

An improved mechanism for detection of Network Wide

Invariants due to policy conflicts

By

AWAIS BIN ASIF

A thesis submitted to the faculty of Electrical Engineering Department Military

College of Signals, National University of Sciences and Technology,

Rawalpindi in partial fulfillment of the requirements for the degree of MS in

Electrical Engineering

August 2019

i

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhil thesis written by Mr NS Awais Bin Asif,

Registration No. 00000118613 of Military College of Signals has been

vetted by undersigned, found complete in all respect as per NUST

Statutes/Regulations, is free of plagiarism, errors and mistakes and is

accepted as partial, fulfillment for award of MS/MPhil degree. It is further

certified that necessary amendments as pointed out by GEC members of the

student have been also incorporated in the said thesis.

Signature: _________________________

Name of Supervisor: Asst Prof Muhammad

Imran, PhD

Date: _____________________________

Signature (HoD): _____________________

Date: _____________________________

Signature (Dean): ___________________

Date: _____________________________

ii

ABSTRACT

Software Defined Network (SDN) is new paradigm which decouples control

plane and management plane from data plane which is obtained from

forwarding devices. Control plane and management planes are implemented

in centralized entity called controller. Data plane encompass the network

devices mainly of switches which are controlled directly by the controller in

order to install the forwarding rules called flow rules. Control plane in SDN has

a single or multiple software application-based controllers. It communicates

and commands the forwarding devices using the OpenFlow protocol.

Application plane contains different applications that interact with controller to

operate and manage network. Due to centralized architecture, SDN has

many advantages, for example, it makes easy to control and manage the

network. Second, it allows to modify the control protocol without making

modifications in the forwarding devices, i.e. it allows the network to evolve the

network without involving the vendors to update the hardware of the

forwarding devices. Despite of numerous advantages, SDN is more prone to

logical errors like loops, black holes, reachability problem, ACL policies

violation and ACL policy conflicts etc. These logical problems are called

network wide invariants. In this research work we proposed a technique to

detect to network wide invariants due to ACL polices conflicts. Proposed

method detects conflicts in ACL polices and check if there is an overlap in

ACL polices and present ACL polices in a form which is much easier to

travers which consequently improves the performance of network.

iii

DEDICATION

With the blessing of Almighty ALLAH I am able to complete this thesis and I

would like to dedicate this work to my

TEACHERS and FRIENDS

For their remarkable support during the whole duration of this Masters degree.

iv

ACKNOWLEDGEMENT

All commendation because of Almighty Allah who showered his blessing and

able me to complete such exploration work.

I would like to take this opportunity to special thanks for an amazing support

that my supervisor Dr. Muhammad Imran and co-supervisor Dr. Nadir Shah

have been, throughout the course of my thesis. He helped me a lot to able me

in completing my MS Degree, he was all time readily available for my

guidance and to help me throughout my Research work.

With sincere gratitude and bundle of prayers for Him!

v

TABLE OF CONTENTS

ABSTRACT .. i

DEDICATION .. iii

ACKNOWLEDGEMENT ... iv

ABBREVIATIONS ... ix

Chapter 1 ... 1

INTRODUCTION ... 1

1.1 Introduction of SDN .. 1

1.2 SDN Architecture .. 3

1.2.2 Control Plane: .. 5

1.2.3 Application/Management Plane: ... 6

1.2 Problem Statement ... 6

1.4 Objectives ... 8

1.5 Thesis Organization ... 8

1.6 Summary ... 9

Chapter 2 ... 10

LITERATURE REVIEW ... 10

2.1 Veriflow: .. 10

2.1.1 Generate equivalence classes: ... 11

2.1.2 Generate forwarding graph: ... 12

2.1.3 Run queries: ... 12

2.2 NDB: ... 13

2.3 Automatic installation of rule in case of policy change: 13

2.4 HSA: ... 15

2.5 PGA: Using Graphs to Express and Automatically Reconcile Network

Policies: ... 17

2.6 NICE: .. 19

2.7 Dynamic configuration of firewall using algebra of filtering rules: 20

2.8 Automatic configuration of ACL policy in case of topology change in

Hybrid SDN: .. 22

2.8.1 Case1: .. 22

2.8.2 Case 2: ... 23

2.8.3 Case3: .. 23

vi

Chapter 3 ... 25

SYSTEM MODEL AND PROPOSED SOLUTION .. 25

3.1 Set Theory: ... 26

3.1.1 Properties: .. 27

3.1.2 Example ... 28

3.2 Representation of Policy in 3D: .. 28

3.2.1 Example: .. 29

3.3 Separating Axis Theorem: ... 30

3.4 Detect conflict among ACL policy using set theory, 3D representation and

separating axis theorem: .. 33

3.4.1 Example: .. 33

3.5 Merge policy using set theory and separating axis theorem: 36

3.5.1 Conditions to check to Merge policies: .. 36

3.5.2 3D Representation: ... 38

3.5.3 Applying separating axis theorem to check overlap: 39

3.5.4 3D representation of merged policy: ... 40

3.5.5 Problem after merging: .. 40

Chapter 4 ... 57

DISCUSSION AND RESULTS ... 57

4.1 Merge policies using set theory and separating axis theorem: 57

4.1.2 Performance Evaluation: .. 60

4.2 Detection of Conflicts.. 60

Chapter 5 ... 62

CONCLUSION AND FUTURE WORK .. 62

5.1 Conclusion ... 62

5.2 Future Work ... 62

BIBLIOGRAPHY ... 63

vii

LIST OF FIGURES

Figure 1.1: Traditional Network vs SDN .. 2

Figure 1.2: SDN Architecture .. 4

Figure 1.3: SDN Architecture [14] ... 5

Figure 2.1: Layer of Veriflow between controller and Data Plane ... 11

Figure 2.2: Model of Veriflow... 11

Figure 2.3: a) Shows empty forwarding table. b) flow rule installed by controller along path SW1-

Sw2-SW3. c) communication from host A to host C and host D d) communication from host A to host

C. e) policy changed but switches flow the previously installed flow rules. [18] 15

Figure 2.4: HSA Transfer functions for intermediate devices [19] .. 16

Figure 2.5: Layered model of PGA ... 18

Figure 2.6: PGA Architecture ... 18

Figure 2.7: Nice working flow.[21] .. 19

Figure 2.8: Scenario in which rules are not installed by controller [21] ... 20

Figure 2.9: Hybrid SDN network for organization for Case 1, case 2, case 3 and case 4.[27] 24

Figure 3.1: Flow chart of our proposed method ... 26

Figure 3.2: Flow chart of our proposed method ... 29

Figure 3.3: Separating axis theorem basic concept .. 30

Figure 3.4: Check overlap along P-axis using vector projection method ... 31

Figure 3.5: Check overlap along P-axis and Q-axis using vector projection method 32

Figure 3.6: 2D representation of policies P1 and P2 ... 35

Figure 3.7: 2D representation of policy ... 38

Figure 3.8: Merged policy .. 40

Figure 3.9: Case 1 before merge Figure 3.10: Case 1 After merge ... 41

Figure 3.11: Case 2 before merge Figure 3.12: Case 2 After merge ... 43

Figure 3.13: Case 3 before merge Figure 3.14: Case 3 After merge ... 45

Figure 3.15: Case 4 before merge Figure 3.16: Case 4 After merge .. 47

Figure 3.17 : Case 5 before merge Figure 3.18: Case 5 After merge ... 49

Figure 3.19: Case 6 before merge Figure 3.20: Case 6 After merge ... 51

viii

Figure 3.21: 3D representation of polices to apply separating axis theorem 54

Figure 3.22: Merge polices using separating axis theorem vector projection method 56

Figure 4.1: Number of ACL polices in Stanford1, Stanford2 and Stanford3 ... 57

Figure 4.2: Merged ACL polices ... 58

Figure 4.3: Time complexity to merge ACL polices of Standord1, Stanford2 and Stanford3 59

Figure 4.4: Number of ACL polices merged in Stanford1, Stanford2 and Stanford3 59

Figure 4.5: Time taken to traverse through ACL polices before and after merging 60

Figure 4.6: Number of conflicts in Stanford1, Stanford2 and Stanford3 .. 61

Figure 4.7: Time taken to find conflicts ... 61

ix

ABBREVIATIONS

SDN: Software Define Networking

ACL: Access Control List

HSA: Header Space Analysis

RBAC: Role Based Access Control

ORBAC: Organization Based Access Control

SAT: Separating Axis Theorem.

SW: Switches

1

Chapter 1

INTRODUCTION

1.1 Introduction of SDN

SDN [1] is an emerging paradigm that decouple control plane and

management plane from data plane. Control plane and management planes

are implemented in centralized entity called controller and data plane is

implemented in forwarding devices called switches. Controller manages whole

network therefore network appears as a single forwarding device to controller.

SDN allows vendor independent control for network management via central

controller [1],[2]. Controller installs forwarding rules called flow rules in

forwarding devices to deliver packets to host. Forwarding devices observe

and forward network traffic on the basis of installed flow rules by the

controller. This separation of control and data plane gives many advantages

over traditional network like network management and implementation of

network security policies e.g. ACL policies, load balancing etc. SDN controller

gives overall centralized view of organization’s network to network

administrator, which ease network administrator to manage network. SDN

allows more control to the control plane through centralized device controller,

where as in traditional network, forwarding devices have tight coupling of

control plane and data plane that makes a close and vendor dependent

architecture.

2

Figure 1.1: Traditional Network vs SDN

Fig. 1.1 illustrates difference between traditional network and SDN. In

traditional network control plane and data plane are coupled in forwarding

devices. Where as in SDN control plane is decoupled from data plane and

implemented in centralized device called controller. Controller have overall

view of complete network through open flow API, which allows network

administrator to manage and control network. Controller installs forwarding

rule in forwarding devices. For example, if a packet arrives at switch from host

1 for destination host 2, if there is no flow rule installed in switch for

destination, switch forwards this packet to controller, controller passes this

packet through ACL polices and install flow rules in all switches along the path

from host 1 to host 2. Next time when packet arrive from host 1 for host 2

switches have already installed flow rules for host 2, switch directs the packet

on the specified path as mentioned in installed flow rules. As explained before

flow rules are installed in switches according to specified network policies

called ACL polices by network administrators. To express these ACL policies

network devices need to configure using vendor specific commands. In

modern network there is a lot of dynamic changes which need to consider

3

while writing ACL policies. Implementing ACL policies in such a dynamic

network is very challenging [2].

In traditional network control plane (make decisions to handle the traffic) and

data plane (forward traffic to destination according to decision made by

control plane) are embedding into single network device, which makes the job

harder. Because in tradition network control plane is not flexible for innovation

and evolution. SDN [4],[5] allows us to address these problems and limitations

of traditional networks. It separates the integration of control plane and data

plane from the network devices and implement it in controller and data plane

is implemented in switches, making switch a simple forwarding device. This

separation of control plane and data plane makes policy enforcement and

network configuration flexible and manageable [6].

1.2 SDN Architecture

Fig. 1.2. and Fig. 1.3. illustrate architecture of SDN, it contains 3 planes

Application plane, Control plane and Data plane. The separation of control

plane and data plane is considered as a programming interface using Open

flow [7],[8] API as shown in Fig. 2. Open flow switch contains forwarding table

which contain flow rules written by controller. These flow rules perform certain

task like forwarding or dropping traffic. Switches match the traffic with flow

rules installed by controller and make decisions whether packet should be

forwarded or dropped. SDN architecture is defined as four pillars

1. Control plane and Data plane are decoupled. Control plane is

implemented in controller making network devices simple forwarding

devices.

4

2. Forwarding decision depends on flow rules installed by controller in

switches. Flow rule define the behavior of packets from source to

destination. All packets of flow have same forwarding behavior at

forwarding device. [9],[10]

3. Control logic is moved to external device called controller or NOS.

4. Network is programable through network application running on top of

controller in application layer.

Following are the layers of SDN architecture as shown in Fig. 1.2.

Figure 1.2: SDN Architecture

5

Figure 1.3: SDN Architecture [14]

1.2.1 Data Plane

Data plane encompass the network devices mainly switches. These switches

are called forwarding devices in SDN. These are directly managed by the

controller in order to install the flow rules. Forwarding devices contain

forwarding table in which flow rules are written by the controller. Forwarding

devices guides the traffic according to flow rules installed in forwarding table.

When a packet is arrived, it matches destination of packet with all the flow

rules mentioned in forwarding table, if it matched with flow rule forwarding

device forward the packet along the path mentioned in flow rule. If packet

does not match with any flow rule, this packet is forwarded to controller.

Controller then passes this packet through ACL polices and install flow rules

in switches as explained below.

1.2.2 Control Plane:

Control plane in SDN has a signal or multiple software application-based

6

controllers. In traditional network control plane is integrated with data plane

whereas in SDN control plane is separated from data plane. Controller

communicates and manage the forwarding devices using the OpenFlow

protocol. Main task of controller is to install flow rules in forwarding devices. If

switch receives a packet and it does not have flow rule for specific destination

it sends packet to controller. Controller have overall view of whole network.

Controller computes the path for destination by passing the packet through

ACL polices mentioned by network administrator and install flow rule in

switches. Switch will use these flow rules for any further communication.

1.2.3 Application/Management Plane:

Applications that interact with controller to make the decision abstractly for

user in senesce that what and how efficiently to serve? For example, there

are many applications in SDN like firewall, load balancer etc. Application

plane is the interface for the administrators to develop applications and

customize behavior of network. This entity makes network programable and

flexible for developers.

1.2 Problem Statement

Network policies like ACL policies in SDN is implemented in management

plane. Using ACL polices controller installs flow rule in forwarding devices

(Switches). Forwarding devices uses these flow rules to guide network traffic

to the destination. SDN allows multiple network applications to specify ACL

polices simultaneously on controller [11], which may lead to conflicts or

overlap [11] - [13]. These conflicts and overlap may degrade performance of

network quit significantly. Consider an open flow switch having two flow rules

7

with destination IP 11.1.0.0/16 and 12.1.0.0/16 respectively. If a new flow

rules is installed with destination IP 11.0.0.0/8, it may affect the packet

belonging to 11.1.0.0/16 range. However newly installed rule will not affect the

packets outside the range 11.0.0.0/8 and packets belonging to range

12.1.0.0/16. If first flow rule allow packet for destination 11.1.0.0/16 and

second flow rule deny packets for destination 11.0.0.0/8. In this case there is

conflict in policy, which cause network wide invariant. Let’s take an example

from Stanford backbone network traces.

Let P1 and P2 are two ACL polices,

P1 = access-list 151 permit tcp 171.64.24.128 0.0.0.127 any

P2 = access-list 151 deny tcp any 171.64.250.0 0.0.0.128

If packet belong to source IP address range 171.64.24.128-

171.64.24.128.127 and destination IP address range 171.64.250.0-

171.64.250.128, then this range matches with both polices P1 and P2. Where

P1 allows this packet and P2 deny this packet, which result in conflict in these

two polices. Let’s take another example from Stanford backbone network,

 let P1 and P2 are two polices,

access-list 151 permit tcp any 171.64.250.28 0.0.0.1

access-list 151 permit tcp any 171.64.250.0 0.0.0.31

In this example if packet belong to source IP address range 0.0.0.0-

255.255.255.255 and destination IP address 171.64.250.28-171.64.250.29,

then this packet matches with both polices P1 and P2, where both polices are

allowing this packet. In this case there is redundancy in ACL polices, which

8

takes extra time to pass through it.

Our proposed technique addresses these problems and give a solution which

detect conflicts and overlaps in ACL policies and specify overlapped ACL

policies in the form such that traversal through ACL polices will be much

easier and traversal time will be improved.

1.4 Objectives

Following are the objectives of this research.

1. To propose a technique which detects network wide invariants due to

ACL policy conflicts.

2. To propose a method to find overlap ACL policies and represent in

form which is easy to traverse.

1.5 Thesis Organization

Thesis organization is as follows:

• Chapter 1: In this chapter Introduction to SDN is explained and brief

comparison between traditional IP address and SDN along with the

architecture SDN and advantages of SDN over traditional network.

• Chapter 2: This chapter describes literature review.

• Chapter 3: This chapter descries the proposed methodology.

• Chapter 4: In this chapter simulations results are discussed.

• Chapter 5: This chapter concludes all the work done and its future

perspectives to extend this work.

9

1.6 Summary

This chapter covers the main aspects of research topic. A detailed overview

about architecture and introduction of SDN is given it also compares

traditional network with SDN and describes the need of SDN in modern

networks.

10

Chapter 2

LITERATURE REVIEW

As explained above, the network wide invariants can arise in SDN due to

incorrect behavior of different modules at control, data and management

planes, and due to different ways of interaction between any of two planes

among these three planes. In this section, we explain the existing

approaches that detect the network wide invariants produced due incorrect

operation SDN modules.

2.1 Veriflow:

Veriflow [14] attempts to detect the network wide invariants (like loops,

reachability, black holes, etc.) at real time. Veriflow works as a layer between

controller and data plane, as shown in Fig. 2.1. When controller generates

the flow rules for an arriving packet, the controller passes these flow rules

through Veriflow and ask that whether the flow rules cause a particular

network wide invariant or not. If the network wide invariant is created, then

Veriflow either generates alarm to inform the network operator and let the flow

rules to be installed at data plane or drop the flow rules by avoiding the

installation of flow rules at the data plane. Otherwise, Veriflow sends the flow

rules to the data plane to be installed. As given in Fig. 2.2, Veriflow has three

modules as follows:

11

Figure 2.1: Layer of Veriflow between controller and Data Plane

Figure 2.2: Model of Veriflow

2.1.1 Generate equivalence classes:

In this module, Veriflow uses tries [15] structure to store the forwarding rules

matched to a set of packets. In hierarchy of tries, each level has a bit

equivalent to packet header. Tries from top to bottom of path stores the flow

rule’s matched to packets header fields. It also stores the information of

New rules

Good Rules

Network Controller

Veriflow

 Generate

Equivalence

classes

Generate

forwarding

graphs

Run

queries

Diagnosis report

• Type of invariant

• Affected set of packets

Rules violating network invariants

Good rules

Veriflow Operations

12

device for which packets are located. At time of generation of a new

forwarding rule, tries are searched level by level to select specific leaf that

contains forwarding rule.

2.1.2 Generate forwarding graph:

A forwarding graph is generated by Veriflow which has equivalent classes as

nodes. In the graph, directed edges represent the decision to forward data

from equivalence class to device. To generate forwarding graph, it involves

two times traversing of tries to get the classes of similar packets and devices.

When an equivalence class is modified, Veriflow maintains record of altered

class and invariant.

2.1.3 Run queries:

Veriflow checks the flow rules for different types of network wide invariant and

the operator has to specify which type(s) of invariant are to be checked. For

example, to verify reachability, the reachability verification function takes the

directed edge graph and traverse this. This procedure applies depth first

methodology to determine whether a packet shall reach to its destination or

not. Similarity, to check consistency, Veriflow traverse the forwarding graph

between two devices e.g. from R1 to R2, if packets does not reach same

destination then Veriflow indicate bugs. However, Veriflow does not

automatically localize that the network wide invariant is occurred due to

conflict among ACL policies. Moreover, it does not attempt to reduce the

number of ACL policies that are overlapping and causing redundant ACL

policies. This leads to longer delay at controller to pass the packet through

more number of ACL policies.

13

2.2 Network Debugger (NDB):

NDB [16] is a network debugging tool using the software based investigation

of SDN applications. NDB use the breakpoints and back tracing the packets

when error condition or network wide rule violation occur in network. GNU

Debugger [17] and NDB are of similar nature debugger that perform the

debugging using the breakpoint and back packet tracing methods for the

sequence of events that cause an error. NDB can identify error conditions but

it does not identify neither conflict in ACL policies nor overlap in ACL policies.

2.3 Automatic installation of rule in case of policy change:

Mudassar et al. proposed a technique [18] which identify change in ACL

policy and install rules according to new policies and overwrite the previous

one. Consider a scenario in Fig. 2.3, where host A wants to communicate with

host C. Initially there are no flow rules installed in all the switches along the

path from host A to host C. When a packet arrives at switch1 from host A for

destination host C, there is no flow rule installed in flow table of switch1 for

destination host C. Switch 1 will send packet to controller. Controller passes

this packet through ACL policy and installs flow rules in all switches along the

path from host A to host C. When subsequent packets are sent by host A,

packets are successfully forwarded to the destination host C. After some time

new policy is introduced at controller, which says host A can communicate

host C but packet should not pass through switch 2. In this case there is

conflict in flow rules, because switch follow the installed rules in switches. This

problem is addressed in this paper and they proposed a method to

automatically install flow rule in switches in case of change in policy at

controller and overwrite pervious rules. This technique detect change in ACL

14

policy and install rule accordingly but does not detect conflict in ACL polices.

Moreover, it does not detect overlap in ACL polices.

15

Figure 2.3: a) Shows empty forwarding table. b) flow rule installed by controller along path SW1-
Sw2-SW3. c) communication from host A to host C and host D d) communication from host A to host
C. e) policy changed but switches flow the previously installed flow rules. [18]

2.4 Header Space Analysis (HSA):

HSA [19] analyze network to detect network wide invariants i.e. loops, black

hole and reachability. HSA is a framework which allow network administrator

to statically analyze network. HSA addresses the problem to detect loops,

16

black holes and reachability access between two hosts. It checks whether

host, user or traffic is isolated or belong to specific group. For example, is host

B is reachable from host A? HSA forms a header space of L bits where each

packet is represented as [0,1]L where L represents header length. HSA model

all middle boxes like switches and router as transfer function Ψ as shown in

Fig. 2.4, If packet traverse through these transfer functions, it can be traced in

geometric space. HSA detects different network wide invariants like

reachability analysis, loop detection and black hole. HSA detect loop by

injecting a test packet in network, if packet arrives back at injection port then

there is loop in network. This process is repeated for every node in network

until all nodes are verified. For reachability analysis it generates reachability

function R which contains transfer function of all switches along the path from

host A to host B. Using this reachability function, host A and host B is

analyzed to check whether host B is reachable from host A or not. This

technique detects network wide invariants but it does not specify network wide

invariants due to ACL policies.

Figure 2.4: HSA Transfer functions for intermediate devices [19]

17

2.5 PGA: Using Graphs to Express and Automatically Reconcile Network

Policies:

PGA [20] automatically compile conflict free policy. PGA is a layer between

application plane and controller as shown in Fig. 2.5. PGA architecture

consists of two layers Graph Editor and Graph Composer as shown in Fig.

2.6. User/ network administrator define network policies in the form of graph

using graph editor layer and these policies are submitted to graph composer

layer. Graph composer automatically resolves conflict between policies and

generate conflict free graph. For example, an organization wants to implement

Customer Relation Management (CRM) for their customers in front office.

According to network policy “P1” only marketing employ can communicate

CRM server on port 7000 using load balancing service. Whereas there is

another policy “P2” which says that employees of organization have restricted

access to CRM server through TCP port 80, 334 and 7000 and traffic should

go through firewall. There is a need to combine these two policies which

should full fill requirements of both policies “P1” and “P2”. In PGA, network

administrator create graph based on network policy and submit this graph to

PGA graph composer. Graph composer find conflicts among all policies and

give suggestions to network administrator and generate conflict free/ error

free graph. PGA resolve conflicts but it is at abstract level and it very slow

process. It requires days or weeks to complete the whole process. However,

PGA avoid conflicts at abstract level but it does not find overlap.

18

Figure 2.5: Layered model of PGA

Figure 2.6: PGA Architecture

19

2.6 No Bugs In Controller Execution (NICE):

NICE [21] is a method to test open flow applications for bugs and network

wide invariants in SDN by using model checking and symbolic execution.

NICE work flow is shown in Fig 2.7. Consider a scenario in Fig. 2.8, where

host A and host B want to communicate through intermediate switches SW1,

SW2 and SW3. When packet arrives at SW1, it does not contain flow rules for

arrived packet, it sends digest packet to controller. Controller passes this

packet through ACL policies and decide whether packet should be permitted

or denied. If packet is permitted controller install forwarding rules along the

path from host A to host B i.e. SW1, SW2 and SW3. Because of some

software error at controller flow rule is not installed or delayed at SW3 by

controller. When packet arrives at SW3 it does not have installed flow rules,

SW3 send digest packet to controller to request for installation of flow rule.

Controller assumes it has already installed flow rule. This is an error in

controller where controller is working fine but due to some error flow rules are

not installed in forwarding devices. NICE test SDN application by sending

stream of packets, covering all possible events to detect these kind of network

invariants. NICE detect network invariants like forwarding loops or black holes

but it cannot detect network invariants due to conflict in policies.

Figure 2.7: Nice working flow.[21]

20

Figure 2.8: Scenario in which rules are not installed by controller [21]

2.7 Dynamic configuration of firewall using algebra of filtering rules:

Vladimir Zaborovsky et al. [22] suggest an approach that constructs an

algebra of filtering rules to configure firewall dynamically in a way such that

filtering rules are optimized and aggregated to remove redundant filtering

rules. This makes easy to both aggregate and control the configuration

firewall. The proposed approach consists of five main components: network

monitory, ACL policy description module, firewall rules generator, information

of resource model and algebra of filtering rules. Network monitor manages the

whole system it keeps information of user activity, shared hardware resource

and network state. Access policy description module specify ACL polices for

firewall configuration like Mr. X should work with YouTube without refinement

of nature of Mr. X work [23]. ACL policy is described using notions of subject,

object and action. In above example subject is “Mr. X”, object is “YouTube”,

action is “read” and decision is “prohibited”. This notion of subject, object and

action are not enough to represent real work complex polices. There are

some new approaches like RBAC [24] and OrBAC [25] have been developed

to represent more complex polices. RBAC uses the notion of role and it

replaces the notion of subject. Role may be role of network administrator or a

21

role of unprivileged user in network. RBAC represent ACL policies using the

notion of role. OrBAC extends the traditional RBAC and brings new notion of

activity, view and abstract context. Activity replaces the notion of action i.e.

read and write and view replaces the notion of object. Using notion of activity,

view and abstract context OrBAC represents ACL at abstract level. For

example user is prohibited to access entertainment resources. In this abstract

rule user is “role”, read is “activity” and entertainment resources is “view”.

Firewall rule generator execute ACL policies using main function access

control device (ACD). ACD decide whether a subject is permitted to perform

an action or not. ACD is configure by the access rules specified by Access

policy description module using hardware specific language.

In large distributed network huge number of ACL rules are implemented to

restrict unauthorized access. These rules are generated from ACL policies,

whereas implementation of these rules may rise errors. Proposed approach

describes, test and verify ACL policies, using algebraic technique such that

ACL policies are easily implemented in firewall. Author used concept of Ring

[26] to define rules for firewall, where in algebra Ring is the set of elements

with operators + and *. In simple words we can apply addition and

multiplication on elements of Ring to aggregate rules. In this technique

elements of ring are firewall rules generated from ACL policies and operator

are union and intersection. Elements of ring are represented in space,

representing filtering rules and forbidden areas that are incorrect from the

point of view of ip network functionality. Using ring operator’s addition and

multiplication rules for firewall are optimized and verified.

22

2.8 Automatic configuration of ACL policy in case of topology change in

Hybrid SDN:

Rashid et al. [27] proposed a technique to automatically configure ACL policy

in case of topology change in Hybrid SDN. SDN is not widely adopted by

organizations due to budget constraint because organizations are reluctant to

invest huge budget in SDN to deploy SDN device from scratch. So,

organization are moving toward hybrid SDN in which SDN devices are

deployed in parallel with traditional networking devices. In real time network

addition or removal of links occurs frequently, which changes the topology.

Changes in topology may affect network policies and hence it may affect

network performance [28] and organization’s security. Suppose there is

organization’s Hybrid SDN network as shown in Fig. 2.9. Company have two

front offices site say A and B having front offices AF1-AF2 and BF1-BF2 and

two data centers for each front office say AD1-AD2 and BD1-BD2

respectively.

2.8.1 Case1:

Company has ACL policy say p1 which states that front offices AF1-AF2 can

communicate with data center AD1-AD2 and front office BF1-BF2 can

communicate with data center BD1-BD2 and AF1-AF2 cannot communicate

with data center BD1-BD2 similarly front office BF1-BF2 cannot communicate

with data center AD1-AD2. This policy is implemented at interface i2.1 and

i3.1 of router R2 and R3 respectively. If AF1-AF2 wants to communicate with

data center BD1-BD2, packets will be drop at interface at i3.1. If front office

BF1-BF2 wants to communicate with data center AD1-AD2, packets will be

23

drop at interface i2.1 as shown in Fig. 2.9a.

2.8.2 Case 2:

Later on, it decided by network administrator to add new link between router

R2 and R3 as shown in Fig. 2.9b. Now front office AF1-AF2 have new link to

communicate with data center BD1-BD2 through link R1, R2 and R3.

Similarly, front office BF1-BF2 can also communicate with data center AD1-

AD2 through link R4, R3 and R2. In this case ACL policy implemented on

interface i2.1 and i3.1 is bypassed by new link established between R2 and

R3. This problem can be overcome by manual configuration by network

administrator, but it is very difficult task to detect these scenarios in large

scale network.

2.8.3 Case3:

Suppose, the problem mentioned in case 2 is detected and resolved manually

by network administrator. Now policies are implemented on interface i2.2 and

i3.2. All packets from front office AF1-AF2 are dropped at interface i2.2 and all

packets from front office BF1-BF2 are dropped at interface i3.2. Suppose link

between front offices i.e. f1 is down as shown in Fig. 2.9c. In this case front

offices cannot communicate directly through link f1 but there is alternative link

available for front office AF1-AF2 to communicate with front office BF1-BF2

through link R1, R2, R3 and R4, but still front offices cannot communicate with

other because of police implemented on interface i2.2 and i2.3 to drop all

packets from front offices BF1-BF2 and AF1-AF2 respectively as shown in

Fig. 2.9d.

Author proposed an improve mechanism to automatically configure network

24

devices if there is change in topology and to use an alternative path available

in case of Hybid SDN. This method automatically configures ACL policies but

it does not detect conflicts in policies.

Figure 2.9: Hybrid SDN network for organization for Case 1, case 2, case 3 and case 4.[27]

Techniques discussed so far lack detection of conflicts in ACL polices,

detection of network wide invariants due to conflicts in ACL polices and

detection of redundant ACL polices. In this thesis a new technique will be

proposed to detect network wide invariants due to conflicts in ACL polices and

merge the redundant ACL polices.

25

Chapter 3

SYSTEM MODEL AND PROPOSED SOLUTION

In order to address the problems mentioned in chapter 1, we proposed a

method to detect conflicts and overlap in ACL polices and represent ACL

policies in such a way which is easy to traverse. Our proposed method will

eventually improve network performance. We used the concept of set theory

to represent ACL policy in Ring and then we represent these polices in 3D

shape. Then we apply separating axis theorem to check if shapes are

overlapping. If overlapping polices have different access, its mean

overlapping ACL polices have conflicts. If no conflict found then overlapping

polices are passed through different cases of merging as explained later in

this section, if it matches with any case ACL polices are merged to remove

redundant polices. Our proposed method’s work flow is shown in Fig. 3.1. In

the form of flow chart

26

Figure 3.1: Flow chart of our proposed method

3.1 Set Theory:

To represent ACL policy we used concept of algebra of filtering rule R=<R,∑>.

Where R is the set of filtering rules, ∑ is the set of possible operation over the

set R. Combination of R and ∑ is known as ring [26]. Ring R has following

Check if

conflict exists

 Yes

 No

Merge Shapes if

possible

Input (ACL Policies)

Map Policies to 3D shape using set

theory

Apply Separating Axis Theorem on 3D

shapes to check overlap

Overlap exists Overlap does not exist

Conflict occur if access is

different
No Conflict if access is

same

New Policy

Reason of packet loss

detected

Output

27

properties.

3.1.1 Properties:

1. Commutativity of addition: ∀a,b∈R a + b = b + a.

2. Associativity of addition: ∀a,b,c∈R a + (b + c) = (a + b) + c.

3. Zero element of addition: ∀a∈R ∃0∈R: a + 0 = 0 + a = a.

4. Inverse element of addition: ∀a∈R ∃b∈R: a + b = b + a = 0.

5. Associativity of multiplication: ∀a,b,c∈R a × (b × c) = (a × b) × c

6. Distributivity: ∀a, b, c ∈ R {(b + c) × a = b × a + c × a}.

 {a × (b + c) = a × b + a × c}

7. Identity element: ∀a∈R ∃1∈R: a × 1 = 1 × a = a.

8. Commutativity of multiplication: ∀a,b∈R a × b = b × a.

Set of filtering rule R is defined as

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

𝑟𝑗 = {𝑋, … . 𝑋𝑛, 𝑌1, … . 𝑌𝑛, 𝑃1, … . . 𝑃𝑛, 𝐴𝑗}

 ∑ = {𝛷1, 𝛷2}

𝐴𝑗 = {0,1}

Where X represents pool of source IP address of ACL policy, Y represents

pool of destination IP address of ACL policy, P represents ports of ACL policy

28

and A represents access of ACL policy. If access of ACL policy is permit value

of Aj=1 otherwise Aj=0. Set ∑ define operations that are possible over filtering

rule. Where Φ1 is operation of addition and Φ2 is operation of multiplication.

Operation of addition is implemented using Union U and operation of

multiplication is implemented using intersection.

3.1.2 Example:

Let’s take an example of policy P1

P1= access-list 100 permit ip 172.17.0.0 0.0.255.255 172.27.16.32 0.0.0.31

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

∑ = {𝛷1, 𝛷2}

𝐴𝑗 = {0,1}

Pool of source IP address is 172.17.0.0 - 172.17.255.255

Pool of destination IP address is 172.27.16.32 - 172.27.16.63

A=1

𝑟1 = {172.17.0.0, 172.17.255.255, 172.27.16.32, 172.27.16.63, 1}

3.2 Representation of Policy in 3D:

ACL policy comprises of source IP, destination IP, port and protocol. We

represent ACL policy in 3 dimensions, where source ip is on x-axis,

29

destination ip is on y-axis and port on z-axis. x-axis consists of pool of source

ip address, y-axis consists of pool of destination ip address and z axis

consists of range of port as shown in Fig. 3.2.

3.2.1 Example:

access-list 100 permit ip 172.17.0.0 0.0.255.255 172.27.16.32 0.0.0.31 range

5000 5050

x-axis: 172.17.0.0 – 172.17.255.255

y-axis: 172.27.16.32 – 172.27.16.63

z-axis: 5000 to 5050

Figure 3.2: 3D Representation of ACL policy

172.17.255.255 255.255.255.255
0.0.0.0

172.17.0.0

Source IP

P2

P4

P6

P3

P5

P8 P7

P1

5000

5050

6000

30

3.3 Separating Axis Theorem:

Separating axis theorem is used to check collision between two polygons.

Theorem states if you are able to draw a line between polygons then they are

colliding with each other.

 Fig. a Fig. b Fig. c

 Fig. d Fig. e Fig. f

Figure 3.3: Separating axis theorem basic concept

In above Fig. 3.3. we can observe that in Fig. a., Fig. b. and Fig. c. we can

draw a line between polygons, hence they are not colliding with each other.

Where as in Fig. d., Fig. e., Fig. f., polygons are not colliding as we cannot

draw a line between polygons.

Consider two squares box1 and box2

as shown in Fig. 16.

31

 Figure 3.4: Check overlap along P-axis using vector projection method

To find collision between these boxes using separating axis theorem we find

distance between two boxes, if distance is zero or less than zero boxes are

overlapping/colliding. To find distance we apply concept of vector projection.

Let corners of box1 p1, p2, p3 and p4 and corners of box2 p5, p6, p7 and p8

as shown above in Fig. 3.4. Let’s take corners p1, p2, p5 and p6 as vectors

v1, v2, v3 and v4. To check overlap/collision of boxes along P-axis we

calculate projections of these vectors on vector P-axis to calculate 4 values

Box1 minimum, Box1 maximum, Box2 minimum and Box2 maximum. If

difference between Box2 min and Box1 max is greater than zero or Box2 min

is greater than Box1 max, then Boxes are not overlapping with each other

along P-axis. Similarly, if difference between Box2 min and Box1 max is equal

to zero or less than zero or Box2 min is less than Box1 max, then Boxes are

overlapping/colliding with each other along P-axis.

Similarly, we have to check overlap/collision along Q-axis as well.

p8 p7 p4 p3

Box2 max Box2 min Box1 max Box1 min

p6 p5 p2 p1

V4

Box2

V1 V2 V3

Box1

P-axis

32

Figure 3.5: Check overlap along P-axis and Q-axis using vector projection method

To check overlap/collision of boxes along Q-axis we calculate projections of

vectors along P-axis to calculate 4 values Box1 minimum’, Box1 maximum’,

Box2 minimum’ and Box2 maximum’ as shown in Fig. 3.5. If difference

between Box2 min’ and Box1 max’ is greater than zero or Box2 min’ is greater

than Box1 max’, then Boxes are not overlapping with each other along Q-axis.

Similarly, if difference between Box2 min’ and Box1 max’ is equal to zero or

less than zero or Box2 min’ is less than Box1 max’, then Boxes are

overlapping/colliding with each other along Q-axis.

Similarly, it is required to check overlap/collision along all possible axis. If

Boxes are overlapping/colliding along every possible axis then boxes are

overlapping/colliding.

V5

V6

Q-axis

p4 p3

Box2 max Box2 min Box1 max Box1 min

p2 p1

V4

V1 V2

V3

P-axis

Box1

33

3.4 Detect conflict among ACL policy using set theory, 3D

representation and separating axis theorem:

To detect conflict between two ACL policies, let’s say P1 and P2, we

represent these polices in Ring as explained earlier. Then we represent these

polices in 3D shapes, let’s say S1 and S2, to check overlap/collision between

two shapes by applying separating axis theorem as explained earlier. There is

conflict in policies if shapes S1 and S2 are overlapping and both polices P1

and P2 contain same protocol but different access i.e. P1’s access is permit

whereas P2’s access is deny.

3.4.1 Example:

Let’s consider the following case where we have two policies p1 and p2 as

written bellow.

P1 = access-list 151 permit tcp 171.64.24.128 0.0.0.127 any

P2 = access-list 151 deny tcp any 171.64.250.0 0.0.0.128

3.4.1.1 Step1 representation of policy in Ring:

Let’s specify elements of Ring R for p1 and p2 are as follow.

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

∑ = {𝑈,ꓵ}

𝑟1 = {𝑋𝑎1, 𝑋𝑎2, 𝑌𝑎1, 𝑌𝑎2, 𝐴}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, 𝑌𝑏1, 𝑌𝑏2, 𝐴}

For p1,

34

Xa1,Xa2= pool of source IP address in p1 i.e Xa1=171.64.24.128,

Xa2=171.64.24.255

Ya1,Ya2= pool of source IP address in p1 i.e Ya1=0.0.0.0,

Ya2=255.255.255.255

A=1

𝑟1 = {171.64.24.128, 171.64.24.255, 0.0.0.0, 255.255.255.255,1}

For p2,

Xb1,Xb2= pool of source IP address in p1 i.e Xb1=0.0.0.0,

Xb2=255.255.255.255

Yb1,Yb2= pool of source IP address in p1 i.e Yb1=171.64.250.0,

Yb2=171.64.250.128

𝐴 = 1

𝑟2 = {0.0.0.0, 255.255.255.255, 171.64.250.0, 171.64.250.128,0}

3.4.1.2 Step 2 3D Representation:

We represent polices P1 and P2 in 2D shape because P1 and P2 contains

source IP and destination IP only it does not contain ports as shown in Fig.

3.6.

35

Figure 3.6: 2D representation of policies P1 and P2

.

3.4.1.3 Step 3 applying separating axis theorem to check overlap:

Let Box1 = P1 and Box2= P2

Using concept of vector projection as explained earlier following values are

calculated

Box1 min= 171.64.24.128, Box1 max=171.64.24.255, Box2 min= 0.0.0.0,

Box2 max= 255.255.255.255

Box1 min’= 0.0.0.0, Box1 max’=255.255.255.255, Box2 min’= 171.64.250.0,

Box2 max’=255.255.255.255

3.4.1.3.1 Checking Overlap along x- axis:

𝐵𝑜𝑥2 𝑚𝑖𝑛 – 𝐵𝑜𝑥1 𝑚𝑎𝑥 = 0.0.0.0 − 171.64.24.255 < 0 … … … … … … … … (1)

Boxes are overlapping along x-axis as distance between Box2 min, Box1 max

171.64.250.128

171.64.250.0

Destination IP

171.64.24.255 255.255.255.255

0.0.0.0

171.64.24.128

 P1

Access=permit

Source IP

P2 access=deny

36

is less than zero.

3.4.1.3.2 Checking Overlap along y- axis:

𝐵𝑜𝑥2 𝑚𝑖𝑛’ – 𝐵𝑜𝑥1 𝑚𝑎𝑥’ = 171.64.250.0 − 255.255.255.255 < 0 … … … … . (2)

Boxes are overlapping along x-axis as distance between Box2 min’, Box1

max’ is less than zero.

Eq (1) and (2) show that P1 and P2 are overlapping along source IP and

destination IP and P1 and P2 have different access i.e. P1’s access is permit

and P2’s access is deny. If packet arrive at controller with source ip address

171.64.24.128 - 171.64.24.255 and destination IP address 171.64.250.0 –

171.64.250.128 then P1 is allowing this packet and P2 is denying which leads

to conflict in ACL policy and it cause network wide invariant.

3.5 Merge policy using set theory and separating axis theorem:

To merge policies firstly we represent all policies in Ring using set theory as

explained earlier. Then we represent all polices in 3D shape. Then we pick 1

shape at a time and compare it with rest of the shapes by applying separating

axis theorem, if it is overlapping with other shapes and if criteria for merging,

explained bellow, is fulfilled then it will be merged with other shapes by

applying union operator on Ring. This whole process is continued until all the

polices are cross checked with each other.

3.5.1 Conditions to check to Merge policies:

To merge two polices P1 and P2 we represent these polices in in Ring and

then in 3D shape let’s say S1 and S2. We check if two shapes are

overlapping or not by applying separating axis theorem. If polices are

37

overlapping then we check after merging these shapes may lead to violation

of policies as explained below with example.

Let’s consider a case where we have two policies p1 and p2 as written bellow.

P1 access-list 108 permit ip 171.66.31.96 0.0.0.7 any

P2 access-list 108 permit ip 171.66.24.0 0.0.7.255 171.64.8.185 0.0.10.255

Let’s specify elements of Ring R for p1 and p2 are as follow.

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

∑ = {𝑈,ꓵ}

𝑟1 = {𝑋𝑎1, 𝑋𝑎2, 𝑌𝑎1, 𝑌𝑎2, 𝐴}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, 𝑌𝑏1, 𝑌𝑏2, 𝐴}

For p1,

Xa1,Xa2 = pool of source IP address in p1 i.e Xa1 =171.66.31.96,

Xa2 =171.66.31.103

Yb1,Yb2= pool of source IP address in p1 i.e Yb1=0.0.0.0,

Yb2=255.255.255.255

A=1

𝑟1 = {171.66.31.96, 171.66.31.103, 0.0.0.0, 255.255.255.255,1}

For p2,

Xb1,Xb2= pool of source IP address in p1 i.e Xb1=171.66.24.0,

38

Xb2=171.66.31.255

Yb1,Yb2= pool of source IP address in p1 i.e Yb1=171.64.8.185,

Yb2=171.64.18.255

𝐴 = 1

𝑟2 = {171.66.24.0, 171.66.31.255, 171.64.8.185, 171.64.18.255,1}

3.5.2 3D Representation:

We represent ACL policy in 3D shape as explained earlier, here we have

source IP address, destination IP address and access. Therefore, shape will

be 2D as shown below in Fig. 3.7.

Figure 3.7: 2D representation of policy

Destination IP

 P1

Access= permit

 P1

Source IP

P2

Access=permit

171.66.31.96

171.66.31.103

 171.66.24.0

171.66.31.255

0.0.0.0

171.64.8.185

171.64.18.185

255.255.255.255

39

3.5.3 Applying separating axis theorem to check overlap:

Let Box1 = P1 and Box2= P2

Using concept of vector projection as explained earlier following values are

calculated.

Box1 min= 171.66.31.96, Box1 max=171.66.31.103, Box2 min= 171.66.24.0,

Box2 max= 171.66.31.255

Box1 min’= 0.0.0.0, Box1 max’=255.255.255.255, Box2 min’= 171.64.8.185,

Box2 max’=171.64.18.185

3.5.3.1 Checking Overlap along x- axis:

𝐵𝑜𝑥2 𝑚𝑖𝑛 – 𝐵𝑜𝑥1 𝑚𝑎𝑥 = 171.66.24.0 − 171.66.31.103 < 0 … … … … … . . (3)

Boxes are overlapping along x-axis as distance between Box2 min, Box1 max

is less than zero.

3.5.3.2 Checking Overlap along y- axis:

𝐵𝑜𝑥2 𝑚𝑖𝑛’ – 𝐵𝑜𝑥1 𝑚𝑎𝑥’ = 171.64.8.185 − 255.255.255.255 < 0 … … . . (4)

Boxes are overlapping along x-axis as distance between Box2 min, Box1 max

is less than zero.

Eq (3) and Eq (4) show that P1 and P2 are overlapping along source IP and

destination IP and both polices have same access i.e. P1 and P2 both have

access permit. P1 and P2 can be merge using union operation on set of P1

and P2 as explained below.

𝑟1 = {171.66.31.96, 171.66.31.103, 0.0.0.0, 255.255.255.255,1}

40

𝑟2 = {171.66.24.0, 171.66.31.255, 171.64.8.185, 171.64.18.255,1}

𝑟3 = 𝑟1 𝑈 𝑟2

𝑟3 = {171.66.24.0, 171.66.31.255, 0.0.0.0, 255.255.255.255, 1}

3.5.4 3D representation of merged policy:

Polices P1 and P2 are merged as explained above and represented in 2D

shape as show in Fig. 3.8.

Figure 3.8: Merged policy

3.5.5 Problem after merging:

According to merged policy, if packet belongs to source IP address

171.66.24.0 to 171.66.31.96 and destination IP address 0.0.0.0 to

255.255.255.255, then this packet will be communicated as per merged

policy. But according to policy P1, if packet belongs to source IP 171.66.24.0

41

to 171.66.31.96 and destination IP 171.64.8.185 to 171.64.18.185, it is

allowed. But according to merged policy, packet with source IP 171.66.24.0 to

171.66.31.96 is allowed for destination outside range of 171.66.24.0 to

171.66.31.96 which is violation of policy P1. Keeping in mind this scenario we

designed 6 different cases in which polices can be merged and there will be

no policy violation. These cases are explained below with 3D representation.

3.5.5.1 Case 1:

If two shapes S1 and S2 are equal as shown in Fig. 3.9.

3.5.5.1.1 3D representation of Policy:

Figure 3.9: Case 1 before merge Figure 3.10: Case 1 After merge

3.5.5.1.2 Representation of policy in Ring:

As explained earlier ACL policy is represented in Ring R using set theory.

Representation of above two shapes in ring is as follow

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

42

𝑟𝑗 = {𝑋1, … . 𝑋𝑛, 𝑌1, … . 𝑌𝑛, 𝑃1, … . . 𝑃𝑛, 𝐴𝑗}

∑ = {𝛷1, 𝛷2}

𝐴𝑗 = {0,1}

Policy 1:

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

Policy 2:

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

Merge policies:

Above mentioned shapes represent the duplicate shapes, S2 is exact copy of

S1. In this case we simply remove the redundant shape. Resultant shape will

be S1 as shown in Fig. 3.10.

3.5.5.2 Case 2:

If S1 and S2 are overlapping along x-axis and S1 is subset of S2 as shown in

Fig. 3.11.

43

3.5.5.2.1 3D Representation:

Figure 3.11: Case 2 before merge Figure 3.12: Case 2 After merge

3.5.5.2.1 Representation of policy in Ring:

As explained earlier ACL policy is represented in Ring R using set theory.

Representation of above two shapes in ring is as follow

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

𝑟𝑗 = {𝑋1, … . 𝑋𝑛, 𝑌1, … . 𝑌𝑛, 𝑃1, … . . 𝑃𝑛, 𝐴𝑗}

∑ = {𝛷1, 𝛷2}

𝐴𝑗 = {0,1}

Policy 1:

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

Policy 2:

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

44

∑ = {𝑈,ꓵ}

Merge policies:

In this case S1 is subset of S2. These shapes can be merged if both shapes

have same access, as mentioned by variable Aj in ring. To merge these

shapes, we apply union operator as described below.

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = 𝑟1 𝑈 𝑟2

𝑟3 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗} U

 {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁, 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁 , 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = 𝑟2

In this case merged shape is equal to S2 as shown in Fig. 3.12.

3.5.5.3 Case 3:

Shapes S1 and S2 are overlapping along y-axis as shown in Fig. 3.13.

45

3.5.5.3.1 3D Representation:

Figure 3.13: Case 3 before merge Figure 3.14: Case 3 After merge

3.5.5.3.2 Representation of policy in Ring:

As explained earlier ACL policy is represented in Ring R using set theory.

Representation of above two shapes in ring is as follow

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

𝑟𝑗 = {𝑋1, … . 𝑋𝑛, 𝑌1, … . 𝑌𝑛, 𝑃1, … . . 𝑃𝑛, 𝐴𝑗}

∑ = {𝛷1, 𝛷2}

𝐴𝑗 = {0,1}

Policy 1:

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

46

Policy 2:

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

Merge policies:

In this case S1 is subset of S2. These shapes can be merged if both shapes

have same access, as mentioned by variable Aj in ring. To merge these

shapes, we apply union operator as described below.

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = 𝑟1 𝑈 𝑟2

𝑟3 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗} U

 {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁, 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁 , 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

𝑟3 = 𝑟1

In this case merged shape is equal to S1 as shown in Fig. 3.14.

3.5.5.4 Case 4:

Shapes S1 and S2 are overlapping along x-axis as shown in Fig. 3.15.

47

Figure 3.15: Case 4 before merge Figure 3.16: Case 4 After merge

3.5.5.4.1 Representation of policy in Ring:

As explained earlier ACL policy is represented in Ring R using set theory.

Representation of above two shapes in ring is as follow

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

𝑟𝑗 = {𝑋1, … . 𝑋𝑛, 𝑌1, … . 𝑌𝑛, 𝑃1, … . . 𝑃𝑛, 𝐴𝑗}

∑ = {𝛷1, 𝛷2}

𝐴𝑗 = {0,1}

Policy 1:

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

Policy 2:

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

48

∑ = {𝑈,ꓵ}

Merge policies:

In this case S1 is subset of S2. These shapes can be merged if both shapes

have same access, as mentioned by variable Aj in ring. To merge these

shapes, we apply union operator as described below.

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = 𝑟1 𝑈 𝑟2

𝑟3 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗} U

 {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁, 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁 , 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = 𝑟2

In this case merged shape is equal to S2 as shown in Fig. 3.16.

49

3.5.5.5 Case 5:

Shapes S1 and S2 are overlapping along y-axis as shown in Fig. 3.17.

Figure 3.17 : Case 5 before merge Figure 3.18: Case 5 After merge

3.5.5.5.1 Representation of policy in Ring:

As explained earlier ACL policy is represented in Ring R using set theory.

Representation of above two shapes in ring is as follow

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

𝑟𝑗 = {𝑋1, … . 𝑋𝑛, 𝑌1, … . 𝑌𝑛, 𝑃1, … . . 𝑃𝑛, 𝐴𝑗}

∑ = {𝛷1, 𝛷2}

𝐴𝑗 = {0,1}

Policy 1:

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

50

∑ = {𝑈,ꓵ}

Policy 2:

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

Merge policies:

In this case S1 is subset of S2. These shapes can be merged if both shapes

have same access, as mentioned by variable Aj in ring. To merge these

shapes, we apply union operator as described below.

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = 𝑟1 𝑈 𝑟2

𝑟3 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗} U

 {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

𝑟3 = 𝑟1

In this case merged shape is equal to S1 as shown in Fig. 3.18.

51

3.5.5.6 Case 6:

Shapes S1 is subset of S2 as show in Fig. 3.19.

Figure 3.19: Case 6 before merge Figure 3.20: Case 6 After merge

3.5.5.6.1 Representation of policy in Ring:

As explained earlier ACL policy is represented in Ring R using set theory.

Representation of above two shapes in ring is as follow

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

𝑟𝑗 = {𝑋1, … . 𝑋𝑛, 𝑌1, … . 𝑌𝑛, 𝑃1, … . . 𝑃𝑛, 𝐴𝑗}

∑ = {𝛷1, 𝛷2}

𝐴𝑗 = {0,1}

Policy 1:

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

52

Policy 2:

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

∑ = {𝑈,ꓵ}

Merge policies:

In this case S1 is subset of S2. These shapes can be merged if both shapes

have same access, as mentioned by variable Aj in ring. To merge these

shapes, we apply union operator as described below.

𝑟1 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = 𝑟1 𝑈 𝑟2

𝑟3 = { 𝑋𝑎1, 𝑋𝑎2, … … 𝑌𝑎𝑁 , 𝑌𝑎1, 𝑌𝑎2, … … 𝑌𝑎𝑁 , 𝑃𝑎1, 𝑃𝑎2, … … 𝑃𝑎𝑁 , 𝐴𝑗} U

 {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = {𝑋𝑏1, 𝑋𝑏2, … … 𝑌𝑏𝑁 , 𝑌𝑏1, 𝑌𝑏2, … … 𝑌𝑏𝑁, 𝑃𝑏1, 𝑃𝑏2, … … 𝑃𝑏𝑁 , 𝐴𝑗}

𝑟3 = 𝑟2

In this case merged shape is equal to S2 as shown in Fig. 3.20.

3.5.5.7 Merge policies Example:

Let’s consider another case where we have two policies p1 and p2 as written

below.

P1 access-list 151 permit tcp any 171.64.250.28 0.0.0.1

53

P2 access-list 151 permit tcp any 171.64.250.0 0.0.0.31

Let’s specify elements of Ring R for p1 and p2 are as follow.

𝑅 =< 𝑅, ∑ >

𝑅 = {𝑟𝑗, 𝑗 = 1, |𝑅|}

∑ = {𝑈,ꓵ}

𝑟1 = {𝑋𝑎1, 𝑋𝑎2, 𝑌𝑎1, 𝑌𝑎2, 𝐴}

𝑟2 = {𝑋𝑏1, 𝑋𝑏2, 𝑌𝑏1, 𝑌𝑏2, 𝐴}

For p1,

Xa1,Xa2= pool of source IP address in p1 i.e Xa1=0.0.0.0,

Xa2 =255.255.255.255

Ya1,Ya2= pool of source IP address in p1 i.e Ya1=171.64.250.0,

Ya2=171.64.250.31

A=1

𝑟1 = {0.0.0.0, 255.255.255.255, 171.64.250.0, 171.64.250.31,1}

For p2,

Xb1,Xb2= pool of source IP address in p1 i.e. Xb1=0.0.0.0,

Xb2=255.255.255.255

Yb1,Yb2= pool of source IP address in p1 i.e. Yb1=171.64.250.28,

Yb2=171.64.250.29

A=1

54

𝑟2 = {0.0.0.0, 255.255.255.255, 171.64.250.28, 171.64.250.29,1}

3.5.5.7.1 3D Representation:

Polices P1 and P2 are represented in 2D shape to apply separating axis

theorem to check overlap as shown in Fig. 3.21.

Figure 3.21: 3D representation of polices to apply separating axis theorem

3.5.5.7.2 Check overlap using separating axis theorem:

Let Box1 = P1 and Box2 = P2

Applying vector projection method to calculate following values to apply

separating axis theorem

Box1 min= 0.0.0.0, Box1 max=255.255.255.255, Box2 min= 0.0.0.0, Box2

max= 255.255.255.255

Box1 min’= 171.64.250.0, Box1 max’=171.64.250.31,

55

Box2 min’= 171.64.250.28,

Box2 max’=171.64.250.29

Checking Overlap along x- axis:

𝐵𝑜𝑥2 𝑚𝑖𝑛 – 𝐵𝑜𝑥1 𝑚𝑎𝑥 = 0.0.0.0 − 255.255.255.255 < 0 … … … … … … … … (5)

Since the difference is less than zero it shows shapes are overlapping along

x-axis;

Checking Overlap along y- axis:

𝐵𝑜𝑥2 𝑚𝑖𝑛’ – 𝐵𝑜𝑥1 𝑚𝑎𝑥’ = 171.64.250.28 − 171.64.250.31 < 0 … … … … … . (6)

Since the difference is less than zero it shows shapes are overlapping along

y-axis;

Eq (5) and (6) show P1 and P2 are overlapping along both i.e. axis source IP

and destination IP and it matches with condition of case 5. Polices can be

merged using union operator as explained below.

𝑟1 = {0.0.0.0, 255.255.255.255, 171.64.250.0, 171.64.250.31,1}

𝑟2 = {0.0.0.0, 255.255.255.255, 171.64.250.28, 171.64.250.29,1}

𝑟3 = 𝑟1 𝑈 𝑟2 = {0.0.0.0, 255.255.255.255, 171.64.250.0, 171.64.250.31,1} 𝑈

{0.0.0.0, 255.255.255.255, 171.64.250.28, 171.64.250.29,1}

𝑟3 = {0.0.0.0, 255.255.255.255, 171.64.250.0, 171.64.250.31,1}

Merged policy is shown in Fig. 3.22.

56

Figure 3.22: Merge polices using separating axis theorem vector projection method

171.64.250.31

171.64.250.0

P3=P1+P2

Access=permit

Destination IP

255.255.255.255 0.0.0.0
Source IP

57

 Chapter 4

DISCUSSION AND RESULTS

In this chapter results have been discussed of proposed method. Network

performance is discussed with and without proposed method. It has been

deduced from our result that our method improved network performance.

4.1 Merge policies using set theory and separating axis theorem:

As explained earlier we used Stanford’s backbone ACL polices to test our

method. We used 3 different set of ACL polices let’s name it as Stanford1,

Stanford2 and Stanford3. Stanford1 contains 203 ACL polices, Stanford2

contains 43 ACL polices and Stanford3 contains 53 ACL polices as shown in

Fig. 4.1.

Figure 4.1: Number of ACL polices in Stanford1, Stanford2 and Stanford3

203

43 53

0

50

100

150

200

250

Stanford1 Stanford2 Stanford3

N
u

m
b

er
 o

f
A

C
L

p
o

lic
es

ACL Policies

Number of ACL polices in Stanford1, Stanford2 and
Stanford3

58

Fig. 4.2. shows reduced number of ACL polices as discussed earlier we apply

set theory and separating axis theorem to merge polices. Stanford1 is

reduced to 144, Stanford2 is reduced to 24 and Stanford3 is reduced to 18

ACL polices.

Figure 4.2: Merged ACL polices

Fig. 4.3 shows time taken in milliseconds by our method to merge ACL

polices of Stanford1, Stanford2 and Stanford3. It takes 210 ms to merge 59

ACL polices of Stanford1, 56 ms to merge 29 ACL polices of Stanford2 and

25 ms to merge 25 ACL polices. Number of ACL polices merged of Stanford1,

Stanford2 and Stanford3 are shown in Fig. 4.4.

144

24 18
0

20

40

60

80

100

120

140

160

Stanford1 Stanford2 Stanford3

N
u

m
b

er
 o

f
A

C
L

p
o

lic
es

ACL Policies

Number of ACL polices after merging

59

Figure 4.3: Time complexity to merge ACL polices of Standord1, Stanford2 and Stanford3

Figure 4.4: Number of ACL polices merged in Stanford1, Stanford2 and Stanford3

210

56

25

0

50

100

150

200

250

Stanford1 Stanford2 Stanford3

Ti
m

e
in

 m
s

ACL policies

Time taken to merge ACL polices

59

29
25

0

10

20

30

40

50

60

70

Stanford1 Stanford2 Stanford3

N
u

m
b

er
 o

f
A

C
L

p
o

lic
es

ACL policies

Number of Merged ACL Polices

60

4.1.2 Performance Evaluation:

Fig. 4.5. shows comparison between traversal time of ACL polices before

merging and after merging. It shows traversal time is improved after merging

the ACL polices. Before merging it takes 900 ms to traverse Stanford1, 445

ms to traverse Stanford2 and 450 ms to traverse Stanford3. As polices are

merged, number of ACL polices are reduced which takes less time to traverse

as shown in Fig. 4.5. After merging it takes 150 ms to traverse Stanford1 and

95 ms to traverse Stanford2 and 110 ms to traverse Stanford3.

Figure 4.5: Time taken to traverse through ACL polices before and after merging

4.2 Detection of Conflicts

Detection of conflicts in ACL polices is explained earlier in chapter 3. In this

section time taken by our method to detect conflicts is discussed and graph of

total conflicts found in Stanford’s backbone ACL polices. Fig. 4.6. presents 2

900

445 450

150
95 110

0

100

200

300

400

500

600

700

800

900

1000

Stanford1 Stanford2 Stanford3

Ti
m

e
in

 m
s

ACL Policies

Time taken to traverse through ACL policies before
merging and after merging

61

conflicts are found in Stanford1, whereas 0 conflicts found in Stanford2 and

Stanford3. Fig. 4.7. presents time taken to find conflicts in Stanford1,

Stanford2 and Stanford3.

Figure 4.6: Number of conflicts in Stanford1, Stanford2 and Stanford3

Figure 4.7: Time taken to find conflicts

2

0 0
0

0.5

1

1.5

2

2.5

Stanford1 Stanford2 Stanford3

N
u

m
b

er
 o

f
co

n
fl

ic
ts

ACL policies

Number of conflicts

203

20 15
0

50

100

150

200

250

Stanford1 Stanford2 Stanford3

Ti
m

e
in

 m
s

ACL policies

Time take to find conflicts

62

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In chapter 4 we discussed comparison of traversal through ACL polices with

and without our proposed method. It has been discussed that our method

detects conflicts among ACL polices and find redundant ACL polices which

can be merged with other polices. These polices have been merged to

reduced number of ACL polices. As number of ACL polices have been

reduced, our results show us traversal time is improved. Moreover, our

proposed method has detected conflicts which cause network wide invariants.

5.2 Future Work

In this research work we provides solution to detect network wide invariants

specifically unexpected packet lost due to conflicts in ACL polices. Future

work includes detection of other network wide invariants like loops, black

holes etc.

63

BIBLIOGRAPHY

 [1]. A. Greenberg, G. Hjalmtysson, D. Maltz, D.A. Myers, J. Rexford, G. Xie,
H. Zhang, “A clean slate 4D approach to network control and
management”. ACM SIGCOMM Computer Communication, vol. 35, no. 5, pp.
41-54, 2005.

[2] K.T. Foerster, S. Schmid, S. Vissicchio, “Survey of Consistent Software-
Defined Network Updates”. IEEE Communications Surveys & Tutorials, vol.
21, no. 2, pp. 1435 – 1461, 2018.

[3] T. Benson, A. Akella, and D. Maltz, ‘‘Unraveling the complexity of network
management,’’ 6th USENIX Symp. Networked Syst. Design Implement, pp.
335–348, 2009.

[4] H. Kim and N. Feamster, ‘‘Improving network management with software
defined networking,’’ IEEE Communication letter. Mag.,vol. 51, no. 2, pp.
114–119, 2013.

[5] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus networks,’’
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

[6] Open Networking Foundation (ONF), [Online]. Available:
https://www.opennetworking.org/

[7] P. Newman, G. Minshall, and T. L. Lyon, ‘‘IP switchingVATM under IP,’’
IEEE Transaction on Network, vol. 6, no. 2, pp. 117–129, 1998.

[8] N. Gude et al., ‘‘NOX: Towards an operating system for networks,’’
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–110,
2008.

[9] D. Kreutz, F.M.V. Ramos, P.E., Veríssimo et al., "Software-defined
networking: a comprehensive survey", Proc. IEEE, vol. 103, no. 1, pp. 14-76,
2015.

[10] J. Lu, Z. Zhang, T. Hu, P. Yi, J. Lan, “A Survey of Controller Placement
Problem in Software-Defined Networking”. IEEE Access, vol. 7, pp. 24290 –
24307, 2019.

[11] P.W. Tsai, C.W. Tsai, C.W. Hsu, and C.S. Yang, “Network Monitoring in
Software-Defined Networking: A Review”. IEEE Systems Journal, vol. 12, no.
4, 2018.

[12] D.S. Rana, S.A Dhondiyal, S. K. Chamoli, “Software Defined Networking
(SDN) Challenges, issues and Solution”, JCSE, vol. 7, no. 1, 2019.

https://www.opennetworking.org/

64

[13] A. Nayyer, A.K. Sharma L.K. Awasthi, “Issues in Software-Defined
Networking”. Proceedings of 2nd International Conference on
Communication, Springer, vol. 46, pp. 989-997. 2018.

[14]. A. Khurshid, X. Zou,W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proc. Present. 10th
USENIX Symp. Netw. Syst. Design Implement. (NSDI), pp. 15-27. 2013

[15] G. VARGHESE, “Network Algorithmics: An interdisciplinary approach to
designing fast networked devices”, Dec 2004.

[16] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, & N. McKeown,
“Where is the debugger for my software-defined network?”. In Proceedings of
the first workshop on hot topics in software defined networks pp. 55–60. 2012.

[17] GDB: “The GNU project Debugger available online,
https://www.gnu.org/software/gdb/”

[18] M. Hussain, N. Shah, “Automatic rule installation in case of policy change
in software defined networks”, N. Telecommunication System, vol. 68, no. 3,
pp. 461–477, 2018.

[19] P. Kazemian, G. Varghese, & N. McKeown, “Header space analysis:
Static checking for networks”. NSDI 12, pp. 113–126. 2012.

[20] C. Prakash et al., “PGA: Using graphs to express and automatically
reconcile network policies,” ACM SIGCOMM Computer Communication
Review, pp. 29-42, 2015.

[21] M. Canini, D. Venzano, P. Peresini, D. Kostic, & J. Rexford. (2012). “A
NICE way to test OpenFlow applications”. NSDI, 12, pp. 127–140, 2012.

[22] V. Zaborovsky, V. Mulukha, A. Silinenko, S. Kupreenko, “Dynamic
Firewall Configuration: Security System Architecture and Algebra of the
Filtering Rules”, The Third International Conference on Evolving Internet.
INTERNET, 2011.

[23] A. Titov and V. Zaborovsky. “Firewall Configuration Based on
Specifications of Access Policy and Network Environment”. Proceedings of
the 2010 International Conference on Security & Management. 12-15, 2010.

[24] D.F. Ferraiolo and D.R. Kuhn. “Role-Based Access Control”. 15th
National Computer Security Conference. 1992.

[25] Organisation-based access control (OrBAC.org). Available:
“http://orbac.org/index.php?page=orbac&lang=en”

[26] A. Silinenko. “Access control in IP networks based on virtual connection
state models”, PhD. Thesis 05.13.19: / SPbSTU, Russia, 2010.

https://www.gnu.org/software/gdb/
http://orbac.org/index.php?page=orbac&lang=en

65

[27] R. Amin, N. Shah, B. Shah and O. Alfandi, “Auto-configuration of ACL
policy in case of topology change in hybrid SDN,” in IEEE Access, pp. 9437 –
9450, 2016.

[28] M. Markovitch and S. Schmid, “SHEAR: A highly available and flexible
network architecture marrying distributed and logically centralized control
planes,” in Proc. 23rd IEEE ICNP, pp. 78-89, 2015.

[29] A. Silinenko. “Access control in IP networks based on virtual connection
state models”. PhD. Thesis 05.13.19: /SPbSTU, Russia, 2010.

