
PARAMETRIZED ANALYSIS OF THE MOST WIDELY

USED CONSENSUS PROTOCOLS IN BLOCKCHAIN

By

Muhammad Ehsan Ullah Khan

A thesis submitted to the faculty of Department of Information Security,
Military College of Signals, National University of Sciences and Technology,

Islamabad, Pakistan, in partial fulfillment of the requirements for the degree of MS in
Information Security

Sep 2019

ii

ABSTRACT

Blockchain has caught the attention of both researchers and industrialists because of its

widespread growth in the last 10 years. What was started with decentralized immutable

ledger has now paved its way to decentralized, open access and self-organizing networks

and journey has just begun. These characteristics like decentralization, immutability, open

access, liveliness and trust are achieved through consensus protocol employed by specific

Blockchain. A consensus protocol allows a group of separate nodes to distribute the right to

update the system according to specific rules, amongst a set of participants, and in a secure

way. A plethora of such consensus protocols have been proposed since last few years. How-

ever, not all those protocols are as robust as others and existing systems in the same domains,

few offer higher security guarantees than others and have their unique performance charac-

teristics. One mechanism will not fit every envisaged application and use case of blockchain.

This mandates that such protocols be compared for their security and performance param-

eters to gain a comprehensive overview of their strengths and weaknesses. This research

covers a comparison of nine consensus protocols designed to operate in private, consortium

and public blockchain settings belonging to different eras of protocols design and enhance-

ments. Current research provides an overview of generic functioning of blockchain and a

summary and guideline for application developers to choose a consensus protocol for their

applications that best match their requirements and quick reference for those protocols for

the academia — doing so it also provides recent directions in consensus designing landscape.

Keywords

Blockchain Consensus, Distributed System Consensus, Blockchain System, Blockchain

Design, Asymmetric Cryptography, Hashing, Bitcoin, Nakamoto Consensus, Bitcoin-NG,

Proof of stake, Ouroboros, Proas, PBFT

iii

DEDICATION

This thesis is dedicated to

MY FAMILY, FRIENDS AND TEACHERS

for their love, endless support and encouragement

iv

ACKNOWLEDGEMENTS

I am grateful to God Almighty who has bestowed me with the strength and the passion to

accomplish this thesis and I am thankful to Him for His mercy and benevolence. Without

his consent I could not have indulged myself in this task.

v

TABLE OF CONTENTS

ABSTRACT ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

LIST OF FIGURES ix

LIST OF TABLES x

1 INTRODUCTION 1

2 What is Blockchain? 6

2.1 Terminologies . 6

2.1.1 Public Key Cryptography . 6

2.1.2 Cryptographic Hash . 8

2.1.3 Change Sensitive Data Storage . 9

2.1.4 Wallets . 10

2.2 Blockchain - How it functions? . 11

2.2.1 The Block . 11

2.2.2 The Chain . 12

2.2.3 The Network . 13

2.2.4 The Rules . 13

2.3 Consensus Mechanisms . 14

2.3.1 Consensus Families . 14

2.3.2 Consensus Evolution and Proposals 15

3 Selected Parameters 17

3.1 Security Parameters . 17

3.1.1 Adversary Tolerance Model . 17

3.1.2 Consensus Finality . 18

3.1.3 Forks Handling . 19

3.1.4 Puzzle Design and Design Goals 19

vi

3.1.5 ASIC Resisability . 20

3.1.6 Anonymity and Privacy . 20

3.1.7 CIA and Blockchain . 21

3.2 Performance Parameters . 21

3.2.1 Block Size . 21

3.2.2 Puzzle To Solve and Block Minting Mechanism 22

3.2.3 Scalability . 22

3.2.4 Operational Environment . 23

3.2.5 Imposed Restrictions . 23

3.2.6 Communication Model . 23

3.3 Generic Parameters . 23

3.3.1 Handling of Digital Assets . 23

3.3.2 Handling of Smart Contracts . 24

3.3.3 Incentive Mechanism . 24

3.3.4 Deployment . 24

3.3.5 Open Source and Related Projects 24

3.3.6 Documentation and Public Forums 25

3.3.7 Accessibility . 25

3.3.8 Blockchain Type . 25

4 Consensus Based on PoX Schemes 26

4.1 Proof of Work - Nakamoto Scheme AKA PoW 26

4.1.1 Working . 27

4.1.2 Security . 29

4.1.3 Performance . 31

4.1.4 Generic . 33

4.2 Proof of Work - Bitcoin-NG . 33

4.2.1 Security . 34

4.2.2 Performance . 36

4.2.3 Generic . 36

4.2.4 Suggested Improvement . 38

4.3 Ouroboros Genesis . 38

4.3.1 Working . 38

4.3.2 Security . 39

4.3.3 Performance . 41

vii

4.3.4 Generic . 42

4.4 Comparison . 43

5 Consensus Based on Voting Scheme 46

5.1 Practical Byzantine Fault Tolerance . 46

5.1.1 Working . 46

5.1.2 Security . 49

5.1.3 Performance . 50

5.1.4 Generic . 50

5.2 BFT-SMART . 51

5.2.1 Working . 51

5.2.2 Security . 52

5.2.3 Performance . 53

5.2.4 Generic . 54

5.3 Algorand . 54

5.3.1 Working . 54

5.3.2 Security . 56

5.3.3 Performance . 58

5.3.4 Generic . 59

5.4 Comparison . 59

6 Hybrid Conensus Family 62

6.1 Elastico . 62

6.1.1 Security . 63

6.1.2 Performance . 64

6.1.3 Generic . 66

6.2 OmniLedger . 66

6.2.1 OmniLedger Working . 66

6.2.2 Security . 68

6.2.3 Performance . 69

6.2.4 Generic . 70

6.3 ByzCoin . 70

6.3.1 Working . 70

6.3.2 Security . 72

6.3.3 Performance . 74

6.3.4 Generic . 75

viii

6.4 Comparison . 75

7 Blockchain Consensus Protocol for IoT 78

7.1 Why Blockchain for IoT? . 78

7.2 Consensus Algorithms for Blockchain for IoT 79

7.2.1 Practical Byzantine Fault Tolerance 80

7.2.2 OmniLedger . 81

7.2.3 Algorand . 82

7.2.4 Discussion . 83

8 Open Challenges and Proposed Architectural Solution 84

8.1 Open Challenges in Blockchain . 84

8.1.1 Enhancing Network Scalability 84

8.1.2 Reduction of Message Complexity for Classical BFT Protocols . . 84

8.1.3 Enhancing Transaction Scalability 85

8.1.4 Storage Limitations . 85

8.1.5 Reducing Computational Requirements 85

8.2 Proposed Architectural Solutions . 85

8.2.1 Side Chains . 86

8.2.2 Off Chains . 86

8.2.3 Sharding . 87

9 Conclusion 88

BIBLIOGRAPHY 89

ix

LIST OF FIGURES

2.1 Public Key Cryptography working . 7

2.2 Some random data and its truncated SHA1 hash 8

2.3 Merkle Tree . 10

2.4 Chained Hashes for Tamper Evident Data Storage 10

2.5 Transaction Generation and Validation . 12

2.6 Block Structure . 12

3.1 Fork Creation - Competing Chains . 19

4.1 Bitcoin Mining Pools . 32

4.2 Scaling impact of More Computational Power — Hardware 33

4.3 Impact of varying number of blocks on Bitcoin-NG’s Latency 37

4.4 Bitcoin-NG Incentive for Miners . 37

5.1 Practical Byzantine Fault Tolerance Benefits Replication 47

5.2 Practical Byzantine Fault Tolerance - Simplest Implementation 47

5.3 Practical Byzantine Fault Tolerance - Normal Case Operation 48

5.4 BFT SMART Normal Operation . 51

6.1 Elastico’s Linear Scalability . 65

6.2 OmniLedger Throughput (Copied from [68]) 69

6.3 ByzCoin Design . 72

x

LIST OF TABLES

4.1 A Comparison of PoX Protocols . 45

5.1 A Comparison of Consensus Protocols Based on Vote Methodology 60

6.1 A Comparison of Hybrid Family Protocols 77

7.1 Node Types based on their Capability . 79

7.2 Suitability of various consensus protocols for IoT 80

xi

Chapter 1

INTRODUCTION

Blockchain has been heralded as a disruptive innovation that will impact every sphere of our

lives by providing a trustworthy service to people and businesses that may or may not fully

trust each other. It is promised to revolutionize the business and the industry. Blockchain

based crypto currencies and initial coin offerings (ICOs) crossed over $225 billion in the

global market in 2019 [19] and expected huge growth in coming years due to its key charac-

teristics of integrity, resilience and transparency. Blockchains are instances of decentralized,

immutable replicated state machines providing a transparent and tamper-evident log. Be-

ing immutable, data on a blockchain can not be tampered. Any network participant node

(client) can access it by joining the chain network and verify its correctness either by down-

loading the entire chain or through other full nodes operating in the reference blockchain

network. To create a transaction, a node generates a transaction and submits it to the refer-

enced blockchain network. Full nodes on the blockchain will process that transaction. If the

transaction meets the rules specified by the chain, state of the replicated state machine will

change, and the transaction will be added to the chain in a block. A crucial significance of

this architecture is disintermediation operating under a partially synchronous environment.

Based on the operational environment of the blockchain (private, consortium or public),

trusted, semi-trusted or untrusted parties directly and transparently interact to update the

system state.In case of public and consortium blockchains, multiple parties can update the

system, and all those parties can do that at the same time. That is when a node receives two

transactions generated at the same time, it has to agree on ordering for those transactions

to process further. Thus, the problem of total ordering [32] and consistency of data sets

may arise in such systems. If we further boil down the total ordering problem, we need to

achieve two properties for each transaction to process it. These properties are liveness and

safety [50]. Liveness property ensures that every request from a honest node eventually gets

processed where as the safety property insures that if one of the honest node on the network

accepts a transaction as correct, then all other honest nodes on the network also accepts that

1

transaction as a valid transaction.

These plausible characteristics of total ordering and immutability in a distributed system are

primarily a function of distributed consensus and owe a rapidly developing landscape. Es-

pecially after academia and industry discussed the limitations of Bitcoin, a plethora of new

proposals emerged aimed at enhancing transaction throughput and maintaining security at

least that of Bitcoin. However, only a few of these proposals got implemented and mostly

sacrificed one property for the other or made unrealistic assumptions. Right after the Bitcoin,

new proposals were mostly suggested for the public blockchains to operate in open settings

where anyone can join the network and can take an active part in the decision making for

the next blocks to be added to the chain. This required those to scale to the network. To

achieve this network scalability, similar to Bitcoin, most of the protocols sacrificed the per-

formance that is reduced the transaction throughput. Though it was better than the Bitcoin,

these reduced the complexity of the cryptographic puzzle and reduced the security. Also,

these protocols have to work in a partially synchronised environment like the internet. Thus

to ensure that all the transaction finally gets added to the chain, these introduced high trans-

action latency. On the other hand, blockchain proposals for closed settings like Hyperledger

Fabric use the classical Practical Byzantine Fault Tolerance consensus protocol. It offers

very high transaction throughput but limited network scalability and security. Latest trends

on consensus landscape have shown proposals those either propose a new design like proof

of stake, or modify existing protocol without compromising security like Bitcoin-Ng or lay-

ered architecture for consensus using both proof of X and classical byzantine fault tolerant

techniques or using shards with proof of X protocols to enhance the transaction throughput.

Related Work Decentralized system are in use sine early 70’s. If all the nodes in the

system are honest and working correctly, then the entire network is in consistent state. But

problem occurs, if a nodes become faulty or an adversary joins the network. This node

may hold tampered data and propagate the same to others. This will lead entire system to

a non-consistent state and data has lasted out its credibility. In literature, this problem is

known as Byzantine General’s problem [72]. Few solutions were proposed to cater for this

problem. In literature this class of protocols is termed as classical Byzantine Fault Tolerance

(BFT) protocols[94]. However, all such solutions failed to achieve trust in the decentralized

systems.

2

It was until 2008, when Satoshi Nakamoto proposed a cryptocurrency titled ”Bitcoin” [82]

based on decentralized machines. This was the first time that anyone proposed a system that

was entirely constituent of non-trust systems without any trusted third party. And how the

system achieved trust and all other ideals of decentralized environment (correctness, consis-

tency, termination and total order)? The answer is, he proposed a new consensus protocol

for the decentralized system called ”Proof of Work” (PoW).

Bitcoin was a mega success. This lead to many other cryptocurrencies like Bitcoin Cash,

LiteCoin and hundreds of others generically known as Alt-Coins and decentralized applica-

tion environments like Ethereum [59] and Hyperledger [24]. These all relied on mechanisms

and consensus protocol offered by Bitcoin with few modifications to meet the specific needs

for the environment those systems work in.

A lot of research is taking place in making consensus more robust, secure and environment

friendly since last three years. However, no significant effort has been made to systemati-

cally compare the proposed / in use protocols with reference to some specific parameters

as mentioned in the aim. Most of the existing work that deals with consensus is either fo-

cuses blockchain use cases or some single aspect of the consensus e.g their effectiveness in

permissioned or permission less environment or some specific domain e.g in IoT. However,

few comparisons are also available like ”Enterprise Blockchain Platforms - A Comparison”

[17]. This article discusses the requirements of a good blockchain and compares Ethereum,

Corda and Hyperledger Fabric very generically for privacy issues and scalability capabili-

ties. Article titled ”A Comparison of Blockchain Platforms - Competitors” [20] describes

the relationship between scalability, security and decentralization. Author talks about Proof

of work and Proof of Stake with premises that only two out of security, scalability and de-

centralization can be achieved and not all three. A good comparison also has been done in a

report published by talentica [52]. This report compares the Bitcoin, Ethereum, Multichain

and Hyperledger Fabric for capabilities to handle digital currency, ability to perform in per-

missioned and permission less environments and its ease of adoption. Another good research

on consensus is titled ”SoK: Consensus in the Age of Blockchains” [13]. Authors discuss

how different consensus protocols achieve finality i.e reach consensus. Few surveys has also

been done like in ”An Overview of Blockchain and Consensus Protocols for IoT Networks”

3

[79] where author discusses whether a particular blockchain is suited for IoT or not. Some

recent surveys include [113] which discusses PoW based protocols under a proposed frame-

work and then discusses different PoS protocol methodologies and their strengths, and [107].

This survey extensively studies PoW based protocols, their strengths and weaknesses. It also

talks about PoS and Hybrid solutions based on PoW and PoS briefly.

Contribution This research aims at analytically comparing most famous consensus pro-

tocols in the blockchain domain against a set of parameters mentioned in 3 and there by

hinting the most useful consensus protocols for various applications based on parametrized

data for security against adversary, performance using throughput and latency. This does

not cover the entire spectrum, but covers the most studied protocols from following different

consensus families:

1. Proof of X based consensus protocols where probability of being elected as leader

to add new block to the blockchain is proportional to total resources invested in the

system like Proof of Work. These are designed mostly to work in open settings.

2. Vote based Classical Consensus have been designed to operate in closed settings with

established identities. These new transactions to the chain, if more than certain number

of nodes vote for the said transaction.

3. Hybrid Consensus protocols are composed of aforementioned categories and designed

mostly to operate in open settings.

A very brief introduction to few other consensus protocols and scalability issues is also

given besides enumerating few protocols for the Internet-of-Things devices. This makes it

possible for the readers to get a general overview about performance and security of different

protocols and lays a foundation for understanding the current and future developments on

consensus in the distributed computing specifically blockchains.

Organisation

. This thesis derives its organisation from above paragraph mostly. It starts by describing the

functioning of blockchain in a very generic fashion along with its building blocks in chapter

2 and culminates the chapter by showing the importance of consensus in the overall system.

In chapter 3, selected parameters have been discussed. Proof of X based protocols have

4

been discussed and compared in chapter 4. It covers Nakamoto consensus from Bitcoin,

Nakamoto consensus from Bitcoin-NG and proof of stake form Ouroboros family. Chapter

5 discusses protocols those reach consensus based on votes by validating nodes. It covers

Practical Byzantine Fault Tolerance protocol, BFT-smart and BA* from Algorand. Hybrid

of two aforementioned schemes have been discussed in chapter 6. It covers Elastico, Om-

niledger and ByzCoin. Elastico and Omniledger also benefit sharding. Chapter 7 hints on

various protocols best suited for the Internet of Things devices. Few other protocols have

been very generically discussed in chapter 8. This chapter also enumerates various open

challenges in the consensus spectrum. Finally, thesis work is concluded in chapter9

5

Chapter 2

What is Blockchain?

This chapter provides a high level view of the blockchain functionality and working. It

starts by discovering staple concepts required to understand the blockchain functionality.

culminates describing how those different modules fit in to achieve the common goal and It

culminates by describing importance of consensus in the entire process.

2.1 Terminologies

2.1.1 Public Key Cryptography

Cryptography is a science of securing digital information from access by unauthorized en-

tities. Two major operations of cryptography are encryption and decryption. Encryption is

to protect data by encoding it into some protocol specific format, whereas decryption is the

reverse of it and it decodes the encrypted data back to its original form. Metamorphically,

encryption is digital equivalent of a protecting something by locking it inside a some type of

container whereas decryption is unlocking that container. Encrypted data is called ciphered

text and unencrypted data is called plain text. Like in the real word, where keys are required

to lock and unlock the locks, keys are also required for encrypting and decrypting data. If

same key is used for both the purposes, then it is called symmetric key cryptography and

if different inter linked keys are used for encryption and decryption, then it is called asym-

metric cryptography or public key cryptography. Public key cryptography uses a pair of

complementing (related) keys. One key is derived from the other. Any one key is used for

encryption while the other linked key is used for decryption. In fig 2.1, two keys (pair of

complementing keys) are depicted labelled Key 1 and Key 2. These have been color coded

as blue and red respectively. Once the plain text ’MCS’ is encrypted with blue key, it yields

cipher text shown in blue box. However, when the same plain text is encrypted using red

key, it yields cipher text shown in red box.The two ciphered texts are different as those are

a function of the key used for encryption. Now, to decrypt the ciphered text, other key of

the pair is need. The key used to encrypt, can not be used for decryption. Which key is to

6

Figure 2.1: Public Key Cryptography working

be used for encryption and which key for the decryption is the owner’s choice. Thus in our

setting, to decrypt the red box, blue key is needed, whereas to decrypt the blue box, red key

is need. A single isolated key is of no use. It can only be used for encryption. This power

of asymmetric key distribution allows separating people into groups who are able to encrypt

data and other group who can decrypt the data. Based on the role these keys play, these are

given names. Typically these are referred as private and public keys. Public key as indicated

by the name, can be given to anyone irrespective of his trustworthiness. However, the private

key is to be kept safe and private.

Usage

Public to Private It allows information encryption using public and decryption using private

key. As the public key is available to everyone part of the system, any one can send the holder

of respective private key an encrypted message. Only the private key holder will be able to

decrypt the message. Hence, this use case allows anyone to send the information to owner

of the private key in a secured fashion. Private to Public It allows encryption using private

key and decryption using public key. Only the owner of private key will be able to create an

encrypted message where as anyone with the respective public key will be able to decrypt

it. It is similar to public notice board where only owner of private key publish the message

and all the entities with public keys can read it. Hence, this use case is mostly used to prove

7

authorship. This prove of authorship is mostly referred as Signatures. Once the owner of

the private key has encrypted the data, it is like it has placed its signatures on that data those

can be verified by anyone in the system.

2.1.2 Cryptographic Hash

A hash function transforms any size and kind of data into a fixed size output string. Cryp-

tographic hash functions are a special subgroup of hash functions. They meet following

properties and are used to digital fingerprint any data:

• Deterministic. Given the same data as input, those will always yield same output.

• One Way Functions. Function is non-invertible. That is we can only compute output

form the input string. From output, input can never be traced back.

• Collision Resistant. Probability that two different input will produce same hash is

almost negligible. If Hash(x1) = Hash(x2) then x1 and x2 should be the same.

• Pseudorandom. Output is entirely random. Even a single character change in input

will result in about 50% change in output (Avalanche Effect). Fig 2.2 shows SHA1

hash values for different random data. There is a difference of single character in Data

and Date. However, it can be seen that hash for Data and Date is completely different.

Figure 2.2: Some random data and its truncated SHA1 hash

From a top view, a hash function returns a fixed length hash (random string) for any arbitrary

length of data. But a closer look at hash program reveals that it can take a single input of

data within limits of an upper bound at a time, for example 256 kilo bits. So, how does it

produce hash for an arbitrary length. The answer is to utilize some data arrangement pattern

where input to hash function remains within the bounds, yet is able to calculate the hash for

entire data. The two interested patterns are:

8

• Sequential Hashing. It works by incrementally updating hash value. It takes hash of

the first piece of data in first round and for subsequent rounds, hash of the last round

and current data is combined to take the next hash. This way hash for entire data is

obtained.

• Hierarchical Hashing. Arrange data in an inverted tree fashion with data at leaves. At

every step combine two nodes and take there hash. Keep hashing until reach the top,

where only a single node is left. This node will represent the hash of the entire data.

2.1.3 Change Sensitive Data Storage

Data can be stored in a change sensitive fashion by storing data together with its hash refer-

ences, pointing to some other data. The referenced data in turn references some further data,

and so on. All the data is linked. If any data or the reference gets forged, all the references

from that point onward will break. These broken references serve as an evidence for the

forgery. Thus, hash references allow to store data in change sensitive manner.

Merkle Trees

Merkle trees [3] allows data arrangement in an inverted tree pattern. All the data is the leave

nodes. In fig 2.3 transactions are the actual data. Merkle trees are useful for grouping distinct

data that is all available at the time of processing it and to make it accessible via a single

hash reference. To generate the tree we arrange distinctive pieces of data at the leave nodes.

Each leave node is processed and its hash reference is created. In fig 2.3 these are labeled as

R1 to R4. The hash references created in last process are stored in groups at one level higher

than the leave nodes. This group of hash references is hashed again and stored in layer above

the current layer (R12, R34). This process continues until only one hash is obtained. This

hash represents the entire set of data. If any piece of data or reference is tampered, it will

invalidate the whole hash reference. Thus, a broken link is evident that some forgery has

been done since data creation. Otherwise, it can be concluded that integrity is maintained

that it has not been changed sine creation.

Chain of Hashes

A linked list or chain of linked data is formed once each piece of data holds a hash reference

to another piece of data. This type of struct is particularly useful once new data is contin-

9

Figure 2.3: Merkle Tree

uously being generated or complete data is not available at a given point. By checking the

hash of a particular block, integrity of data till that time can be ascertained. In fig 2.4 it can

Figure 2.4: Chained Hashes for Tamper Evident Data Storage

be seen that creation of chain starts with data D1 and it does not contain any hash reference.

However, once the new data arrives, it is concatenated to hash (R1) of the Data D1. The hash

reference R2 references a combined hash of Data D2 and Hash reference R1. Similarly, hash

reference R3 refers to combined hash of Data D3 and hash reference R2. The last reference,

R3 in this case, is generally known as head of the chain and refers to the most recently added

piece of data. Only head is needed to traverse the chain in reverse order[36].

2.1.4 Wallets

A wallet is a software application that helps managing an account on blockchain. It is a user’s

primary interface to underlying blockchain network. A crypto currency wallet does not

contain any coins (crypto currency) itself. It holds private keys 2.1.1 for the corresponding

10

me.tarar
Highlight

accounts and are used to create and sign transactions on the blockchain network. From a

application developer’s perspective, wallet is a data structure that is used to store and manage

a user’s keys [10]. Wallets can be categorized in different classes based on key derivation

mechanism and storage. Based on how new keys are derived, wallets are primarily of two

types namely non-deterministic wallet (Just a Bunch of Keys) and deterministic wallets. And

based on the storage medium used for storing keys, wallets can be classified as Software

wallets, Hardware wallets and cold storage wallets. Deterministic key derivation is preferred

over non-deterministic and hardware wallets are preferred over software wallets.

2.2 Blockchain - How it functions?

Structure of blocks, the transactions those make up these blocks and how these blocks are

chained may differ for different chains but the concept very generically speaking is almost

same for most of the existing blockchains. This section describes the general concept how

transactions happen, how those are grouped to make up blocks and finally the way those

are linked to form the chain of blocks, the blockchain. Bitcoin blockchain being the most

famous and the pioneer blockchain will act as reference for this section.

2.2.1 The Block

Transactions

A transaction is a message that entity A sends to entity B. Entity A sends the transaction/

message to entity B, by taking hash of its entire transaction that it received previously (can

be multiple), public key of the entity B, the recipient and then signing this hash using its own

private key. As the transaction propagates over the network it will be verified by the other

nodes especially the full nodes / miner nodes. If miner nodes find the current transaction

correct as per rules of the blockchain in use, it will propagate it further and will keep a copy

of it in its global cache sometimes referred as transaction pool or mempool in a time sensitive

fashion. This transaction will travel the network until it reaches the destination node and all

the mining nodes.

Block

Once mining nodes have received some transaction they will try to add it in new block.

Mostly existing blockchains run in epochs. All the transactions available in an epoch are

11

me.tarar
Highlight

Figure 2.5: Transaction Generation and Validation

added to the new block. Block usually has two portions namely a header and data portion

2.6. Data portion contains all transaction data to be added in current block where as header

contains combined hash of all the transactions in the data portion, hash of the last block and

any other data as per requirement of the referenced blockchains.

Figure 2.6: Block Structure

2.2.2 The Chain

Once the transactions has been added to the block, a mechanism is required to link the

current block to the old block in a chronological order. That is done by placing the hash

of last block in the header of the current block. Thus hash of the last block serves as the

12

me.tarar
Highlight

link for orderly arrangement of the blocks and as proof of data integrity till that point. As

the hash reference of the last block is actually a hash of data of last block and reference to

hash of its last block, that in turn is hash of data and hash of its last block, and so forth.

This way all blocks get linked and if a small change is made in the dataset, it will result in

breaking the entire link. Thus chain links the blocks in an orderly fashion along with proof

of tamper resistance. However, there will be the cases where two block will be generated

at the same time. At that moment, there will be two heads of the chain. It is termed as

soft fork in blockchain. After the fork, miners / validators have to decide for what chain to

extend on? There are different strategies used by various blockchains. Mostly, proof of work

based chains select the longest chain with reference to block zero (genesis block) having the

maximum computation done for finding the correct hashes.

2.2.3 The Network

Blockchain can be run on a network of computers or a single computer. But, to achieve the

goals like data immutability it must run in a distributed manner. Usually, peer to peer net-

work connectivity using distributed application architecture is considered as the best practice

for the blockchains. Each peer / node participates to achieve the common goal as per roles

assigned to it. The role a node performs, depends on nature of the blockchain environment.

In permission-less blockchains every node has equal rights, where as in closed blockchain

systems (private and consortium blockchains) few nodes perform more roles than others.

2.2.4 The Rules

Every node on a particular blockchain system obeys the set of rules defined in the code base

of that system. A blockchain may and may not have same rules. If there are two blockchains

with identical code base, then those chains are either competing chains (soft fork) 2.2.2 or

those must be running on exclusively different networks. However, if one alters the code

base and is able to participate in the same network as run by the nodes with un-altered code,

then such code bases have compatible rules. But there may be the cases where the nodes with

modified code will not be able to participate in the system run by nodes with unaltered source

code, in this case we say a hard fork has happened. This will lead to two completely different

blockchains with each having its own set of rules to verify and validate transactions.

13

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

2.3 Consensus Mechanisms

Consensus mechanisms are the backbone of blockchain. These provide a set of rules and

procedures to maintain a coherent state of blockchain amongst its participants. Literally con-

sensus means reaching an agreement. Wikipedia describes it as “Consensus decision-making

is a group decision-making process in which group members develop, and agree to support

a decision in the best interest of the whole.” [110] It is a vital requirement of distributed

systems to reach a single conclusion. Just like distributed systems, consensus mechanism

in blockchain allows a node or a group of nodes to securely update the blockchain (append

new blocks to the blockchain) using a predefined set of rules. Blockchain consensus outshine

traditional distributed system consensus by allowing distrusting nodes with pseudonymous

identities to reach eventual agreement while participant may join or leave the network over

time. Earlier for nodes to reach consensus those were supposed to have established identities.

Now that we know consensus definition, one ponders, why those are important in dis-

tributed systems? Consensus algorithms provide means where to handle byzantine faults

and fail stop fault. Fail stop faults prohibit system to participate in the consensus due to any

reason like due to power crash. Such type of fault tolerant systems do not cater for illegiti-

mate responses. Byzantine fault tolerant systems covers a super set of faults. Those do cater

for fail stop failures and nodes participating and providing illegitimate responses as well.

There are few algorithm those are designed to only handle only fail stop faults. An example

of such consensus algorithm is Raft [84]. But in blockchain and related architectures, mostly

the consensus algorithms are be byzantine fault tolerant.

2.3.1 Consensus Families

Consensus algorithms can be grouped in different families based on their intrinsic and extrin-

sic properties. Mostly those are classified on bases of environment those operate an extrinsic

property and the way those reach achieve consensus an intrinsic property. Based on the way

consensus are achieved, those can be classified as:

• Proof of X consensus. Proof of X consensus achieve consensus by allowing nodes

to validate transactions and add new block to blockchain with a probability that is

proportional to their invested resources in the blockchain system. These resources are

different for various blockchains. Proof of work and proof of stake are two major

14

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

consensus algorithms from this family and rely on computational resources and stakes

in the system, respectively.

• Vote based Consensus. In vote based consensus, validating nodes have voting power

associated to those. Those nodes cast their vote for the correctness. If the vote received

exceed some predefined limit then that transaction is taken as valid. Usually these

protocols have a leader to orchestrate the voting process and runs in phases. Two

famous algorithms from this family are Practical Byzantine Fault Tolerance and Smart

BFT.

• Hybrid Consensus based on PoX and Vote. These are hybrid of Proof of X and Vote

based consensus. These protocols use proof of x to select members with voting powers

and leader and then reach final consensus using some vote based consensus. It should

not be confused with other commonly referred hybrid protocols where it refers to a

hybrid of Proof of work and proof of stake protocols.

2.3.2 Consensus Evolution and Proposals

Need of consensus arose with invent of distributed systems where rather than a single au-

thority, multiple machines were involved in decision making. In 1982, paper titled ”The

Byzantine General’s Problem” [72] proposed a thought experiment to resolve byzantine be-

haviour. Paper discussed fictional Byzantine army and proposed a message mechanism for

the Byzantine army to reach a reliable decision provided 2
3

or more of its generals are hon-

est. First efficient and practical implementation for byzantine fault tolerant algorithm came

1999. It was titles ”Practical Byzantine Fault Tolerance” and it provided means for pro-

grammers to build secure and byzantine resilient distributed networks. Same year (1999),

proof of work was proposed [58]. However, it did not find any use beyond email spam han-

dling. Since then, various authors proposed different solutions. All such solutions targetted

private distributed network. However, with introduction of bitcoin’s Nakamoto consensus

(first major use of proof of work) in 2008 [82] for the public networks, the idea of byzantine

resilient consensus mechanisms got a new life and academia and industry around the globe

proposed numerous proposals and a diversity of algorithms for building consensus mecha-

nisms. These algorithms target various parameters like performance, security, consistency

and failure redundancy. All proposed and implemented solutions are based on trade offs.

15

Those target various settings and parameters. So far, there is no perfect consensus algorithm

and perhaps there will never be.

16

Chapter 3

Selected Parameters

This chapter identifies and describes relevant parameters for evaluation and comparison

of consensus algorithms in distributed computing and blockchain. These parameters are

grouped under three sections titled security, performance and general. Security parameters

define the security guarantees of a blockchain. It discusses adversary tolerance model, con-

sensus finality and ability to handle forks - thus the double spending. Section on performance

describes the parameters to judge the performance of a consensus algorithm. It includes pa-

rameters like protocols ability to scale both for number of nodes and transactions, operational

environment best suited for the algorithm to produce optimal results, block size and puzzle

to solve, if any. In section on general parameters, parameters that does not effect the secu-

rity and performance but are important while selecting a chain are discussed. It discusses

about availability of source code for the algorithm, deployment on major systems, incentive

mechanisms for joining network and staying honest.

3.1 Security Parameters

Security of a system is context specific. From a very traditional perspective it can be re-

garded as a combination of Confidentiality, Integrity and Availability [62, 12]. In some

other scenario, one can argue that security can be obtained from a combination of identifi-

cation, authentication and authorization. So context affects the requirements of security of

a system. Blockchains inherently provide integrity due to their immutable nature and avail-

ability being distributed system with data set replicated across multiple machines. Few may

argue that this replication will lead to a weak confidentiality and thus the overall security.

But in Blockchain, it is not. It is vouched as to provide transparency. When considering

blockchain security, usually following parameters are considered.

3.1.1 Adversary Tolerance Model

Similar to distributed systems, it is the maximum proportion of the underpinning resource of

the reference blockchain that adversary can orchestrate without jeopardizing the operation

17

of the reference blockchain. Number of honest nodes should be at least one more than

this fraction to produce true results in presence of dishonest malicious or byzantine nodes.

Mostly all the consensus algorithms define a threshold to operate consistently in presence of

a certain fraction of byzantine nodes to work correctly. Once this threshold is crossed, results

produced may not be true. A higher value is a desirable factor, as higher the threshold, more

resilient system is to adversarial / byzantine nodes.

3.1.2 Consensus Finality

Consensus Finality is a property that mandates that once a valid block has been appended

to the blockchain by any valid node in the network it can not be reverted. It heavily relies

on consensus design and is a function of threshold byzantine nodes a protocol can handle

for production of true results and minimum number of transactions required to be sure that

a transaction has been finalized in the blockchain. If we talk of bitcoin, it can tolerate upto

50% byzantine nodes and provides confirmation after 6 blocks. But if the byzantine nodes

are more than 50% then even those 6 blocks can be reverted, thus destroying finalized trans-

actions as well [49]. If we compare consensus finality to standard distributed computing,

for an atomic broadcast it is similar to total order and agreement properties [35]. Consensus

Finality impacts latency of the system and determines whether forks happen in a blockchain

system or not? It is crucial as it provides certainty whether a asset legally belongs to an entity

or not? It is especially important in financial sector where it maps directly to an economic

loss. In Proof of Stake term Economic Finality is also used that tells how much economic

loss will happen if some blocks get reverted.

There are two types of consensus finlalities in blockchain namely Absolute Finality and

Probabilistic Finality. Absolute Finality In absolute finality once a transaction is added

to the chain, it is immediately finalized. It will stay part of the chain forever. Probabilistic

Finality In probabilistic finality once a transaction is added to the chain, it is not immediately

finalized. Instead we wait for it to get deeper in the chain to be finalized. The more deeper

it get, there will be lesser chances that transaction get reverted. For Bitcoin it currently 6

blocks[42].

18

3.1.3 Forks Handling

Owing to decentralized data structure and latency in the network, all nodes may not have

consistent copy of the chain. Thus based on how early a node receives the newly created

block, it will have a different perspective of the chain at that time. Now lets imagine for a

moment that two nodes, node nA and node nB generated two blocks bA and bB simultane-

ously at the same time. After the block has been produced, it will be propagated immediately

to other neighboring nodes in the network who will incorporate int their copy of the chain

and will propagate the same block to other neighboring nodes. As the two blocks were pro-

duced at the same time, few nodes will have block bA as last block and few will have block

bB. Thus we can say a soft fork has happened in the network as there are two competing

chains with different last block. Every consensus algorithm should provide some rules to

Figure 3.1: Fork Creation - Competing Chains

handle such soft forks.

3.1.4 Puzzle Design and Design Goals

Puzzle Design Puzzle design defines mechanism of leader election. The elected leader adds

transactions to the block and then appends that block to the chain. In Proof of Work based

algorithms this selection is done using some kind of one way hash function and a challenge to

make the puzzle hard. Usually the one way function used is a non deterministic polynomial

time (NP) hard problem such as SHA-256. It is very easy to verify the output of the NP

hard function but not possible (at least not feasible as it requires brute forcing the entire

space) in polynomial time to go from output to input. In Proof of Stake it is based on stakes

in the system and in Byzantine Fault Tolerant Systems on some pre defined parameters.

Design Goal What puzzle is picked up for use in the algorithm is heavily influenced by the

19

environment system is to be deployed in and on some specific goals like scalability, hardness,

usability , ASIC resistance, environment friendliness, some contribution to mathematics or

may be some other.

3.1.5 ASIC Resisability

Application Specific Integrated Circuit (ASIC) is a silicon chip specifically designed to

perform a single task in an efficient way. ASIC Resisability is a desirable property for

blockchain as it mandates the core philosophy of blockchain decentralization. It will not

only provide all miners a fair playground but will hinder operation of large-scale ASIC

farms. Thus it can effectively impede formation of mining pools. Initially ASIC Resistant

algorithms used memory hard puzzles such as Scrypt where a large amount of memory is

required to solve the puzzle. However, as memory is becoming cheaper and cheaper and it is

also possible to manufacture nano scale circuits, ASICs have become available for memory

hard puzzles. Another approach suggested using chained hashing schemes such as X11 as

designing of multiple hashing functions on ASICs is not feasible. But ASIC miners have

become commercially available for such schemes as well. Another suggested approach to

achieve ASIC Resisability is using self-mutating puzzles. These puzzles change the under-

lying hard puzzle intelligently or randomly as function of time[14].

3.1.6 Anonymity and Privacy

Anonymity Oxford Advanced Learners Dictionary defines anonymity as ”the state of re-

maining unknown to most other people.” And it means ”Not named or identified” according

to Merriam-Webster. Most blockchains offer pseudo anonymity and achieve this by privately

assigning unique pseudo randomly generated keys to a user. A user can generate an many of

these private keys for himself as desired. These key are stored in software or hardware wal-

lets. Thus original identity of the user is masked behind multiple keys. However, due to pub-

lic nature of permission-less blockchains these identities only provide limited anonymity or

more precisely linkable identity. Many solutions have been proposed and implemented like

Coin Mixing [91] to enhance the anonymity but that is beyond the scope. PrivacyPrivacy

is strongly related to confidentiality and is a fundamental right of individuals. It defines

a person’s right to limit the degree to which it is willing to interact and share information

with the specified system. However, not all Blockchain especially permission-less provide

20

privacy. As these systems are transparent and all their transaction are announced publicly to

the system [9] thus allowing attackers to construct back individual identities[63]. In this the-

ses, we shall look for what all anonymity and privacy measures are supported by Blockchain

consensus.

3.1.7 CIA and Blockchain

Confidentiality, Integrity and Availability has not been included due to reasons specified

in below paragraphs. Confidentiality Confidentiality defines that unauthorized disclosure

of data should not take place. However, in case of public blockchains, those believe in

transparency where all data is available to all the full nodes in the network [89]. Identities

are hidden using some pseudonyms those can be easily traced back to original identities.

Also if symmetric or asymmetric cryptography is used for encrypting transactions, those

have to be decrypted at all nodes for smart contracts to run [114]. Integrity Integrity is a key

aspect of blockchain and defines inability of unauthorized systems or nodes to alter data in

some way . Immutability of blockchain transactions enhances with more blocks confirmed

to blockchain. Thus, it can be concluded that blockchains provide integrity property. Same is

true for the smart contracts. Availability Availability is readiness of a service for correctness

when required [12]. Data in blockchains are massively replicated, at least in case of public

blockchains. Thus there are thousand copies of same data available around the globe all the

times[85]. Thus it can be considered that there will be very less chances of non availability

unless a specific node or a collection of nodes comes under some kind of attack.

3.2 Performance Parameters

3.2.1 Block Size

Block size defines whether a blockchain mechanism defines the size of a block or its vari-

able.However, mostly all blockchain structures specify it. Provided the block interval is

fixed, block size impact the following:-

1. Throughput. Throughput is directly proportional to Block size as number of transac-

tions are dependent on it.

2. Capacity. Larger the block size, the capacity to transfer data will be increased as well.

21

3. Scalability. Increase in block size will increase in number of transaction thus system

making more scalable to today’s needs.

4. Security and Forks. Small block size will have very less number of transactions and

will be generated quickly, thus may lead to multiple soft forks. This in turn will lead

to more orphaned blocks that will impact transaction’s security.

5. Propagation. Larger the block size, slower the propagation.

6. Congestion. Larger block size will increase in congestion rates.

3.2.2 Puzzle To Solve and Block Minting Mechanism

In public (permission-less) blockchain network no third trusted party exists. That missing

third party trust is achieved by the puzzle that all miners solve to find the solution. Thus the

puzzle selected or designed for the nodes to reach consensus must guarantee freshness at the

time of execution. That means it solution should be unpredictable and proof is not reusable.

It should also meet properties mentioned in 3.1.5 and ?? Block minting mechanism tells

how new blocks will be created for the blockchain. Usually it is referred as ”mining” [14]

because in bitcoin Proof of Work[82] algorithm, the most famous crypto currency termed

creator of new blocks as miners, and ”forging or minting” [57] due to its reference in the

most famous blockchain platform Ethereum [111]. It is as crucial as puzzle design itself

as transaction verification and validity [21] is done through this process. Block minters are

referred with different names in various algorithms.

3.2.3 Scalability

Scalability of blockchain can be viewed under two sub parameters i.e network scalability and

transactions scalability. Network Scalability Network scalability defines how nodes join or

leave the network and its impact on networks performance. Network portion is very scalable

for the permission-less blockchains. New user can join the network without impacting its

performance. Transcation Scalability Transaction scalability defines how many transac-

tion can be performed in a minute. Mostly transactions scalablity for all major blockchain

systems is limited [106] due to factors discussed in 3.2.1 and [96]:

1. Time taken to reach consensus.

22

2. Time taken to put transaction in block.

3.2.4 Operational Environment

Operational Environment defines the domain where a particular blockchain can be deployed.

It can be Private or public. Private domain blockchains are either permissioned or consor-

tium. In permissioned environment only a single entity has the right to right transactions

to the chain where in consortium same right is distributed amongst a group of nodes. In

public or permissionless environment, any one who can prove the specific challenge can add

transactions to the chain.

3.2.5 Imposed Restrictions

Certain blockchains impose few restrictions on itself to achieve some specific goals like

security, enhanced performance or any other deemed necessary for the efficient functioning.

These parameters are very deliberately weighed out after test and trials to be part of the chain

like block size in Bitcoin is fixed to 1 MB or upper limit for gas in Ethereum is 6.7 million

per block [40].

3.2.6 Communication Model

Communication model is an important aspect of blockchain security and directly impacts

consensus’ trust. As in most distributed system, two most widely communication models

used in blockchain are synchronous and asynchronous. When synchronous communication

model is used, sender has to wait for the recipient for acknowledgement of the request. Thus

we can say trust in explicit, that is trust is achieved once both parties agree on the common

results. Contrary to this, in asynchronous model trust is implicit. In asynchronous model,

sender will continue communication without waiting for the recipient acknowledgement.

Thus once sender has performed some transaction, recipient will accept it as honest and true

transaction.

3.3 Generic Parameters

3.3.1 Handling of Digital Assets

It defines whether the referenced blockchain has some digital currency linked to it like bit-

coin or some real word currency or something else that gives it a value. It is not necessary

that all blockchain networks are linked to some type of currency or some other asset. It may

23

just be a platform for decentralized applications or even it can offer both a digital currency

and a platform like Ethereum.

3.3.2 Handling of Smart Contracts

Smart Contract for understanding purposes may be referred as stored procedure in a tra-

ditional data base [114]. But in reality smart contracts are much more powerful. Those

digitally facilitate in verification, enforcement of a negotiation or a contract’s performance.

Transactions are only performed once required parameters are met. [109]. Not all blockchain

support smart contracts. Only a few like Ethereum and Hyperledger support it. Few have

limited scripting support like Bitcoin. For distributed applications to harness the power of

blockchain technolgy’s distributed architecture, blockchain with smart contract support is

needed.

3.3.3 Incentive Mechanism

In peer to peer distributed applications, nodes self organize and cooperate amongst them-

selves to effectively run the blockchain network. These nodes have to validate transaction

before adding those to blockchain besides propagating those to network and storage space

for the chain data. Block creation is itself a resource intensive task. It consumes a lot of elec-

tricity or monetary assets besides bandwidth requirements, hardware maintenance cost and

others. To meet these requirements of the nodes and make the block creation and validation

profitable all blockchains define some incentive mechanism for the nodes.[51]

3.3.4 Deployment

This describes the easiness for deployment of a blockchain. This will depend on which all

major operating systems (Windows, MacOS, Linux) it supports. What all external libraries

are to be installed. How easy it is to configure the system.

3.3.5 Open Source and Related Projects

This tells whether the referenced blockchain is open source or close source. If it is open

source, is its code available on famous project hosting sites like github and sourceforg. Also

what projects exist on github related to the referenced blockchain.

24

3.3.6 Documentation and Public Forums

Documentation and Public Forums describe the documentation available to the developer

including online resources. This includes platform design documents, documents related to

implementation and its features, working examples and tutorials[52].

3.3.7 Accessibility

Blockchain provides real time accessibility that is data store on the chain is available to

nodes through multiple nodes along with a local copy but by accessibility here means ways

through which referenced blockchain can be accessed. This describes all the methods those

are available to interact with the blockchain. It may include some specific libraries, REST

API, remote procedure call or some graphical user interface. This parameter determines how

easy it is to use a specific blockchain platform.

3.3.8 Blockchain Type

Blockchain is classified into three categories based on accessibility 3.3.7 and it limits how

membership to a chain is controlled. These three types are:

1. Public Blockchain : Blockchain those can be accessed and updated publicly.

2. Private Blockchain : Blockchain those can be accessed by a single entity for adding

block to the chain.

3. Consortium Blockchain : Blockchain those can accessed and managed by a group of

entities.

This classification determines what blockchain is suited for what type of business.

25

Chapter 4

Consensus Based on PoX Schemes

4.1 Proof of Work - Nakamoto Scheme AKA PoW

Satoshi Nakamoto presented first consensus protocol to work on public networks in open

settings based on proof of work. The idea of proof of work was originally published in 1993

by Cynthia Dwork and Moni Naor and Markus Jakob and Ari Juels coined the term Proof

of Work in year 1999. It proved to be the biggest idea behind Nakamoto’s Bitcoin paper

[82] published in 2008 and formed bases for the distributed trustless consensus. Nakamoto

consensus was designed to ensure security in a trustless environment without need of in-

termediaries. Protocol is open source, has been heavily reviewed, updated and till to date

the most widely used protocol for public consensus [60]. Nakamoto consensus has evolved

over time and has been maintained to adapt to environmental changes. Future of the Bit-

coin (Nakamoto consensus) is governed by the nodes with large hashing powers. Updates

to the protocol are proposed through Bitcoin Improvement Proposals, most commonly re-

ferred as BIPs [73]. Once a BIP is proposed, the miners cast their vote for the acceptance

or rejection in the coinbase transaction. Based on majority vote, either system moves to

new codebase or rejects the proposed BIP. Mostly the new codebase is backward compati-

ble (termed Soft Fork) and sometimes it is not (and is termed a Hard Fork) The nodes with

more hashing power govern the. Nakamoto consensus formed the bases for crypto-currency

called ’Bitcoin’ and is the mostly widely accepted crypto-currency today. However, recently

it has come under heavy critique for its limitations especially throughput, latency and trans-

action finality. These limitations are attributed to the underlying consensus protocol. Bitcoin

achieves almost 7 transaction / second and it requires approximately 6 blocks to be sure that

transaction will not be purged due to forks. Every block has a latency of about 10 minutes,

thus to be safe that transaction will not be reverted, user has to wait for an hour, almost.

These factors make it a non viable option for the commercial sector. However, few modifi-

cations have been proposed by various authors to over come the limitations .

26

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

4.1.1 Working

Concept In Nakamoto consensus every network participant has one or more private identi-

ties associated with it. Various nodes create transactions amongst each other. Those trans-

actions are added to a central pool of transactions. Every miner node collects transactions

from the pool and tries to add those to a block after verification. Probability that a node will

be able to add the block to the blockchain is proportional to the computational power it has

invested in the network to the total computational power of all the nodes currently in the

network. The mining node win the lottery to add block to the blockchain by employing a

hash function Double SHA-256 to calculate the hash of the block header a random number

termed nonce. If the resultant hash is below a certain predefined threshold, miner wins and

gets the reward for finding the valid block and adds that block to the blockchain. All other

nodes, implicitly accept that block as a valid block and start computing hash for the next

block. This hash finding process is termed as ’Proof of work’. Working Nakamoto consen-

sus or Mining plays multiple roles in Bitcoin. In fact, it is the main idea that underpins the

Bitcoin creation. It allows nodes on an untrusted network to agree on a universal truth of

ownership, yet without trusting everyone. In Bitcoin network, every node can have multiple

private and public identities. Number of identities does not matter as the ability to mine is

proportional to total computational power invested in the Bitcoin network compared to all

the computational power invested in the system by all other nodes active on the network.

Based on the mining capability, nodes on the network can be categorized into two shades:

1. Full Nodes. These nodes have a complete copy of the public ledger (data set for the

chain). Thus these nodes can themselves verify new transactions by reading the ledger.

These nodes can participate in mining process.

2. Light Nodes. These are client nodes which do not have full copy of the ledger. These

nodes get help of neighbouring nodes for verification of any transaction those are

involved in and can not participate in mining process.

Only full nodes participate in mining and hence the consensus process. All the full nodes on

the network independently execute four processes based on simple rules to achieve consen-

sus on a unique global state of the publicly available ledger:

27

1. Independent Verification of Transactions. Every full node verifies each transaction in-

dependently based on a comprehensive list of criteria like transaction syntax, inputs

and outputs and transaction size to name a few (these conditions change over time and

can be found in functions AcceptToMemoryPool in Bitcoin Core [10]. If the transac-

tion is found valid it is then forwarded to the neighbouring nodes. Each of these nodes

will verify the transaction again and if found correct it will be forwarded to the neigh-

bouring nodes and process will continue unless a valid transaction has propagated the

entire network or an invalid transaction has been discarded. Valid transactions are

added to memory pool or sometimes called transaction pool. These transactions have

been validated but yet to be confirmed.

2. Independent Aggregation of Transactions. Mining nodes try to aggregate transactions

from the mempool to a candidate block. Miners try to find the solution for proof of

work to validate the block. Proof of work is calculated by repeatedly finding SHA256

hash of the block header and random number termed none, unless the resultant hash

is less than a certain threshold as can be seen in fig ??.If a miner successful in solving

the puzzle, he will propagate the block to the neighbouring peers.

3. Independent Validation of the Block. Once a miner has found the block and prop-

agated it to the neighbouring peers, then these peers will validate the block against

a set of criteria and include things like block structure, syntax validity, hash of the

block, timestamp. Complete list of these criteria can be seen in CheckBlockHeader

and CheckBlock function of BitCoin Core. This independent verification disallows

miners from cheating. Once a block has been validated, it will be propagated further

to the peers unless it ripples out to entire network.

4. Independent Chain Selection Once a full node receives a new valid block, it will add

it to its existing blockchain. If two conflicting valid blocks are received at that refer to

same last block then that block will be kept as sibling to the other block that referred

to same last block. Node will wait for another block. It will extend one of the forks

happened previously. Thus this node will implicitly decide to keep the chain with most

cumulative computation done in solving proof of work puzzle [14].

28

Multiple
Hashing scheme for Nakamoto’s Proof of Work [10]

4.1.2 Security

Adversary Tolerance Nakamoto Consensus can tolerate up to 25% adversarial computa-

tional power. However, most of the literature mentions it to be 50% or 2f + 1 nodes where

f are the byzantine nodes [75]. That is true from theorist point of view where more than half

of the computational power is required to create a competing blockchain with most com-

putational work on it. However, in reality with 25% adversary existing on the network, the

transaction finality is shaken and after 11 blocks it achieves only weak finality i.e transact-

ing node has to wait almost 2 hours after the transaction has been added [102] to be mildly

sure the transaction will not be reverted. It requires addition of 26 blocks to the blockchain

for a strong finality and to be almost 100% sure about transaction confirmation. Consensus

Finality Nakamoto Consensus provides probabilistic guarantee for settlement finality [105].

This means transactions those have been finalised and have become part of the chain can be

reverted. It can happen due to many reason like:

• Because of a vulnerability in software that adversary can exploit.

• Different client applications may accept different chains as longest chains. Similar

29

Algorithm 1: Nakamoto Consensus Pseudo Algorithm
Input: A set of valid transactions
Output: A valid block
/* Join the Network */

2 Join the Blockchain Network as a Full Node (Mining Node)
3 Function Main():
4 boolean blockReceived=false; boolean blockFound=false
5 while !blockFound do
6 validate new transactions
7 if Transaction is valid then
8 gossip to peers
9 add to mempool

10 else
11 destroy transaction
12 end
13 if !blockReceived then
14 run GenerateBlock()
15 end
16 validate the newly received or generated block
17 if Block is valid then
18 gossip to peers
19 select the longest chain
20 append block to this chain
21 else
22 destroy the block
23 end
24 end

/* Participate in block generation (mining process) */

25 Start BlockGeneration()
26 End Function
27 Function GenerateBlock():
28 collect transactions from mempool
29 pack transactions in block
30 generate block header
31 while block is not found do
32 solve proof of work hash puzzle by concatenating nonce and blockheader
33 if block is found then
34 set blockFound = true
35 end
36 end
37 return new block
38 End Function

incident took place in 2013 where one version of Bitcoin accepted one chain and other

version of the software rejected the same chain though it was the blockchain with most

computation [104].

30

• Malformed block generation by the miners. In 2015, roughly 6 blocks of a mining

pool named F2P got reverted due to this [5].

Based on these facts, there is a strong argument that Nakamoto Consensus can never achieve

consensus in reality. That may be true from theorist perspective but in reality it sufficiently

reaches close to finality once 6 blocks have confirmed i.e the block with the transaction and

5 blocks after that. Forks Handling Owing to distributed nature of the Bitcoin network,

forks may arise due to network latency or other issues like errors in codebase or induced

deliberately by some attacker. When a fork happens, each node independently tries to resolve

that by extending the longest chain with the most proof of work i.e the longest chain with

the most cumulative work. Nodes can calculate the total computational power gone into to

creation of a blockchain by adding computational power for each block of the referenced

blockchain. As long as the majority of the nodes select the chain with most cumulative

proof of work, the network will converge to a consistent state after few blocks. Double

Spending Double spending is possible in Bitcoin due to latency in block confirmation, soft

and hard forks or flaws in implementation in underlying cryptographic primitives. However,

the likelihood diminishes as more and more blocks get added to the main blockchain and

hard forks stay compliant with older versions [46]. ASIC Resistibility Nakamoto Consensus

is a non ASIC-resistant proof of work scheme. Miners can use specialised ASIC chips

to compute the double SHA-256 function. This lead to the formation of ASIC farms that

challenges the idea of decentralization. Specific to Bitcoin that makes use of Nakamoto

Consensus, it is controlled by only few mining pools as shown in fig 4.1. It is pertinent to

note that more than 50% computational power is controlled by only three mining pools [61].

4.1.3 Performance

Block Size Bitcoin specifies the block size of 1 MB produced about every 10 minutes. Vary-

ing block size impacts the throughput and security of the system. Research by [112] have

shown that by keeping the block size of 1 MB and reducing the block production rate to

1 block per minute does not much impact the existing security and yet is able to achieve

60 transactions per second. That can be a considerable improvement to existing system.

Throughput Nakamoto Consensus gave a new life to distributed computing for achieving

trust among the non trusted participants in absence of federated identities and trusted third

31

(a) More than 50% Computational Power is controlled by
Three Mining Pools

Figure 4.1: Bitcoin Mining Pools

party. However, it failed utterly to scale out as compared to traditional system. Its purest

implementation, Bitcoin achieves approximately 3.3 to 7 transaction in a second [33]. Thus

making it non usable in high traffic system without modifications. Scaling Nakamoto Con-

sensus in its purest form as used in Bitcoin does not scale well. Usually for a technology

to scale out, more hardware is added. However, that is not true for Bitcoin. Here the puz-

zle design is adaptive. As the more and more hardware is added, the complexity to solve

the cryptographic pre image search puzzle increases, and time to mine the block remains

almost same, that is approximately 10 minutes. Also the size of the block is fixed to 1 MB to

achieve high security. These factors inhibits Nakamoto Consensus to scale out 4.2 with more

computational power added to the network [14, 66]. Operational Environment Nakamoto

Consensus has been designed to provide consistent results in permissionless environments

where any one can join or leave the blockchain network at will and have no pre-established

identities. Communication Model Bitcoin uses gossip or epidemic protocol [108] for peer

to peer communication. When a node generates a message, it propagates a message m to i

active neighbouring peers. Each of i neighbouring peers on receiving the m for the first time,

independently and randomly select a number of his neighbours and forwards the m to those

and does so until receive a confirmation. This propagation mechanism terminates once no

user receives the message m for the first time.

32

Figure 4.2: Scaling impact of More Computational Power — Hardware

4.1.4 Generic

Incentive Mechanism Miners are incentivised through issuance of new bitcoin generated at

the time of block creation and transaction fees. A miner who generates the new block will

get all the transaction fees offered by transaction making parties plus the a fixed amount of

coins minted as per protocol at a diminishing rate. When a new block is created, it contains

new coins generated from no where. These new coins are produced at a fixed rate for a fixed

interval of 210,000 blocks. As a block is produced usually after 10 minutes, that makes it

almost 4 years. After that interval, new minted coins decrease by 50%. In year 2008, new

block minted 50 bitcoins. In 2012, 25 coins were minted by each block and in 2020 it will

become 6.25 bitcoins per block. Finally, it will diminish to zero once 6.93 million blocks

have been produced [10]. At this stage, miners will collect all rewards from the transactions

fee.

4.2 Proof of Work - Bitcoin-NG

Bitcoin-NG [39] is a slightly modified version of Bitcoin[82] based on Nakamoto’s Proof

of work 4.1. Thus it inherits all the properties of security and performance from Nakamoto

Scheme less scalability as it has been designed with an aim to add scalability to its parent

protocol i.e Nakamoto Consensus. And how Bitcoin-NG achieves scalability? It makes

two modifications. First it decouples Bitcoin’s mining process into two planes i.e leader

election (production of key blocks) and transaction serialization (creation of micro blocks).

33

Second time is divided into epochs and for each epic a single leader is elected through

traditional proof of work. The elected leader has the responsibility to unilaterally serialize

all transactions (produce micro blocks) until a new leader is elected. Or in other words, at

start of an epoch the miner or leader of Nakamoto consensus is selected through solving hard

proof of work puzzle. He then adds several transactions (micro blocks) to the chain for the

entire epoch by cryptographically signing those without doing any extra proof of work[103].

Once a new leader / miner has elected the puzzle solving, he / she decides on what previously

added blocks chain has to be built on [76]. Source code for Bitcoin-NG is not available. It

is pertinent to mention that it is backward compatible with Bitcoin i.e it can operate with

wallets and clients used by Bitcoin.

4.2.1 Security

Bitcoin-NG offers security very similar to its master Bitcoin. It gets strength from proof of

work hard puzzle where it requires solving a pre-image search function based on SHA-256

with specific parameters like number of zeros at start of output hash and incentive compati-

bility by motivating network participant to honestly follow the rules[39]. It guards against a

maximum of 1/4 of the total Byzantine computational power i.e if there are N nodes in the

network and at any time t a subset B(t) behaves arbitrarily and are controlled by a single ad-

versary then the mining power m of the honest nodes must be more than 3/4 of total mining

power of N nodes for system to produce true results:

∀t :
∑
b∈B

m(b) <
1

4

∑
n∈N

m (n)

Selfish MiningBitcoin-NG is susceptible to all attacks same as Bitcoin [45, 11]. It is perti-

nent to mention that Bitcoin-NG is very vulnerable to selfish mining. If the attacker controls

more than 1
4

of the total network, he can launch self mining attack [93]. Double Spending

Double spending is possible in Bitcoin-NG due to forks and signing of micro blocks from a

single validator. If a validator adds few genuine blocks at start of epoch and later adds blocks

with malicious transactions. These malicious transactions will only be detected later a key

block is mined by a new miner. However, by that time transactions have already been added

to the blockchain by the compromised miner. The mitigation is to introduce the fork. Forks

Resolution Forks can happen at key block and micro block level. However, at micro block

34

me.tarar
Highlight

me.tarar
Highlight

Algorithm 2: Bitcoin-NG Pseudo Algorithm
Input: A set of valid transactions and hash of previous block
Output: A Key Block and Several Micro Blocks

1 Join the Blockchain Network as a Full Node (Mining Node)
2 Function Main():
3 P = Hash of the last block
4 Bk = Key Block containing P, current GMT,coin base reward, target value and

nonce
5 Bm = Micro Block containing ledger entries
6 H = Hash function
7 D = Difficulty level
8 retrieve P
9 while Bk is not found do

10 Construct Bk
/* will be true once key block has been found */

11 if H(P,BK) < D then
12 Block is found
13 gossip Bk to peers

/* create micro blocks */

14 run GenerateBlock()
15 end
16 update nonce
17 end
18 if Bk is received from other node then
19 validate Bk
20 if Block is valid then
21 gossip to peers
22 select the longest chain
23 append key block to this chain
24 append micro blocks from leader node to the chain after validation
25 else
26 destroy the block
27 end
28 end
29 End Function
30 Function GenerateBlock():
31 while Bk is not found by other node do
32 collect transactions from mempool
33 pack transactions in block
34 generate block header
35 sign the block
36 append the block to the chain
37 end
38 End Function

35

level, as micro blocks become more frequent, possibility of shorts forks becomes more pro-

nounced. To handle both the issues, algorithm has defined few mechanisms. For Key Blocks

it resolves forks by accepting the chain which aggregates the most work done for all the key

blocks in the network. For micro blocks as those do not involve mining and can quickly and

cheaply be produced by leader, resolution is done through leader incentive mechanism. Al-

gorithm has introduced a dedicated ledger entry to invalidate fraudulent leader’s revenue. As

new miner of the key block has to decide what what previous micro blocks to build the chain

on, he may prune the chain for fraudulent behavior adding only header of the first block of

the pruned chain in the new chain. This entry is referred as poison transaction. The minor

who will mark such transaction will get extra 5% from the fraudulent leader’s account as an

incentive.

4.2.2 Performance

Performance is effected by network conditions and processing power of the nodes. That is,

it varies with size of the network and number of micro blocks as it can be seen in Figure 4.3.

Bitcoin-NG inherits Bitcoin, thus its propagation model as well [39]. All the transaction are

to be broadcast to all the nodes in the network. Thus the network latency is increased with

more number of nodes added to the network and more micro blocks being produced. With

a smaller network size for example 100 nodes and 4 blocks it has a latency of 50 seconds.

However, as the network size grows larger its latency increases and performance worsens.

With 1600 nodes and 4 blocks it latency increases to 456 seconds. Also the bandwidth

requirements of the nodes rise linearly to the throughput [76]. Again the reason is propaga-

tion model. Bitcoin-NG has to broadcast all blocks to all nodes present in the network to

reach next consensus. Thus as more blocks get added and more nodes join the network, to

bandwidth requirement of nodes will keep increasing.

4.2.3 Generic

Incentive Mechanism As described earlier in this section, Bitcoin-NG mining involves pro-

duction of two types of blocks namely key blocks and micro blocks. Key blocks are found the

similar way as miners find blocks in Nakamoto Consensus [39, 99] i.e by solving a one way

collision resistant cryptographic hash puzzle of the block header with a set threshold[39, 62].

A miner who finds the key blocks serialize the transactions into micro blocks by signing

36

Figure 4.3: Impact of varying number of blocks on Bitcoin-NG’s Latency

those with his / her private key without doing any work unless a new key block is found

by another or same miner. New miner of the key block (indicated as K1 and K2 in square

blocks in fig 4.4) decides what micro blocks to extend the chain on. The miner of the key

block who serializes the micro blocks get a reward of 40% and the miner of the key block

who decides what micro blocks to extend the chain on gets 60% reward 4.4. Key block

is found at a fixed interval of 10 minutes. Other than this reward there is fees as well for

adding each transaction entry to the ledger. That fee solely belongs to the miner serializing

the transactions.

(a) Square Represents Key blocks and Circle represents Mi-
cro blocks

Figure 4.4: Bitcoin-NG Incentive for Miners

Coinbase Transaction Similar to Bitcoin coinbase transaction mints new coins and are

deposited to miners as described in last paragraph about Incentive Mechanism sharing. Coins

created in coinbase can only be spent aftre those have a maturity period of 100 blocks.

37

4.2.4 Suggested Improvement

Validity from the Start Bitcoin-NG checks for the validity of the transactions once those

have been appended to the chain. However, at this point the only option to prune the ma-

licious transactions is to introduce fork in the system. Thus to avoid forking, the system

need to validate transactions from the outset. All transactions to be verified before those are

appended to the blockchain. Implementation Aeternity Blockchain [1] consumes the idea

of Bitcoin-NG. Documentation Though it got a lot of attention, it has not been well docu-

mented. Other than its white paper and material found on aeternity blockchain [7], there is

not much present on the web.

4.3 Ouroboros Genesis

Ouroboros is the first provable secure proof of stake protocol (a virtual mining technique

where miners can mine blocks proportional to their assets invested in the system) designed

to achieve at least security characteristics of Nakamoto Consensus with minimal resource

consumption. With it first version released in 2016, protocol is ever evolving to meet chal-

lenges of the real world. Its latest version Ouroboros Genesis was released in 2018. It

is being actively used in Cardano blockchain and has been extensively peer reviewed. It

over comes the limitations of virtual mining techniques like cost-less simulation in proof of

stake. Protocol provides a Dynamic Availability environment for nodes to operate. Dynamic

Availability setting is a suggested environment where parties can join and leave the network

at will, nodes may leave synchronization and network connection and protocol does not have

to have a prior knowledge of participation levels. Ouroboros protocol allows nodes to par-

ticipate in block generation even when those are offline by delegating task to other nodes,

allows nodes to go offline when those are not making transactions. This happens because of

novel chain selection rule of Ouroboros protocol. The chain selection rules allows partici-

pating nodes to bootstrap all information from the genesis block without requirement of any

intermediary information.

4.3.1 Working

Concept When the system starts execution, data of all the stakes and their owners are stored

in genesis block. System then draws a lottery using a random seed derived from the chain

itself using a verifiable random function and follow the Satoshi procedure [15] to determine

38

the block leader termed as slot leader and the slot in which specific leader will mine the

block. Working Ouroboros protocol is an evolving protocol. Its latest update is termed

as Ouroboros Genesis, because with latest revision any participant can bootstrap from the

genesis block without requiring any intermediary data points or some external data. This is

contrary to older versions and other existing proof of stake based protocols like PeerCoin

[64], NxtCoin[83] and many others. Those protocols require checkpoints or trusted third

parties to get a valid trusted chain. Protocol divides the time in slots. Time for the genesis

block is T0 and the block after the genesis block is T1 and continues to grow. Multiple slots

are combined together to form an epoch. Every epoch has a virtual genesis block. Genesis

block has fixed stakes and user identities. For the virtual genesis blocks this stakes and

user identities can be build by traversing the chain backward. During an epoch network

participants can transfer their shares. However, their probability to win the election as a

leader depends on their stakes they had at end of last of epoch i.e their stakes in current

epoch’s genesis block.

At start of the current epoch Ep0 , block B0 i.e genesis block holds distribution of all

stakes and identities of all the stake holders. This root is taken as trusted by the system. Next

every network participant determines whether it is a slot leader or not? This is determined

by evaluating a verifiable random function locally using participants public key and epoch

randomness obtained passing first 2
3

verifiable random function proofs Pπ from the last epoch

Ep−1 to a pre-image resistant hash function . If the output (depends on current stakes in

the system) of the verifiable random function is below certain threshold, it proves that the

particular node is eligible to be slot leader for the particular slot. Now, the eligible node will

compute a proof of the output returned by the verifiable random function Pπ to certify itself

as the leader for the determined slot.

4.3.2 Security

Sybil Proof Ouroboros is designed for the permissionless environment thus does not require

any pre-established identities. Nodes on joining network can create any number of iden-

tities dynamically. However, more identities does not increase chances for block creation.

The probability that an identity (node) will get selected as leader of a slot for block cre-

ation depends on the stakes associated with that identity. Adversary Tolerance Ouroboros

39

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

Algorithm 3: Ouroboros Family Pseudo Algorithm
Input: A set of valid transactions and hash of previous block
Output: A Key Block and Several Micro Blocks

1 Join the Blockchain Network as a Full Node (Mining Node)
2 Deposit stakes to the chain pool
3 Function Main():
4 while participating for minting do
5 if Block is received from other node then
6 validate block
7 if Block is validated then
8 select the longest chain
9 append block to this chain

10 relay block to others committee members
11 else
12 destroy the block
13 end
14 else
15 if new BlockCycle has not started then
16 participate in ElectCommittee()
17 fetch sequence number for my turn to mint blocks
18 end
19 end
20 if my turn to mint blocks then
21 collect transactions
22 fetch last block hash
23 mint block
24 append block to longest chain
25 relay block to others committee members
26 end
27 end
28 End Function
29 Function ElectComittee():
30 while Block is not found by other node do
31 fetch stakes of members from the virtual genesis block
32 run Multiparty computation protocol
33 return block generation sequence
34 end
35 End Function

protocol offers high security against adversary as compared to other protocols. It tolerates

malicious nodes upto 49% stakes present in the system. Unless the honest nodes have at

least 51% stakes in the system, the network will achieve liveness and safety irrespective of

network transaction delays and temporarily synchronization issues. Forks Fork resolution is

very unique in Ouroboros protocol. Like Bitcoin contrary to other proof of stake protocols

40

network participants can boot strap from the genesis block to the latest (tail) block without

requiring any intermediary. In Bitcoin forks can be resolved by following the longest chain

i.e the chain with maximum computation done. However, in proof of stake there is no com-

putation involved. It is just a cost less simulation. A byzantine slot leader may reuse its slot

to extend multiple paths. Also as the slot election process is based on output of a random

verifiable random function 4.3.1. It is possible that two or more nodes get output which is

below the protocol threshold for a given slot. Thus all winning nodes will try to add a block

to the slot. So forks are possible in the system. Ouroboros resolves this by considering forks

into short forks and long forks by dividing the chain in regions in time domain in following

way:

• Short Fork. When the fork is recent i.e when the chains diverge up to K blocks,

follow the chain which is the longest.

• Long Fork. Follow the Plenitude rule i.e when the the chains diverges more than K

blocks. Go back in time where the fork happened and isolate a short region after it

within a certain time range. Count the number of blocks added to both chains and pick

the one with more blocks. That is pick the chain which is more dense in the specific

region where the fork started.

Double Spending Ouroboros Genesis effectively guards against double spending attacks,

as all transactions are validated before those are added to the block. These validators i.e

transaction endorsers get a portion of transaction fees proportional to number of transaction

they verify. Transaction endorsers are linked with block, their validated transactions go into,

similar to slot leader. Transaction Finality Transaction finality is very abrupt in Ouroboros

Genesis. Once a transaction is added to the blockchain it will be finalized in approximately

5 minutes for a 0.10% adversarial stake. However, with current Bitcoin implementation for

an adversary with hash power of 0.10% we require about 53 minutes (6 blocks) to be sure

that transaction has been finalized and will stay in the chain [44].

4.3.3 Performance

Scalability Ouroboros Genesis have good network scalability similar to Nakamoto Con-

sensus. It can work with any number of nodes added. However, currently its transactions

41

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

scalability is limited. It can perform approximately 100 - 150 transactions per second that

is similar to PayPal and is much higher than Bitcoin with same level of security and net-

work scalability. However, developers are working to enhance scalability using sharding and

other mechanisms like side and off chains. However, those may impact the security of the

system and reduce from threshold of 50% to 33%. Ouroboros Hydra [4, 29] will solve the

transaction scalability issues of Ouroboros family. Scalability Enhancements Ouroboros

upcoming version i.e Ouroboros Hydra will support Sharding, side-chains and off-chains for

enhancing transaction throughput of the system [29].

4.3.4 Generic

Delegation of Mining At start of an epoch, participating nodes know whether those can

mine blocks in some slots or not? If a node wins the lottery, it can go offline till the time

it has to mine the blocks. Other than this it can also delegate the responsibility of mining

to other nodes by assigning delegation rights to some other node in the network using the

blockchain itself. Even a more simple approach to mine blocks on behalf of other nodes is to

use proxy signature.[8] Reward Mechanism — Incentive Structure Reward mechanism of

Ouroboros Genesis also differs from other proof of stake protocols. In other proof of stake

protocols like peercoin [65] miners get rewarded by transaction fees for transaction those

add to blocks. In Ouroboros Genesis besides slot leaders reward is also distributed amongst

set of endorsing nodes, committee members those security party computation and nodes in-

volved in sending messages to multi party computation protocol. Before adding a transaction

sequence to the block, those have to be endorsed by the input endorsers. Endorsed sequence

can then be added to any blocks for upcoming 2000 slots. The input endorsers are also

linked to the slot in a similar fashion to slot leader. These input endorsers verify transactions

to be added to the blockchain. Rewards are distributed at epoch level rather than block or

slot level. This concept can be related to ByzCoin [67] where other than leader nodes who

have recently produced blocks verify transactions. Nash Equilibrium Ouroboros Genesis is

in Nash Equilibrium however bitcoin is not. Smart Contracts Ouroboros Genesis does not

support smart contracts. However, it is on the time line for the Ouroboros family and will be

supported by the newer versions probably the Ouroboros Hydra.

42

4.4 Comparison

The consensus in this class relies on some resource to win the lottery to generate the next

block for the blockchain. The probability of winning is proportional to the resources in-

vested in the network. Performance of the protocols depends on the computational puzzle

involved. However, for protocols where no computationally hard puzzle is involved addi-

tional risks like nothing at stake are involved like Ouroboros family. Thus special mitigation

measures have to be taken to cater for such attacks. Table 4.1 compares protocols from PoX

Family. Bitcoin was the first protocol designed to operate in open settings where everyone

can join or leave the network at will, and no pre-established identities are needed. It pro-

vided security guarantees, but in the trilemma of security, scalability and decentralization, it

sacrificed transaction scalability. Changes have been suggested to improve upon transaction

scalability. It included changes to current parameters like block size or changes in puzzle

design. Different experiments on changing block size have shown that it can achieve max-

imum throughput when the block size is set to 4MB contrary to existing 1MB block size

given constant block interval of 10 minutes [33]. Bitcoin-NG was designed to achieve same

security and decentralization guarantees as Bitcoin and to enhance its throughput. Authors

of Bitcoin-NG introduced the novel idea of key and micro blocks, but those failed to achieve

any significant performance upgrade as they designed Bitcoin-NG to stay consistent with

existing implementations of Bitcoin. Many ideas and protocols have been proposed to en-

hance the performance of Bitcoin after Bitcoin-NG. The majority agrees that virtual mining,

like proof of stake, is the solution to get enhanced performance. However, proof of stake

solutions had its drawbacks. The latest addition to proof of stake protocols is Ouroboros

currently implemented in Cardano blockchain [26]. It has been designed from the start to

provide security guarantees and decentralization same as Bitcoin yet achieve performance

enhancements.

43

me.tarar
Highlight

me.tarar
Highlight

Parameters Protocols

Nakamoto Bitcoin-NG Ouroboros

Adversay Tolerance 50% but practi-

cally it is 25%

as with 25% or

more adversary

block finalization

problems occur

50% for key

blocks

50% stake

Consensus Finality Eventual and

Probabilistic

Eventual and In-

stant

Eventual and

Probabilistic

Strong Consistency No No No (Ouroboros

Genesis pro-

vides consistency

guarantees)

Forks Handling Longest Chain Longest Chain Longest Chain

Block Production Time approximately 10

minutes

100 seconds for

key blocks; vari-

able for micro

blocks

20 seconds

Puzzle Design Computation In-

tensive

Computation In-

tensive and vir-

tual

Virtual

Puzzle to Solve SHA 256 hash

with fixed num-

ber of zeros at

start

For key blocks:

SHA 256 hash

with fixed num-

ber of zeros at

start

Proof of stake

Design Goals Security Performance en-

hancement

Performance with

Security guaran-

tees

44

me.tarar
StrikeOut

Operational Environ-

ment

Permission-less Permission-less Permission-less

and Permissioned

Block Size 1MB,4MB 1MB -

Transaction Propaga-

tion Model

Partially Syn-

chronous

Partially Syn-

chronous

Partially Syn-

chronous

Throughput 3-7 tps 7 tps 100 -150 tps

Message Complexity O(n) O(n) O(n)

Transaction Scalability No No yes

Network Scalability Yes yes yes

Smart Contract Limited scripts No in Ouroboros Hy-

dra

Availabiltiy of Code Yes No yes

Realization Bitcoin Aeternity Cardano

Table 4.1: A Comparison of PoX Protocols

45

Chapter 5

Consensus Based on Voting Scheme

Mostly for the vote based consensus algorithms, it is assumed that nodes in the network

have either some type of pre-established identities associated with them or some public key

infrastructure system is in place[55]. These protocols usually tolerate upto 1
3

of faulty nodes

in the network. There resilience against malicious nodes is increased with more nodes added

to the network. However, at same time performance starts decreasing after a threshold due

to increased number of message communication between the nodes [38] as a fully connected

topology is need and all messages are multicasted to all the nodes.

5.1 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance algorithm was introduced in 1999 and is the first proto-

col to optimally perform in byzantine environment. It provides a high performance byzantine

state machine replications with low latency thus processing thousands of requests per sec-

ond. Due to its high transaction scalability and fault tolerance in byzantine environment

against n−1
3

nodes it has been implemented in several modern distributed systems includ-

ing permissioned blockchains like Hyperledger Fabric and Corda. Practical Byzantine Fault

Tolerance is also now used in permissionless environment in combination with other proof

of X based consensus to enhance the transaction through put of those algorithms. However,

where it scales to transaction throughput it doesn’t scale to network due to heavy messaging

between the network participants. Thus when nodes are increased beyond certain numbers,

performance starts deteriorating due to bandwidth limitations[76].

5.1.1 Working

Concept Practical Byzantine Fault Tolerance benefits replication. If there is only a single

server and it fails, users will not be able to access the resources. However, if the same data

is replicated on different machines (servers) even if one is blinded out, other machines will

render the requested information.

Algorithm implements a deterministic state machines replicated [95, 70]in a distributed

46

Figure 5.1: Practical Byzantine Fault Tolerance Benefits Replication

system across different nodes. All start at the same state, process same transactions in same

order and correct nodes produce same results. Thus once a client node sends request to mul-

tiple trusted nodes in the network (eg servers) for certain information, if at least f + 1 nodes

sends it back, client will accept the reply, f being the number of byzantine nodes. Algorithm

works only in a partially synchronous environment with known bounds on message delays

and delays between steps.

Figure 5.2: Practical Byzantine Fault Tolerance - Simplest Implementation

Working Nodes in the network implement the replicated deterministic service and are

called replicas. These replicas are connected with each other over the network. Algorithm

on these replicas (nodes), run in rounds called View, V . For each view one of the nodes

implementing the replica acts as the view leader called Leader or Primary . View leader

is selected deterministically. Other replicas in current view are called backups and are all

deterministic as those implement a deterministic service. Views are sequentially numbered.

Whenever, there is a view change (leader is changed) due to any reason, view sequence is

incremented by 1.

For normal case operations, algorithm runs in 3 phases known as pre-prepare, prepare

and commit phase. For normal case operations in pre-prepare phase, primary collects the

request m from the client c and assigns a sequence number n to it. Sequence number incre-

ments sequentially and lasts over the lifetime of the algorithm. Primary signs the pre-prepare

message and broadcasts it to all the replicas [28]. Backup replicas accept this pre-prepare

47

message only if it is in the current view v and its sequence number n is not repeating and is

within a bound. In other words we can say that prepare phase ensures order within views.

That is primary can not assign same sequence number n to two different requests in the

same view. If this happens, backups can ask for a view change procedure. If some backup

replica accepts the pre-prepare message, it will generate the prepare message using current

view number v, message sequence number n, cryptographic digest D(m)of the message m

and signs this prepare message. Each non byzantine backup replica who have accepted the

pre-prepare message, will broadcast its prepare message to all the backups. All the backup

replicas on receiving the prepare message will generate the commit message using current

view v, message sequence number n, and cryptographic digest D(m) for message m and

will sign it. All non faulty replicas will then broadcast this commit message. Replicas will

collect at least 2f + 1 matching commits and will send reply to the client. Client will collect

results from the replicas and returns results that appears in at least f + 1 replicas. Same has

been summarized in Algoritm 4 and 5.3

Figure 5.3: Practical Byzantine Fault Tolerance - Normal Case Operation

However, in case of time outs where a primary does not respond to backup replicas over a

set interval or the backup replicas receive a message with sequence number n that is beyond

the boundaries of current bound, a view change procedure is initiated. Next primary will

be selected deterministically using formula new primary = view number mod 3f + 1.

Again 3 phase operation we be run to finalize the commit for new view leader.

48

Algorithm 4: Practical Byzantine Fault Tolerance Algorithm - Normal Case Opera-
tion

1 Function Main():
2 NMp = Number of Messageprepare
3 f = byzantine nodes

/* request stage */

4 client sends a request to leader node
/* phase 1: pre-prepare stage */

5 leader relays the request to replicas
6 replicas update local state

/* phase 2: prepare phase */

7 relay Messageprepare to all replicas including leader
/* phase 3: commit phase */

8 if NMp ≥ 2f+1 then
9 execute client request

10 update local state
11 end
12 all replicas send reply to client
13 End Function

5.1.2 Security

Sybil Proof Practical Byzantine Fault Tolerance is not sybil proof. Nodes join and partici-

pate in the network based on their identities. Each identity has a voting power to accept or

reject the transaction. Thus, if a node creates multiple identities, then that node can harm the

system even with a single device. There has been few proposal and implementation where

people have tried to avoid sybil attack using other mechanism like proof of work or proof

of stake algorithms after a number of transaction. Consensus Finality Practical Byzantine

Fault Tolerance offers instant finality. Once a consensus has reached on a transaction, it is

final. There is no need to wait for some specific time or specific number of transaction to

happen to get confirmation for earlier transactions. Thus once the nodes in the network have

agreed on the message, it is secure and it will not be undone due to some other operations.

Forks As there is absolute and instant finality of transactions there will never be forks. Nodes

will agree to only one value and that will be treated as the true value, else nodes will abort

the operation. Thus algorithm provides total ordering and liveness property for all trans-

actions provided byzantine replicas are less than 33% to total [27]. Established Identities

Algorithm requires that nodes establish identities before the protocol is run. These identities

are used to sign the prepare and commit messages and in case of leader the pre-prepare mes-

49

sage as well. Identities can assigned using some public key infrastructure or fixed identities

like Message authentication codes may be used. This nature of fixed identities, hindered its

use in open public blockchains. But people have come up ideas where they assign those

identities using proof of work or proof of stake mechanism and then use Practical Byzan-

tine Fault Tolerance mechanism to reach consensus. [68] Adversary Tolerance Like most

other byzantine fault tolerant systems, Practical Byzantine Fault Tolerance algorithm offers

resilience against byzantine process provided n > 3f + 1 where n is the total nodes and f

is the byzantine nodes, that is total replicas (nodes) in the network are more than 3 times the

byzantine nodes.

5.1.3 Performance

Transaction Scalability Practical Byzantine Fault Tolerance provides best transaction scal-

ability unless nodes in the network are kept below a threshold number and is only limited by

the bandwidth of the primary (leader) node. On a pentium III with 8 bytes of argument size it

can perform 15000+ operation per second with 100 replicas [28]. Network Scalability and

Message Complexity In Practical Byzantine Fault Tolerance all replicas have to broadcast

all messages. These broadcast messages create an overhead to network. If the nodes are

increased beyond a threshold, transaction through put starts decreasing instead of increasing

due to message communication involved. Thus it can be commented that this algorithm does

not scale out with the network requirements. The message complexity of the algorithm is

O(n2)

5.1.4 Generic

Reward Distribution As in Practical Byzantine Fault Tolerance all the replicas participate

in decision making process and add transaction by a final vote, thus all the reward related

to the transaction fees is distributed amongst all the replicas. There is no reward variance

for miners or replicas. Resource Efficient Unlike few PoX algorithms which require some

type of resources to reach network consensus, Practical Byzantine Fault Tolerance achieves

consensus without using any hard computation or resources. The algorithm in original puts

minimal overhead on normal operation of the system it is deployed on.

50

5.2 BFT-SMART

BFT-SMART is a modular byzantine fault tolerant state machine replication / consensus li-

brary. It implements a deterministic state machine replication algorithm very similar to

the Practical Byzantine Fault Tolerance 5.1. Library is open source and is written in Java

language. It enhances throughput of byzantine fault tolerant consensus by multiple factor

by benefiting parallelism of modern hardware, contrary to Practical Byzantine Fault Toler-

ance and UpRight [30], the two famous byzantine fault tolerant consensus algorithms. Also

the BFT-SMART enables durable services by providing efficient and transparent support for

replica set [71] reconfiguration. Nodes can be added and removed while those are actively

participating in the network. This library can be also be configured to work in crash tolerant

systems only rather byzantine environment where nodes may crash or behave maliciously.

When consensus are sought in crash tolerant system, its performance is enhanced many

folds..

5.2.1 Working

Like Practical Byzantine Fault Tolerance, BFT-SMART also runs in 3 phases namely Pro-

pose, Write and Accept phase. Protocol initiates with same initial state on all replicas and

assumes that each node is connected to every other node on a trusted channel and network is

partially synchronous. Consensus execution is triggered when a client multi casts a request

to all the replicas. Each consensus instance is identified by a sequence number i and begins

with leader (one of the replicas is selected as leader) proposing a number of request to be

decided in that consensus round.

Figure 5.4: BFT SMART Normal Operation

Leader sends a Propose message to all the replicas containing aforementioned batch, mul-

ticasted by the client as shown in fig 5.4. All the nodes on receiving the Propose message,

51

validate the proposed the batch and verify if it has been sent by the leader for the current

consensus. If these replicas successfully validate the proposed batch and verify the leader,

they will register the proposed batch and multicast Write message to all the other replicas

including leader the hash cryptographic hash of the proposed batch and not the actual mes-

sages itself. If any replica receives at least n+f+1
2

Write messages having the same hash, it

will multicast an Accept message to all other replicas containing this hash. If any replica

receives at least n+f+1
2

Accept messages having the same hash as of the proposed batch, it

considers that as the decision for that consensus instance. Algorithm 5 depicts the same.

If during the propose phase, replicas are unable to verify the leader or if the proposed

does not get validate then consensus do not occur and new leader is to be selected. New

leader is elected in synchronization phase and all the replicas are forced to jump to the same

consensus instance i.

5.2.2 Security

Sybil Proof This protocol is not sybil proof. Nodes join and participate in the network based

on their identities. Each identity has equal voting power to accept or reject the transaction.

Thus, if a node creates multiple identities, then that node can harm the system even with a

single device. Adversary Tolerance BFT-SMART behaves different for byzantine faults and

crash faults. It requires n ≥ 3f + 1 replicas to tolerate upto f byzantine faults to ensure cor-

rectness. However, if system is configured for crash faults only then it requires n ≥ 2f + 1

replicas to tolerate f crash faults. Moreover, as the system supports reconfiguration, it is

possible on the fly to change the n and f through leave and join operations. Under all the

configurations, system requires that reliable trusted point to point communication channel

exists between all the nodes. System implements these channels using message authenti-

cation code over TCP/IP. LivenessBFT-SMART works in an eventual synchrony environ-

ment.Thus liveness property will always be achieved i.e committees will reach consensus

in polynomial time. Forks Protocol achieves absolute and instant finality of transactions in

less than a second, thus there will never be forks. Nodes will agree to only one value and

that will be treated as the true value, else nodes will abort the operation. Thus algorithm

provides total ordering and liveness property for all transactions provided byzantine replicas

are less than 3f + 1 to total. Consensus Finality BFT-SMART offers instant finality. Once

52

Algorithm 5: BFT SMART Normal Operation
1 Function Main():
2 NMw = Number of Messagewrite
3 NMa = Number of Messageaccept
4 f = byzantine nodes
5 n = total number of replicas

/* request stage */

6 client multicasts a request to all replicas
/* phase 1: propose stage */

7 leader assigns a consensus instance number i to each request
8 leader relays requests request to replicas and i
9 replicas validate request forwarded by leader

10 if request is not validated then
11 exit current consensus instance i
12 end
13 register the request
14 update local state

/* phase 2: Write phase */

15 multicast Messagewrite|Hash(request) to all replicas including leader
/* phase 3: Accept phase */

16 if NMw ≥ n+f+1
2

then
17 multicast Messageaccept
18 end

/* phase 4: commit phase */

19 if NMa ≥ n+f+1
2

then
20 execute client request
21 update local state
22 end
23 End Function

a consensus has reached on a transaction, it is final. Established Identities Nodes (replicas)

have well established identities. Each replica have symmetric key for replica-replica com-

munication and for replica-client communication. These symmetric keys for replica-replica

communication are generated for each replica through Signed Diffie-Hellman using RSA

keys and for replica-client communication using identities of the end points.

5.2.3 Performance

Communication Complexity Algorithm is designed in such a way that each node is to com-

municate with every other node present in the network. This requires substantial communi-

cation amongst the nodes. The communication complexity of the entire network becomes

almost O(n ∗ n) or O(n2)). Transaction Scalability Algorithm is designed to provide high

transaction throughput in both byzantine and crash failure environments. It performs bet-

53

ter in crash failure environment than byzantine environment. The final throughput depends

on multiple factors like number of cores of machine on which library is deployed, message

length and number of byzantine nodes. Experimental results have shown that BFT-SMART

can achieve throughput of around 80 thousand transactions per second in a LAN [97] and has

a very low latency overhead for WAN [98]. Network Scalability BFT-SMART provides bet-

ter network scalability than Practical Byzantine Fault Tolerance algorithm. For BFT-SMART

network becomes saturated at about 1000 participants where as for Practical Byzantine Fault

Tolerance it saturates at about 100 nodes [97]. This is due to communication overhead that

increases with increasing number of participant in the network.

5.2.4 Generic

Contrary to all other byzantine fault tolerant consensus protocols based on replica, BFT-

SMART offers dynamic system that can grow or shrink on the fly. Protocol enables addition

or removal of the replicas during active operation. This can only be done by system ad-

ministrator by running View Manager client.ss BFT-SMART is the most widely tested and

the most advanced implementation amongst byzantine fault tolerant consensus [25]. It is

implemented inside HyperLedger Fabric [55], Corda [25] and Symbiont.

5.3 Algorand

Algorand has been designed to overcome the shortcomings present in Bitcoin 4.1 and make

operations energy efficient. It introduces a novel byzantine fault tolerant algorithm titles

BA* to reach consensus and achieve network scalability. It couples verifiable random func-

tion and BA* for selection of committee members and leader for block creation. In the

resultant system, transactions are confirmed almost instantly in less than a minute, blocks

are produced with very low latency and possibility of forks is almost negligible. Like Bit-

coin, Algorand has been designed to operate in open settings where nodes are free to join and

leave at random, and it achieves true decentralization, as its design guards against pooling of

nodes and delegation of tasks to other nodes.

5.3.1 Working

Concept Protocol runs in rounds. In each round it selects randomly a leader and few com-

mittee members. Leader adds transactions to the block and committee members verify the

block. Committee members who validate the block, sign the block. If at least 2
3

committee

54

me.tarar
Highlight

members have signed the block, then it is propagated to the network. If due to some reason,

committee does not reach consensus, it propagates an empty block to network and wait for

next round to reach consensus. Working Protocol runs in rounds and in each round there

are two distinctive steps. In first step a leader to propose new block for the current round

and committee members to validate the block are selected. And in second round, protocol

achieve consensus over the proposed block.

Random selection of leader and committee members is done through cryptographic sorti-

tion. Every network participant has a public and private key pair (pki, ski) associated with

itself. When the round stars, every network participant tries to select itself as a leader or

committee member based on proportion of its investment in the system performing crypto-

graphic sortition by computing a hash and a proof π instituting a verifiable random function

(VRF)

< hash, π >← V RFsk(seed||role)

Sortition consumes node’s private key ski, publicly known random value seed, a threshold

describing expected number of users for current role usually between 20 to 70 for leader

selection and 2000 for committee size provided there are 80% honest nodes in network, role

parameter distinguishing different roles that user can be selected for, stake of the node in the

systemw, and weight of all the stakes present in the system W using following algorithm.

< hash, π, j >← Sortition(ski, seed, threshold, role, w,W)

Verifiable random function runs locally on every node. If a participant gets the hash below

a certain threshold, it gets selected for j sub-roles. Other nodes can verify the selected node’s

claim using VerifySort routine.

< j >← V erifySort(pki, hash, π, seed, threshold, role, w,W)

For every round r seed changes and is calculated using a verifiable random function. It

is published at start of the round. It is derived from the seed of the last round r-1 and is

refreshed ever R rounds where R is decided by the system.

Once a node has selected itself as the leader for block generation, it packs the transaction

in block. But it may be the case that some other node has also selected as leader as well.

55

Thus to minimize the unnecessary block transmission, Algorand discard the messages that

do not have highest priority seen by the user so far by making leader node to wait for a time

that is sum of time taken for last BA* consensus and time taken for gossiping the priority.

Priority for a node can be calculated by hashing the hash output of verifiable random function

concatenated with sub user index obtained in sortition. The message with highest priority

gets propagated to the network.

After the block has been propagated in the network, protocol starts working on byzantine

agreement using BA* protocol. BA* runs in two phases. In first phase, called the reduc-

tion phase the problem of agreeing on a block is reduced to one of the two option namely,

final consensus or tentative consensus. In second phase, either proposed or empty block is

appended to the chain.

In first phase, if at least 2
3

of the committee members validate the proposed block, it final

consensus is achieved and block is gossiped to the network for nodes to append the block to

their copy of the chains. It is pertinent to mention here that Algorand ensures validity of the

block and in BA* committee members only vote for hashes of block instead of its content.

However, if due to any reason, less than 2
3

validate the block, then a tentative consensus

is achieved and block is marked for the next round. As in next round committee members

get changed due to changing seed, new committee members will decide for the block. This

process continues for a specified number of rounds (usually upto 8 rounds). After which if

block is still not added to the chain, system will add an empty block to the chain. It has

been depicted in Algorithm 6. However, there will be very rare such cases as protocol is

designed to work effectively under strong synchronous assumptions and believes that after a

period of weak synchrony, there will be a period of strong synchrony where nodes will reach

consensus.

As seed changes for every round, different committee members are selected for every

round.

5.3.2 Security

Sybil Proof Byzantine Agreement (BA*) instituted by the Algorand for the consensus re-

quire a leader for block proposal and few members for the committee to validate the block.

Probability that a node will be selected as leader for block proposal or committee mem-

56

Algorithm 6: Algorand Algorithm
Input: A set of valid transactions and hash of previous block
Output: A valid block or an empty block

1 Join the Blockchain Network
2 Invest your assets in the system
3 Function Main():
4 Blocklist = empty
5 if Bk is not found then
6 update seed
7 update stake state
8 Each node to elect itself as Committee Member or Leader
9 if Elected as leader then

10 fetch transactions
11 construct block
12 calculate message priority
13 if message priority is highest then
14 gossip block to neighbors
15 add block to Blocklist
16 else
17 donot gossip block
18 end
19 end

/* obtain consenesus for proposed block */

20 run ReachConsensus(Blocklist)
21 end
22 End Function
23 Function ReachConsensus(Blocklist):
24 counter = 0
25 while Blocklist is not empty or counter <9 do
26 counter = counter + 1
27 Block B = pop(Blocklist)
28 ValicationScore = committee memebers to validate hash of B
29 if ValicationScore ≥ 2

3
of total members then

30 select longest chain
31 add block to this chain
32 else
33 add B to Blocklist
34 end
35 end
36 if counter ≥ 9 then
37 remove items from Blocklist with index greater than 9
38 end
39 End Function

bers is dependent on money it has in the system. Thus unlike other byzantine fault tolerant

protocols, actual stakes in the system, rather than the pseudonyms matter here. Consensus

57

Finality Theoretically, Algorand achieves probabilistic finality. But time for the confirma-

tion is less than a minute. Forks Even though Algorand offers probabilistic finality, yet

in presence of strong synchrony and up to 1
3

adversarial power, it guarantees a negligible

probability for forks (≈ 1
1018

) [56], thus allowing protocol to reach a definitive agreement on

each block. In case of weak synchrony, short term forks are possible but Algorand uses BA*

protocol to reach on agreement to resolve the forks. Thus, all the transactions are eventually

finalized once system is in strong synchrony. The protocol priorities consistency over avail-

ability. If the nodes fail to reach consensus, it will add an empty block to chain and will try

to reach consensus in the next round [43]. Denial of Service Resistant Algorand is Denial

of Service resistant. Every node finds out locally in private whether it has been elected as

member of the committee for the current round or not using cryptographic sortition? If it

is the elected node, it will cast its vote on its turn. By the time adversary will deny this

node, it would have posted its vote. Thus the algorithm is resistant against targeted Denial

of Service attack. In case, adversary gets control of few nodes who have been elected as

committee members, BA* handles it using temporary consensus. Algorand assumes that it

will be very un-likely that majority in the network dishonest and rules out Denial of Service

at entire network level [16]. Double Spending As the transaction are finalized in less than a

minute and for every round committee members are changed who verify the blocks, double

spending is not possible.

5.3.3 Performance

Network Scalability Protocol is highly scalable. New nodes can join the network with-

out much impacting on the performance. Nodes are arranged randomly in graphs. Graphs

are arrange in such a fashion that new nodes do not deteriorate performance. Transaction

Throughput Algorand produces a very high throughput compared to Nakamoto consensus.

It achieves 875 transactions per second [16]. Latency for Block Propagation It takes about

20 seconds for the block to propagate the network for one round. However, latency increases

with block size. With a 10 MB block, latency for block propagation reaches to 50 seconds

for one round. Communication Complexity Algorand uses gossip protocol for the com-

munication amongst nodes. Each node is randomly connected to random peers making a

random network graph. For each user, communication cost depends on the number of block

58

leaders and size of validating committee. As more users join the network, messages delivery

takes long in the gossip network. In Algorand each node is part of at least one of the con-

nected component in the graph. Message dissemination grows logarithmically with number

of users in the connected component.

5.3.4 Generic

Incentive Mechanism Algorand does not define any mechanism for reward distribution

[43].

5.4 Comparison

The consensus in this class relies on a voting mechanism to achieve consensus on true value.

All the data is replicated to all the server or trustee nodes. Once the leader asks them to

validate a transaction, these nodes then vote for the fact. If the value proposed (transaction)

is consistent with the state held with the server and also satisfy protocol rules, nodes validate

the transaction else it is rejected. Based on the number of votes received from the trustees

or replication machines or servers, the transaction proposing node i.e. the leader decides

whether to process the transaction or not. If processed, trustees or the servers update their

state. Table 5.1 compares protocols from this Family.

Parameters Protocols

PBFT BFT-SMART Algorand

Adversay Tolerance 33% 33% honest nodes

in consensus

committee must

be more than 2
3

Consensus Finality Absolute and In-

stant

Absolute and In-

stant

Probabilistic

Strong Consistency yes yes yes

59

Forks Handling Inhibits forks Inhibits forks Possible but miti-

gation for inhibi-

tion exists. Thus,

practically forks

may not exist.

Block Production Time Instant Instant < a minute

Block Size - - 512KB, 1MB,

2MB, 4MB,8MB,

10MB

Puzzle Design Vote based Vote based Vote Based

Design Goals Handle Byzan-

tine Faults

effectively

Handle Byzan-

tine Faults

effectively

Scalability

Operational Environ-

ment

Permissioned Permissioned Permission-less

and Permissioned

Transaction Propaga-

tion Model

Asynchronous Eventually Syn-

chronous

Partially Syn-

chronous

Throughput 15000 + tps upto 10000 tps 875 tps with

10MB block size

Message Complexity O(n2) O(n2) O(n)

Transaction Scalability Yes Yes Yes

Network Scalability No No Yes

Smart Contract - - -

Availabiltiy of Code Yes Yes Yes

Realization Many (famous:

Hyperledger/-

sawtooth)

Few Algorand

Table 5.1: A Comparison of Consensus Protocols Based on Vote Methodology

Both Practical Byzantine Fault Tolerance and BFT-SMART scale for transaction through

60

put upto a limit and then with addition of more nodes to network their performance starts de-

grading due to increasing message complexity. However, Algorand scales for both network

and transactions. It relies on gossip protocol for inter node communication and it message

communication only depends on immediately connected nodes.

61

Chapter 6

Hybrid Conensus Family

6.1 Elastico

Elastico has been designed for the permissionless blockchains with scalability in mind,

and it scales linearly with the number of nodes in the network. Elastico benefits the idea

that each transaction is verified by a small number of nodes i.e. a subset of total nodes,

and there are many subsets of nodes verifying each transaction so that it remains secure.

This concept allows processing many transactions in parallel. Shards, Parallelization and

Elastico Sharding allows division of transactions into groups, thus enabling parallel pro-

cessing. This concept is not new where identities are pre-established by some means like

public key infrastructure or through the existing network infrastructure [31] and has been

used for scaling SQL databases. However, for the identity-less system as in case of permis-

sionless blockchains, this concept was first introduced by Loi et all in their paper ”A Secure

Sharding Protocol for the Open Blockchains” [76] and titled the suggested algorithm as

”Elastico.” Elastico Working Authors implemented the Elastico on top of Bitcoin. Elastico

divides the nodes on the network into committees. Each committee then processes a disjoint

subset of transactions called shards rather than the entire set of transactions. Internally, each

committee uses classic byzantine fault-tolerant consensus protocol e.g PolyByz [77], Prac-

tical Byzantine Fault Tolerance (PBFT) 5.1 or SybilSensus [48]. However, these traditional

Byzantine Fault Tolerance consensus requires pre-established identities. These identities are

created at the start of each epoch by each processor using its IP address, a public key, and

proof of work solution. These identities are then communicated to all the nodes comprising

the constituent committee. Once all the nodes in the committee have reached consensus in-

ternally using Practical Byzantine Fault Tolerance protocol, each committee sends its values

to a final committee called consensus committee. The final committee can use some exist-

ing byzantine fault-tolerant consensus protocol to reach consensus. The final value is then

broadcast to all nodes on the network by this committee. The consensus committee also runs

62

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

a distributed commit and xor scheme for generation of an exponentially biased bounded set

of random values to be used in the proof of work puzzle for the next epoch and is called

epochRandomness. Algorithm 7 summarizes the general procedure for the protocol.

Algorithm 7: Elastico Algorithm
Input: A set of valid transactions
Output: A valid block
/* Join the Network */

1 Join the Blockchain Network as a Full Node (Mining Node)
2 Function Main():
3 S = number of shards
4 Committee Size = 2s

5 start epoch
6 broadcast epochRandomness // randomness from last round for unique

Proof of work solution

7 run GenerateIdentities(epochRandomness)
8 currentCommittee = create Committee
9 while total committees ¡ s do

10 while members in current committee < committee size do
11 add members to current comittee
12 end
13 currentCommittee = new committee
14 end
15 form finalization committee with specific LSB in identity string
16 reach consensus in shards using PBFT or any classical BFT mechanism
17 reach final consensus using finalization committee
18 End Function
19 Function GenerateIdentities(epochRandomness):
20 id=null
21 while true do
22 id=Hash(epochRandomness—IPnode|Pknode|nonce) /* Pk - Public Key;

*/

23

/* D defines a predefined difficulty */

24 if id < 2id−D then
25 break
26 end
27 increment nonce
28 end
29 return id
30 End Function

6.1.1 Security

Elastico was designed with scaling out in mind, and it does that well. However, it sacrifices

security to achieve decentralization and scaling out. It can guard against a maximum of 25%

63

me.tarar
Highlight

me.tarar
Highlight

faulty or dead nodes. It is pertinent to mention that it treats stopped or dead nodes as faulty

nodes. Sybil ProofElastico has been designed to work in open, permissionless blockchains

where neither identities are pre-established, nor some type of public key infrastructure is in

place [81]. Each node establishes its identity at the start of the epoch using its IP address, a

public key and proof of work solution (Proof of Stake and Proof of Storage can also be used

instead of proof of work) by searching a valid nonce to satisfy the following condition:

O = H(epochRandomness|IP |PublicKey|nonce) < 2γ−D

where O is a valid identity, H is a cryptographic pre-image resistant hash function,

epochRandomness is a random value generated by final committee at the end of last epoch,

and D determines work to be done by the processor to solve the proof of work puzzle and is

predefined.

As the creation of identities involves computationally hard proof of work puzzle, identities

can only be created proportional to the computational power. Adversary ToleranceElastico

can produce accurate results in the presence of 1
4

byzantine or adversary computational

power of the total computational power in the network. This must hold true for the com-

mittees as well. Inside a committee, there must be at least 2
3

or 66% honest nodes of the total

nodes in the committee i.e., each committee must have an honest majority with high proba-

bility. Also, Elastico treats failed nodes as Byzantine nodes. If the total failed or byzantine

nodes in a committee exceed 1
3
, it will not guarantee correct results. LivenessElastico works

in synchronous or partially synchronous networks. Thus liveness property will always be

achieved i.e. committees will reach consensus in polynomial time.

6.1.2 Performance

Scalability Elastico scales linearly to the computational capacity in the network because of

parallelization of processing power and decoupling of the consensus process from the block

data broadcasts, allowing an enhanced transaction rate. Contrary to tradition byzantine fault

tolerant consensus it does not require a quadratic number of messages for committees to

reach consensus rather uses a small number of broadcasts. This reduces message complexity

to only O(nc3) where n is total number of nodes and c is the number of committees. Ex-

periments have shown that Elastico can scale up in magnitude by order of 4 when deployed

64

me.tarar
Highlight

in scale to the current Bitcoin network. Following figure 6.1from Elastico white paper [76]

depicts the relationship between network size, blocks produced and time consumed. Band-

Figure 6.1: Elastico’s Linear Scalability

width Requirement Contrary to some other consensus protocols like Bitcoin-NG where

bandwidth per node is dependent on the production of key and micro blocks, the bandwidth

of each node in the Elastico network is about 5 MB with little fluctuations. Block Verifica-

tion A new block from one committee needs not to be verified by nodes of other committees.

Instead of nodes only check if the particular block has been appended to the chain by Con-

sensus Committee or not? Why so? Because the respective committee first verifies each

block and then sent to the consensus committee. Block is only added to the chain once

the consensus committee has verified it. This reduces local computation by the nodes, thus

improving efficiency. Validators switch shards for each epoch. This requires that each val-

idator stores complete transaction history i.e the global state of the chain. This at one hand

improves security by providing a strong defense against adaptive adversaries but at the same

time hinders performance [68]. The probability that the system will fail increases with an

increasing number of shards in the network.

65

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

6.1.3 Generic

Elastico is fully compatible with existing data structure employed by the most famous

blockchain, Bitcoin. However, one significant difference is Bitcoin is designed to work in an

asynchronous environment where Elastico is designed to work in synchronous or partially

synchronous environments. *Atomicity Across Shards Elastico fails to ensure atomicity of

transaction across shards — this result in locking of funds forever in one shard if another

shard rejects its transactions [68].

6.2 OmniLedger

OmniLedger relates closely to Elastico 6.1 and resolves many challenges left unsolved by

the said protocol. It has completely revamped consensus for the permissionless blockchain

environment and has been designed with following factors in mind:

Security – Full decentralization

– Shard Robustness

– Secure Transactions

Performance – Scale out

– Low Storage

– Low Latency

Contrary to existing blockchains where all the members of a consensus group or validators

redundantly process and validate all the transactions, OmniLedger reduces this processing

and validation load by splitting validators into shards.Each shard holds its own transaction

ledger i.e shards have their own sub blockchain. Other than sub-chains for shards their

is a global chain called identity chain that stores identities of all validators. Transactions

across the shards are completely atomic and are handled by Atomix protocol introduced in

OmniLedger consensus design [68]. OmniLedger builds on top of ByzCoin 6.3 , Hybrid

Consensus, Ouroboros 4.3 and Algorand 5.3.

6.2.1 OmniLedger Working

Concept OmniLedger like Elastico 6.1 benefits sharding. Nodes in the network are grouped

into different shards. Each shard validates and processes a unique and different sub set of

66

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

transactions. This enables parallelization thus allowing OmniLedger to scale out with im-

proving the system throughout with a factor of number of shards. Working OmniLedger

network consist of validating nodes termed validators. Each validator (i) is identified by a

public key and has a public private key pair (pki, ski). The system runs for some fixed time

unit called epoch. An epoch can be an hour or a day or any time, as determined by the

system. To participate in the network for an epoch e, validator are required to establish an

identity in epoch e − 1. Identity can be established through a Sybil attack resistant mech-

anism like proof of work puzzle solution or proof of stake [74]. These identities are then

published to a global identities chain. Identity chain is other than the transactions chain.

Validators are then evenly assigned to shards at the start of epoch e using RandHound [100]

protocol ensuring validators in a shard are a sample of the overall system. RandHound en-

sures distributed randomness, unbiasability and unpredictablitiy but requires a leader node

to orchestrate protocol run. This leader can be some fixed third party trusted node or a node

elected through a deterministic way. However, OmniLedger makes use of verifiable random

function (VRF) based approach for leader election [80]. A verifiable random function (VRF)

comsumes x as input and produces a random hash of a fixed length (l− bits) and a verifiable

proof π based on private key ski. Each validator (i)computes a ticket (ti,e,v)at start of epoch e

using concatenation of configuration file (confige) containing all valid registered validators

on identity blockchain for the current epoch e, and view counter (v) passed to verifiable ran-

dom function (VRF) i.e ti,e,v = V RFski(”leader”||confige||v). Tickets thus computed are

gossiped amongst other nodes in the network. After a known maximum time ∆ in minutes,

validators lock the valid ticket with lowest value appeared thus far. Node who owns this

ticket is accepted as the RandHound leader for the current epoch e. If for any reason, within

a time ∆ elected leader fails to start the RandHound protocol, then current run is marked as

failed by the validators. Next, view is incremented by 1 and entire lottery process for the

leader election is repeated. Now, the RandHound protocol is run with elected leader. After

successful completion of the protocol run, leader broadcasts random value for the current

epoch rnde and correctness of proof. Now all the properly registered validators who are part

of the network for current epoch fist verify rnde and then use this random value to calculate

permutation πe of each validator. Once permutation calculation is done, it is used to assign

validators to shards by dividing validators in m equal sized buckets [68]. It is pertinent to

67

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

mention that for each epoch OmniLedger only swaps a portion of validators in shard. This

makes it possible for the system to remain functional during epoch transitions as well. To

maintain the current system state, it uses unspent transaction output (UTXO) model [88].

UTXO model allows full nodes to drive the current state of the distributed ledger from the

blockchain itself. At time of boot strapping, a full node crawls the entire blockchain and

builds database of all valid UTXOs. For cross shard transactions, OmniLedger uses Atomix

along with UTXOs model. Inside a shard nodes reach consensus using ByzCoinX protocol.

It ia a modified version of Practical Byzantine Fault Tolerance protocol with modified mes-

saging propagation mechanism. The adopted messaging mechanism resembles closely to

two-level tree. As we know that before start of the epoch a randomness rnde was generated

by the leader for validators to assign shards. Same randomness is used by epoch leader to

assign nodes to groups within a shard. The leader also randomly selects a group leader from

the group at start of the ByzCoinX protocol roundtrip. It is the responsibility of the selected

group leader to manage communication between the protocol leader and the group members.

In case the selected group leader fails to respond for a predefined time, the protocol leader

selects another group leader randomly.

6.2.2 Security

Sybil ProofOmniLedger is designed for open permissionless blockchains in absence of pre-

established identities and public key infrastructure. Nodes on joining the network establish

their identities using any Sybil attack resistant mechanism like proof of work or proof of

stake. These are then published to a global identity chain. Adversary Tolerance Om-

niLedger can produce true results i.e it guarantees liveness and safety in presence of 3f + 2

nodes where f are the byzantine nodes [75]. If the worst cases happens i.e the network con-

tains 1
3

malicious nodes uniformly distributed across the entire network, then all remaining

honest nodes have to respond for correct calculation of the result, else the protocol will fail.

It ensures an absolute and instant consensus finality. Once a block gets added to the chain it

can not be pruned. Therefore, all the work that is put for the validation of blocks is never lost

which is contrary to other famous protocols like Bitcoin where due to forks sometimes entire

blockchain branches are pruned. Double Spending There is a less than 10% probability that

system will become vulnerable to double spending attacks.

68

me.tarar
Highlight

6.2.3 Performance

Scalability OmniLedger scales out linearly with number of nodes in the network. Its

throughput varies with number of nodes in the network, division of these nodes into number

of shards, number of nodes in each shard and adversarial power. Fig 6.2 depicts the same

for 1800 nodes in presence of varying number of shard sizes and adversarial powers.

Figure 6.2: OmniLedger Throughput (Copied from [68])

It achieves throughput of 4000 transaction per second i.e average throughput for visa in

presence of 25% adversary with only 4200 nodes divided in 7 shards. This number is much

lesser than number of full nodes on Bitcoin network. Currently Bitcoin network have 9477

active full nodes [18]. Latency Latency in OmniLedger is effected by shard size. It is

not much effected by the number of shards. For 7 shards with 70 nodes in each, latency

is approximately 4 seconds. However,once shard size is increased, also increases latency.

Latency increases rapidly when transactions are cross shards. It becomes worse when mul-

tiple shards are required to validate a transaction and output shard has to run a consensus.

However, usually it is not required. Communication Complexity OmniLedger modifies the

69

Practical Byzantine Fault Tolerance algorithm to achieve a message complexity ofO(log n).

Originally, Practical Byzantine Fault Tolerance has a message complexity of O(n2) .This re-

duction in message complexity is achieved through a tree oriented collective signing where

epoch leader and group leaders from shards selected for current epoch are responsible for

the communication of messages 6.2.1.

6.2.4 Generic

Smart Contract Support OmniLedger does not support smart contracts. It can be coupled

with other existing frameworks to add the smart contract support.

6.3 ByzCoin

ByzCoin has been designed for open, permissionless blockchains with security and perfor-

mance in mind. It introduces the concept of Practical Byzantine Fault Tolerance inside proof

of work, hence a new consensus mechanism which is a combination of Practical Byzantine

Fault Tolerance and proof of work. By doing so, it establishes a consensus mechanism that

is byzantine fault-tolerant and provides strong consistency guarantees [67]. It scales out

Practical Byzantine Fault Tolerance in terms of transaction throughput leveraging collective

signing using Schnorr multi signatures or Boneh Lynn Shacham signature scheme and in

terms of network size using proof of work, that is it adapts to open permissionless environ-

ment using proof of work puzzle solution.

6.3.1 Working

Concept ByzCoin establishes a scalable Practical Byzantine Fault Tolerance consensus

leveraging collective signing scheme by arranging validators in a tree structure. The cur-

rent set of validators is determined using proof of work within a rolling window. The latest

winner of proof of work in that window acts as the leader of the validators and hence is

placed at the root of the tree. Validators get a share proportional to their mining power.

Working ByzCoin utilizes byzantine fault-tolerant scheme Practical Byzantine Fault Tol-

erance for consensus. However, Practical Byzantine Fault Tolerance has been designed to

operate in a federated environment where identities are already well established and a des-

ignated leader. A leader acts as moderator for the other nodes. It proposes blocks to other

nodes called trustees in the network using all-to-all communication. All nodes use a mes-

sage authentication code to authenticate each other on the network. The protocol runs in

70

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

three phases named pre-prepare, prepare and commit phase.

To make it work it the open, permissionless environment, ByzCoin utilizes Nakamoto

proof of work. Proof of work allows electing trustees and leader to run Practical Byzan-

tine Fault Tolerance protocol in a Sybil proof way. Also, it shifts from symmetric message

authentication code to public key infrastructure where nodes have their public and private

keys to authenticate each other derived using Elliptic Curve Ed25519 signatures. To limit

the number of trustees, the concept of a sliding window of fixed time duration has been in-

troduced in the ByzCoin protocol. The time duration for this sliding window can be fixed

to a day, a week, or even a month based on security and performance requirements. When

a miner mines a block using a computation-intensive proof of work hard puzzle [82], it gets

added to the rolling window. Once a new miner after winning the puzzle gets added to the

window, the member that have found the block earliest in current window gets deleted from

the window. These members in the current window act as trustees. Thus the membership

of the trustees is done through proof of work. Therefore in ByzCoin, proof of work is also

termed as proof of membership.

ByzCoin protocol like Bitcoin-NG 4.2 decouples leader election process from transaction

verification to enhance the transactions throughput. Thus, it introduces the concept of key

and micro blocks. Key block contains a proof of membership and determines membership

for the rolling window as discusses in the last paragraph. Latest validator node which has

obtained the membership of the trustees can add multiple micro blocks to the blockchain

until a new node solves the proof of work puzzle. This validator node that has been added

to the window the last, acts as leader for other nodes in the window and is responsible to get

all the transactions validated before adding those to the micro blocks. Protocol employees

collective signing principle for the purpose[101]. Hence, the leader node collects transac-

tions and distribute it to other trustees. Trustees can be arranged in a tree pattern or any other

fashion. Those trustee nodes validate the transactions and send their response to the leader.

The leader then computes a challenge based on trustees response and sends back to them for

verification. If verified successfully, the new micro block is added to the blockchain by the

leader. Share of mining new blocks is distributed among the current set of trustees propor-

tional to their hashing power i.e the number of key blocks they have mined in the current

rolling window. As seen in fig 6.3 (copied from [67]) yellow block has been recently mined,

71

so is acting as the leader for the current session. In current window, yellow has mined two

key blocks, pink has mined two key blocks and blue has mined three key blocks of the total

seven mined blocks, thus yellow and pink will get 2
7

share each, and blue will get 3
7

share.

An abstract version of the ByzCoin protocol is presented in Algorithm 8.

Figure 6.3: ByzCoin Design

6.3.2 Security

Sybil ProofByzCoin is designed for open, permissionless blockchains in the absence of pre-

established identities and public key infrastructure. Nodes on joining the network establish

their identities using Nakamoto proof of work Sybil attack resistant mechanism. Thus total

hashing power rather than the number of identities matter in the network. Adversary Tol-

erance ByzCoin can guarantee safety and liveness i.e it can produce correct blocks in the

presence of 3f + 2 nodes where f are the failed or byzantine nodes [67]. If the worst cases

happen i.e., the trustees in sliding window constitute 1
3

byzantine validating nodes, then all

remaining honest nodes have to respond for correct calculation of the result, else the protocol

will fail. Also, at least 2f + 1 honest validating nodes must verify the micro block and an

honest leader accepts it and adds it the blockchain. If the leader becomes byzantine, it will

compromise the liveness property of the consensus. Forks and Selfish Mining Two proto-

cols are running here. For micro blocks, there will be no forks, as Practical Byzantine Fault

Tolerance protocol provides strong consistency [27] thus inhibits forking. However, key

72

Algorithm 8: ByzCoin Algorithm
Input: A set of valid transactions
Output: A valid block
/* Join the Network */

1 Join the Blockchain Network as a Full Node (Mining Node)
2 Function Main():
3 s = fixed window size
4 create Queue trustees of size s
5 P = Hash of the last block
6 Blockk = Key Block containing P, current GMT,coin base reward, target value

and nonce
7 Blockm = Micro Block containing ledger entries
8 H = Hash function
9 D = Difficulty level

10 retrieve P
11 while true do
12 Construct Blockk

/* will be true once key block has been found */

13 if H(P,BK)<D then
14 gossip Blockk to peers
15 Dequeue(trustees)

// remove node that found the block earliest.

16 Enqueue(trustees,node) // node which has found the block

17 end
18 update nonce
19 run PBFTModified()
20 end
21 End Function
22 Function PBFTModified():
23 leader = top(trustees) // node added to queue most recently

24 leader packs transactions to a microblock Blockm sends Blockm to trustees
// members of queue less top node

25 trustees validate Blockm
26 trustees send response Blockresponse to leader
27 leader computes challenge Blockchallenge for Blockresponse
28 leader sends Blockchallenge to trustees
29 trustees computeBlockChRe against Blockchallenge
30 trustees send BlockChRe to leader
31 if BlockChRe is verified then
32 add Blockm to chain
33 end
34 End Function

block generation may lead to forks or selfish mining like in Bitcoin [92]. However, protocol

mitigates it by increasing entropy of the output deterministic prioritization function. This

idea is to arrange the hashes of all the conflicting blocks in sorted order from low to high in

73

an array. Then compute the hash for this array. Now compute the modular using following

formula. The remainder (final bits of the hash) will the block index for the winning block.

winning block index = arrary hash mod (arrary size− 1)

This resolves the issue of forks without any voting. Attacks Envisaged As the protocol

is based on Nakamoto proof of work and Practical Byzantine Fault Tolerance protocol, it

inherits strengths and weaknesses from both. The system is vulnerable to temporary Denial

of service or slowdown attack owing to properties of the underlying byzantine fault-tolerant

protocol. If the elected leader is malicious, it can hinder the consensus process by excluding

minorities to take part in consensus. However, the protocol is less vulnerable to Eclipse

attack as compared to Bitcoin as it is difficult for the malicious elected leader to convince

the validators into accepting alternate transaction history that is controlled by the malicious

attacker node. Practically speaking, an adversary needs to control at least 2
3

of the validating

nodes i.e. the voting power to launch the eclipse attack [78].

6.3.3 Performance

It improves performance in terms of both transaction scalability using Practical Byzantine

Fault Tolerance protocol and network scalability using Nakamoto proof of work protocol.

Latency The latency of the protocol almost remains fixed as a number of nodes participating

in consensus does not vary much. Numbers will only vary when one node mines key blocks

successively. However, the choice of the collective signature scheme used i.e. tree-based

scheme or flat scheme and block size will impact the latency in the consensus. For a constant

144 validators, time to reach consensus for a block of 1 MB is about 10 seconds and for a

32 MB block, it is about 40 seconds for tree-based collective signing scheme. However,

same rises to about 20 seconds and 110 seconds respectively for 1 MB and 32 MB block

using flat-based collective signing scheme. Communication Complexity ByzCoin modifies

the Practical Byzantine Fault Tolerance algorithm to reduce per round message complexity

to O(log n). Originally, Practical Byzantine Fault Tolerance has a message complexity of

O(n2). This reduction in message complexity is achieved, employing scalable collective

signing protocol. The collective signing also enables direct verification, thus enabling the

system to reduce the signature verification complexity to a constant complexity of O(1)

74

me.tarar
Highlight

from O(n). Also reduces the typical case communication latency to O(n) by using digital

signatures instead of message authentication code. Throughput Authors have claimed that

ByzCoin can perform 1000 transactions per second with 1 MB block (blocks size currently

used by Bitcoin) when transactions are validated in a tree pattern. This is much higher than

the throughput of Paypal witch is currently 193 transactions per second [53]. In case of

overload, the system is designed to adapt by changing the micro block size to 2 MB. Also,

if the tree pattern fails, the system adapts by following a flat pattern with 1 MB block size.

With flat pattern system can process more than 70 transactions per second witch is almost

10 times higher than the current Nakamoto consensus.

6.3.4 Generic

Open Source and Code Availability This is an open-source project and code is available at

GitHub at URL [34]. Code is written in Go Language.

6.4 Comparison

The consensus in this class relies on a Sybil proof mechanism for forming trustees group

and a classical consensus mechanism like Practical Byzantine Fault Tolerance for achieving

the consensus. Their performance mostly relies on the selection of protocols for both phases

and arrangement of nodes in classical consensus for reaching a final consensus. Table 6.1

compares protocols from Hybrid Family.

Parameters Protocols

Elastico Omni Ledger ByzCoin

Adversay Tolerance 25% faulty pro-

cesses, can reach

upto 33% if com-

mittees are fully

random

upto 1
4

of the

computational

capacity. De-

pends upon

number of shards

and members in

each shard

25% for key

blocks

Consensus Finality Absolute and In-

stant

Absolute and In-

stant

Absolute and In-

stant

75

Strong Consistency yes yes yes

Forks Handling - Inhibits forks Inhibits forks

Block Production Time 10 minutes < 1 minute 10 seconds for

1MB block and

90 seconds for

32MB block

Puzzle Design Hybrid Hybrid Hybrid

Puzzle to Solve PoW for com-

mittee formation

And PBFT for

consensus

Sybil proof

for committee

formation and

classical for

consenus

Sybil proof

for committee

formation and

classical for

consenus

Design Goals Scalability Scalability and

Security

Scalability

Operational Environ-

ment

Permission-less Permission-less

and Permissioned

Permission-less

and Permissioned

Block Size 1 MB 500KB, 1MB,

16MB

1MB upto 32 MB

Transaction Propaga-

tion Model

Partially Syn-

chronous

Synchronous, in-

ternally to a com-

mittee

Partially Syn-

chronous

Throughput 600 tps (depends

on committee

size and nodes /

commitee)

upto 10000 tps 700 tps

Message Complexity O(nc3) O(n) O(1)

Transaction Scalability yes yes yes

Network Scalability No yes yes

76

me.tarar
StrikeOut

me.tarar
StrikeOut

me.tarar
StrikeOut

me.tarar
StrikeOut
O(n)

me.tarar
StrikeOut
<1 minute

me.tarar
StrikeOut
1000

Smart Contract - No, can be mod-

ified to add sup-

port

-

Availabiltiy of Code - yes yes

Realization None None -

Table 6.1: A Comparison of Hybrid Family Protocols

These protocols have been designed to scale with network and adopt goods of both mod-

ern permission-less consensus like Nakamoto’s Proof of work and classical consensus al-

gorithms like Practical Byzantine Fault Tolerance. However, security and performance of

such protocols mainly depend on how randomly those assign nodes to shards for Elastico

and OmniLedger or a majority of honest nodes in consensus windows for ByzCoin. Om-

niLedger builds on top of Elastico and ByzCoin and tries to accommodate goods of both.

Elastico’s performance grows linearly with the number of nodes and shards [76] , but after a

limit, it starts degrading due to heavy message load. Contrary to it, OmniLedger scales with

network and number of transactions. Elastico’s failure on an increasing number of nodes is

inherited from Practical Byzantine Fault Tolerance. OmniLedger kills this issue by adapting

to the concept of collective signing scheme adopted from ByzCoin. OmniLedger also im-

proves upon the methodology of assigning nodes to shards. Elastico assigns nodes to shards

based on a pattern of least significant bits in identity string, whereas OmniLedger makes use

RandHound algorithm for assigning nodes to shards.

77

Chapter 7

Blockchain Consensus Protocol for IoT

7.1 Why Blockchain for IoT?

IoT devices have a widespread proliferation in our existing environment. Those find more

and more autonomous deployments with every passing day. From small autonomous net-

works, we have grown to smart homes and smart cities and journey has just begun. How-

ever, to meet the true potential of autonomous behaviour, these devices (generally termed as

nodes) need to interact and communicate with each other for exchange of data. For visu-

alization of a digital world that truly represents the real world, we need a totally connected

network of huge number of devices. And these devices have a peculiar characteristic, they

generate huge amount of data. But, if few nodes become faulty or even worse if an adver-

sary controls those. In such scenarios, different nodes on the network will propose different

data to network. This breaks the trust on data proposed. Furthermore, data can be tampered

or altered en route while it is travelling from one point to another. This worsens the trust

on received data. Thus we need some mechanism, where the information received can be

verified for its integrity.

Blockchain provides the most simplest and promising method for achieving this trust, in

information received, in a distributed fashion. It provides transparency and allows all the

nodes on the network to validate the data, that it has not been modified since its definition

through cryptographic constructs. And it also helps devices to decide on a single true value in

presence of malicious and adversary nodes using its consensus algorithms. But, blockchain

has its own requirements for any system to adopt to it. Nodes need to have the following

functionality:storage, routing, consensus and wallet services. Not all nodes have all the

functionalities. Based on the role held by a node in a network, it can be categorized as Core

Node, Consensus Node (Mining or Block generation node), Full Node, or Light Node. Table

7.1 summarizes different type of nodes and their functionalities [90].

Consensus capability is the most important for information integrity assurance. Consen-

78

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

Node Type Storage Routing Block Generation Wallet
Core Node 3 3 3 3

Consensus Node 3 3 3 7

Full Node 3 3 7 7

Light Node 7 3 7 3

Table 7.1: Node Types based on their Capability

sus algorithms enables untrusted nodes in the network to validate all the transactions and to

conclude on a single universal truth in absence of central authorities. However, mostly the

consensus mechanism those provide high security guarantees usually have a very high com-

putational requirement besides other drawbacks like low transaction throughput and high

latency. Contrary to requirement of such protocols, IoT devices are computationally very

light and have very limited communication capabilities. Usually those are low powered em-

bedded computational platforms with bare minimum capability to perform tasks. Besides

this, those a limited storage, RAM and low powered communication mechanism like IEEE

802.15.4 [2]. Due to all these reasons, it is vital that only light weight consensus protocols

be used with IoT or protocols be modified for use in IoT. During the current study, proto-

cols were specifically studied for their suitability in blockchain with IoT devices as network

participating nodes. For a blockchain to be deployed in IoT environment, it is desirable that

it has features like decentralization, it should not be computation intensive as well as net-

work intensive and it ought to have high network scalability. However, most light weight

consensus rely on heavy communication among participants to maintain data integrity. This

heavy communication some times become bottle neck in interference limited communica-

tion channels. Thus, mostly we have to struck a trade off between security and throughput.

Other desirable features for such blockchains are high throughput and low latency. Table 7.2

summarizes protocols those can be used with IoT in any of the modes.

7.2 Consensus Algorithms for Blockchain for IoT

As table 7.2 hints upon, blockchain consensus stemming from proof of work or related hard

problems does not suit well for IoT devices. Also, this gives the idea that blockchains for

permission-less environments are not suited for IoT integration, because for nodes to partic-

ipate in consensus process, those have to provide storage facility itself as indicated in table

7.1. Mostly, the IoT networks generate huge amount of data. It will not be possible for IoT

79

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

Consensus Protocol Suitability Remarks
Nakamoto Consensus 7 Participate in Bitcoin network as a

Lite Node
Bitcoin-NG 7 Participate in Bitcoin network as a

Lite Node
Ouroboros 3 With external data storage service;

Hyperledger IROHA employes PoS
PBFT 3 Mostly existing blockchain plat-

forms for IoT use PBFT protocol.
BFT-SMART 3 -
Algorand BA* 3 -
Elastico 7 -
OmniLedger 3 Provides very low storage overhead
ByzCoin 7 Phase 1 protocol stems from

Nakamoto consensus

Table 7.2: Suitability of various consensus protocols for IoT

devices taking part in consensus to keep the entire chain with this amount of data. Another

issue of permission-less environment is that nodes require to sign and encrypt transactions

using public and private keys. That makes it computation hungry compared to counter parts

in permissioned environments where Message Authentication Code can do the task. In per-

missioned settings, a single entity or a consortium controls the blockchain rules and nodes

have identities attached to them. This allows to use vote based high performance consensus

protocols in permissioned environments. Hyperledger Family, Corda [22] and Tendermint

[69] all rely on vote based algorithms to reach consensus. Those mechanisms have their own

drawbacks associate with them as discussed in chapter 5 like high message complexity. But

nodes can be arranged in different patterns to minimize bandwidth usage.

The three most suitable consensus algorithms for IoT devices are Practical Byzantine Fault

Tolerance protocol 5.1 , Algorand 5.3 and OmniLedger 6.2. Pros and Cons of each are given

below:-

7.2.1 Practical Byzantine Fault Tolerance

In Practical Byzantine Fault Tolerance all nodes have to participate in consensus process. It

can tolerate upto 1
4

byzantine nodes. That means if there is one malicious node, then at least

4 honest nodes are required to reach consensus on a truly proposed value else the system

will fail to achieve termination property of consensus. It is not suited for permission-less

blockchains but suits well for private and consortium blockchains. It has been adopted by

80

many permissioned chains like Hyperledger. It is characterised by a high throughput, low

latency and low computational overhead. Its major pros and cons are given below:

Pros

• It is not computation intensive and network intensive (unless number of devices below

few thousand).

• It has a very high transactions throughput.

• Network latency is low.

• Can tolerate upto 33% byzantine nodes.

• Does guard against Sybil attack.

Cons

• It does not scale well beyond few thousand nodes after that its performance starts

degrading.

• It can not operate in fully decentralized environments where identities are not estab-

lished.

• Message storage over head is high.

7.2.2 OmniLedger

OmniLedger has been designed to operate in permission-less settings. It can tolerate upto

1
4

adversarial nodes. It divides nodes on the network into shards using verifiable random

functions. Within each shard it uses modified version ByzCoin Practical Byzantine Fault

Tolerance. It has very low storage overhead as nodes are not required to store the entire

chain [68]. Though using OmniLedger we can implement permission less blockchain for

IoT but is poses a large communication overhead, which makes it an in efficient choice

[115]. However, this is much efficient as compared to other permission less blockchain

protocols.

Pros

• It can operate in both permissioned and permission less settings.

81

me.tarar
StrikeOut

• It has a very network scalability.

• Guards against Sybil attack.

• Can tolerate upto 25% byzantine validating nodes.

• Transactions throughput is very high. Depends on number of nodes in each shard.

• Low storage overhead as validating nodes are not required to store entire transaction

history.

Cons

• Computation overhead is much high as compared to Practical Byzantine Fault Toler-

ance protocol.

• It has a high message latency.

7.2.3 Algorand

Algorand can tolerate upto 1
3

of byzantine computational power. It combines virtual mining

technique proof of stake and its own vote based byzantine fault tolerant agreement mech-

anism BA* to achieve a high throughput system that is suited both for permissioned and

permission-less blockchains. It provides ASIC resisability and inhibits centralization that is

a desired property for good consensus. It also improves upon security, as nodes do not know

in advance, which committee they will become part of [47].

Pros

• Well suited to operate in permissioned and permission-less settings.

• Guards against Sybil attack.

• It is highly decentralized.

• It also provides ASIC resisability.

• High network scalability.

• High transactions throughput.

82

Cons

• Throughput is limited as compared to Practical Byzantine Fault Tolerance but is very

high compared to Bitcoin and Elastico.

• It has a high message latency, though less than OmniLedger.

• Nothing at stake attack is possible in Algorand.

• Usually there is no concept of money in IoT nodes. However, Algorand select nodes

for consensus committee based on stakes node hold in the system.

7.2.4 Discussion

IoT devices have storage, computational and energy constraints. As discussed above it will

not be possible for those devices to solve computationally hard puzzle. It can be concluded

from 7.2 that if IoT devices have to be deployed in permissioned environment, then Prac-

tical Byzantine Fault Tolerance is the best solution. It has a very high throughput that is

it achieves thousands of transactions with simple state machine replication. It is this main

reason, that is has been adopted by Hyper-ledger family [41, 55]. Hyperledger Iroha [54],

a blockchain platform for IoT devices - specialized designed to efficiently work with IoT

devices. If devices are to be deployed in open settings, then Algorand offers the solution.

This is computationally expensive than the PBFT, but true decentralization and transaction

scalability comes at cost of that.

83

Chapter 8

Open Challenges and Proposed Architectural Solution

8.1 Open Challenges in Blockchain

Though blockchain has emerged as the revolutionary technology that has impacted all major

businesses ranging from finance, data storage, inventory tracking, medical to internet of

things and many more for its unique characteristics. But it fails to cope with the massive

business solutions. Enhancing blockchain’s transaction and network scalability to match the

scale of today’s systems, while maintaining the trust in an open public without intermediary

is an active area of research.

8.1.1 Enhancing Network Scalability

Network scalability is usually high for blockchains designed to operate in open settings (per-

missionless environments). PoX and hybrid blockchains mostly fall in this domain. How-

ever, mostly vote based blockchain are designed to operate in closed settings (permissioned

environments) usually have a limited network scalability. Once, number of nodes exceed

a certain limit due to message overhead congestion occurs on network, thus limiting the

network scalability of these chains. Certain sharding solutions have been proposed for the

consensus in permissionless settings, but none has been for the consensus in permissioned

environment [33].

8.1.2 Reduction of Message Complexity for Classical BFT Protocols

Classical BFT consensus protocols scale well in close settings up to a certain limit and be-

yond that point their performance degrades severely due to number of message exchanged

during different stages to reach consensus. However, recently researchers have started ex-

ploring techniques where message complexity can be reduced fromO(N2) to something less

like O(N). One such technique is used in ByzCoin 6.3 is collective signing [67].

84

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

8.1.3 Enhancing Transaction Scalability

In blockchain usually a large number of devices have to talk to each other. This demands

a high throughput system. But in existing blockchain systems, once transaction speed is

enhanced, it adversely effects network scalability and security of the system. Thus, mostly

a trade off is struck between these two. However, efforts are being made to achieve both at

the same time. Proof of Stake 4.3 [57], sharding and side chains are active research areas of

this domain.

8.1.4 Storage Limitations

In existing blockchain protocols, all the nodes participating in consensus, store entire data

set with them. However, with passage of time blockchain size grows and hence the storage

requirement also increases. Currently Bitcoin has grown to 226,596 Mega Bytes [6], and is

still growing. Such massive growth of data may create problem for widley used blockchains.

Thus it is need that some efficient pruning strategies be devised to handle this growing de-

mand of storage.

8.1.5 Reducing Computational Requirements

Most of the existing implementations of blockchain protocols like Bitcoin and Ethereum

heavily rely on sophisticated cryptographic computations to achieve security. However, not

all devices are that powerful especially the IoT devices. Thus, energy efficient consensus

protocols with similar security assurities are to be designed.

8.2 Proposed Architectural Solutions

People have explored various approaches to overcome the short comings of blockchain and

tried to close few of the gaps mentioned in aforementioned paragraphs. One very simple

approach is to adjust the parameters of existing protocols like its block size, confirmation

time for transactions etc. Such an approach will achieve specific aims in specific environ-

ment under specific requirements but will jeopardise the security of the overall system and

may fail completely in other environments. For example study [112] demonstrates that max-

imum throughput of the Bitcoin network can be achieved at 4 MB block size. However,

such modifications will create congestions in low bandwidth networks. Similarly, once there

parameters are adjusted these have direct impact on the security of the reference blockchain.

85

me.tarar
Highlight

Another disadvantage of such approaches is that these make the updated blockchain incom-

patible with the other implementations of the same blockchain. Thus people have worked out

other solutions like side-chains, off-chains and multi-chains, those aim at achieving same se-

curity assumption as of the main blockchains today while improve upon its throughput. Con-

trary to other solutions these stay compatible with the existing implementations (referred as

’main’ chains) and sometimes referred as Layer 2 Solutions [74].

8.2.1 Side Chains

Side Chain provide a solution where a different blockchain other than the main blockchain

which is working at higher throughput is connected to the some main chain like Bitcoin.

Side chains usually have very high throughput but low security and mostly have properties

totally different from the main chain. Side chain protocol enables transaction between the

main chain and the side chain. Side chains exist independently and usually have minimal

interaction with the main chain. However, side-Chain is the custodian of the same asset as

the main chain [86] i.e those do share the common asset. Those are most suited for the

systems where most of the operations do involve the participant of the main chain i.e most

of the transactional data stored on the local side chain is complete in itself. For example if

a side chain is handling a micro payment system, it is not necessary that every transaction is

recorded on the main chain especially if the transactions are recurring. Involved parties carry

out their recurring transactions on the local chain and their final balances are stored onto

the main chain. This way both high throughput for transactions and security is achieved.

Different mechanisms are used to achieve side chains functionality. These include Relays,

Hash locks and Bridges or gateways [23].

8.2.2 Off Chains

Off chain protocols are usually devised to free the main chains from burden of heavy compu-

tations. Aim here is to record heavy transactions offline. Once those transactions have been

finalized, synchronize the finalised results with the main chain. Thus use the main chain for

only book keeping purpose. One such protocol is Plasma [87]. It plasma, child chains are

linked to main Ehtereum Chain through smart contracts. Child chains can perform complex

smart contracts or any other tasks without interfering with the main chain. As there can be

multiple off chains, those can perform desired operations and write the final outcomes to the

86

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

me.tarar
Highlight

main chain as an authenticated proof. Off chain solutions have been encouraged specifically

where large amounts of data has to be stored on the chain like a blockchain based cloud

storage solution.

8.2.3 Sharding

Sharding has been historically used in databases to make them more efficient and robust by

horizontally dividing the database. In case of Blockchain, sharding has two notions:

1. Sharding of the data stored with mining nodes. Without shards every node keeps an

entire copy of the transactions history with itself. Sharding will allow nodes to keep

only the data that is relevant to them [37].

2. Sharding of the nodes themselves. Divide nodes in shards and then use some vote

based mechanism to quickly reach consensus.

87

Chapter 9

Conclusion

This research provides an overview of blockchain functionality independent of any specific

implementation. It compares nine consensus protocols namely Nakamoto consensus as in

Bitcoin, Nakamoto consensus as in Bitcoin-NG, Proof of Stake as in Ouroboros family,

Practical Byzantine Fault Tolerance state machine replication, BFT-Smart, BA* as in Al-

gorand, Elastico, Omni Ledger and ByzCoin for various parameters related to security like

adversary tolerance and consensus finality, and performance like transaction throughput and

latency along with a thorough introduction and functioning of the compared protocols. It

also hints upon suggested consensus protocols for IoT devices and open challenges in con-

sensus domain related to mainly transaction scalability and security. Comparison concludes

that there is no winner in the race for the best consensus protocol. It is all about trade-offs,

either on security or performance.

Parametrized data for various protocols along with their functioning details will act as a

ready reckoner for the future studies and developers.

88

BIBLIOGRAPHY

[1] Aeternity blockchain. https://blog.aeternity.com/introduction-to-%C3%A6ternitys-
bitcoin-ng-implementation-331d0a1393b4.

[2] Ieee 802.15.4. wikipedia.org.

[3] Merkle tree. Wikipedia.

[4] Ouroboros hydra - Developers - Cardano Forum.

[5] PSA: F2Pool is mining INVALID blocks : Bitcoin. reddit.com, 2015.

[6] Bitcoin blockchain size 2010-2019 — Statista, 2019.

[7] Aeternity. Aeternity blockchain code.

[8] Aggelos Kiayias. IOHK presents at Oxford University: Ouroboros: A Provably Se-
cure Proof-of-Stake Blockchain Protocol - YouTube, 2019.

[9] Elli Androulaki, Ghassan O. Karame, Marc Roeschlin, Tobias Scherer, and Srdjan
Capkun. Evaluating user privacy in Bitcoin. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 7859 LNCS:34–51, 2013.

[10] Andreas M. Antonopoulos. Mastering Bitcoin. 2010. wallets forks bitcoin consensus
+ conditions change for bitcoin core.

[11] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin: Large-scale
network attacks on cryptocurrencies. arXiv preprint arXiv:1605.07524, 2016.

[12] Algirdas Avižienis, Jean Claude Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1):11–33, 2004.

[13] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry,
Sarah Meiklejohn, and George Danezis. Consensus in the age of blockchains. arXiv
preprint arXiv:1711.03936, 2017.

[14] Imran Bashir. Mastering Blockchain, Second Edition. Packt Publishing, second edi-
tion, 2018.

[15] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of
work. In International Conference on Financial Cryptography and Data Security,
pages 142–157. Springer, 2016.

[16] Pascal Berrang. Survey of Consensus Protocols and Scalability Solutions. pages
1–14, 2015.

[17] Stefan Beyer. Enterprise blockchain platforms - a comparison. Web.

[18] Bitnodes. Network Snapshot - Bitnodes. Https://bitnodes.earn.com/, April 2019.

89

[19] Blockchain.com. Market Capitalization - Blockchain, 2019.

[20] Jonas Bostoen. A comparison of blockchain platforms - competitors. web, 2018.

[21] Brenn Hill, Samanyu Chopra, and Paul Valencourt. Blockchain Quick Reference.
Packt Publishing, first edition, 2018.

[22] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda: an intro-
duction. R3 CEV, August, 1:15, 2016.

[23] Vitalik Buterin. Chain interoperability. R3 Research Paper, 2016.

[24] Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on
Distributed Cryptocurrencies and Consensus Ledgers, volume 310, 2016.

[25] Christian Cachin and Marko Vukolić. Blockchain consensus protocols in the wild.
arXiv preprint arXiv:1707.01873, 2017.

[26] Cardano. Cardano. web.

[27] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. OSDI ’99:
Proceedings of the Third Symposium on Operating Systems Design and Implementa-
tion SE - OSDI ’99, (February):173–186, 1999.

[28] Miguel Castro and Microsoft Research. Practical Byzantine Fault Tolerance -
YouTube, 2016.

[29] Charles. EMURGO Cardano Meetup ft. Charles Hoskinson - YouTube.

[30] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike
Dahlin, and Taylor Riche. Upright cluster services. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages 277–290. ACM,
2009.

[31] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Google’s globally distributed database. ACM Transac-
tions on Computer Systems (TOCS), 31(3):8, 2013.

[32] Flaviu Cristian, Houtan Aghili, Raymond Strong, and Danny Dolev. Atomic broad-
cast: From simple message diffusion to Byzantine agreement. International Business
Machines Incorporated, Thomas J. Watson Research Center, 1986.

[33] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and
Roger Wattenhofer. On Scaling Decentralized Blockchains. International Conference
on Financial Cryptography and Data Security, pages 106–125, 2016.

[34] dedis. Byzcoin. github.com, 2019.

[35] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms. ACM Computing Surveys, 36(4):372–421, 2005.

[36] Daniel Drescher. BLOCKCHAIN BASICS A Non-Technical Introduction in 25 Steps.
Apress Business, 2017.

90

[37] edChain. Blockchain faq #3: What is sharding in the blockchain? medium.com, May
2018.

[38] Joerg Evermann and Henry Kim. Workflow Management on the Blockchain — Im-
plications and Recommendations. pages 1–15, 2019.

[39] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert van Renesse. Bitcoin-NG:
A Scalable Blockchain Protocol. 2015.

[40] Reddit Forum. Maximum block gas limit.
https://www.reddit.com/r/ethereum/comments/87qt04/.

[41] Linux Foundation. Hyperledger, 2018.

[42] Alexis Gauba. Finality in blockchain consensus. https://medium.com/, 2018.

[43] Alexis Gauba. Finality in Blockchain Consensus - Mechanism Labs - Medium, 2018.

[44] Gazi Peter. IOHK — Dr. Peter Gaži, presenting Ouroboros at MIT. - YouTube.

[45] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan Capkun. Tampering
with the delivery of blocks and transactions in bitcoin. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, pages 692–
705. ACM, 2015.

[46] Elli Audroulaki Ghassan Karame. Security of Transactions in Bitcoin, chapter 4,
pages 66–90. Artech House, 1st edition, 2018.

[47] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 51–68. ACM, 2017.

[48] Seth Gilbert, Calvin Newport, and Chaodong Zheng. Who are you? secure identities
in ad hoc networks. In International Symposium on Distributed Computing, pages
227–242. Springer, 2014.

[49] Andrei Grigorean. Latency and finality in different cryptocrurrencies. hacker-
noon.com, May 2018.

[50] Jan Hackfeld. A lightweight BFT consensus protocol for blockchains. pages 1–21,
2019. liveness and safety.

[51] Yunhua He, Hong Li, Xiuzhen Cheng, Yan Liu, Chao Yang, and Limin Sun. A
Blockchain Based Truthful Incentive Mechanism for Distributed P2P Applications.
IEEE Access, 6(c):27324–27335, 2018.

[52] Subhrojit Nag Hemant Sachdeva. Techwatch report - blockchain frameworks. report,
talentica, 2018.

[53] John Hinkle. The fastest cryptocurrency transaction speeds for 2018. medium.com,
October 2018.

[54] Hyperledger. Hyperledger iroha, 2018.

91

[55] HyperledgerDocs. Introduction — hyperledger-fabricdocs master documentation.
https://hyperledger-fabric.readthedocs.io/en/release-1.4/whatis.html, 2018.

[56] IIT Kharagpur and Sandip Chakarborty. Lecture 52: Research Aspects – V (Algorand
- I) - YouTube, 2018.

[57] Akshita Jain, Sherif Arora, Yashashwita Shukla, T B Patil, and S T Sawant-patil.
Proof of stake with Casper the friendly finality gadget protocol for fair validation
consensus in Ethereum. International Journal of Scientific Research in Computer
Science, Engineering and Information Technology, 3(3):291–298, 2018.

[58] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. In
Secure Information Networks, pages 258–272. Springer, 1999. proof of work concept
idea.

[59] V. Buterin James Ray. Ethereum - a next-generation smart contract and decentralized
application platform. Online, 2018.

[60] Jimi S. Blockchain terminology; the 35 most commonly used blockchain terms ex-
plained., 2017. Proof of works is the Most widely used consensus.

[61] Jordan Tuwiner. 10 Best and Biggest Bitcoin Mining Pools 2019 (Comparison), 2019.

[62] Ghassan Karame and Elli Androulaki. Bitcoin and blockchain security. 2016.

[63] Aggelos Kiayias and Giorgos Panagiotakos. Speed-security tradeoffs in blockchain
protocols. IACR Cryptology ePrint Archive, 2015:1019, 2015.

[64] S King and S Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. peer-
coin whitepaper, 2012.

[65] S King and S Nadal. Peercoin–secure & sustainable cryptocoin. Aug-2012 [Online].
Available: https://peercoin. net/whitepaper (), 2018.

[66] Tommy Koens and Erik Poll. What blockchain alternative do you need? In Data
Privacy Management, Cryptocurrencies and Blockchain Technology, pages 113–129.
Springer, 2018.

[67] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. Enhancing bitcoin security and performance with strong con-
sistency via collective signing. In 25th {USENIX} Security Symposium ({USENIX}
Security 16), pages 279–296, 2016.

[68] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. OmniLedger: A Secure, Scale-Out, Decentralized Ledger via
Sharding. Proceedings - IEEE Symposium on Security and Privacy, 2018-May:583–
598, 2018.

[69] Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1:11, 2014.

[70] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

92

[71] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state machine.
SIGACT News, 41(1):63–73, 2010.

[72] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[73] Linuxfoundation. GitHub - bitcoin/bips: Bitcoin Improvement Proposals.

[74] Peter Lipovyanov. Blockchain for business 2019: a user-friendly introduction to
blockchain technology and its business applications. Packt Publishing Ltd, 2019.

[75] Pablo Lorenceau, Prof Bryan Ford, and Epfl Dedis. An Implementation of Om-
niledger. GitHub, (June), 2018.

[76] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A Secure Sharding Protocol For Open Blockchains. pages 17–30,
2016.

[77] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[78] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse attacks on
ethereum’s peer-to-peer network. IACR Cryptology ePrint Archive, 2018:236, 2018.

[79] Mainak Chatterjee Mehrdad Salimitari. An overview of blockchain and consensus
protocols for iot networks. 2018.

[80] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039),
pages 120–130. IEEE, 1999.

[81] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. Permacoin:
Repurposing bitcoin work for data preservation. Proceedings - IEEE Symposium on
Security and Privacy, pages 475–490, 2014.

[82] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[83] nxtcrypto.org. Next Generation of Cryptocurrency • NxtCoin. web page.

[84] Diego Ongaro and John K Ousterhout. In search of an understandable consensus
algorithm. In USENIX Annual Technical Conference, pages 305–319, 2014.

[85] Santeri Paavolainen and Pekka Nikander. Security and privacy challenges and poten-
tial solutions for DLT based IoT systems. 2018 Global Internet of Things Summit,
GIoTS 2018, (June):1–6, 2018.

[86] Babu Pillai, Kamanashis Biswas, and Vallipuram Muthukkumarasamy. Blockchain
Interoperable Digital Objects, pages 80–94. 06 2019.

[87] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts.
White paper, pages 1–47, 2017.

[88] Narayan Prusty. Blockchain for Enterprise: Build scalable blockchain applications
with privacy, interoperability, and permissioned features. Packt Publishing Ltd, 2018.

93

[89] Alexander Renkl Erstgutachter, Hc Günter Müller Zweitgutachter, and Dieter K
Tscheulin. Inaugural-Dissertation Transparency through Decentralized Consensus:
The Bitcoin Blockchain and Beyond. 2016.

[90] Ana Reyna, Cristian Martı́n, Jaime Chen, Enrique Soler, and Manuel Dı́az. On
blockchain and its integration with iot. challenges and opportunities. Future Gen-
eration Computer Systems, 88:173–190, 2018.

[91] Tim Ruffing, Pedro Moreno-sanchez, and Aniket Kate. CoinShuffle: Practical De-
centralized Coin Mixing for Bitcoin – Bookmetrix Analysis. Computer Security -
ESORICS, 8713:1–15, 2014.

[92] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining
strategies in bitcoin. In International Conference on Financial Cryptography and
Data Security, pages 515–532. Springer, 2016.

[93] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish min-
ing strategies in bitcoin. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9603
LNCS:515–532, 2017.

[94] Richard D. Schlichting and Fred B. Schneider. An approach to designing fault-tolerant
computing systems. ACM Trans. Comput. Syst., 1:222–238, 1981.

[95] Fred B Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[96] Ronald Sonntag. Blockchain scalability: When, where, how?
https://blockgeeks.com/guides/blockchain-scalability/, 2018.

[97] João Sousa, Eduardo Alchieri, and Alysson Bessani. State machine replication for the
masses with bft-smart. 2013.

[98] João Sousa and Alysson Bessani. Separating the wheat from the chaff: An empirical
design for geo-replicated state machines. In 2015 IEEE 34th Symposium on Reliable
Distributed Systems (SRDS), pages 146–155. IEEE, 2015.

[99] Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Alexei Zamyatin, and Edgar
Weippl. Agreement with Satoshi – On the Formalization of Nakamoto Consensus.
pages 1–17.

[100] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant
distributed randomness. In 2017 IEEE Symposium on Security and Privacy (SP),
pages 444–460. Ieee, 2017.

[101] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. Keeping authorities” honest
or bust” with decentralized witness cosigning. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 526–545. Ieee, 2016.

[102] Shunsai Takahashi. Proof of work - A better Consensus. medium.com, 2019. 25

94

[103] Luca Favatella Tobias Lindahl, Micha. protocol/bitcoin-
ng.md at master · aeternity/protocol · GitHub.
https://github.com/aeternity/protocol/blob/master/consensus/bitcoin-ng.md, 2019.

[104] Vitalik Buterin. Bitcoin News: Bitcoin Network Shaken by Blockchain Fork, 2013.

[105] Vitalik Buterin. On Settlement Finality, 2016.

[106] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT
replication. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 9591:112–125, 2016.

[107] Wenbo Wang, Dinh Thai Hoang, Peizhao Hu, Zehui Xiong, Dusit Niyato, Ping Wang,
and Yonggang Wen. A Survey on Consensus Mechanisms and Mining Strategy Man-
agement in Blockchain Networks. 2018.

[108] Wikipedia. Gossip protocol. wikipedia.org. gossip protocol.

[109] Wikipedia. Smart contract. https://en.wikipedia.org/wiki/Smart contract.

[110] wikipedia. Consensus decision making. https://en.wikipedia.org/wiki/Consensus decision-
making, 2017.

[111] GAVIN(ETHEREUM) WOOD. Ethereum: a Secure Decentralised Generalised
Transaction Ledger. Ethereum Project Yellow Paper, 32(10):1365–1367, 2018.

[112] Karl Wüst, Hubert Ritzdorf, Ghassan O. Karame, Vasileios Glykantzis, Srdjan Cap-
kun, and Arthur Gervais. On the Security and Performance of Proof of Work
Blockchains. pages 3–16, 2016.

[113] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. A survey of distributed
consensus protocols for blockchain networks. arXiv preprint arXiv:1904.04098,
2019.

[114] Xiwei Xu, Ingo Weber, and Mark Staples. Architecture for Blockchain Applications.
Springer, 2019.

[115] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling
blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 931–948. ACM, 2018.

95

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	What is Blockchain?
	Terminologies
	Public Key Cryptography
	Cryptographic Hash
	Change Sensitive Data Storage
	Wallets

	Blockchain - How it functions?
	The Block
	The Chain
	The Network
	The Rules

	Consensus Mechanisms
	Consensus Families
	Consensus Evolution and Proposals

	Selected Parameters
	Security Parameters
	Adversary Tolerance Model
	Consensus Finality
	Forks Handling
	Puzzle Design and Design Goals
	ASIC Resisability
	Anonymity and Privacy
	CIA and Blockchain

	Performance Parameters
	Block Size
	Puzzle To Solve and Block Minting Mechanism
	Scalability
	Operational Environment
	Imposed Restrictions
	Communication Model

	Generic Parameters
	Handling of Digital Assets
	Handling of Smart Contracts
	Incentive Mechanism
	Deployment
	Open Source and Related Projects
	Documentation and Public Forums
	Accessibility
	Blockchain Type

	Consensus Based on PoX Schemes
	Proof of Work - Nakamoto Scheme AKA PoW
	Working
	Security
	Performance
	Generic

	Proof of Work - Bitcoin-NG
	Security
	Performance
	Generic
	Suggested Improvement

	Ouroboros Genesis
	Working
	Security
	Performance
	Generic

	Comparison

	Consensus Based on Voting Scheme
	Practical Byzantine Fault Tolerance
	Working
	Security
	Performance
	Generic

	BFT-SMART
	Working
	Security
	Performance
	Generic

	Algorand
	Working
	Security
	Performance
	Generic

	Comparison

	Hybrid Conensus Family
	Elastico
	Security
	Performance
	Generic

	OmniLedger
	OmniLedger Working
	Security
	Performance
	Generic

	ByzCoin
	Working
	Security
	Performance
	Generic

	Comparison

	Blockchain Consensus Protocol for IoT
	Why Blockchain for IoT?
	Consensus Algorithms for Blockchain for IoT
	Practical Byzantine Fault Tolerance
	OmniLedger
	Algorand
	Discussion

	Open Challenges and Proposed Architectural Solution
	Open Challenges in Blockchain
	Enhancing Network Scalability
	Reduction of Message Complexity for Classical BFT Protocols
	Enhancing Transaction Scalability
	Storage Limitations
	Reducing Computational Requirements

	Proposed Architectural Solutions
	Side Chains
	Off Chains
	Sharding

	Conclusion
	BIBLIOGRAPHY

