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Abstract

Model order reduction is the very challenging field of control system because the

order of higher order system is reduce by using MOR. The mathematical models

of high order dynamic systems can be described in different form either in state

space or transfer function. These are expressed in time and frequency domain

respectively. It is generally recommended for reducing the system order by main-

taining the dominant properties of the original system. It will promote to make

better understanding of physical system, computational and hardware complexi-

ties reduces and simplify the controller design. Ample amount of research have

been done on model order reduction. Some existing methods reducing the full

order system into a lesser order for a entire frequency ranges. However, there are

some applications like controller and filter etc that require reduction over specific

frequency band. That gives the basic for the using frequency weights in model

order reduction. Moreover, prior frequency limited techniques have drawbacks

of lacking properties such as stability, error bound and large approximation er-

ror. This thesis will focus on frequency limited model reduction problem. Firstly,

problem of frequency limited MOR will be formulated and then novel frequency

limited balanced MOR methods are purposed. These methods will yield stable

reduced order models. The new measures will guarantee stability by specify-

ing some fictitious semi positive/ positive definiteness of input and output related

matrices. Each input and output matrices preserved positive definiteness of the
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matrices, respectively, by defining new controllability Gramian and observability

Gramian in a novel way. That guides towards a new transformation matrix which

subsequently, results in stability preserving methods including computable error

bounds and has a low approximation error.
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Chapter 1

INTRODUCTION

1.1 Model Order Reduction

The dynamic behavior of a physical system is defined by an appropriate deriva-

tion of mathematical model and obtain the desired performance specifications of

those systems. The modeling of complex systems provide a large scale systems.

Although, with the improvement in an advance technology and the ever grow-

ing computation speed, analysis, chip design, optimization and control of wide

scale systems is complicated because of computations and memory storage re-

quirements. Hence, procedure of creating a low-dimensional or reduce order

model (ROMs) that give better understanding of full order original system that

called model order reduction (MOR). Usally, the main MOR objective is to figure

out ROMs that approximate, the input and output behaviour of actual systems.

ROM are acquired with lesser memory capacity requirements along with evalua-

tion time. MOR has played prominent part in design of advance control system

and gain a too much consideration in the recent decades [1] - [20]. The reduction

error of MOR is most significant factor that is achieved from the difference be-

tween original and ROMs. Moreover, systems features such as stability, input and
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output performance and passivity are also evenly essential to be ensured in MOR.

In MOR, the computational efficiency is improved by numerical characteristics

of the systems like computation speed, accuracy and memory storage capacity.

The error bound formula provides some vision of approximation error in MOR

methods. That will facilitate the engineerer to decide MOR method for relevant

applications. Figure 1.1 shows the basic process of MOR.

1.1.1 The Balanced Truncation

Let consider continuous linear time invariant system be

G(s) = C(sI − A)−1B + D (1.1)

in which, its nth order minimal realization is {A, B, C, D}.Purpose of using MOR

is to get ROM

Gr (s) = Cr (sI − Ar )−1Br + D, (1.2)

where r th order minimal realization (r < n) is A11, B1, C1, D so that approxima-

tion error is minimal ‖G(s)−Gr (s)‖∞. In MOR method, Balance truncation (BT)

[1] is frequently used that ensure ROMs stability and give a existing frequency

response error bounds. In BT, within an internally balanced system the controlla-

bility and observability Gramians are reformed. The controllable and observable

states are same for internally balanced realization. The lowest controllable and

observable states are truncated for acquired ROM. Thus, the error acquired is

significantly lower, which represents better performance of ROMs by using BT

[1] technique. Moreover BT [1], other schemes like Hankel optimal approxima-

tion [2], Krylov technique [23] and Pade approximation [24] etc. play prominent

part in resolving problem of MOR. Balanced singular perturbation approximation

(BSPA)[7] [8] is used for better performance at lower frequencies because, BT [1]
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Figure 1.1: Model order reduction
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performed better at higher frequencies. The ROMs acquired through the BSPA

[7] [8] are also balanced and stable. Furthermore, the error bound also maintain

for both the methods BT [1] and for BSPA [7] [8]. Nonetheless, even for pre-

cisely appropriate original systems, ROMs acquired by BSPA [7] [8] might be

appropriate.

1.2 Frequency Weighting Model Order Reduction

It is vital that reduction error (reductio error is between original system and ROM)

is smaller for all frequencies in MOR. In some cases, the reduction error is most

importantly in a specify band of frequency as compare to other frequencies. That

is the case, when ROMs are used in feedback control systems [3] [46]. It lead to-

wards the idea of including frequency weighting in the process of MOR , is called

the problem of frequency weighting model order reduction (FWMOR). Consider

stable original system

G(s) = C(sI − A)−1B + D, (1.3)

the stable input/output weighting system

Vi(s) = Cv (sI − Av )−1Bv + Dv , (1.4)

Wo(s) = Cw (sI − Aw )−1Bw + Dw , (1.5)

where A, B, C, D Av , Bv , Cv , Dv Aw , Bw , Cw , Dw is its nth, pth and qth minimal

order realization respectively, the main purpose of MOR is to get a ROM

Gr (s) = Cr (sI − Ar )−1Br + D, (1.6)

where Ar , Br , Cr , Dr is an r th order minimal realization (r < n) so that the weight-

ing error ‖Wo(s)G(s)−Gr (s)Vi(s)‖∞ become as small as possible. That is called
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as doubled sided FWMOR problem. If only input weights are used in system, this

system is consider as one sided weighting system, it’s aim is to get a ROM for the

system, which is called input stable weighting ‖G(s)−Gr (s)Vi(s)‖∞ and that is

called output stable weighting ‖Wo(s)G(s) − Gr (s)‖∞ is make as low as possi-

ble. Enns [3] was first to incorporate frequency weights to BT [1] technique. Enns

[3] technique might be use for input, output or both sided weightings. Whereas,

stability of ROM is preserved for single sided weighting case but in case of double

sided weighing stability of ROM has not ensured. To handle the instability issue

in double sided weighting, various modification have been suggested in Enns ap-

proach [25], [4], [33], [34], [36], [5], [39], [46], [41], [42], [43], [44], [45]. In Lin

and Chiu [4] method, ensured stability in double sided weights case that is draw-

back of Enns [3] method. Later, Sreeram et al [33] and Vargr and Anderson [34]

introduced modification in Lin and Chiu [4] method due to its limitations. The

Limitations are that when augmented system is formed then there is no occur-

rence of zero and pole cancellation. That technique work only well when proper

weights is used. Wang et al. [5] method also provided solution for the Enns [3]

instability issue along with yield stable ROM and error bound in case of double

sided weightings. Later, approximation error of wang et al. [5] methodwas modi-

fied by Varga and Anderson [34] and Ghafoor and Sreeram [26]. Figure 1.2 show

the double sided frequency weighting problem.

1.3 Frequency Limited Model Order Reduction

The FWMOR method is most frequently used to obtain reduction error in weight-

ing system‖Wo(s)G(s) − Gr (s)Vi(s)‖∞ as low as possible, where Vi(s) is in-

put and Wo(s) is output weighting of the system [3]. Usually, the input/output

weighting are fictitious because result may change by introducing any change the
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Figure 1.2: Input/Output FWMOR error system

weights. Problem is to estimate original system in a specific frequency interval

in most cases. Using FWMOR for these cases, selecting weightings is also it-

self a issue[38] because, the engineer has to design weights for this frequency

interval. Gawronski and Juang (GJ) [21] suggested a method, in which the fre-

quency weighting have not explicity predefined that is known as frequency limited

model order reduction, whereas approximation without input/output weighting is

considered in a specific frequency range [ω1,ω2] . In that approach, Gramians

are acquired for desirable frequency band. While, it can give unstable ROMs

for stable system (same as Enns method [3]). Additionally, it provides no error

bounds. Gugercin and Antoulas [GA] [38], Ghafoor and Sreeram [GS] [26], Im-

ran and Ghafoor [IG] [47] and Imran et al. [48] have modified GJ [21] method to

provide stable ROM and frequency response error bounds with objective to ful-

filment the specific rank condition. Wang and Zilouchian (WZ) [40] developed

a frequency limited model order reduction (FLMOR) method for discrete time

system for retaining good approximation error in desirable frequency band. This
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technique does not ensure stability and not carry error bound of ROM for stable

actual systems [26]. Furthermore, to resolve the limitation of WZ technique, the

Ghafoor and Sreeram Algorithm 1 (GSA1) [26], Ghafoor and Sreeram Algorithm

2 (GSA2) [26] Imran and Ghafoor (IG) [49] and Hamid et al. [50] methods were

proposed.

1.4 Problem Statment

Existing FLMOR method may provide unstable ROM, has no or weak error bound

and provide large approximation error.

1.4.1 Summary of contribution

Many FLMOR methods [27] - [32] are proposed for both discrete and continuous

time system that is represented either in state space or transfer function repre-

sentation that provide always stable ROM, easily estimate error bound and yield

commonly low approximation error.

1.5 Thesis Outline

Thesis consists of five different chapters. Each chapter’s description is outlined

here. In chapter 2, existing FLMOR techniques for continuous and discrete time

system are described. These existing stability preserving methods overcome the

instability problem of GJ [21] and WZ [40], IG (Continuous and Discrete) [47]

[49], Imran et al.(Continuous) [48] and Hamid et al.(Discrete)[50]. In chapter 3

three novel methods are proposed for continuous and discrete time system which

give stable ROM and yield better approximation error. In chapter 4 many numeri-

cal examples are discussed which show the effectiveness of the proposed methods
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in reducing approximation error for certain frequency range. Chapter 5 contain

conclusion and some suggestion for future research. s
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Chapter 2

Preliminaries

2.1 Continuous Time System Case

Consider linear continuous time invariant system represented in state space and in

transfer function as

ẋ(t) = Ax(t) + Bu(t)

y (t) = Cx(t) + Du(t) (2.1)

G(s) = C(sI − A)−1B + D (2.2)

where nth minimal order realization { A ∈ Rn×n, B ∈ Rn×m,C ∈ Rp×r ,D ∈

Rp×m} is with input/output m and p respectively. The problem of MOR is to find

ROM

ẋrom(t) = Ar xr (t) + Br u(t)

yrom(t) = Cr xr (t) + Dr u(t) (2.3)

Grom(s) = Cr (sI − Ar )−1Br + D (2.4)
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that approximates the original system in a desired frequency band [Ω1,Ω2] where

[Ω2 > Ω1], { Arom ∈ Rr×r , Brom ∈ Rr×m,Crom ∈ Rp×r ,Drom ∈ Rp×m} and r < n.

Consider the controllability Gramian Pc and the observability Gramian Qo are

obtained by using Parseval’s Relationship

Pc =
1

2π

∫ ∞
−∞

(jΩI − A)−1BBT (−jΩI − AT )−1dΩ (2.5)

Qo =
1

2π

∫ ∞
−∞

(−jΩI − AT )−1CT C(jΩI − A)−1dΩ (2.6)

The two different Gramians such as controllability and observability satisfying

the following Lyapunov Equations

APc + PcAT + BBT = 0 (2.7)

AT Qo + QoA + CCT = 0 (2.8)

2.1.1 GJ [21] TECHNIQUE

Let the Gramians like observability Qg and controllability Pg are defined for GJ

[21] technique as Pg = P(Ω2) − P(Ω1) and Qg = Q(Ω2) − Q(Ω1) respectively,

for limited frequency interval. Gramians like observability and controllability sat-

isfying the following Lyaunov equations

APg + PgAT + Xg = 0 (2.9)

AT Qg + QgA + Yg = 0 (2.10)

Pg =
1

2π

∫ Ω

−Ω
(jΩI − A)−1BBT (−jΩI− AT )−1dΩ

Qg =
1

2π

∫ Ω

−Ω
(−jΩI −AT )−1CT C(jΩI −A)−1dΩ

10



where

Xg = (S(Ω2)− S(Ω1)) BBT+BBT (S∗(Ω2)−S∗(Ω1)) (2.11)

Yg = (S∗(Ω2)− S∗(Ω1)) CT C+ CT C (S(Ω2)−S(Ω1)) (2.12)

S(Ω) =
j

2π
ln
(

(jΩI + A) (−jΩI + A)−1
)

where S∗(Ω) is the S(Ω) conjugate transpose. Consider

T T
g QgTg = T−1

g PgT−T
g = diag(Σ1,Σ2, ......Σn) (2.13)

where Σk ≥ Σk+1 , k = 1, 2, ...., n− 1,Σr > Σr+1. Contragredient matrix TG is a

that transform original system into balance realizations. The ROM is

Grom = Crom(sI − Arom)−1Brom + Drom

obtained by partitioning the transformed realization.

T−1
g ATg =

A11g A12g

A21g A22g

 , T−1
g B =

B1g

B2g


CTg =

[
C1g C2g

]
, D (2.14)

The symmetric matrices Xg and Yg are defined as

Xg = USUT = [U1 U2]

Sg1 0

0 Sg2

UT
1

UT
2

 (2.15)

Yg = VRV T = [V1 V2]

Rg1 0

0 Rg2

V T
1

V T
2

 (2.16)
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where

Sg1 = diag(s1, ....., sp) ≥ 0, Sg2 = diag(sp+1, ....., sn) < 0,

Rg1 = diag(r1, ....., rq) ≥ 0, Rg2 = diag(rq+1, ....., rn) < 0.

p ≤ n and q ≤ n are the index of positive eigenvalues of Xg and Yg matrices

respectively.

Remark1: For a desired frequency interval, the ROM achieved using GJ [21]

technique is unstable. Symmetric matrices Xg and Yg are not positive/semi posi-

tive definite, hence stability of ROM is not ensured [47].

2.1.2 Existing Stability Limited Frequency Techniques

Gugercin and Antoulas (GA) [38], Ghafoor and Seeram (GS) [26], Imran and

Ghafoor (IG) [47] and Imran et al. [48] modified GJ [21] technique by making

indefinite matrices positive/semi positive definiteness to ensure stability of ROM

and error approximation in ROM. The modification done by IG [47] and Imran et

al. [48] define fictitious input an output related matrices BY ∈ {Ba, Bs, Bi , Bf}

and CY ∈ {Ca, Cs, Ci , Cf} respectively which satisfy following Lypunov Equa-

tions

APY + PY AT + BY BT
Y = 0 (2.17)

AT QY + QY A + CT
Y CY = 0 (2.18)

The matrices BY and CY are obtained as:

Ba = U

S1/2
g1 0

0 |Sg2 |1/2

 , Ca =

R1/2
g1 0

0 |Rg2 |1/2

V T
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Bs = U

S1/2
g1 0

0 0

 , Cs =

R1/2
g1 0

0 0

V T

Bi = U(Sg − snI)1/2, Ci = (Rg − rnI)1/2V T

Imran et al. [48] input and output matrices Bfi ∈ {B1, B2, B3} and Cfi ∈ {C1, C2, C3}

are defined as

Bfi = U

S1/2
g1 0

0 S1/2
f2i

 , Cfi =

R1/2
g1 0

0 R1/2
f2i

V T

Sf2i =


sli 0 ....... 0

0 Sli+1 ...... 0

0 0 ....... Sni

 , Rf2i =


rpi 0 ....... 0

0 rpi+1 ...... 0

0 0 ....... rni


sl1+q = sl+q+1, sn1 = sn.sl+q,

sl2+q = −1
2

(sl+q + sl+q+1, sn2 = −1
2

(sn + sl+q),

sl3+q = (
sl+q

sl+q+1
), sn3 = (

sn

sl+q
)1/2.

rp1+h = rp+h.rp+h+1, rn1 = rn.rp+h,

rp2+h = −1
2

(sp+h + sp+h+1, rn2 = −1
2

(rn + rp+h),

rp3+h = (
rp+h

sp+h+1
), rn3 = (

rn

rp+h
)1/2

for q = 0, 1, ....., n − li and for h = 0, 1, ......, n − pi .

Remark 2: Since Xg ≤ ByBT
y equivalently λi(ByBT

y ) ≥ λi(Xg) for every i,

λi(.) is the largest eigenvalues i th, ≤ and ≥ represents less and greater than or

equal to, Yg ≤ CT
y Cy , {A, By , Cy} is stable and minimal. These techniques yield

frequency repones error bounds.
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2.2 Discrete Time System Case

Consider a linear discrete time invariant system with following transfer function

representation:

H(z) = C(zI − A)−1B + D (2.19)

where nth minimal order realization is {A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n,

D ∈ Rp×m} with input/output is m and p respectively. MOR problem is to com-

pute ROM

Hrom(z) = Crom(zI − Arom)−1Brom + Drom (2.20)

that approximates the original system in a desired frequency range [Ω1,ω2] where

[Ω2 > Ω1], { Arom ∈ Rr×r , Brom ∈ Rr×m, Crom ∈ Rp×r , Drom ∈ Rp×m} and

r < n.

Consider the controllability Gramian Pc and the observability Gramian Qo are

obtained by using Parseval’s Relationship

Pc =
1

2π

∫ π

−π
(ejΩI − A)−1BBT (e−jΩI − AT )−1dΩ (2.21)

Qo =
1

2π

∫ π

−π
(e−jΩI − AT )−1CT C(ejΩI − A)−1dΩ (2.22)

These Gramians are solution of following Lyapunov equations:

APcAT − Pc + BBT = 0 (2.23)

AT QoA−Qo + CCT = 0 (2.24)
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2.2.1 WZ [40] Technique

WZ [40] discrete time counterpart of GJ [21] technique introduce frequnecy lim-

ited concepts for discrete time systems. Let controllability Pwz and observability

Qwz Gramians are defined for WZ [40] technique as Pwz = P(Ω2) − P(Ω1) and

Qwz = Q(Ω2) − Q(Ω1) respectively, for limited frequency interval. The two dif-

ferent Gramians such as controllability and observability satisfying the following

Lyapunov Equations:

APwzAT − Pwz + Xwz = 0 (2.25)

AT QwzA−Qwz + Ywz = 0 (2.26)

Pwz =
1

2π

∫
δΩ

(ejΩI − A)−1BBT (e−jΩI− AT )−1dΩ

Qwz =
1

2π

∫
δΩ

(e−jΩI −AT )−1CT C(ejΩI −A)−1dΩ

where

Xwz =
(
BBT F H + FBBT) (2.27)

Ywz =
(
CT CF + F HCT C

)
(2.28)

F = −Ω2 − Ω1

4π
I +

1
2π

∫
δΩ

(ejΩI − AT )−1dΩ

where F H is the F Hermitian, δΩ is the intergation range [Ω1,Ω2]. Consider

T T
wzQwzTwz = T−1

wz PwzT−T
wz = diag(Σ1,Σ2, ......Σn) (2.29)

where Σk ≥ Σk+1 , k = 1, 2, ...., n−1,Σr > Σr+1. TWZ is a contragredient matrix

that transform original system into balanced realization. The ROM is

Hrom = Crom(zI − Arom)−1Brom + Drom
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obtained by partitioning the transformed realization.

T−1
wz ATwz =

A11z A12z

A21z A22z

 , T−1
wz B =

B1z

B2z


CTwz =

[
C1z C2z

]
, D (2.30)

The symmetric matrices Xwz and Ywz are defined as

Xwz = USUT = [U1 U2]

Swz1 0

0 Swz2

UT
1

UT
2

 (2.31)

Ywz = VRV T = [V1 V2]

Rwz1 0

0 Rwz2

V T
1

V T
2

 (2.32)

where

Swz1 = diag(s1, s2, ....., sp) ≥ 0, Swz2 = diag(sp+1, sp+2, ....., sn) < 0,

Rwz1 = diag(r1, r2, ....., rq) ≥ 0, Rwz2 = diag(rq+1, rq+2, ....., rn) < 0.

p ≤ n and q ≤ n are the index of positive eigenvalues of Xwz and Ywz matrices

respectively.

Remark3: For a desired frequency interval, the ROM achieved using WZ

[40] technique is unstable. Symmetric matrices Xwz and Ywz are not semiposi-

tive/positive definite, hence ROM stability is not ensured [49].
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2.2.2 Existing Frequency Limited Stability Preserving Tech-

niques

GSA1 [26], GSA2 [26], IG [49] and Hamid et al. [50] modified WZ [40] tech-

nique by making symmetric indefinite matrices Xwz and Ywz positive/semipositive

definite to ensure stability of ROM and error approximation in ROM. The mod-

ification done by IG [49] and Hamid et al. [50] define fictitious input an output

related matrices BY ∈ {Bi , Bh} and CY ∈ {Ci , Ch} respectively, satisfying fol-

lowing Lyapunov Equations:

APY AT − PY + BY BT
Y = 0 (2.33)

AT QY A−QY + CT
Y CY = 0 (2.34)

The matrices BY and CY are obtained as:

Ba1 = U

S1/2
g1 0

0 |Sg2 |1/2

 , Ca1 =

R1/2
g1 0

0 |Rg2|1/2

V T

Ba2 = U

S1/2
g1 0

0 0

 , Ca2 =

R1/2
g1 0

0 0

V T

Bi = U(Swz − snI)1/2, Ci = (Rwz − rnI)1/2V T

Hamid et al. [50] input and output matrices Bhi ∈ {B1, B2, B3} and Chi ∈

{C1, C2, C3} are defined as

Method I: i = 1

Bh1 =

Uh1S
1/2
h1

Uh2(cos(Sh2)− Sh2)
1/2

(2.35)
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Ch1 =

R1/2
h1

V T
h1

(cos(Rh2)− Rh2)
1/2V T

HI

(2.36)

Method 2: i = 2

Bh2 =

Uh1S
1/2
h1

Uh2((Sh2/N × r̄ )− Sh2)
1/2

(2.37)

Ch2 =

R1/2
h1

V T
h1

((Rh2/N × s̄)− Rh2)
1/2V T

h2

(2.38)

Method 3: i = 3

Bh3 =

Uh1S
1/2
h1

Uh2((Sh2/r̄ )1/N − Sh2)
1/2

(2.39)

Ch3 =

R1/2
h3

V T
h3

((Rh2/s̄)1/N − Rh2)
1/2V T

h2

(2.40)

Although GJ [21] creates lowest frequency response errors in comparison with IG

[47], and Imran et al. [48] techniques for continuous time systems, but it returns

unstable ROM for stable original system. Moreover, all prior techniques ensure

stability but at the cost of large approximation error. Similarly, in discrete time

systems, WZ[40] yields lowest frequency response errors in comparison with IG

[49], and Hamid et al. [50] techniques, but it returns unstable ROM for stable orig-

inal system. Likewise, all prior techniques ensure stability but at the cost of large

approximation error. In order to minimize the approximation error, some new

methods are proposed which will not only guarantee stability, give error bound

but also mostly provide low frequency response approximation error when com-

pared to prior stability preserving methods.
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Chapter 3

Main Result

3.1 Proposed Techniques for Continuous Time Sys-

tems Case

The precedent frequency limited techniques ensure stability by making symmetric

matrices Xg (2.11) and Yg (2.12) positive/semipositive definite by using various

methods. Although GJ [21] yields lowest frequency response errors in comparison

with IG [47], and Imran et al. [48] methods, but it returns unstable ROM for stable

original system. Moreover, all prior methods persevere stability but at the cost of

large approximation error. In order to minimize the approximation error, some

new methods are proposed that will guarantee stability, give error bounds as well

as mostly have low frequency response approximation error when these proposed

methods compared to prior stability preserving methods.
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3.1.1 Proposed Methods

Consider the two different Gramian such as controllability PHj and observability

QHj satisfying the following Lyapunov equations:

APHj + PHj A
T + BHj B

T
Hj

= 0 (3.1)

AT QHj + QHj A + CT
Hj

CHj = 0 (3.2)

where j = 1, 2, 3. The different input/output related matrices are specify for in-

definite symmetric Xg and Yg matrices as BHj and CHj as follows:

Method 1: for j = 1

BH1 =

UH1S
1/2
H1

UH2(exp(SH2/trace(S)))1/2
(3.3)

CH1 =

R1/2
H1

V T
H1

(exp(RH2/trace(R)))1/2V T
H2

(3.4)

Method 2: for j = 2

BH2 =

UH1S
1/2
H1

UH2((SH2 × SH2)/Sn))1/2
(3.5)

Sn=abs(product of all negative eigenvalues)

CH2 =

R1/2
H1

V T
H1

((RH2 × RH2)/Rn)1/2V T
H2

(3.6)

Rn=abs(product of all negative eigenvalues)

Method 3: for j = 3

BH3 =

UH1S
1/2
H1

UH2(sec(SH2)− (sn))1/2
(3.7)
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CH3 =

R1/2
H1

V T
H1

(sec(RH2)− (rn))1/2V T
H2

(3.8)

where Sn = |sp+1 × sp+2 × ......× sn|, Rn = |rq+1 × rq+2 × ......× rn|. The terms

UH1 , UH2 , SH1 , SH2 , VH1 , VH2 , RH1 , RH2 are obtained from following symmetric

matrices,

Xg = [USUT ] = [UH1 UH2]

SH1 0

0 SH2

UT
H1

UT
H2

 (3.9)

Yg = [VRV T ] = [VH1 VH2]

RH1 0

0 RH2

V T
H1

V T
H2

 (3.10)

where

SH1 = diag(s1, ....., sp), SH2 = diag(sp+1, sp+2....., sn),

RH1 = diag(r1, ....., rq), RH2 = diag(rq+1, rq+2....., rn).

Remark 5: When Xg > 0 and Yg > 0, BHj = SHj S
1/2
Hj

and CHj = R1/2
Hj

V T
Hj

.

Let THj (transformation matrix) be obtained via simultaneously diagonalizing the

Gramians

T T
Hj

QHj THj = T−1
Hj

PHj T
−T
Hj

= diag(Σ1,Σ2 · · ·Σn) (3.11)

where Σk ≥ Σk+1, k = 1, 2, 3, ......., n − 1,Σr > Σr+1. A ROM {A11, B1, C1, D}

is acquired by transforming and portioning the realization as

T−1
Hj

ATHj =

A11H A12H

A21H A22H

T−1
Hj

B =

B1H

B2H


CTHj =

[
C1H C2H

]
, D (3.12)
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Remark 6: Each input matrix BH1, BH2, BH3 and output matrix CH1, CH2, CH3 en-

sure semipositive/ positive definiteness of the input/output related matrices, conse-

quently semipositive/positive definiteness of PH1, PH2, PH3 and QH1, QH2, QH3 in

a different way. This guides towards a new transformation matrices TH1, TH2, TH3

which consequently result in three distinct stability preserving MOR methods.

Remark 7: Since Xg ≤ BHj B
T
Hj

, Yg ≤ CT
Hj

CHj , PHj > 0 and QHj > 0. Hence,

(A, BHj , CHj ) realization is minimal and also ensured the ROM stability.

3.1.2 Error Bounds

Theorem 1: For the proposed methods, the error bound are given hold if the

rank conditions rank
[
BHj B

]
= rank

[
BHj

]
and rank

 CHj

C

 = rank
[
CHj

]
is

satisfying

‖G(s)−Gr (s)‖∞ ≤ 2‖LHj‖∞‖KHj‖∞
n∑

i=r+1

σi

for j=1

LH1 =

 CVH1R
−1/2
H1

CVH2(exp(RH2/trace(R)))−1/2
(3.13)

KH1 =

 S−1/2
H1

UT
H1

B

(exp(SH2/trace(S)))−1/2UT
H2

B
(3.14)

for j=2

LH2 =

 CVH1R
−1/2
H1

CVH2((RH2 × RH2)/Rn)−1/2
(3.15)

KH2 =

 S−1/2
H1

UT
H1

B

((SH2 × SH2)/Sn)−1/2UT
H2

B
(3.16)
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for j=3

LH3 =

 CVH1R
−1/2
H1

CVH2(sec(RH2)− (rn))−1/2
(3.17)

KH3 =

 S−1/2
H1

UT
H1

B

(sec(SH2)− (sn))−1/2UT
H2

B
(3.18)

Proof: Since rank
[
BHj B

]
= rank

[
BHj

]
and rank

 CHj

C

 = rank
[
CHj

]
,

the relationships B = BHj KHj and C = LHj CHj hold. By partitioning BH = BH1

BH2

 , CH =
[

CH1 CH2

]
and substituting B1 = BH1KHj , C1 = LHj CH1 re-

spectively yields

‖G(s)−Gr (s)‖∞ = ‖C(sI − A)−1B − C1(sI − A11H)−1B1H‖∞

= ‖LHj CHj (sI − A)−1BHj KHj − LHj CH1(sI − A11H)−1BH1KHj‖∞

= ‖LHj (CH(sI − A)−1BH − CH1(sI − A11H)−1BH1)KHj‖∞

≤ ‖LHj‖∞‖(CH(sI − A)−1BH − CH1(sI − A11H)−1BH1)‖∞‖KHj‖∞

If the ROM {A11H , BH1, CH1} is acquired by partitioning of {A, BH , CH} balanced

realization , we have from [3]

‖(CH(sI − A)−1BH − CH1(sI − A11H)−1BH1)‖∞ ≤ 2
n∑

k=r+1

σi .

Thus,

‖G(s)−Grom(s)‖∞ ≤ 2‖LHj‖∞‖KHj‖∞
n∑

i=r+1

Σi

Hence the results follows.

Remark 8: Three choices of KH1, KH2, KH3 and LH1, LH2, LH3 form are basis of

error bound derivation for proposed methods.
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Algorithm

1. Use equations (2.11) and (2.12) to compute the value of Xg and Yg .

2. Use equations (3.3),(3.5),(3.7) and (3.4),(3.6),(3.8) to determine the values of

BH1, BH2, BH3 and CH1, CH2, CH3 respectively.

3. The values of PHj and QHj are computed using equation (3.1) and (3.2).

4. Use equation (3.11) to compute THj .

5. Compute balanced realization to obtain ROM by using equation (3.12).

3.2 Proposed Methods for Discrete Time Systems Case

The precedent frequency limited techniques ensure stability by making symmetric

matrices Xwz (2.27) and Ywz (2.28) positive/semipositive definite by using various

methods. Although WZ [40] yields lowest frequency response errors in compari-

son with IG [49], and Hamid et al. [50] techniques, but it returns unstable ROM

for stable original system. Moreover, all prior techniques ensure stability but at the

cost of large approximation error. In order to minimize the approximation error,

some new methods are proposed that will guarantee stability, give error bounds

as well as mostly have low frequency response approximation error when these

proposed techniques compared to prior stability preserving methods.

3.2.1 Proposed Methods

Consider the different controllable Gramian PHj and observable Gramian QHj sat-

isfying following Lyapunov equations:

APHj A
T − PHj + BHj B

T
Hj

= 0 (3.19)

AT QHj A−QHj + CT
Hj

CHj = 0 (3.20)
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where j = 1, 2, 3. The different input/output related matrices are defined for

indefinite symmetric Xwz and Ywz matrices as BHj and CHj as follows:

Technique 1: for j = 1

BH1 =

UH1S
1/2
H1

UH2(exp(SH2/trace(S)))1/2
(3.21)

CH1 =

R1/2
H1

V T
H1

(exp(RH2/trace(R)))1/2V T
H2

(3.22)

Technique 2: for j = 2

BH2 =

UH1S
1/2
H1

UH2((SH2 × SH2)/Sn))1/2
(3.23)

Sn=abs(product of all negative eigenvalues)

CH2 =

R1/2
H1

V T
H1

((RH2 × RH2)/Rn)1/2V T
H2

(3.24)

Rn=abs(product of all negative eigenvalues)

Technique 3: for j = 3

BH3 =

UH1S
1/2
H1

UH2(sec(SH2)− (sn))1/2
(3.25)

CH3 =

R1/2
H1

V T
H1

(sec(RH2)− (rn))1/2V T
H2

(3.26)
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whereSn = |sp+1 × sp+2 × ......× sn|, Rn = |rq+1 × rq+2 × ......× rn|. The terms

UH1 , UH2 , SH1 , SH2 , VH1 , VH2 , RH1 , RH2 are obtained from following symmetric

matrices,

Xwz = [USUT ] = [UH1 UH2]

SH1 0

0 SH2

UT
H1

UT
H2

 (3.27)

Ywz = [VRV T ] = [VH1 VH2]

RH1 0

0 RH2

V T
H1

V T
H2

 (3.28)

where

SH1 = diag(s1, ....., sp), SH2 = diag(sp+1, sp+2....., sn),

RH1 = diag(r1, ....., rq), RH2 = diag(rq+1, rq+2....., rn).

Remark 9: When Xwz > 0 and Ywz > 0, BHj = SHj S
1/2
Hj

and CHj = R1/2
Hj

V T
Hj

.

Let THj (transformation matrix) be obtained via simultaneously diagonalizing the

Gramians

T T
Hj

QHj THj = T−1
Hj

PHj T
−T
Hj

= diag(Σ1,Σ2 · · ·Σn) (3.29)

where Σk ≥ Σk+1, k = 1, 2, 3, ......., n−1,Σr > Σr+1. A ROM {A11H , B1H , C1, D}

is acquired by portioning the transformed realization as

T−1
Hj

ATHj =

A11H A12H

A21H A22H

T−1
Hj

B =

B1H

B2H


CTHj =

[
C1H C2H

]
, D (3.30)

Remark 10: Each input matrix BH1, BH2, BH3 and output matrix CH1, CH2, CH3

ensure semipositive/positive definiteness of input/output related matrices, conse-

quently semipositive/positive definiteness of PH1, PH2, PH3 and QH1, QH2, QH3 in
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a different way. That guides toward a new transformation matrices TH1, TH2, TH3

which consequently result in three new stability preserving MOR methods.

Remark 11: Since Xwz ≤ BHj B
T
Hj

, Ywz ≤ CT
Hj

CHj , PHj > 0 and QHj > 0. Hence,

the realization is minimal (A, BHj , CHj ) and ensure ROM stability.

3.2.2 Error Bounds

Theorem 1: For the proposed methods, the given error bound hold if the rank

conditions rank
[
BHj B

]
= rank

[
BHj

]
and rank

 CHj

C

 = rank
[
CHj

]
is satis-

fying

‖H(z)− Hrom(z)‖∞ ≤ 2‖LHj‖∞‖KHj‖∞
n∑

i=r+1

σi

for j=1

LH1 =

 CVH1R
−1/2
H1

CVH2(exp(RH2/trace(R)))−1/2
(3.31)

KH1 =

 S−1/2
H1

UT
H1

B

(exp(SH2/trace(S)))−1/2UT
H2

B
(3.32)

for j=2

LH2 =

 CVH1R
−1/2
H1

CVH2((RH2 × RH2)/Rn)−1/2
(3.33)

KH2 =

 S−1/2
H1

UT
H1

B

((SH2 × SH2)/Sn)−1/2UT
H2

B
(3.34)

for j=3

LH3 =

 CVH1R
−1/2
H1

CVH2(sec(RH2)− (rn))−1/2
(3.35)
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KH3 =

 S−1/2
H1

UT
H1

B

(sec(SH2)− (sn))−1/2UT
H2

B
(3.36)

Proof: Since rank
[
BHj B

]
= rank

[
BHj

]
and rank

 CHj

C

 = rank
[
CHj

]
,

the relationships B = BHj KHj and C = LHj CHj hold. By partitioning BH = BH1

BH2

 , CH =
[

CH1 CH2

]
and substituting B1 = BH1KHj , C1 = LHj CH1 re-

spectively yields

‖H(z)− Hr om(z)‖∞ = ‖C(zI − A)−1B − C1(zI − A11H)−1B1‖∞

= ‖LHj CHj (zI − A)−1BHj KHj − LHj CH1(zI − A11H)−1BH1KHj‖∞

= ‖LHj (CH(zI − A)−1BH − CH1(zI − A11H)−1BH1)KHj‖∞

≤ ‖LHj‖∞‖(CH(zI − A)−1BH − CH1(zI − A11H)−1BH1)‖∞‖KHj‖∞

If ROM is {A11H , BH1, CH1} acquired by partitioning of balanced realization {A, BH , CH},

we have from [3]

‖(CH(zI − A)−1BH − CH1(zI − A11H)−1BH1)‖∞ ≤ 2
n∑

k=r+1

σi .

Thus,

‖H(z)− Hr om(z)‖∞ ≤ 2‖LHj‖∞‖KHj‖∞
n∑

i=r+1

Σi

Hence the results follows.

Remark 12: Three choices of KH1, KH2, KH3 and LH1, LH2, LH3 form are basis of

error bound derivation for proposed methods.

Algorithm

1. Use equations (2.27) and (2.28) to compute the value of Xwz and Ywz .

2. Use equations (3.23),(3.25),(3.27) and (3.24),(3.26),(3.28) to determine the val-

ues of BH1, BH2, BH3 and CH1, CH2, CH3 respectively.
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3. The values of PHj and QHj are computed using equation (3.21) and (3.22).

4. Use equation (3.29) to compute THj .

5. Compute balanced realization to obtain ROM by using equation (3.30).
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Chapter 4

Numerical Simulation

4.1 Examples for Continuous Time Systems Case

This section contains numerical examples showing frequency response error of

existing and proposed techniques in the desire frequency range.

Example 1: Let a stable 6th order original system with given state-space repre-

sentation
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A =



−20 −155 −586 −1115 −1034 −390

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


B =

[
1 0 0 0 0 0

]T

C =
[

0 0 −44.1 −204 −934 90
]

D = 0

in the desirable frequency range [35 − 49] rad/s. Fig 4.1 compares the singular

values of reduction error (frequency response error) σ[G(s)−Gr (s)], where Gr (S)

is 3rd order ROM achieved by using GJ [21], IG [47], Imran et al. [48] and pro-

posed techniques in the desirable frequency range. Fig. 4.2 shows the closed view

of Fig 4.1. It can be observed from Fig 4.2 that proposed techniques mostly give

low approximation error when these are compared with prior stability preserving

methods IG [47] and Imran et al [48].

Example 2: Let a stable 8th order original system with given state-space rep-

resentation
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Figure 4.1: Frequency response error with comparison for example 1.
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Figure 4.2: Closed view of error plot in desirable frequency interval for example

1.
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A = 1e3×



−1.4 −325 −321.9 −2783.0 −1449.0 −6581.0 −1284.0 −4101.0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0


B =

[
1 0 0 0 0 0 0 0

]T

C =
[

0 0 0 468.4 −0.0019 0 0 −0.0002
]

D = 0

in a desirable frequency interval [12− 17] rad/s. Fig 4.3 presents the comparison

of singular values of reduction error (frequency response error) σ[G(s)−Gr (s)],

where Gr (s) is 3rd order ROM achieved by GJ [21], IG [47], Imran el at. [48] and

propose techniques. Fig 4.4 shows the closed view of Fig 4.3 in the desirable fre-

quency band. It can be observed from the Fig 4.4 that purposed techniques mostly

have low approximation error when these are compared with prior stability pre-

serving methods IG [47] and Imran et al [48] in the desirable frequency range.

Table I presents the poles of 3rd order ROM obtained by GJ [21], IG [47], Imran

et al [48] and proposed techniques. It can be seen that GJ [21] yield unstable ROM

with pole location at s = 6.2981.

Example 3: Suppose a chebyshev type 2 stable high pass filter of 16th order

have stop band ripple of 13 and stop band edge frequency of 28Hz with desired

frequency interval [17 - 22] rad/s. Fig 4.5 present σ[G(s) − Gr (s)], where Gr (s)

is of 4th order ROM obtained using GJ [21], IG [47] and Imran et al. [48] and pro-

posed methods in the desirable frequency range. Fig 4.6 represents closed view
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Figure 4.3: Frequency response error with comparison for example 2.
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Figure 4.4: Closed view of error plot in desirable frequency interval for example

2.
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Table 4.1: Roots of 3rd order ROM of EXAMPLE 2
Techniques Roots

GJ [21] -0.1115 ± 18.3124i, 6.2981

IG [47] -0.21.8 ± 17.7694i, -0.1823

Imran et al 1 [48] -0.1161 ± 1.8204i, -0.1342

Imran et al 2 [48] -0.0871 ± 1.7197i, -0.0339

Imran et al 3 [48] -0.0899 ± 1.6345i, -0.00377

Proposed 1 -0.2094 ± 17.7704i, -0.1370

Proposed 2 -0.2087 ± 17.7706i, -0.0781

Proposed 3 -0.2095 ± 17.7704i, -0.1236

of Fig 4.5. It can be clear from the Fig 4.6 that ROM acquired from proposed

techniques mostly have low approximation error as compared with other existing

methods IG [47] and Imran et al. [48] in the desirable frequency band.

Example 4: Suppose the 30th order, bandpass chebyshev type 1 stable filter

which passes frequencies between 13 to 32Hz with 25 dB of ripple in the passband

in the desired frequency interval [52 - 57.7] rad/s. Fig 4.7 present σ[G(s)−Gr (s)],

where Gr (s) is of 4th order ROM obtained using GJ [21], IG [47] and Imran et al.

[48] and proposed methods. Fig 4.8 shows closed view of Fig 4.7 in the desired

frequency band. It can be clear from the Fig 4.8 that ROM acquired from pro-

posed methods mostly give low approximation error when these are compared to

prior stability preserving methodss IG [47] and Imran et al. [48] in the desirable

frequency band.

Example 5: Consider a high pass chebyshev type 2 stable filter of order 20th
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Figure 4.5: Frequency response error with comparison for example 3.
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Figure 4.6: Closed view of error plot in desirable frequency interval for example

3.
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Figure 4.7: Frequency response error with comparison for example 4.
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Figure 4.8: Closed view of error plot in desirable frequency interval for example

4.
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Figure 4.9: Frequency response error with comparison for example 5.

having stop band ripple of 15 and stop band edge frequency of 35Hz with desired

frequency interval [5 - 18] rad/s. Fig 4.9 present σ[G(s) − Gr (s)], where Gr (s)

is of 6th order ROM obtained using GJ [21], IG [47] and Imran et al. [48] and

proposed techniques. Fig 4.10 presents the closed view of Fig 4.9 in desirable fre-

quency band. It can be clear from the Fig 4.10 that ROM acquired from proposed

techniques mostly have low approximation error when these are compare to prior

stability preserving methods IG [47] and Imran et al. [48] in desired frequency

band.

Discussion: It can be observed from figures 4.2, 4.4, 4.6, 4.8 and 4.10 that

proposed methods mostly have low approximation error when these are compared

to other prior stability preserving methods IG [47], Imran et al [48] etc. Since

42



Figure 4.10: Closed view of error plot in desirable frequency range for example

5.
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GJ [21] technique yield least approximation error in an cases however, it gives

unstable ROM as shown in Table 4.1.

4.2 Examples for Discrete Time Systems Case

This section contains numerical examples showing frequency response error of

existing and proposed techniques in the desire frequency range.

Example 6: Suppose a stable 6th order original system with given state space

representation:

A =



−0.5360 1.3029 0.2331 −1.0870 −0.1404 0.2248

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


B =

[
1 0 0 0 0 0

]T
,

C =
[
−0.2085 −0.6545 0.1212 0.7666 −0.1431 −0.4029

]
D = 0

in the desired frequency range [0.65π−0.8π] rad/s. Fig 4.11 compares the singu-

lar values of frequency response error σ[H(z)− Hr (z)], where Hr (z) is 4rd order

ROM achieved by using WZ [40], IG [49], Hamid et al. [50] and proposed meth-

ods. Fig 4.12 shows the closed view of Fig 4.11 in the desired frequency range. It

can be observed from Fig 4.12 that proposed methodss mostly have low approx-

imation error when these are compared with prior stability preserving methods

IG [49] and Hamid et al [50] respectively in the desired frequency range.Table II

shows the poles of 3rd order ROM obtained by WZ [40], IG [49], Hamid et al [50]
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Figure 4.11: Frequency response error with comparison for Example 6

and proposed techniques. It can be seen that WZ [40] yield unstable ROM with

pole location at z = 1.1430.

Example 7: Consider a stable 8th order original system with following state

space representation:
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Figure 4.12: Closed view of reduced error in the desirable frequency interval for

Example 6

Table 4.2: Roots of 3rd order ROM of EXAMPLE 6
Techniques Roots

WZ [40] -1.1430, -0.7834 0.5141

IG [49] -0.9215 ± 0.2449i, 0.7566

Hamid et al 1 [50] -0.9143 ± 0.2511i, 0.7807

Hamid et al 2 [50] -0.9097 ± 0.2590i, 0.7570

Hamid et al 3 [50] -0.9097 ± 0.2590i, 0.7573

Proposed 1 -0.9127 ± 0.2519i, 0.7867

Proposed 2 -0.8912 ± 0.2052i, 0.8291

Proposed 3 -0.9141 ± 0.2511i, 0.7814

A =



1.17 −1.87 1.75 −2.386 1.69 −1.483 0.7567 −0.5720

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


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Figure 4.13: Frequency response error with comparison for Example 7

B =
[

1 0 0 0 0 0 0 0
]T

,

C =
[

0 0 0 0.256 1.74 0.45 0.9 6.97
]

D = 0

in a desired frequency range [0.45π−0.6π] rad/s. Fig 4.13 shows the comparison

of singular values of frequency response error σ[H(z) − Hr (z)], where Hr (z) is

3rd order ROM achieved by WZ [40], IG [49], Hamid el at. [50] and proposed

methods. Fig 4.14 shows the closed view of Fig 4.13 in the desirable frequency in-

terval. It can be observed from the Fig 4.14 that proposed techniques mostly have

low approximation error when these are compared with prior stability preserv-

ing methods IG [49] and Hamid et al [50] respectively in the desirable frequency

interval.
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Figure 4.14: Closed view of reduced error in the desirable frequency range for

Example 7

Example 8: Let the 18th order, bandpass butterworth stable filter which passes

frequencies between 0.4 to 0.8Hz in the desirable frequency range [0.7π − 0.8π]

rad/s. Fig. 4.15 shows the comparison of singular values of frequency response

error σ[H(z)−Hr (z)], where Hr (z) is of 5th order ROM acquired by WZ [40], IG

[49] and Hamid et al. [50] and proposed methods. Fig. 4.16 shows closed view

of Fig. 4.15 in the desired frequency band. It can be clear from the Fig. 4.16 that

ROM acquired from proposed techniques mostly have low approximation error

when these are compared to other prior stability preserving methods IG [49] and

Hamid et al. [50] respectively in the desirable frequency range.

Example 9: Let suppose a 30th order chebyshev type 2 stable high pass filter

whcih passes frequency between 0.3 to 0.9Hz with 67 dB of ripple in the desired

frequency interval [0.7π − 0.85π] rad/s. Fig. 4.17 shows the comparison of sin-

gular values of frequency response error σ[H(z)−Hr (z)], where Hr (s) is 8th order

ROM obtained using WZ [40], IG [49] and Hamid et al. [50] and proposed meth-
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Figure 4.15: Frequency response error with comparison for Example 8

Figure 4.16: Closed view of reduced error in the desirable frequency range for

Example 8
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Figure 4.17: Frequency response error with comparison for Example 9

ods. Fig. 4.18 presents the closed view of Fig. 4.17 in desirable frequency band. It

can be clear from the Fig. 4.18 that ROM acquired from proposed methods mostly

have low approximation error when these are compare to prior stability preserving

methods IG [49] and Hamid et al. [50] respectively in desirable frequency range.

Discussion: It can be observed from figures 4.12, 4.14, 4.16 and 4.18 that pro-

posed techniques mostly have low approximation error when compared with other

prior stability preserving methods IG [49], Hamid et al [50] etc. Since WZ [40]

technique yield least approximation error in an cases however, it gives unstable

ROM as shown in Table 4.2.
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Figure 4.18: Closed view of reduced error in the desirable frequency range for

Example 9
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

To conclude, distinct limited frequency Gramians based model order reduction

methods for both continuous and discrete time systems cases have been presented.

Simulation results clarify the effectiveness of proposed techniques by comparison

with prior stability persevering methods of model order reduction. Proposed meth-

ods have least approximation error in continuous as well as discrete time systems

along with carries error bound.

5.2 Future Work

Some novel research fields in the thesis are summarized below: FLMOR methods

use BT (chapter 3 and 4). It is exciting to see by using distinct model reduction

methods like Pade, Krylov and Hankel norm approximation methods inspire of

BT have good results or not. Fictitious input matrix and output matrix has a lot

of formulas used in reduction process of various methods. That is not clarify

that those of have the well result in cases of lower approximation error and needs
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further investigation. Proposed methods are only suitable for stable linear time

invariant actual system. This is exciting to observe either such results still valid

for non-linear and time variant systems.
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