into an apparent anomaly from visualizations.

• Hour of the Day: From graphics given in figures 4.5 and 4.6, most web

service usage happens in the afternoon till sunset and least usage in the
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early hours of the day. It shows that the user checks most of his internet

services during late hours of the day. We can safely expand out assumption

based on visualization of the data that anomaly is most likely to occur in

the early hours of the last Tuesday each month.

• Is it a weekend?: From graphics given in figures 4.7 and 4.8, on a weekly

average, web service usage is higher on weekends compared to the average of

the other days. We can safely expand out assumption based on visualization

of the data that anomaly is most likely to occur in the early hours of the

last Tuesday each month.

Figure 4.1: Day of the Week

4.1.1.2 visitType

VisitType as defined in chapter 3 is the root of every URL visited by the subject.

From the data we analyzed, it has been divided into following categories:

• Link: It is a general form of link that may have appeared from the option
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Figure 4.2: Pie: Day of the Week

Figure 4.3: Day of the Month
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Figure 4.4: Pie: Day of the Month
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Figure 4.5: Hour of the day

of ‘Open in a New Tab’, History, Speed visit, an auto-complete suggestion

or a visit type that was not properly resolved.

• TemporaryRedirect: It is the form of visit when one URL temporarily

redirects to another URL in order to reach the permanent redirection.

• Permanent Redirect: Permanent landing of a webpage from another web-

page

• Download: Any link that leads the usage to downloading a file from its

webpage.

• Bookmark: Loading a saved page in a web browser for future reference is

call a bookmark visit. from its webpage.

• TypedURL: Visiting a webpage by typing its alphabetical URL is called

Typed URL Visit Type of each visit has been elaborated in figure 4.9.
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Figure 4.6: Pie: Hour of the day

Figure 4.7: Is it a weekend?
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Figure 4.8: Pie: Is it a weekend?

From this graphic, on a weekly average, web service usage is higher on

weekends compared to the average of the other days. We can safely expand

out assumption based on visualization of the data that anomaly is most

likely to occur in the early hours of the last Tuesday each month.
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Figure 4.9: Pie: Is it a weekend?

4.1.1.3 Referrer

A referrer is the page which redirects a user from one web service to another

through either a temporary redirect or a permanent redirect. Most of the times,

it becomes a general practice to visit some particular webservice redirected from

a native page that the user does not bother using another method.

In such a case, if a user loads a web page from a different referrer in the early hours

of the last Tuesday of the month, then this is an apparent anomaly so far. On

the basis of our subject’s internet usage, figure 4.10 shows referrers from highest

probability to the lowest. For simplicity purposes, least possible referrers have

been overlooked.

4.1.1.4 hostname

It is the main page under consideration where a subject happens to land from any

means; a temporary or permanent redirect or simple URL is typed. This is the

page where a user is supposed to take any normal or anomalous action. Figure
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Figure 4.10: Referrer

A referrer is the page which redirects a user from one web service to

another through either a temporary redirect or a permanent redirect.

Most of the times, it becomes a general practice to visit some particular

webservice redirected from a native page that the user does not bother

using another method.
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4.11 depicts few of the most visited hostnames by the subject.

Figure 4.11: hostname

It is the main page under consideration where a subject happens to land

from any means; a temporary or permanent redirect or simple URL is

typed. This is the page where a user is supposed to take any normal or

anomalous action. This figure depicts few of the most visited hostnames

by the subject.

4.1.1.5 tld

tld also known as the Top-Level Domain is a hierarchical name of the URL being

visited. It is usually a short length set of alphabets. The most common tld is

.com. For an instance if the subject under consideration usually visits a domain

with a com tld and all of a sudden he lands on the same domain name with a

different tld, an alarm should notify his action to be judged. This action is then

compared to all the probabilities based on all other factors.

textbf4.1.1.6 subdomain

It is the subpart of hostname being visited and does not affect much as if the
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hostname is justified as from a normal web usage category, there is very rare

chance of an anomaly in its subdomain. CLA caters for such cases as well because

it looks into minute percentages of probability without negligence of being rarely

possible.

Figure 4.12 depicts few of the most visited subdomains by the subject. where a

user is supposed to take any normal or anomalous action. Figure 4.11 depicts few

of the most visited hostnames by the subject.

Figure 4.12: subdomain

It is the subpart of hostname being visited and does not affect much as

if the hostname is justified as from a normal web usage category, there

is very rare chance of an anomaly in its subdomain. CLA caters for

such cases as well because it looks into minute percentages of probability

without negligence of being rarely possible.
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4.1.2 Analysis of Data Segments

Analysis of data attributes show that the most effective factors influencing results

were:

• timestamp

Day of the week

Hour of the day

Weekend

hostname

Referrer

During the trial period, weight of hostname and timestamp have been varied

from 21 to 43(Keeping odd values considered) which changed number of possible

anomalies and processing time over 38000 samples, presented in table 4.1 below:

Therefore, it seems really impressive to keep weight of the hostname at 27 which

gives an appropriate number of anomalies under short time. Therefore, we will

proceed with w(hostname) as 27 and vary weight for the timestamp similarly from

21 to 43 in table 4.2:

The tables 4.1 and 4.2 imply that considering our particular case, w = 27 is per-

fect weight for both timestamp and hostname which has also been demonstrated

in graphs 4.13 and 4.14. It can be observed that on a normal computer, Hier-

archical Temporal Memory is performing extra-ordinary with a real-life dataset

extracted from usage history of our subject with more than 38000 samples. It also

caters for length of data sequences unlike the Hidden Markov Model which be-

comes slower as the length and even number of data sequences increases. We also

see that processing time can be monitored and managed based on case scenario

requirements.
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w(hostname) Processting Time(s) Anomalies

21 193 15

23 206 15

25 210 16

27 211 24

29 216 24

31 221 24

33 226 24

35 231 24

37 240 22

39 246 24

41 251 24

43 260 24

Table 4.1: Varying weight w of hostname
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w(timestamp) Processting Time(s) Anomalies w(hostname)

21 210 23 27

23 212 23 27

25 211 24 27

27 210 24 27

29 211 24 27

31 214 24 27

33 212 24 27

35 217 24 27

37 209 22 27

39 214 24 27

41 219 25 27

43 211 24 27

Table 4.2: Varying weight w of timestamp

Considering our particular case, w = 27 is perfect weight for both timestamp

and hostname which has also been demonstrated in graphs
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Figure 4.13: Weight to Processing Time Graph

The new algorithm tested in thi work, CLA,seems to handle this better,

reaching precision scores around 70%. This is still not production-ready

performance, but the models were not ne-tuned, and better results can

certainly be reached.
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Figure 4.14: Weight to Processing Time Graph

It can be observed that on a normal computer, Hierarchical Temporal

Memory is performing extra-ordinary with a real-life dataset extracted

from usage history of our subject with more than 38000 samples. It

also caters for length of data sequences unlike the Hidden Markov Model

which becomes slower as the length and even number of data sequences

increases. We also see that processing time can be monitored and man-

aged based on case scenario requirements.
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4.2 Interpretation of Results

I observed that classic state-of-the-art temporal anomaly detection techniques -

HMMs and t-stide - cannot reliably handle the problem. It is likely explained

by the data characteristics described above: it is composed of short sequences

over a very large alphabet. Both methods appear to handle this case very poorly.

They were developed for different scenarios, where sequences are relatively long

compared to the size of the alphabet. It is very apparent for the HMM, for which

the size of the hidden state does not seem to have any impact on the performance.

Suggesting the model is completely incapable of learning any temporal pattern on

this data (as even an hidden state of size 1 gives roughly the same performance).

Basic tests on HMMs with varying sequence lengths and alphabet size seems to

confirm that this class of models struggles to learn when the size of the alphabet

gets significantly larger that the average size of the sequence. However, I could

not find any literature sources to conform or contradict this observation. The new

algorithm tested in this work, CLA, seems to handle this better, reaching precision

scores over 99% once the program is fine-tuned with hit-and-trial methods and

manual inspection of results.
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Conclusions and future work

5.1 Conclusion

Cortical Learning Algorithm as proposed has promising potential when it comes

to securing a web-based computer network in corporate level. This algorithm

is already being used commercially as well as open source by Numenta where

they predict stock market values. Numenta has also implemented it in Natu-

ral Language Processing Schemes, performing to its best possible. Bringing this

neocortical algorithm into web services security can help network administrators

deal with the complex nature of network traffic. In comparison with conventional

state-of-the art methods like Hidden Markov Model and t-stide, Cortical Learning

Algortihm performs better with increasing complexity in nature of data sequences

at temporal level. CLA also has the capacity to learn from the real-time stream

of data sequences, making it possible to predict any possible near-future anomaly.

This work, as graduate thesis, tried to highlight major aspects if CLA in Cyber

Security covering few of the significant aspects that highly effect the way anomaly

detection is improved. This algorithm depends on a lot of such aspects which

were not an easy task to evaluate in single thesis to obtain best results. Such a

massive evaluation needs a high-end computer and some parameter based tuning

algorithms to be carried out thoroughly; Bayesian and Genetic Algorithms belong

to such catalytic processes.
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CLA also features out in its effectiveness in a way that it is first of its kind

algorithm to be implemented in Web usage security because others, such as t-

stide and Hidden Markov Model do not perfectly fit in the scenario.

It can be concluded that Numenta CLA is a reliable resource in order to detect

attacks on web services by categorizing such behaviors as anomalies; enhancing

efficiency of the cyber security wing in a corporate sector.

5.2 Future Work

Work on CLA in Cyber Security can be extended to implementing it on Network

level where IP Addresses and Port numbers associated with the source and desti-

nation of every packet is analyzed to check if some irrelevant external or internal

user makes any changes to the web services [18]. CLA also has the potential to

categorize traffic on the basis of packet sequences, packet flags, data segment sizes

and frame sizes on the network layer.

Extending the same approach, we can implement CLA on traffic routers that may

monitor complete network traffic in both corporate and private/public computer

networks. Numenta recently launched its opensource program under the label of

NuPic which helps developers, researchers and students to carry out learning and

research-based work using this extraordinary algorithm.

For research reference, Numenta also maintains an ongoing YouTube Video Lec-

ture series under the label ’HTM School’. This series offers an impressive learning

content which can be used to conduct research and interrogate possibilities of CLA

in the real-world case scenarios.
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