
Open Flow-Based Monitoring In IXP

Manager Using SDN Controller

By

Sayyaf Haider Warraich

00000171365

Supervisor

Dr. Hasnat Khurshid

A thesis submitted in conformity with the requirements for

the degree of Master of Science in

Electrical (Telecommunication) Engineering

Military College Of Signals (MCS)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(November 2019)

THESIS ACCEPTANCE

CERTIFICATE

Certified that final copy of MS/MPhil thesis written by Mr Sayyaf Haider Warraich,

Registration No. 00000171365 of Military College of Signals has been vetted by

undersigned, found complete in all respect as per NUST Statutes/Regulations, is free

of plagiarism, errors and mistakes and is accepted as partial, fulfillment for award of

MS/MPhil degree. It is further certified that necessary amendments as pointed out by

GEC members of the student have been also incorporated in the said thesis.

Signature :

Name of Supervisor : Lt Col Hasnat Khurshid, PhD

Date :

Signature (HOD) :

Date :

Signature (Dean) :

Date :

i

Certificate of Originality

I, Sayyaf Haider Warraich declare that this thesis titled “Open Flow-Based Monitoring

In IXP Manager Using SDN Controller” and the work presented in it are my own and

has been generated by me as a result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of Science

degree at NUST

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at NUST or any other institution, this has been clearly stated

3. Where I have consulted the published work of others, this is always clearly at-

tributed

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work

5. I have acknowledged all main sources of help

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself

Sayyaf Haider Warraich,

00000171365

ii

Copyright Notice

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with in-

structions given by the author and lodged in the Library of MCS, NUST. Details

may be obtained by the Librarian. This page must form part of any such copies

made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in MCS, NUST, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission

of MCS, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of MCS, NUST, Islamabad.

iii

This thesis is dedicated to my beloved parents

iv

Abstract

Measuring the performance of a network is not a new domain and there has

been a lot of research done on how to improve the performance of a network. The

performance of a network cannot be improved unless we monitor the network itself.

In that context OpenFlow based monitoring in the SDN-IXP manager using the SDN

(Software Defined Networking) controller is a novel approach to manage and monitor

IXP (Internet Exchange Point). The IXP acts as a local transit point for different ISPs

(Internet Service Providers) and content providers. This approach helps in reducing the

financial burden by lowering the cost of transit point and network's operation.

The said approach also improves system efficiency with better control, reduces

latency by direct connections, and ensures security of the data by keeping traffic in a

local network. SDN provides central network monitoring by keeping eye on the whole

network, traffic engineering can also be leveraged by using network programmability for

applications like centralized device configurations, load balancing, firewall and traffic

optimization in the network. The SDN technology has benefits in diverse industries and

one of those is IXP.

This thesis proposes a novel Laravel based management framework for redesigned

IXP-Manager to monitor flow counters between the SDN controller and OpenFlow

Switch through Grafana Platform. The latter is used to show stats after getting data

from the database and then a user interface is added to the IXP manager dashboard

using redirection. The proposed approach allows SDN IXP Manager to define rules and

establish peering between different ISPs in an IXP environment by passing data from

SDN-IXP manager to SDN-Controller's YAML file directly.

v

Acknowledgments

I pay my gratitude to Allah almighty for blessing me a lot and without His guidance

I couldn't complete this task. I am thankful to Dr. Hasnat Khurshid for guiding and

encouraging me to complete my thesis. His timely and efficient contributions helped

me to shape the thesis into its final form and I express my gratefulness for his sincere

supervision all the way.

I am also thankful to my GEC members (Dr Imran Rashid, Dr Adil Masood and Dr

Bilal Rauf) and Department of Electrical Engineering (MCS) for providing me with an

academic base, which enabled me to complete this thesis. I am also very thankful to

IGNITE Research and Development fund and Bitsym for providing me a platform to

validate or test my scenario. I'd like to thank my parents who have provided me every

comfort of life and their utmost affection and support made me reach where I am today.

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Problem Statement . 3

1.4 Proposed approach . 3

1.5 Contributions . 4

2 Literature Review 5

2.1 Traditional Network . 5

2.1.1 Overview of Traditional Network 5

2.1.2 Architecture of Traditional Network 6

2.2 Internet Exchange Point . 8

2.2.1 About IXP . 8

2.2.2 Existing Internet Exchange Points in the World 9

2.2.3 Internet Exchange Point (IXP) Architecture 10

2.3 OpenFlow Protocol . 11

2.3.1 Overview of OpenFlow . 11

2.3.2 OpenFlow Architecture . 12

2.3.3 OpenFlow Rules . 15

2.4 OpenFlow Switch . 16

vii

Contents

2.4.1 OpenFlow Switch Architecture 16

2.4.2 OpenFlow Virtual Switch (OVS) 17

2.4.3 Vendor's OpenFlow supported Switch 17

2.5 Software Defined Networking . 18

2.5.1 About Software Defined Networking 19

2.5.2 Software Defined Networking Architecture 19

2.6 SDN Controller . 22

2.6.1 Overview . 22

2.6.2 Existing SDN Controllers . 23

2.7 Faucet SDN Controller . 25

2.7.1 About . 25

2.7.2 Introduction . 25

2.7.3 Architecture . 26

2.7.4 Pipeline Faucet . 27

2.8 TouSix Manager . 28

2.8.1 About . 28

2.8.2 Introduction . 29

2.8.3 Architecture . 29

2.8.4 Limitations . 30

3 Proposed Architecture 31

3.1 About . 31

3.2 Used Tools . 33

3.2.1 Virtual Machine Virtual Box . 34

3.2.2 Faucet SDN Controller . 34

3.2.3 Gauge SDN Controller . 34

3.2.4 Grafana Server . 34

viii

Contents

3.2.5 Prometheus Database . 35

3.2.6 IXP Manager . 35

3.2.7 Quagga Routing Suite . 35

3.2.8 Open Virtual Switch . 35

3.2.9 Iperf Network Performance Measurement 35

4 Design and Implementation 36

4.1 Setup and Configure SDN environment server 37

4.1.1 Setup and configure SDN OpenFlow Controller (Faucet and Gauge) 37

4.1.2 Setup and configure Time Series Data Base (Prometheus) 38

4.1.3 Setup and configure Statistical Dashboard (Grafana) 38

4.1.4 Setup and Configure OpenFlow Virtual Switch (OVS) 40

4.1.5 Configuration of IXP Management Software 41

4.2 Mechanism to link Statistical Dashboard 42

4.2.1 Mechanism for redirection in SDN IXP Manager 42

4.3 Mechanism to Establish Peering and Rules Generation 43

4.3.1 Mechanism to add VLan Addition 44

4.3.2 Mechanism to Add OpenFlow switch 44

4.3.3 Mechanism to add OpenFlow switch interfaces information . . . 44

4.3.4 Mechanism to add Rules Generation 45

5 Results and Discussion 46

5.1 SDN-IXP Testing Equipment . 46

5.1.1 Server (Host) . 46

5.1.2 KVM . 46

5.1.3 Faucet Controller . 47

5.1.4 OpenFlow Switch . 47

5.1.5 Quagga . 47

ix

Contents

5.1.6 SDN-IXP Manager . 47

5.1.7 Iperf . 47

5.2 Network Topology . 47

5.2.1 Network Configurations . 48

5.3 Network Testing . 50

5.3.1 AS-1 PTCL server . 51

5.3.2 AS-2 (Nayatel) server . 51

5.4 SDN Controller Configuration . 52

5.5 OpenFlow switch Configuration . 54

5.6 Grafana Statistical Dashboard . 56

5.6.1 SDN Controller Status . 56

5.6.2 SDN Controller Inventory . 60

5.6.3 Switch Port Statistics Results . 60

5.6.4 SDN-IXP Manager . 62

6 Conclusion 66

7 Future Work and Open Sourcing 68

7.1 Multiple SDN Controller addition . 68

7.2 New OpenFlow Protocol Rules addition 69

7.3 Open Sourcing the work . 69

References 70

x

List of Figures

1.1 Software Define Internet Exchange Point Architecture for Monitoring and

rules generation to control or optimize traffic. 4

2.1 Architecture of the Traditional Network 7

2.2 Architecture of Traditional Switch . 7

2.3 Geographical diagram of the working IXP's in the world. 9

2.4 Architecture of Internet Exchange Point 10

2.5 OpenFlow Architecture . 13

2.6 Common fields of OpenFlow protocol. 14

2.7 OpenFlow switch architecture Flow. 16

2.8 Flow entry fields of OpenFlow version 1.3. 17

2.9 Software Defined Networking architecture. 20

2.10 Faucet SDN Controller Architecture. 26

2.11 Faucet pipeline . 27

2.12 TouSix Manager Architecture . 29

3.1 Proposed Architecture of Monitoring and control of SDN IXP Manager 33

4.1 Components Descriptions for SDN IXP Manager Monitoring and Control. 36

4.2 Commands used to fetch the target repository. 37

4.3 Command used to Update. 37

4.4 Command used to install faucet package. 37

xi

List of Figures

4.5 Setup receiving path. 38

4.6 Commands used to reload Daemon. 39

4.7 Commands used to enable Grafana server. 39

4.8 Commands used to start Grafana server. 39

4.9 Statistical view of Grafana Dashboard 40

4.10 Command to install Open Virtual Switch 40

4.11 Command to download IXP-Manager. 41

4.12 Command to execute the installation shell. 41

4.13 Command to edit the configuration shell. 41

4.14 Redirect Link. 42

4.15 Command used to edit the Grafana file. 43

5.1 Network Topology for Physical OpenFlow Switch. 48

5.2 Network configuration made on virtual AS-1 (PTCL) network server. . . 49

5.3 BGP configurations made on AS-1(PTCL) server. 49

5.4 Network configuration made on virtual AS-2 (Nayatel) network server. . 50

5.5 BGP configurations made on AS-2 (Nayatel) server. 50

5.6 AS-1 PTCL server Ping results. 51

5.7 AS-1 PTCL server Iperf results. 51

5.8 AS-2 Nayatel server Ping results. 52

5.9 AS-2 Nayatel server Iperf results. 52

5.10 Faucet (SDN controller) configuration (a). 53

5.11 Faucet (SDN controller) configuration (b). 54

5.12 Faucet (SDN controller) configuration (c). 54

5.13 OpenFlow switch configuration. 55

5.14 OpenFlow switch status. 55

5.15 Defined OpenFlow rules. 56

5.16 Flows in OpenFlow swotch. 56

xii

List of Figures

5.17 SDN Controller cold restart status. 57

5.18 SDN Controller reload requests status. 57

5.19 SDN Controller warm reload status. 58

5.20 SDN Controller CPU usage status. 58

5.21 SDN Controller file descriptors status. 59

5.22 SDN Controller resident memory status. 59

5.23 SDN Controller virtual memory status. 60

5.24 SDN Controller Inventory. 60

5.25 Switch ports in/out bits/sec. 61

5.26 Switch ports in/out packets/sec. 61

5.27 Switch ports in/out errors/sec. 62

5.28 Switch ports in/out dropped packets/sec. 62

5.29 IXP-Monitoring and Control link in IXP Manager. 63

5.30 Monitoring redirect button. 63

5.31 Peering Form. 64

5.32 Rules Generation Form. 64

5.33 Monitoring and Control Page. 65

xiii

List of Tables

2.1 Required Action Entities . 15

xiv

List of main Abbreviations

Abbreviations

SDN Software Defined Networking

IXP Internet Exchange Point

ISP Internet Service Provider

DDOS Distributed Denial of Service

ACL Access Control List

OSI Open Systems Interconnection

MAC Medium Access Control

BGP Border Gateway Protocol

ONF Open Networking Foundation

API Application Programming Interface

ForCES Forwarding and Control Element Separation

OVS OpenFlow Virtual Switch

WLAN Wireless Local Area Network

NCP Network Control Point

PCE Path Computation Element

RCP Routing Control Platform

xv

List of Tables

OSC Open SDN Controller

ONOS Open Networking Operating system

VLAN Virtual Local Area Network

DB Data Base

GUI Graphical User Interface

AS Autonomous System

RIP Routing Information Protocol

OSPF Open Shortest Path First

xvi

Chapter 1

Introduction

The composition of thesis includes the architecture and implementation of OpenFlow

based monitoring in IXP using SDN controller that allows traditional IXP members, to

use existing IXP Manager application to monitor stats [1] after converting it into SDN

based IXP and allows it to define rules in IXP Manager application for application spe-

cific peering or mitigation of DDoS attack [2]. In first section, the Overview, motivation

and problem statement of the proposed scheme are discussed, whereas in next section,

architecture, design mechanism, observations and future work has been discussed.

1.1 Overview

As the internet is a growing technology worldwide, different techniques and mechanism

are adopted to overcome challenges faced by the customer or community in terms of

speed, bandwidth, latency, connectivity etc. In the early days of internet, the usage was

limited as compared to today, where all the applications need seamless communication

and connectivity, social media usage has increased worldwide involving high-quality

graphics and HD videos, those are shared over the internet which consumes a lot of

bandwidth. This is the bottleneck where a lot of researchers are working on in order

to optimize bandwidth and there are different mechanisms adopted for best bandwidth

utilization.

Secondly, the major concern worldwide is privacy and security, people and industry are

very much concerned about their privacy. Due to evolution of technology the users are

now very much dependent on innovative technologies, which requires a lot of information

1

Chapter 1: Introduction

to be processed in order to perform at the optimal levels. At the national level, every

country wants to ensure that the privacy of its citizens is preserved. So, in the context

of bandwidth utilization and ensuring privacy, the concept of IXP was introduced. Fur-

thermore, there is a need to make IXP optimized in order to convert it into SDN based

IXP to follow international best practices.[3]

With the development of SDN enabled IXP, different challenges also emerge, one of

them is monitoring and control of traffic that is routed between different ISPs and

content providers. In order to overcome the aforementioned challenges, a complete

design and mechanism with implementation are discussed in this thesis. In this Section,

the Overview, motivation and problem statement of the proposed scheme are discussed.

whereas in later this thesis, architecture, design mechanism, observations and future

work will be discussed in Chapter 3, 4 and 5.

1.2 Motivation

There are multiple ISPs peering at IXP and to ensure security, programmability optimal

performance the traditional IXP is taking steps to convert into SDN enabled IXP. An

application for management of SDN enabled IXP with a mechanism to monitor and

control traffic is required, since the traditional IXP used IXP manager for that purpose

and hence, is not compatible with the SDN enabled IXP. Secondly, there is no mechanism

for IXP management team to control the traffic. By defining rules, IXP Management

team can control traffic by redirecting traffic, mirroring traffic for machine learning

algorithms, optimization and application-specific peering.

There is a need to redesign the IXP manager introducing additional functionalities to

make it compatible with SDN technology and integrating the support of the monitoring

and control mechanism of traffic. By redesigning IXP manager, IXP management team

will have the ability to monitor traffic and apply rules for traffic control, which would

help in mitigating the security attacks/threats such as DDoS and to apply redirection

on it.

2

Chapter 1: Introduction

1.3 Problem Statement

Currently, SDN enabled IXPs have no such platform available where customer/ admin-

istration portal is available in IXP management tool. Whereas, in traditional IXP there

is a well known tool named as IXP Manager, available for management of traffic with

an integrated customer/administration portal used by more than 68 IXPs around the

world. But the issue with it remains the same, it is not compliant with SDN enabled

IXP. However, there are a very few IXPs globally, that have transformed into SDN en-

abled IXP, so whenever an IXP has to transform into an SDN enabled IXP, it has to

develop a dashboard or management portal, initially with minimum features for tempo-

rary monitoring. It is not necessary to develop customer administrator portals in the

beginning, as it is difficult for any IXP/Operator to handle two different portals at the

same time or to migrate to a new portal.

1.4 Proposed approach

As IXP Manager has already been designed to monitor stats of traditional IXP that's

why IXP management team manages the IXP manager. So, my proposed scheme is

based on Software Defined Networking paradigm an innovative technology in the domain

of networking. In this scheme the traditional IXP Manager is converted to Software

Defined Networking Based IXP manager to monitor the stats of SDN traffic using gauge

controller. Secondly, IXP manager has to be redesigned to define rules from top of the

controller to optimize the traffic path or to prevent the security attacks using ACLs and

to establish a BGP peering of ISPs. My proposed architecture is complete and described

in chapter 4.

Following diagram Figure 1.1 is used to show a proposed architecture.

3

Chapter 1: Introduction

Figure 1.1: Software Define Internet Exchange Point Architecture for Monitoring and

rules generation to control or optimize traffic.

1.5 Contributions

In the research work, my main contribution is to design a prototype, which will be used

to monitor the traffic of the SDN enabled IXP at one platform, and on the basis of traffic

analysis, the rules will be defined and peering will be established between different ISPs.

My proposed scheme is divided into further four sub-systems, which are defined below.

• Link SDN-IXP Manager to a dashboard for monitoring SDN traffic.

• Vlan Selection and OpenFlow Switch addition in SDN-IXP Manager.

• Autonomous System addition and peering establish through SDN-IXP Manager.

• Rules definition for traffic control through SDN-IXP Manager.

4

Chapter 2

Literature Review

This Section of the thesis explains the need, uses and components required in redesigning

of SDN-IXP Manager for monitoring of OpenFlow traffic stats in SDN-IXP scenario and

establishment of peering between different ISP's.

2.1 Traditional Network

In a traditional network, the network nodes communicate with the other nodes over a

network. Following are the sub sections which briefly explain the flow mechanism of

traditional network.

2.1.1 Overview of Traditional Network

Currently, the computer networks are based on two common types of communications

for switching.

• Packet Switching

• Circuit Switching

The circuit switching is the method in which a dedicated line is provided to both network

entities, which is an old method of communication as it causes latency and is costly. In

the current era, packet switching is widely used in which there is no need of dedicated

line for both network entities while data is divided into small chunks which are further

5

Chapter 2: Literature Review

referred to as packets. Major benefit of packet switching is that it chooses the optimal

path to reach the destination and it is cost-effective [4].

Now a day's mostly packet switched networks are used which work on the principle

of reaching the destination through a series of interconnected network switches and

routers. Traditional network follows OSI Model in which switching can work on layer

2 depending upon Mac addresses also called as data link layer and routing can work

on layer 3 depending upon IP addresses also called as network layer of OSI model. In

traditional network router, a layer 3 device is used for routing which is known to be

proprietary and costly. These devices have three planes [5].

• Management Plane:

Management Plane is used to configure the switch as it contains the collection of

the command line and GUI tools. This plane interacts with the control plane of

the device.

• Control Plane:

Control plane contains the network information and routing algorithms, its basic

purpose is to decide the packet routing depending on the network information and

it is hard-coded by vendors.

• Data Plane:

The basic purpose of this plane is to move the packets to the desired connected

port, depending on the destination.

2.1.2 Architecture of Traditional Network

Figure2.1in the following paragraph clearly explains the architecture of the traditional

network, where traditional switches are used for data flow to the end-network-devices,

traditional switches are then connected to the router through different links, which will

further forward the data to internet cloud [4].

6

Chapter 2: Literature Review

Figure 2.1: Architecture of the Traditional Network

Below mentioned Figure2.2 shows the architectural view of traditional switch where

control plane and data plane are both integrated within a switch by vendor and is

proprietary.

Figure 2.2: Architecture of Traditional Switch

7

Chapter 2: Literature Review

2.2 Internet Exchange Point

Internet Exchange Point is the neutral layer 2 / Layer 3 switching point used to provide

a platform to Internet Service providers and content providers of the region to share

the traffic locally between them without going over the international link and hence

ensuring the security of the data and saving millions in cost. IXP provides multiple

benefits, some of which are discussed later on in the following sections.

2.2.1 About IXP

As internet comprises of vast networks with thousands of other individual's network

interconnected with one another for traffic sharing. The IXP provides a physical plat-

form where different networks connect with each other to exchange their traffic. To

share traffic between different networks, the first step is to establish peering with other

networks. The peering is established between two parties based on mutual agreement

of both parties that may include sharing their respective details with each other. As

a result of establishing peering between Internet service providers and content delivery

networks there is no need to set up a connection and share their traffic with rest of the

networks. This process saves money in a sense that this will reduce the cost of transit

point and network's operation, improves system efficiency with better control, reduce

latency by direct connections, and provide security of the data by keeping traffic in a

local network [6].

IXP operations are managed by an operator, whose responsibility is to keep the servers

up and running, maintenance of the infrastructure without interrupting the ISP's traffic.

IXP operations team's major responsibility is to maintain the physical infrastructure of

IXP such as cabling, website, servers and switching equipment. They also provide

technical assistance on the issues regarding IXP to internet service providers.

Internet Exchange Point is installed at a neutral point to gain maximum benefits of the

service. The concept of the IXP is to get rid of the monopoly of different service providers

and deliver multiple types of technical support to the Internet service providers.

To promote the knowledge, development and technical assistance of IXP's in the world,

multiple associations were formed for this purpose. World is divided into four different

regions and the combination of these regional associations named as Internet Exchange

8

Chapter 2: Literature Review

Point Federation (IX-F) [7].

Following are the name of IX-F members.

• African Internet Exchange (AFIX)

• Asia Pacific Internet Exchange (APIX)

• European Internet Exchange (Euro-IX)

• Latin America and Caribbean Internet Exchange (LAC-IX)

2.2.2 Existing Internet Exchange Points in the World

Currently, 956 Internet Exchange Points are installed in 159 countries of the world with

78 IXP's in the African, 201 IXP's in the Asia-Pacific, 333 IXP's in Europe, (120 Latin

America + 224 North America) IXP's in the America and Caribbean Regions [8].

There are 868 Internet Exchange Points are currently in working condition in approxi-

mately 116 countries of the world. The major challenge for the IXP setup is to convince

the local network providers to use the IXP platform for peering and exchange of mutual

traffic. IXP requires a very minimum amount of resources to set up the physical infras-

tructure as maximum part of the hardware is donated by the service provider for their

mutual interest.

Following is Figure 2.3 the geographical diagram of the working IXP's in the world.[9]

Figure 2.3: Geographical diagram of the working IXP's in the world.

9

Chapter 2: Literature Review

2.2.3 Internet Exchange Point (IXP) Architecture

In traditional internet exchange point minimum 1 switch is required to establish a layer

2 switching fabric, where multiple Internet Service provider and local content delivery

providers share their local traffic within the local infrastructure. In below mentioned

Figure2.4 service provider need to share their traffic locally, where 1st four internet

service provider peered with each other using a traditional switch and form an IXP

switching fabric 1, while other 3 internet service provider peered with each other using

another switch to form an IXP switching fabric 2. These two different switching fabrics

further connected with each other through a link to exchange their local data. [10]

Figure 2.4: Architecture of Internet Exchange Point

The basic purpose of two different IXP switching fabric creation is to improve latency

and reduce operational cost for long distance connectivity. These 2 local switching

fabrics interconnected with each other to share their data and work as an Internet

Exchange Point (IXP). On top of these IXP Switching fabrics is the Internet Exchange

Point (IXP) Manager which exists with a basic aim to manage the peering, graphical

representation of traffic and administrative actions. In the IXP manager both admin

and customer portal exist with different functionalities according to the requirement.

To perform a layer 3 connectivity between different ISP's, BGP protocol is used to

establish peering between two different network entities. For large scale, IXP members

management route server is installed, which is further connected to the IXP Manager

10

Chapter 2: Literature Review

to support IPv4, IPv6 and AS data. This will develop the trust between different ISP's

and create a neutral point for different network entities to exchange their local traffic

within the local network.

2.3 OpenFlow Protocol

OpenFlow Protocol was 1st developed by an open source community name Open Net-

working Foundation (ONF). The basic aim of ONF was to establish a set of rules for the

communication between the switch and the controller. After developing the OpenFlow

protocol the basic architecture was designed for network devices to communicate and

provides vendor neutrality. [11] Due to the need of time, different vendors modified their

hardware to make it OpenFlow compliant.

2.3.1 Overview of OpenFlow

As competition grew and the demand for OpenFlow switches increased, multiple vendors

started to release OpenFlow compliant switches in the market. Based on the market

need the OpenFlow community reviewed the set of rules according to the modified needs

of the industry and different versions of OpenFlow were released. The initial OpenFlow

version was 1.0.1 released in November 2009 and the latest public version 1.5.1 released

in 2015 while immensely popular version 1.1 of OpenFlow was released by ONF in 2011.

The multiple versions released by ONF on the market demand lead to new research

requirement and hence it became a popular domain of research.[12]

OpenFlow is the baseline of the newly emerging domain of networking namely Software

Defined Networking where the control plane is decoupled from the data plane. OpenFlow

acts as an API between these two planes.

Similar southbound interface functionalities like communication between control plane

and network plane is achieved by another framework namely ForCES (Forwarding and

Control Element Separation) which works on the principle of forwarding using separate

Logical Function Block (LFB).[13] ForCES works on the master slave model. Where the

control elements are master and the forwarding elements act as a slave. A limitation of

the said framework is that the control elements do not communicate with another control

element. The major benefit of the OpenFlow protocol is that there is a centralized

11

Chapter 2: Literature Review

controller that is used to control all network devices in advanced network architecture.

[14]

2.3.2 OpenFlow Architecture

In OpenFlow Architecture there are two major components for the said architecture to

work, the first one is SDN controller, which is the decision making entity and the second

one is OpenFlow switch which acts as a forwarding device and executes the decisions

of SDN Controller by forwarding the packets accordingly through a secure channel.

OpenFlow is considered a de-facto standard for SDN. There are multiple OpenFlow

protocol versions, but in my thesis, I have worked on the OpenFlow version 1.3.

There are three different types of communication used by OpenFlow protocol.

• Controller-to-switch communication

• Asynchronous communication

• Symmetric communication

Controller to switch is the channel used by a controller to control the switch in a man-

ner of configurations, data collection and programming. Asynchronous communication

channel is used by OpenFlow switch to inform about the packet's arrival, errors and any

change in the state that occurs without a request from the controller. While Symmetric

communication channel is used in OpenFlow protocol to check the control channel state

whether it is available or not i.e. echo messages. [15]

In a nutshell, OpenFlow Protocol works as an API to get the network information, rout-

ing information and rules etc to OpenFlow switch from SDN controller. This protocol

runs between the SDN controller and Switch which in geographical language works on

the south end. So, it is the southbound API of SDN environment. [16]

Following is the Figure2.5 which gives the overview of the OpenFlow architecture.

12

Chapter 2: Literature Review

Figure 2.5: OpenFlow Architecture

In OpenFlow protocol, the information is received by the switch in the form of flow table

entities. Following are the common fields of the flow table entities. [17]

• Header Fields

In this field of the packet, the information of the destination and source is attached.

• Actions

As this heading clearly explain the working phenomenon, in this field actions are

taken after matching the rules defined.

• Counters

This field of the packet is used for statistics collection as they update the time,

13

Chapter 2: Literature Review

size, and amount when every packet arrives.

While in OpenFlow version 1.3 some new flow entities are introduced. Which are dis-

cussed later in section 2.4.1. As OpenFlow is the set of protocols so they work on the

principle of matching the fields with the packets. Following Figure 2.6 are some common

fields that OpenFlow protocol use for matching defined by ONS.][18]

Figure 2.6: Common fields of OpenFlow protocol.

As above mentioned, entities are matched with packets. Decision entity in our scenario

SDN controller sends a control message to OpenFlow switch to take action. Following

Table 2.1 are the required action entities. [18]

14

Chapter 2: Literature Review

Table 2.1: Required Action Entities

NO Action Field Description

1 Output “port_no” This action field is used to forward

packets to the specified port.

2 Group “group_id ” This action field is used to process

the packets from the group.

3 Drop This action field is used to drop the

packet.

4 Set-Queue

“queue_id”

This action field is used to main-

tain QOS work as scheduling and

forwarding the packet according to

the queue.

5 Push-Tag/Pop-Tag

“ethertype”

This action field is used to add or

remove a VLAN or MPLS tag.

2.3.3 OpenFlow Rules

Rules are used in the network to control and manage the traffic. In a traditional network

a commonly known word Access Control Lists (ACLs) are used in a similar way as rules.

These rules are defined in the network to control the traffic and it is the basic block in

OpenFlow protocol with a basic aim to match all the packet fields with the defined rules

and then take appropriate action without forwarding packets.

Rules are defined in network to gain multiple advantages such as security and traffic

engineering. Following are some rules used by network administrators.

• Allow

• Block

• Redirection

• Mirror

Allow is an action (match field) defined in the form of rules by the network administrator

to give permission to a packet to move forward in the network. Allow-all is an exceedingly

15

Chapter 2: Literature Review

popular action field used commonly, in which all packets are allowed.

Block is a very important action used by the network administrators in their routine

tasks to react in case of any security breach or any decision execution. Applying this

rule, the listed packets from a dedicated port are dropped. To apply this field, a wild

card of dl_type and ip_proto is required.

Redirection is used in traffic engineering as a baseline in a sense of load balancing,

congestion control and port management. Redirection works in the principle of getting

data from the port and then move that data to the specific port. Mirror functionality is

used to get all the copied data from a specific port and then be used to apply multiple

machine learning algorithms and monitoring of traffic. To apply this rule mirror port

number is required.

2.4 OpenFlow Switch

OpenFlow switch act as a forwarding device in Software Defined Networking (SDN).

The basic aim is to get instruction from the controller about the packet forwarding.

OpenFlow switches have tables which contain the detail of flow entities depending upon

the OpenFlow protocol version which they support.

2.4.1 OpenFlow Switch Architecture

Following is the Figure 2.7 that contains the architecture entities of OpenFlow switch.

[18]

Figure 2.7: OpenFlow switch architecture Flow.

16

Chapter 2: Literature Review

In above mentioned Figure 2.7 OpenFlow channel is a component that is used to es-

tablish a communication between OpenFlow switch and SDN controller using a secure

channel known as south bound API. Flow table is used to maintain the record of all the

entries of the packet, there are multiple OpenFlow tables that exist on a switch where

multiple actions are performed. Depending upon the OpenFlow version, it enables every

packet which contains multiple components that are further recorded in the flow tables.

Following is the Figure 2.8 which shows the fields of flow entries of OpenFlow version1.3.

Figure 2.8: Flow entry fields of OpenFlow version 1.3.

2.4.2 OpenFlow Virtual Switch (OVS)

Open Virtual Switch (OVS) is a switching software initially developed by Nicira which

was further acquired by VM Ware, is open source and available to be used publicly to

perform network switching functionalities in a virtual environment. It is licensed under

Apache 2.0. OpenFlow virtual switch was designed to be installed in virtual machine

environments on Linux based server. [19]

OVS provides support to enable communication between multiple servers, it is capable

to perform, L2 and L3 switching, ACLs and monitoring support. OVS supports multiple

monitoring software and control functionalities. [19]

2.4.3 Vendor's OpenFlow supported Switch

As OpenFlow community is growing at a fast pace, there is a need for hardware compa-

nies (vendors) to upgrade their equipment to new technologies. Now, almost all vendors

released their equipment with OpenFlow support in order to compete with the market.

As OpenFlow Networking foundation release different versions of OpenFlow protocol,

vendors add OpenFlow version support accordingly.

Following are two different modes available in OpenFlow switch.

• Standalone mode

• Secure Mode

17

Chapter 2: Literature Review

In standalone mode when a connection with SDN controller breaks, switch works in

a traditional way to process packets after attempting three times in order to establish

connection with controller. While in secure mode when the controller fails to respond

then the existing rules keep active rather than to expire in defined time out, while

OpenFlow switch keeps on trying to establish a connection with the controller.

Following are some renowned vendor companies who released their OpenFlow switch

with multiple OpenFlow versions enabled accordingly.

• Cisco (Nexus 3000 series, Nexus 3100 series, Nexus 3548 series and Nexus 6000

series etc.). [20]

• Juniper (EX4600, EX9200, MX series and QFX5100 switches). [21]

• Hp (FlexFabric 12900, HP 12500, FlexFabric 11900, HP 10500 switches and HP

2920 etc). [22]

• Arista (Arista 7150 series etc.). [23]

• IBM (IBM BNT Rack Switch G8264 etc.). [24]

• Allied Telesis (x930 series, x510 series, DC2552XS/L3, X310 series and x230 se-

ries). [25]

• Zodiac (FX OpenFlow). [26]

2.5 Software Defined Networking

Software defined networking introduced a new architecture in the domain of network-

ing and it has opened up a new area of research in networking. Many researches are

working in this domain and SDN has evolved very fast in recent past years. Software

defined networking framework is used in many industries according to the infrastructure,

such as Data center networking where SDN makes a perfect framework for cloud data

center networking and provides flexibility and granular control using network virtualiza-

tion. SDN provides central network monitoring by keeping eye on the whole network,

it also provides traffic engineering using network programmability for applications like

centralized device configurations, load balancing, firewall and traffic optimization in the

network. SDN is the enabler of cloud-based access control and firewalls application

18

Chapter 2: Literature Review

which provides security to the application, they also provide SDN based mobility and

wireless [27] such as SDN based WLAN network. [28]

2.5.1 About Software Defined Networking

SDN (Software Defined Networking) is an approach to computer networking, that allows

network administrators to programmatically initialize, control, change, and manage net-

work behavior via open interfaces and abstraction of lower-level functionality [29]. There

were multiple attempts made to separate a control plane from the data plane in switches

which did not succeed. In case of SDN architecture, it enables the separation of these

two planes and this revolutionary change resulted in the vendor neutrality approach in

SDN network.

Around 1980's an idea of physical separation of the control plane from the data plane

was introduced by NCP [30], which later on allowed multiple projects to initiate such

as ForCES [13] , PCE [31] and RCP [32] . These projects also worked on the same

scheme for better management in MPLS, BGP and Ethernet network. McKeow in

2008, introduced the term Software Defined Networking in the research paper. [3]

There are multiple benefits of SDN that have been discussed earlier in the previous

sections but the most important as per the current research is to provide a central

management system to control all the switches.

2.5.2 Software Defined Networking Architecture

Software defined networking is basically a framework with a basic purpose to separate

the control plane from the data plane in traditional switches and this makes it a central

control system.

Following are three major components/layers in SDN architecture.

• Application Layer

• Control Layer

• Data Layer

Application layer provides programmability functionality for a programmer to design

19

Chapter 2: Literature Review

application on the top of the SDN controller and then north bound API is used as an

interface for communication between these two layers. Control Layer is used as the

instruction set or decision entity which runs on the top of the OpenFlow switch, in

this layer SDN Controller is installed which controls the packet flows and manages the

network. Data layer is used to forward the packets and works as a forwarding device

where the instructions are taken from the controller using south bound API and then

executes the control instructions.

Following is the Figure2.9 which clearly explains the Software Defined Networking ar-

chitecture.

Figure 2.9: Software Defined Networking architecture.

20

Chapter 2: Literature Review

SDN Control Plane

Control plane in SDN network works as decision entity to manage and control the

switches interacting with the data plane devices using OpenFlow protocol as a south-

bound API. In control plane, the controller is a software written in different programming

languages depending upon the ease of use, flexibility and to act as a bridge between the

application layer and the data layer. Its aim is to take a decision upon the set rules and

forward it to the data plane. So, it's the responsibility of the control plane to decide

what to do with the network traffic as to select the traffic path, routing protocols etc.

Control plane also maintains the communication set up between the control plane and

data plane by sending live messages and to get the network information from the con-

nected devices. [33]

SDN Data Plane

Data plane functionality in software defined networking is usually performed by the

switch with open flow protocol enabled. The core concept of Data Plane is to work

as a packet forwarding entity without controlling functionality. The latter function is

performed only by control plane of the SDN controller. But with multiple kinds of

researches and optimization to improve the performance and accuracy of the system,

some functionalities such as flow statistics collection make it somehow intelligence from a

dump device. This approach reduces overload from the controller and improves accuracy

of the controller. [34]

In Data plane every “Packet IN ”is buffered according to the rules defined in OpenFlow

protocol, until the decision to forward that packet is taken by the SDN controller. When

a decision is taken by the controller, as per the defined rules the switch differentiates

the packet type and forward accordingly. In SDN framework, OpenFlow switch act as

a data forwarding device performing data plane functionalities only.

Data Plane and control plane communication are established by a secure channel. Data

plane act as a forwarding device so that the forwarding table is maintained in it. There

are three major fields in the table depending upon the OpenFlow version enabled namely,

matching, actions and counters, while the fields of tables increased on the later version

of OpenFlow. In SDN, matching is performed on all fields of Packet header like source

and destination Ip addresses, Mac addresses, Vlan ID's and ports. Action is to forward

the packet to the next hop, forward packet to the controller, drop the packet, in queue

21

Chapter 2: Literature Review

and modify request. While counter is to count all the incoming packet and the then

forward to get statistical results. [35]

In SDN, there are two types of network rules, one is related to data plane where mostly

layer 2 forwarding is done and the second one is to send to the controller for broadcasting

from the application layer, in the current scenario application layer is SDN-IXPManager.

2.6 SDN Controller

The evolution of networking technology in the past few years gave birth to SDN, where

the control plane separated by data plane. A new term of SDN Controller has been

introduced recently, with the basics purpose to control the control plane functionalities

and to do so, multiple APIs have been written to establish a connection between SDN

applications and the SDN controller. The OpenFlow protocol is also enabled to set up

communication between the SDN controller and the data forwarding devices.

2.6.1 Overview

The OpenFlow protocol was introduced in 2008 as a supporting protocol for Software

Defined Networking and opened the domain for SDN controller. The Software Defined

Networking provides vendors neutrality which made available an open platform for ev-

eryone to write their controller according to their recruitment. Multiple open source

controllers have been written with multiple features.

As OpenFlow community is growing at a rapid pace, there is a need that existing vendors

upgrade their firmware or add support of OpenFlow. Now approximately every vendor

has introduced its OpenFlow hardware in addition to the SDN controllers.

As first SDN controller was designed by Nicira by the name NOX, which was later

acquired by VMware. Open Daylight launched its controller back in 2013 with support

for vendor switches, such as cisco. Now hundreds of controllers are written with multiple

functionalities on the same principles. [36]

22

Chapter 2: Literature Review

2.6.2 Existing SDN Controllers

The controller is the main component in Software Defined Networking. Therefore, mul-

tiple vendor companies design their own controllers to compete in the market and fulfill

customer requirements. There are multiple OpenFlow controllers designed by OpenFlow

communities. Following are some vendors who designed their controllers.

• Cisco [Open SDN Controller (OSC)]. [37]

• Juniper networks [Open Contrail]. [38]

• Hewlett Packard Enterprise [HPE VAN SDN Controller]. [39]

• Big Switch Networks [Big switch controller]. [40]

To meet the market requirement, multiple vendors acquired opensource products and

then commercialized those after modification. Cisco is the leading market player in

computer networking technologies, so they designed their own controller namely “open

SDN controller ”(OSC) and then improved their functionalities in collaboration with

Open Source community support such as “Open Day light ”community. Juniper also

designed their own controller name “Open Contrail ”after acquiring contrail an open-

source product in December 2012. [38]

Hewlett Packard is a renowned international company with a lot of products, made its

own “HPE VAN SDN controller ”for its new innovative networking devices. A could

and data center networking company namely “Big Switch Networks ”also developed

a controller namely “Big Switch Controller ”. Similarly, new companies working on

innovation and emerging technologies like pica 8, Nauga network, cumulus networks

and Pluribus Networks also contributed to support OpenFlow products. [41] [42] [43]

Following are some SDN Controller developed by open source community.

• Open Daylight

• Flood Light

• Ryu Controller

• ONOS

23

Chapter 2: Literature Review

• Beacon

• Faucet Controller

A well-known SDN controller “Open Daylight ”has many contributions in uplifting of

the SDN technologies, many renowned vendor companies use their support for their open

source products, such as cisco. It is also being used as an industry standard for many

new OpenFlow controllers and is considered to be as most advanced SDN controller.

Until now, 10 releases of Open Daylight are available as open source. [44]

Floodlight controller also has contributed in the community with multiple supports and

up gradation. Currently, they have announced their new version v1.2 with new features

and support. This controller is also supported by vendor companies such as “Big Switch

Networks ”. [45]

Ryu Controller is also a widely used controller with a lot of application's support and

very developer friendly, many developers use this as a baseline to develop their own

controller and to merge their work with a controller. Their code is easily available at

GitHub and is licensed under “Apache 2.0 ”. [46]

“Open Networking Operating system ”(ONOS) is also an open source SDN Controller

develop by open source community major aims to support NFV services and applications

support of performance monitoring for operators in the telecom sector. There are a lot

of similarities of ONOS with Open Daylight controller which is one of the most renowned

controllers in the domain of SDN. ONOS is developed very recently in late 2014. [47]

Beacon SDN controller is a relatively old controller with the basic aim to focus on

providing support to research and academia. Many programmers use their logical base

concept to develop the most powerful controller with multiple features like in Floodlight

SDN controller. Beacon controller is well recognized because it is considered to be a

pioneer in SDN Controller. [48]

Faucet SDN controller is considered to be emerging in the domain of Software Defined

Networking with the advantage of being deployed in sizeable network topologies. Faucet

SDN controller's 1st version was released in back 2015. The further details of faucet

SDN controller are discussed in the next section. [49]

24

Chapter 2: Literature Review

2.7 Faucet SDN Controller

Faucet SDN controller is considered to be emerging in the domain of Software Defined

Networking with the advantage of being deployed in sizeable network topologies. Faucet

controller was designed to work in an efficient way, the controller code is just 1000 lines

and written in python language which is much user friendly as compared with other

coding languages. The working phenomenon of faucet is much comfortable for the

network administrator as it works in the same way as server clustering does. The major

benefit of SDN controllers is that it is independent of vendor functionalities, faucet work

perfectly in this concept.

2.7.1 About

Faucet was developed by Josh bailey (from Google), Kit Lorier (From REANNZ Net-

works) and Brad Cowie (From Waikato University). The 1st version of faucet was

created in 2015 in New Zealand and due to its open source availability at GitHub, SDN

community has so much contribution and support for the development and growth of

faucet. Later in Sep, 2016 faucet launched its v1.1 and v1.2 in Oct 2016 with multiple

releases, updates support and the current faucet has v1.9.9.

Faucet controller has an advantage in the practical deployments in most of the renowned

places and it is evolving day by day. The faucet controller has also been deployed in

Toulouse, France IXP and became a pioneer in Europe for converting existing IXP

from traditional to SDN enabled. Currently, faucet production deployment is in many

renowned places such as Open Networking Foundation, REANNZ, GEANT and AAR-

NET etc. [50]

2.7.2 Introduction

Faucet is a Software Defined Controller with the basic aim to provide control function-

alities of the SDN environment. Faucet is 1.3 Version OpenFlow hardware compliant.

In networking, the monitoring flows are the major load on a network that affects the

efficiency of the overall system. To overcome this challenge faucet has been technically

divided into two sub-controllers.

25

Chapter 2: Literature Review

• Gauge Controller

• Faucet Controller

Gauge controller is specifically assigned for monitoring and collection of flow counters

and monitor the ports statistics through an OpenFlow link between switch and con-

troller. Then its task is to export it into the database (Prometheus/influx DB) without

affecting the state of the OpenFlow switch. [51]

Faucet Controller has performed control functionalities such as forwarding decisions,

Rules and establishment of peering between different networking devices etc. It was

tested on different OpenFlow compliant switches.

As Faucet works on the principle of vendor neutrality of OpenFlow protocol, faucet per-

forms its control functionalities through an independent server-based software. Faucet

has an edge that it works without an application on the application layer as it is con-

trolled by YAML file where peering information and rules are fed into controller. [51]

2.7.3 Architecture

Following is the Figure2.10 that completely explain the architectural behavior of the

faucet controller.

Figure 2.10: Faucet SDN Controller Architecture.

26

Chapter 2: Literature Review

In the above Figure 2.10 [52] both faucet and gauge controllers are directly connected to

the OpenFlow compliant switch, while port statistics of the gauge controller are saved

in the time series database from where the statistical data is shown in the graphical

dashboard (Grafana). Whereas, the faucet controller gets peering information and rules

from the YAML file to control and manage the network behavior. [52]

2.7.4 Pipeline Faucet

Faucet controller works on the principle of OpenFlow protocol, where a controller con-

trols the OpenFlow compliant switch through a specific set of instructions commonly

known as pipeline. There are ten tables in facet pipeline where some tables are elimi-

nated depending upon the topology of the network.

Following is the Figure2.11 which clearly explain the faucet pipeline. [52]

Figure 2.11: Faucet pipeline

27

Chapter 2: Literature Review

In above Figured 2.11 “Port_Acl”table is the 1st table in faucet pipeline used for the

implementation of rules defined at controller (such as block, allow and mirror etc.) for

OpenFlow switch. 2nd table in faucet pipeline is “VLAN”table which performs matching

operations for both tagged and untagged ports. “eth_src”and “eth _dst”table in faucet

pipeline uses to match the source and destination field to move the packets to correct

destinations. 5th field of the faucet pipeline “vip”is used for matching operations of

the ipv4 and ipv6. Last table of the pipeline “flood”is used for broadcasting and multi

casting.

In Figure 2.11 above, there are 9 tables in the pipeline whereas, there is one additional

table named “Eth_Dst _HAIRPIN”is used, where a communication between different

vlans is required while the port is same in case of routing between hosts. [52]

2.8 TouSix Manager

TouSix manager is a web-based platform used for controlling and monitoring of the SDN

enabled Internet Exchange Point. The main aim for designing TouSIX manager was to

manage the Toluse SDN-IXP control functionalities.

2.8.1 About

TouSix Manager is a combination of two words “Toulouse”came out from the name of

the city of France and the second one is “SIX”short form of SDN internet exchange

point. TouSix manager code is written in python.

TouSix manager has statistical collector to show the traffic of the SDN enabled internet

exchange point and there is a direct communication with the OpenFlow controller (Ryu

controller) to pass down the OpenFlow information.

Design of the TouSIX manager is specifically to monitor or maintain the Toulouse SDN-

Internet Exchange point and it also provided the ease by graphical web interface to

integrate new services.

28

Chapter 2: Literature Review

2.8.2 Introduction

The TouSix Manager is the pioneer in the domain of SDN-IXP management software.

Before the development SDN IXP Manager the traditional IXP manager software was

designed to monitor and provide services to traditional IXPs. TouSix manager was

developed on the top of the SDN controller, especially for the RYU controller to provide

GUI based control and monitoring of Toulouse Internet Exchange Point. [53]

In TouSiX manager there are following major functionalities introduced to monitor and

maintain the SDN Internet Exchange Point.

• They provide an OpenFlow operations using graphical-user-interface based in-

structions.

• Monitor the SDN traffic of IXP.

• BGP Configuration generator.

• Rules generator.

2.8.3 Architecture

Following is the Figure2.12 which shows the architecture of TouSix Manager.

Figure 2.12: TouSix Manager Architecture

In above Figure2.12 TouSix manager has 4 major components namely.

29

Chapter 2: Literature Review

• Member Management

• Statistical Manager

• OpenFlow Rules Generator

• BGP Configuration Generator

There is a separate database for storing rules of OpenFlow and a database for website

management data.

The 1ST component of the TouSix manager is used to manage the administration's end

functionalities and management. The 2nd component of TouSix manager is used for

statistical data of the IXP to be monitored where different ISPs have peered together

and their traffic is exchanged at that point. The 3rd component of TouSix manager is

to generate OpenFlow rules and the 4th component of the TouSix manager is used for

establishing a communication between different ISPs as they need a BGP protocol to

work and configure. [54]

2.8.4 Limitations

Following are some major limitation in TouSix Manager Verses IXP Manager.

• TouSix Manager is a python-based application and there is an integration of

Django framework to perform some functions, while IXP manager is a full stack

management system for ISP's monitoring.

• TouSix manager includes only an administration portal for ISP's management

while IXP includes both administration and customer portal for ISP's manage-

ment.

• TouSix manager is designed to control the Toulouse IXP, while IXP manager is

designed in general as an IXP management tool. Whereas, 76 IXPs around the

world are using this technology and have strong customer support.

• TouSix manager is limited tool for the ease of management operations while IXP

Manager has a wide range of supporting tools and APIs.

30

Chapter 3

Proposed Architecture

In this chapter, the proposed architecture/schema of the complete system has been

discussed.

3.1 About

The proposed scheme in general, will be used in telecom sector and specifically at the

Internet Exchange Point (IXP), where different ISPs peer with each other and share

local traffic/content at the IXP without routing it through the international gateway.

The international gateway traffic is not free of cost, by peering at an IXP the ISPs save

money and address privacy concerns of the local/national traffic by routing it within

the country only. The question arises that how the proposed scheme can be helpful in

Internet exchange point (IXP) scenario.

The traditional Internet Exchange Point lacks support of advanced features, as discussed

above. By transforming, traditional IXP into SDN enabled IXP the feature of monitoring

and control has been introduced in it. That is why the proposed schema is especially

important to provide monitoring and control functionality to SDN IXP, which will help

SDN IXP users to monitor their traffic stats and control the traffic by defining rules

to redirect the path or block the traffic in case of security breach at top of the SDN

controller.

Similarly, the proposed scheme also provides an ease of use and flexibility to IXP man-

agement team to view stats of the traffic flowing through the IXP. It also helps to define

rules to control traffic at single platform that is graphical user interface (user friendly)

31

Chapter 3: Proposed Architecture

without going down to the controller's complex yaml file. Furthermore, proposed scheme

also allows writing the rules manually one by one, which once cause different errors such

as indentation, syntax, mismatch etc.

The proposed architecture consists of the following five components.

• Statistical Dashboard Linkage

• Vlan Selection

• OpenFlow Switch Addition

• Interface addition

• Rules Generation

The first component of the proposed architecture is the Statistical Dashboard Linkage

at SDN-IXP Manager for the purpose of monitoring and statistical view of traffic. The

Second component is a Vlan selection that is used to select Vlan for establishing com-

munication between peered Autonomous Systems (ASs). The Third component of the

proposed scheme is OpenFlow Virtual Switch (OVS) addition, whereas OVS is used

to provide a switching mechanism with the support of computer communication proto-

cols. The Fourth component of the proposed schema is Interface addition, which is used

to establish peering between ISPs on top of the OpenFlow switch at SDN controller

through the proposed schema. Fifth component of the proposed scheme is to generate

rules to provide security at SDN IXP manager by blocking or allowing specific traffic.

The security provision can also be applied to servers in case of security breach. This

component is also used for static load balancing, i.e. to divide load between ports by

redirection in case there is a traffic overload. It can also be used to mirror traffic for

running data processing algorithms, such as machine learning or artificial intelligence.

In this proposed scheme there is no need of a separate database for storing rules as in

case of TouSix manager, SDN-IXP manager push rules to the Yaml file of the OpenFlow

controller (Faucet) by avoiding controller framework API dependency.

The proposed architecture of the system is given in Figure 3.1.

32

Chapter 3: Proposed Architecture

Figure 3.1: Proposed Architecture of Monitoring and control of SDN IXP Manager

3.2 Used Tools

The research and development of proposed architecture has been performed in PHP

Laravel Framework 5.5. Whereas, early IXP manager used PHP Zend Framework com-

ponents. In other words, it is a blend of both the frameworks. For database related

operations, Laravel Doctrine Framework has been used. The implementation of the

project required use of multiple Open source libraries and modules. A few of the im-

portant components used in this project are listed below.

• Virtual Machine Virtual-Box

• Faucet Controller

• Gauge Controller

• Grafana Server

• Prometheus Data Base

33

Chapter 3: Proposed Architecture

• IXP Manager

• Quagga Software Routing Suite

• Open Virtual Switch

• Iperf Network Performance Measurement

3.2.1 Virtual Machine Virtual Box

A Virtual Machine is an emulation software that is used to emulate a computer system.

The functionalities are dependent on the concept of computer architecture. VM requires

resources of a real machine to setup an operating system and multiple of these operating

systems can be created on a single physical machine, isolated from each other, which

provides flexibility and reduces the cost of new hardware. By using tools like virtual

machine, different Autonomous systems, SDN controller (at the virtual server) and web-

based application (IXP) server have been created on a single machine.

3.2.2 Faucet SDN Controller

Faucet is an Open source controller, it was basically designed to control the SDN con-

trol plane functionalities without the vendor dependencies, as an independent software.

Faucet controller is used to control the routing, rules, and then pushing down the in-

structions to the switch using OpenFlow protocol 1.3.

3.2.3 Gauge SDN Controller

Gauge Controller is fundamentally a part of the faucet open source controller but work

as a separate controller than faucet controller. The faucet controller is used to control

the SDN control plane functionality whereas, the gauge controller is only used to collect

the statistics of traffic data without compromising the faucet controller to balance the

load between control and monitoring.

3.2.4 Grafana Server

Grafana dashboard is a graphical dashboard that is used to display statistics of traffic

for monitoring and analysis of the data. It is a separate window that does not affect

34

Chapter 3: Proposed Architecture

control functionalities.

3.2.5 Prometheus Database

Prometheus is an efficient time series database that is used to store statistics of the

collected data for further analysis. Prometheus is further linked to Grafana dashboard

for a graphical view of the data.

3.2.6 IXP Manager

IXP Manager is an internationally used management system used at Internet Exchange

Point to monitor, control and manage the traffic. It has a customer portal for customer

side view, administration portal for administration side view and provides end to end

provisioning. It is a web-based application for monitoring and management.

3.2.7 Quagga Routing Suite

A Quagga is a software that acts as a routing suite and basic purpose of its development

is to implement routing algorithms like BGP, OSPF and RIP etc in Linux operating

systems. There are multiple components in Quagga architecture, but in the proposed

architecture, there are two main components used namely, Zebra and Bgpd. The reason

quagga has been used in the project, is to simulate physical AS communication through

physical OpenFlow switch.

3.2.8 Open Virtual Switch

Open Virtual switch is software-based virtual switch that is installed on a system to

provide functionalities of multilayer switch virtually without having a physical switch.

It supports all computer network protocols and standards for network automation.

3.2.9 Iperf Network Performance Measurement

Iperf is a tool that is used by a network administrators or researchers to test the perfor-

mance of the network. It has primarily been used to test in the said scenario to check

the maximum amount of bandwidth that can be achieved during the communication.

35

Chapter 4

Design and Implementation

This chapter briefly explains the design and implementation scheme of all the compo-

nents, which are used in my architecture.

Figure 4.1: Components Descriptions for SDN IXP Manager Monitoring and Control.

The above mentioned Figure 4.1 illustrates different blocks integrated in a scheme to

exhibit a mechanism of a) monitoring the traffic in OpenFlow scenario using SDN con-

troller b) establish a peering between different ISPs c) Rules addition d) OpenFlow

switch addition e) VLAN addition in SDN-IXP scenario using the redesigned SDN-IXP

Manager.

36

Chapter 4: Design and Implementation

Following is the description of the above-mentioned block with configuration, integration

and coding. [55]

4.1 Setup and Configure SDN environment server

This portion aims to setup and configure the SDN OpenFlow controller (Faucet and

Gauge), install the required tools and then configure all the tools like OpenFlow Virtual

Switch, Prometheus database and IXP Manager Software, in order to ensure that SDN

environment has been established. Furthermore, it will be modified according to the

proposed scheme.

4.1.1 Setup and configure SDN OpenFlow Controller (Faucet and Gauge)

Initially, the faucet repository will be added with all the components linked to the

server from which the research work will be conducted. The following Figure 4.2 show

the commands that are used to fetch the target repository.

Figure 4.2: Commands used to fetch the target repository.

Following Command shown in Figure 4.3 use to Update the system where faucet repos-

itory added.

Figure 4.3: Command used to Update.

In order to get the benefit and rectify all the dependencies of the faucet and its compo-

nent, the following command shown in Figure 4.4 is used to install the faucet package

with all its components.

Figure 4.4: Command used to install faucet package.

37

Chapter 4: Design and Implementation

The above-mentioned command shown in Figure 4.4 is also used to setup faucet and

gauge controller with its components. Faucet and gauge initially come with faucet.yml

and gauge.yml containing default configuration to setup the controller. As far as gauge

controller is concerned there is no need to change the configuration but faucet YAML

file change is required according to the topology via IXP-Manager.

4.1.2 Setup and configure Time Series Data Base (Prometheus)

The Faucet and gauge controllers need a time series database to store metric data. While

adding faucet repository, it also gets the sample template of Prometheus with it. The

sample template requires modifications as per the user requirement. It is important to

set the receiving path shown in Figure 4.5 whereas the other configuration needs no

change.

Figure 4.5: Setup receiving path.

After setting up the above-mentioned argument in Prometheus database, the file needs

to be restarted in order to ensure that the changes have been successfully applied.

4.1.3 Setup and configure Statistical Dashboard (Grafana)

Grafana is an open source platform to view statistical results with integrated support

for SDN controller. In order to enable the support for SDN Controller there is a need

to configure Grafana. As stated earlier, the installation of faucet controller repository

downloads all the components with itself. The only need at this stage is to enable the

Grafana server, re-load the daemon and start the Grafana server using ubuntu command

line.

Following are the commands shown in Figure 4.6, 4.7 and 4.8 used to setup the Grafana

statistical dashboard.

38

Chapter 4: Design and Implementation

To start the services, first re-load the Daemon using following command shown in Figure

4.6.

Figure 4.6: Commands used to reload Daemon.

To Enable the Grafana Server use the following command shown in Figure 4.7.

Figure 4.7: Commands used to enable Grafana server.

To start the Grafana Server use following command shown in Figure 4.8.

Figure 4.8: Commands used to start Grafana server.

Using above mentioned commands grafana server is set up, it is accessible from the web

interface local host with port number 3000.

Secondly, the most important thing is to set grafana web application as it gets the data

from the time series database (Prometheus). For the same, set the name, type and url

of Prometheus in grafana to view the stats, the Prometheus database is accessible from

localhost:9090.

For SDN controller, there are a few dashboards developed by open source community

in which grafana can be integrated to view the results in form of ports stats, inventory

detail and instrument information with a separate dashboard for each.

After successful set up of the Grafana dashboard, it takes the shape as following shown

in Figure 4.9

39

Chapter 4: Design and Implementation

Figure 4.9: Statistical view of Grafana Dashboard

4.1.4 Setup and Configure OpenFlow Virtual Switch (OVS)

In order to perform testing of SDN controller with SDN_IXP manager the OpenFlow

enabled switch is required for switching purpose and to act as a dump switch only, used

for data forwarding and matching without taking decisions. For the same reason, an

OpenFlow Virtual Switch is required to be configured and setup on the server to perform

the above-mentioned activities in a virtual environment.

Following are the steps involved to setup an OpenFlow switch environment on a hosted

server.

• To install OpenFlow switch on a desired server, the following command is used as

shown in Figure 4.10.

Figure 4.10: Command to install Open Virtual Switch

• Configure the OpenFlow Virtual switch. The configuration of an OVS includes

adding a bridge with ports integration, setting up the Data Path ID, setting up the

internal configuration (fail mode enable etc.) of OpenFlow switch, setting up the

interfaces of the added port(s) and controller listening ports in order to integrate

OpenFlow Virtual switch to the SDN controller.

40

Chapter 4: Design and Implementation

4.1.5 Configuration of IXP Management Software

To setup the internet exchange point, at first there is a need to setup the IXP manage-

ment software, which is used by 70 IXP's globally. As mentioned earlier the existing

IXP only offers traditional network control. The existing networks evolved with the

advancement in technology and the need for redesigning of the architecture surfaced.

With the redesign, the existing users will also have to migrate to a newer technology in

order to avail all the benefits of the new technology.

Following are the steps required to install IXP Manager for further configuration which

will download the script and install it.

• To download the IXP Manager, use the following command as shown in Figure

4.11.

Figure 4.11: Command to download IXP-Manager.

• To execute the installation shell of IXP manager, use the following command as

shown in Figure 4.12

Figure 4.12: Command to execute the installation shell.

• After executing this command IXP Manager will install all the tools (i.e. MySQL,

Laravel etc.) that are required to run the IXP Manager. During Installation

username and password should be set while a random root password is generated

which will be saved and used as required.

• For the implementation of IXP Manager SSH following command as shown in

Figure 4.13 is used to edit the configuration file.

Figure 4.13: Command to edit the configuration shell.

41

Chapter 4: Design and Implementation

• To enable the SSH open the editable file and set the permit root login and strict

mode to “yes”.

4.2 Mechanism to link Statistical Dashboard

The major outline of this research is monitoring of network/IXP administration and net-

work traffic i.e. data (packet and bits) inflow and outflow from each port of the switch,

packet drop rate, errors per second, controller information (CPU usage, memory, cold

restart etc.) and Controller inventory information. To view all the afore-mentioned in-

formation, separate statistical collectors are already built by the OpenFlow community.

As mentioned earlier, the basic goal of this research is to develop a dashboard for SDN-

IXP Manager so that a user can view the stats. For that purpose, a separate statistical

collector is required to be set up and integrate it with the IXP Manager and redirect it

to the configured collectors for visualization of the stats for SDN-IXP Manager user.

4.2.1 Mechanism for redirection in SDN IXP Manager

In order to access grafana via SDN-IXP Manager, the front end of the existing IXP

Manager is needed to be redesigned by adding a new button linked to grafana dashboard.

The admin or customer can navigate to the statistical portal to monitor the traffic and

controller information by clicking the recently added grafana button in the IXPManager.

For the said purpose, following effort is required in the existing IXP Manager:

To add the button, identify the file from which front end modification will be performed.

Following is the location of the files in which modifications are required.

“Serv/ixpmanager/resources/views”

Following is the file name in which button for grafana redirection is added.

“menu.foil.php”

To redirect to grafana from server where the SDN scenario is running, following link is

used as shown in Figue 4.14, which contains a tag name with properties added.

Figure 4.14: Redirect Link.

42

Chapter 4: Design and Implementation

After executing the above command the link is redirected to grafana, but there is a

need to remove authentication from it. For the said purpose there is some modification

required in grafana file. Following is the location where the modification is performed.

“/etc/grafana/grafana.ini”

To edit the grafana.ini file use the following command as shown in Figure 4.15

Figure 4.15: Command used to edit the Grafana file.

Some modifications required to remove authentication are:

• Disable the login form by changing the field from false to true.

• Enable anonymous access by changing the field from false to true.

• Assigning name to the field for which authorization is required by entering the

“org_name”and “org_role”.

4.3 Mechanism to Establish Peering and Rules Generation

The proposed architecture of IXP Manager requires establishing peering and rules gener-

ation. In order to push the peering information and rules to the controller, the front end

of SDN-IXP Manager has been redesigned. To make it possible, a YAML file is created

from SDN-IXP Manager with rule and peering information, which will be further used

by the faucet controller to implement the desired actions. In this way of redesigning

of IXP Manager's front end, an initial page containing blocks is created. The code is

written in the file named generateyaml.foil.php.

Following blocks are generated through SDN-IXP Manager.

• Add Vlan information or Select the existing Vlan.

• Add OpenFlow Switch.

• Add or select the interfaces of the switch.

• Add or select the rules.

43

Chapter 4: Design and Implementation

Above mentioned blocks are implemented in an order such that 1st step is to select

vlans, 2nd step is to add OpenFLow switch details, 3rd step is to add OpenFlow switch

interfaces and 4th step is the rules generation (namely ACLs). The details of afore-

mentioned steps, coding and configuration are discussed below.

4.3.1 Mechanism to add VLan Addition

Following information is required from the user end to add Vlan information through

SDN-IXP Manager.

• Vlan Name

• Vlan ID (vid)

• Vlan Description

To get above mentioned data in SDN-IXP Manager, code modifications are done in

“generateyaml.foil.php ”file.

4.3.2 Mechanism to Add OpenFlow switch

Following information is required from user end to add OpenFlow switch information

through SDN-IXP Manager.

• OpenFlow Switch Name.

• OpenFlow Datapath ID (dp_id).

• OpenFlow Hardware Name (OpenFlow Switch Name by manufacturer).

To get above mentioned data in SDN-IXP Manager platform, following are the code

modifications done in “generateyaml.foil.php ”file of SDN-IXP Manager.

4.3.3 Mechanism to add OpenFlow switch interfaces information

In order to establish peering between different ISPs, the prerequisite is to add OpenFlow

switch interfaces information in SDN controller, which in this case is through SDN-IXP

Manager. To make necessary changes in it the following information is required from

user end.

44

Chapter 4: Design and Implementation

• Interface Name

• Interface Description

• Native Vlan (native_vlan)

Above-mentioned modifications are done in “generateyaml.foil.php ”file of SDN-IXP

Manager.

4.3.4 Mechanism to add Rules Generation

The rules definition in a network are the most important task for a Network Engineer, as

these rules are required to prevent security breach, multiple cyber-attacks, and redirec-

tion of data etc. Following are the common rules that are traditionally used by network

engineers and the same are used in this research to be integrated in SDN-IXP Manager.

• Block Ports

• Mirror Ports

• Redirection

• Allow All

Following parameters are required from user end to add Rules or Access Control List

(ACL) in interface block through SDN-IXP Manager.

• Destination Mac (Match Field=dl_type)

• Ethernet Type Protocol (Match Field=ip_proto)

• Action (Match Field= allow (True/ False) / output)

• Mirror Port Number

• Destination Ethernet mac address of port from whom packet is monitored (Match

Field=dl_dst)

• Destination Ethernet mac address of packet (Match Field=dl_dst)

Above-mentioned modifications are done in “generateyaml.foil.php ”to generate rules

in SDN-IXP Manager.

45

Chapter 5

Results and Discussion

This chapter is used to discuss results and observation of the proposed architecture.

5.1 SDN-IXP Testing Equipment

For testing the proposed schema, Following are the hardware, software and tools used.

5.1.1 Server (Host)

Following are the specification of the server.

Name: HP AMD A10-5745M APU with Radeon™HD Graphics 2.10GHZ

Processor: AMD Quad-Core 2.1 GHz, up to 2.9 GHz [4Core(s), 4 logical Processors]

RAM: 8 GB DDR3L SDRAM (1333 MHz)

Video Graphics: AMD Radeon R7 M260 (Video Graphics Memory: 6GB)

Physical Memory: 1 TB

Operating System: Ubuntu Linux 16.04 LTS

5.1.2 KVM

An opensource virtualization tool to create multiple virtual Operating systems.

46

Chapter 5: Results and Discussion

5.1.3 Faucet Controller

SDN controller used to control the OpenFlow switch.

5.1.4 OpenFlow Switch

OpenFlow virtual switch (OVS) /OpenFlow compliant switch (i.e: Allied Telesis X-

930 etc).

5.1.5 Quagga

A routing suite used to establish a communication between different autonomous systems

having BGP enabled.

5.1.6 SDN-IXP Manager

Used to manage SDN enable IXP's traffic.

5.1.7 Iperf

A network performance checking tool used to generate dummy traffic.

5.2 Network Topology

There are two network topologies created and tested. One is using physical switch

having OpenFlow enabled and second is using virtual switch.

Following is the network topology as shown in Figure 5.1 used in our scenario to create

IXP network scenario using physical switch. In this network topology, two separate

autonomous systems are created, and to establish a connection between these two au-

tonomous systems, an OpenFlow compatible switch is used, which is further connected

to the SDN controller and SDN-IXP manager.

47

Chapter 5: Results and Discussion

Figure 5.1: Network Topology for Physical OpenFlow Switch.

5.2.1 Network Configurations

Network configurations are made on both virtual servers to act as a separate autonomous

system and bgp peering between these systems are established for communication. The

purpose of these two virtual servers creations is testing. For ease their names are defined

on the names of Pakistan largest ISPS, Ptcl and Nayatel.

AS-1 (PTCL) network Configuration

Following Figure 5.2 show the network configuration made on virtual AS-1 (PTCL)

network server.

48

Chapter 5: Results and Discussion

Figure 5.2: Network configuration made on virtual AS-1 (PTCL) network server.

Following Figure 5.3 are the BGP configurations made on AS-1(PTCL) server.

Figure 5.3: BGP configurations made on AS-1(PTCL) server.

AS-2 (Nayatel) network Configuration

Following Figure 5.4 shows the network configuration made on virtual AS-2 (Nayatel)

network server.

49

Chapter 5: Results and Discussion

Figure 5.4: Network configuration made on virtual AS-2 (Nayatel) network server.

Following are the Figure 5.5 BGP configurations made on AS-2 (Nayatel) server.

Figure 5.5: BGP configurations made on AS-2 (Nayatel) server.

5.3 Network Testing

To test the network performance and connectivity, we use ping to check the connectivity

and Iperf tool to check the network performance. Following are the results obtained after

testing AS-1 (i.e. PTCL) and AS-2 (i.e. Nayatel server).

50

Chapter 5: Results and Discussion

5.3.1 AS-1 PTCL server

Following are results as shown in Figure 5.6 obtained after pinging the AS-2 (Nayatel)

server (172.16.0.3).

Figure 5.6: AS-1 PTCL server Ping results.

The below Figure 5.7 illustrates assigning AS-1 (PTCL) as a server while testing the

Iperf tool.

Figure 5.7: AS-1 PTCL server Iperf results.

5.3.2 AS-2 (Nayatel) server

Following are the Results as shown in Figure 5.8 obtained after pinging the AS-1 (PTCL)

server (172.16.0.2).

51

Chapter 5: Results and Discussion

Figure 5.8: AS-2 Nayatel server Ping results.

Figure 5.9 of assigning AS-2 (Nayatel) as a client while testing Iperf tool is given by

following.

Figure 5.9: AS-2 Nayatel server Iperf results.

5.4 SDN Controller Configuration

Faucet (SDN controller) is the major component in SDN-IXP environment. Following

Figure 5.10 , 5.11 AND 5.12are the configurations made on the controller.

52

Chapter 5: Results and Discussion

Figure 5.10: Faucet (SDN controller) configuration (a).

53

Chapter 5: Results and Discussion

Figure 5.11: Faucet (SDN controller) configuration (b).

Figure 5.12: Faucet (SDN controller) configuration (c).

5.5 OpenFlow switch Configuration

As OpenFlow switch is the bridge between two autonomous systems to establish connec-

tivity. Following Figure 5.13 are the configurations made on the OpenFlow compliant

switch.

54

Chapter 5: Results and Discussion

Figure 5.13: OpenFlow switch configuration.

The below Figure 5.14 clearly explains the information of each of the ports of the switch.

Figure 5.14: OpenFlow switch status.

55

Chapter 5: Results and Discussion

The defined rules of OpenFlow Switch are shown in Figure 5.15.

Figure 5.15: Defined OpenFlow rules.

And the below Figure 5.16 shows the flows in the OpenFlow Switch.

Figure 5.16: Flows in OpenFlow swotch.

5.6 Grafana Statistical Dashboard

Grafana is a statistical dashboard used to show the statistical results and statistical

information in the form of visualizations and graphs.

5.6.1 SDN Controller Status

Following is the Figure 5.17 which shows the configuration of cold restart of the con-

troller, as cold restart is used when there is a need for the controller to relearn completely

about the topology.

56

Chapter 5: Results and Discussion

Figure 5.17: SDN Controller cold restart status.

The following Figure 5.18 illustrates the configuration reload requests of the controller.

As it is a very important parameter used in faucet controller to countdown the reload

requests.

Figure 5.18: SDN Controller reload requests status.

Warm reload is used when there is a need to inform the controller about the changes

being made in the controller. Following is the Figure 5.19 which shows the configuration

of warm reloads of the controller.

57

Chapter 5: Results and Discussion

Figure 5.19: SDN Controller warm reload status.

The below Figure 5.20 shows the CPU usage, in terms of memory usage, when controller

is running on the server.

Figure 5.20: SDN Controller CPU usage status.

Following is the Figure 5.21 which shows the numbers of files open at a time in a server

called File Descriptor.

58

Chapter 5: Results and Discussion

Figure 5.21: SDN Controller file descriptors status.

Following is the Figure 5.22 which shows the resident memory usage when controller is

running on the server.

Figure 5.22: SDN Controller resident memory status.

Following is the Figure 5.23 which shows the virtual memory usage when controller is

running on the server.

59

Chapter 5: Results and Discussion

Figure 5.23: SDN Controller virtual memory status.

5.6.2 SDN Controller Inventory

Controller is the major point in SDN scenario, which contains the information of all

the components connected to them. For the purpose, I use Grafana as a statistical

dashboard where the information of the connected inventory is displayed.

Following is the Figure 5.24 which contains the inventory information of the controller.

Figure 5.24: SDN Controller Inventory.

5.6.3 Switch Port Statistics Results

While sending or receiving traffic through OpenFlow compliant switch, A major concern

of ISPS is regarding the port switches, as they need to know the port in and out for

traffic statistics, In our scenario Grafana is used as a statistical dashboard to display

the statistics of each of the ports of the switch. It contains the information of the “in

and out”bits/sec, packets/sec, packets drops/sec and errors.

The Figure 5.25 below contains the results of “in and out”ports of allied Telesis switch

in bits/sec.

60

Chapter 5: Results and Discussion

Figure 5.25: Switch ports in/out bits/sec.

The below Figure 5.26 contains the results of “in and out”ports of allied Telesis switch

in packets/sec.

Figure 5.26: Switch ports in/out packets/sec.

The Figure 5.27 below contains the results of errors in “in and out”ports of allied Telesis

switch in errors/sec.

61

Chapter 5: Results and Discussion

Figure 5.27: Switch ports in/out errors/sec.

The below Figure 5.28 contains the results of packets dropped “in and out”ports of allied

Telesis switch in packets/sec.

Figure 5.28: Switch ports in/out dropped packets/sec.

5.6.4 SDN-IXP Manager

As my methodology's major focus is to provide ease by integrating SDN IXP traffic

monitoring, peering and rules defined through one platform, therefore so, following is

the Figure 5.29 which shows IXP-Monitoring and Control link in the IXP Manager.

62

Chapter 5: Results and Discussion

Figure 5.29: IXP-Monitoring and Control link in IXP Manager.

As monitoring is the crux of networking, attached Figure 5.30 shows the link to redirect

IXP management team to view the internet traffic.

Figure 5.30: Monitoring redirect button.

The below Figure 5.31 shows Peering information i.e. how to gather information from

networking team for establishing a peering between different ISP's.

63

Chapter 5: Results and Discussion

Figure 5.31: Peering Form.

Following Figure 5.32 shows the form used by the IXP management team to generate

rules for controlling OpenFlow compliant switches.

Figure 5.32: Rules Generation Form.

Following is the Figure 5.33 which shows the complete page where SDN-IXP manage-

ment team configures the IXP and passes it on to the controller for further processing.

64

Chapter 5: Results and Discussion

Figure 5.33: Monitoring and Control Page.

65

Chapter 6

Conclusion

To cater for the rapid growth of internal network traffic within the country, IXPs are

designed as a solution to many problems as they reduce latency, as well as bandwidth

loss on gateway fiber and improve the security of data etc. With all these technical

benefits, they provide a neutral point for all ISPs to share their traffic without getting

involved between different ISPs. This results in an increase of the speed of data transfer

between ISPs.

With the passage of time and technology evolvement opens a new domain of research

namely SDN. As it comes with multiple benefits in terms of programmability of the

controller without vendor dependency, separate the control portion of network device

from data plane enable centralized management system, reduce the cost and ease for

network management team by one click configuration etc, SDN provides multiple benefits

to multiple enterprises according to their need as IXP is one of its beneficiaries.

Traditional IXPs used IXP Manager for their traffic management, peering and control

but there is a limitation of technology while using traditional network i.e. Packet for-

warding and rules are defined only on the destination address field of the packet, while

integrating SDN technology with the IXP network enables the decision on every field of

the packet. SDN provides benefits to IXP community in terms of broader view which

helps IXP to engineer internet traffic, security and load balancing. So, after transi-

tioning into a newer technology, there come some challenges in the form of monitoring

and control of IXP traffic. This is the point where the proposed scheme helps IXP

management team to overcome this challenge as it is the most effective and convenient

way.

66

Chapter 6: Conclusion

The proposed scheme of architecture provides an ease for the control and monitoring

of IXP peering. The proposed architecture is used as one platform for the network

administrator to monitor the SDN network traffic and define rules from the top of the

controller. This scheme has a GUI based framework which can get all the important

information from the user and establish a peering between two different ISPs and is also

used to control the traffic of the network by defining rules in the form of an access control

list (ACL). That is further embedded into the controller that is used to establish an

effective communication between different ISPs. The second major concern for network

management team is to monitor the internet traffic, which was rectified by redirecting

it to the separate dashboard, namely grafana, which is used to show the statistical data

of the switch after getting it from the SDN controller. This schema enables a door

of technology that creates ease for the existing IXP users who used the IXP just for

traditional network, to use SDN enabled IXP network monitoring and control simply

by continuing the use of existing IXP management software.

67

Chapter 7

Future Work and Open Sourcing

To cater for the rapid growth of internet traffic, SDN IXP opens up a new research

domain for network engineers globally to come up with new and improved management

techniques. Previously, it was not possible through traditional networking as the static

nature of traditional hardware devices limit the agility and also doesn't allow rapid

changes to network functionality to support new and dynamic use cases. ISPs can

easily manage their networking infrastructure operations and security through SDN-

IXP Manager as it provides the graphical interface for a network engineer to define

rules and monitoring of internet traffic. While converting traditional IXP Manager to

SDN IXP Manager there are two more improvements that are needed to be added in

future. First is to add multiple SDN controllers in the advance SDN-IXP Manager and

the second is to add multiple OpenFlow rules. These improvements are discussed in

detail below.

7.1 Multiple SDN Controller addition

As the technology is growing, multiple SDN controllers are being designed by multiple

researchers, vendors and organizations. These controllers come with multiple features

to cater for the networking demands, these controllers are designed according to the

needs of the target customers. SDN provides benefits to the multiple industries that

use networking devices. Currently, my proposed architecture is designed using a faucet

controller because of its practical adaptability and use cases in SDN IXP deployment.

While there is always an area open for other SDN controllers to be integrated into SDN

68

Chapter 7: Future Work and Open Sourcing

IXP manager according to the need and usability of the organization.

7.2 New OpenFlow Protocol Rules addition

OpenFlow protocol is the major component in SDN because this protocol is used as a

northbound API between the SDN controller and OpenFlow compliant switch. As of

now, multiple versions of the OpenFlow protocol have been released with a new and

advanced set of standards. While upgrading these versions, new rules are included

for effective control. So, in my proposed architecture there is an open opportunity to

integrate these rules while redesigning the graphical interface. As it only requires to

define the rule type and add its parameters in the existing infrastructure.

7.3 Open Sourcing the work

My research work can be beneficial for the ISPs to manage their networks more effectively

and it will also be helpful to the researchers and open source internet community. I

believe in community-driven innovation and there is a lot of work that has been done

by the open source community in this regard. I therefore want to make my research

available for the open source community to benefit from. The research along with results

will be made available on GitHub repo for the open source community to make further

contribution and improvement in SDN IXP. The said work will be made available after

the submission of my publication.

69

References

[1] Remy Lapeyrade, Marc Bruyere, and Philippe Owezarski. Openflow-based migra-

tion and management of the touix ixp. NOMS 2016 - 2016 IEEE/IFIP Network

Operations and Management Symposium, 2016. doi: 10.1109/noms.2016.7502975.

[2] Lennart van Gijtenbeek. Research project ii ddos defense mechanisms for ixp in-

frastructures july 13 , 2018. 2018.

[3] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-

terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: En-

abling innovation in campus networks. SIGCOMM Comput. Commun. Rev., 38

(2):69–74, March 2008. ISSN 0146-4833. doi: 10.1145/1355734.1355746. URL

http://doi.acm.org/10.1145/1355734.1355746.

[4] L. G. Roberts. The evolution of packet switching. Proceedings of the IEEE, 66(11):

1307–1313, Nov 1978. doi: 10.1109/PROC.1978.11141.

[5] Y. Jarraya, T. Madi, and M. Debbabi. A survey and a layered taxonomy of software-

defined networking. IEEE Communications Surveys Tutorials, 16(4):1955–1980,

Fourthquarter 2014. doi: 10.1109/COMST.2014.2320094.

[6] C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing instability.

IEEE/ACM Transactions on Networking, 6(5):515–528, Oct 1998. doi: 10.1109/

90.731185.

[7] ixp models_2019, 2019. URL http://www.ix-f.net/ixp-models.html.

[8] Internet exchange directory pch-2019, 2019. URL https://www.pch.net/ixp/

dir#!mt-sort=ctry2Casc.

70

http://doi.acm.org/10.1145/1355734.1355746
http://www.ix-f.net/ixp-models.html
https://www.pch.net/ixp/dir#!mt-sort=ctry2Casc
https://www.pch.net/ixp/dir#!mt-sort=ctry2Casc

References

[9] internet exchange map_2019, 2019. URL https://www.internetexchangemap.

com/.

[10] S. Tomic and A. Jukan. Performance analysis of infrastructure service provision

with gmpls-based traffic engineering. IEEE Journal on Selected Areas in Commu-

nications, 25(5):881–894, June 2007. doi: 10.1109/JSAC.2007.070603.

[11] Open networking foundation is an operator led consortium leveraging sdn, nfv and

cloud technologies to transform operator networks and business models_2019, 2019.

URL https://www.opennetworking.org/?utm_referrer=https://www.google.

com/.

[12] Sdn technical specifications | open networking foundation_2019, 2019. URL https:

//www.opennetworking.org/software-defined-standards/specifications/.

[13] Rfc 5810 - forwarding and control element separation (forces) protocol specifica-

tion_2019, 2019. URL https://tools.ietf.org/html/rfc5810.

[14] Draft-wang-forces-compare-openflow-forces-01 - analysis of comparisons between

openflow and forces_2019, 2019. URL https://tools.ietf.org/html/

draft-wang-forces-compare-openflow-forces-01.

[15] Wolfgang Braun and Michael Menth. Software-defined networking using openflow:

Protocols, applications and architectural design choices. Future Internet, 6:302–336,

05 2014. doi: 10.3390/fi6020302.

[16] J. Tourrilhes, P. Sharma, S. Banerjee, and J. Pettit. Sdn and openflow evolution:

A standards perspective. Computer, 47(11):22–29, Nov 2014. doi: 10.1109/MC.

2014.326.

[17] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J. Finnegan,

N. Viljoen, M. Miller, and N. Rao. Are we ready for sdn? implementation challenges

for software-defined networks. IEEE Communications Magazine, 51(7):36–43, July

2013. doi: 10.1109/MCOM.2013.6553676.

[18] openflow-spec-v1.3.0_2012, 2012. URL https://www.opennetworking.org/

wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

71

https://www.internetexchangemap.com/
https://www.internetexchangemap.com/
https://www.opennetworking.org/?utm_referrer=https://www.google.com/
https://www.opennetworking.org/?utm_referrer=https://www.google.com/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://tools.ietf.org/html/rfc5810
https://tools.ietf.org/html/draft-wang-forces-compare-openflow-forces-01
https://tools.ietf.org/html/draft-wang-forces-compare-openflow-forces-01
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf

References

[19] Open vswitch documentation, open vswitch 2.12.90 documentation_2019, 2019.

URL https://docs.openvswitch.org/en/latest/.

[20] Product Support. Switches - support and downloads, 2019. URL https://www.

cisco.com/c/en/us/support/switches/index.html.

[21] Openflow support on juniper networks devices - techlibrary - juniper net-

works_2019, 2019. URL https://www.juniper.net/documentation/

en_US/release-independent/junos/topics/reference/general/

junos-sdn-openflow-supported-platforms.html.

[22] Sdn products, portfolio and solutions | hp_2019, 2019. URL https:

//techlibrary.hpe.com/si/en/networking/solutions/technology/sdn/

portfolio.aspx#.XbA8N-gzbDd.

[23] 7150 series_2019, 2019. URL https://www.arista.com/en/products/

7150-series.

[24] Ibm bnt rackswitch g8264 iscli command reference guide

(6.4)_2019, 2019. URL https://www.ibm.com/support/pages/

ibm-bnt-rackswitch-g8264-iscli-command-reference-guide-64.

[25] x930 series_2019, 2019. URL https://www.alliedtelesis.com/products/

switches/x930-series.

[26] Maen Artimy. Zodiac-fx switch openflow throughput, 2019. URL http://

adhocnode.com/zodiac-fx-switch-openflow-throughput/.

[27] Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and Teresa

Vazao. Towards programmable enterprise wlans with odin. In Proceedings of the

First Workshop on Hot Topics in Software Defined Networks, HotSDN ’12, pages

115–120, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1477-0. doi: 10.1145/

2342441.2342465. URL http://doi.acm.org/10.1145/2342441.2342465.

[28] D. Kreutz, F. M. V. Ramos, P. E. VerÃŋssimo, C. E. Rothenberg, S. Azodolmolky,

and S. Uhlig. Software-defined networking: A comprehensive survey. Proceedings

of the IEEE, 103(1):14–76, Jan 2015. doi: 10.1109/JPROC.2014.2371999.

72

https://docs.openvswitch.org/en/latest/
https://www.cisco.com/c/en/us/support/switches/index.html
https://www.cisco.com/c/en/us/support/switches/index.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/junos-sdn-openflow-supported-platforms.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/junos-sdn-openflow-supported-platforms.html
https://www.juniper.net/documentation/en_US/release-independent/junos/topics/reference/general/junos-sdn-openflow-supported-platforms.html
https://techlibrary.hpe.com/si/en/networking/solutions/technology/sdn/portfolio.aspx#.XbA8N-gzbDd
https://techlibrary.hpe.com/si/en/networking/solutions/technology/sdn/portfolio.aspx#.XbA8N-gzbDd
https://techlibrary.hpe.com/si/en/networking/solutions/technology/sdn/portfolio.aspx#.XbA8N-gzbDd
https://www.arista.com/en/products/7150-series
https://www.arista.com/en/products/7150-series
https://www.ibm.com/support/pages/ibm-bnt-rackswitch-g8264-iscli-command-reference-guide-64
https://www.ibm.com/support/pages/ibm-bnt-rackswitch-g8264-iscli-command-reference-guide-64
https://www.alliedtelesis.com/products/switches/x930-series
https://www.alliedtelesis.com/products/switches/x930-series
http://adhocnode.com/zodiac-fx-switch-openflow-throughput/
http://adhocnode.com/zodiac-fx-switch-openflow-throughput/
http://doi.acm.org/10.1145/2342441.2342465

References

[29] Introduction to faucet, python documentation_2019, 2019. URL https://docs.

faucet.nz/en/latest/intro.html#.

[30] D. Sheinbein and R. P. Weber. Stored program controlled network: 800 service

using spc network capability. The Bell System Technical Journal, 61(7):1737–1744,

Sep. 1982. doi: 10.1002/j.1538-7305.1982.tb04370.x.

[31] Francesco Paolucci, Filippo Cugini, Alessio Giorgetti, Nicola Sambo, and Piero

Castoldi. A survey on the path computation element (pce) architecture. Commu-

nications Surveys Tutorials, IEEE, 15:1819–1841, 01 2013. doi: 10.1109/SURV.

2013.011413.00087.

[32] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh,

and Jacobus van der Merwe. Design and implementation of a routing control plat-

form. In Proceedings of the 2Nd Conference on Symposium on Networked Sys-

tems Design & Implementation - Volume 2, NSDI’05, pages 15–28, Berkeley, CA,

USA, 2005. USENIX Association. URL http://dl.acm.org/citation.cfm?id=

1251203.1251205.

[33] Understanding the sdn architecture and sdn control plane_2019, 2019.

URL https://www.sdxcentral.com/networking/sdn/definitions/

inside-sdn-architecture/.

[34] Murat Karakus and Arjan Durresi. A survey. Comput. Netw., 112(C):279–293,

January 2017. ISSN 1389-1286. doi: 10.1016/j.comnet.2016.11.017. URL https:

//doi.org/10.1016/j.comnet.2016.11.017.

[35] Arash Shaghaghi, Mohamed Ali Kaafar, Rajkumar Buyya, and Sanjay Jha.

Software-defined network (sdn) data plane security: Issues, solutions and future

directions, 2019. URL https://arxiv.org/abs/1804.00262.

[36] Sdn controllers (or sdn controller platforms)_2019, 2019. URL https://www.

sdxcentral.com/networking/sdn/definitions/sdn-controllers/.

[37] Product Support and Cloud Management. Cloud and systems manage-

ment - cisco open sdn controller, 2019. URL https://www.cisco.com/

c/en/us/support/cloud-systems-management/open-sdn-controller/

tsd-products-support-series-home.html.

73

https://docs.faucet.nz/en/latest/intro.html#
https://docs.faucet.nz/en/latest/intro.html#
http://dl.acm.org/citation.cfm?id=1251203.1251205
http://dl.acm.org/citation.cfm?id=1251203.1251205
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/
https://www.sdxcentral.com/networking/sdn/definitions/inside-sdn-architecture/
https://doi.org/10.1016/j.comnet.2016.11.017
https://doi.org/10.1016/j.comnet.2016.11.017
https://arxiv.org/abs/1804.00262
https://www.sdxcentral.com/networking/sdn/definitions/sdn-controllers/
https://www.sdxcentral.com/networking/sdn/definitions/sdn-controllers/
https://www.cisco.com/c/en/us/support/cloud-systems-management/open-sdn-controller/tsd-products-support-series-home.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/open-sdn-controller/tsd-products-support-series-home.html
https://www.cisco.com/c/en/us/support/cloud-systems-management/open-sdn-controller/tsd-products-support-series-home.html

References

[38] Contrail products - juniper networks_2019, 2019. URL https://www.juniper.

net/us/en/products-services/sdn/contrail/.

[39] Introduction to the hpe van sdn controller_2019, 2019. URL https://techhub.

hpe.com/eginfolib/networking/docs/sdn/sdnc2_7/5200-0910prog/content/

c_sdnc-pg-intro.html.

[40] Sdn controller_2019, 2019. URL https://www.bigswitch.com/tags/

sdn-controller.

[41] Openflow switches (open flow) in enterprise networks - pica8_2019, 2019. URL

https://www.pica8.com/openflow-switch/.

[42] The status of sdn today | cumulus networks_2019, 2019. URL https://

cumulusnetworks.com/lp/sdn-dead-long-live-sdn/.

[43] Software-defined networking (sdn) solutions pluribus_2019, 2019. URL https:

//www.pluribusnetworks.com/solutions/.

[44] Opendaylight documentation opendaylight documentation fluorine documenta-

tion_2019, 2019. URL https://docs.opendaylight.org/en/stable-fluorine/

.

[45] Project floodlight - openflow news and projects_2019, 2019. URL http://www.

projectfloodlight.org/.

[46] Ryu controller tutorial sdn hub_2019, 2019. URL http://sdnhub.org/

tutorials/ryu/.

[47] About onos (open network operating system), 2019. URL onos.

[48] David Erickson. The beacon openflow controller. pages 13–18, 08 2013. doi:

10.1145/2491185.2491189.

[49] Openflow-based faucet provides high-speed sdn controller virtualization re-

view_2019, 2019. URL https://virtualizationreview.com/articles/2019/

01/22/faucet.aspx.

[50] Stephen Stuart Josh Bailey. Faucet: Deploying sdn in the enterprise communica-

tions for acm 2016 12, 08 2019. URL https://queue.acm.org/detail.cfm?id=

3015763.

74

https://www.juniper.net/us/en/products-services/sdn/contrail/
https://www.juniper.net/us/en/products-services/sdn/contrail/
https://techhub.hpe.com/eginfolib/networking/docs/sdn/sdnc2_7/5200-0910prog/content/c_sdnc-pg-intro.html
https://techhub.hpe.com/eginfolib/networking/docs/sdn/sdnc2_7/5200-0910prog/content/c_sdnc-pg-intro.html
https://techhub.hpe.com/eginfolib/networking/docs/sdn/sdnc2_7/5200-0910prog/content/c_sdnc-pg-intro.html
https://www.bigswitch.com/tags/sdn-controller
https://www.bigswitch.com/tags/sdn-controller
https://www.pica8.com/openflow-switch/
https://cumulusnetworks.com/lp/sdn-dead-long-live-sdn/
https://cumulusnetworks.com/lp/sdn-dead-long-live-sdn/
https://www.pluribusnetworks.com/solutions/
https://www.pluribusnetworks.com/solutions/
https://docs.opendaylight.org/en/stable-fluorine/.
https://docs.opendaylight.org/en/stable-fluorine/.
http://www.projectfloodlight.org/
http://www.projectfloodlight.org/
http://sdnhub.org/tutorials/ryu/
http://sdnhub.org/tutorials/ryu/
onos
https://virtualizationreview.com/articles/2019/01/22/faucet.aspx
https://virtualizationreview.com/articles/2019/01/22/faucet.aspx
https://queue.acm.org/detail.cfm?id=3015763
https://queue.acm.org/detail.cfm?id=3015763

References

[51] Faucet documentation, faucet documentation_2019, 2019. URL https://docs.

faucet.nz/en/latest/.

[52] Faucet architecture - faucet documentation_2019, 2019. URL https://docs.

faucet.nz/en/latest/architecture.html.

[53] Philippe Owezarski Remy Lapeyrade, Marc Bruyere. Openflow-based migration and

management of the touix ixp. page 7, 04 2016. doi: 10.1109/NOMS.2016.7502975f.

[54] Tousix project | tousix internet exchange_2019, 2019. URL http://www.touix.

net/en/content/tousix-project.

[55] Installation faucet python documentation_2019, 2019. URL https://docs.

faucet.nz/en/latest/installation.html.

75

https://docs.faucet.nz/en/latest/
https://docs.faucet.nz/en/latest/
https://docs.faucet.nz/en/latest/architecture.html
https://docs.faucet.nz/en/latest/architecture.html
http://www.touix.net/en/content/tousix-project
http://www.touix.net/en/content/tousix-project
https://docs.faucet.nz/en/latest/installation.html
https://docs.faucet.nz/en/latest/installation.html

	Main Title
	Title Page
	Approval
	Declaration
	Copyright Notice
	Dedication
	Abstract
	Acknowledgments
	Contents
	Introduction
	Overview
	Motivation
	Problem Statement
	Proposed approach
	Contributions

	Literature Review
	Traditional Network
	Overview of Traditional Network
	Architecture of Traditional Network

	Internet Exchange Point
	About IXP
	Existing Internet Exchange Points in the World
	Internet Exchange Point (IXP) Architecture

	OpenFlow Protocol
	Overview of OpenFlow
	OpenFlow Architecture
	OpenFlow Rules

	OpenFlow Switch
	OpenFlow Switch Architecture
	OpenFlow Virtual Switch (OVS)
	Vendors OpenFlow supported Switch

	Software Defined Networking
	About Software Defined Networking
	Software Defined Networking Architecture

	SDN Controller
	Overview
	Existing SDN Controllers

	Faucet SDN Controller
	About
	Introduction
	 Architecture
	Pipeline Faucet

	TouSix Manager
	About
	Introduction
	Architecture
	 Limitations

	Proposed Architecture
	About
	Used Tools
	Virtual Machine Virtual Box
	Faucet SDN Controller
	Gauge SDN Controller
	Grafana Server
	Prometheus Database
	IXP Manager
	Quagga Routing Suite
	Open Virtual Switch
	Iperf Network Performance Measurement

	Design and Implementation
	Setup and Configure SDN environment server
	Setup and configure SDN OpenFlow Controller (Faucet and Gauge)
	Setup and configure Time Series Data Base (Prometheus)
	Setup and configure Statistical Dashboard (Grafana)
	Setup and Configure OpenFlow Virtual Switch (OVS)
	Configuration of IXP Management Software

	Mechanism to link Statistical Dashboard
	Mechanism for redirection in SDN IXP Manager

	Mechanism to Establish Peering and Rules Generation
	Mechanism to add VLan Addition
	Mechanism to Add OpenFlow switch
	Mechanism to add OpenFlow switch interfaces information
	Mechanism to add Rules Generation

	Results and Discussion
	SDN-IXP Testing Equipment
	Server (Host)
	KVM
	Faucet Controller
	OpenFlow Switch
	Quagga
	SDN-IXP Manager
	Iperf

	Network Topology
	Network Configurations

	Network Testing
	AS-1 PTCL server
	AS-2 (Nayatel) server

	 SDN Controller Configuration
	 OpenFlow switch Configuration
	Grafana Statistical Dashboard
	SDN Controller Status
	SDN Controller Inventory
	Switch Port Statistics Results
	SDN-IXP Manager

	Conclusion
	Future Work and Open Sourcing
	Multiple SDN Controller addition
	New OpenFlow Protocol Rules addition
	Open Sourcing the work

	References

