
Malware Propagation, Encryption and

Re-randomization

By

Ahsan Rasheed Abbasi

A thesis submitted to the faculty of Information Security Department, Military

College of Signals, National University of Science and Technology, Rawalpindi in

partial fulfilment of the requirements for the degree of MS in Information Security

November 2019

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS thesis written by Mr. Ahsan Rasheed Abbasi,

Registration No. 00000171584, of Military College of Signals has been vetted by

undersigned, found complete in all respects as per NUST Statutes/Regulations/MS Pol-

icy, is free of plagiarism, errors, and mistakes and is accepted as partial fulfilment for

award of MS degree. It is further certified that necessary amendments as pointed out

by GEC members and the local evaluators of the scholar have also been incorporated in

the said thesis.

Signature:

Name of Supervisor: Dr Mehreen Afzal

Date:

Signature (HOD):

Date:

Signature (Dean):

Date:

i

Declaration

I, Ahsan Rasheed Abbasi declare that this thesis titled “Malware Propagation, Encryp-

tion and Re-randomization” and the work presented in it are my own and has been

generated by me as a result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of Science

degree at NUST

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at NUST or any other institution, this has been clearly stated

3. Where I have consulted the published work of others, this is always clearly at-

tributed

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work

5. I have acknowledged all main sources of help

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Ahsan Rasheed Abbasi,

00000171584

ii

Copyright Notice

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with in-

structions given by the author and lodged in the Library of MCS, NUST. Details

may be obtained by the Librarian. This page must form part of any such copies

made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in MCS, NUST, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission

of MCS, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of MCS, NUST, Rawalpindi.

iii

This thesis is dedicated to my beloved parents and teachers who

supported me each step of the way.

iv

Acknowledgments

All praises to Almighty Allah for giving me the strength, knowledge, ability and oppor-

tunity to undertake this research study and to persevere and complete it satisfactorily.

Without His blessings, this achievement would not have been possible.

I would like to convey my gratitude to my supervisor, Dr Mehreen Afzal, for his time,

generous guidance, patience and encouragement. His invaluable help of constructive

comments and suggestions throughout the experimental and thesis works are major

contributions to the success of this research. Also, I would thank my committee mem-

bers; Dr Muhammad Faisal Amjad, and Dr Fawad khan for their support and knowledge

regarding this topic.

Last, but not the least, I am highly thankful to my parents. They have always stood by

my dreams and aspirations and have been a great source of inspiration for me. I would

like to thank them for all their care, love and support through my times of stress and

excitement.

v

Abstract

The dramatic growth in encrypted traffic changes the security landscape. As more or-

ganizations are becoming conscious of the need to protect their data, more devices,

services and applications use encryption as the fundamental way to secure information.

As organizations progressively use encryption to keep confidential their network infor-

mation, attackers use the technology to camouflage their activities. In other words,

encryption, which is essential for the protection of sensitive information such as online

transactions, e-mails and smartphone applications, can make it possible for malware

that hides within that encrypted traffic to move through the security system of an orga-

nization uninspected. Encrypting malware payload prevent malware analyst, to reverse

engineering of malicious code and identifying malware developer’s intension. This thesis

evaluates malware encryption scheme based on ElGmal cryptosystem as a proof of con-

cept. The thesis also present the novel scheme for malware encryption, propagation and

re-randomization using environmental keys, based on Paillier cryptosystem. Further-

more, the thesis includes the review of existing methods for encrypted malware traffic

analysis.

Keywords: malicious cryptography, homomorphic encryption, re-encryption, ElGamal,

Paillier cryptosystem

vi

Contents

1 Introduction 1

1.1 Introduction . 1

1.1.1 Malicious use of Cryptography 2

1.1.2 Homomorphic Encryption . 3

1.1.3 Re-encryption . 3

1.2 Background . 4

1.3 Problem Statement . 5

1.4 Motivation . 5

1.5 Objectives . 6

1.6 Thesis Organization . 7

2 Background 9

2.1 Introducation . 9

2.2 Malware and its Classification . 9

2.2.1 Virus . 10

2.2.2 Worm . 10

2.2.3 Trojan . 11

2.2.4 Backdoor . 11

2.2.5 Rootkit . 12

2.2.6 Spyware . 12

vii

Contents

2.2.7 Adware . 12

2.2.8 Ransomware . 12

2.3 Cryptography Preliminaries . 13

2.3.1 Symmetric Cryptography . 14

2.3.2 Asymmetric Cryptography . 15

2.4 Homomorphic Encryption . 16

2.4.1 Homomorphic Encryption Schemes 17

2.4.2 Partially Homomorphic Encryption 18

2.4.2.1 RSA . 19

2.4.2.2 ElGamal . 20

2.4.2.3 Paillier . 21

3 Literature Review 23

3.1 Introduction . 23

3.2 Offensive use of Cryptography . 23

3.3 Re-encryption Schemes . 24

3.4 Environmental Key Generation . 27

4 Malware Encryption and Re-randomization 28

4.1 Introduction . 28

4.2 Encrypting the Malicious Payload . 28

4.3 Malware Propagation Model . 29

4.3.1 Malware Propagation Modeling 31

4.3.2 Malware Encryption Process . 31

4.3.3 Malware Re-randomization Process 33

4.4 Proposed Implementation of Existing ElGamal Scheme 34

4.4.1 Malware Encryption Algorithm 34

4.4.1.1 Encryption parameters 35

viii

Contents

4.4.1.2 Key generation . 35

4.4.1.3 Encryption factor γ . 35

4.4.1.4 Encryption . 36

4.4.2 Malware Decryption Algorithm 37

4.4.3 Malware Re-randomization Algorithm 38

4.4.4 Re-randomized Malicious Payload Decryption 38

4.5 Results . 40

4.5.1 Experimental Setup . 40

4.5.2 Experimental Results . 41

5 Paillier- Malware Encryption and Re-randomization Scheme 42

5.1 Introduction . 42

5.2 Malware Encryption . 42

5.3 Paillier Cryptosystem . 43

5.3.1 Paillier Key Generation . 43

5.3.2 Paillier Encryption . 44

5.3.3 Paillier Decryption . 44

5.3.4 Paillier Homomorphic Property 44

5.4 PHE Schemes for Malware Re-randomization 45

5.4.1 Probabilistic and Deterministic Encryption 45

5.4.2 Semantic Security . 46

5.4.3 RSA vs Paillier for Malware Re-randomization 46

5.5 Design and Implementation of Proposed Scheme 48

5.5.1 Malware Encryption . 48

5.5.1.1 Encryption Key Generation Algorithm 49

5.5.1.2 Encryption Algorithm 49

5.5.2 Malware Re-randomization . 50

ix

Contents

5.5.3 Malware Decryption . 50

5.5.3.1 Decryption Key Generation 51

5.5.3.2 Decryption Algorithm 51

5.6 Results . 51

5.6.1 Experimental Setup . 52

5.6.2 Experimental Results . 52

6 Encrypted Malicious Software Analysis 53

6.1 Introduction . 53

6.2 Malicious Software Analysis . 53

6.3 Encrypted Malware Landscape . 54

6.4 Encrypted Malicious Traffic Analysis . 55

6.4.1 Entropy-based Analysis . 56

6.4.2 Signature-based Detection . 56

6.4.3 File Header-based Analysis . 56

6.4.4 Hidden Markov Model based Detection 57

6.4.5 Machine Learning . 57

6.4.6 Cisco Encrypted Traffic Analytics(ETA) 57

6.5 Conclusion . 58

7 Conclusion 59

7.1 Introduction . 59

7.2 Conclusion . 59

7.3 Future Research Directions . 61

References 62

x

List of Figures

2.1 Symmetric key cryptography . 14

2.2 Asymmetric key cryptography . 16

2.3 Homomorphic Encryption Scheme . 18

3.1 Proxy Re-encryption . 25

4.1 Malware propagation model . 30

4.2 Malware encryption process . 32

4.3 Malware re-randomization process . 33

4.4 Calculation of Encryption factor γ using MD5 and SHAKE-128 36

6.1 Global Malware attack trends 2019 . 54

6.2 Encrypted Malware Attack 2018 vs 2019 55

xi

List of Tables

2.1 Comparison of various schemes for Homomorphic encryption 19

4.1 Malware Samples . 41

4.2 Performace analysis of ElGamal based scheme 41

5.1 Performance analysis of Paillier based scheme 52

xii

List of Abbreviations and

Symbols

Abbreviations

HE Homomorphic Encryption

PHE Partially Homomorphic Encryption

FHE Fully Homomorphic Encryption

GCD Greatest Common Divisor

LCM Least Common Multiple

RAT Remote Access Trojan

RSA Rivest, Shamir, and Adelman

IBE Identity Based Encryption

BSS Blind Source Separation

MAC Media Access Control

ELF Executable and Linkable Format

OAEP Optimal Asymmetric Encryption Padding

SSL Secure Sockets Layer

TLS Transport Layer Security

CSPRNG Cryptographically Secure Pseudo-Random Number Generator

xiii

Chapter 1

Introduction

1.1 Introduction

Malware is a malicious software which is used or developed by attackers to achieve their

intended objectives by running on target computer system without client authoriza-

tion The purpose of the malware author is to breach the confidentiality, integrity or

availability of the target system to access private computer networks, collect sensitive

information and disrupt the normal computer operations.

Early information systems implementation was far more vulnerable, however malicious

threats weren’t a issue. It was just because quite few individuals were able to compre-

hend profoundly how information systems operate and therefore exploit them during

those early years. Many early infectious programs have been developed as demonstra-

tions or pranks.

Computers have become increasingly popular with technological advancements and the

internet has been evolved as an increasingly important part of everyday life. The best

known malware categories are recognized not because of any specific types of behaviours,

but because of the way they spread. Most popular malicious software categories, includ-

ing viruses, worms, trojans, spyware, adware and hijackers. The advancement and

spread of all types of malware includes viruses, warms and trojans for every individual

user is becoming a real concern. As personal computers, smartphones and other smart

devices are constantly connected internet, the problem becomes increasingly more diffi-

cult. Potential victims are more than ever before for malicious threats. Today, malware

is mainly used to obtain useful domestic, financial, or organizational data for the ben-

1

Chapter 1: Introduction

efit of others. Malware is sometimes widely used against state or corporate websites to

retrieve confidential data or interfere with its operation in particular. However, mal-

ware is often used against individuals to obtain sensitive data such as financial security

numbers, bank or payment card details, and so on. The extensive use of networks and

the Internet raises the potential of this type of software to spread effectively.

Malware targets applications and services running over the internet. As almost all the

organizations and firms use the internet to improve their service quality, the need to

detect and deactivate malware as soon as possible so that the adverse effects created by

these malware can be avoided. Malware which has the capacity to propagate is most

harmful because there is no central control, so defending them is not a trivial task.

Malware authors always come with new ideas. They develop malicious software in such

a way that they have altered themselves so that they can not be easily detected.

1.1.1 Malicious use of Cryptography

Cryptography is the science of constructing a cryptosystem capable of providing pro-

tection for data. Cryptography concerns with the actual protection of electronic data.

This relates to the creation of systems relying on computational algorithms which offer

basic data protection capabilities. The primary objective of using cryptography is to

provide information security services includes confidentiality, data integrity, authenti-

cation and non-repudiation. Cryptography use different primitives includes encryption,

hash functions, message authentication code(MAC) and digital signatures to provide

these security services.

Conventionally, encryption techniques are used to secure data during transmission and

storage and to maintain confidentiality. Encryption is also used to avoid spoofing and

eavesdropping for e-commerce, wireless network security and remote access. It is possible

to encrypt data, files, emails, even entire hard disks. Encryption is a reliable and

effective way to protect data over the network. Modern web browsers are using the

Secure Sockets Layer (SSL) protocol for secure digital transactions. SSL works with a

asymmetric encryption algorithms. It uses private key for encryption and public key for

decryption procedure.

The massive growth in encrypted traffic leads to a change the security landscape. As

more organizations become aware of a need to secure the data, more applications, ser-

2

Chapter 1: Introduction

vices and devices use encryption as a prime method to protect information. Just as

organizations use encryption increasingly to maintain their data confidentiality over the

network, so attackers use the technology to mask their activities. This indicates encryp-

tion, which is critical to protecting confidential information in transit, such as online

transactions, electronic-mails, and smart phone applications, can also permit malware

concealed inside the encrypted traffic to move un-inspected via the security structure of

an organization. Cyber attackers also use encryption to transmit data out of targeted

organizations, largely undetected.

1.1.2 Homomorphic Encryption

Homomorphic Encryption (HE) relates to a specific type of encryption which enables

computations to be performed on cipher text without needing access to a private (de-

cryption) key.The computation outputs are encrypted and decryption can only be done

by the private key holder. While conventional cryptographic algorithms can be used pri-

vately to outsource data to cloud , it is not possible to use encrypted data before even

decrypting it. This leads to a massive utility failure. A cloud service, i,e. might depends

on customer to download their protected records, decrypting record on local machine,

and execute the required complex tasks instead of purely sending back the encrypted

result to the client. The HE addresses this issue because it enables the cloud platform to

preform computing while helping to protect user data with powerful cryptographic pri-

vacy assurance. The cloud only considers encrypted data, and the computation results

can only be revealed by the clients.

1.1.3 Re-encryption

Re-encryption mechanisms are using cryptographic algorithm to enable third party

(proxy) to modify a encrypted data for one party such that it could be decrypted by

some other. A re-encryption is usually used when one party, say Sender A, intends to

reveal the content of plain text sent to him and encrypted to a third party C with its

public key, without proving its private key to third party C. Sender A does not want

the content of his messages to be read by third party C. Sender A may designate a third

party C to re-encrypt one of its messages to be sent to B. This creates a new key that

can be used by B to decrypt the message. Now if Sender A sends a message to B that

3

Chapter 1: Introduction

has been encrypted under the key of Sender A, third party C will amend the plain text

to allow B to decrypt it. This technique facilitates a number of applications such as

e-mail forwarding, monitoring of law enforcement and distribution of content.

1.2 Background

Malicious use of encryption and malicious use of mathematics are evolving fields [1][2]

which originated in Young and Yung’s earlier research about the use of public key cryp-

tography for designing a devoted offensive system for money extortion (Cryptovirology)

[3]. However this earlier model has lot of limitations and only provides little under-

standing into how malware can effectively pervert mathematics and cryptography.

Encrypting malware payload prevent malware analyst, to reverse engineering of ma-

licious code [4] and identifying malware developer’s intentions. Markus Jakobosson’s

Asymmetric re-encryption [5] which proves the input and output encryption co-related

to the exact plain text, Without leakage of information related to the plain text to veri-

fier or the server subset of the verifier . In 2004, Golle et al [6] described a new primitive,

universal re-encryption based on the Elgamal public key cryptographic algorithm, allows

the re-randomization of ciphertext without knowing of the relevant private key.

A high-tech professional grade virus called Gauss [7] was detected in 2012-13 with an

encrypted payload using data from the targeted victim’s computer as the decryption

key. No analyst can decrypt the payload and determine, what the payload will do until

the virus is installed on the system of a targeted victim. Filiol presented about the

encryption of malicious software [8] and described that it is feasible to stop someone to

analyse the software and reversing it, likely with the use Riordan and Bruce [9] keys to

encrypt payload.

In 2017, H.galteland and G.Gjosteen worked on malware encryption and randomiza-

tion [10]. Malware author encrypt payload using unique key(s) generated from target

environmental data, and randomize cipher text at each new node leads to form indistin-

guishable variant of malware in the network that infects subsequent machines or devices

without the knowledge of private key. Different replicated variant of identical malware

in the network boost the malware analyst’s work load substantially and prevent analyst

to defending some nodes in the network.

4

Chapter 1: Introduction

1.3 Problem Statement

In today’s evolving landscape where the perimeter is almost non-existent, adopting a

proactive strategy might be essential to regaining control and preventing threats in

their tracks of the attack route. The best way to be confident the threat mitigation

strategies will be useful to protect a firm or organizations from cyber attacks is by

simulating or proactively experimenting security measures before a actual cyber attack.

The traditional approach of "constructing larger fences" will no longer suffice with the

growing amount and scale of cyber attacks and with the use of modern techniques by

the threat actors to camouflage their malicious activities. The only way organizations

can protect themselves in today’s unpredictable landscape, filled with quickly evolving

threat actors and innovative technologies, is by unleashing offensive cyber operations to

expose aggressive adversaries on their networks.

Use of cryptographic primitives for data confidentiality and privacy is essential and

important, but in the recent few years the malware authors and adversaries are contin-

uously using the encrypted channel to perform malicious activities across the network.

In particular, cyber attackers are using encryption to hide malicious activities, making

it increasingly difficult to find as more organizations turn to encryption to protect data.

It is important to understand the encryption schemes used by malware authors so that

we can understand the defence mechanism against it, as well as use of it.

These concerns are the driving force behind our research which will enable us to design a

comprehensive framework for malware encryption, re-randomization and malware prop-

agation.

1.4 Motivation

Cyberspace is rapidly gaining importance as a war domain in addition to territory,

ocean, air and space in the modern strategic discourse. States have begun to incorporate

strategies and tactics in this domain to achieve reliable levels of security. Several events

have also brought significant exposure to cyber-related issues in recent years. Because

of the their posed threat to national security, some major cyber attacks have become a

serious concern for state governments.

5

Chapter 1: Introduction

In addition, cyber warfare-attacks are becoming crucial since they are military and

intelligence weapon which can be incorporated to existing tools in state arsenals. While

no reported cyber crime that resulted mortality or physical abuse to individuals for the

time being, an ever-growing number of countries around the world are preparing for

conflict. In this context, national doctrines, cyber-defence tactics and defensive and

offensive cyber-warfare capabilities have been developed.

In the era of 5th generation war (cyber warfare), the terrorists and law enforcement agen-

cies uses cyber technology, both as an offence and defence means. Today, encryption

provides security and confidentiality and protects individual and organizational commu-

nication from unsophisticated and sophisticated offenders and repressive government.

So, encryption is used as a major defence mechanism. Our law enforcement agencies

can use this encrypted traffic used by opponents to hide the encrypted malware and can

attack the target in secure environment.

While the number of domestic crime are increasing, malware can be helpful to unmask

the identification of criminals who essentially programmed their machines to prevent

from identification. Malware encryption is much more effective and often used to identify

or track opponents that have shielded their operations or connect via reliable encryption

procedures.

1.5 Objectives

The goal of our research work is to establish a proof of concept for the malware encryp-

tion schemes using asymmetric cryptography. Our aim is to evaluate the propagation of

malware and how malware propagation can be prevented from analysis. Our research

have following key objectives:

1. To evaluate malware encryption schemes using asymmetric homomorphism for

randomization cipher text to protect certain malware payload and with provision

of efficient use of environmental keys for encryption and decryption process of

these payloads.

2. To implement a framework for malicious software encryption, re-encryption or re-

randomization to create encrypted payloads such that any two malware samples

are indistinguishable from each other.

6

Chapter 1: Introduction

3. To propose a novel scheme for encryption and re-randomization of malware payload

based on asymmetric algorithm, other than ElGamal.

4. To evaluate different methods and defensive approaches that can be used for de-

tection and identification of malicious communication in the encrypted traffic.

1.6 Thesis Organization

In this chapter, introduction, problem statement, background of research work, motiva-

tion and objectives of this research have been clearly explained.

The rest of the thesis is structured to provide a firm background on malware encryption,

propagation, and re-randomization. This includes existing research on malicious payload

encryption and re-encryption as well as presenting the novel concepts that this thesis

has proposed.

Chapter 2, presents the background information and preliminaries involved in the the-

sis. We first present the malware and its different types. After that, we introduce

the cryptography, symmetric and asymmetric cryptography. At last, we describe the

homomorphic encryption and well-known partially homomorphic encryption scheme al-

gorithms include RSA, ElGamal and Paillier cryptosystem.

Chapter 3, includes the literature review by which the academic research conducted

by different writers in the context of malware and offensive use of cryptography is dis-

cussed and justified. First, we introduce the offensive use of cryptography for malicious

purposes. After that, we present a detail review on proxy re-encryption schemes and the

research work already carried out in the domain. We describe the use of environmental

keys for encryption and decryption purposes.

Chapter 4, explain the malware encryption algorithm with the use of malware samples.

Initially, we introduce malware encryption with their features and significance. Secondly,

we describe the malware propagation framework for malware author or creator as well as

for malware analysts. In addition, we illustrate the malware encryption process, the use

of asymmetric ElGamal cryptosystem and environmental keys for malware encryption.

Furthermore, an existing scheme which use homomorphic encryption of ElGamal to re-

encrypt the malicious payload to generate the indistinguishable malware variants of same

malware, will be described. At last, we propose our implementation of existing ElGamal

7

Chapter 1: Introduction

based mawlare encryption and re-randomization scheme and experimental results.

Chapter 5, presents our proposed scheme for malware encryption and re-randomization

based on asymmetric cryptosystem, Paillier. Initially, we introduce an overall malware

potential, homomorphic property, encryption and decryption process of Paillier’s algo-

rithm. We also discuss the use of the PHE scheme for re-randomizing malware and

probabilistic and deterministic encryption. We illustrate the principle of semantic se-

curity and drawback of RSA cryptosystem for malware re-randomization. At last, we

presented our proposed scheme for malware encryption and re-randomization to prop-

agate malware, built on the Paillier asymmetric cryptosystem and the experimental

results.

Chapter 6, provides an overview of the approach used by malware analysts to detect

and analyse encrypted malware. We first identify the latest malware trends and the

global scale of malware. Thereafter, the widely used malware detection techniques for

encrypted malware, including entropy-based detection, signature-based malware iden-

tification, hidden Markov-based analysis, machine learning based detection and Cisco

ETA solution are presented.

Chapter 7 aim is to provide a review of previous chapters in order to conclude the

research work. This provides an overview of malware encryption and re-randomization

scheme based on the public key cryptographic algorithm ElGamal and also highlights

our contribution to this work. We also summed up our proposed work on Paillier based

malware encryption and re-randomization. At last, we mention the future direction of

research.

8

Chapter 2

Background

2.1 Introducation

In this chapter, we explain the background and preliminaries involved in the research

work. We first present the malware and its different types. After that, we introduce the

cryptography, symmetric and asymmetric cryptography.

At last, we describe the homomorphic encryption and well-known partially homomorphic

encryption schemes include RSA, ElGamal and Paillier cryptosystem.

2.2 Malware and its Classification

The word malware, shortened for malicious software, define as a computer program

which executes for the adversary on any target system without the system owner’s au-

thorization. Malware is highly popular among security researchers and cyber criminals

as it provides attractive potential for revenue. This popularity makes malware a signif-

icant threat for the digital industry. Because malware research is an interdisciplinary

and complex field of study. In this section, we describe some significant terms and ideas

for clarity purposes.

There are different methods to classify malware into certain categories based on specific

features, including transmission, inflammation, obfuscation, ex-filtration, command and

control or Camouflage strategies, the activities performed on the operating system (OS)

during run time. In addition, it is becoming extremely hard to define categories of

malware as nowadays malware developers can readily reach multiple malware samples

9

Chapter 2: Background

source code and combine their functionality to generate latest and robust versions. In

addition, having an update procedure to extend their capacities is becoming increasingly

common with malware samples. For instance, one sample can exfiltrate the credit card

information and credentials of the customer while attaching a plugin to the OS to obtain

legitimacy at system level. Although there is no overall agreement on the taxonomy of

malware, popular types of malware and their applications can be summarized as follows:

2.2.1 Virus

A virus is a type of malware which uses some other software to be activated. It is able to

replicate itself. However, normally pursues any network-related tasks, like infecting some

other victim, exfiltrating data from compromised computer, etc. Many viruses have

been created to exploit the operating system or perform quite destructive operations

on the operating system Whereas some are innocuous and produced for credibility in

politics. Since computer viruses are really the earliest known malware , vast majority of

individuals nowadays use the word virus to describe every kind of malware. Due to the

widespread human use term virus, prominent data protection and cyber security firms

tend to use the virus term to name their products, for example Virustotal.

2.2.2 Worm

Worm is type of malicious software which operates independently; there is no need for

a host program to deployed(despite intervention). A worm seems to have the ability to

replicate through the penetration of built-in OS services and loopholes and also exter-

nal networking services via computer networks. The other technique used by worm to

propagate itself is through social engineering. Social engineering tricks clients through

carrying out voluntary conduct like filling and returning bogus websites, login details,

attempting to open harmful appended document or email etc. Worm also used net-

work applications (internet server, file sharing) to leverage misconfiguration. Ultimately,

worms used the default username and password pair brute force attack.

Because in behind the scene the spread of worms occurs silently, the target is generally

unaware of the attack. In several circumstances, immediately following penetration,

worms execute malicious payloads. Conficker is among the most common worms in

malware history that target MS Windows operating system, often referred to as Kido.

10

Chapter 2: Background

Conficker’s first-ever dataset was identified in Oct 2018 and hundreds of thousands of

computers were infected globally. Conficker exploits the vulnerability of Windows OS ’

built-in network features, with every release from MS Win-2000 to Windows Server-2008

operating systems for Internet propagation.

2.2.3 Trojan

Trojan is a malicious software that appears to be extremely beneficial to clients and also

tends to motivate installation. Such application, however, often contains concealed bi-

nary executable that can impact after deployment and therefore could result to various

unwanted effects. Because the application functions properly, finding out the program’s

consequences is very hard for a normal computer user. Today’s trojans have very ad-

vanced capabilities to capture all key strokes from gaining control of OS including all

processes. For example, Poison Ivy [11], is a popular trojan which provides the opponent

with complete control over the computer of the compromised client. Poison Ivy had first

been discovered in 2005 and it is also renowned as the Remote Access Trojan (RAT).

Once trojans are activated, key logging, screen shooting, camera video recording, and

critical information sniping networks can be performed.

2.2.4 Backdoor

Backdoor is the malicious tool that an attacker on the target system has installed to

gain remote access. Cyber criminals take advantage of different vulnerabilities to install

backdoor on victim machines. They sometimes trick customers into installing backdoor

by making them think the program is valid. They use distinct methods after installation

to frequently restart backdoor. Some of these include editing startup files, removing a

registry key which is used every time the system starts up and does the job as a planned

task. Certain backdoor allow attackers to alter their root or administrator privileges

enabling command remote execution, and allow attackers to monitor any target system

activity.

11

Chapter 2: Background

2.2.5 Rootkit

Rootkit is a program that combines the Trojan horse and backdoor behaviours together

and also alters other operating system programs [12]. They exhibit Trojan behaviour,

which allows attackers to access a system remotely by replacing the original version

of a file with a contaminated copy and backdoor behaviour. It also changes operating

system programs in contrast with Trojans and backdoor. Rootkits are divided in two

kinds according to the operating environment, one is User Mode Rootkits and the other

is Kernel Mode Rootkits. User Mode Rootkits substitute apps with malicious code

on top of the kernel to accomplish their objective. This hides an adversary existence.

Rootkits in kernel mode are same like rootkits in user mode with the exception of

changes in operating environment. In this situation, they change the victim’s kernel

itself completely.

2.2.6 Spyware

Spyware is a program that gathers secret user information, records web navigation

activities and gives all data for financial advantages to a third party [13]. ActiveX

checks, plug-ins and program exe are the most commonly used methods for spreading

spyware. In reality, the simplest and most efficient way for adversaries to propagate

spyware is to use ActiveX controls. A plug-in is a program that improves the features

of the web browser. The plug-ins are downloaded and installed on the web browser by

ActiveX.

2.2.7 Adware

Adware is recognized as programs showing ads in pop-up shape, flash and other media

in the customer interface. Some adware forms also behave as spyware and gather private

information. Programmers are often paid for by commercial organizations to write these

types of programs.

2.2.8 Ransomware

Ransomware is the malicious program that is executed to restrict the customers against

the cessation of computer resources and calls for ransom to release restrictions. Some

12

Chapter 2: Background

ransomware encrypts important system files, whereas several affects their credentials or

locked system. Crypto-Locker [14] is among the most well-known ransomware that is

targeted at Windows Operating system. By blackmailing customers through social en-

gineering to execute a e-mailed document, CryptoLocker propagates. When the mailed

document is opened by user, CryptoLocker activated itself, and by RSA encryption

algorithm, it encrypt the sensitive documents or all hard disks of the system.

2.3 Cryptography Preliminaries

Initially the term cryptology comes from kryptos, logos and which mean "concealed

word". Cryptology is generally a science that explores how customer data can be pro-

tected. Cryptology is split into two distinct areas, cryptography and crypt analysis,

where cryptography is the study of the design of secure ciphers and has a defensive

role in information theory whereas the crypt-analysis is science of breaking cipher and

testing strength of cryptographic algorithms. The purpose of cryptography is to pre-

vent unauthorized individuals from accessing any private data by offering some of the

following characteristics:

• Confidentiality relates to protecting data from unauthorized individuals being as-

sessed. In other words, only those legally permitted to do so can access sensitive

information. Just think of our bank accounts

• Integrity is the protection of data against unauthorized entities being altered.

• In non-repudiation the creator or sender can not refuse its intention in the creation

or communication of the information in a later stage.

• In authentication the sender and recipient can verify the identity of each other

and their origin and destination.

• Availability of data means ensuring that approved persons can access data if re-

quired.

Modern cryptography is relying strongly on theory of mathematics and computer sci-

ence. Cryptographic algorithms are formulated around assumptions of computational

hardness which makes it difficult for any opponent to defeat such algorithms practically.

13

Chapter 2: Background

In cryptography, encryption is the mechanism of encoding a text or data so that it can

only be accessed by authorized parties to ensure privacy. Imagine Alice intends to send

Bob a confidential message, but she is worried that Eve will intercept the message and

read the message. Alice encrypts the message in a manner that only Bob can decrypt

to the private message.

Cryptography falls into two major branches, symmetric cryptography and asymmetric

cryptography. Symmetric ciphers are generally known secure when there is no crypt

analysis attack that can defeat them more effectively than exhaustive search. The

complete absence of such an attack, however, is not proven to be in general. As a conse-

quence, level of trust in a symmetric cipher’s security generally results in several years

of public existence without crypt-analysis. On the other side, asymmetric cryptosys-

tems are generally based on computationally complex mathematical problems from the

concept of number theory.

2.3.1 Symmetric Cryptography

Symmetric key cryptosystems use the exact key for encryption as well as decryption.

This is the fundamental concept, out of which derives the term "symmetric." The sym-

Figure 2.1: Symmetric key cryptography

metric key ciphers are further divided into two subgroups, the block cipher and stream

ciphers. A block cipher is type of cryptographic encryption that simultaneously encrypts

a fixed size of data bits, called block. Each block’s usual size is 64, 128, 256 bits. A

64-bit block cipher, for example, will take 64 bits of plaintext and encrypt it into 64

14

Chapter 2: Background

bits of cipher text. Padding schemes are called into play in cases where plaintext bits

are shorter than block size. Most of today’s symmetric ciphers are block ciphers. Most

of the widely used encryption schemes that fall under the category of block ciphers are

Data Encryption Standard(DES), Triple DES, Advanced Encryption Standard, IDEA,

and Blowfish etc.

A stream cipher encrypts messages using a pseudo random key stream. Every bit of the

message with the corresponding key stream digit is encrypted bit by bit. In cases where

speed and simplicity(real time application) are both requirements, stream ciphers are

typically used. When a 128 bit block cipher like AES were used instead of a stream cipher

where 32 bit block messages were encrypted, there would remain 96 bits of padding. This

is an ineffective strategy and one justification why a stream cipher is preferred because

it performs on the smallest unit possible. Some popular stream ciphers include, RC4 ,

Salsa20, ChaCha, Rabbit, HC-256 etc. In stream mode, block ciphers can be used to

work as a stream cipher. If a block cipher is running in CFB, OFB or CTR mode, no

additional measures are required to handle messages that are not equivalent to multiples

of the block size and avoid the padding effect.

2.3.2 Asymmetric Cryptography

Asymmetric cryptography was introduced to counter the drawbacks of symmetric cryp-

tography. This method is also known as public-key cryptography as it does not require

prior key transfer between sender and recipient. Key pair (private key and public key)

is used to archive the objective. Key generation algorithm are use to generate key pair,

Both public and private key relates each other using mathematical methods. How to

generate the keys, its depends on the algorithm. Keys can be used in two aspects:

delivering a secure message and proving authorship. Message is encrypted with public

key receivers in the first case and can only be decrypted by these private key marchers.

For data confidentiality, this method is used. To prove authorship, a message should be

encrypted with the private key. In this scenario, it would be possible for everyone to

decrypt and make sure that message belongs to a person whose public key decrypt it.

Rivest, Shamir and Adleman (RSA), Digital Signature Algorithm (DSA), Diffie-Hellman,

Rabin, ElGamal etc. are the most well-known public key ciphers.

15

Chapter 2: Background

Figure 2.2: Asymmetric key cryptography

2.4 Homomorphic Encryption

Homomorphism is defined as a feature in abstract algebra which maps an entry item from

the domain set to an item in the range of an algebraic set. Homomorphic Encryption

(HE) is a cryptographic encryption mechanism that allows a cloud service platform to

execute specific data computing operations when encrypted. Clients have to compromise

their data confidentiality with traditional encryption schemes to use the cloud services,

as conventional schemes can not permit the provider to function on encrypted data.

Consequently, a scheme needs to be developed in which computation functions can still

be carried out on encrypted data.

In 1978, Rivest, Adleman, and Dertourzous first proposed the idea of the use of ho-

momorphic encryption to make some computations on encrypted data after the RSA

scheme [15] . It was named "Privacy Homomorphism" [16]. Almost all the schemes

proposed have been able to operate on encrypted data with one or few operations. The

advanced milestone occurred with Gentry’s ideallatisti [17] system, which can carry out

an infinite number of arbitrary function operations. But due to its high computation

costs, it really was not a practical scheme. New optimizations and advancements were

proposed in subsequent years with the other schemes.

Depending on the computational operations, there are three various categories of HE

schemes, which are:

• Partially Homomorphic Encryption (PHE) partially supports one type operations

16

Chapter 2: Background

performed as many times as required.

• Somewhat Homogeneous encryption (SWHE) supports only a few kinds of func-

tions for only several times.

• Fully Homomorphic Encryption (FHE) supports every type of operation carried

out as often as desired.

We begin with the fundamentals of homomorphic encryption. Then describe the famous

schemes with examples.

2.4.1 Homomorphic Encryption Schemes

Homomorphic encryption is a specific type of encryption, is capable of performing com-

putation on cipher text, and results out of the same computation performed on the plain

text, as shown in figure 2.3. The Homomorphic encryption , with encryption algorithm

Enc, over an operation ’*’ can be defined as:

Enc(m) ∗ Enc(m′) = Enc(m1 ∗m′), ∀m,m′ ∈M

Where M is termed as message space [18].

There are four main algorithms for the homomorphic encryption(HE) scheme:

• The Key Generation Algorithm, KeyGen: take a security parameter as input.

For symmetric HE scheme output a secret key, and for a asymmetric HE outputs

pair of private key and public key.

• The Encryption Algorithm Enc: takes input message m from message space M

and encryption key k from KeyGen. It outputs cipher text c from an underlying

cipher text space C, as:

c = Enc(m)

• Decryption Algorithm Dec: takes a decryption key and cipher text c and

generates an output message m, as:

m = Dec(c)

17

Chapter 2: Background

• The Evaluation Algorithm Eval: takes input cipher text (c, c′), perform some

operations f() on cipher text to get evaluated output cipher text, without knowl-

edge of both plain text and secret or private key. The evaluated cipher text is:

f(c, c′) = E(f(m,m′))

Figure 2.3: Homomorphic Encryption Scheme

It is important to preserve the cipher text format after an evaluation process, to ac-

curately decrypt it. The size of the cipher text should also remain constant in order

to execute infinite amount of operations. The size of the cipher text would otherwise

be increased, limiting the number of operations conducted. In PHE systems, the Eval

function supports only addition or multiplication, while supporting limited amount of

SWHE operations. In FHE systems, Eval supports the evaluation for infinite amount

of times of arbitrary functions over cipher text.

2.4.2 Partially Homomorphic Encryption

Several conventional cryptographic encryption schemes can be designated as PHE, be-

cause they can conduct a single type of computation on encrypted data.

Partially homomorphic encryption (PHE) is either a homomorphic additive system that

only allows additive processes or multiplicative homomorphic scheme that only allows

multiplicative operations on encrypted information.

We discussed some important and well-known partially homomorphic encryption schemes,

such as, RSA [15] , Elgamal [18] and Paillier cryptosystem [19].

18

Chapter 2: Background

2.4.2.1 RSA

Rivest, Shamir, and Adleman [15] published RSA in 1978,l soon after Diffie Hellman [20]

introduced public key cryptography in 1976. The security of RSA scheme was relying

on the integer factoring problem of two large prime numbers. Rivest, Adleman and

Dertouzous subsequently published the homomorphic property of RSA with the name

"privacy homomorphism" [16], an early example of PHE.

ADD-HE MUL-HE MIXED

RSA × X ×

ElGamal × X ×

Paillier X × ×

Table 2.1: Comparison of various schemes for Homomorphic encryption .

There are four main algorithms for RSA partially homomorphic scheme(PHE) scheme:

• Key Generation Algorithm(KeyGen): The key generation process outputs a

public key(pk) and a private or secret key(sk). The public key comprises two

numbers e and n, where n is a product of two big primes p and q, chosen by the

owner of the secret key. The second integer e has to be selected in such a way that

the greatest common divisor of e and φ(n) is gcd(e, φ(n)) = 1. i.e. e is invertible

mod φ(n). Here φ(n) is the Euler Totient function [21]. The secret key(sk) is

(d, n), where d is computed to be the inverse of e, i.e. ed ≡ 1 mod φ(n). This

can be achieved by using extended euclidean algorithm [22].

• Encryption Algorithm Enc: The encryption algorithm takes a message m as a

input from the message space Zn and computes the cipher text c as:

c = me mod n

Without knowledge of p and q, the integer c, can not be traced back to the initial

message (c ∈ cipher text space Zn).

• Decryption Algorithm Dec: Decryption algorithm takes cipher text c and secret

key (d, n) as input and compute the message m as:

m = cd mod n

Because d is the inverse of e, this is indeed the initial message.

19

Chapter 2: Background

• Homomorphic Property HE : RSA has a homomorphic multiplicative property.

This implies multiplications can be performed with encrypted messages without

losing or manipulating their original data.

For input message m,m′ ∈ Zn,

Enc(m) ∗ Enc(m′) = (me mod n) ∗ (m′e mod n),

= ((m ∗m′)e mod n),

= Enc(m ∗m′).

From the above equation we can see, RSA’s multiplicative homomorphic property

can evaluate Enc(m ∗ m′) directly from Enc(m) and E(m′) without decrypting

them.

2.4.2.2 ElGamal

In 1985, Taher ElGamal [18] introduced a new public key cryptosystem based on the

difficulty problem of the discrete logarithm [23]. The ElGamal is regarded an advanced

Diffie-Hellman algorithm variant [20]. ElGamal is used mainly for encrypting the se-

cret key of symmetric cryptographic system. The ElGamal public key cryptosystem

algorithm are:

• Key Generation Algorithm KeyGen: Choose a finite group G of order n, with

a generator g. Compute y = gr, for some uniformly chosen random integer k ∈ Zn.

The KeyGen algorithm outputs the public key (G,n, g, y) and private key k.

• Encryption Algorithm Enc: The encryption algorithm takes a message m ∈ G

as an input, pick a random integer r ∈ Zn and computes the pair of cipher text c1

and c2 as:

c1 = gr mod n

c2 = m. yr mod n

• Decryption Algorithm Dec: Decryption algorithm takes cipher text pair c1, c2

and private key k as input and compute the message m as:

m = c2 . c
−k
1 mod n

20

Chapter 2: Background

• Homomorphic Property HE : The ElGamal public key cryptosystem has also

a homomorphic multiplicative property. This implies multiplications can be per-

formed with encrypted messages without losing or manipulating the original data.

For input message m,m′ ∈ G,

Enc(m) ∗ Enc(m′) = (gr,m.yr) ∗ (gs,m′.ys),

= (gr.gs, m.yr. m′.ys),

= (gr+s , (m.m′)yr+s),

= Enc(m ∗m′).

2.4.2.3 Paillier

The Paillier encryption scheme was introduced by Pascal Paillier in 1999 [19]. The algo-

rithm of the Paillier’s system is constructed on composite residuosity problem [23], which

is known to be computationally hard to solve. It is a probabilistic asymmetric algorithm

that inherits the additives homomorphic properties for public-key cryptography. The

Paillier cryptosystem’s algorithms are:

• Key Generation Algorithm KeyGen: The Paillier key generation algorithm

takes two big prime integers p and q as input such that:

gcd(p.q, (p− 1)(q − 1)) = 1

Next is to compute composite n = pq and λ as:

λ = lcm(p− 1, q − 1)

Choose an integer g ∈ Z∗n2 such that:

gcd(n, L(gλ mod n2)) = 1

Here, L(x) = (x− 1)/n, ∀x ∈ Z∗n2

The outputs of Paillier KeyGen algorithm are public key pair (n, g) and private

key pair (p, q).

• Encryption Algorithm Enc: The Paillier encryption algorithm takes a message

m ∈ Zn as input and randomly selects an integer r ∈ Z∗n, this random number is

21

Chapter 2: Background

being used to satisfy the probabilistic property of paillier that one plain text can

have several cipher texts. This random variable does not interfere to decrypt the

cipher text correctly, but changes the corresponding cipher text.

The output of encryption algorithm is cipher text c ∈ Zn2 that has the following

form:

c = gm.rn(mod n2)

• Decryption Algorithm Dec: Decryption requires cipher text c and private key

p and q as input. The message is computed as:

m = L(cλ mod n2)
L(gλ mod n2)

Due to the condition that n and L(gλ mod n2) are co-prime, it is possible to find

inverse of L(gλ mod n2) mod n.

• Homomorphic Property HE : The Paillier public key cryptosystem has a ho-

momorphic additive property. This implies addition operations can be performed

with encrypted messages without losing or manipulating the original data.

For input message m,m′ ∈ Zn,

Enc(m) ∗ Enc(m′) = (gm.rn1 mod n2) ∗ (gm′ .rn2 mod n2),

= (gm+m′ .(r1 ∗ r2)n mod n2),

= Enc(m+m′).

This means that the encryption of two plaintext m and m′ is precisely the mul-

tiplication of the relevant cipher texts c and c′ AS mention above that Paillier is

homomorphic over addition. But it has also some additional operation over plain

text m, m′ as:

Enc(m) ∗ Enc(m′) (modn2) = Enc(m+m′) (modn)

Enc(m) ∗ gm′ (modn2) = Enc(m+m′) (modn)

Enc(m)k (modn2) = Enc(km) (modn)

22

Chapter 3

Literature Review

3.1 Introduction

In this chapter, we present a general review of the related research. First we introduce

the offensive use of cryptography for malicious purposes. After that, we present a detail

review on proxy re-encryption schemes and the research work already carried out in

the domain. We describe the use of environmental keys for encryption and decryption

purposes.

3.2 Offensive use of Cryptography

Cryptography, on one side, is the most crucial aspect and significant mechanism for

protecting cyber space, but, at the opposite side, cyber terrorists can also unlawfully

use it to target digital communications or engage in some criminal activity in cyberspace,

in this case, cryptography (especially when using worms, Trojan horses and back doors)

became a hazardous cyberspace threat.

Offensive use of cryptography starts with Young and Yung work [24] however, with a

quite small vision. By using this technique, a malware that is used to data encryption of

client using asymmetric cryptographic algorithm’s public key and extorts money from

the clients who desperately wants the key(private key) to get back to their data. The

malware on its own does not use malicious mathematics or malicious cryptology in this

strategy. Just the payload utilizes cryptology to extortion money. Young and Yung’s

input does not propose more than just a cryptographic book, although it has the value

23

Chapter 3: Literature Review

to initiate it. Their contribution results in a fascinating yet disturbing new fields of aca-

demic research and experiments. This became a building block for use of cryptographic

encryption for malicious use. In 2005, Filiol [25]) describes the first scholarly description

of the using cryptography in the important process itself. In this case the public key

cryptography, together with the environment key management, allows malware code to

be protected against reverse engineering for particular operational conditions.

After that lot of academic research work was published to protect malware using cryp-

tographic techniques. In 2007, Filiol et al published a paper in which he described

optimized malware(worm) propagation and different attack methods [26], for example ,

using particular random number generator

Another work of Filiol [8] describe optimal methods of self-protection and how malware

code protects itself and its functional operations with very secure and robust symmetric

cryptographic algorithms. Filiol and Josse [27] proposed the Partial or complete invis-

ibility characteristics. By using statistical simulability of Filiol and Josse, the software

developer aims to create his script or code invisible. Eric Filiol have many great con-

tribution in the malicious use of mathematics. In 2008, he published another paper in

which he discussed the use of the concept of difficulty or computeability number the-

ory to create undetectable malicious software [28]. To protect binary executable files

from reverse engineering, Filliol proposed the methodology [4] that uses cryptographic

techniques or encryption algorithms with different approaches.

3.3 Re-encryption Schemes

Re-encryption mechanisms are cryptosystems that enable third parties (proxy) to modify

a encrypted cipher text for one party, so that it could be decrypted by some else, as

in figure 3.1. A re-encryption is usually used when one party, say Sender A, intends to

reveal the content of plain text sent to him and encrypted to a third party C with its

public key, without proving its private key to third party C. Sender A does not want

the content of his messages to be read by third party C. Sender A may designate a third

party C to re-encrypt one of its messages to be sent to B. This creates a new key that

can be used by B to decrypt the message. Now if Sender A sends a message to B that

has been encrypted under the key of Sender A, third party C will amend the plain text

24

Chapter 3: Literature Review

to allow B to decrypt it. This technique facilitates a number of applications such as

e-mail forwarding, monitoring of law enforcement and distribution of content.

Figure 3.1: Proxy Re-encryption

Mambo and Okamoto [29] initially proposed a technique for delegate decryption priv-

ileges primarily as an increase in productivity across conventional decryption and re-

encrypt techniques. The concept of "atomic proxy cryptography", in which a third party

uses a procedure that transforms Alice cipher text into a new version of cipher text for

Bob without knowledge of plain text or secret key, was suggested by Blaze, Bleumer

and Strauss in 1998 [30]. Their another work that is based on ElGamal public key cryp-

tosystem, the proxy is given a delegate key b
a mod q in order to convert cipher texts

from Alice to Bob by means of computing (mgk mod p, (gak)
b
a) using a secure prime

p = 2q + 1 modulus. However, the publishers notice that somehow this model has an

intrinsic limitation, It’s in two ways , as to say, the result of equation b/a is being utilized

for transfer the cipher texts from Alice to Bob. Therefore, this model is only beneficial

if Alice and Bob have shared trust relationships. The BBS scheme’s delegation is merely

25

Chapter 3: Literature Review

descriptive, meaning that the proxy itself can set up delegate privileges for both two

entities that did not agree about this. For instance, a/b and b/c values allow the proxy

to encrypt again(encrypt cipher text) data from Alice to Carol. A further shortcoming

of this method is the fact, once the proxy and Bob join together, then they also can

retrieve their private key, like (a/b) ∗ b = a!.

Jakobsson [5] has formed a protocol based on quorum, dividing the proxy into sub-parts,

each of which controls the re-encryption key. Here, the delegator keys will be secure as

soon as some proxies are reliable. Zhou, Mars, Schneider and Redz took a comparable

strategy [31] into consideration.

Recently, Dodis and Ivan [32] have published unidirectional proxy encryption for Elga-

mal, the RSA and IBE cryptosystem, through the exchange of a private key between

the two entities. The private keys of Alice are split into two groups s1 and s2, Where

s = s1 + s2 in their unidirectional ElGamal system and circulated to the proxy and

to Bob. The first proxy computes (mg
sk

gk
), which Bob can decrypt as (mg

s2k

(gk)s2) = m, if

received by cipher texts of the forms (mgsk, gk). Although this methodology has several

benefits over BBS, new pitfalls are also highlighted. These "secret-sharing" methods

don’t alter Alice’s ciphertext into Bob’s cipher texts, which is in the broadest sense,

such that Bob will decipher them with his own private key). In reality, they delegate

decryption, which can be hard to handle for him, by requiring Bob to hold additional

keys. One area of concern is the Dodis-Ivan IBE [32] proposed system in which the

master key is transmitted between the proxy and the delegate that decrypts all cipher

texts. The delegate therefore needs to hold only master key, but an obvious flip side is

that the proxy as well as every delegate in the scheme can decrypt data from anyone

else.

In 2004, Philippe Golle introduced a cryptographic scheme known as "Universal re-

encryption of mixnets" [6]. The scheme is based on conventional ElGamal cryptosystem.

The idea is to re-encrypt or re-randomize the ciphertext without the knowledge of cor-

responding private key. This scheme become building block for re-encryption process,

based on asymmetric cryptography.

26

Chapter 3: Literature Review

3.4 Environmental Key Generation

Environmental keys refers to the generation of data from the computer system and net-

work triggers, for example IP address, path variable etc. But the collected environmental

data may be raw data with arbitrary length and have different format. To generate en-

cryption or decryption keys from this data, need to transform it to a standard format

and, may be a fix length. The final key must be regenerated from the environmental

variables.

Bruce Scneier, is the first who introduced the concept of use of environmental key for

cryptographic encryption or decryption process to use it in mobile agents [9]. Keying

content which is created from different categories of collected environmental content.

The mobile Agents may obtain encrypted data using these keys that can only be de-

crypted if certain environmental variables are valid. Agents withdrawn or executable

data encrypted with these keys could remain unsure from content of data, until certain

environmental conditions have been encountered.

For instance, a high-tech professional grade virus called Gauss [7] was detected in 2012-

13 with an encrypted payload using data from the targeted victim’s computer as the

decryption key. There was various payload variants. They hold different extras PE

sections, which was encrypted with RC4 stream cipher. The RC4 encryption key used

to encrypt sections, contain combination of two environmental variable generated from

system. The first variable was environmental string PATH (in windows OS), the other

one was the name of directtory in PROGRAMFILES. No analyst can decrypt the

payload and determine, what the payload will do until the virus is installed on the

system of a targeted victim.

Malware requires to running on a particular target system while at the same time, need

to maintain its payload anonymous from a malware analyst. Generally, conventional

cryptographic encryption algorithm can be used to achieve confidentiality, but in the

case of maintaining the secrecy of key , it is a different scenario. Because, malware need

to execute on the target machine. Hence, the secret key will in plain text format. If

the secret key is stored in the malware to decrypt the payload, the malware analyst can

extract the key. The environmental keys can be used to encrypt data, so that later on

it can be used in decryption process.

27

Chapter 4

Malware Encryption and

Re-randomization

4.1 Introduction

In this chapter, we evaluate the malware encryption scheme and describe their practical

use for malware samples. First we introduce the malware encryption, the features and

objective of malware encryption. Secondly, we describe the malware propagation model

with respect to both malware author or developer and malware analyst. Further, we

describe the malware encryption process, the use of asymmetric encryption, and envi-

ronmental keys in context of malware encryption. Further more, an existing which use

homomorphic encryption of ElGamal to re-encrypt the malicious payload to generate

the indistinguishable malware variants of same malware, will be described. At last, we

explain the technical detail of our implementation of ElGamal based malware encryption

and re-randomization scheme and implementation results.

4.2 Encrypting the Malicious Payload

The malware author’s objective is to prevent the analysis of malicious code and to

obscure the malware author’s intents from analyst, that defending some computer nodes

on the network. To achieve this goal malware developer use encryption techniques. The

malware developer wishes to target a specific computer on the network. The author

then begins with infecting X initial nodes, with X distinct variants of his malicious

28

Chapter 4: Malware Encryption and Re-randomization

program. Through making replicas of the initial version, malicious software continues to

compromise successive network computers. On the other hand, the goal of the malware

analyst is to identify the compromised computers in the network with some malware

and to desired to know that any of the malware targets his network devices. So, the

malware analyst only needs to know initial X malware samples.

To increase the malware analyst’s workload, H.galteland and G.Gjosteen worked on

malware encryption and randomization schemes [10]. The malware author encrypt pay-

load using unique key(s) generated from target environmental data, and re-randomize

cipher text at each new node leads to form indistinguishable variant of malware in the

network that infects successive machines without the knowledge of private key. Different

replicated variant of identical malware in the network grows the malware analyst’s work

load substantially and prevent analyst to defending some nodes in the network. This

scheme is based on public key encryption scheme ElGamal that allow re-encryption of

cipher text. The re-encryption exploits the homomorphism of ElGamal cryptosystem,

to re-randomize the cipher text. Re-encryption is a simple enhancement of the ElGamal

symmetric encryption that allows the re-randomization of cipher text despite knowing

the relevant secret key.

4.3 Malware Propagation Model

The malware developer’s goal is to target a specific computer or node in the network.

The malicious developer’s also need to resist against reverse engineering of path towards

the source of the malware. The malware author also wants to hide attack motives and

origin of malware from opponent.

On the other side, the malware author’s opponent is a malware analyst, whose job is

to protect and defend the node in the network from malware attack. His objective is to

identify the malware sample that targeting his node in the network. The analyst also

wants to identify the source of malware and determine the intent of malware authors.

The goal is to hide the intents and identity of malware author from analyst by reverse

engineering towards source path.

We use the malware propagation model, shown in figure 4.1, in which the malware author

with malware M and the malware source Msource, infects X initial peers or nodes(in or

29

Chapter 4: Malware Encryption and Re-randomization

outside the target network) with distinct variants of his malware. In response the X

initial nodes infects subsequent machines in the network by propagating in-distinguished

copies of same malware M.

Each and every direct connection to the malware source helps to increase the malware

analyst’s probability of finding the malware author’s origin, because of that the malware

author must preform as several additional infections as feasible and prefer indirect routes

to the target node T.

The responsibility of the malware analyst is to protect computers in the network N

from any potential threat of malware, and he has comprehensive understanding of the

environment that he protects. The malware analyst can observer the wider malware

space Ms, to find the more malware M samples.

The malware author will use cryptographic algorithms to encrypt the malicious payload

to make the work of the analyst more challenging. Encrypting the payload protects

malicious software code from being reversed and tries to obscure the malware author’s

intents.

Figure 4.1: Malware propagation model

30

Chapter 4: Malware Encryption and Re-randomization

4.3.1 Malware Propagation Modeling

The malware propagation modeling is based on scanning network model or topological

model [33] [34], depends on the target network infrastructure. Advantage of using these

malware modeling framework is to control the malware propagation and prevent network

to overwhelm from random malware transmission and propagation. There are different

other methods to handle the challenge of network flooding by malware or malware

propagation. The obvious solution is to pick a range of IP addresses in a large network

to target one or more specific nodes. Another practical mechanism for randomizing

the malware propagation behaviours and protect a large network from flooding, is to

introduce time delay modeling (random time factor) in malware propagation. As to set

a random time delay for the propagation of each malware sample.

4.3.2 Malware Encryption Process

Encryption is major weapon used by the malware author against malware analyst to

counter the malware payload analysis and identification of malware author’s intentions.

The malware encryption uses the asymmetric encryption algorithms to encrypt the

malicious payload.

The encryption key for asymmetric cryptographic algorithms is derived from the envi-

ronmental variables of target system. Before the malware attack process begin, need

to collect the environmental information which can be useful to generate the encryp-

tion keys. The environmental variables is combination of data gathered from target

system, include IP address, MAC address, system variables, operating system unique

parameters, path variables and other network triggers etc. The reason behind the use

of environmental keys is to auto decrypt the malware payload on specific target node.

The malware encryption process consist of malware payload and cleartext loader. The

malware payload consist of malicious code that need to execute on target system to

compromise the opponent node(s). The loader program scans and check the target

system for environmental variables and define the way to transforms these variables to

generate encryption keys, instead of storing keys insides the malware payload. To gen-

erate standards keys from environmental variables the cryptographic one way functions

known as hash functions can be used. The hash function transforms the arbitrary length

31

Chapter 4: Malware Encryption and Re-randomization

environmental variables into a fixed length key. For example, the MD5 hash function

transforms the arbitrary length input message into 128 bit message digest. Later on,

these encryption keys will be used to encrypt the malicious code. The cleartext loader

security depends on obfuscation scheme used by malware author.

Figure 4.2: Malware encryption process

On the target side, once malicious software infects a new system, the malware loader

scans the compromised node’s environmental variables, hashes these variables to gener-

ate keys, and tries to decrypt the malicious payload through the derived keys. If the

malware decryption succeed, the malware payload will execute. If not, copies of the

malware will be generated to target successive system.

The malware author initiate with N distinct encrypted sample of same malicious code

to infect X initial devices. The analyst goal is to collect these initial X malware sample.

Analyst primary objective is to ensure that neither of these X initial variants compro-

mises his devices in the network. To guarantee this, analyst approximately need K

decryption for each of his N nodes. Hence, the malware analyst workload to analyse the

malware sample is almost XNK.

32

Chapter 4: Malware Encryption and Re-randomization

4.3.3 Malware Re-randomization Process

The malware re-randomization process produces several indistinguishable variants of a

malware, rather than copying identical samples. Malware re-randomization can be done

using Asymmetric cryptography. The homomorphic property of different public key en-

cryption schemes can be used to re-encrypt the cipher text. The malware re-encryption

scheme is based on universal re-encryption scheme [6] that uses the asymmetric encryp-

tion algorithm ELGamal to re-encrypt the cipher text.

The re-randomization algorithm inputs includes, a encrypted payload to generate the

exact malicious code, with some randomly chosen values in order to create a new cipher

text against same plain text. Hence, homomorphic encryption property of ElGamal is

used to generate different looking sample of same malware to infects X target nodes

without any knowledge of private key.

Figure 4.3: Malware re-randomization process

The re-randomization process begins with scanning the target environmental data. After

collecting required environmental data, hashes the data to generate the decryption key,

to check the decryption procedure. These decryption key(s) is used to decrypt the

encrypted malicious payload and checks for decryption succeed or fail. We can look

for malware sample signature to verify the decryption results. In windows, the exe file

format start with signature 0x4D5A (MZ). Hence, if the malware is windows based,

33

Chapter 4: Malware Encryption and Re-randomization

we will check the .exe file signature to verify the decryption. Otherwise, if malware is

Linux based, then the underlying malware will belong to deb or bin file format. The

deb file format signature is 0x213C617263683E (!<arch>.) and binary file signature is

0x7F454C46 (.ELF). If the malware decrypted successfully on a node, it will execute.

Otherwise, the malware decryption fails. In this case, the re-randomization algorithm

takes uniformly random values (ElGamal random factor) as input to re-encrypt the

malicious payload to generate the indistinguishable sample of same malware without

the knowledge of secret key. The re-encryption uses the homomorphism of ElGamal

that allow re-encryption of malicious payload.

4.4 Proposed Implementation of Existing ElGamal Scheme

The malware encryption and re-randomization scheme built on public key cryptosystem

ElGamal over group G of primitive order p, with generator g. The framework of malware

encryption and re-randomization is same as Galteland extended scheme [10]. The im-

plemented scheme consist of four algorithms, the malware encryption algorithm Encm,

the malware decryption algorithm Decm, the malware re-randomization algorithm Re-

randm and malware re-randomized payload decryption algorithm Re-rand-Decm. The

decryption algorithm Decm will be executed, if the malicious payload is only encrypted

(not re-randomized), otherwise (in case of malware re-randomization) the malware re-

randomized payload decryption algorithm Re-rand-Decm will be executed.

4.4.1 Malware Encryption Algorithm

The malware encryption algorithm Encm take input a executable file (malware) and

transforms it into bit string (bit stream) to encrypt the files with large size. The bit

string is than padded with one 1 bit and length 0’s bits. The number of zeros padded

which is l ∗ (n+ 1) + 1. Where l is the message length, n is number of re-randomization

that will perform on encrypted malicious payload. The padded bit stream length is

denoted as L. So the plain text (padded malicious code) mLm is bit string of length Lm.

34

Chapter 4: Malware Encryption and Re-randomization

4.4.1.1 Encryption parameters

The malware encryption uses the standard ElGamal’s parameters. Let G represent the

underlying group for ElGamal asymmetric cryptosystem with p as order of group G and

generator g. The p represents the big prime number and the generator g is chosen at

random number, such that g < p and gcd(p, g) = 1. The random factor r and s have

chosen as random such that r, s ∈ (1, ...(p− 1)).

4.4.1.2 Key generation

To encrypt the malware payload plain text m is encrypted using encryption key k, such

that k ∈ Z∗p . The private key k is generated from environmental data of the target node.

In our implementation, we use the MAC address of target system and transforms it into

the key k. The MAC address is 48 bit. The key k must be less than prime p. Hence,

key k is calculated as k = mac mod p.

4.4.1.3 Encryption factor γ

The encryption factor γ is chosen as random. For encryption process the length of

encryption factor γ must be equal to Lm, where Lm is the length of padded malicious

code plain text m of padded bit stream length L. For every, variants the value γ will

change as it is chosen at random and also the length Lm will vary each time. So we

need to define a way to transforms a random encryption factor γ into a string γLm of

arbitrary custom length Lm.

To transforms the encryption factor γ into to a string γLm , we have used the two

standard one way hash functions. One is MD5 hash algorithm and the other is SHAKE

hash algorithm.

MD5 The MD5 [35] was designed by Ronald Rivest in 1991, is a standard one way hash

function that take an arbitrary length input and return 128 bit message digest. The

message digest of MD5 usually represented in a hexadecimal sequence of 32 digits. In

our implementation, we have used the OpenSSL C library for MD5 to transforms the

encryption factor γ into 16 byte string.

SHAKE-128 The SHAKE algorithm [36] belongs to SHA-3 family of XOF(Extendable

output functions) algorithms. The extendable-output function(XOF) is a hash function

35

Chapter 4: Malware Encryption and Re-randomization

in which the message digest can be extended to any arbitrary custom length. The

SHAKE-128 and SHAKE-256 are two standard SHA-3 XOF’s. The suffix ”128” and

”256” specify the strength of the algorithm instead of indicating the message digest

length as in other standard hash algorithms. The SHAKE-128 and SHAKE-256 were

the first XOFs (extended output functions) to be standardized by NIST.

In our implementation of malware encryption algorithm, we have input the 16 byte MD5

to SHAKE-128 algorithm and get our required message digest as string γLm of arbitrary

length Lm. We have used the Odzhan C implementation of SHAKE-128 [37] in our

implementation. Hence, the SHAKE-128 algorithm is useful to get the desired length

output in the encryption process.

Figure 4.4: Calculation of Encryption factor γ using MD5 and SHAKE-128

4.4.1.4 Encryption

For encryption function, input comprises, padded malicious payload (plain text) mLm ,

the key k, the random factor r, s and the encryption factor γ, γLm . The output is a

cipher text C, which is calculated as:

C = c1||c2||c3||c4||c5

Where c1, c2, c3, c4 and c5 is calculated as:

c1 = gr mod p

c2 = gkr mod p

c3 = gs mod p

c4 = gks.γ mod p

c5 = γLm ⊕mLm

36

Chapter 4: Malware Encryption and Re-randomization

4.4.2 Malware Decryption Algorithm

The decryption algorithm Decm takes input the cipher text C. The decryption process

is done on the target node, so need to auto-decrypt the malicious payload on the tar-

get machine using the secret key k. As the key k is derived from target MAC address

of the target node. We have extracted the target MAC address and calculate the key

k as, k = mac mod p. To decrypt the encrypted malicious payload, required to ver-

ify the target node. Hence, we have checked ck1 = c2, where c1 = gr and c2 = gkr.

In our implemenation, if the verification fails, the loader program force to moves onto

re-randomization algorithm to target subsequent node, otherwise, the payload will de-

crypted and executed.

To decrypt the malicious payload, the first step is to extract the γ from the cipher text,

as:

c−k3 .c4 =⇒ g−ks.gks mod p

=⇒ γ

After determining γ, γLm will be evaluated using the hash algorithms MD5 and SHAKE-

128. Input γ to MD5 hash function, which return 128 bits hash value. The length of

cipher text object c5 is equal to the padded plain text length Lm. The length Lm and

16 bytes message digest of MD5 is input to SHAKE-128 to get γLm of length Lm.

To decrypt the padded plain text mLm , use the cipher text object c5 and γLm , as:

mLm = c5 ⊕ γLm

To determine the padded bit stream length, the implemented loader program search

for the first ’1’ from the end of bit stream of γLm and discard the padded bit from the

γLm , to get the original plain text. As in encryption algorithm, the plain text is padded

with tail of zeros and just one 1. To execute the malware payload, loader write the

decrypted data to a file. Hence, we get the original malicious payload plain text m.

Before executing the malware, loader program will verify the malicious payload using

the standard signature of underlying file format. On successful verification, malware

payload will be executed.

37

Chapter 4: Malware Encryption and Re-randomization

4.4.3 Malware Re-randomization Algorithm

The re-randomization algorithm Rr-randm takes input the cipher text C and the public

parameter p. Decryption process is done on the node which prompts the decryption

fails or invalid private key for decryption. In consequence, before target the new node,

re-encrypt the cipher text without knowledge of private key k. The re-randomization

algorithm choses two new random factors r′ and s′. The encryption factors γ′ to re-

encrypt the cipher text C, is also chosen at random. The r′, s′ and γ′ should be less

than the public parameter p.

The value of βLβ with length Lβ is evaluated as:

βLβ = c3||c4||c5

Where the cipher text C objects, c3 = gs, c4 = gks.γ and c5 = γLm ⊕mLm .

The γ′Lβ will be computed by using the hash algorithms MD5 and SHAKE128, as:

γ′ →MD5 16bytes−−−−→ SHAKE128
Lβ−−→ γ′Lβ

The output of re-randomization algorithm Re-randm is cipher text C ′, which is calcu-

lated as:

C ′ = c1′||c2′||c3′||c4′||c5′

Where c1′, c2′, c3′ and c4′ is calculated as:

c1′ = cr′1 mod p

c2′ = cr′2 mod p

c3′ = cs′1 mod p

c4′ = cs′2 .γ
′ mod p

c5′ = γ′Lβ ⊕ βLβ

4.4.4 Re-randomized Malicious Payload Decryption

The re-randomized cipher text C ′ decryption algorithm Re-rand-Decm, is modified form

of decryption algorithm Decm with some addition. The re-randomize decryption algo-

rithm takes input the public parameters p and g and the cipher text C ′. The cipher

38

Chapter 4: Malware Encryption and Re-randomization

text C and C ′, treated as same way by decryption algorithm Decm. The secret key k

is generated from the target MAC address to decrypt the payload. To verify the target

node for decryption of payload we check ck1 = c2. Here, the cipher text C instance c1 is

c′1 and c2 is c′2.

ck1 = c2

cr
′k

1 = cr
′

2

grr
′k = gkrr

′

On verification fails loader program encforce to moves onto re-randomization algorithm

to target another node, otherwise, the payload will decrypted and executed. To decrypt

the payload, the first step (additional step in decryption algorithm) is to determine γ′

from cipher text C ′, as:

c′
−k

3 .c′4 = c
s′ (−k)
1 . cs

′
2 γ
′

= grs
′ (−k). gkrs

′
γ′

= γ′

After that, the loader program computes the γ′Lβ using the hash algorithms MD5 and

SHAKE128. The length Lβ is same as the length of c′5. The γ′Lβ as;

γ′ →MD5 16bytes−−−−→ SHAKE128
Lβ−−→ γ′Lβ

By using the cipher text c′5 and γ′Lβ , we can find βLβ , as:

βLβ = c′5 ⊕ γ′Lβ

The βLβ is concatenation of cipher text’s C instances, as, c3 || c4 || c5. In other words,

βLβ =⇒ gs || gks.γ || γLm ⊕mLm . The loader will determine the length of gs and gks.γ,

as they have equal in length with cipher text C ′ instances c′3 and c′4 respectively. Hence,

we can find c3, c4 and c5 from βLβ . This procedure continue for n iterations, where n is

the number of re-randomization performed on encrypted payload.

Next step is to computer γ, from the cipher text C using the secret key k, as:

c−k3 .c4 = g−ks.gks mod p

= γ

39

Chapter 4: Malware Encryption and Re-randomization

Now, our implemented loader will compute γLm from γ and c5’s length Lm, as:

γ →MD5 16bytes−−−−→ SHAKE128 Lm−−→ γLm

The final step is to determine the malicious payload’s padded plain text mLm , as:

mLm = c5 ⊕ γLm

The padded bit stream length will be determine by searching the first ’1’ from the end

of bit stream(right to left) of γLm and discard the padded bit from the γLm to get the

original plain text m. As in encryption algorithm, the plain text is padded with tail of

zeros and exactly one 1. The loader than writes the decrypted data to a file to execute

and launch the malware. The re-randomization decryption algorithm need to execute n

time on the encrypted malicious payload. Where n is the number of re-randomization

performed on the malicious payload. Before execution of the malware, we have used the

standard executable file format signature to validate the malicious payload. Malicious

software payload will be executed on successful validation.

4.5 Results

In this section, we present experimental setup and experimental results of our propsed

implementation of ElGamal based malware encryption and re-randomization scheme.

4.5.1 Experimental Setup

The ElGamal malware encryption and re-randomization scheme algorithms have imple-

mented using the C language (KDevelop Platform Version; 5.2.1) on Ubunut 18.04(Linux).

Experiments are performed on Intel(R) Xeon(R) CPU E5-1660 v3 with a 3.00 GHz and

16 GB of memory. We used some popular malware samples in our experiments, as show

in table 4.1.

40

Chapter 4: Malware Encryption and Re-randomization

Malware Platform Signature Size

WannaCry[38] Windows MZ 3.5 (MB)

Zeus[39] Windows MZ 252.9(KB)

GandCrab[40] Windows MZ 124.4(KB)

Kovtreer[41] Windows MZ 431.9 (KB)

Wirenet[42] Linux .ELF 64.4(KB)

Encoder[43] Linux .ELF 317.5(KB)

Dendroid[44] Android PK 942.8 (KB)

Table 4.1: Malware Samples

4.5.2 Experimental Results

We evaluated the performance of our proposed implementation of malware encryption,

re-randomization and decryption algotiyhms by using parameters Enc(sec), Dec(sec),

Re-rand(sec) and Re-randDec(sec). All these algorithms generate different time (T1,

T2, T3 and T4) accourding to variations in algorithms paramenters. Table 4.2 shows

the experimental results against different malware sample.

Malware
Enc (sec) Dec (sec) Re-rand (sec) Re-randDec (sec)

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

WannaCry[38] 2.392 2.384 2.356 2.356 7.982 16.6 2.532 13.934 1.540 1.532 1.534 1.521 9.252 22.485 9.824 23.430

Zeus[39] 0.171 0.162 1.164 0.17 4.572 1.001 9.98 0.721 0.105 0.117 0.113 0.111 8.837 14.454 15.172 14.175

GandCrab[40] 0.086 0.084 0.085 0.081 3.304 5.01 12.114 2.051 0.055 0.05 0.055 0.051 11.92 11.844 15.737 12.458

Koveter[41] 0.003 0.002 0.002 0.003 4.163 15.69 7.354 16.696 0.002 0.001 0.002 0.002 8.813 31.036 20.678 20.012

Wirenet[42] 0.041 0.039 0.043 0.044 2.726 8.657 2.798 12.271 0.028 0.028 0.028 0.028 4.971 24.674 7.753 29.429

Encoder[43] 0.209 0.208 0.207 0.21 15.416 13.982 16.68 3.579 0.137 0.134 0.137 0.137 24.061 21.096 16.177 7.815

Dendroid[44] 0.637 0.634 0.643 0.629 8.406 0.538 6.057 1.826 0.407 0.412 0.409 0.402 16.188 2.459 17.39 13.605

Table 4.2: Performace analysis of ElGamal based scheme

41

Chapter 5

Paillier- Malware Encryption and

Re-randomization Scheme

5.1 Introduction

In this chapter, we will propose a new scheme for malware payload encryption and

re-randomization, based on asymmetric cryptosystem, Paillier. First, we introduce the

overall malware prospective and Paillier algorithm’s encryption and decryption process

with homomorphic property. Further, we describe the use of PHE scheme for malware re-

randomization, probabilistic and deterministic encryption. We also explain the concept

of semantic security and limitation of RSA cryptosystem for malware re-randomization.

At last, we present our proposed scheme for malware encryption and re-randomization,

based on Paillier’s semantically secure cryptosystem and implementation results.

5.2 Malware Encryption

As the development and propagation of malware improves, methods used to conceal

malicious activities by malware developer, have increased. Attackers have invested a

lot more work into rendering the process extremely complicated and time intensive

to detect malware. Growing numbers of anti-sandbox, anti-debug, and anti-analysis

methods(such as dead code, cryptography encryption, etc) hinder application’s static

and dynamic malware analysis and increasing uncertainties in malware analysis. In

tandem with software and innovative technology, the malware architecture has evolved,

42

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

evolving modern industry methodologies and approaches to their malware frameworks

and exploiting new services as they release attractive options for adversaries.

The underlying cat and mouse challenge which has existed for decades among malware

writers and anti-malware business firms or malware analysts. There is a significant

competition among malware analysts and malware developers. Each opposing party

is trying to expand their ability to overcome the opponent. Among the other critical

concerns on the perspective of malware for malicious software author is to extend the

malware’s lifespan in the open ocean, as much as achievable. Our goal is to propagate

malware, prevent propagating malware from analysis and to hide the malware developer

intentions. We will propose a novel scheme based of Paillier cryptosystem, to encrypt

and re-randmomize the malware payload. The proposed scheme is more efficient than

ELGamal based malware encryption and re-randomization scheme, earlier described in

Chapter 4.

5.3 Paillier Cryptosystem

The Paillier crypto-system is a probabilistic asymmetric cryptosystem is based on com-

posite residuosity problem[23], proposed in 1999 by Pascal Paillier [19]. It is belonged to

the family of RSA and ElGamal of PHE scheme. It is a probabilistic asymmetric algo-

rithm that inherits the additives homomorphic properties for public-key cryptography.

The Paillier cryptosystem’s algorithms are:

5.3.1 Paillier Key Generation

The Paillier’s key generation algorithm KeyGen comprises two big prime integers p and

q of equal length, chosen at random as a input such that the p.q and (p− 1)(q − 1) are

relatively prime to each other as:

gcd(p.q, (p− 1)(q − 1)) = 1

Subsequently, the plain text sender computes the value n as, n = pq and λ as:

λ = lcm(p− 1, q − 1)

Yet again, randomly choose an integer g following g ∈ Z∗n2 such that:

gcd(n, L(gλ mod n2)) = 1

43

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

Here, L(x) = (x− 1)/n, ∀x ∈ Z∗n2

As a result, we get the public key pair (n, g) and private key pair (p, q) as Paillier

KeyGen output.

5.3.2 Paillier Encryption

The Paillier encryption algorithm Enc takes a message as input m, where m ∈ Zn

and randomly pick an integer r, where r ∈ Z∗n, this random element is being used to

fulfil the probabilistic algorithm property that a specific plaintext could have multiple

ciphertexts. This random parameter does not affect the accurate decryption but modifies

the ciphertext.

The output result of encryption algorithm Enc is ciphertext c, where c ∈ Zn2 and can

be generated as:

c = gm.rn(mod n2)

5.3.3 Paillier Decryption

The user can decrypt the ciphertext c using the private key λ in decryption algorithm

Dec, to get the original plaintext message m, as:

m = L(cλ mod n2)
L(gλ mod n2)

Just because of the property that n and L(gλ mod n2) are relatively prime to each

other, it is feasible to evaluate the inverse of L(gλ mod n2) mod n.

5.3.4 Paillier Homomorphic Property

The Paillier asymmetric cryptosystem is a PHE scheme with homomorphic additive

property. This means addition operations can be performed with ciphertext without

losing or manipulating the original data.

For input plain text messages m and m′ where m,m′ ∈ Zn,

Enc(m) ∗ Enc(m′) = (gm.rn1 mod n2) ∗ (gm′ .rn2 mod n2),

= (gm+m′ .(r1 ∗ r2)n mod n2),

= Enc(m+m′).

44

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

This implies that the encryption of two plaintext messages m and m′ is precisely the

multiplication of the corresponding ciphertext c and c′ as above mentioned, Paillier

crypto-system is homomorphic over addition. But it also support some additional op-

eration over plain text m, m′ as:

Enc(m) ∗ Enc(m′) (modn2) = Enc(m+m′) (modn)

Enc(m) ∗ gm′ (modn2) = Enc(m+m′) (modn)

Enc(m)k (modn2) = Enc(km) (modn)

5.4 PHE Schemes for Malware Re-randomization

Partially homomorphic encryption (PHE)[45] helps to keep confidential information pro-

tected by enabling only specific mathematical operations on encrypted data to be per-

formed. This implies that an infinite number of occasions a single operation could be

conducted on the encrypted data. RSA public key cryptosystem is a PHE scheme, which

is commonly used to establish secure connections through SSL / TLS. Some other ex-

amples of PHE scheme are ElGamal public key cryptosystem (a multiplicative scheme)

and Paillier cryptosystem (an additive scheme). Our goal is to use the PHE scheme to

re-encrypt the malicious payload. In chapter 4, we have discussed the use of ElGamal

cryptosystem for malware encryption and re-randomization scheme. Here, we explain

probabilistic and Deterministic encryption, the concept of semantic security and the lim-

itation of RSA asymmetric PHE scheme for malware encryption and re-randomization.

Further, we justify our proposed scheme which is based on Paillier cryptosystem to

encrypt and re-randomize the malicious payload.

5.4.1 Probabilistic and Deterministic Encryption

The deterministic encryption is a type of encryption that generates the same output or

encrypted data, against the same input plain text, even for different executions. The

typical examples of deterministic cryptosystem are unpadded RSA and several block

ciphers when using electronic code book mode or same IV.

On the other side, there are more than one possible ciphertext for each plaintext in a

probabilistic encryption scheme. The ElGamal and Paillier public key encryption are

examples of probabilistic encryption algorithms.

45

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

5.4.2 Semantic Security

Semantic security is a notion of defining a cryptographic encryption algorithm’s security.

An opponent is allowed to pick one of two plaintext, m and m′ and gets the one of the

ciphertext of m or m′. If an opponent can not predict with a probability more than

half(1/2) that the received ciphertext is the encryption of either the plain text m or

m′, the encryption algorithm is considered semantically secure, sometime refers to as

encryption indistinguishability.

Goldwasser and Micali initially described it and published it in their 1984 influential

article "Probabilistic Encryption" [46]. Typically, this feature is obtained by adding

a random factor into the cryptogrpahic encryption algorithm. A quite simplest way

of transforming any deterministic encryption scheme into some kind of probabilistic

algorithm is to pad the plain text before encrypting it with a random sequence and

unpad it only it after the decryption. In the block ciphers, it can be easily achieved

using the modes of encryption (Cipher Feedback, Cipher Block Chaining etc), while

in public key encryption scheme, each time, by choosing the random factor r, before

encrypting the plain text, the corresponding ciphertext will alter each time against

same input plaintext. In block cipher this can be achieved by using initial vector(IV)

or modes of encryption. If there were the identical ciphertext for each message then

the encryption algorithm will be deterministic and it would neither semantically secure

and nor indistinguishable. The examples of semantically secure encryption scheme are

Goldwasser-Micali [46], ElGamal and Paillier [19].

5.4.3 RSA vs Paillier for Malware Re-randomization

The RSA and Paillier cryptosystem, both belongs to partially homomorphic encryption

(PHE) scheme family, with multiplicative homomorphism and additive homomorphism

respectively. The Paillier asymmetric algorithm has the featured characteristic that a

plaintext has many different cipher-texts making it more resilient against a wide variety

of different cryptographic attacks (semantically secure). This is because the encryption

is injected with the inherent randomness, which can be eliminated by the key because

of its quadratic residuosity property. To encrypt a message m, the Paillier encryption

algorithm uses and pick the random r, where r ∈ z∗n2 , and compute the ciphertext

as: c = gm. rn mod n2. Hence, every message m may have several equally legitimate

46

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

ciphertexts dependent on the value or size of n and the divisibility relationships between

some of these values.

In our proposed scheme, we exploit the Paillier homomorphic property and its prob-

abilistic property (the random factor r), and use it to encrypt the malware and then

re-randomize the encrypted malicious payload without revealing the corresponding plain

text or the private key.

RSA support the multiplicative homomorphic encryption, already explained in section

2.4.2.1. For malware re-randomization, the requirement is to re-encrypt the encrypted

payload or ciphertext without knowledge of secret key. The both ElGamal and Paillier’s

random factor r helps us to re-encrypt the encrypted malicious payload without revealing

the plain text. In case of RSA, by default the RSA is not semantically secure, as it is

deterministic encryption scheme. Although, RSA has homomorphic encryption but is

not sufficient to re-encrypt the ciphertext because there is no random factor, that helps

us to re-randomize the cipher text as in ELGamal and Paillier.

RSA can be either semantically secure or homomorphic, not both. In practice, before

encrypting the plain text messagem, RSA can add the randomness (e.g. RSAES-OAEP)

[46], which provide semanatic security, but completely looses the homomorphic property.

Some other approaches have been used by researchers, to use RSA for re-encryption of

ciphertext in proxy re-encryption. Most of the schemes [47], split the algorithm into

two parts. The first one is, the algorithm will use the original private key as well as

the fresh public key and create a kind of intermediate key. The second part is the key

will then be circulated to untrusted entities which use the intermediate key and the new

public key to update their encrypted data to the new key pair. But in our case, we need

to auto-decrypt the malicious payload on the target node by using environmental keys.

It is impractical to generate the new key pair to re-encrypt the ciphertext. The reason

is, the private key is not appended with malware payload or in text loader. It will be

generated on run time from target node. Hence, it not feasible to use RSA cryptosystem

to re-randomize the malware payload.

47

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

5.5 Design and Implementation of Proposed Scheme

Our proposed scheme is based on the probabilistic public key encryption algorithm, Pail-

lier. Our goal is to prevent malware payload from analysis by increasing the malware

analyst’s workload. Encrypting malware payload obstruct to identify malware author’s

intentions. The malware re-randomization or re-encryption aid to hide the identity of

malware author and make each malware sample indistinguishable. We proposed a frame-

work for malware encryption and re-randomization of malicious payload on the target

node without revealing the plaintext or the private key. The secret key is generated from

the target environmental data, to encrypt the malicious payload using Paillier encryp-

tion algorithm. To execute malicious payload on the target node, need to extract the

environmental key and use it to decrypt the malware payload. On successful decryption

the malicious payload will execute. Otherwise, re-encrypt the encrypted payload, and

transmit it to next node to find the target and execute. The Proposed scheme follow the

malware propagation model, describe in Section 4.3 of Chapter 4. We have implemented

our proposed scheme based on Paillier for malware encryption and re-randomization, us-

ing C language on Linux plateform. For big integer value(greater than 8 bytes), we have

used the GMP C library. Our proposed scheme include three main algorithms, malware

encryption algorithm, malware re-randomization algorithm and the malware decryption

algorithm. The malware encryption and decryption algorithms have sub algorithms, the

encryption key generation and decryption key generation algorithms, respectively.

5.5.1 Malware Encryption

The malware encryption process aids the malware writers by encrypting the malicious

payload to maximize the workload for analysis. Encrypting the payload restricts the

malicious software from being reversed by an analyst and obscures the malware author’s

desires. Environmental data is collected from the target network and therefore could

consist of, for instance, IP address, directory paths, PATH variables etc. In our work,

we use MAC address as environmental variable to generate encryption and decryption

keys. The mechanism for malware encryption consist of the payload and the cleartext

loader for malware. The malware payload consists of malicious code to be run on target

system in order to access the node(s) of the challenger. The loader software scans and

tests environmental variables on the target system and defines how these variables can

48

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

be converted to produce encryption or decryption keys rather than keeping keys within

the payload of malware. The encryption process consist of the private(encryption) key

generation algorithm and encryption algorithm.

5.5.1.1 Encryption Key Generation Algorithm

The encryption key generation algorithmKeyGenEnc is based on Paillier key generation,

which takes two prime numbers p and q (of equal size) as a input, where p and q are

relatively prime to each other. On the other side, the decryption or secret key λ depends

on p and q, and can be computed as, λ = lcm(p− 1, q − 1).

But, in our case it is impractical. Because, for malware propagation, our requirement

is to auto-decrypt the malicious payload on the target system. It can be achieved using

the key(s) generated from taget environmental data. This implies that the decryption

key λ must be depended on the target environmental data, and can be re-generated.

To overcome this problem, we generate the prime p and q, from target environmental

data (MAC address of target system), and computes a modulus n = p ∗ q. Now, choose

a random number g ∈ Z∗n2 . The order of g is multiple of n. Selecting g = n + 1, is

effective choice and can be easily computed [48].

The output of Encryption Key Generation algorithm KeyGenEnc is public (encryption)

key pair (g, n).

5.5.1.2 Encryption Algorithm

The encryption algorithm Encm takes the malware executable file as input and transform

it into array of string, as plain text messagem. The encryption algorithm Encm uses the

public key pair (g, n), generated from key generation algorithm KeyGenEnc to encrypt

the plain text. Select a Paillier’s random factor r, where r ∈ Z∗n2 .

But, the Paillier cryptosystem allows encrypting integers modulo n. Therefore, if input

plain text message m is bigger than n, encrypting it will lose most of the plain text mes-

sage m, only m mod n is retrieved through decryption. In case of malware encryption,

it is likely that m>n.

To encrypt a message bigger than n, we break it into blocks, which encrypt separately.

49

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

We can write m in base n, as:

m =
c∑
i=1

mi

Where c is number of chunks or blocks and each mi < n.

Encrypt the mi’s separately using the public key pair (g, n) and random factor r. The

cipher text c instances ci’s computed as:

ci = gmi ∗ rn mod n2

5.5.2 Malware Re-randomization

Re-randomizing the malicious payload, generates several indistinguishable variants of a

malicious software rather than just replicating the same samples. Re-randomization of

malware can be achieved using public key cryptographic algorithm’s homomorphism.

The inputs of the re-randomization algorithm include an encrypted payload, to create

the exact malicious payload (encrypted), with certain randomly selected values to create

the new cipher text against the encrypted payload of same plain text. Paillier’s homo-

morphism and probabilistic property (random factor) is used to create different looking

samples of the same malware.

The re-randomization algorithm Re-randm takes input the cipher text ci, the public

parameter n. Choose the random factor r′ ∈ Z∗n2 and re-randomize the encrypted

malicious payload (cipher text) ci’s. The re-randomization algorithm’s output c′i is:

c′i = ci ∗ r′n mod n2

5.5.3 Malware Decryption

The malware decryption process begins with scanning the target environmental data.

After collecting required environmental data, generates the private key from the acquired

data, and decrypt the malicious payload using the obtained private key. The decryption

process consist of two algorithms, the private key generation and the decryption of

ciphertext.

50

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

5.5.3.1 Decryption Key Generation

The decryption key to decrypt and execute the encrypted or re-randomized malware

payload, is generated form target environmental data. The first step is to determine

the target MAC address (environmental variable), and generate the prime p and q from

MAC address (6 bytes). After that the private key λ, will then generated from p and q,

as:

λ = LCM((p− 1)(q − 1))

5.5.3.2 Decryption Algorithm

The decryption procedure is same for both encrypted (only) and re-randomize (re-

encrypted) payload, so c′ = c. The decryption algorithm takes input the cipher text

instances ci, the private key λ and public key parameter n. The Decryption algorithm

outputs the plain text message instances mi, as:

mi = L(cλi mod n2)
L(gλ mod n2)

where, L(x) = (x− 1)/n, ∀x ∈ Z∗n2 .

After decryption of cipher text instances ci’s, we get the plain text instances mi’s. We

combine all the mi’s to get the plain text message m and write the result in file to verify

and execute the malware payload.

In our implementation, the loader program checks for signature of malicious software

samples to validate the results of decryption. For windows, the executable (exe) file

format starts with 0x4D5A (MZ) signature. So, the text loader program will check

the .exe file signature to validate the decryption for windows based malware. Other-

wise, the underlying malware will belong to the deb or bin file format if malware is

based on Linux. The signature of deb file format is 0x213C617263683E! (< arch>.)

and 0x7F454C46 (.ELF) is the signature of the binary executable file. On successful

verification of malware payload, the loader program execute the malicious payload.

5.6 Results

In this section, we present experimental setup and expiremental results of our propsed

paillier based malware encryption and re-randomization scheme.

51

Chapter 5: Paillier- Malware Encryption and Re-randomization Scheme

5.6.1 Experimental Setup

The Paillier based malware encryption and re-randomization scheme (proposed scheme)

algorithms have implemented using the C language (KDevelop Platform Version; 5.2.1)

on Ubunut 18.04 (Linux). Experiments are performed on Intel(R) Xeon(R) CPU E5-

1660 v3 with a 3.00 GHz and 16 GB of memory. For big integers calculation, we have

used the GNU GMP library for C. We have used some popular malware samples in our

experiments, as shown in Chapter 4, Table 4.1.

5.6.2 Experimental Results

We evaluated the performance of our proposed scheme’s implementation of malware

encryption, re-randomization and decryption algorithms by using parameters Enc(sec),

Dec(sec), Re-rand(sec) and Re-randDec(sec). All these algorithms generate different

time (T1, T2, T3 and T4) accourding to variations in algorithms paramenters. Table

5.1 shows the experimental results against different malware sample.

Malware
Enc (sec) Dec (sec) Re-rand (sec) Re-randDec (sec)

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4

WannaCry[38] 6.977 6.968 6.965 6.963 4.152 4.136 4.14 4.141 1.001 1.003 1.004 1.003 4.138 4.166 4.127 4.168

Zeus[39] 0.473 0.479 0.475 0.479 1.384 1.379 1.38 0.192 0.072 0.072 0.072 0.071 1.383 1.374 1.387 1.388

GandCrab[40] 0.232 0.231 0.232 0.23 1.282 1.274 1.272 1.269 0.035 0.034 0.036 0.035 1.276 1.281 1.276 1.267

Koveter[41] 0.819 0.824 0.829 0.836 1.532 1.54 1.531 1.536 0.127 0.123 0.123 0.123 1.533 1.539 1.54 1.534

Wirenet[42] 0.119 0.116 0.118 0.119 1.232 1.225 1.23 1.224 0.018 0.018 0.018 0.018 1.224 1.22 1.218 1.225

Encoder[43] 0.587 0.588 0.59 0.594 1.437 1.434 1.425 1.424 0.091 0.091 0.091 0.089 1.445 1.44 1.438 1.447

Dendroid[44] 1.891 1.884 1.879 1.883 1.965 1.968 1.961 1.949 0.266 0.27 0.269 0.268 1.986 1.972 1.963 1.971

Table 5.1: Performance analysis of Paillier based scheme

52

Chapter 6

Encrypted Malicious Software

Analysis

6.1 Introduction

In this chapter, we provide an overview of methodology used by malware analyst to

detect or analyse encrypted malicious software. First we describe the latest malware

trends and global malware volume. At last, we describe commonly used malware detec-

tion techniques for encrypted malware.

6.2 Malicious Software Analysis

With the growing usage of end-to-end encryption in industrialized structures, the threat

of using encrypted networks to spread hidden malware, increasingly becomes a key

concern. The malware authors don’t want the malware analyst to detect and analyse

their malicious software. Malware authors employ anti-reverse engineering methods and

anti-analysis strategies such as packing, encryption and other obfuscation methodologies

to hide their malicious software. Hundreds of malicious software are launched daily on-

line. Many of these malicious programs use some type of obfuscation from common

XOR encryption to even more advanced methods of anti-analysis, and encryption. If

a malware is encrypted and packed, there is no likelihood of static analysis. In such

situations, the best appropriate approach seems to be dynamic analysis. However, the

problem is to figure out how to analyse behaviour to automatically detect malware as

53

Chapter 6: Encrypted Malicious Software Analysis

well as how to quantify behaviour. In this chapter, we will explain commonly used

techniques for encrypted malware analysis.

6.3 Encrypted Malware Landscape

For the first half of 2019, SonicWall [49] collected data from its monitoring sensors in

over 200 nations. The SonicWall detected more than 4.78 billion malware attacks, which

is a decline of 20 percent year from first half of 2018. Other types of attacks overall

significantly increase during the first half of 2019 as the total volume of global malware

declines.

Figure 6.1: Global Malware attack trends 2019

According to Sonywall, the malware authors, also misuse encrypted channels like HTTPS

and VPN services based on SSL to mask their data and malicious software. SonicWall

have seen around 1,100 attempts of encrypted attacks per customer per day. Most corpo-

rations, he says, misleadingly imagine that encrypted communication is the legal traffic.

SonicWall [49] has identified 2.4 million attacks which uses encryption, throughout the

first six months of 2019, almost surpassing the 2.8 million encrypted threats discovered

throughout 2018 (already a 27 percent bounce over the recent year), that represents a

rise of 76 percent for initial 6 months. Considering these figures, the total amount of

54

Chapter 6: Encrypted Malicious Software Analysis

malicious attempts in the first six months of 2019 has declined by 20 percent to hit 4.78

billion, falling from 5.99 billion in first half of the 2018, the report indicates [49]. In

2018, there had been 10.52 billion attacks reported.

Figure 6.2: Encrypted Malware Attack 2018 vs 2019

6.4 Encrypted Malicious Traffic Analysis

Most enterprises currently don’t have an approach in encrypted traffic to uncover mal-

ware. The absence of the protection skills, tools and resources to incorporate an ap-

proach which can be employed across their communications infrastructure without slow-

ing down the service.

For information security firms(that provide the services for data security by means

of encryption), the identification of cyber attacks in encrypted data traffic presents a

distinctive type of problems. Monitoring the traffic for cyber attacks and malicious soft-

ware is essential, but doing so in a way that protects the customer data confidentiality,

is another challenge.

55

Chapter 6: Encrypted Malicious Software Analysis

6.4.1 Entropy-based Analysis

Lyda and Hamrock introduced the concept of identifying encrypted data through entropy

[50]. Because it is reliable and simple to implement, the approach has been commonly

used. Many non-encrypted files, however, could have low entropy values, contributing to

false positives. For instance, OS Windows XP executable ahui.exe and dfrgntfs.exe with

entropy of 6.510 and 6.590 for their .text portion accordingly [51]. Although entropy-

based approaches may be successful against obfuscation. encryption or packing, they

are unreliable for anti-disassembly techniques, even against basic Bit XOR encryption.

Eventually, a file’s entropy level could even be intentionally decreased to an entropy

level closely related to that of a regular program [52].

6.4.2 Signature-based Detection

PEiD, which deploys about 620 packer and cryptor fingerprints, is a common signature-

based platform to identify packed data. Eventually, the entropy rating of a exe could also

be intentionally increasing to obtain an entropy value equivalent to that of a conventional

system [53]. The downside of such a mechanism however is that only known packers

can be identified, and advanced malware typically uses techniques to design a unique

encrypted malware or packers. Moreover, if we modify only a signal byte of encrypted

malware, the file signature will totally change to bypass from being detected. At last,

adding a new encrypted malware fingerprint as it generally requires manual analysis to

obtain an accurate fingerprint is a time-consuming task.

6.4.3 File Header-based Analysis

The researcher have done lot of work on file header based anlayiss of malware [54][55][56][57].

But these methods only achieve better performance, when the packer or encrypted mal-

ware substantially adjusts the PE header. However, several packers showcase easily

recognizable alterations in the PE header of executable file. Nevertheless, customized

packers and auto-encryption malware are not necessarily the case. However, if encrypt-

ing the malware or packer fully ignores the PE file headers and relies on just the instruc-

tions string, there really is no evidence in the executable malicious file header. Finally,

even when a encrypted malware binds certain recognizable signature into the header,

56

Chapter 6: Encrypted Malicious Software Analysis

plenty of them may be deleted without influencing the credibility of the executable file

by the malicious software author.

6.4.4 Hidden Markov Model based Detection

Profile Hidden Markov Models (PHMM) [58], which is known to determine the rela-

tionship between deoxyribonucleic acid and protein sequences, may be used to identify

malware too. Although PHMM may detect malware such as metamorphic malware,

to train them, they need a test data. Therefore, it takes time to process the data,

disassemble them, train and scoring the whole dataset.

6.4.5 Machine Learning

Malware identification using machine learning methods has been extremely common in

recent years. Machine learning was described by Tom Mitchell as studying computa-

tional algorithms which strengthen by experiments [59]. Robert introduced malware

identification dependent on statistical behavioral analysis (characteristics). His test

findings indicate that the mean identification efficiency reached 90 percent through the

use of a classified technique, applicable to only twenty attributes [60]. The benefit of

artificial intelligence practices is that it somehow detects recognized malware, as well

as acts as understanding for fresh malware detection. Naive Bayes [61], Decision Tree

[60], Data Mining [62], Neural Networks [60]., and Hidden Markov Modes [63] seem to

be the famous machine learning approaches between many experts to quickly identify

2nd generation malicious software.

6.4.6 Cisco Encrypted Traffic Analytics(ETA)

Cisco announced in June 2017 ETA [64], an analysis product which is able to analyse

encrypted traffic in order to identify malware as well as and other traffic without de-

crypting SSL, and it is used to predict that whether or not abnormalities exists in the

network traffic, such as malicious software. ETA utilizes passive monitoring, retrieval

of related data components, and supervised global cloud-based artificial intelligence and

machine learning. ET-Analytics exports the relevant data components in the form of

NetFlow record fields to identify malware in the packet flow, and NetFlow record fields

57

Chapter 6: Encrypted Malicious Software Analysis

comprise IDP (initial data packet) and SPLT (Packet Length and Time sequence). Ac-

cording to Cisco Encrypted Traffic Analytic white paper [64], Cisco approached software

testing and certification firm Miercom to analyse the efficacy and performance of ETA.

The tests were impressive and the Miercom Performance Verified certificate was awarded

to Encrypted Traffic Analytics(ETA).

6.5 Conclusion

In this chapter, we provide an overview of existing method for encrypted malicious

software analysis. Although there are many studies and research have been conducted

on the encrypted malicious traffic analysis, but from a practical perspective , quite few of

them can be used for encrypted malware analysis. The entropy based, signature based

and file header based analysis techniques have lot of limituation for encrypted traffic

analysis. However, the machine learning techiques and cisco ETA framwork is effective

and can be used for real time encrypted malicious traffic analysis.

58

Chapter 7

Conclusion

7.1 Introduction

The chapter is meant to provide a summary of previous chapters so as, to conclude the

work. It gives an overview of malware encryption and re-randomization scheme based on

ElGamal public key cryptosystem and also highlight our contribution of this work. We

also summarized our proposed work, malware encryption and re-randomization based

on Paillier cryptosystem. At last, on the basis of our research work, we discuss the

future research directions.

7.2 Conclusion

It is important and appropriate to use cryptographic primitives for information security

and confidentiality, but what we have seen over the past few years is that malware au-

thors and adversaries are constantly using this encrypted channel to conduct destructive

operations across the network.

The rat-race between malware authors and anti-malware innovations has rendered Mal-

ware a market by itself worth a billion dollars. While anti-malware tools also developed

through the years, the methods of malware authors have often adapted accordingly.

Cyber criminals in general utilize cryptography to mask destructive operations, making

it harder and harder to identify as more companies turn to encryption to protect data.

In order to understand the defence mechanism against it, important to understand the

encryption schemes used by malware authors.

59

Chapter 7: Conclusion

In particular, law enforcement agencies can use malware encryption as a tool against ter-

rorists and criminals to expose their crimes by operating in a secure environment. These

issues are the driving force behind our research and allowed us to develop a comprehen-

sive system for malware encryption re-randomization and propagation of malware. The

goal of our research is to evaluate malware encryption, malware propagation and how

malware propagation can be protected from analysis. Our research focus on designing a

framework for malware propagation that prevent malware analyst to analyse and reverse

engineering the malicious payload.

We have implemented the existing scheme for malware encryption and re-randomization

based on ElGamal cryptosystem. Encrypting the malware payload prevent malware

from being reversed and hide the malware authors intentions. The malware encryption

process uses the MAC address (as environmental key) of the target system, to encrypt

the malicious payload so that it can be automatically decrypt at attack time. The re-

randomization process uses the homomorphism of ElGamal to re-encrypt the malware

payload without any knowledge of plaintext or the private key. The re-randomization

process generate multiple in-distinguished malware samples, prevent the malware ana-

lyst to reverse engineering toward the source path.

The novel proposed scheme for malware encryption and re-randomization is built on

the Paillier cryptostem. The encryption process uses the the numbers prime p and q,

generated from same MAC address(as environmental key) of target node. The major

difference between ElGamal based scheme and Paillier based scheme, the Elgamal en-

cryption key is directly generated from the target MAC address while the Paillier private

key is generated from the two variable p and q, which are derived from the target MAC

address. The Paillier based scheme’s re-randomization process exploits both the homo-

morphic and probabilistic property of Paillier cryptosystem to efficiently re-encrypted

the malware payload without knowing the actual malware payload(plaintext) or private

key.

On the defensive side, to analyse the encrypted malware, different techniques described

in the previous chapter with their limitation. These include entropy based detection,

file header identification, signature based detection, the hidden markov based malware

detection, machine learning and Cisco ETA tool.

60

Chapter 7: Conclusion

7.3 Future Research Directions

There is need for future work on both offensive and defensive side for malware encryption

and propagation. We identify few research direction based on our research work.

• Security and protection of clear text loader(malware loader).

• Security analysis of Paillier-based malware encryption and re-randomization scheme.

• Encrypted malware auto propagation towards the target node.

• Paillier encryption key generation parameters p and q, formation from CSPRNG

for malware encryption and auto-decryption.

61

References

[1] Philippe Beaucamps and Eric Filiol. On the possibility of practically obfuscating

programs towards a unified perspective of code protection. Journal in Computer

Virology, 3:3–21, 2006.

[2] Anthony Desnos. Implementation of k-ary viruses in python. Hack. lu, 2009.

[3] Thomas Dullien and Sebastian Porst. Reil: A platform-independent intermediate

representation of disassembled code for static code analysis. 2009.

[4] Eric Filiol. Malicious cryptography techniques for unreversable (malicious or not)

binaries. CoRR, abs/1009.4000, 2010. URL http://arxiv.org/abs/1009.4000.

[5] Markus Jakobsson. On quorum controlled asymmetric proxy re-encryption. In

Public Key Cryptography, pages 112–121, Berlin, Heidelberg, 1999. Springer Berlin

Heidelberg. ISBN 978-3-540-49162-0.

[6] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal re-

encryption for mixnets. In Tatsuaki Okamoto, editor, Topics in Cryptology – CT-

RSA 2004, pages 163–178, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

ISBN 978-3-540-24660-2.

[7] GreAT. Gauss: Abnormal distribution. Technical report, Kaspersky Lab Global Re-

search and Analysis Team, Moscow, Russia, Aug 2012. URL https://securelist.

com/gauss-abnormal-distribution/36620/.

[8] Eric Filiol. Strong Cryptography Armoured Computer Viruses Forbidding Code

Analysis: the bradley virus. Research Report RR-5250, INRIA, 2004. URL https:

//hal.inria.fr/inria-00070748.

62

http://arxiv.org/abs/1009.4000
https://securelist.com/gauss-abnormal-distribution/36620/
https://securelist.com/gauss-abnormal-distribution/36620/
https://hal.inria.fr/inria-00070748
https://hal.inria.fr/inria-00070748

References

[9] James Riordan and Bruce Schneier. Environmental Key Generation Towards

Clueless Agents, pages 15–24. Springer Berlin Heidelberg, Berlin, Heidelberg,

1998. ISBN 978-3-540-68671-2. doi: 10.1007/3-540-68671-1_2. URL https:

//doi.org/10.1007/3-540-68671-1_2.

[10] Herman Galteland and Kristian Gjøsteen. Malware encryption schemes - rerandom-

izable ciphertexts encrypted using environmental keys. IACR Cryptology ePrint

Archive, 2017:1007, 2017.

[11] Darien Kindlund. Poison ivy: Assessing damage and extracting intelligence.

Technical report, FireEye, Aug 2013. URL https://www.fireeye.com/blog/

threat-research/2013/08/pivy-assessing-damage-and-extracting-intel.

html.

[12] Ed Skoudis and Lenny Zeltser. Malware: Fighting Malicious Code. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2003. ISBN 0131014056.

[13] Adware, spyware and other unwanted "malware" - and how to remove them. URL

http://www.cexx.org/adware.htm.

[14] Cryptolocker ransomware infections: Cisa, Nov 2013. URL https://www.us-cert.

gov/ncas/alerts/TA13-309A.

[15] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-

natures and public-key cryptosystems. Commun. ACM, 21(2):120–126, February

1978. ISSN 0001-0782. doi: 10.1145/359340.359342. URL http://doi.acm.org/

10.1145/359340.359342.

[16] R L Rivest, L Adleman, and M L Dertouzos. On data banks and privacy homo-

morphisms. Foundations of Secure Computation, Academia Press, pages 169–179,

1978.

[17] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford,

CA, USA, 2009. AAI3382729.

[18] Xun Yi, Russell Paulet, and Elisa Bertino. Homomorphic Encryption and Appli-

cations. Springer Publishing Company, Incorporated, 2014. ISBN 3319122282,

9783319122281.

63

https://doi.org/10.1007/3-540-68671-1_2
https://doi.org/10.1007/3-540-68671-1_2
https://www.fireeye.com/blog/threat-research/2013/08/pivy-assessing-damage-and-extracting-intel.html
https://www.fireeye.com/blog/threat-research/2013/08/pivy-assessing-damage-and-extracting-intel.html
https://www.fireeye.com/blog/threat-research/2013/08/pivy-assessing-damage-and-extracting-intel.html
http://www.cexx.org/adware.htm
https://www.us-cert.gov/ncas/alerts/TA13-309A
https://www.us-cert.gov/ncas/alerts/TA13-309A
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342

References

[19] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Proceedings of the 17th International Conference on Theory and Ap-

plication of Cryptographic Techniques, EUROCRYPT’99, pages 223–238, Berlin,

Heidelberg, 1999. Springer-Verlag. ISBN 3-540-65889-0. URL http://dl.acm.

org/citation.cfm?id=1756123.1756146.

[20] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE trans-

actions on Information Theory, 22(6):644–654, 1976.

[21] Burt Kaliski. Euler’s Totient Function, pages 206–206. Springer US, Boston, MA,

2005. ISBN 978-0-387-23483-0. doi: 10.1007/0-387-23483-7_146. URL https:

//doi.org/10.1007/0-387-23483-7_146.

[22] Wade Trappe and Lawrence C. Washington. Introduction to Cryptography with

Coding Theory (2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

2005. ISBN 0131862391.

[23] Kristian Gjøsteen. Symmetric subgroup membership problems. In Serge Vaudenay,

editor, Public Key Cryptography - PKC 2005, pages 104–119, Berlin, Heidelberg,

2005. Springer Berlin Heidelberg. ISBN 978-3-540-30580-4.

[24] Adam Young and Moti Yung. Malicious Cryptography: Exposing Cryptovirology.

John Wiley; Sons, Inc., USA, 2004. ISBN 0764549758.

[25] Eric Filiol. Computer viruses: from theory to applications. 01 2005. ISBN 978-2-

287-23939-7. doi: 10.1007/2-287-28099-5.

[26] Eric Filiol, Edouard Franc, Alessandro Gubbioli, Benoît Moquet, and Guillaume

Roblot. Combinatorial optimisation of worm propagation on an unknown network.

2007.

[27] Eric Filiol and SÃľbastien Josse. A statistical model for undecidable viral detection.

Journal in Computer Virology, 3:65–74, 05 2007. doi: 10.1007/s11416-007-0041-5.

[28] E Filiol. Malware of the future: when mathematics are on the bad sid. Hack.lu Con-

ference, 10 2008. URL https://2018.hack.lu/archive/2008/Malware%20of%

20the%20Future.pdf.

64

http://dl.acm.org/citation.cfm?id=1756123.1756146
http://dl.acm.org/citation.cfm?id=1756123.1756146
https://doi.org/10.1007/0-387-23483-7_146
https://doi.org/10.1007/0-387-23483-7_146
https://2018.hack.lu/archive/2008/Malware%20of%20the%20Future.pdf
https://2018.hack.lu/archive/2008/Malware%20of%20the%20Future.pdf

References

[29] Masahiro Mambo and Eiji Okamoto. Proxy cryptosystems: Delegation of the power

to decrypt ciphertexts. 1997.

[30] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic

proxy cryptography. In Kaisa Nyberg, editor, Advances in Cryptology — EURO-

CRYPT’98, pages 127–144, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

ISBN 978-3-540-69795-4.

[31] Lidong Zhou, Michael Marsh, Fred Schneider, and Anna Larsen-Redz. Distributed

blinding for distributed elgamal re-encryption. Proceedings - International Confer-

ence on Distributed Computing Systems, 07 2004. doi: 10.1109/ICDCS.2005.24.

[32] Anca-Andreea Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In NDSS,

2003.

[33] Zesheng Chen and Chuanyi ji. Spatial-temporal modeling of malware propagation

in networks. IEEE transactions on neural networks / a publication of the IEEE

Neural Networks Council, 16:1291–303, 10 2005. doi: 10.1109/TNN.2005.853425.

[34] Yini Wang, Sheng Wen, Yang Xiang, and Wanlei Zhou. Modeling the propagation

of worms in networks: A survey. IEEE Communications Surveys and Tutorials, 16:

942–960, 2014.

[35] R. Rivest. The md5 message-digest algorithm. 1992.

[36] N.I.N.I.S. Technology. Sha-3 standard: Permutation-based hash and extendable-

output functions: Fips pub 202. CreateSpace Independent Publishing Platform,

2015. ISBN 9781979406871. URL https://books.google.com.pk/books?id=

hCwatAEACAAJ.

[37] Odzhan. odzhan/tinycrypt, Feb 2019. URL https://github.com/odzhan/

tinycrypt/tree/master/stream/shake128.

[38] Ytisf. ytisf/thezoo, May 2017. URL https://github.com/ytisf/theZoo/tree/

master/malwares/Binaries/Ransomware.WannaCry.

[39] Ytisf. ytisf/thezoo, . URL https://github.com/ytisf/theZoo/tree/master/

malwares/Binaries/ZeusBankingVersion_26Nov2013.

65

https://books.google.com.pk/books?id=hCwatAEACAAJ
https://books.google.com.pk/books?id=hCwatAEACAAJ
https://github.com/odzhan/tinycrypt/tree/master/stream/shake128
https://github.com/odzhan/tinycrypt/tree/master/stream/shake128
https://github.com/ytisf/theZoo/tree/master/malwares/Binaries/Ransomware.WannaCry
https://github.com/ytisf/theZoo/tree/master/malwares/Binaries/Ransomware.WannaCry
https://github.com/ytisf/theZoo/tree/master/malwares/Binaries/ZeusBankingVersion_26Nov2013
https://github.com/ytisf/theZoo/tree/master/malwares/Binaries/ZeusBankingVersion_26Nov2013

References

[40] Mstfknn. mstfknn/malware-sample-library, Nov 2018. URL https://github.com/

mstfknn/malware-sample-library/blob/master/GandCrab/.

[41] Ytisf. ytisf/thezoo, . URL https://github.com/ytisf/theZoo/blob/master/

malwares/Binaries/Trojan.Kovter/.

[42] Ytisf. ytisf/thezoo, . URL https://github.com/ytisf/theZoo/tree/master/

malwares/Binaries/Linux.Wirenet.

[43] Ytisf. ytisf/thezoo, . URL https://github.com/ytisf/theZoo/tree/master/

malwares/Binaries/Linux.Encoder.1.

[44] Ashishb. ashishb/android-malware. URL https://github.com/ashishb/

android-malware/tree/master/Dendroid.

[45] Jaydip Sen. Homomorphic Encryption: Theory and Applications. 07 2013. ISBN

978-953-51-1176-4. doi: 10.5772/56687.

[46] Shafrira Goldwasser. Probabilistic Encryption: Theory and Applications (Par-

tial Information, Factoring, Pseudo Random Bit Generation). PhD thesis, 1984.

AAI8512835.

[47] L. Wang, K. Chen, Y. Long, and X. Mao. A new rsa-based proxy re-encryption

scheme. Journal of Computational Information Systems, 11:567–575, 01 2015. doi:

10.12733/jcis13034.

[48] Ivan DamgÃěrd, Mads Jurik, and Jesper Nielsen. A generalization of paillierâĂŹs

public-key system with applications to electronic voting. International Journal of

Information Security, 9:371–385, 04 2003. doi: 10.1007/s10207-010-0119-9.

[49] 2019 sonicwall cyber threat report. URL https://www.sonicwall.com/lp/

2019-cyber-threat-report-lp/.

[50] Robert Lyda and James Hamrock. Using entropy analysis to find encrypted and

packed malware. IEEE Security and Privacy, 5(2):40–45, March 2007. ISSN 1540-

7993. doi: 10.1109/MSP.2007.48. URL https://doi.org/10.1109/MSP.2007.48.

[51] Virustotal. URL http://www.VirusTotal.com/.

66

https://github.com/mstfknn/malware-sample-library/blob/master/GandCrab/
https://github.com/mstfknn/malware-sample-library/blob/master/GandCrab/
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/Trojan.Kovter/
https://github.com/ytisf/theZoo/blob/master/malwares/Binaries/Trojan.Kovter/
https://github.com/ytisf/theZoo/tree/master/malwares/Binaries/Linux.Wirenet
https://github.com/ytisf/theZoo/tree/master/malwares/Binaries/Linux.Wirenet
https://github.com/ytisf/theZoo/tree/master/malwares/Binaries/Linux.Encoder.1
https://github.com/ytisf/theZoo/tree/master/malwares/Binaries/Linux.Encoder.1
https://github.com/ashishb/android-malware/tree/master/Dendroid
https://github.com/ashishb/android-malware/tree/master/Dendroid
https://www.sonicwall.com/lp/2019-cyber-threat-report-lp/
https://www.sonicwall.com/lp/2019-cyber-threat-report-lp/
https://doi.org/10.1109/MSP.2007.48
http://www.VirusTotal.com/

References

[52] Xabier Ugarte-Pedrero, Igor Santos, Borja Sanz, Carlos Laorden, and Pablo

Bringas. Countering entropy measure attacks on packed software detection. 01

2012. doi: 10.1109/CCNC.2012.6181079.

[53] Peid cyptors and packet detector. URL http://www.aldeid.com/wiki/PEiD.

[54] Roberto Perdisci, Andrea Lanzi, and Wenke Lee. Classification of packed executa-

bles for accurate computer virus detection. Pattern Recogn. Lett., 29(14):1941–

1946, October 2008. ISSN 0167-8655. doi: 10.1016/j.patrec.2008.06.016. URL

http://dx.doi.org/10.1016/j.patrec.2008.06.016.

[55] Igor Santos, Xabier Ugarte-Pedrero, Borja Sanz, Carlos Laorden, and Pablo G.

Bringas. Collective classification for packed executable identification. In Proceed-

ings of the 8th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam

Conference, CEAS ’11, pages 23–30, New York, NY, USA, 2011. ACM. ISBN 978-1-

4503-0788-8. doi: 10.1145/2030376.2030379. URL http://doi.acm.org/10.1145/

2030376.2030379.

[56] Muhammad Zubair Shafiq, S. Momina Tabish, and Muddassar Farooq. Pe-probe:

Leveraging packer detection and structural information to detect malicious portable

executables. 2009.

[57] Scott Treadwell and Mian Zhou. A heuristic approach for detection of obfuscated

malware. 2009 IEEE International Conference on Intelligence and Security Infor-

matics, pages 291–299, 2009.

[58] Ramandika Pranamulia, Yudistira Asnar, and Riza Perdana. Profile hidden markov

model for malware classification - usage of system call sequence for malware classi-

fication. pages 1–5, 11 2017. doi: 10.1109/ICODSE.2017.8285885.

[59] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA,

1 edition, 1997. ISBN 0070428077, 9780070428072.

[60] Robert Moskovitch, Yuval Elovici, and Lior Rokach. Detection of unknown com-

puter worms based on behavioral classification of the host. Computational Statistics

and Data Analysis, 52:4544–4566, 05 2008. doi: 10.1016/j.csda.2008.01.028.

[61] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab.

Zero-day malware detection based on supervised learning algorithms of api call

67

http://www.aldeid.com/wiki/PEiD
http://dx.doi.org/10.1016/j.patrec.2008.06.016
http://doi.acm.org/10.1145/2030376.2030379
http://doi.acm.org/10.1145/2030376.2030379

References

signatures. In Proceedings of the Ninth Australasian Data Mining Conference -

Volume 121, AusDM ’11, pages 171–182, Darlinghurst, Australia, Australia, 2011.

Australian Computer Society, Inc. ISBN 978-1-921770-02-9. URL http://dl.acm.

org/citation.cfm?id=2483628.2483648.

[62] Muazzam Siddiqui, Morgan C. Wang, and Joohan Lee. A survey of data mining

techniques for malware detection using file features. In Proceedings of the 46th

Annual Southeast Regional Conference on XX, ACM-SE 46, pages 509–510, New

York, NY, USA, 2008. ACM. ISBN 978-1-60558-105-7. doi: 10.1145/1593105.

1593239. URL http://doi.acm.org/10.1145/1593105.1593239.

[63] Thomas H. Austin, Eric Filiol, Sébastien Josse, and Mark Stamp. Exploring hid-

den markov models for virus analysis: A semantic approach. 2013 46th Hawaii

International Conference on System Sciences, pages 5039–5048, 2013.

[64] Cisco encrypted traffic analytics. Jul 2019. URL https://www.

cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/

enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.

pdf.

68

http://dl.acm.org/citation.cfm?id=2483628.2483648
http://dl.acm.org/citation.cfm?id=2483628.2483648
http://doi.acm.org/10.1145/1593105.1593239
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf

	Main Title
	Thesis Acceptance Certificate
	Declaration
	Copyright Notice
	Dedication
	Acknowledgments
	Abstract
	Contents
	Introduction
	Introduction
	Malicious use of Cryptography
	Homomorphic Encryption
	Re-encryption

	Background
	Problem Statement
	Motivation
	Objectives
	Thesis Organization

	Background
	Introducation
	Malware and its Classification
	Virus
	Worm
	Trojan
	Backdoor
	Rootkit
	Spyware
	Adware
	Ransomware

	Cryptography Preliminaries
	Symmetric Cryptography
	Asymmetric Cryptography

	Homomorphic Encryption
	Homomorphic Encryption Schemes
	Partially Homomorphic Encryption
	RSA
	ElGamal
	Paillier

	Literature Review
	Introduction
	Offensive use of Cryptography
	Re-encryption Schemes
	Environmental Key Generation

	Malware Encryption and Re-randomization
	Introduction
	Encrypting the Malicious Payload
	Malware Propagation Model
	Malware Propagation Modeling
	Malware Encryption Process
	Malware Re-randomization Process

	Proposed Implementation of Existing ElGamal Scheme
	Malware Encryption Algorithm
	Encryption parameters
	Key generation
	Encryption factor
	Encryption

	Malware Decryption Algorithm
	Malware Re-randomization Algorithm
	Re-randomized Malicious Payload Decryption

	Results
	Experimental Setup
	Experimental Results

	Paillier- Malware Encryption and Re-randomization Scheme
	Introduction
	Malware Encryption
	Paillier Cryptosystem
	Paillier Key Generation
	Paillier Encryption
	Paillier Decryption
	Paillier Homomorphic Property

	PHE Schemes for Malware Re-randomization
	Probabilistic and Deterministic Encryption
	Semantic Security
	RSA vs Paillier for Malware Re-randomization

	Design and Implementation of Proposed Scheme
	Malware Encryption
	Encryption Key Generation Algorithm
	Encryption Algorithm

	Malware Re-randomization
	Malware Decryption
	Decryption Key Generation
	Decryption Algorithm

	Results
	Experimental Setup
	Experimental Results

	Encrypted Malicious Software Analysis
	Introduction
	Malicious Software Analysis
	Encrypted Malware Landscape
	Encrypted Malicious Traffic Analysis
	Entropy-based Analysis
	Signature-based Detection
	 File Header-based Analysis
	Hidden Markov Model based Detection
	Machine Learning
	Cisco Encrypted Traffic Analytics(ETA)

	Conclusion

	Conclusion
	Introduction
	Conclusion
	Future Research Directions

	References

