
SECURITY ANALYSIS OF WEB APPLICATION

FIREWALL AGAINST KNOWN WEB ATTACKS

By

Ammad Farooq

This thesis submitted to the department of Information
Security, Military College of Signals, National University of
Sciences and Technology, Rawalpindi in partial fulfilment of

the requirements for the degree of Masters in Information
Security

June 2020

Supervisor Certificate

This is to confirm that Ammad Farooq Student of batch MSIS-15 Course having Reg.No.

00000172252 has completed his Master Thesis title "SECURITY ANALYSIS OF WEB

APPLICATION FIREWALL AGAINST KNOWN WEB ATTACKS" under my su-

pervision. I’ve read his final copy of the master thesis, and I’m pleased with his research.

Supervisor

(Asst. Prof. Waleed Bin Shahid)

i

ACCEPTANCE CERTIFICATE

Certified that final copy of Master Thesis written by Ammad Farooq having Registration

No. 00000172252, of Military College of Signals has been evaluated, found to be full in

all respects as per NUST Statutes / Regulations, is free from plagiarism, misconduct and

mistake and is admitted as partial to the award of Master degree. It is further certified that

the requisite modifications, as pointed out by the members of the GEC, have also been

incorporated into the said thesis.

Signature: ____________________________

Name of Supervisor:____________________

Date: ________________________________

Signature (HOD):______________________

Date: _____________________________

Signature (Dean/Principal):_______________

Date: _____________________________

ii

Declaration

I acknowledge that no portion of the research work referred to in this research work

has been submitted to endorse another award or qualification, either at this institution or

anywhere else.

iii

Dedication

I dedicate this work to my father, mother, teachers, sisters, cousins and friends for their

unending affection, support and encouragement.

In particular, I would like to thank my parents, Mian Muhammad Farooq Qazi and Sajida

Farooq, who taught me the love of learning at a young age. My parents have been con-

stant cheerleaders in every academic and personal activity in my life. Thank you so much

to my parents who have always believed in me and helped me to make my dreams come

true.

iv

Acknowledgement

All my glory to Allah, the Almighty, for blessing me and for giving me the power to

complete this thesis.

I would like to thank my supervisor Asst. Prof. Waleed Bin Shahid and co-supervisor Dr.

Haider Abbas for supervision, advice and further support. Your invaluable help with con-

structive comments and suggestions during experimental work and work is an essential

contribution to the success of this research. Thanks also to the members of my commit-

tee; Colonel Syed Amer Ahsan Gilani, Ph.D., Asst. Prof. Prof. Mian M. Waseem Iqbal

and Prof. Dr. Hammad Afzal for his support and advice on this matter. I would also like

to express my sincere thanks to the other professors in my department who advised and

helped me in my work.

Last but not least, I am very thankful to my mother (Ms. Sajida Farooq) and to my father

(Mian Muhammad Farooq Qazi). They have always shared my hopes and wishes and

have been a great source of inspiration to me. I want to thank you for all the care, love

and support you have given me during my time of stress and excitement.

v

Copyright Notice

• The copyright in the text of this thesis rests with the author of the student. Copies

(by any process) either in full or of extracts may be made only in accordance with

the directions provided by the author and submitted to the MCS Library, NUST.

Information may be obtained from the Librarian. This page must be part of any

such copies made. No more copies (by any process) can be made without the

permission (in writing) of the author.

• The ownership of any patent rights which may be defined in this study is conferred

on MCS, NUST, subject to any prior agreement to the contrary, and may not be

made available for use by third parties without the written permission of MCS,

which shall set down the terms and conditions of any such settlement.

• More information on the terms under which disclosure and abuse can take place is

available from the MCS Library, NUST, Islamabad.

vi

Abstract

While the use of Internet applications and the World Wide Web is increasing rapidly,

many commercial, private and public sectors such as online banking, shopping, admin-

istration and social networks have made their services available on the Internet. The

development of cloud systems and services is further accelerating this transition. How-

ever, the more use of web services have also made it a hot and primary target for cyber

attackers. Recent studies have shown that the number of vulnerabilities reported in web

services is increasing rapidly. Current statistics show that web application services are

experiencing 35% more cyber attacks per minute than in 2018.

It makes sense to implement layers of security to secure valuable business and consumer

data, from network-level mechanisms to detect intruders at the lower level to protecting

applications that know the data. and domain-specific company protocols. At the highest

protection level, web application firewalls (WAFs) are an essential tool to counter web

attacks which at least listed by OWASP in the top ten web attacks, such as SQL injection,

cross-site scripts or attacks on external XML entities, etc. After installing the firewall, the

web application checks every request sent to the target system and determines whether it

is legitimate or malicious. The web application firewall makes this decision by analyzing

each element in the request and checking whether or not the value matches one of the

web attack patterns, usually using a series of rules (e.g., regular expressions).

In this research, we analyse the security of one of the famous open source WAF named

ModSec against some well-known web attacks. This research focus on two questions,

Can we bypass web application firewall policies with sophisticated payloads? Can a Ma-

chine Learning (ML) based solution helps us to counter such web attacks if we integrate

it with traditional WAF?

vii

Contents

1 INTRODUCTION 1

1.1 Overview . 1

1.2 Purposes, Objectives and Research Findings 4

1.2.1 Purposes . 4

1.2.2 Objectives . 4

1.2.3 Research Findings . 4

1.3 Motivation . 5

1.4 Problem Statement . 5

1.5 Research Contribution and Evaluation Process 6

1.6 Organization of Thesis . 6

2 Review of Background & Literature 8

2.1 Introduction . 8

2.2 Web Attacks . 9

2.3 Damn Vulnerable Web Application(DVWA) 13

2.4 Firewall: . 13

2.5 Artificial Intelligence . 16

2.5.1 Brief History of AI . 16

2.6 Artificial Intelligence in Firewall . 17

2.7 . 20

viii

2.8 Relevant Work . 21

2.9 Summary . 23

3 Approach 24

3.1 Introduction . 24

3.2 Environment Setup . 24

3.3 Context Free Grammar for Web Attacks 26

3.4 Python Tools . 27

3.4.1 Input Generator . 27

3.4.2 Web Application Firewall Analyzer 35

3.4.3 Slice Mapper . 36

3.4.4 Data Tuner . 38

3.4.5 Random Forest Classifier Script 39

3.4.6 Integration . 40

3.5 Terminologies . 42

3.5.1 Confusion Matrix: . 42

3.5.2 Receiver Operation Characteristics (ROC): 44

3.6 Summary . 46

4 Approach Evaluation and Results 47

4.1 Introduction . 47

4.2 Evaluation . 47

4.3 Results . 50

4.3.1 Security Analysis of ModSec Web Firewall 50

4.3.2 Mitigation of Web Attacks using Machine Learning 52

4.4 Summary . 63

5 Discussion, Conclusion and Future Work 64

ix

5.1 Introduction . 64

5.2 Discussion . 64

5.3 Conclusion . 65

5.4 Future Work . 66

5.5 Summary . 66

References 70

x

List of Figures

2.1 Web Application Firewall . 14

2.2 Types of Machine Learning . 18

2.3 Decision Tree vs Random Forest . 19

2.4 Fuzzy Logic System . 21

3.1 Flowchart of proposed approach . 25

3.2 CFG Generator Flow . 27

3.3 Result: HTMLi Input Generator . 29

3.4 Result: CFG Generator for Commandi 31

3.5 Payloads: SQL Injection . 33

3.6 Confusion Matrix . 42

3.7 Detailed Confusion Matrix . 44

3.8 Case 1 AUC ROC . 45

3.9 Case 2 AUC ROC . 45

3.10 Case 3 AUC ROC . 46

4.1 Tree 1 . 59

4.2 Tree 2 . 60

4.3 Feature Importance . 60

4.4 Confusion Matrix . 61

4.5 CorrelationMatrix . 62

xi

4.6 ValidationCurve . 63

xii

List of Tables

2.1 Difference between White and Black listing WAF 15

3.1 Slice Mapper . 36

4.1 Result: Fuzzy Input Generator . 49

4.2 Result: Web Application Firewall Analyzer 51

4.3 Result: WAFBlockStatus Filtered List 52

4.4 Result: Slice Mapper . 54

4.5 Result: Commandi Malicious Inputs . 55

4.6 Result: Commandi Malicious Inputs . 56

4.7 Result: Commandi Malicious Inputs . 57

4.8 Result: Data Tuner . 58

xiii

List of Algorithms

3.1 HTMLi Fuzzy Input Generator . 27

3.2 CMDi Fuzzy Input Generator . 30

3.3 WAF Analyzer . 35

3.4 Slice Mapper Pseudo Code . 36

3.5 Data Tuner . 38

3.6 Random Forest Classifier Python Script 39

3.7 Random Forest Classifier Predictor Script 40

3.8 ModSec Lua Script . 41

xiv

Chapter 1

INTRODUCTION

1.1 Overview

In this new phase of world, where we all are surrounded by the fastest growing devel-

opments being done in the field of information technology. Every day, we can see the

advancements in the fields of science and technology. Once, there was a time when it

was just a thought to travel around the world within seconds but today it’s no more just a

thought, it is possible. You can almost do anything, anytime, anywhere simply by using

the Internet.

Few years back if you wanted to do any bank transaction, you needed to go to your bank

branch to perform that transaction but today it is possible over the internet just by few

clicks. i.e. e-banking using web application.

Use of services over web is fast growing and emerging technology now a days. It has

root connections to the distributed computing, cluster computing and remote computing.

It has the similar aim as of the previous computing technologies (mentioned above) i.e.

remote access, remote services. Web applications introduced a totally new concept of

accessing and delivering services and data to their customers from anywhere throughout

the world by just getting connected to the internet. Its targeting both private and public

sector. Web applications offers multiple services to its users like for storage it offers on-

line storage services, for development of application it offers online compilers, platforms,

and software services, for shopping it provides online shopping and delivery services and

e-banking etc as well. Users can now access their bank accounts over the internet, can

1

purchase anything from their favourite brands and government can deliver their services

using web applications. We can conclude from here that to get/post anything from/in the

web a secured and trusted environment is required that won’t allow the eavesdroppers to

access that services to avoid data leakage and other web related attacks. If the proper

mechanisms aren’t implemented to protect the web application infrastructure, then there

are many chances of sensitive data breach and other web attacks. Malicious user (MU)

who wants to get access of the data or services that is provided over the web will get

successful in accessing it. Likewise, MU can also intrude into the system to perform any

malicious activity.

Therefore, it makes sense to implement security protection layers to secure valuable busi-

ness and consumer data, from low-level intrusion detection mechanisms working at the

network level to application protection to know the field-specific data and protocols. At

the highest level of protection, web application firewalls (WAFs) are an indispensable

tool to prevent at least the cyber attacks listed by OWASP of the ten most common web

attacks.[1], just like SQL Injection, Cross-Site Scripting or XML External Entity attack

etc. WAFs are located between classic firewall and the application server. Such architec-

ture allows the firewall to mitigate attacks on lower layers and WAF to detect and mitigate

attacks on application layer. After installing the firewall, the web application checks ev-

ery request sent to the target system to determine whether it is legitimate or malicious.

The web application firewall makes this decision by evaluating each item in the request

and verifying whether or not the value fits one of the web attack patterns, typically using

a set of rules.(e.g., regular expressions).

Furthermore, the rapid evolution of cyber threats and their complexity demands that fire-

walls for web applications should be updated and validated on a frequent basis as other-

wise they would be bypassed. This is a difficult and expensive job: at the same time, a

security specialist needs to know and recognise popular attacks that may occur on pro-

tected web applications/services, and be able to perfect-tune WAFs to avoid these web

services attacks, thus preventing false positives from blocking legitimate requests.

ModSecurity is one of the free software web app firewalls that are widely used to stop /

restrict different forms of web app attacks[1–3] . Many security researchers i.e. High-

2

tech security team[4], Dennis et al[6] in his paper and many other researchers used Mod

Security to analyze the impact of web attacks in its presence because it is one of the fa-

mous open source firewall, it is flexible and its easy integration with OWASP core rule

set (CRS)[1] .

In this thesis, we analyze the security of ModSecurity web services firewall against some

of the well-known web attacks i.e. External XML Entity (XXE), Cross site scripting

(XSS), Html and Sql Injection and Command line Attacks. Such attacks are also listed in

the open web application security project(OWASP) essential web security document.[7]

. We focus only these attacks as we are using fuzzy payload technique to generate al-

most all possible combinations of attack inputs. Some of the web attacks mentioned in

OWASP critical document are server response-based attacks in which no client-side input

involved i.e. Broken Authentication, Sensitive Data Exposure, Security Misconfiguration

& etc. Hence, we are ignoring those attacks as our focus is only on user input-based at-

tacks i.e. XXE, XSS, Sql & Command Injection.

As we all know information technology is emerging day by day which results in more

computation power per second. Attackers are usually more advance and use more sophis-

ticated attacks to gain access to sensitive data. Mod Security is a rule-based traditional

firewall which blocks web attacks on the basis of predefined rules i.e. OWASP core rule

sets. D. Appelt. et al [6] used the machine learning(ML) driven approach to bypass the

sql injection attack which showed that traditional firewalls are vulnerable and must be in-

corporated with any ML driven detection approach to counter such web attacks. One of

our goals is to find effectiveness of traditional ModSecurity against aforementioned web

attacks using fuzzy payloads technique which later helps us in analyzing the policy or

block pattern it follows. By this, we get the pattern which is not covered by ModSecurity

policies to date.

We have built up python scripts that generates the fuzzy web attack payloads and assessed

it with ModSecurity which we configured with latest CRSv3 to shield an free vulnerable

web-based framework named Damn Vulnerable Web Application (DVWA) . We assessed

our approach and found that it essentially beats an arbitrary experiment age approach. It

produced essentially distinct web attacks payload, bypassing the WAF. After analysis of

weaknesses presents in traditional policy-based structure, we further propose a machine

learning based solution to counter such web attacks.

3

1.2 Purposes, Objectives and Research Findings

This section focuses on the goals and purposes of this study and summarizes the answers

to the proposed research findings.

1.2.1 Purposes

The purposes of this thesis are:

• Security Analysis: Security analysis of a famous and vitally used open source web

application firewall named ModSecurity against some well known web attacks.

• Mitigation: Enhancing the security performance using a machine learning based

approach.

1.2.2 Objectives

The objectives are:

• To study the architecture of traditional WAF.

• Identifying loop holes in pattern based WAF.

• To analyse the security of ModSecurity, a famous and vitally used open source

WAF.

• Enhancing the security performance using machine learning classifier. i.e. Random

Forest

1.2.3 Research Findings

The purpose of this study is to address the following research findings.

4

1. Is ModSecurity or pattern-based web application firewall detect/block all kind of

malicious payloads/attacks? Can we bypass it?

2. Can we efficiently mitigate web attacks by using machine learning based approach

in web application firewalls?

1.3 Motivation

To contribute to this domain the strong willingness came after reading the publications

and research articles. To get the basic understanding of web application firewall, a thor-

ough study of [2], [5], [6] was done. After that, to get an understanding of web applica-

tion firewall architecture and injection attack [6] was studied. To give a proper direction

to this research [7], [8], [9] guided me. A detailed study of a survey paper [22] and a

confluence report [30] was done to find and understand the weaknesses of traditional or

pattern based WAF.

1.4 Problem Statement

Trust and privacy of data are two major challenging concerns of web application/services.

The use of services over web is growing rapidly which makes it more attractive target

for invaders or malicious users. Now a days, many sensitive services like e-banking,

e-governance and e-health are available over web. A survey found that network based

systems undergo as many as 26 cyber attacks per minute.[12]. Sensitive Services like

these which involves user money or health always needs integrity, confidentiality and

availability. Web services are built on several technologies that have their own built in

vulnerabilities or weaknesses in them which makes a web service vulnerable. Including

built in weaknesses of web services, often developers are under pressure of time which

let them left some security loop holes in their web system. To counter such security loop

holes, it is a common practice to deploy firewalls at all level to protect against intruders.

The web application service providers use WAF to protect their online services from cy-

ber web attacks. They feel relax and secure by deploying WAF but what if there are loop

holes in it? Web application firewalls usually works on predefined rules which makes

5

them vulnerable against zero day attack. D. Appelt. et al [6] used the machine learn-

ing(ML) driven approach to bypass the sql injection attack which already showed that

rule based firewalls are vulnerable and must be incorporated with any machine learning

based detection approach to counter such web attacks. ModSecurity is one of the open

source and famous firewall among service providers and cyber security researchers and

among developers who use it for research, to protect their web services and etc. What is

the trust or security level of it? Can ModSecurity manage to block sophisticated attacks?

What are its own weaknesses? How can we overcome WAF weaknesses using machine

learning. My thesis is the security analysis of web application firewall against known

web attacks to answer all aforementioned questions and it also propose a machine learn-

ing based solution to enable web application firewall to counter web attacks efficiently.

1.5 Research Contribution and Evaluation Process

The key contribution to this field is the analysis of the widely used open source web

application firewall called ModSecurity against some well known web attacks. Secondly,

the proposition of a web application firewall based on machine learning technique that

could be deployed in web application environment to efficiently mitigate web attacks.

1.6 Organization of Thesis

This research report is divided into four parts. Following is the summary of each chapter.

• Chapter 1: This chapter includes overview of thesis, aims, objectives and research

questions. It also highlights motivation in choosing this domain, contributions of

this research and the evaluation process.

• Chapter 2: This chapter covers a comprehensive literature review related to the

topic of thesis. A brief introduction of web attacks, web application firewall and

their impact is discuss. Furthermore, the role of artificial intelligence is elaborated

in the field of web applications. Use of machine learning with the web application

firewall is covered as well.

6

• Chapter 3: In this chapter, the proposed solution and proposed framework of the

problem statement is discussed. After that fuzzy payloads, the dataset used in the

experiments of this thesis is discussed briefly. Lastly, the terminologies that will

be used in later chapters to understand the results and the work of this thesis are

covered. Moreover, the experiments and results are discussed in detail followed by

the introduction of new terms like cross entropy and percentage error that gives the

description of the designed algorithm that how well it can perform. The results are

shown using different plots of confusion matrix, ROC, performance and training

state.

• Chapter 4: This chapter covers the evaluation of our approach along with results

produced during our evaluation. It also shows our classifier performance, confusion

matrix and validation curve graph.

• Chapter 5: This chapter covers the discussion of topic of this thesis. Later, the

conclusion is discussed that answers the research questions of this thesis. At the

end, future work is covered. Future work includes few suggestions and proposi-

tions for future researchers who are willing to contribute in this domain.

7

Chapter 2

Review of Background & Literature

2.1 Introduction

Here in modern and advance time, where the use of internet is increasing, many applica-

tions have been developed and deployed to provide more services online. The web appli-

cation has become more important for organizations. So, the online services of the web

are becoming the dominant target for the web services attacks. Most of the web services

attacks are successful due to lack of knowledge and awareness on cyber-attack defense

techniques. Web application vulnerabilities can be ascribed to numerous issues includ-

ing poor input validation, session management, inappropriately designed framework and

web server programming. Web application needs to be safe against information leakage

and different kind of cyber-attacks. Generally, web applications use HTTP protocol for

communication between user and server and it is the path from where web attacks come

from.Various methods and practices have been used to secure web application services

for secure encryption and framework design but among all, the Web Application Firewall

(WAF) is one of the most popular and easiest solution for such web service attacks. So,

this justify the usage of web application firewall against different sort of web services

attacks.

The web application firewalls are used to defend web services and other online applica-

tion servers from malicious cyber attacks. As a web service mapping, they ensure that the

web application’s firewall examines access to the HTTP request and determines whether

it is blocked or sent to the destine web application. However, selection is made on the net-

8

work basic rules, so-called firewall guidelines, which are used to distinguish malicious

patterns. As web service attacks advance, WAF rules generally become unpredictable

and difficult to track and physically test. For this reason, mechanized test systems for

WAF are required to halt nasty requests when accessing web application services.

This part will look at the context of web attacks, the damn vulnerable web application

(DVWA), the firewall, the web application firewall and its types, artificial intelligence,

fuzzy logic technology, related work in this area and in the last summary of this chapter.

2.2 Web Attacks

The web application offers an interface for shared communication between the web server

and the client. Html pages are created on a web server and are displayed in a browser on

the client side. Data are transmitted between the server and client mostly through HTTP

as an Html document. These are vulnerabilities on the client and server side result in a

web attack on a web application. In terms of web security, WAF is essentially viewed

as a protective layer of applications against intruders that generally harm web services.

Intrusion is defined as "any malicious activity that is done to compromise the system and

its security triad".

The security triad of information security (IS) are:

• Confidentiality

• Integrity

• Availability

There are number of web attacks but we focus on the top ten web attacks mentioned in

OWASP document. The OWASP top ten is a standard developer attention and web ap-

plication safety document. It reflects a broad coherence on the most significant safety

threats to the web applications. Some of well known web attacks are as following:

9

External XML Entity (XXE) An external entity attack to an XML entity is a type of

web attack on an XML input parser. Such a attack takes place when an XML element

containing an external entity is processed by a misconfigured XML parser. This attack

can advantage to confidential data exposure, denial of service (DOS), falsification of a

server-side request, port analysis of system on which analyzer is hosted, and other system

effects. Since XML is independent of hardware and software and also has a low weight,

which accelerates its use, ie when processing sensors, cloud computing etc. XML version

1.0 specification determines the architecture of an XML script. The code describes the

term called entity, that is any storage variable. There are several kind of entities, a general

external entity / parsed parameter, generally abbreviated as an external entity which has

approach to local or inaccessible data through a stated system identifier. System identi-

fier should be a uniform resource identifier that the XML processor return(access) upon

assessing the entity. XML processor then changes the occurrence of the foreign object,

which is indicated by the information de-referenced by the system identifier. If system

identifier consist of malicious input and XML processor derives that malicious input, the

XML processor can display classified data / information that the average user does not

normally have. Similar attack vectors use external DTDs, external style sheets, external

schemas, etc., that allow attacks to involve similar external resources when used. Here is

an example of accessing a local resource with xxe.

Attacks can detect a local file system, which can contain sensitive data such as passwords

or confidential personal information, adopting file schemas or related paths in the system

identifier. When an attack occurs with an application that processes an xml script, an

malicious user could use this trusted script to access other internal systems, publish other

internal content via http(s) requests, or perform a CSRF web attack to start everything

dangerous. In few cases, a xml processor library which is sensitive to client-side secu-

rity issues can be exploited by unlinking a malicious universal resource identifier so that

10

any code in the function can potentially run. More similar malicious threats can have

approach to local sources that may not stop returning information. This can damage ap-

plication connection if soo many threads or processes are configured.

Cross-Site Scripting (XSS): XSS attacks are a form of infiltration that inserts mali-

cious code into otherwise harmless and secure websites. XSS happens when an attacker

uses a web application to send malicious script, typically in the form of a browser-based

script to another end user. Errors that make such attacks effective are common and oc-

cur when a web application uses user feedback in the output that it produces without

verifying or encoding it.

An attacker could use xss to deliver a malicious script to an unsuspected user. The client

of the end user can not see whether the script should not be accepted and that the script

is executed. Since the script is assumed to be from a trustworthy source, the malicious

script will access cookies, session tokens, or other confidential information saved by

your browser and used on this website. Such scripts can also overwrite the contents of

the HTML file. XSS attacks can usually be broken down into two groups:

• Stored : attacks in which the inserted script is inevitability on target servers, such

as a database, a message board, a visitor log, a comment area, etc. The user then

downloads the malware script from the server when the stored information is re-

quested. Stored XSS is sometimes referred to as xss or type I.

• Reflected: Mirrored attacks are attacks in which the injected script is displayed on

a web server, e.g. For example, an error message, search result, or other response

that includes some or all of the items that are sent to the server as part of the request.

Mirror threats are shipped to victims in many other ways, such as by e-mail and

on another website. Whenever a person is pushed to click a phishing email, send

a specially designed form, or visit a malicious site, the injected malicious code is

transferred to a vulnerable website, reflecting an attack on the browser. Reflective

XSS is sometimes referred to as constant xss or type II.

11

HTML Injection : The core of this sort of attack is the inclusion of HTML code in

vulnerable areas of the website. The attacker sends the html code over a vulnerable field

to demolish the appearance of the web pages or any information which is displayed to the

user. As a result, the normal user can see the data sent by the attacker. Generally, when

you insert HTML, you simply insert markup language code into a document on a page.

The data sent during this type of injection attack can vary widely. There can be multi-

ple HTML tags that simply display the information that is submitted. It can also be an

incorrect form or an entire webpage. When this type of attack occurs, the web browser

usually interprets the malicious attacker data as legitimate and loads it. Demolishing the

look and design of your website is not the only risk that this type of attack poses. It’s

pretty much like an XSS attack, where a malicious user steals another person’s identity.

As a result, another’s identity may be stolen during this type of insertion attack. There

are two kind of html injections:

• Stored Html: Attack happens when the malevolent html code is stored on the web

hosted server and is executed each time the user calls the relevant function.

• Reflected HTML: In the event of an intentional injection attack, malicious html

code is not permanently stored on a web server. An intentional insertion happens

when a site responds instantly to a malignant message.

Command Injection: Inserting operating system commands (also known as shell at-

tack) is a web weaknesses which could allow an malicious user to execute any operating

system command on a server. This launches the application and generally puts the ap-

plication and all of its data at risk. An attacker could often exploit an operating system

command susceptibility to compromise the host infrastructure by using trustworthy terms

to reverse an attack on other attached systems within the company. With the increasing

use of online processing and cloud computing, this type of attack is also attracting the

attention of attackers. This type of attack can expose all information about the server and

also damage the entire infrastructure of the hosted system.

12

2.3 Damn Vulnerable Web Application(DVWA)

Damn vulnerable application is a PHP / MySQL web application which is free and open

source vulnerable web app. The main objective of it is to ease security professionals

and researchers test their skills and tools in a legal environment, help website developers

better understand web application security processes, and help teachers / students learn

web application security flaws and errors in a lieniant environment. We use it to analyze

the security of the web application firewall.

2.4 Firewall:

Firewall is a network security device that detects traffic on the network and determines

to block or allow such traffic on the basis of given list of rules. .

Firewalls have been the first line of protection for internet security for more than twenty-

five years. They create a distinction between protected and regulated private network

systems that can be trusted and unsecure outside the framework, such as the Internet. A

firewall can be hardware, software, or both.

Web Application Firewall (WAF): WAF[34] protects web application services by fil-

tering and monitoring web traffic between the web application and the end user. In gen-

eral, it protects web application services from attacks which are mentioned in owasp

document such as cross-site counterfeiting, cross-site scripting (XSS), file inclusion and

SQL injections. WAF is a seventh layer protocol defense (in the OSI model) and is not

intended to protect against other types of attacks i.e. network. This type of attack miti-

gation is usually part of a set of tools that together form a large cover against a range of

web attack methods.

When application firewall is deployed in front of a web service it is like a shield is placed

between the web service and the end user. A proxy server protects a client device’s iden-

13

tity through a provider while application firewall is a kind of reverse proxy that protects

the server from compromise by routing clients through it before they reach the server.

Similarly like firewalls it works with a set of rules, often referred to as guidelines or

policies. The purpose of this policy is to protect against application vulnerabilities by

filtering out malignant traffic. The value of application firewall is based in part on the

ease and speed with which a policy change can be made that enables a quicker reply to

various threat methods. During a DDoS attack, speed limits can be implemented quickly

by changing its policies.

Figure 2.1: Web Application Firewall

They can be installed using below three different ways, each with its own advantages and

disadvantages:

• Network application firewall is usually a physical device. Because they are located

locally, they minimize latency and perform good but they are the most expensive

option and also require the capacity of storage and maintenance of physical devices.

• The host application firewall is a kind of application software. This solution is

cheaper than network firewall and offers more customization options. The dis-

advantages of it are the consumption of processing power, local server resources,

the complexity of the implementation and the maintenance costs. These type of

14

components generally require technical time and can be expensive.

• Cloud based application firewall offer an affordable option that is very easy to im-

plement. They typically offer a turnkey installation that is as simple as changing

DNS to redirect traffic. Cloud WAFs also have minimal upfront costs because

users pay for Security as a Service monthly or annually. It can also offer a con-

stantly updated quick fix that protects against the latest threats without creating

labor or additional costs for users. The disadvantage of cloud WAF is that users

entrust responsibilities to a third party and can therefore represent a black box for

some WAF functions.

Table 2.1: Difference between White and Black listing WAF

Whitelisting WAF Blacklisting WAF
It’s worthy in situations where you know
inputs and expected behaviours.

It’s worthy when you have omniscient
knowledge of all vulnerability that could
ever exist.

Allows listed pattern based inputs only. Blocks listed pattern based inputs only.
Ensure protection from future. Ensure protection from the past.

Mod Security To protect, detect, and prevent web applications from web attacks, we

typically prefer a web application firewall. ModSecurity is one kind of it. It is a cross-

platform free open source application firewall that works with three major web server

platforms, namely Microsoft IIS, Apache and Nginx. [1, 2, 8]

SecRule is a language for configuring the rules provided by this platform. It serves as

monitoring, logging and real-time access control of web applications for every HTTP re-

quest and response. ModSecurity is typically placed in front of an application to defend

itself against various types of vulnerabilities using the basic CRS (OWASP ModSecurity)

rule set. The basic set of rules is the Open Source ModSecurity rule, which was written

in SecRule, one of the OWASP projects.

The Open Web Application Security Project (OWASP) is an internet based community in

which security research team works to develop methods and tools for web applications.

It publishes top attacks with the name of OWASP Top 10 [7] which will be updated every

15

four years.

To detect threats, the ModSecurity engine is installed inside the web server or as a

reverse-proxy in front of a web application. This is the reason for which it can be able

to monitor all the incoming and outgoing HTTP requests. According to the rule, the rule

configuration engine will decide how the communication should be managed which may

include the ability to pass, drop, redirect, execute the script and more.

2.5 Artificial Intelligence

Artificial intelligence (AI) is a term that describes a machine’s ability to observe, think,

and respond [17]. In AI, scientists and engineers maps the human intelligence over com-

puting systems that respond to certain events in a particular manner. Researchers [17, 18]

are finding ways to discover those aspects that can solve multiple challenges in the field

of computing.

2.5.1 Brief History of AI

Back to the year 1943, Pitts and McCulloch gave an idea of “Boolean Brain” in their pa-

per [31]. Later to that, J.V. Neumann [32] reflected on the ideas of Pitts and McCulloch

to design a digital computer. In 1950, Turing Test suggested that a computer can work in-

telligently if a person communicating by teletype wasn’t able to characterize the machine

from a normal human being, based upon their response to certain questioning. The word

"artificial intelligence" was first coined in a conference in 1956 at Dartmouth College.

AI theorists focused on the value of symbolic logic in the development of computer pro-

grams that are intelligent. From that time to today, AI has attracted a lot of researchers

and many studies have been carried out in this domain. Today almost in every field of

science, AI [17],[18], [26] is playing its vital role that can never be denied. With every

passing day, machines are becoming more and more intelligent that is all because of the

scientists and engineers contributing in this domain.

16

2.6 Artificial Intelligence in Firewall

Artificial intelligence has contributed a lot in the field of information technology. Many

firewall researchers use various AI techniques to detect and prevent interference with web

applications / services. Due to the flexibility, adaptability, efficiency and high accuracy to

the computing system, AI techniques are highly likeable as compared to the other tech-

niques in intrusion prevention systems.

There are few artificial intelligence (AI) based techniques, that are discussed below:

Pattern Matching: This technique detect and prevent by matching the pattern of re-

quest with the given sequences or policies. This is also known as signature based tech-

nique.

Machine Learning (ML) Techniques: It is defined as the training of computer ap-

plications to enhance their performance by discovering different tasks over the span of

time. It is an ability of a machine to learn something without being explicitly learned.

Tom Mitchell has defined Machine Learning as, “An application of a computer is said to

gain experience E as for some task T and some execution measure P, if its execution on T,

as estimated by P, enhances with experience E.” For instance, in checkers, the experience

E would be the experience of having the program play a huge number of diversions itself.

The task T would be the assignment of playing checkers, and the execution measure P

will be the likelihood that wins the following round of checkers against some new adver-

sary. Generally, all the ML related problems are classified into two main categories as

depicted in figure 2.2.

1. Supervised Learning: If we get a data set and already have an idea of the cor-

rect output or just an idea of the connection between output and input, this type of

learning is considered supervised learning. It is further divided into two categories:

regression and classification. Regression is the prediction of results in a continu-

ous output environment or function. In the classification we predict the results in

discrete output. Put simply, classification is the assignment of input variables to

discrete variables [17].

17

2. Unsupervised Learning: In unsupervised learning, we don’t have any idea how

the results or outputs would look like. With unsupervised learning, it is possible

to derive a structure from data for which we do not need to know how the variable

affects it. We use data-based clustering for unsupervised learning [17].

Figure 2.2: Types of Machine Learning

Data Mining Methods: It is defined as discovering patterns, changes, intrusions, and

the major constituents of data. In other words, data mining is a technique which takes

data as an input and gives output of what it has extracted from the data [17]. It is one

of the main part in machine learning or artificial intelligence. Few of some famous data

classifiers are:

Genetic Algorithm: It is a research method that is used to explore maximum solutions

for optimization problems. These are based on the basic concepts of natural selection,

mutation theory, theory of evolution and inheritance. These techniques allow to differ-

entiate between the anomalous and the normal web request. Different types of attacks

[26] could be classified using GA and applying rules to those attacks is possible. The

main advantage is the robustness and flexibility of this technique, but it consumes high

resources that is the biggest disadvantage.

18

Clustering Technique: This technique [17] work by clustering the trusted data into

group based on their similarities. There are many ways to measure the similarity such as

Cosine formula etc. The data that isn’t the part of any cluster is considered an anomaly.

Decision Tree: Decision tree based techniques are used to classify and predict the data

points. It has three [20] components:

• Node: Every node of a tree is labeled with unique feature or attribute that gives

most of the information about its path from the root of the tree.

• Arc: Arc is labelled with the unique feature of the node.

• Leaf : Leaf is characterized by its class.

So, by the help of all these components decision tree locates the data point by initiating

from the root moving through nodes and then reaching towards the leaves of tree (figure

2.3).

Random Forest: The overall random forest structure, as the name implies, consists of

a large number of individual decision-making trees that function as a whole. Each of the

tree in the random forest spits out the predictions of the class. Class with strong votes

becomes a prediction of our framework. (figure 2.3).

19

Figure 2.3: Decision Tree vs Random Forest

The basic concept of a random forest is simple, clear and powerful - the wisdom of the

crowd. In data science there is a reason why a random forest model works so well:

A significant number of fairly uncorrelated commission(tree) models can outperform

each individual component model.

The key is the low correlation between the models. Just as investments with a low cor-

relation (such as stocks and bonds) together form a portfolio that is larger than the sum

of its parts, uncorrelated models can provide more accurate overall forecasts than all in-

dividual forecasts. The logic for this amazing effect is that the trees protect each other

from individual mistakes (unless they’re all in bad uniform order). While few trees may

be wrong, many other trees are correct, so the trees may step in a right way as a group.

Therefore, the prerequisites for a well-functioning random forest are:

• Our functions must contain a real signal so that models created with these functions

work good than irregular estimates.

• The forecasts (and therefore the mistakes) that each trees make must have weak

interrelations.

20

2.7 Fuzzy Logic Techniques

Fuzzy logic techniques are required for network and computer security for various rea-

sons like there are certain frameworks which are used in intrusion detection e.g. the

interval of network, usage time of the CPU etc. that can be represented in the form of

fuzzy variables. In addition, the concept of fuzzy behavior enables the rapid transition

from normal behavior to an anomaly. The only disadvantage they inherit is that fuzzy

rules are developed with the support of an expert in the field. The fuzzy logic works at

the level of the input options in order to achieve a defined output. [27]

Implementation:

• This can be deployed in devices of different sizes and capacities, from small mi-

croprocessors to large network control systems mounted on work stations.

• This can be used in both software and hardware.

Why Fuzzy Logic? It is useful for both organizational and practical purposes.

• It is capable of managing computers and consumer goods.

• There must be no exact justification, but an acceptable justification.

• Fuzzy logic helps tocope with technological uncertainties.

21

Figure 2.4: Fuzzy Logic System

2.8 Relevant Work

Recent study to ensure the efficiency of IT systems against harmful solicitation focused

on the testing of firewalls as well as information approval tools. There is a large research

organization that examines the potential benefits and mitigations of web services, e.g.

[6], [8], [9], [10], [11].

Dennis et al [6] introducing the concept of a machine learning approach to detecting

vulnerabilities in a web firewall against SQL injection. They proposed an ML-driven

approach which learned from the response of web application firewall and generates pay-

loads according to that. They have showed that how we can generate malicious SQLi

payloads using ML based algorithm with high chances to bypass traditional WAF signa-

ture. They used Decision tree classifier as ML- classifier, Mod Security with one other

proprietary web application firewall to evaluate their approach. Though the approach was

good but they have only focused on SQLi.

Offutt et al.[8] developed the idea of a derivation test in which the input check is checked

for strength and security. Tests are created to intentionally neglect user side information

checks and are then submitted to the server application to determine if the input specifica-

tions are properly evaluated. Liu et al. [9] defined a automatic method for extracting the

data verification model from the system origin code and proposed two analysis require-

22

ments for evaluating model-based data validation. However, we offer a methodology that

does not demand access to the source code to produce test cases. In our technique we

utilize fuzzy logic technique to generate almost all combinations of attack payloads to

analyze Mod Security bypassing test cases. Michal et al. [10] pointed that traditional

WAF uses static analysis of HTTP requests to find out potentially dangerous payloads

but failed some time due to lack of pattern. They defined an approach, established on

historical and behavioral study of user requests, which needs to maintain history and be-

havior of user. They have only focused on CRSF attack in the presence of ModSecurity

firewall.

The subject of network firewall testing is covered in abundance of literature. While net-

work firewalls work on a lower level than application firewalls, which are our focus but

both experience similar grounds. Both of them use pattern or policies to determine which

traffic is permitted to pass and should be refused. Testing methods to find flaws in net-

work firewall or conventional structure may also be applicable to web firewall. Bruckner

et al. [11] presented a model-based examination methodology that would convert policy

of firewall into a normal form. Based on the case studies, this policy reform improved

the effectiveness of test case development with minimum magnitude of two orders.

Hwang et al. [12] identified architectural analysis requirements for the under test poli-

cies and developed a technique of test generation based on constraint resolution which

seeks to optimise architectural analysis. Many work focused on checking the deploy-

ment of firewalls rather than policies. Al-Shaer et al. [13] also proposed a framework

to check automatically whether a rule is correctly followed by a firewall. So, the system

produces a set of rules as well as test traffic and tests if the firewall controls the generated

traffic accurately in compliance with the generated rules. Similarly, many scholars have

defined specification-based firewall testing. J’urjens et al. [14] defined an approach to

explicitly model the firewall tests and to automatically extract test cases from the formal

specification. Senn et al. [15] introduced standardized expression for defining security

rules and automatically create test cases from existing firewall testing rules to test the

firewall. On the other hand, as well as targeting web application firewall, our strategy

does not depend on any framework of safety protocols or firewall under evaluation, those

23

standardized frameworks are hardly available in reality. We propose a machine learning

based solution to train web application firewall to be still effective against attacks whose

signatures are not defined in it.

2.9 Summary

This chapter gives a brief introduction of some of well known critical web attacks, fire-

wall and web application firewall with its types. Section 1 covered the brief introduction

of some of well known web attacks. In the next section, discussion related to the damn

vulnerable application was covered which we used in this thesis as vulnerable web ap-

plication. Later, the firewall, web application firewall and Mod security firewall is dis-

cussed. We have also included a brief introduction of fuzzy logic technique. In the next

section, we have covered the role of artificial intelligence in the field of information tech-

nology. The introduction of artificial intelligence is discussed followed by the history of

artificial intelligence. The way artificial intelligence emerged in the age of information

technology. In the last of that section, few of famous machine learning data classifiers

also discussed. This chapter also covered brief of related work which has already been

carried out in this domain which showed its importance that why web application firewall

needs a machine learning approach.

24

Chapter 3

Approach

3.1 Introduction

We considered aforementioned web attacks inputs as malicious strings whose purpose

is to modify the intent of target web application when they are concatenated with legal

inputs. So, for this we have systematically surveyed traditional web attack techniques

published online on different websites, blogs and in the literatures. e.g., [3, 4, 11, 12]

We then propose a fuzzy input or context free grammar[34] for web attacks of each type

we are covering and developed python-based fuzzy input generator tool to generate ma-

licious inputs which then seeded in to the vulnerable web application running behind

ModSecurity firewall. We have also developed a python-based slicer tool which splits

inputs into the slices and examine which slice get through the web firewall successfully.

Slicer tool also helps in shaping the data as our dataset to train and generate Random For-

est Classifier i.e. a machine learning based classifier[21] which we integrate with web

application firewall to enhance its performance.

3.2 Environment Setup

To evaluate our approach, Damn Vulnerable Web Application (DVWA) has been used

along with ModSec open source web application firewall. We generate dataset using

context free grammar and used python for scripting. We chosed Random forest classifier

25

as our machine learning classifier.

Figure 3.1: Flowchart of proposed approach

26

3.3 Context Free Grammar for Web Attacks

We consider all possible combinations to generate fuzzy or context free grammar inputs.

Pseudo code as follows:

<ATTACK> :: = <LegitimateContext> <wsp> <

ConcatenateOperator> <wsp> <Payload> <cmt> |

<LegitimateContext> <wsp> <ConcatenateOperator> <wsp> <

Nullbytes> <wsp> <Payload> <cmt> ;

<LegitimateContext> ::= <string> | <digits> | <boolean> ;

<wsp> ::= < __ >

<ConcatenateOperator> ::= <&> | < ; > | < || >

<Payload> ::= <Combination of all functions>

<cmt>::= < :: > | <REM> | <\%3A\%3A>

<Nullbyte>::= <$@> | <\0> | <%00> | <\u0000>

<Attack> is the start symbol which consists of all possible legitimate strings concate-

nate with malicious inputs with and without padding, “<wsp>” represents white space

characters, “cmt” represents comment operators use in different attacks, we use “::=” for

production, “,” for concatenation and “|” represents alternatives. Fig. 3.2 represents the

input generator procedure or flow.

27

Figure 3.2: CFG Generator Flow

3.4 Python Tools

3.4.1 Input Generator

We have developed python based automated input generator tool. This tool is responsible

to generate fuzzy inputs to seed in to the vulnerable web application running behind Mod

Security web application firewall.

HTMLi Fuzzy Input Generator: This algorithm generates all possible combinations

of tags and functions with and without padding characters. It also store each possible

combination in url encoded form. Below is the Pseudo code of the algorithm along with

screenshot showing some of results it generates.

Algorithm 3.1: HTMLi Fuzzy Input Generator

1 Procedure AttackPayloads(TagList [], FunctList [])

2 Open Output File // for result output

28

3 Arg1 = TagList [] // List of all HTML tags

4 Arg2 = FuncList [] // List of all HTML functions i.e . onload

5 for all Argline1 in Arg1 do

6 for all Argline2 in Arg2 do

7 Output.write(< LegitimateString > + <wsp> + <cmt> + \n)

8 Output.write(< LegitimateString > + Argline1 + <wsp> + Argline2 + <cmt> + \

n)

9 Output.write(URLENCODE(<LegitimateString> + Argline1 + <wsp>+ Argline2

+ <cmt>)+ \n)

10 Output.close()

11 end procedure

29

Figure 3.3: Result: HTMLi Input Generator

30

Commandi Input Generator: This algorithm generates all possible combinations of

available cmd and other commands inputs with and without mixing of null characters. It

also generates each possible combination in url encoded form. Below is the Pseudo code

of the algorithm along with screenshot showing some of results it generates.

Algorithm 3.2: CMDi Fuzzy Input Generator

1 Procedure AttackPayloads(TagList [], FunctList [])

2 Define NullMixer(arg1, arg2)

3 return arg2 . join (arg1[I : I = 2] for I in range (0, len (arg1) ,2))

4 // Function for Null character mixer with commands

5

6 Output.open(result . txt , w) // Open file for result output

7 Arg1 = CommandList[] //List of all commands i.e ping

8 Arg2 = PaddingList []

9 // List of all available characters i .e . @

10 for all Argline1 in Arg1 do

11 for all Argline2 in Arg2 do

12 Output.write(< LegitimateString > + <wsp> + <cmt> + \ n)

13 Output.write(< LegitimateString > + NullMixer(Argline1 , Argline2) + <wsp> +

\ n)

14 Output.write(URLENCODE(<LegitimateString> + NullMixer(Argline1, Argline2

))+ \ n)

15

16 Output.close()

17 end procedure

31

Figure 3.4: Result: CFG Generator for Commandi

SQLi Input Generator Tool: During our literature review we have found that a lot of

work has already been done on SQLi. We have found many online sources [16], [17]

with SQLi payloads and cheat codes. We use the payloads available on Github which

32

is uploaded by ’swisskyrepo’1. It almost contains all kind of possible attack inputs for

SQLi. So, we are using it as our SQLi inputs.

1https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/SQL Injection

33

Figure 3.5: Payloads: SQL Injection

34

Xml External Entity: Xml external entity attack use specific word SYSTEM in pay-

load which refers to external files or scripts. So, some of the xxe attack payloads are

following:

35

3.4.2 Web Application Firewall Analyzer

This tool injects generated fuzzy inputs in to the vulnerable web application protected by

web application firewall to check which input get through the web application firewall

and which failed. It labels Pass against the input which gets through and Block which

fails to get through the web application firewall. The pseudo code of its algorithm is as

following:

Algorithm 3.3: WAF Analyzer

1 Procedure WebAnalyzer(Payloads)

2 Output.open() // File for results

3 Request = mechanize.Browser()

4 for Line in Payloads

5 Request.open(url)

6 Request. select_form ()

36

7 Request.form = Line. rstrip ()

8 if (Request. response = 200) then

9 Output.write(Line + , + P + \n)

10 elseif (Request. response = 403) then

11 Output.write(Line + , + B + \n)

12

13 Output.close()

14 end procedure

15

16 ∗ P = Pass and B = Block

From above algorithm we can easily retrieve and record response from Mod Security web

application firewall and can filter results using Block/Pass status.

3.4.3 Slice Mapper

We have developed a python tool which is responsible to classify the generated inputs

by examining the malicious input structure. Generally, we can split the inputs into eight

slices as shown in table 3.1. After classifying the input data into slices, this tool will

inserts the 1 or 0 value in relative slice column based on its existence.

Table 3.1: Slice Mapper

s1. s2 s3 s4

<Digits> <Strings> & | ; @ $ * : / [{ >

s5 s6 s7 s8

< \ }] = " ’ Combination of slices from 3 - 7

with self or any other slice i.e. ar$@p

Algorithm 3.4: Slice Mapper Pseudo Code

1 Define SliceMapper(arg1)

2 Slices = [s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8]

3 # Split the string by whitespace or dash

37

4 input = arg1 . split ()

5 for x in input

6 if x is {Digits} then

7 s1 = 1

8 else

9 s1 = 0

10 if x is {String} then

11 s2 = 1

12 else

13 s2 = 0

14 if x contains &, |, ;, @, $ then

15 s3 = 1

16 else

17 s3 = 0

18 if x contains /, [,{, (,> then

19 s4 = 1

20 else

21 s4 = 0

22 if x contains) , <, \, },] then

23 s5 = 1

24 else

25 s5 = 0

26 if x has = then

27 s6 = 1

28 else

29 s6 = 0

30 if x contains { ′′ , ‘ } then

31 s7 = 1

32 else

33 s7 = 0

34 if x contains { [SC][String], [String][SC], [SC][String][SC], [String][SC][SC][

String]} then

35 s8 = 1

36 else

38

37 s8 = 0

38

39 return slices

Above algorithm is the pseudo code of our slice mapper python tool.

3.4.4 Data Tuner

We use data tuner to tune our data for machine learning classifier i.e. Random Forest by

examining the structure of malicious inputs which bypasses the Mod Security firewall.

Algorithm 3.5: Data Tuner

1 Define DataTuner(arg)

2 if arg reflect <policy> then

3 return 1

4 else

5 return 0

6 Procedure DataClassifier (Inputs)

7 np = numpy.array(inputs)

8 a = numpy.split (np,2) \\ divide data in two parts for training and validation

9 TrData.open() // file for ML training

10 Output.open() // file for validation later on

11 for i in a[0]

12 TrData. write (SliceMapper(i) + , +DataTuner(i)+ \n)

13 for i in a[1]

14 Output.write(SliceMapper(i) + \n)

15

16 TrData. close ()

17 Output.close()

18 end procedure

Above mentioned is the pseudo code of our developed python tool which is responsible

to tune the generated inputs according to structure policy which we will observe during

39

Mod Security web firewall analysis. This tool will inserts the 1 or 0 value in WAFBlock-

Status as per our policy. This tuning helps us in training of our machine learning classifier.

3.4.5 Random Forest Classifier Script

We use python script for our machine learning Random Forest classifier which later in-

tegrate with ModSec web firewall or any other firewall as a script. Pseudo code of our

python machine learning classifier is as follow:

Algorithm 3.6: Random Forest Classifier Python Script

1 import libraries i .e . sklearn , panda, numpy, matplotlib , pydotplus , Cpickle

2

3 start Procedure

4 # list for column headers

5 names = [’s1 ’, ’s2 ’, ’s3 ’, ’s4 ’, ’s5 ’, ’s6 ’,’ s7 ’,’ s8 ’,’ WAFBlockStatus’]

6

7 # open file with pd.read_csv

8 df = pd.read_csv(file path , names=names)

9

10 X = df .drop(’WAFBlockStatus’, axis=1) // Assign all data except WAFBlockStatus

11 y = df [’WAFBlockStatus’] // Assign WAFBlockStatus

12

13 # implementing training , testing data split using predefined function ,

14 # splitting data into 60\% for training and 40\% for testing .

15 Xtrain , Xtest , ytrain , ytest = train_test_split (X, y, test_size =0.40)

16

17 # random forest

18 radf = RandomForestClassifier ()

19 radf . fit (X_train , y_train)

20

21 # predictions

22 radf . predict (Xtest)

23

40

24 #Save trained classifier to a file for later use using CPickle

25 with open(path / to / file , ’wb’) as

26 f :

27 CPickle.dump(radf, f)

28

29 end procedure

We have also developed input predictor or validator script which predicts incoming web

input using our trained random forest classifier. Its pseudo code is as follows:

Algorithm 3.7: Random Forest Classifier Predictor Script

1 import libraries i .e . sklearn , panda, numpy, matplotlib , pydotplus , Cpickle , os

2 def predictor

3

4 # random forest model creation

5 rfc = RandomForestClassifier ()

6

7 #Load trained classifier from file using CPickle

8 with open(path / to / file , ’rb ’) as

9 f :

10 rfc=CPickle.load(f)

11

12 #Map input to slices using our Slice Mapper tool

13 slices = SliceMapper(argv [1])

14

15 # predict input

16 WAFBlockStatus = rfc. predict (slices)

17

18 if WAFBlockStatus = 1

19 drop request and return response "403 Forbidden"

41

3.4.6 Integration

We can integrate our trained random forest classifier predictor 3.7 in ModSec web firewall

by executing a Lua script through SecRule. We can achieve it by defining the following

SecRule for all incoming request types in ModSec SecRule configuration file.

SecRule ARGS|REQUEST_HEADERS "phase:2, id:101, exec:/

scripts/predictor.lua"

SecRule WAFBlockStatus "@streq 1" severity:ERROR, deny,

status:403

Algorithm 3.8: ModSec Lua Script

1 −− main.lua

2 start Procedure

3 py = require ’python’

4 predictor = py.import " rfcpredictor ". predictor

5 predictor (ARGS)

6 end procedure

The key reason we’re going this way is because of the best results we could get by running

Lua scripts.2

• Performance: Lua itself is a minimalist language that includes as few libraries

as possible and a clearly defined code. The language has been structured with

efficiency and lightness in mind.

• No-recompilation: ModSecurity compiles the Lua script at the time of configura-

tion.

• Access to all context variables in ModSecurity: Inside the lua script, We can control

all of the ModSecurity variables that are being propagated to the process of running

our script and if we manually set some custom variables within ModSecurity, we’ll

get them as well.
2Gryzil, "ModSecurity – Using Lua scripts with ModSecurity", 2015. [Online]. https://

gryzli.info/2015/12/25/modsecurity-using-lua-scripts-with-secrulescript/ Accessed:
20 February, 2020

42

https://gryzli.info/2015/12/25/modsecurity-using-lua-scripts-with-secrulescript/
https://gryzli.info/2015/12/25/modsecurity-using-lua-scripts-with-secrulescript/

• Plus ModSecurity integration: We could also set the variables that will be visible

in other ModSecurity rules.

• Another function is that we can write logs directly from our Lua script in the

Apache error file.

3.5 Terminologies

In the experimentation phase of machine learning classifier i.e. Random Forest, the fol-

lowing plots were created:

3.5.1 Confusion Matrix:

A confusion matrix is the method used to determine the execution of a characterization

calculation. Certainty of the classification alone may be deceptive in the event that you

have more than two classes in your dataset. The complete structure of confusion matrix

is shown in figure 3.6.

Figure 3.6: Confusion Matrix

Recognizing a matrix of uncertainty will give you a clearer understanding of what your

definition means is getting correct and what the redundancies are in achieving your ob-

jectives. .

43

The confusion matrix is a reduction in the impact of expectations on the classification

problem. The quantity of right and wrong expectations is reduced by count values and

divided by each class. This is the step to the matrix of confusion. Confusion matrix gives

you the errors of your designed model as well as the kind of errors too. Fig. 5.3 shows the

detailed confusion matrix. To understand a confusion matrix, following are the relevant

terms that must needs to be understood.

• False Positive: Incorrectly predicted event values.

• True Positive: Correctly predicted event values.

• False Negative: Incorrectly predicted no-event values.

• True Negative: Correctly predicted no-event values.

To calculate the values for this confusion matrix, following are the important formulas.

Accuracy =
TruePositive + TrueNegative

TotalSamples
(3.5.1)

Accuracy is the percentage of how much correctly the classifier algorithm is working.

Equation 3.5.1 is used to calculate the accuracy of an algorithm.

ErrorRate =
FalsePositive + FalseNegative

TotalSamples
(3.5.2)

Misclassification or Error rate is the percentage of how much the classifier went wrong.

Misclassification rate can be calculated using equation 3.5.2.

TruePositiveRate =
TruePositive

ActualPositive
(3.5.3)

TPR is also known as sensitivity or recall and can be calculated using equation 3.5.3.

Further, few important values (False Positive Rate, Specificity, Precision, and Prevalance)

44

can be calculated using equations 3.5.4,3.5.5,3.5.6,3.5.7.

FalsePositiveRate =
FalsePositive

ActualNegative
(3.5.4)

Speci f icity =
TrueNegative

ActualNegative
(3.5.5)

Precision =
TruePositive

Predicted Positive
(3.5.6)

Prevalance =
ActualPositive
TotalSamples

(3.5.7)

Figure 3.7: Detailed Confusion Matrix

45

3.5.2 Receiver Operation Characteristics (ROC):

Receiver Operation Characteristics enlightens us regarding how best the model can rec-

ognize two things. Better models can precisely recognize the two. Though, poor models

will experience issues in recognizing the two. To plot ROC, we use sensitivity and speci-

ficity. Both these variables, sensitivity and specificity, are in inverse relationship to each

other. As specificity increases, sensitivity decreases and vice versa.

But that is not how we plot ROC curve. To plot ROC curve, we use (1-Specifity) instead

of just using specificity. So, now when the specificity increases, (1-Specifity) also in-

creases. The plot drawn again sensitivity and (1-Specifity) is known as a ROC curve.

Figure 3.8: Case 1 AUC ROC

AUC is the area under the ROC curve. AUC gives us the good idea of how well the model

performs.

In figure 3.8 case 1 illustrates an ideal case of AUC ROC where the model does quite a

good job of distinguishing the positive and negative values. Therefore, there the AUC

value is 0.9 as of the large area under the ROC curve.

46

Figure 3.9: Case 2 AUC ROC

In figure 3.9 it can be seen that there are few positive and negative values overlapping

each other due to which the AUC has decreased its value to 0.7.

Figure 3.10: Case 3 AUC ROC

In the above figure 3.10 it can be seen that the last model predictions are overlapping each

other and we get the AUC value of 0.5. This means that the model is performing very

poorly. AUC ROC curve assesses how well the probabilities from the positive classes are

isolated from the negative classes.

47

3.6 Summary

A brief introduction to our proposed approach is discussed in this chapter. We have also

discussed the algorithms which we used in it. Overall this chapter covered the steps of

how we achieved thesis objective.

48

Chapter 4

Approach Evaluation and Results

4.1 Introduction

The findings and assessment of this thesis are covered in this chapter. There will be used

few diagrams and figures which already discussed in previous chapter. It discusses the

findings and results which helps in answering our following research questions and the

explanation will be kept as simple as possible to allow a reader to good understanding:

• RQ1

SecurityAnalysis

Is ModSecurity or pattern-based web application firewall detect/block all kind of

malicious payloads/attacks? Can we bypass it?

• RQ2

Mitigation

Can we mitigate web attacks by integrating machine learning in web application

firewalls?

4.2 Evaluation

We generated almost 735586 of inputs consisting of both benign and malicious data using

our input generator tool. Our malicious generated inputs contains all possible combina-

tions of tags, functions and commands with encoding and padding as shown in table 4.1.

49

In first step, we access web application with our generated inputs to see which input get

through the ModSec web application firewall and which successfully blocked. In second

step, we will convert our inputs into slices, derive structure policy from the inputs which

successfully pass the web firewall and then tune data accordingly. After Data tuning we

will train our machine learning classifier. i.e. Random Forest Classifier.

50

Table 4.1: Result: Fuzzy Input Generator

Sr. Payload

1. 127.0.0.1 & arp

2. 127.0.0.1 & ar$@p

3. 127.0.0.1 & at$@ma$@dm$@

4. 127.0.0.1 & certreq

5. 127.0.0.1 & ce$@rt$@re$@q

6.

7. %3CA%20onkeyup%3D%22%23%22%20%3E%20

8.

9. %3CA%20href%3D%22%23%22%20%3E%20

10. <ABBR href="#" >

11. or 1=1

12. or 2 > 1

13. ")) or benchmark(10000000,MD5(1))#

14.) or (a=a

15. uni/**/on sel/**/ect

16.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///etc/shadow" >]>
<xoo>&myxxe;</xoo>

17.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///c:/boot.ini" >]>
<xoo>&myxxe;</xoo>

18.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///c:/boot.ini" >]>
<xoo>&myxxe;</xoo>

*All generated inputs are already uploaded on Github under JinD3vi1/WAFFuzzyInputs.

51

4.3 Results

4.3.1 Security Analysis of ModSec Web Firewall

RQ1: Is ModSecurity or pattern-based web application firewall detect/block all

kind of malicious payloads/attacks? Can we bypass it? When we accessed web

application with our generated fuzzy inputs, 514908 out of 735586 inputs bypassed Mod-

Sec web firewall as shown in table 4.2. 231702 out of 514908 payloads were malicious.

Though some of payloads were useless because they are of incorrect combination but

malicious terms in them should also be blocked by a good web application firewall.

We filtered obtained results using WAFBlockStatus and from there we got the list of

inputs that bypassed the ModSec web firewall as shown in table 4.3. From that list we

can easily target our web application with Phishing, HTMLi, Commandi, and XXE at-

tacks. We have manually tested some of our inputs from obtained filtered list. From those

malicious inputs, we can easily target our web application running behind ModSec web

application firewall. Under this test Mod Security performed 55%. Our results showed

that we can cheat pattern-based firewalls with new and complex type of payloads or ma-

licious strings. An attacker can learn the pattern by using similar approach and then can

easily target policy-based web application firewall. Hence, it showed that pattern-based

web application firewalls are not efficient against zero day attacks and totally dependent

on attack patterns.

52

Table 4.2: Result: Web Application Firewall Analyzer

Sr. Payload WAFBlockStatus

1. 127.0.0.1 & arp Block

2. 127.0.0.1 & ar$@p Pass

3. 127.0.0.1 & at$@ma$@dm$@ Pass

4. 127.0.0.1 & certreq Block

5. 127.0.0.1 & ce$@rt$@re$@q Pass

6. Block

7. %3CA%20onkeyup%3D%22%23%22%20%3E%20 Block

8. Pass

9. %3CA%20href%3D%22%23%22%20%3E%20 Pass

10. <ABBR href="#" > Pass

11. or 1=1 Block

12. or 2 > 1 Block

13. ")) or benchmark(10000000,MD5(1))# Block

14.) or (a=a Block

15. uni/**/on sel/**/ect Block

16.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///etc/shadow" >]>
<xoo>&myxxe;</xoo>

Pass

17.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///c:/boot.ini" >]>
<xoo>&myxxe;</xoo>

Pass

18.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///c:/boot.ini" >]>
<xoo>&myxxe;</xoo>

Pass

53

Table 4.3: Result: WAFBlockStatus Filtered List

Sr. Payload WAFBlockStatus

1. 127.0.0.1 & ar$@p Pass

2. 127.0.0.1 & at$@ma$@dm$@ Pass

3. 127.0.0.1 & ce$@rt$@re$@q Pass

4. Pass

5. %3CA%20href%3D%22%23%22%20%3E%20 Pass

6. <ABBR href="#" > Pass

7.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///etc/shadow" >]>
<xoo>&myxxe;</xoo>

Pass

8.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///c:/boot.ini" >]>
<xoo>&myxxe;</xoo>

Pass

9.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///c:/boot.ini" >]>
<xoo>&myxxe;</xoo>

Pass

4.3.2 Mitigation of Web Attacks using Machine Learning

RQ2: Can we mitigate web attacks by integrating machine learning in web appli-

cation firewalls? Our analysis of ModSec web firewall showed that any pattern based

firewall is unable to detect web attack whose pattern or policy is not predefined in it. In

this modern world of information technology where time is vital and only timely pre-

vention/detection of cyber attacks can safe a system from harm. This supports the need

for web application firewalls to be combined with any machine learning solution to com-

bat web attacks. In our approach, we used a machine learning classifier named Random

Forest Classifier to mitigate such web attacks. We focused on the structure of malicious

inputs or in short our approach validates user inputs using random forest classifier. For

this, we have to split the malicious inputs into predefined slices using our Slice Mapper

54

tool which helps us in its validation or structure recognition as shown in table 4.4.

After slicing the inputs, we observe the malicious input structure and define web appli-

cation firewall block policy for our Data Tuner tool which tune our malicious input data

that bypassed the Mod Security web application firewall. It change the WAFBlockStatus

using our policy from Pass to Block i.e 0 to 1 as shown in table 4.5. This helps us to train

our random forest classifier with accurate dataset.

55

.

Table 4.4: Result: Slice Mapper

Sr. s1 s2 s3 s4 s5 s6 s7 s8 WAFBlockStatus

1. 1 1 1 0 0 0 0 0 1

2. 1 0 1 0 0 0 0 1 0

3. 1 0 1 0 0 0 0 1 0

4. 1 1 1 0 0 0 0 0 1

5. 1 0 1 0 0 0 0 1 0

6. 0 1 0 1 1 1 1 0 1

7. 0 1 0 1 1 1 1 0 1

8. 0 1 0 1 1 1 1 0 0

9. 0 1 0 1 1 1 1 0 0

10. 0 1 0 1 1 1 1 0 0

11. 1 1 0 0 0 1 0 0 1

12. 1 1 0 1 0 0 0 0 1

13. 1 1 0 1 1 0 1 0 1

14. 1 1 0 1 1 1 0 0 1

15. 0 1 0 1 0 0 0 1 1

16. 0 1 1 1 1 0 1 1 0

17. 0 1 1 1 1 0 1 1 0

18. 0 1 1 1 1 0 1 1 0

*Above is the slice map of inputs shown in table 4.2.

56

Let’s observe the structure of our malicious inputs attack-wise which bypassed the Mod-

Sec web application firewall i.e. shown in table 4.3 and make general policy for our data

tuner.

Command Injection Observe the slices of malicious inputs of Command injection

attack which should be block by web application firewall and mark Block in WAFBlock-

Status as shown in table 4.5

Table 4.5: Result: Commandi Malicious Inputs

Sr. Attack Inputs WAFBlockStatus

1. 127.0.0.1 & ar$@p Pass

2. 127.0.0.1 & at$@ma$@dm$@ Pass

3. 127.0.0.1 & ce$@rt$@re$@q Pass

Sr. Slices WAFBlockStatus

1. s1, s3, s8 Block

2. s1, s3, s8 Block

3. s1, s3, s8 Block

HTML Injection Observe the slices of malicious inputs of HTML injection attack

which should be block by web application firewall and mark Block in WAFBlockStatus

as shown in table 4.6

57

Table 4.6: Result: Commandi Malicious Inputs

Sr. Attack Inputs WAFBlockStatus

1. Pass

2. %3CA%20href%3D%22%23%22%20%3E%20 Pass

3. <ABBR href="#" > Pass

Sr. Slices WAFBlockStatus

1. s2, s4, s5, s6, s7 Block

2. s2, s4, s5, s6, s7 Block

3. s2, s4, s5, s6, s7 Block

Xml External Entity Similarly, observe the slices of malicious inputs of XML external

entity(xxe) attack which should be block by web application firewall and mark Block in

WAFBlockStatus as shown in table 4.7

58

Table 4.7: Result: Commandi Malicious Inputs

Sr. Attack Inputs WAFBlockStatus

1.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///etc/shadow" >]>
<xoo>&myxxe;</xoo>

Pass

2.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///c:/boot.ini" >]>
<xoo>&myxxe;</xoo>

Pass

3.
<!ELEMENT xoo ANY >
<!ENTITY myxxe SYSTEM "file:///c:/boot.ini" >]>
<xoo>&myxxe;</xoo>

Pass

Sr. Slices WAFBlockStatus

1. s2, s3, s4, s5, s7, s8 Block

2. s2, s3, s4, s5, s7, s8 Block

3. s2, s3, s4, s5, s7, s8 Block

After deriving our policies for data tuner by observing the slices of fuzzy malicious inputs

which bypassed the ModSec web application firewall, we are ready to tune our dataset

using our Data tuner tool as shown in table 4.8.

59

.

Table 4.8: Result: Data Tuner

Sr. s1 s2 s3 s4 s5 s6 s7 s8 WAFBlockStatus

1. 1 1 1 0 0 0 0 0 1

2. 1 0 1 0 0 0 0 1 1

3. 1 0 1 0 0 0 0 1 1

4. 1 1 1 0 0 0 0 0 1

5. 1 0 1 0 0 0 0 1 1

6. 0 1 0 1 1 1 1 0 1

7. 0 1 0 1 1 1 1 0 1

8. 0 1 0 1 1 1 1 0 1

9. 0 1 0 1 1 1 1 0 1

10. 0 1 0 1 1 1 1 0 1

11. 1 1 0 0 0 1 0 0 1

12. 1 1 0 1 0 0 0 0 1

13. 1 1 0 1 1 0 1 0 1

14. 1 1 0 1 1 1 0 0 1

15. 0 1 0 1 0 0 0 1 1

16. 0 1 1 1 1 0 1 1 1

17. 0 1 1 1 1 0 1 1 1

18. 0 1 1 1 1 0 1 1 1

60

After tuning our dataset, we are ready to train Random Forest classifier. Now, we have

both benign and malicious inputs along with WAFBlockStatus in our dataset which is

converted into our pre-defined slices. We have divided our dataset in two parts i.e. i.

60% for training and 40% for validation of classifier. We have used python script for our

Random forest classifier. Following are some graphs and images showing the results of

our ML-classifier:

Figure 4.1: Tree 1

61

Figure 4.2: Tree 2

Figure 4.3: Feature Importance

62

Figure 4.4: Confusion Matrix

Figure 4.1 and 4.2 are showing the two trees from our Random Forest while figure 4.3

shows feature importance and figure 4.4 shows the confusion matrix of our classifier.

Accuracy =
T P + T N

Total
=

144345 + 147253
293964

= 99.19%

ErrorRate =
FP + FN

Total
=

2353 + 13
293964

= 0.80%

Precision =
T P

Predicted Positive
=

144345
293964

= 98.39%

63

Recall =
T P

Actual Positive
=

144345
144358

= 99.99%

Above are some performance measuring stats obtained from validation dataset which re-

flects the performance of our random forest classifier. Hence, it shows that by integrating

the machine learning based input validation module with any web application firewall we

can mitigate web attacks up to 99%.

Figure 4.5: CorrelationMatrix

Validation Curve The figure 4.6 shows that we can achieve classifier accuracy up to

99% with minimum of 20 trees in the forest.

64

Figure 4.6: ValidationCurve

4.4 Summary

The security concerns that revolve around securing the data in web application framework

has been discussed in this chapter. After analysis, conclusion has been made that policy-

based firewalls are not efficient nor good against zero day attack. They must have pattern

defined for all type of web attacks to counter them. Their misconfiguration or a missed

policy can lead to a serious web attack on web application which may also results in data

breach. Hence, our approach of machine learning based input validation can validate all

input strings irrespective of any pre-defined web attack pattern before passing it to web

application. This type of input structure based validation can easily counter malicious

strings and can secure a web application against many sophisticated web attacks.

65

Chapter 5

Discussion, Conclusion and Future

Work

5.1 Introduction

Within this chapter , we will discuss results produced during experiment. Later, answer

of research questions that were mentioned in the first chapter will be covered. At the end,

future work that could be carried out from this research work will be suggested.

5.2 Discussion

Services over web is an emerging technology that has attracted the focus of many com-

puter scientists and engineers in its domain of research for the development of web appli-

cation security based on machine learning approach. Many organizations have adapted

delivery of services over web. But other than its demand, many organizations are con-

cerned about the security its security and web application is the only option for them.

In this thesis, work has been done to prevent web attacks using a machine learning ap-

proach. Attack Detection is based on two methods; either it is done using the signatures

of known attacks or by analysing the structure of inputs. This work has focused on the

second approach, that is structure based analysis of web inputs. In web attack detec-

tion, many researchers have been working on the signature-based firewall. Very few

researchers have targeted this domain of detecting structure of malicious inputs because

66

of the inherited challenges. In this work, many challenges like reducing the errors, reduc-

ing false negative and the overall better performance of a web firewall have been focused.

Machine learning approach have been carried out to achieve the expected results and af-

ter achieving those expected results a framework has been proposed that will be perfect

to be integrate with a web application firewall.

5.3 Conclusion

This study has focused on a vulnerable web application services environment running

behind open source ModSec web firewall. The analysis of some of the known web attacks

on web services in the presence of ModSec firewall has been done along with a proposed

machine learning based solution to counter such attacks. This thesis was started with

few research questions. So, this conclusion will be done with answering those research

questions. The answers of those questions are numbered in the same sequence as the

questions were numbered in chapter 1.

1. After an exhaustive research and studying multiple papers, security challenges and

concerns has been discussed in detail to give reader a deep insight of all the chal-

lenges that could be faced by a web application user.

2. Yes, we can cheat pattern based web firewall with sophisticated inputs. This work

has adapted fuzzy logic technique to generate all possible combination of malicious

attack inputs and from the results it can be concluded that we can cheat traditional

web firewall policy.

3. Detailed security analysis has been done to select the best approach to be used

to get the desired results. After studying papers and doing the literature review,

machine learning techniques were finalized to be used in our work. Among all

machine learning techniques, a detailed study of machine learning classifiers was

done. Later, Random forest classifier was chosen to be used as our mitigation

approach.

WAFs assume a significant job to secure web applications. The rising new types of web

attacks and their complexity/advancement necessitate that firewalls must be advanced

67

and updated consistently to make it possible to secure web application against complex

and zero-day attacks.

In this thesis, we have analyzed the security of ModSecurity a famous open source web

application firewall against some well-known web attacks. We used fuzzy payload tech-

nique to generate malicious payloads and then tried to access web application protected

by ModSecurity. After accessing and getting the WAF block status, we filtered the pay-

loads which bypassed the WAF. We have noticed that we can easily target web applica-

tion protected by ModSecurity with external entity(xxe), cross site scripting(xss), html

and command injection attacks with fuzzy payloads techniques. Those payloads cheated

ModSecurity because they haven’t matched any of ModSecurity pattern also known as

core rule sets. The overall recorded performance of ModSecurity against fuzzy payloads

remained up to 55%.

The second part of our thesis covered its mitigation using a machine learning classi-

fier named Random Forest. We trained the classifier with both benign and malicious

payloads along with the desired WAF block status. We got up to 99% results in our val-

idation dataset. In the digital war, time is vital. Hence, our approach showed that if we

integrate machine learning based detection/validation module with any traditional WAF

i.e. policy based we can improve its performance up to 92%.

5.4 Future Work

In the future research, we will focus on self-testing and self-healing of the web applica-

tion firewall. This will include self-generation of fuzzy payloads and its self-testing and

learning process. In this modern era, our firewalls should be enough intelligent to test

itself and look for loop holes it has and also a self-healing module to counter such loop

holes.

68

5.5 Summary

This chapter covered the discussion and conclusion that answers the research questions

of this thesis. Later, future work of this research is covered. Future work includes few

suggestions for future researchers who are willing to contribute in this domain.

69

List of Abbreviations and Symbols

Abbreviations

WAF Web Application Firewall

DVWA Damn Vulnerable Web Application

OWASP Open Web Application Security Project

CRS Core Rule Sets

HTMLi Hyper Text Transfer Protocol Injection

Commandi Command Injection

XSS Cross Site Scripting

XXE Extensible Markup Language External Entity Injection

ModSec Mod Security

CSP Cloud Service Provider

MU Malicious User

TU Trusted User

DDOS Distributed Denial of Service

IDS Intrusion Detection System

IPS Intrusion Prevention System

IT Information Technology

70

IS Information Security

API Application Programming Interface

NIST National Institute of Standards and Technology

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

MAC Mandatory Access Control

LAN Local Area Network

AI Artificial Intelligence

ML Machine Learning

ANN Artificial Neural Network

MLP Multi Layer Perceptron

CE Cross Entropy

ROC Receiver Operation Characteristics

MSE Mean Squared Error

TPR True Positive Rate

TNR True Negative Rate

FPR False Positive Rate

FNR False Negative Rate

AUC Area Under Curve

71

References

[1] OWASP.org, “OWASP ModSecurity Core Rule Set”. [Online]. Available:

https://owasp.org/www-project-modsecurity-core-rule-set/ [Accessed: 20-Dec-

2019]

[2] Modsecurity.org, “Mod Security open source web application firewall”. [Online].

Available: https://www.modsecurity.org [Accessed: 2- Dec-2019]

[3] Sonti Likitha, Korvi Raja Sekhar, Pasumarthy Sudeep, “Designing Security Cheat

sheet for Mod Security Firewall tool” in International Journal of Engineering and

Advanced Technology (IJEAT) 2019. 2019

[4] Chandan Kumar, “4 Open Source Web Application Firewall”, 2019. [On-

line]. Available: https://geekflare.com/open-source-web-application-firewall/ [Ac-

cessed: 2-Jan-2020]

[5] High tech security team, “Patching Complex Web Vulnera-

bilities Using ModSecurity WAF”, 2016. [Online]. Available:

https://www.immuniweb.com/blog/patching-complex-web-vulnerabilities-using-

modsecurity-waf.html [Accessed: 2-Jan-2019]

[6] D. Appelt, C. D. Nguyen, and L. Briand, “Behind an application firewall, are we

safe from sql injection attacks?” in Proc. IEEE 8th Int. Conf. Software, Testing,

Verification Validation, 2015.

[7] Wichers, D.: OWASP Top Ten Project. https://www.owasp.org/ (2017),[Online;

accessed 12-January-2020]

[8] J. Offutt, Y. Wu, X. Du, and H. Huang. “Bypass testing of web applications”.

72

In Software Reliability Engineering, 2004. 15th International Symposium IEEE,

2004.

[9] H. Liu and H. B. Kuan Tan. “Testing input validation in web applications through

automated model recovery”. Journal of Systems and Software, 2008.

[10] Michal Srokosz, Damian Rusinek, Bogdan Ksiezopolski, “A new WAF-based ar-

chitecture for protecting web applications against CSRF attacks in malicious en-

vironment” in Proceedings of the Federated Conference on Computer Science and

Information Systems, pp. 391–395. 2018.

[11] A. D. Brucker, L. Brgger, P. Kearney, and B. Wolff. “Verified firewall policy trans-

formations for test case generation”. in Software Testing, Verification and Valida-

tion (ICST), 2010 Third International Conference IEEE, 2010.

[12] J. Hwang, T. Xie, F. Chen, and A. X. Liu. Systematic structural testing of firewall

policies. In Reliable Distributed Systems, IEEE, 2008

[13] E. Al-Shaer, A. El-Atawy, and T. Samak. Automated pseudo-live testing of fire-

wall configuration enforcement. Selected Areas in Communications, IEEE Jour-

nal, 2009.

[14] J. Jurjens and G. Wimmel. Specification-based testing of firewalls. In D. Bjørner,

M. Broy, and A. Zamulin, editors, Perspectives of System Informatics, volume

2244 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2001.

[15] D. Senn, D. Basin, and G. Caronni. Firewall conformance testing. In F. Khen-

dek and R. Dssouli, editors, Testing of Communicating Systems, volume 3502 of

Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2005.

[16] A. Jahan, M. A. Alam, “Intrusion Detection Systems based on Artificial Intelli-

gence,” IJARCS, 2017, pp. 705-708.

[17] IEEE Confluence Report, “Artificial Intelligence and Machine

Learning applied to Cyber Security”, 2017. [Online], [Re-

trieved September 2, 2018], https://www.ieee.org/content/dam/ieee-

org/ieee/web/org/about/industry/ieee_confluence_report.pdf

73

[18] Alrajeh, Nabil Ali, and Jaime Lloret. "Intrusion detection systems based on artifi-

cial intelligence techniques in wireless sensor networks." International Journal of

Distributed Sensor Networks 9.10 (2013): 351047.

[19] W. Halfond, J. Viegas, and A. Orso, “A classification of sql-injection attacks and

countermeasures,” in Proc. IEEE Int. Symp. Secure Softw. Eng., 2006, vol. 1, pp.

13–15.

[20] W. G. Halfond, S. Anand, and A. Orso, “Precise interface identification to improve

testing and analysis of web applications,” in Proc. 18th Int. Symp. Softw. Testing

Anal., 2009, pp. 285–296.

[21] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic creation of

SQL injection and cross-site scripting attacks,” in Proc. 31st Int. Conf. Softw. Eng.,

2009, pp. 199–209.

[22] Y.-F. Li, P. K. Das, and D. L. Dowe, “Two decades of web application testing: A

survey of recent advances,” Inf. Syst., vol. 43, pp. 20–54, 2014.

[23] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, “Fuzzing: The state of the art,”

DTIC Doc., Tech. Rep. DSTO–TN–1043, 2012.

[24] A. Petrowski and S. Ben-Hamida, Evolutionary Algorithms. New York, NY, USA:

Wiley, 2017.

[25] J. R. Quinlan, C4.5: Programs for Machine Learning, vol. 1. San Mateo, CA,

USA: Morgan Kaufmann, 1993.

[26] Kumar, Gulshan, Krishan Kumar, and Monika Sachdeva. "The use of artificial

intelligence based techniques for intrusion detection: a review." Artificial Intelli-

gence Review 34.4 (2010): 369-387.

[27] Naik, Nitin. "Fuzzy inference based intrusion detection system: FI-Snort." Com-

puter and Information Technology; Ubiquitous Computing and Communica-

tions; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and

Computing (CIT/IUCC/DASC/PICOM), 2015 IEEE International Conference on.

IEEE, 2015.

74

[28] S. Shamshiri, J. M. Rojas, G. Fraser, and P. McMinn, “Random or genetic algo-

rithm search for object-oriented test suite generation?” in Proc. Annu. Conf. Genet.

Evol. Comput., 2015, pp. 1367–1374.

[29] M. C repinsek, S.-H. Liu, and M. Mernik, “Exploration and exploitation in evolu-

tionary algorithms: A survey,” ACM Comput. Surveys, vol. 45, pp. 35, 2013.

[30] O. Tripp, O. Weisman, and L. Guy, “Finding your way in the testing jungle: A

learning approach to web security testing,” in Proc. Int. Symp. Softw. Testing

Anal., 2013, pp. 347–357.

[31] McCulloch, Warren S., and Walter Pitts. "The statistical organization of nervous

activity." Biometrics 4.2 (1943): 91-99.

[32] Hajimirzaei, Bahram, and Nima Jafari Navimipour. "Intrusion detection for cloud

computing using neural networks and artificial bee colony optimization algo-

rithm." ICT Express (2018).

[33] Gryzil, "ModSecurity – Using Lua scripts with ModSecu-

rity", 2015. [Online]. https://gryzli.info/2015/12/25/

modsecurity-using-lua-scripts-with-secrulescript/ Accessed:

20 February, 2020

[34] Rochster.edu, “Context Free Grammars”. [Online]. Available: https://

www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html

[Accessed: 3-Jun-2020]

75

https://gryzli.info/2015/12/25/modsecurity-using-lua-scripts-with-secrulescript/
https://gryzli.info/2015/12/25/modsecurity-using-lua-scripts-with-secrulescript/
https://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html
https://www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html

	Main Title
	Supervisor Certificate
	THESIS ACCEPTANCE CERTIFICATE
	Declaration
	Declaration
	Declaration
	Copyright Notice
	Abstract
	Contents
	INTRODUCTION
	Overview
	Purposes, Objectives and Research Findings
	Purposes
	Objectives
	Research Findings

	Motivation
	Problem Statement
	Research Contribution and Evaluation Process
	Organization of Thesis

	Review of Background & Literature
	Introduction
	Web Attacks
	Damn Vulnerable Web Application(DVWA)
	Firewall:
	Artificial Intelligence
	Brief History of AI

	Artificial Intelligence in Firewall
	
	Relevant Work
	Summary

	Approach
	Introduction
	Environment Setup
	Context Free Grammar for Web Attacks
	Python Tools
	Input Generator
	Web Application Firewall Analyzer
	Slice Mapper
	Data Tuner
	Random Forest Classifier Script
	Integration

	Terminologies
	Confusion Matrix:
	Receiver Operation Characteristics (ROC):

	Summary

	Approach Evaluation and Results
	Introduction
	Evaluation
	Results
	Security Analysis of ModSec Web Firewall
	Mitigation of Web Attacks using Machine Learning

	Summary

	Discussion, Conclusion and Future Work
	Introduction
	Discussion
	Conclusion
	Future Work
	Summary

	References

