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Preface

Turbulent air flows, which carry solid particles, occur widely in nature and
find application in numerous fields of human activities. For several decades
now, gas–solid heterogeneous flows have been attracting researchers’ atten-
tion. Quite extensive theoretical and experimental data have been accumu-
lated to date, which are devoted to diverse aspects of gas dynamics and ther-
mophysics of such flows [1–34].

The presence of even an insignificant amount of a disperse impurity in
flows of gas media may cause undesirable effects. As a result, the study of
such flows and the development of mechanics of heterogeneous media become
extremely urgent.

In spite of great interest shown by numerous teams of researchers the world
over in studying heterogeneous flows and of the large number of papers on the
subject, the currently available theory of multiphase turbulent flows is inade-
quate. This is apparently due to two reasons. First, the theory of single-phase
turbulent flows of continuous media is at present far from being complete.
Second, the addition of a disperse impurity in the form of particles to a tur-
bulent flow (complex as this flow is) causes a serious complication of the flow
pattern. This is first of all associated with the great diversity of the properties
of particles being introduced, which results in the realization of numerous flow
modes of the gas suspension. By varying the concentration of particles (which
is the main extensive characteristic of heterogeneous flows), one can change
both qualitatively the parameters of initial flow and of particle motion and
accomplish qualitative restructuring of the flow (for example, the transition of
laminar flow mode to turbulent, as well as inverse effect, i.e., relaminarization
of flow). Because of this, the experimental and theoretical investigation tech-
niques employed in the classical mechanics of single-phase continuous media
more often than not are unfit for use in studying heterogeneous flows. The
available experimental data are often fragmentary and contradictory, while the
physical concepts and developed mathematical models cannot be recognized
as adequate. The foregoing factors impede the development of the mechan-
ics of heterogeneous media. Nevertheless, the practical needs and the logic of
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scientific development demand continuous perfection of the theory of hetero-
geneous flows.

This monograph deals with problems associated with the hydrodynamics
of turbulent flows of air in the presence of solid particles in pipes (channels)
and under conditions of flow past bodies. The closest in content to this book
is the monograph by Shraiber et al. [22]. The problems treated there have
found further development in this book.

The first, introductory, chapter contains brief information about turbulent
single-phase wall flows, which is essential for the understanding of the prob-
lems treated in the book. This information is borrowed from the available
literature sources and is in no way original. Also given in the first chapter
are the main characteristics of gas flows with particles, and the suggested
classification of heterogeneous turbulent flows is described.

Two subsequent chapters deal with basic approaches and methods of
mathematical and physical simulation of heterogeneous flows. The entire his-
tory of development of natural science confirms the mutual importance and
interdependence of theoretical and experimental investigation techniques. In
constructing the theory of any physical phenomenon (however, complex or
simple it might seem to be at first glance), one must not underestimate the
importance of some or other methods of investigation. The foregoing is well
supported by the entire history of development of the theory of turbulent
single-phase and multiphase flows. In recent years, in view of rapid develop-
ment of computer equipment, mathematical simulation techniques (numerical
methods) have come to play an important part in the development of the the-
ory of two-phase flows. The use of these methods enables one to solve systems
of complex differential equations and obtain detailed information about the
fine structure of heterogeneous flows. Rapid progress in computer development
gave a powerful impetus to the development of experimental investigation
techniques. The use of high-speed processors makes possible the measurement
of fine structure characteristics of heterogeneous flows in real time.

The second chapter contains the description of presently available methods
of mathematical simulation of gas flows with solid particles. Analysis is made
of the validity of some or other approaches for studying particleladen flows of
different classes in accordance with the classification given in the first chapter.

In the third chapter, the problems of physical simulation of heterogeneous
flows are treated. The fundamentals of laser Doppler anemometry (LDA) are
described: during the last several decades, this method has become one of the
most extensively used means of fine diagnostics of single-phase flows. A wide
range of metrological problems, which arise during investigations of hetero-
geneous flows using this method are discussed. Such problems include the
optimization of the parameters of the optoelectronic system of laser Doppler
anemometers for measuring the instantaneous velocity of large particles of the
dispersed phase, the development of the procedure for correct measurement
of the velocity of substantially polydisperse particles, the elaboration of the
principles of signal selection required for studying the inverse effect of particles
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on the characteristics of carrier air flow, the development of the procedure for
measurement of the concentration of particles, and so on. Along with the des-
cription of the techniques employed in the LDA diagnostics of heterogeneous
flows, much attention is given to the problems associated with the theoret-
ical and experimental monitoring of the measurement results. Examples of
experimental apparatuses for studying flows of air with particles are given at
the end of the chapter, as well as the description of the principle of selec-
tion of characteristics of solid particles which are used in the investigation of
heterogeneous flows as the disperse phase.

The fourth chapter treats the motion of disperse phase and characteris-
tic features of interphase processes under conditions of gas flow with solid
particles in channels (pipes). The results of experimental investigations of
gas-solid flows in channels are described for heterogeneous flows of different
classes. Analysis is made of the data of measurements of distributions of ave-
raged and fluctuation velocities of particles in a wide range of the particle
concentration. Special attention is given to the experimental and theoretical
study of one of the fundamental problems in the mechanics of multiphase
media, namely, the problem of modification by the particles of the turbulent
energy of the carrier phase. Analysis is made of the results of experimental
investigation involving, for the first time in the “pure” state (the presence of
particles did not affect the profile of averaged velocity of the carrier phase),
a study of the process of additional dissipation of turbulence in a flow with
relatively low-inertia particles. The modification of the turbulent energy by
particles is studied theoretically. The mathematical model, which enables one
to determine the values of additional generation and dissipation of turbulence
in flows with particles is described. The calculations involving the use of this
model made possible the generalization of the available data on the modifi-
cation of the turbulent energy of carrier gas by particles in a wide range of
variation of the concentration and inertia of these particles.

In the fifth chapter, the characteristic features of gas flows with particles
past bodies are described. Analysis is made of the available data on the behav-
ior of particles in the vicinity of the critical point of bodies of different shapes
subjected to flow, as well as on the effect of particles on the characteristics
of the carrier phase. The effect of various factors (particle inertia, Saffman
force, etc.) on the deposition of particles is treated. Much attention is given
to the description of singular features of heterogeneous flow in the boundary
layer developing along the surface of a body. The experimental data on the
distribution of velocities of “pure” air, air with particles, and solid particles
proper in all regions of the boundary layer developing along the surface of
the model, i.e., laminar, transition, and turbulent regions, are treated and
analyzed. It is demonstrated that the presence of particles in the flow pre-
cipitates the beginning of the laminar–turbulent transition. The effect of the
particles on the intensity of turbulence of carrier air in the turbulent boundary
layer is treated. The experimental data on the distribution of the velocities of
incident particles and particles reflected from the body surface are described
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and analyzed. The size of the region of existence of the “phase” of reflected
particles is determined for the inertia of the dispersed phase varying in a wide
range. The behavior of particles repeatedly interacting with the body surface
is studied.

I am grateful to A.I. Leontiev, Member of the Russian Academy of
Sciences, V.M. Batenin, Corresponding Member of the Russian Academy of
Sciences, Yu.V. Polezhaev, Corresponding Member of the Russian Academy
of Sciences, and Prof. Yu.A. Zeigarnik for their longstanding support and
attention to this study, as well as to Profs. A.F. Polyakov and L.I. Zaichik
for their participation in a number of investigations the results of which are
used in this book. I am very thankful to H.A. Bronstein and S.G. Yankov for
translation and preparation of manuscript.

Moscow, April 2007 Aleksei Y. Varaksin
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υ′
i – components of fluctuation velocity of particle, m s−1

u∗ – dynamic velocity, m s−1

t – instantaneous temperature of gas, K
tp – instantaneous temperature of particle, K
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µ – coefficient of dynamic viscosity, Ns m−2

ν – coefficient of kinematic viscosity, m2 s−1

λ – thermal conductivity coefficient of gas, W m−1K−1
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1

Concise Information About Single-Phase
and Heterogeneous Turbulent Flows

1.1 Preliminary Remarks

In subsequent chapters, data about the respective characteristics of flows in
the absence of particles are used in describing the behavior of particles in
turbulent flows and their effect on the characteristics of flow of continuous
medium. Such data are given in this chapter. The data in Sects. 1.2 and 1.3
are borrowed from the monographs [2–4, 9, 12, 15, 17, 19, 20] which contain
more detailed information on the problems being treated. Sections 1.4 and 1.5
are devoted to the description of the main characteristics of flows with solid
particles and suggested classification of turbulent heterogeneous flows.

1.2 Equations of Single-Phase Turbulent Flows

Given in this section are basic equations which describe turbulent single-phase
flows. Equations of continuity, motion, and energy for incompressible gas in
terms of actual variables in the absence of external mass forces have the form

∑

j

∂uj

∂xj
= 0, (1.1)

∂ui

∂τ
+
∑

j

uj
∂ui

∂xj
= −1

ρ

∂ρ

∂xi
+ ν
∑

j

∂2ui

∂xj∂xj
, (1.2)

∂t

∂τ
+
∑

j

uj
∂t

∂xj
= a
∑

j

∂2t

∂xj∂xj
, (1.3)

where i, j = 1, 2, 3.
In accordance with suggestion of Reynolds, we represent the actual values

of the parameters of turbulent flow as the sum of two components, namely,

θi(τ) = Θi + θ′i(τ), (1.4)
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where Θi is the time-averaged local value of this quantity, and θ′i is its fluc-
tuation value (the deviation of the instantaneous value from the local one).

Time averaging is performed as

Θi =
1
T

∫ T

0

θi(τ)dτ. (1.5)

Note that the averaging period T , on one hand, must exceed significantly
the characteristic timescale of turbulent fluctuations and, on the other hand,
must be much less than the characteristic time of variation of the macroscopic
parameters of turbulent flow.

We subject (1.1)–(1.3) to the procedure of time averaging suggested by
Reynolds to derive averaged equations of continuity, motion, and energy in
the following form:

∑

j

∂Uj

∂xj
= 0, (1.6)

∂Ui

∂τ
+
∑

j

Uj
∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ ν
∑

j

∂2Ui

∂xj ∂xj
−
∑

j

∂(u′
iu

′
j)

∂xj
, (1.7)

∂T

∂τ
+
∑

j

Uj
∂T

∂xj
= a
∑

j

∂2T

∂xj∂xj
−
∑

j

∂(u′
jt

′)
∂xj

. (1.8)

Equations (1.7) and (1.8) were derived in view of the fact that

∑

j

u′
j

∂u′
i

∂xj
=
∑

j

∂(u′
iu

′
j)

∂xj
,
∑

j

u′
j

∂t′

∂xj
=
∑

j

∂(u′
jt

′)
∂xj

.

The validity of these relations may be demonstrated as

∑

j

∂(u′
iu

′
j)

∂xj
=
∑

j

u′
i

∂u′
j

∂xj
+
∑

j

u′
j

∂u′
i

∂xj
= u′

i

∑

j

∂u′
j

∂xj
+
∑

j

u′
j

∂u′
i

∂xj
=
∑

j

u′
j

∂u′
i

∂xj

∑

j

∂(u′
jt

′)

∂xj
=
∑

j

u′
j

∂t′

∂xj
+
∑

j

t′
∂u′

j

∂xj
=
∑

j

u′
j

∂t′

∂xj
+ t′
∑

j

∂u′
j

∂xj
=
∑

j

u′
j

∂t′

∂xj
,

because

u′
i

∑

j

∂u′
j

∂xj
= 0, t′

∑

j

∂u′
j

∂xj
= 0

by virtue of the fluctuation equation of continuity which will be derived below.
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One can readily derive fluctuation equations of continuity, motion, and
energy by subtracting (1.6)–(1.8) from (1.1)–(1.3), respectively,

∑

j

∂u′
j

∂xj
= 0, (1.9)

∂u′
i

∂τ
+
∑

j

[

u′
j

∂Ui

∂xj
+ Uj

∂u′
i

∂xj
+

∂(u′
iu

′
j)

∂xj

]

= −1
ρ

∂p′

∂xi
+ ν
∑

j

∂2u′
i

∂xj∂xj
+
∑

j

∂(u′
iu

′
j)

∂xj
, (1.10)

∂t′

∂τ
+
∑

j

[

u′
j

∂T

∂xj
+ Uj

∂t′

∂xj
+

∂(u′
jt

′)
∂xj

]

= a
∑

j

∂2t′

∂xj∂xj
+
∑

j

∂(u′
jt

′)
∂xj

. (1.11)

For the majority of engineering calculations, it is sufficient to know the
averaged parameters of gas, which may be determined by solving the aver-
aged Navier–Stokes equations. However, unlike the case of laminar flow, the
system of equations describing the averaged characteristics of turbulent flow
(1.6)–(1.8) turns out to be open, because it contains unknown binary corre-
lations in addition to the values of averaged velocity, temperature, and other
thermodynamic parameters.

The transfer equation for Reynolds stresses u′
iu

′
j is most often constructed

as follows. First, we replace the subscripts j by k in (1.10) for u′
i and multiply

both parts of the resultant equation by u′
j :

u′
j

∂u′
i

∂τ
+
∑

k

[

u′
ju

′
k

∂Ui

∂xk
+ u′

jUk
∂u′

i

∂xk
+ u′

j

∂(u′
iu

′
k)

∂xk

]

= −u′
j

1
ρ

∂p′

∂xi
+ u′

jν
∑

k

∂2u′
i

∂xk∂xk
+ u′

j

∑

k

∂(u′
iu

′
k)

∂xk
. (1.12)

We write a similar equation for u′
j and multiply both its parts by u′

i:

u′
i

∂u′
j

∂τ
+
∑

k

[

u′
iu

′
k

∂Uj

∂xk
+ u′

iUk

∂u′
j

∂xk
+ u′

i

∂(u′
ju

′
k)

∂xk

]

= −u′
i

1
ρ

∂p′

∂xj
+ u′

iν
∑

k

∂2u′
j

∂xk∂xk
+ u′

i

∑

k

∂(u′
ju

′
k)

∂xk
. (1.13)
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We add (1.12) and (1.13) term by term and perform averaging. As a result,
the transfer equation for Reynolds stresses assumes the form

∂(u′
iu

′
j)

∂τ
+
∑

k

Uk

∂(u′
iu

′
j)

∂xk
=
∑

k

∂

∂xk

[

ν
∂(u′

iu
′
j)

∂xk
− u′

iu
′
ju

′
k

]

−
∑

k

[

(u′
ju

′
k)

∂Ui

∂xk
+ (u′

iu
′
k)

∂Uj

∂xk

]

− 1
ρ

(

u′
i

∂p′

∂xj
+ u′

j

∂p′

∂xi

)

− 2ν
∑

k

∂u′
i∂u′

j

∂xk∂xk
. (1.14)

In deriving (1.14), the following simple transformations were used:

∑

k

∂(u′
iu

′
ju

′
k)

∂xk
=
∑

k

u′
ju

′
k

∂u′
i

∂xk
+
∑

k

u′
i

∂(u′
ju

′
k)

∂xk

=
∑

k

u′
j

∂(u′
iu

′
k)

∂xk
+
∑

k

u′
i

∂(u′
ju

′
k)

∂xk
,

ν
∑

k

∂2(u′
iu

′
j)

∂xk∂xk
− 2ν

∑

k

∂u′
i∂u′

j

∂xk∂xk
= ν
∑

k

u′
j

∂2u′
i

∂xk∂xk
+ ν
∑

k

u′
i

∂2u′
j

∂xk∂xk
.

The terms on the left-hand side of (1.14) describe the time variation
and convection transfer of turbulent stresses, respectively. The terms on
the right-hand side are responsible for the diffusion molecular and turbu-
lent transfer, the generation of turbulent stresses from averaged motion,
the fluctuation energy exchange between different components as a result of
correlations of pressure fluctuations, and the viscous dissipation of turbu-
lent energy, respectively. Equation (1.14) for the second moments contains
unknown triple correlations; for the latter correlations, equations may be
constructed which, in turn, contain the fourth moments. In order to derive
a closed system of equations, the process of construction of equations must
be interrupted at some stage. This is usually done by introducing additional
hypotheses (models) for the correlation between the “higher” and “lower”
moments (hypothesis of Millionshchikov and other hypotheses). Therefore,
different models of turbulence are employed for closing the system of averaged
Reynolds equations. Models of turbulent flows, which have gained the widest
recognition in the literature, are briefly reviewed below.

1.2.1 Algebraic Models of Turbulence

When such models are employed, the double correlations appearing in equa-
tions are expressed in terms of averaged parameters. Relations between corre-
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lations and averaged characteristics of flow are often referred to as turbulence
hypotheses. For example, the Boussinesq gradient approach has found exten-
sive application. In accordance with this approach, the basic component of
tensor u′

iu
′
j , i.e., the correlation u′

xu′
y responsible for the turbulent transfer of

momentum, is represented as

u′
xu′

y = −νt
∂Ux

∂y
, (1.15)

where νt is the turbulent analog of the coefficient of kinematic viscosity.
Note that the application of the Boussinesq hypothesis does not eliminate

all difficulties, because it consists in fact in replacing one unknown (u′
xu′

y)
by another (νt). In order to determine the unknown νt, the semiempirical
theory of turbulence (mixing length theory) of Prandtl is extensively used,
according to which the fluctuations of longitudinal velocity are proportional
to the gradient of averaged velocity. The values of longitudinal and transverse
fluctuations of velocity must be close to each other in accordance with the
continuity equation. Therefore, we have

u′
y ≈ u′

x = l
∂Ux

∂y
, (1.16)

where l is the mixing length characterizing the distance over which the tur-
bulent moles (eddies) retain their individuality. It follows further from the
continuity equation that the product u′

xu′
y must always be negative, because

the fluctuations of velocities in different directions are opposite in sign. In view
of the high correlation between the longitudinal and transverse fluctuations
of velocity, we have

u′
xu′

y = −l2
(

∂Ux

∂y

)2

. (1.17)

The coefficient νt may be determined from (1.15) and (1.17) as

νt = l2
∣

∣

∣

∣

∂Ux

∂y

∣

∣

∣

∣

. (1.18)

Note that the mixing length is not a universal quantity and assumes dif-
ferent values at different points of flow.

The disadvantage of the Prandtl theory, as well as of the existing varieties
of algebraic models of turbulence (Karman, Van Driest, and others), is that
it is based on the hypothesis of locality of the mechanism of turbulent trans-
fer. According to this hypothesis, turbulent stresses depend only on the local
structure of averaged flow. As a result, algebraic models of turbulence are
capable of adequately describing only close-to-equilibrium flows. Additional
“relaxation” terms including convection and diffusion terms must be intro-
duced in order to calculate substantially nonequilibrium flows. Neither may
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the algebraic (local) models of turbulence be used to calculate turbulent flows
beyond the boundary layer, which are characterized by highly uniform aver-
aged velocities (nonshear turbulent flows).

In recent decades, more sophisticated (as regards their physical content)
differential models of turbulence find extensive application for the calculation
of turbulent single-phase flows. In addition to equations for averaged quanti-
ties, such models include additional differential equations of transfer for the
most important characteristics of the structure of turbulence. The differen-
tial models are divided into one parameter, two parameter, and so on by the
number of additional (to the averaged ones) equations.

1.2.2 One-Parameter Models of Turbulence

Models of turbulence of this class are based on the use of the transfer equation
for determining one of the characteristics of turbulence. Such a characteristic
is most frequently provided by the turbulent energy k, turbulent viscosity νt,
or by the basic component of stress tensor u′

xu′
y.

Model based on the equation for turbulent energy

In order to derive the transfer equation for turbulent energy, (1.10) for fluc-
tuation motion must be multiplied by u′

i, summed with respect to i, and then
averaged. The resultant equation will have the form

∂k

∂τ
+
∑

j

Uj
∂k

∂xj
=
∑

j

∂

∂xj

⎡

⎣ν
∂k

∂xj
− u′

j

(

1
2

∑

i

u′
i
2 +

p′

ρ

)

⎤

⎦

−
∑

j

∑

i

u′
iu

′
j

∂Ui

∂xj
− ν
∑

j

∑

i

∂u′
i

∂xj

∂u′
i

∂xj
, (1.19)

where k = 1
2

∑

i u′
i
2.

Equation (1.19) was first derived by Kolmogorov [13]. The terms on the
left-hand side of (1.19) describe the time variation and convection transfer of
turbulent energy, respectively. The first term on the right-hand side describes
the diffusion of turbulent energy, the second term, its generation owing to
the energy of averaged motion, and the third term, the dissipation due to
viscosity.

The equation for k is not closed by virtue of indeterminacy of all terms on
the right-hand side, namely, the diffusion, generation, and dissipation terms.
The following hypotheses of Kolmogorov [13] are usually employed to find the
diffusion and generation terms:
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−u′
j

(

1
2

∑

i

u′
i
2 +

p′

ρ

)

=
νt

σk

∂k

∂xj
, (1.20)

−u′
iu

′
j = νt

(

∂Ui

∂xj
+

∂Uj

∂xi

)

− 2
3
kδij , (1.21)

where σk is an empirical constant (it is most frequently assumed that σk =
1), and δij is the Kronecker symbol.

Within one-parameter models, the unknown term responsible for the dis-
sipation of energy due to viscosity ε is usually represented in terms of the
turbulent energy k and its scale l in the form

ε = ν
∑

j

∑

i

∂u′
i

∂xj

∂u′
i

∂xj
= C3/4

µ

k3/2

l
, (1.22)

with the most frequently employed value of the coefficient Cµ = 0.09.
Therefore, (1.19) for turbulent energy may be rewritten as

∂k

∂τ
+
∑

j

Uj
∂k

∂xj
=
∑

j

∂

∂xj

[(

ν +
νt

σk

)

∂k

∂xj

]

+
∑

j

∑

i

[

νt

(

∂Ui

∂xj
+

∂Uj

∂xi

)

− 2
3
kδij

]

∂Ui

∂xj
− ε. (1.23)

We denote the diffusion and generation terms by D and P , respectively;
then, (1.23) may be written in a condensed form

Dk

Dτ
= D + P − ε (1.24)

The turbulent viscosity is expressed in terms of turbulent energy as fol-
lows [13]

νt = Cνk1/2l. (1.25)

Therefore, the set of equations (1.6), (1.7), and (1.23) in view of relations
(1.22) and (1.25) gives a closed description of momentum transfer in a single-
phase turbulent flow.

1.2.3 Two-Parameter Models of Turbulence

Models of turbulence of this class contain as many as two differential equations
for the characteristics of turbulence. As a rule, the first equation in two-
parameter models is the equation for turbulent energy derived and analyzed
earlier. The most universally employed model is the two-parameter k−ε model
of turbulence, in which the equation for the rate of dissipation of turbulent
fluctuations is used as the second equation.
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The transfer equation for turbulent dissipation, which was first derived by
Davydov [6], has the form

∂ε

∂τ
+
∑

j

Uj
∂ε

∂xj
= −
∑

j

∂

∂xj

⎛

⎝u′
j

∑

i,k

ν
∂u′

i

∂xk

∂u′
i

∂xk
+

2ν

ρ

∑

k

∂p′

∂xk

∂u′
j

∂xk

⎞

⎠

+ ν
∑

j

∂2ε

∂x2
j

− 2ν
∑

j,i,k

∂Ui

∂xj

(

∂u′
k

∂xi

∂u′
k

∂xj
+

∂u′
i

∂xk

∂u′
j

∂xk

)

− 2ν
∑

j,i,k

∂u′
i

∂xk

∂u′
i

∂xj

∂u′
j

∂xk
− 2ν2

∑

j,i,k

(

∂2u′
i

∂xj∂xk

)2

− 2ν
∑

j,i,k

∂2Ui

∂xj∂xk
u′

j

∂u′
i

∂xk
, (1.26)

where

ε = ν
∑

j

∑

i

∂u′
i

∂xj

∂u′
i

∂xj
.

We now describe the physical meaning of the terms appearing in (1.26).
The first and second terms on the left-hand side characterize the time vari-
ation and convection transfer of dissipation of turbulent energy, respectively.
The first and second terms on the right-hand side characterize the turbulent
and molecular diffusion of dissipation of turbulent energy. The third term rep-
resents the generation of dissipation. The fourth and fifth terms characterize
the decrease in dissipation under the effect of viscosity and due to turbulent
deformation. The sixth term is usually ignored (as well as the fourth one).

Within the gradient approximations for the diffusion and generation terms,
(1.26) is usually represented in the following form [6,14]

∂ε

∂τ
+
∑

j

Uj
∂ε

∂xj
=
∑

j

∂

∂xj

[(

ν +
νt

σε

)

∂ε

∂xj

]

− Cε1
ε

k

∑

j

∑

i

u′
iu

′
j

∂Ui

∂xj
− Cε2

ε2

k
, (1.27)

where σε, Cε1, and Cε2 are empirical constants. The universally accepted
values of these constants are σε = 1.3, Cε1 = 1.44, and Cε2 = 1.92.

Note that, in calculating wall-bounded flows, some “wall” functions are
introduced for determining the terms on the right-hand side of (1.27). These
correction functions are intended to ensure that the behavior of the quantities
determined as a result of calculations should fit the available experimental
data.
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One can readily see that the form of the equation for dissipation agrees
with that of the equation for turbulent energy and may also be represented
in a condensed form

Dε

Dτ
= Dε + Pε − εε, (1.28)

where Dε, Pε, and εε denote the diffusion, generation, and decrease of the
dissipation of turbulent energy, respectively.

The correlation between the turbulent energy and the rate of its dissipation
is determined using the Kolmogorov–Prandtl relation

νt = Cµ
k2

ε
, Cµ = 0.09. (1.29)

Therefore, the set of equations (1.6), (1.7), (1.23), and (1.27) in view of
relation (1.29) gives a closed description of momentum transfer in a single-
phase turbulent flow.

A number of other models of single-phase turbulent flows exist in addition
to those described earlier. In my opinion, quite a successful comparison of
different differential models for the calculation of wall flows was made by
Lushchik and Yakubenko [16].

1.3 Main Characteristics of Single-Phase Flows

In this section, a brief look is taken at the main characteristics of turbulent
flows of gas and their distribution over the channel (pipe) cross-section. Such
characteristics include the averaged and fluctuation velocities, the turbulent
energy and its spectrum, and the space and timescales of turbulence.

1.3.1 Distributions of Averaged Velocity

The turbulent flow is the most complex and most commonly occurring form
of flow of continuous medium. The transition from eddy-free laminar to tur-
bulent flow occurs as a result of loss of hydrodynamic stability which occurs
when some critical value of dimensionless parameter (Reynolds number) is
attained. The Reynolds number for a round pipe flow has the form

ReD =
〈Ux〉2R

ν
, (1.30)

where 〈Ux〉 = 2
R2

∫ R

0
Ux(r)rdr is the cross-section average velocity of con-

tinuous medium, R is the pipe radius, and ν is the coefficient of kinematic
viscosity of continuous medium.
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Fig. 1.1. The distribution of averaged velocities under conditions of turbulent pipe
flow of air: (l) n = 6, (2) n = 7, (3) n = 8.8, (4) n = 9.8, (5) n = 10, (6) parabolic
laminar profile

The stabilized profile of averaged velocity in channels (pipes) in the flow
core is often described by the power law

Ux

Uxc
=
(

R − r

R

)1/n

, (1.31)

where r is the distance from the pipe axis, and n is a function of the Reynolds
number.

For a developed turbulent pipe flow, the exponent in power law (1.31)
assumes the following values (Fig. 1.1): n = 6 for ReD = 4×103, n = 7 for
ReD = 1.1×105, n = 8.8 for ReD = 1.1×106, n = 9.8 for ReD = 2×106, and n
= 10 for ReD = (2−3.2)×106. The shape of averaged velocity profile is further
affected by the degree of turbulence. An increase in the degree of turbulence
causes the velocity profile to become flatter owing to the velocity increase in
the vicinity of the wall, which leads to an increase in n.

The description of averaged velocity distribution may further involve the
use of universal coordinates, i.e., the form U + = U +(y+), where U + =
Ux /u∗ and y+ = yu∗/ν. The profile of averaged velocity of stabilized flow is
described by the relation

U+ =
1
γ

ln y+ + C +
1
γ

Πω, (1.32)

where γ and C are constants, Π is the wake parameter, and ω is the wake
function.

In the wall region (y+ > 30) of developed turbulent flow (ReD > 104), the
last term of (1.32) may be ignored, and this equation transforms to the so-
called “logarithmic law of the wall,”
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Fig. 1.2. The distribution of averaged velocity in universal coordinates: (1) viscous
sublayer and (2) turbulent core
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Fig. 1.3. The distribution of three components of the intensity of fluctuations of
air velocity in the pipe cross section: (1) σUx , (2) σUr , (3) σUϕ

U+ =
1
γ

ln y+ + C, (1.33)

in which the constants are most frequently taken to be γ = 0.4 and C = 5.5.
In the viscous sublayer region (y+ < 10), (1.33) transforms to the linear

dependence
U+ = y+ (1.34)

The distribution of the velocity of stabilized pipe flow in universal coordi-
nates is given in Fig. 1.2.

1.3.2 Distributions of Averaged Fluctuation Velocities

Figure 1.3 gives the classical data of Laufer on the distribution of three
components of relative intensity of turbulence σUx

= (u′2
x )1/2/Uxc, σUr

=
(u′2

r )1/2/Uxc, and σUϕ
= (u′2

ϕ )1/2/Uxc under conditions of pipe flow. The
experiments were performed with a pipe of inside diameter D = 250 mm.
The cited results relate to Uxc ≈ 3ms−1, which corresponds to the value of
Reynolds number ReD = 50,000. One can infer from Fig. 1.3 that the distri-
butions of all components of fluctuation velocity are substantially nonuni-
form. The isotropic conditions are attained in a region which is far re-
moved from the pipe wall. The intensity of turbulence in the axial direction
exceeds the respective characteristics in the normal and azimuthal directions.
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Fig. 1.4. The distribution of three components of the intensity of fluctuations,
related to dynamic velocity, in the pipe wall region: (1) σx, (2) σr, (3) σϕ

The axial component of fluctuations has a maximum which is reached in a
region that is very close to the wall (see Fig. 1.4). The coordinate of this
maximum is y+ ≈ 15. The distribution of normal fluctuation of velocity also
exhibits a maximum located much farther away from the wall (r/R ≈ 0.9).
By its magnitude, the azimuthal component of velocity fluctuations takes the
midposition between the axial and normal components over the entire pipe
crosssection. The distribution of the components of intensity of fluctuations
σx = (u′2

x )1/2/u∗, σr = (u′2
r )1/2/u∗, and σϕ = (u′2

ϕ )1/2/u∗, related to dynamic
velocity, is given in Fig. 1.4. These data indicate that, in the vicinity of the
wall, the transverse component is close in magnitude to the dynamic velocity,
and the axial component is more than twice the dynamic velocity.

1.3.3 Turbulent Energy

The fluctuation velocity profiles obtained by Laufer were used to find the
turbulent energy of air. The calculated distribution of kinetic turbulent energy
k/u2

∗ related to the square of dynamic velocity over the pipe cross-section is
given in Fig. 1.5.

Following are some important remarks concerning the turbulent energy
balance. In the region closest to the wall (y+ ≤ 20; r/R ≥ 0.998), the terms
which characterize the generation and dissipation of turbulent energy are in
fact equal to each other but opposite in sign. The same is true of the terms
responsible for the turbulent diffusion of kinetic energy and diffusion of en-
ergy of pressure fluctuations. In the region farthest from the wall (y+ > 20;
0.7 < r/R < 0.998), the main contribution to the turbulent energy balance is
made by the generation and dissipation, with preservation of insignificant
energy transfer due to turbulent diffusion (diffusion of kinetic energy and
energy of pressure fluctuations). Away from the pipe wall, the transfer
of energy of pressure fluctuations decreases to become negligible in the cen-
tral region (r/R < 0.4). At the same time, the importance of turbulent diffu-
sion of kinetic energy in the overall balance continues to increase, because
the generation and dissipation of turbulence decrease. In the region close
to the pipe axis (r/R < 0.2), the generation of turbulence is close to zero,
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Fig. 1.5. The distribution of turbulent energy under conditions of pipe flow

and the dissipation of energy is balanced only by turbulent diffusion of
kinetic energy.

1.3.4 Energy Spectrum of Turbulence

Fluctuations of physical quantities in turbulent flows occur at most diverse
frequencies; therefore, the dispersion (or mean-square deviation) of fluctuating
quantity may be represented as the sum of respective quantities relating to
different frequencies. Such distribution of a fluctuating quantity is an energy
spectrum

Ei(f) =
dθ′2i
df

, (1.35)

where Ei(f) defines the fraction of dispersion dθ′2i of some fluctuating quantity
θi, which corresponds to the frequency band df . In doing so, one must bear
in mind that

θ′2i =
∫ ∞

0

Ei(f)df. (1.36)

For convenience in representing energy spectra, they are usually normal-
ized to the value of dispersion of the quantity being treated, namely,

Ei(f) =
Ei(f)

θ′2i
, (1.37)

where
∫∞
0

Ei(f)df is the normalization condition.
The energy spectra of the components of velocity fluctuations Ex(f), Er(f)

and Eϕ(f) under conditions of pipe flow, obtained experimentally by Laufer,
are given in Fig. 1.6.

1.3.5 Correlations in Turbulent Flows

The need often arises for finding the statistical correlation between fluctuating
quantities (characteristics) of turbulent flow. The measure of such correlation
between quantities is provided by correlation coefficients which represent the
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Fig. 1.6. Energy spectrum of velocity fluctuations (a) on the axis (r/R = 0) and
(b) in the wall region (r/R = 0.926) of the pipe: (1) Ex(f), (2) Er(f), (3) Eϕ(f)

ratio of the averaged product of two instantaneous values of given fluctuat-
ing parameters to the product of their averaged values. A large number of
correlation coefficients of diverse forms exist, of which the most extensively
employed ones are one-point, two-point, and Eulerian time coefficients.

One-Point Correlations

The one-point coefficient of correlation of two different fluctuating quantities
defines their correlation at a given point of space at one and the same instant
of time. This correlation coefficient is expressed as

Ri,j =
θ′iθ

′
j

(θ′i
2)1/2(θ′j

2)1/2
, (1.38)

where θ′i and θ′j and denote the fluctuation values of θi and θj .

Two-Point Correlations

The two-point coefficient of correlation of a fluctuating quantity defines the
correlation of its values at two different points of space at one and the same
instant of time and is written as

Ri,x =
θ′i,x1

θ′i,x2

(θ′2i,x1
)1/2(θ′2i,x2

)1/2
, (1.39)

where θ′i,x1
and θ′i,x2

denote the fluctuation values of θi at points of space with
coordinates x = x1 and x = x2.
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Eulerian Time Correlation

The coefficient of Eulerian time autocorrelation defines the internal correlation
of a fluctuating quantity at different instants of time at a given point of space
and has the form

Ri,τ =
θ′i,τ1θ

′
i,τ2

θ′2i
, (1.40)

where θ′i,τ1 and θ′i,τ2 denote the fluctuation values of θi at instants of time
τ =τ1 and τ = τ2.

Correlations are present in equations of turbulent flows and are used
extensively in theoretical analysis.

1.3.6 Scales of Turbulent Flows

Time and space scales of flows are recognized. The most frequently employed
scales of turbulent flows are considered below.

Characteristic Scales of Gas in Averaged Motion

The turbulent flows treated in this monograph are steady state on the average.
Nevertheless, it would be useful to introduce some characteristic timescale of
the carrier phase, which is necessary for analysis of the process of relaxation
of averaged velocities of gas and particles. We define this scale as

Tf =
L

Ux
, (1.41)

where L is some characteristic length over which the process of relaxation of
phase velocities occurs, and Ux is the averaged velocity of gas.

The characteristic geometric dimension may be provided by the length
over which the particles are accelerated from the point of their injection into
the flow to the pipe cross-section of interest to us, by the distance from the
critical point upstream of the body subjected to flow to the point at which the
deceleration of gas begins, by the distance from the critical point downstream
of the body along its surface to the cross-section in the boundary layer of
interest to us, and so on.

The characteristic averaged velocity of gas may be selected from the veloc-
ity of flow on the pipe axis, the velocity of flow undisturbed by the presence
of a body, and the velocity on the external bound of the boundary layer in
analyzing heterogeneous flows in pipes, under conditions of flow past bodies,
and in the boundary layer, respectively.
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Characteristic Scales of Gas in Large-Scale Fluctuation Motion

Eulerian and Lagrangian scales of flows are recognized. The integral Eulerian
time and space scales of turbulence are most commonly determined in terms
of the coefficient of Eulerian time autocorrelation as follows:

TE =
∫ ∞

0

Rx,τ(τ)dτ, (1.42)

LE = Ux

∫ ∞

0

Rx,τ(τ)dτ = UxTE. (1.43)

These scales characterize the time, over which one still observes a marked
correlation between fluctuations of gas velocity (the lifetime of large turbulent
eddies), and the size of energy-carrying eddies, respectively.

Note that the correlation Rx,τ(τ) may also be measured in coordinates
moving at the average velocity of flow. We will designate this correlation
asR0

x,τ(τ). In this case, we have for the integral timescale in moving coordinates
T 0

E

T 0
E =
∫ ∞

0

R0
x,τ(τ)dτ. (1.44)

The integral Eulerian space scale of turbulence will be represented as

LE ≈ (u′2
x )1/2T 0

E. (1.45)

We use (1.44) and (1.45) to derive the following correlation between
Eulerian timescales of turbulence measured in different coordinates:

T 0
E

TE
≈ Ux

(u′2
x )1/2

. (1.46)

In analyzing flows of gas with particles, the Lagrangian time TL and space
LL scales of turbulence are used most frequently. The available literature
data on the ratio between the Eulerian and Lagrangian scales of turbulence
are contradictory. As a first approximation, we can assume that

LL ≈ LE, (1.47)

TL ≈ T 0
E. (1.48)

The following relation is frequently used to determine the integral
timescale of turbulence:

TL = C1/2
µ

k

ε
. (1.49)

As applied to pipe flow, the rate of dissipation of turbulent energy ε is
determined as

ε = C3/4
µ

k3/2

l
, (1.50)

where the Prandtl–Nikuradse mixing length l has the form

l = 0.4y(1 − 1.1ȳ + 0.6ȳ2 − 0.15ȳ3), ȳ = y/R. (1.51)
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Characteristics Scales of Gas in Small-Scale Fluctuation Motion

The Eulerian time microscales of turbulence in fixed and moving coordinates
are determined as follows:

τE = 2
[

−
(

d2Rx,τ(τ)
dτ2

)

τ=0

]−1/2

, (1.52)

τ0
E = 2

[

−
(

d2R0
x,τ(τ)

dτ2

)

τ=0

]−1/2

. (1.53)

These scales define the peak width of the Rx,τ(τ) and R0
x,τ(τ) curves in

the vicinity of point τ = 0 and the lifetime of the smallest eddies causing the
dissipation of kinetic energy to heat.

The time and space scales of the smallest dissipative eddies (microscales
of turbulence) were introduced by Kolmogorov and are determined as

τK =
(ν

ε

)1/2

. (1.54)

η =
(

ν3

ε

)1/4

. (1.55)

The space and timescales of flows, described above, are universally used
in analyzing turbulent flows; they form the basis of the classification of het-
erogeneous flows developed in Sect. 1.5

1.4 Main Characteristics of Heterogeneous Flows

In addition to the characteristics of single-phase flows, heterogeneous flows
exhibit a number of peculiar characteristics of their own. These characteris-
tics of heterogeneous flows may be conventionally divided into intensive and
extensive physical quantities. The intensive quantities include physical prop-
erties of particles such as their size (diameter) dp and physical density ρp.
In the case of nonisothermal flow, serious importance is assumed also by the
heat capacity of the particle material Cpp . The above-mentioned properties of
particles characterize the dynamic and thermal inertia of the dispersed phase.

1.4.1 Time of Dynamic Relaxation of Particles

The dynamic inertia of particles is defined by the time of their relaxation τp

which has the form

τp =
τp0

C
=

ρpd2
p

18µC
, (1.56)



18 1 Concise Information About Single-Phase

where

C =

{

1 + Re
2/3
p /6 at Rep ≤ 103,

0.11Rep/6 at Rep > 103.

In expression (1.56), τp0 characterizes the time of dynamic relaxation of a
Stokesian particle (Rep < 1). Note that the inertia of the Stokesian particle
further depends on the characteristics of the medium in which this particle
moves. For example, the expression for τp0 includes the coefficient of dynamic
viscosity of the medium. The correction function C takes into account the
effect of inertial forces on the time of relaxation of a non- Stokesian particle.
Therefore, in the case of motion of the non-Stokesian particle, its inertia de-
pends also on the dimensionless complex such as the Reynolds number of the
particle calculated by the relative velocity between phases and the diameter
of disperse impurity, i.e.,

Rep =
|−→W |dp

ν
=

|−→U −−→
V |dp

ν
. (1.57)

1.4.2 Time of Thermal Relaxation of Particles

The thermal inertia of particles is characterized by the time of their thermal
relaxation τt determined by the relation

τt =
τt0

C1
=

Cppρpd2
p

12λC1
(1.58)

where C1 = 1 + 0.3Re
1/2
p Pr1/3.

In expression (1.58), τt0 characterizes the time of thermal relaxation of a
Stokesian particle (Rep < 1). Note that the thermal inertia of the Stokesian
particle (as does the dynamic inertia) depends both on its physical properties
and heat capacity and on the thermal conductivity λ of the surrounding gas.
The correction function C1 takes into account the effect of convection on heat
transfer between a non-Stokesian particle and surrounding gas. Therefore,
the thermal inertia of the non-Stokesian particle depends also on the relative
velocity between phases and on the viscosity and heat capacity of the carrier
continuum.

1.4.3 Stokes Numbers

In this monograph, turbulent flows of gas with solid particles are treated.
A turbulent flow is characterized by a number of space and corresponding
timescales (see Sect. 1.3). As a result, it appears advisable to construct a
number of dimensionless parameters, i.e., Stokes numbers which characterize
the particle inertia with respect to some or other scales of flow.
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In the case of particle motion in a flow of gas with a gradient of averaged
velocity in the longitudinal direction (for example, under conditions of flow
in nozzles and in the boundary layer or in the vicinity of bodies subjected to
flow), as well as during acceleration of particles in a flow with a constant value
of averaged velocity, one must take into account the inertia of particles when
analyzing the process of relaxation of averaged velocities of phases. For this
purpose, it is necessary to introduce the Stokes number in averaged motion,
which will be written as

Stkf =
τp

Tf
, (1.59)

where Tf is the characteristic time of the carrier phase in averaged motion.
The parameter of dynamic inertia of particles in large-scale fluctuation

motion is represented by the Stokes number

StkL =
τp

TL
, (1.60)

where TL is the characteristic time of the carrier phase in large-scale fluctua-
tion motion (integral Lagrangian timescale of turbulence).

The particle inertia in small-scale fluctuation motion will be likewise char-
acterized by the Stokes number represented as

StkK =
τp

τK
, (1.61)

where τK is the Kolmogorov timescale of turbulence.
Note that, in treating nonisothermal heterogeneous flows, it is necessary

to introduce the appropriate dimensionless parameters which characterize the
thermal inertia of particles relative to the respective characteristic timescales
of variation of temperature of the carrier medium.

1.4.4 Particle Concentration

The particle concentration is an extensive physical characteristic of heteroge-
neous flows. Three types of concentration of the dispersed phase are recog-
nized, namely, mass concentration, volume concentration, and number density.

We will consider two possible approaches to determining the particle con-
centration in the flow. According to the first approach, the local volume and
mass concentration of particles is determined as follows (see Fig. 1.7):

Φ =
VpΣ

VΣ
=

VpΣ

Vg + VpΣ
, (1.62)

M =
MpΣ

MΣ
=

MpΣ

Mg + MpΣ
, (1.63)
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VpS(MpS)

VS(MS)

Fig. 1.7. Determination of the mass and volume concentrations of particles in the
flow

where VpΣ , Vg, and VΣ denote the volumes taken up by particles and gas
in the elementary volume of flow and the value of this volume, respectively;
and MpΣ , Mg, and MΣ denote the mass of particles, the mass of gas in the
elementary volume of flow, and the total mass of the elementary volume of
heterogeneous flow, respectively. The values of volume and mass concentration
of particles, determined by relations (1.62) and (1.63), are in the range from
zero to unity.

In accordance with the second approach, the volume (mass) concentration
of particles is determined as the ratio of the total volume (mass) of particles
to the respective values for gas, i.e.,

Φ =
VpΣ

Vg
, (1.64)

M =
MpΣ

Mg
, (1.65)

In contrast to relations (1.62) and (1.63), the volume and mass concentrations
of particles determined by (1.64) and (1.65) may assume values from zero to
infinity. In analyzing (1.62)–(1.65), it may be inferred that, for the case of
heterogeneous flow with a low volume (mass) concentration of the dispersed
phase, the values of the volume (mass) concentration of particles calculated
by different relations will be close to one another.

The flows of gases with solid particles treated in this monograph are char-
acterized by a relatively low volume concentration of particles. At the same
time, the total mass of particles may be several times that of gas. There-
fore, for the flows under study, the use of any of the foregoing relations for
determining the volume concentration of particles will produce virtually the
same results. As to the mass concentration of particles, its value according
to (1.63) for flows in which the mass of particles is several times that of gas
hardly varies with increasing content of the dispersed phase and tends as-
ymptotically to unity, which is not quite convenient. Because of this, it is
preferable to use expression (1.65) for determining the mass concentration of
particles.
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The use of relations (1.64) and (1.65) leads to obvious expressions relating
the mass and volume concentrations and the number density of particles in
the form

M =
Φρp

ρ
, (1.66)

Φ =
Nπd3

p

6
. (1.67)

The experimental investigations of heterogeneous flows often involve the
use of the concepts of volume and mass flow rate concentrations, which we
determine as follows for flows of the types being treated:

ΦG =
GV p

GV g
, (1.68)

MG =
GMp

GMg
, (1.69)

where the volumetric and mass flow rates of particles (GV p, GMp) and gas
(GV g, GMg) through some site S are given as

GV p = N
πd3

p

6
V S, (1.70)

GV g = US, (1.71)

GMp = Nρp

πd3
p

6
V S, (1.72)

GMg = ρUS, (1.73)

where N is the particle number density (the number of particles per unit
volume), V is the normal (with respect to site S) velocity of particles, and U
is the normal velocity of gas.

From (1.64)–(1.73), one can readily derive the expression for the correla-
tion between the “true” values of volume (mass) concentration of the dispersed
phase and the volume (mass) flow rate concentration,

Φ

ΦG
=

M

MG
=

U

V
. (1.74)

Therefore, for the cases of upward (U > V ) and downward (U < V ) flows
which are not bounded by walls, we have M > MG and M < MG, respectively.

In the foregoing, we talked about local concentrations of particles in the
flow. In the case where the distribution of the dispersed phase i nonuniform
over the channel (pipe) cross-section, i.e., Φ(r) �= const. and M(r) �= const., it
is often necessary to know the average (with respect to space) concentrations
of particles, which are determined for pipe flow as



22 1 Concise Information About Single-Phase

< Φ > =
2

R2

∫ R

0

Φ(r)rdr, (1.75)

< M > =
2

R2

∫ R

0

M(r)rdr. (1.76)

The foregoing main characteristics of heterogeneous flows identified above
will be often employed in the presentation below and used in constructing the
classification of turbulent flows of gas with solid particles.

1.5 Classification of Heterogeneous Turbulent Flows

In spite of numerous available monographs (see the foreword) dealing with the
most diverse aspects of multiphase flows, no classification of turbulent hetero-
geneous flows exists to date. The presence of numerous modes of flow of gas
suspension, which are defined both by the parameters of carrier gas (physi-
cal properties, Reynolds number, intensity of turbulent fluctuations, scales of
turbulence, and so on) and by the parameters of particles proper (physical
properties, Reynolds number of a particle, local concentration, polydisper-
sion, and so on), complicates significantly the use of the classical modeling
theory; this makes impossible the systematization and generalization of the
investigation results. Attempts at systematizing heterogeneous flows by way
of determining the ranges of validity of various numerical models [1, 5, 8, 22]
compiling schemes of flow modes [18], and searching for a single universal
parameter [10, 11, 21] defining the type of flow have failed, and the obtained
classifications may hardly be regarded as comprehensive and complete. At
the same time, the demand for the classification of such flows is extremely
great.

I suggest determining the form (type) of heterogeneous flow by using the
combination of classifications of two-phase flows with respect to the volume
concentration and Stokes numbers (in averaged, large-scale, and small-scale
fluctuation motion). It appears that it is only in this manner that one can
estimate in advance the presence and intensity of basic interphase interactions
and exchange processes.

Figure 1.8 gives possible varieties of particle-laden flows depending on their
volume concentration [8]. If the volume concentration of disperse impurity is
insignificant (Φ ≤ 10−6), its time average effect on the flow of the carrier
medium is negligible. In heterogeneous flows of this type, the determining
interaction is represented by the effect of the carrier phase on suspended par-
ticles, which defines fully all of their characteristics (averaged and fluctuation
velocities and temperatures, local concentration, etc.). When the volume con-
centration increases (10−6 < Φ ≤ 10−3), the disperse impurity in turn begins
to affect inversely the carrier medium. Heterogeneous flows of these two types
are often referred to as dilute flows. In the case of a dense flow (Φ > 10−3),
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Determining interactions

carrier gas

particles

dilute flow dense flow

F

O(10–9) 100O(10–3)O(10–6)

⇒
carrier gas

particles
⇒

carrier gas

particles
⇒

carrier gas

particles particles
⇒ ⇒

carrier gas

particles
⇒

particles

Fig. 1.8. Classification of heterogeneneous flows by the volume concentration of
particles

the interaction of particles with one another is added to the already described
interactions between suspended particles and the carrier phase.

Table 1.1 gives an indication of possible forms of turbulent flows depend-
ing on the most important dimensionless parameter which characterizes the
particle inertia, namely, the Stokes number (in averaged motion and in large-
scale and small-scale fluctuation motion). Note that, by analogy with other
parameters fluctuating in turbulent flow, the instantaneous (actual) value of
the Reynolds number of a particle R̃ep is taken to consist of averaged (time
constant) Reynolds number Rep and its fluctuation (time varible) component
Re′p : R̃ep(τ) = Rep + Re′p.

Note that the sign of “=” in Table 1.1 is fairly conventional, because it
is clear that inertial particles cannot fully trace either the averaged or, the
more so, fluctuation motion of gas. Therefore, we can assume, for correctness,
that the particle which fully traces the averaged (fluctuation) flow of gas is
a particle whose averaged and fluctuation velocities differ by not more than
1% from the respective velocities of the carrier phase. A similar assumption
should be made in treating the processes of heat transfer.

The suggested classification of turbulent heterogeneous flows is quite uni-
versal. First, it covers the entire range of particle concentrations from the
case of motion of single particles, when their presence has no effect on the
characteristics of flow of carrier gas, to the motion of dense sets of particles,
when the space taken up by the dispersed phase is comparable to the volume
taken up by gas. Second, the classification covers the entire range of particle
inertia from minute particles, whose size is commensurable with that of car-
rier gas molecules, to large stationary particles. In view of the foregoing, this
classification of particles cannot be expanded but can only be refined.

Note that, by virtue of the specific features of such flows referred to in the
foreword, the theoretical approaches and physical and mathematical models
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developed in the mechanics of heterogeneous media may apparently be em-
ployed only in a certain, rather narrow, range of particle concentrations and
inertia. Because of this, the developed classification of heterogeneous flows is
of great methodological and prognostic importance, because it enables one to
determine the “cells,” i.e., classes of flows, for which the currently available
approaches may be acceptable, as well as those for which such approaches are
still to be developed. This will be shown in the second chapter.



2

Mathematical Simulation
of Particle-Laden Gas Flows

2.1 Preliminary Remarks

In studying the processes of motion of disperse impurity in the form of solid
particles and its inverse effect on the characteristics of turbulence of the car-
rier continuum, an important part is played by methods of mathematical
simulation. Numerous modes of flow of gas suspension, an attempt at clas-
sifying which is described in Sect. 1.5, served a basis for the development of
a large number of mathematical models of such flows. In constructing mod-
els of heterogeneous flows of the most diverse classes, investigators always
face an alternative. On the one hand, it is necessary to take into account as
many as possible physical processes occurring in heterogeneous flows, which
often brings about an undue complication of mathematical formalization of
the phenomena being treated. On the other hand, the detailing of a large
number of processes the information about each one of these processes is
not always indisputable may result in a lower reliability of the model being
developed.

It is the objective of this chapter to describe the presently available meth-
ods of mathematical simulation of heterogeneous flows. The models of hetero-
geneous flows of the main types and the characteristic features of simulation
of turbulent particle-laden flows of different classes are treated in Sect. 2.2.
Section 2.3 is devoted to the description of the possibilities of studying the
behavior of solid particles in a turbulent gas flow using two different app-
roaches, namely, stochastic Lagrangian approach and Eulerian continuum
approach. The characteristic features of mathematical simulation of gas flow
in view of the inverse effect of particles on the flow characteristics are treated
in Sect. 2.4.
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2.2 Special Features of Simulation
of Heterogeneous Flows of Different Types

The wide range of presently existing mathematical models of heterogeneous
flows may be divided into two major classes (types). The models of the first
class describe the motion of the carrier gas phase and the motion of a plural-
ity of suspended particles and are based on the Eulerian continuum approach.
The models of the other type are those based on the Eulerian–Lagrangian
description of motion of heterogeneous medium, namely, the equations of mo-
tion of the gas phase are solved in the Eulerian formulation, while the motion
of particles is described by Lagrangian equations which are integrated along
their trajectories.

It is clear that attempts at making an adequate description of the entire
diversity of heterogeneous flows using models of both types mentioned earlier
are hardly justified. Therefore, for certain classes of flows (see Sect. 1.5), which
are first of all characterized by the concentration of disperse impurity and its
inertia (Stokes number), models of one or the other type must be preferred.

We will consider briefly the advantages and limitations of the Eulerian
(two-fluid) and Eulerian–Lagrangian models of description of gas–solid flows
[28,52,58].

The advantage of two-fluid models is the use of like equations for the
description of the gas and dispersed phases. This enables one to utilize the rich
experience of simulation of single-phase turbulent flows and apply the same
numerical methods of solving the entire set of equations. The disadvantages of
such models include some “loss” of information about the motion of individual
particles, as well as the difficulties in the formulation of boundary conditions
for the dispersed phase on surfaces which bound the flow.

We will now turn to the Eulerian–Lagrangian models. The advantage of
these models consists in the possibility of obtaining detailed statistical infor-
mation about the motion of individual particles as a result of integration of
equations of motion (heat transfer) of particles in a known (pre-calculated)
velocity (temperature) field of carrier gas. However, as the concentration of
the dispersed phase increases, difficulties arise which are associated with the
use of the Eulerian–Lagrangian models. Two aspects may be identified in this
respect. First, the concentration increase leads to the inverse effect of parti-
cles on the carrier gas parameters, and the calculations need to be performed
in several iterations; as a result, the computation procedure is complicated.
Second, the concentration increase causes a rise of the probability of particle
collisions with one another, which brings about entanglement of their trajec-
tories. As the particle size decreases, the use of trajectory methods for the
calculation of particle motion is also complicated. This is associated with the
fact that it is necessary to take into account the interaction between the parti-
cles and turbulent eddies of ever smaller dimensions in order to obtain correct
information about the averaged characteristics of the dispersed phase. The
latter fact further complicates the computations.
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Flows of two extreme classes exist (see Sect. 1.5), namely, flows with par-
ticles of extremely low inertia (the case of equilibrium flow) and flows with
an extremely low concentration of the dispersed phase (the mode with single
particles, in which their presence has no effect on the carrier gas flow). Simpli-
fied mathematical models may be employed for flows of these classes, namely,
a one-velocity one-temperature diffusion model (Eulerian approach) for low-
inertia particles and a single-particle approximation (Lagrangian approach)
for a low-concentration flow.

In the case of increasing concentration and inertia of particles, it is not
a simple problem to choose between two types of models of heterogeneous
flows. Therefore, the types of heterogeneous flows which are most complex
from the standpoint of mathematical simulation are flows of “intermediate”
classes. According to the classification given earlier (see Sect. 1.5), such flows
are nonequilibrium flows and flows with large particles at moderate values of
volume concentration of the dispersed phase, when the presence of particles
affects all (without exception) characteristics of carrier gas.

Treating the hydrodynamics of flows of a special class such as the flow
past a stationary “frozen” particle (see Sect. 1.5), a peculiar analog of which
is the flow of a single-phase liquid (gas) past tube bundles, falls outside of the
scope of this monograph.

When one tries to use two-fluid models, the question arises first of all
whether it is possible to use the methods of continuum dynamics to describe
the motion of a plurality of particles [39]. A continual description for an
ensemble of particles is possible in the case where a geometric scale may
be indicated which, on the one hand, is negligible compared to the scale of
variation of the flow parameters and, on the other hand, is large enough to
contain a significant number of particles which permits a correct determina-
tion of their averaged parameters [10]. We will make the simplest estimates
which enable one to determine such a geometric scale for a heterogeneous flow
with particles of diameter dp and volume concentration Φ. For this purpose,
we will treat an element of flow in the form of a cube with edge a, which con-
tains Np particles. The expression for the volume concentration of particles
will be written as:

Φ =
πd3

pNp

6a3
. (2.1)

We use (2.1) to find the formula for the ratio of the cube edge to the
particle diameter,

a

dp
= 3

√

πNp

6Φ
. (2.2)

The dependence of the relative dimension of the edge of a cube containing
Np particles on the value of the volume concentration of the dispersed phase,
obtained by relation (2.2), is given in Fig. 2.1. The calculations were performed
for two values of the number of particles in the flow volume of interest to us,
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Fig. 2.1. The relative dimension of the edge of a cube as a function of the value of
the volume concentration of particles: (1) Np = 10, (2) Np = 100

Np = 10 and 100. Obviously, the relative fluctuation of distributed density
of the dispersed phase in the volume being treated increases with decreasing
number of particles and reaches several percent at Np = 100. If the foregoing
error in determining the particle density is inadequate, a plurality of particles
cannot be regarded as a continuum on scales comparable to a or lower. In this
case, the motion of particles cannot be described by the methods of continuum
dynamics.

The data given in Fig. 2.1 indicate that the scale a increases with decreas-
ing volume concentration of particles and with increasing particle size. For
example, for particles 50 µm in diameter (Φ = 10−3), the scale is a ≈ 1.9mm,
and for particles 100 µm in diameter (Φ = 10−4) − a ≈ 8mm.

Therefore, the general tendency is as follows: as the concentration of par-
ticles increases and their inertia decreases, the Eulerian continuum approach
turns out to be preferable for use in describing the dynamics of disperse
impurity.

2.3 Description of Motion of Solid Particles
Suspended in Turbulent Flow

The motion of particles suspended in a turbulent gas flow may be calculated
both within the frame of stochastic Lagrangian approach and using Eulerian
continuum approach.

2.3.1 Lagrangian Approach

The study of regularities of the behavior of particles in the known velocity
field of the carrier phase is of interest per se when calculating weakly dusty
flows without the inverse effect of the dispersed phase on the characteristics
of gas and may also be an integral part of the process of construction of
complex mathematical models for the description of heterogeneous flows of
most diverse classes.
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The Lagrangian equation of instantaneous motion of a single solid particle
in a turbulent gas flow has the form:

ρp

πd3
p

6
dvi

dτ
=
∑

i

fi(rp, τ), (2.3)

where fi(rp, τ) denotes the external forces acting on the particle, and rp is
the particle coordinate.

The main force factors affecting the motion of the dispersed phase will be
treated later.

Aerodynamic Drag Force

This force arises due to the difference between the velocity of gas and the veloc-
ity of a particle moving in this gas (see Fig. 2.2). The effect of the aerodynamic
drag force causes the particle acceleration if U > V and, on the contrary, the
deceleration in the case of U < V . The expression for aerodynamic force has
the form:

−→
F A = CDρ

πd2
p

4
|−→U −−→

V |(−→U −−→
V )

2
, (2.4)

where the particle drag coefficient in the case of incompressible flow is a
function of the Reynolds number, i.e., CD = CD(Rep). The graph of this
dependence is often referred to as standard drag curve. Numerous formu-
las are available in the literature, which approximate this curve for different
ranges of the Reynolds number [39,46]. For low values of the Reynolds number
(Rep < 1), the well-known Stokes formula is valid,

CD =
24

Rep
, Rep =

|−→U −−→
V |dp

ν
. (2.5)

The equation of averaged motion of a Stokesian particle has the form

dVi

dτ
=

Ui − Vi

τp0
(2.6)

U
V

FA U

V

FA

Fig. 2.2. A scheme of particle motion under the effect of the aerodynamic drag
force
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where τp0 is the time of dynamic relaxation of the Stokesian particle (see
Sect. 1.4).

As the Reynolds number increases (Rep ≥ 1), the value of the particle
drag coefficient deviates from the Stokes law toward higher values, while the
particle relaxation time, on the contrary, decreases. For taking this fact into
account, the correction function C = C(Rep) is introduced. The values of this
function are given in Sect. 1.4. Expression (2.6) takes the following form for a
non-Stokesian particle:

dVi

dτ
=

Ui − Vi

τp
, (2.7)

where τp = τp0/C.
Equation (2.7) of averaged motion of a non-Stokesian particle is very

approximate, because it does not include the effect of turbulent fluctuations
of the carrier phase.

Note that the standard curve describes the drag of single smooth spherical
particles during their uniform motion in a laminar flow of liquid (gas). The
problems associated with the inclusion of the effect made on the drag of the
dispersed phase by the asphericity of particles, by the state of their surface, by
the degree of flow turbulence, by the concentration and geometric constraint
of motion, and by other factors, were treated in [39,46].

Gravity Force

Along with the aerodynamic drag force, this force is one of the most important
force factors defining the dynamics of particles. The expression for gravity
force has the form:

−→
F g = ρp

πd3
p

6
−→g . (2.8)

The effect of gravity force on particle motion will be significant, and its
inclusion is necessary in the case where the free-fall velocity of particles and
the velocity of flow in which they are suspended are quantities of the same
order of magnitude.

Saffman Force

This force arises because of the nonuniformity of the profile of averaged velo-
city of carrier gas. The difference between the relative velocities of flow past
a particle on different sides results in the emergence of a pressure difference.
The particle will move toward lower pressure (see Fig. 2.3). The value of the
Saffman force acting on a particle during its motion in a laminar flow with a
linear velocity profile is determined as follows [38]:

FS = kSν1/2ρd2
p(Ux − Vx)

(

dUx

dr

)1/2

. (2.9)
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Fig. 2.3. A scheme of transverse migration of a particle in a nonuniform flow under
the effect of the Saffman force
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Fig. 2.4. A scheme of migration of a rotating particle under the effect of the Magnus
force

In the case of Ux/(ν dUx/dr)1/2 � 1, the value of the coefficient in (2.9)
is kS = 1.61.

The Saffman force may have a significant effect on the particle motion in
the wall region where high gradients of averaged velocity of carrier gas are
observed.

Magnus Force

Its emergence is due to the particle rotation. During their motion in a gas
flow, particles of complex shape (aspherical) always rotate. As to spherical
particles, they will also rotate in a flow with a nonuniform velocity profile.
A rotating particle entrains the gas. As a result, the pressure on the side
where the directions of flow past the particle and rotation of gas elements
coincide becomes lower compared to the region in which these directions
are opposite. Therefore, the particle will move toward lower pressure (see
Fig. 2.4). The magnitude of the force acting on a particle during its rotation
in a laminar flow with a uniform velocity profile at Rep = |−→W |dp/ν � 1 and
Reω = |−→ω p|d2

p/ν � 1 is defined by the following expression [37]:

−→
F M = kMρ

(

dp

2

)3

(
−→
W ×−→ω p). (2.10)

Here, ωp is the rotational velocity of the particle. For the foregoing values
of the Reynolds number, the coefficient in (2.10) is kM = π. For the other
limiting case of high values of the Reynolds number (Rep → ∞, Reω → ∞),
this coefficient becomes kM = 8π/3 [34].
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For the range of moderate values of the Reynolds number, the following
expression may be recommended for the calculation of the coefficient [55]:

kM = 0.534Re−0.64
ω Re0.715

p . (2.11)

The use of relation (2.11) enables one to describe the majority of available
calculation and experimental data in the Reynolds number range of 590 <
Reω < 45, 000 and 360 < Rep < 13, 500.

Shraiber et al. [39] analyzed the effect of the Magnus force on the par-
ticle motion. They showed the Magnus force to be almost always less than
the Saffman force. Nevertheless, it is wrong to ignore the transverse shift of
particles due to the effect of the Magnus force in high-velocity flows in which
high gradients of gas velocity are realized and, consequently, high rotational
velocities of particles.

Turbophoresis Force

This force arises because of the nonuniformity of the profile of fluctuation velo-
city of carrier gas. The gradient of the profile of the transverse component of
fluctuation velocity of gas (see Sect. 1.3) leads to a directional shift of a particle
toward decreasing intensity of fluctuations (see Fig. 2.5). The expression for
the turbophoresis force acting on a particle has the form [31]

FTu = −1
2
ρp

πd3
p

6
∂u′2

r

∂r
. (2.12)

This force may bring about a significant transverse displacement of a
particle during its motion in the wall region.

Thermophoresis Force

This force arises as a result of the nonuniformity of the temperature profile of
carrier gas. The gas molecules make a more intense force effect on a particle
on its higher-temperature side. Therefore, the particle tends to move from

FTu FTu

ur
′ 2ur

′ 2

Fig. 2.5. A scheme of displacement of a particle in a nonuniform field of fluctuation
velocity of gas under the effect of the turbophoresis force
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FT FT

TT

Fig. 2.6. A scheme of motion of a particle in a nonuniform temperature field under
the effect of the thermophoresis force

the more heated to less heated regions (see Fig. 2.6). The expression for the
thermophoresis force acting on a particle of low thermal conductivity has the
form [19]:

FT = − 4.5ρν2dpλ

T (2λ + λp)
∂T

∂r
. (2.13)

More theoretical formulas have been suggested for determining the value of
thermophoretic force. The most complete inventory of the available relations
is found in [31,43].

Note a very important point. One must know the instantaneous values
of forces in order to calculate the actual velocity of particles in accordance
with (2.3). The foregoing formulas make it possible to determine only some
averaged values of the force factors acting on the particles, because they fully
ignore the turbulent fluctuations of gas velocity (temperature). The question
of the effect of turbulence of the dispersed phase on magnitude of the forces
remains open.

Shraiber et al. [39] and Gavin and Shraiber [22] tried to determine the
fluctuation values of forces by applying the Reynolds procedure and using the
thus derived expressions to construct equations of fluctuation motion and heat
transfer of particles. However, the expressions obtained for the averaged and
fluctuation values of forces are, in my opinion, too cumbersome and cannot
be recommended for use.

Lagrangian Equations of Fluctuation Motion
and Heat Transfer for Particles

For the case where the main effect on the particle motion is made by the
aerodynamic drag and gravity forces, the Lagrangian equations of motion
and heat transfer have the form

dvi

dτ
=

ui − vi

τp
± g, (2.14)

dtp
dτ

=
t − tp

τt
. (2.15)
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We will derive equations of fluctuation motion and heat transfer for inertial
particles. The difficulties associated with the construction of such equations
for the case of nonlinear law of aerodynamic drag were treated in detail by
Shraiber et al. [39]. The developed approach to the derivation of fluctuation
equations for the dispersed phase is based on the application of the Reynolds
procedure to actual Lagrangian equations for particles. The results given later
were borrowed from [48, 51], where the method described earlier was used to
derive and analyze the approximate one-dimensional equations for fluctuations
of velocity and temperature of the dispersed phase during the realization of
heterogeneous flows of different classes.

We will make the following assumptions for analysis (1) the case of weakly
dusty flows is treated, where the particles have little effect on one another;
(2) the particles have a spherical shape; (3) the particle motion is defined
by the effect of only two force factors, namely, the aerodynamic drag and
gravity forces; (4) the fluctuations of the physical properties of carrier gas
are ignored; (5) assumption is made of the additivity of the averaged and
fluctuation dynamic slip between the phases in determining the instantaneous
value of the particle drag coefficient; (6) the heat transfer between the particles
and the carrier phase is defined by the convection component alone; and (7)
the temperature gradient within a particle is negligible.

We will rewrite the equations of one-dimensional motion and heat transfer
of a particle (2.14) and (2.15) in instantaneous (actual) variables as:

dvx

dτ
=

ux − vx

τp
± g, (2.16)

dtp
dτ

=
t − tp

τt
, (2.17)

where

τp =
τp0

C
=

ρpd2
p

18µC
, C = 1 +

1
6
R̃e

2/3

p ,

R̃ep =
|ux − vx|dp

ν
, τt =

τt0

C1
=

Cpρpd2
p

12λC1
,

C1 = 1 + 0.3 R̃e
1/2

p Pr1/3, R̃ep ≤ 103.

We will represent the actual velocities and temperatures of the particle
and carrier gas in the form of sums of respective averaged and fluctuation
components,

vx = Vx + v′
x, (2.18)

ux = Ux + u′
x, (2.19)

tp = Tp + t′p, (2.20)
t = T + t′. (2.21)
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We will treat the instantaneous Reynolds number of the particle similarly,

R̃ep = Rep + Re′p, (2.22)

where Rep = |Ux−Vx|dp
ν and Re′p = |u′

x−v′
x|dp

ν .
We will substitute (2.18)–(2.22) into (2.16) and (2.17) and perform the

averaging procedure on the resultant equations. The equations of averaged
motion and heat transfer of the dispersed phase will take the form:

dVx

dτ
=

Ux − Vx

τp0
+

1
6τp0

[

(Ux − Vx)(Rep + Re′p)2/3

+(u′
x − v′

x)(Rep + Re′p)2/3
]

± g, (2.23)

dTp

dτ
=

T − Tp

τt0
+

0.3Pr1/3

τt0

[

(T − Tp)(Rep + Re′p)1/2

+(t′ − t′p)(Rep + Re′p)1/2
]

. (2.24)

We will subtract (2.23) and (2.24) term-by-term from (2.16) and (2.17),
respectively, in view of the substitution of (2.18)–(2.22) into the latter equa-
tions, to derive equations of fluctuation motion and fluctuation heat transfer
for particles,

dv′
x

dτ
=

u′
x − v′

x

τp0
+

Ux − Vx

6τp0

[

(Rep + Re′p)2/3 − (Rep + Re′p)2/3
]

+
1

6τp0

[

(u′
x − v′

x)(Rep + Re′p)2/3 − (u′
x − v′

x)(Rep + Re′p)2/3
]

,

(2.25)

dt′p
dτ

=
t′ − t′p

τt0
+

0.3Pr1/3

τt0

{

(T − Tp)
[

(Rep + Re′p)1/2 − (Rep + Re′p)1/2
]

+
[

(t′ − t′p)(Rep + Re′p)1/2 − (t′ − t′p)(Rep + Re′p)1/2
]

}

. (2.26)

It is difficult to use the resultant equations of fluctuation motion and heat
transfer for particles (2.25) and (2.26), as well as the respective averaged
equations (2.23) and (2.24), for calculations by virtue of indeterminacy of
the correlation terms. In [48, 51], (2.25) and (2.26) for particle-laden flows of
different classes were analyzed (see Sect. 1.5). The results obtained in [48,51]
will be given later.

Quasiequilibrium flow. We will treat two possible versions of realization of
quasiequilibrium flow. The first version involves a flow with a low fluctuation
slip of particles (Re′p < 1). In this case, the drag of particles obeys the Stokes
law. The second version involves a flow with a relatively high slip of the
dispersed phase in fluctuation motion (1 ≤ Re′p < 1,000). For this case, the
correction to the Stokes law of resistance must be taken into account.
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In view of the fact that, in the case of quasiequilibrium flow, the averaged
dynamic and thermal slip is zero (Rep = 0, T − Tp = 0), (2.25) and (2.26)
may yield, for the case of Stokesian particles [48,51],

dv′
x

dτ
=

u′
x − v′

x

τp0
, (2.27)

dt′p
dτ

=
t′ − t′p

τt0
. (2.28)

Approximate equations of fluctuation motion and heat transfer for parti-
cles for the case where the fluctuation slip is significant have the form [48,51]

dv′
x

dτ
=

u′
x − v′

x

τp0

(

1 +
1
6

Re′ 2/3
p

)

, (2.29)

dt′p
dτ

=
t′ − t′p

τt0

(

1 + 0.3Re′ 2/3
p Pr1/3

)

. (2.30)

Nonequilibrium flow. In this case, it does not appear possible to ignore the
interphase slip in averaged or fluctuation motion, because the values of slip
in these motions often turn out to be of the same order of magnitude, i.e.,
O(Re′p/Rep) = 1.

In view of assumptions made in [48, 51] and in order to simplify analysis
of the correlation terms, the approximate equations of fluctuation motion and
heat transfer (2.25) and (2.26) for nonequilibrium flow take the form:

dv′
x

dτ
=

u′
x − v′

x

τp0

[

1 +
1
6

(Rep + Re′p)2/3

]

, (2.31)

dt′p
dτ

=
t′ − t′p

τt0

[

1 + 0.3 (Rep + Re′p)1/2Pr1/3
]

. (2.32)

It follows from (2.31) and (2.32) that the averaged slip causes an increase
in the fluctuation velocity and temperature of particles.

Flow with large particles. Under conditions of this flow, the averaged slip
between the phases is far beyond the fluctuation slip, i.e., Re′p/Rep → 0. In
this case, the inertia of particles is so high that they hardly take part either
in fluctuation motion (v′

x = 0) or in fluctuation heat transfer (t′p = 0). The
following trivial notation of (2.25) and (2.26) was obtained in [48, 51], using
some assumptions, for flows of this class:

dv′
x

dτ
= 0, (2.33)

dt′p
dτ

= 0. (2.34)

The foregoing approximate equations of fluctuation motion and fluctu-
ation heat transfer for particles are of interest per se and may be used to
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determine the fluctuation velocity and temperature of particles. For this pur-
pose, the resultant equations are integrated with respect to time. This time
is the minimal of three times [49, 54, 56], namely, (1) the time of dynamic
(thermal) relaxation of particles, (2) the time of interaction between particles
and energy-carrying turbulent eddies of carrier gas, and (3) the lifetime of
turbulent eddy.

At first glance it would seem that the obtained relations may also be
employed to construct equations for correlations associated with the dispersed
phase. Such correlations are present in equations which describe the carrier
gas motion (see Sect. 2.4). It is necessary to calculate these correlations for
assessing the inverse effect of particles on the parameters of gas flow. How-
ever, equations of motion of the carrier medium are written using the Eulerian
continuum approach. Consequently, the correlations appearing in these equa-
tions must also be derived using Euler’s method [39]. As to the method of
constructing equations of fluctuation motion and heat transfer for particles,
which is described earlier, it is purely Lagrangian; therefore, the resultant
equations cannot be used to study the inverse effect of particles within the
Eulerian approach.

The possibilities of using the Lagrangian trajectory method for studying
the behavior of particles in turbulent gas flows may be well illustrated by
studies [40–42].

2.3.2 Eulerian Continuum Approach

We will now consider the presently existing approaches to the construction
of continuum equations of particle motion and analyze the singularities of
the description of behavior of the dispersed phase for heterogeneous flows of
different classes.

Equations describing the averaged motion and heat transfer of particles are
written by analogy with the equations for gas (1.6)–(1.8). The set of equations
for the dispersed phase also turns out to be nonclosed, because the equations
contain second moments for the fluctuations of velocity v′

iv
′
j , as well as of

velocity and temperature v′
jt

′
p of particles, similar to Reynolds stresses and

turbulent heat flux in gas. Based on the experience of studying single-phase
flows, various models are used for closing the set of averaged equations of
motion and heat transfer for particles. The best known are the algebraic and
differential models.

Two basic approaches exist to determining the correlations of velocity of
the dispersed phase within the algebraic models. According to the first ap-
proach, the correlation moments are expressed directly in terms of Reynolds
stresses of the carrier flow [23,26],

v′
iv

′
j = Au′

iu
′
j , (2.35)

where A is the function of involvement of particles in the fluctuation motion
of gas.
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Expression (2.35) is valid for relatively small particles (quasiequilibrium
flow) under conditions of uniform distribution of the averaged velocity of the
dispersed phase in the flow.

The second method of determining turbulent stresses in the dispersed
phase is by using gradient relations of the Boussinesq type for single-phase
flow [11],

v′
iv

′
j = −νp

(

∂Vi

∂xj

)

, (2.36)

or in the form [32,52]

v′
iv

′
j = −νp

(

∂Vi

∂xj
+

∂Vj

∂xi
− 2

3
∂Vk

∂xk
δij

)

+
2
3
kpδij , (2.37)

where νp is the coefficient of turbulent viscosity of the dispersed phase. Various
methods of determining νp are described in the literature [32,52].

Along with the algebraic models, the differential models are extensively
employed at present to describe the turbulent momentum and heat transfer in
the dispersed phase. These models are based on the use of equations of energy
balance of fluctuations of the dispersed phase or of the second moments of
fluctuations of particle velocity and temperature.

A consistent method of constructing Euler’s equations of motion and heat
transfer for the dispersed phase in a turbulent flow is the method based on
the use of a kinetic equation for the probability density function (PDF) of
particle velocity and temperature [12, 13, 35, 57]. According to this approach,
the probability density of particle distribution by coordinates −→x , velocities−→v , and temperatures tp is introduced for making a transition from stochastic
equations of the Langevin type (such as equations of instantaneous motion
and heat transfer for a single particle) to a kinetic equation for a plurality of
particles,

P (−→x ,−→v , tp, τ) = δ(−→x −−→r p(τ))δ(−→v −−→v p(τ))δ(t − tp(τ)) , (2.38)

where averaging is performed over realizations of random fields of velocity and
temperature of carrier gas. Then, the differentiation of (2.38) with respect to
time in view of representation of the gas velocity and temperature in the
instantaneous equations of motion and heat transfer for particles in the form
of sums of averaged and fluctuation components is used to derive the equation
for probability density. Then, the equation for the PDF of particle distribution
by coordinates, velocities, and temperatures is used to construct equations for
averaged concentration, velocity, and temperature of particles, which have the
form [52]:

∂Φ

∂τ
+
∑

j

∂ΦVj

∂xj
= 0, (2.39)
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∂Vi

∂τ
+
∑

j

Vj
∂Vi

∂xj
= −
∑

j

∂v′
iv

′
j

∂xj
+

Ui − Vi

τp
−
∑

j

Dpij

τp

∂ ln Φ

∂xj
, (2.40)

∂Tp

∂τ
+
∑

j

Vj
∂Tp

∂xj
= −
∑

j

∂ν′
jt

′
p

∂xj
+

T − Tp

τt
−
∑

j

Dt
pj

τt

∂ ln Φ

∂xj
, (2.41)

where

v′
iv

′
j =

1
Φ

∫∫

v′
iv

′
jPdνdtp, v′

jt
′
p =

1
Φ

∫∫

v′
jt

′
pPdνdtp,

Dpij = τp(v′
iv

′
j + gpu′

iu
′
j), Dt

pj = τtv′
jt

′
p + τpgptu′

jt
′,

gp =
TpL

τp
− 1 + exp(−TpL/τp),

gpt =
TpLt

τp
− 1 + exp(−TpLt/τp).

Here, TpL and TpLt denote the time of interaction of particles with energy-
intensive fluctuations of velocity and temperature, respectively. For an iner-
tialess impurity,

TpL = TL, TpLt = TLt, (2.42)

where TL and TLt are the time scales of fluctuations of velocity and tempera-
ture of gas, respectively.

In the case of nonequilibrium flow, where the averaged and dynamic slips
between the gas and particles become significant, the times of interaction with
fluctuations of the carrier flow may differ significantly from the respective
scales of fluctuations of the carrier phase.

The set of (2.39)–(2.41) is not closed, because the equations include the
turbulent stresses v′

iv
′
j and the turbulent heat flux v′

jt
′
p in the dispersed phase,

associated with the involvement of particles in the fluctuation motion, as well
as turbulent diffusion fluxes of momentum and heat arising because of the
nonuniformity of the particle concentration.

Volkov et al. [52] developed a mathematical description of the processes
of momentum and heat transfer in the dispersed phase of different levels of
detail. A closed set of equations is given on the level for the third moments.
In this case, the fourth moments of fluctuation characteristics, which appear
in equations for the third moments, are expressed approximately in terms
of the sum of products of the second moments [52]. Triple correlations must
be determined in order to describe the hydrodynamics and heat transfer of
the dispersed phase on the level of equations for the second moments. For
this purpose, Volkov et al. [52] further used equations for the third moments;
the simplification of these equations by ignoring small terms enables one to
find algebraic relations for triple correlations which contain only the second
moments. The computational scheme may be further simplified by replacing
the equations for the second moments of velocity fluctuations by a single
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differential equation for the energy of fluctuations of the dispersed phase,
which has the following form [52]:

∂kp

∂τ
+
∑

j

Vj
∂kp

∂xj
= − 1

Φ

∑

j

∂Φv′
iv

′
iv

′
j

2∂xj
−
∑

j

∑

i

v′
iv

′
j

∂Vi

∂xj
+

2
τp

(fuk−kp), (2.43)

where kp = 1
2

∑

i

v′
iv

′
i is the energy of fluctuations of particle velocity.

In a steady-state uniform flow or for small particles (quasiequilibrium
flow), (2.43) yields kp = fuk, where fu = (1 + StkL)−1. In this case, (2.39)
and (2.40) in view of relation (2.37) give a description of momentum transfer
in the dispersed phase on the level of equations for the first moments.

2.4 Description of Motion of Gas
Carrying Solid Particles

We will treat the motion of gas in the presence of particles when the particles
start making an inverse effect on the gas characteristics. The equations of
continuity, motion, and energy for the gas phase with a relatively low content
of particles (ϕ � 1) in the absence of external mass forces have the form:

∑

j

∂uj

∂xj
= 0, (2.44)

∂ui

∂τ
+
∑

j

uj
∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν
∑

j

∂2ui

∂xj∂xj
− ρpϕ

ρ

(ui − vi)
τp

, (2.45)

∂t

∂τ
+
∑

j

uj
∂t

∂xj
= a
∑

j

∂2t

∂xj∂xj
− Cppρpϕ

Cpρ

(t − tp)
τt

. (2.46)

The continuity equation (2.44) has a similar form as (1.1) for a single-
phase flow. Equations (2.45) and (2.46) differ from the respective equations
of motion and energy for a single-phase gas (1.2) and (1.3) by the presence
in their right-hand parts of terms which take into account the dynamic and
thermal effect of the dispersed phase on the carrier flow.

We will average (2.44)–(2.46) over time. In so doing, we will follow the
well-known method of averaging in the theory of single- phase flows of variable
density [25], as well as the PDF-based method of constructing equations for
the dispersed phase [52], and assume ϕ′v′

i = ϕ′t′p = 0. The averaged equations
of continuity, motion, and energy have the form:

∑

j

∂Uj

∂xj
= 0, (2.47)
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∂Ui

∂τ
+
∑

j

Uj
∂Ui

∂xj
= −1

ρ

∂P

∂xi
+ ν
∑

j

∂2Ui

∂xj∂xj
−
∑

j

∂(u′
iu

′
j)

∂xj

−ρpΦ

ρ

(Ui − Vi)
τp

− ρpϕ′u′
i

ρτp
, (2.48)

∂T

∂τ
+
∑

j

Uj
∂T

∂xj
= a
∑

j

∂2T

∂xj∂xj
−
∑

j

∂(u′
jt

′)
∂xj

−CppρpΦ

Cpρ

(T − Tp)
τt

− Cppρpϕ′t′

Cpρτt
. (2.49)

Equations (2.48) and (2.49) indicate that the inverse effect of particles on
the motion and heat transfer of carrier gas is defined by the averaged dynamic
and thermal slip of the dispersed phase, as well as by the fluctuations of the
particle concentration. Note that the contribution made by the penultimate
and last terms of the right-hand parts of (2.48) and (2.49) will be determining
for the case of flow with large particles and quasiequilibrium heterogeneous
flow, respectively (see Sect. 1.5). In the case of nonequilibrium heterogeneous
flow, where the averaged and fluctuation dynamic and thermal slip occurs
between the phases, it is necessary to take into account the contribution by
all of the above-identified terms of equations of motion and energy.

We will treat the case where the distributions of averaged velocities
and concentrations of the dispersed phase are known. In order to close the set
of averaged equations, one must know the turbulent stresses of gas u′

iu
′
j and

the turbulent heat flux u′
jt

′, as well as the correlations of the fluctuations of
particle concentration with the fluctuations of gas velocity and temperature
ϕ′u′

i and ϕ′t′ which may be represented as follows [14,15]:

ϕ′u′
i = −τpgpu′

iu
′
j

∂Φ

∂xj
, (2.50)

ϕ′t′ = −τpgptu′
jt

′ ∂Φ

∂xj
, (2.51)

where

gp = TpL/τp − 1 + exp(−TpL/τp), gpt = TpLt/τp − 1 + exp(−TpLt/τp).

One can subtract (2.47)–(2.49) from (2.44)–(2.46), respectively, and derive
the fluctuation equations of continuity, motion, and energy of the gas phase
in the presence of particles,

∑

j

∂u′
j

∂xj
= 0, (2.52)
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(2.53)
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[
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∂xj
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∂xj
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∂(u′
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]

= a
∑

j
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+
∑
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∂(u′
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τt

− Cppρpϕ′

Cpρ

[(T − Tp) + (t′ − t′p)]
τt

+
Cppρpϕ′t′

Cpρτt
. (2.54)

The fluctuation equation of continuity (2.50) has a form similar to that
of the respective (1.9) for a single-phase flow. Equations (2.53) and (2.54)
differ from analogous equations of motion and energy for single-phase gas
(1.10) and (1.11) by the presence in their right-hand parts of terms which
take into account the dynamic and thermal effect of the dispersed phase on the
carrier flow. These equations indicate that the inverse effect of particles on the
fluctuation motion and heat transfer of carrier gas is defined by the fluctuation
and averaged dynamic and thermal slip of the dispersed phase, as well as
by the fluctuations of the particle concentration. Note that the contribution
made by the penultimate terms of the right-hand parts of (2.53) and (2.54)
will be determining for the case of flow with large particles characterized by a
significant difference of the averaged velocities and temperatures between the
phases.

We will derive the equation for the second moments of fluctuations of
velocity of the carrier phase in the presence of particles by analogy with the
case of single-phase flow in Sect. 1.2. We will first replace j by k in (2.53) for
u′

i and multiply both parts of the resultant equation by u′
j ,

u′
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∂u′
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i
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. (2.55)
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We will write a similar equation for u′
j and multiply both its parts by u′

i,
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∂u′
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′
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. (2.56)

We will combine (2.55) and (2.56) term-by-term and perform averaging. As
a result, the equation of transport of turbulent stresses of gas in the presence
of particles takes the form:
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. (2.57)

Equation (2.57) differs from the similar equation for single-phase gas (1.14)
by the presence in the right-hand part of the last group of terms which take
into account the dynamic effect of the dispersed phase on the carrier flow.
The inverse effect of particles on the balance of Reynolds stresses of carrier
gas is caused by the fluctuation and averaged slip of the dispersed phase, as
well as by the fluctuations of particle concentration.

The set of (2.47), (2.48), (2.50), and (2.57) turns out to be nonclosed,
because (2.57) includes unknown triple correlations of fluctuations of the
carrier phase velocities, as well as the correlations associated with the fluctu-
ations of concentration and velocity of the dispersed phase. Various models
are used to derive the closed set of equations describing the averaged motion
of gas in the presence of particles. Most extensively employed (similar to
the theory of turbulent single-phase flows) are algebraic, one-parameter, and
two-parameter models.

2.4.1 Algebraic Models

The concepts of the Prandtl semiempirical theory of turbulence are usually
used in models of this type (see Sect. 1.2). In his pioneering study, Abramovich
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[1] used the mixing length theory to determine the fluctuation velocities of
gas and particles. The thus developed model is based on the equation of con-
servation of momentum of turbulent eddy and particles moving in this eddy,
as well as on the equation of fluctuation motion of particles within the eddy.
It is assumed that that low-inertia particles are entrained in the fluctuation
motion by turbulent eddies of the carrier phase; as a result, the fluctuation
velocity of gas decreases. The obtained values of fluctuation velocities of gas
and particles are used to find correlations by multiplying together the res-
pective fluctuation quantities, which makes this method very approximate.
Models of this type were developed further in [2–5,24,27,29,50,59].

2.4.2 One-Parameter Models

The widest acceptance (similar to the case of single-phase flow) was received
by the model based on the equation for turbulent energy.

In order to construct the equation of transport of turbulent energy of gas
in the presence of particles, the equation of fluctuation motion (2.53) must be
multiplied by u′

i, summed over i, and then averaged. The resultant equation
will have the form
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iv
′
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. (2.58)

In accordance with the equation of transport of turbulent energy of single-
phase gas (1.24), (2.58) may also be rewritten in a condensed form,

Dk

Dτ
= D + P − ε − εp, (2.59)

where the additional dissipation εp caused by the presence of particles has the
form:

εp =
∑

i

ρp

ρτp

[

Φ(u′
iu

′
i − u′

iv
′
i) + ϕ′u′

i(Ui − Vi) + (ϕ′u′
iu

′
i − ϕ′u′

iv
′
i)
]

. (2.60)

The terms on the right-hand side of (2.60) are responsible for the dis-
sipation of turbulent energy caused by the fluctuation interphase slip, the
correlation of the fluctuations of particle concentration with the fluctuation



2.4 Description of Motion of Gas Carrying Solid Particles 47

velocity of carrier gas, and the presence of averaged dynamic slip, as well
as by the correlations of the fluctuations of particle concentration and the
fluctuation velocities of the phases, respectively.

The authors of a number of studies (for example, [17, 20, 21]) tried to
estimate the terms in the right-hand part of (2.60) for particle-laden flows
of different types. It was demonstrated that, in flows with relatively inertial
particles (StkL ≥ 1), the fluctuations of concentration of the dispersed phase
do not correlate with the field of fluctuation velocity of gas. This implies
the smallness of the second and third terms of the right-hand part of (2.60)
compared to its first term. Therefore, in the case of the quasiequilibrium
and nonequilibrium flows (see Table 1.1), the first term on the right-hand
side of (2.60) will play the determining part in the process of dissipation of
turbulence. In the case of a flow with large particles which are not entrained
in the fluctuation motion by energy-carrying eddies of the carrier phase, the
expression for εp may be written as:

εp =
∑

i

ρpΦ

ρτp
u′

iu
′
i =

2Mk

τp
. (2.61)

Note that, in the case of a flow with large particles whose relaxation time
is significant, the value of additional dissipation of turbulent energy will be
negligible compared to other terms of (2.58).

As was demonstrated by the experimental results, the presence of large
particles in the flow may cause additional generation (production) of turbu-
lence of the carrier gas. This mechanism is in no way taken into account in
writing (2.45). We will write (2.59) as:

Dk

Dτ
= D + P − ε + Pp − εP, (2.62)

where Pp is the term responsible for the additional production of turbulent
energy because of the presence of the dispersed phase. Therefore, the inclusion
of the modification of turbulence in heterogeneous flows presumes a correct
description of the terms of (2.62) responsible for the generation (Pp) and
dissipation (εp).

A mathematical model is given in Sect. 4.3, which describes the processes
of additional dissipation of turbulence by low-inertia particles (quasiequilib-
rium flow) and of additional generation of turbulence in wakes behind moving
particles (flow with large particles). Analysis was performed in a diffusionless
(algebraic) approximation, i.e., disregarding the contribution by the diffusion
term D to (2.62). The effect of particles on the steady-state hydrodynami-
cally developed pipe flow is treated; for this flow, the left-hand part of (2.62)
goes to zero. In addition, for the purpose of deriving simple analytical rela-
tions, analysis was made for moderate values of particle concentration, when
the effect of particles on the distribution of averaged velocity of the carrier
gas was minor. As a result, expressions for the source terms εp and Pp were
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derived and used to find two complexes of physical parameters responsible for
the dissipation and generation of turbulent energy of the carrier gas under
conditions of quasiequilibrium flow and flow with large particles, respectively.

Good agreement between the calculation results and the available exper-
imental results leads one to expect the efficiency of the model in the case of
a nonequilibrium flow, when the joint action is possible of both mechanisms
(laminarizing and turbulizing) of the effect of particles on turbulence.

2.4.3 Two-Parameter Models

As in studying single-phase turbulent flows, the most generally employed
model is the two-parameter k–ε model of turbulence with the equation for
the rate of dissipation used as the second equation.

By analogy with (1.28) for a single-phase flow, we have, in the case of a
particle-laden flow,

Dε

Dτ
= Dε + Pε − εε − εεp, (2.63)

where εεp is the decrease in dissipation because of the presence of particles.
The expression for εεp is most commonly represented in the form [18,36]

εεp = Cε3
ε

k
εp, (2.64)

where the constant Cε3 may take the following values: Cε3 = 1.0 [33], Cε3 =
1.2 [18], and Cε3 = 1.9 [7].

2.4.4 Methods of Direct Numerical Simulation

In conclusion, we must dwell briefly on the methods of direct numerical sim-
ulation (DNS) which are rapidly developing in recent years. A method of
direct numerical simulation is the solution of nonstationary Navier–Stokes
equations for instantaneous values without involving additional closing rela-
tions or equations, i.e., actually without the simulation of turbulence. The
well-known limitation of such a method is the impossibility of using it at
moderate or high values of the Reynolds number. A variety of this method
is the method of large eddy simulation (LES) which involves the treatment
of only large energy-carrying eddies [30]. In this manner, an attempt is made
at obviating the disadvantage identified earlier and extending the range of
application of the method.

In the overwhelming majority of early investigations of particle-laden two-
phase flows [16, 44, 53], these two methods were used to simulate the motion
of single particles; in accordance with the classification of heterogeneous flows
developed in Sect. 1.5, this corresponds to the case of a weakly dusty flow
without the inverse effect of particles on the carrier gas parameters. These
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investigations were performed to study the behavior of particles. For this pur-
pose, the trajectories of a large ensemble of particles introduced into a turbu-
lent flow were calculated, which was followed by the averaging of the obtained
spatial characteristics of particle motion. Note that the spatial resolution was
much less than the particle size proper. In performing the calculations, it was
not intended to determine the parameters of gas flow about a particle. This
was not necessary, because the particle motion is calculated in the usual way,
i.e., using the law of resistance of the dispersed phase. The particle drag is
defined by the Reynolds number; for determining the value of this number,
one needs to know the carrier gas velocity rather than the distribution of
this velocity over the particle contour. The foregoing restriction in the calcu-
lation of particle motion is valid only when describing the behavior of very
fine particles whose size is less than the size of the smallest turbulent eddies
(Kolmogorov scale).

In more recent investigations [6, 8, 9, 45,47], the methods of direct numer-
ical simulation were used as advantage for the calculation of weakly dusty
flows with the inverse effect of particles on the characteristics of flow of the
carrier phase. In this case, the calculations are performed in several iteration
steps. First, the parameters of motion of “pure” gas are calculated. For this
purpose, it is usually assumed that the fluctuations of gas velocity obey the
normal law. In the known field of gas velocities, the trajectories of particles are
calculated by integrating the equations of their motion. Then, given a fairly
representative ensemble of particles, one finds the averaged characteristics of
the dispersed phase which are then used to calculate the gas phase flow in
the next stage. The thus obtained “new” field of gas velocities serves a basis
for the calculations of particle trajectories at the next iteration step, and so
on. The calculations are performed until the difference between the obtained
characteristics of motion of both phases of heterogeneous flow at the previous
and subsequent iteration steps is within the preassigned error.



3

Physical Simulation
of Particle-Laden Gas Flows

3.1 Preliminary Remarks

The physical simulation and mathematical simulation of heterogeneous flows
pursue one and the same objective, that of constructing the theory of multi-
phase flows. This objective may apparently be achieved by using separately
either the experimental or the computational methods of investigation. At the
same time, it is apparent that each one of the simulation methods is charac-
terized by a number of inherent advantages and disadvantages. Therefore, the
process of construction of the theory will be more effective if the means of
physical and mathematical simulation are mutually complementary. Possible
ways of such interaction are obvious. For example, measurement results are
extensively used to verify the mathematical models being developed. Note the
importance of experimental data essential for the formulation of the boundary
conditions for the dispersed phase of a heterogeneous flow. In turn, the calcula-
tion results are called upon to minimize the required volume of experimental
data and to contribute to a more profound interpretation of measurement
results.

In this chapter, the fundamentals of physical simulation of turbulent
flows with the dispersed phase in the form of solid particles will be treated
using an intensively developing optical diagnostic method, i.e., laser Doppler
anemometry. The probe and photographic means of investigation of disperse
flows, which have been used for decades, are described in detail in mono-
graphs [5, 10,12].

Laser Doppler anemometers (LDA) have been used for more than two
decades to investigate single-phase flows. For measuring the kinematic char-
acteristics of flow of a continuous medium, this medium is injected with tracer
particles of submicron or micron sizes whose mass and volume concentration
is negligible. If certain conditions are met, the instantaneous velocities of the
tracer particles will be almost equal to the respective velocities of the con-
tinuous carrier medium. Heterogeneous flows, in which particles (droplets,
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bubbles) are naturally present, are likewise investigated using an LDA. It is
safe to say that the LDA has by now become the most powerful (and often
the only) means of local diagnostics of such flows.

Section 3.2 deals briefly with the fundamentals and advantages of the
method of laser Doppler anemometry. In spite of all numerous advantages
of the method of laser Doppler anemometry, its use for studying turbulent
heterogeneous flows is predetermined by the solution of a number of specific
procedural problems. Special aspects and objectives of experimental investi-
gation of particle-laden gas flows are described in Sect. 3.3. Various aspects of
study of the behavior of particles and of their inverse effect on the parameters
of carrier gas flow are treated in Sects. 3.4 and 3.5, respectively. In Sect. 3.6,
examples are given of experimental facilities for the investigation of turbulent
heterogeneous flows.

3.2 Laser Doppler Anemometry and its Advantages

The method of laser Doppler anemometry is one of the optical diagnostic
methods which are extensively used to investigate flows [4, 6, 7, 9, 11, 16, 17,
20–23, 25, 26, 31]. The key advantage of the optical diagnostic methods is the
possibility of performing measurements without disturbance of the flow in the
region being investigated. Along with this common advantage of the optical
diagnostic methods, the method of laser Doppler anemometry exhibits the
following unique features which made it in recent years a powerful tool for
studying the fine structure of flows:

1. A high spatial resolution owing to the smallness of the measuring volume
2. A high time resolution because of the combination of the small measuring

volume with a high-speed processor of the Doppler signal (this enables one
to perform measurements of instantaneous values of velocity)

3. Freedom from the need to perform calibration owing to the absolutely
linear correlation between the Doppler signal frequency and velocity

4. The possibility of performing multicomponent measurements, i.e.,
measurements of one, two, and three components of the velocity vector

5. The pointed directivity of measurements, because the quantity being
measured is the projection of the velocity vector in the direction defined
by the optical system

6. The possibility of investigating flows with reversible velocity, as well as of
performing measurements at a velocity close to zero under conditions of
the optoelectronic shift of frequency

7. A high stability and repetition of measurement results owing to the
stability and linearity of optical electromagnetic waves.

The necessary conditions in using the LDA include the following require-
ments:
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Fig. 3.1. A scheme of shaping the interference (measuring) volume of laser Doppler
anemometer (LDA)

1. A low optical density of the medium being investigated
2. The presence in the flow of particles which are light-scattering centers
3. An access for laser beams via windows or an inlet for an optical probe.

All of the advantages of the method of laser Doppler anemometry identified
earlier made it in recent years a powerful tool for the diagnostics of single-
phase and heterogeneous flows.

We will consider later the fundamentals of shaping the interference volume
of LDA, as well as a signal from a light-scattering particle.

Two laser beams with Gaussian distribution of intensity (TEM00-mode)
and wavelength λ, which intersect at angle θ, shape the interference volume
in the intersection region (Fig. 3.1). The interference volume is an ellipsoid of
revolution with axes (the intensity level e−2),

dx =
df

cos(θ/2)
, dy = df , dz =

df

sin(θ/2)
, (3.1)

where the diameter of focused laser beam at the waist is defined as:

df =
4fλ

πEdl
. (3.2)

Here, f is the focal distance of the front lens, E is the beam expansion coef-
ficient, and dl is the laser beam diameter before expansion.

Therefore, the minor axis of the ellipsoid (dimensions dx and dy) depends
on the extent of the laser beam waist and varies weakly with the beam inter-
section angle, while the major axis (dimension dz) increases with decreasing
angle between the beams.

The interference lattice spacing is defined by the relation

δf =
λ

2 sin(θ/2)
. (3.3)

A scheme of the interference volume is given in Fig. 3.2.
In the general case, the measuring volume is a region whose size is

smaller or larger than the size of the interference volume and is defined,
first of all, by the parameters of sensitivity of the transmitting and receiving
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Fig. 3.2. A scheme of the interference (measuring) volume of LDA
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Fig. 3.3. A Doppler signal from a light-scattering particle

optoelectronic systems (laser radiation power, voltage on the photomultiplier,
electronic amplification of signal) and by the characteristics of light-scattering
particles (size, optical properties, concentration).

A particle scatters light while crossing the interference fringes (Fig. 3.1).
The intensity of scattered radiation will vary in accordance with the variation
of light intensity in the region of laser beam intersection. The signal from the
particle that comes from the photomultiplier consists of two parts (Fig. 3.3),
namely, (1) a low-frequency part or Gaussian pedestal with the peak ampli-
tude Iped produced by light scattered by the particle from both laser beams,
and (2) a high-frequency part or sinusoidal signal with Gaussian distribution
and of amplitude Is produced by the interference of light scattered by the
particle from both beams.

One of the basic characteristics of a Doppler signal is its visibility deter-
mined from the following relation:

η =
Imax − Imin

Imax + Imin
. (3.4)

The signal visibility depends on number of factors which include:

1. The size of the light-scattering particle and its optical properties
2. The polarization properties and intensity ratio of the beams which shape

the interference volume
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2

1

Fig. 3.4. A typical form of Doppler signals: (1) signal from a small particle, (2)
signal from a large particle

3. The angle of beam intersection
4. The characteristics and location of receiving optics

One can readily demonstrate that an increase in the particle size (all other
things being equal) causes a decrease in the signal visibility. Indeed, one can
see from simple physical considerations that the low-frequency component
of the signal increases with increasing particle size, while the high-frequency
component, on the contrary, decreases. For example, in the case of small par-
ticles, Imax/Imin → ∞, and, in accordance with (3.4), we have η → 1. For
large particles, Imax/Imin → 1 and η → 0. A typical form of Doppler signals
is given in Fig. 3.4.

3.3 Special Features and Objectives of Experimental
Studies of Heterogeneous Flows

Measurements always entail errors on whose magnitude the measurement
accuracy depends. In the case of LDA investigations of single-phase flows,
it is possible to monitor the accuracy of measurements by their duplication
using, for example, a hot-wire anemometer. In addition, there is always a pos-
sibility of comparing the results with the available literature data by other
authors for single-phase flows of “canonical” forms. As to LDA investigations
of heterogeneous flows, no such possibilities exist for the following two reasons:

1. At present, the LDA is in fact the only means of local diagnostics of het-
erogeneous flows, and this rules out the possibility of duplication of mea-
surements using other experimental means

2. The extreme complexity of heterogeneous flows, which consists in a signif-
icantly larger number of dimensionless determining parameters (compared
to single-phase flow), resulted in that the data of different researchers act-
ually defy comparison and systematization.

In support of the foregoing, we will cite only one illustrative example
which characterizes the current status of investigations of dust-laden flows.
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Lee and Durst [11] used the LDA to study the effect of glass particles of
different sizes on the characteristics of carrier air for an upward pipe flow
at Uxc = 5.7 m s−1. The measurement results showed the velocity of large
particles of glass (dp = 800 µm) is almost constant over the pipe cross-section
and is Vx = 1.4 m s−1. However, simple estimates indicate that the free-fall
velocity of such particles exceeds the air velocity. As a result, this upward flow
must not entrain such large particles. Therefore, the value of the velocity of
large particles obtained in [11] must be viewed with criticism.

In view of the foregoing, it is clear that correct LDA measurements in
heterogeneous flows assume special urgency.

The study of heterogeneous flows pursues the objective of solving problems
of two main classes, namely:

1. The investigation of the behavior of particles of the dispersed phase moving
in a flow of gas (liquid). This presumes performing measurements of the
dimensions of disperse inclusions (in the case of polydisperse flow), as well
as of the fields of instantaneous velocities and concentrations of particles.

2. The investigation of the inverse effect of the dispersed phase on the flow
characteristics of the carrier phase. For this purpose, one must perform
measurements of the fields of instantaneous velocities of tracer particles
(which simulate the motion of continuous medium) in the presence of the
dispersed phase followed with statistical treatment of the results.

The instantaneous values of velocities of particles and gas phase, obtained
as a result of measurements, are used to find the required statistical charac-
teristics. More often than not this reduces to determining the averaged val-
ues of velocities and their mean-square deviations, according to the following
relations:

Vj =
1
N

N
∑

i

vji, (3.5)

√

v′ 2
j =

√

√

√

√

1
N

N
∑

i

(vji − Vj)2, (3.6)

where Vj and
√

v′ 2
j are the jth components of the averaged velocity of particles

and its mean-square deviation, respectively; vji is the ith value of measured
particle velocity; and N is the number of measurements in the ensemble over
which the averaging is performed.

The respective characteristics of motion for gas are found similarly,

Uj =
1
N

N
∑

i

uji, (3.7)
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√

u′ 2
j =

√

√

√

√

1
N

N
∑

i

(uji − Uj)2, (3.8)

where Uj and
√

u′ 2
j are the jth components of the averaged velocity of gas

and its mean-square deviation, uji is the ith value of measured gas velocity,
and N is the number of measurements in the ensemble.

Some aspects of the solution of problems of the basic classes identified
earlier, which are involved in the investigation of heterogeneous flows, will be
treated later.

3.4 Special Features of Studies of the Behavior
of Solid Particles

The main objective of LDA investigations of the characteristics of motion of
large particles representing the dispersed phase of heterogeneous flow is to
measure the instantaneous velocities of the particles. Strictly speaking, com-
mercially available LDAs (see Fig. 3.5) are intended for measurement of the
velocities of small tracer particles which simulate the motion of a continuous
carrier medium. Because of this, the characteristic features of light scattering
must be taken into account in planning measurements of velocities of large
particles.

1
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10 11
12
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14

Fig. 3.5. A schematic view of a four-beam two-component LDA manufactured by
Dantec (LDA 11): (1) wavelength divider, (2) beam waist adjustment module, (3)
neutral beam splitting module, (4) Bragg cell, (5) beam color separation module, (6)
beam displacement module, (7) beam color separation module, (8) back-scattering
module, (9) support, (10) convergence angle adjustment module, (11) lens holder,
(12) beam expander, (13) front lens, and (14) optical bench
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3.4.1 Optimization of LDA Parameters

Because the LDA measurements of velocities are based on recording a sig-
nal arising when a light-scattering particle crosses a time-varying interference
field, the characteristics of radiation scattered by particles must be taken into
account in designing the optoelectronic system of LDA and optimizing its
parameters. We will consider in brief the characteristic features of light scat-
tering by relatively large particles such as particles of the dispersed phase.
This may be done using the Mie scattering theory [34]. The Mie theory shows
that the magnitude and angular distribution of the intensity of light depends
on the particle diameter. The scattering of light by particles in a heteroge-
neous flow with sizes of tens and hundreds of micrometers may be analyzed in
the so-called large-particle approximation, because the relative size of these
particles is much larger than unity, i.e., γ = πdp/λ 
 1 (dp is the particle
diameter and λ is the wavelength of incident light).

The angular distribution of scattered light is often described by dimen-
sionless indicatrix functions which are obtained as a result of normalization of
differential scattering cross-sections. The scattering indicatrix of a large trans-
parent particle exhibits the following distinguishing features: all of scattered
radiation is largely directed forward, a large number of interference maxima
are present, and the smoothed intensity of scattered light does not depend on
the particle size.

On constructing the optical scheme of measurements, one must take into
account the fact that the scattered radiation of large particles has a diffraction
component. In so doing, the diffraction wave does not depend on the particle
refractive index and on the incident wave polarization. The diffracted radi-
ation of large spherical particles (γ 
 1) is concentrated in a cone of angle
θ = 3.83/γ which does not exceed one degree for the majority of particles.

The most important characteristics of the optical system of an LDA are
the geometric parameters of the measuring volume. The data of Rinkevichius
and Yanina [18] reveal quite a definite correlation between the visibility of
the interference pattern and the relative particle size (the ratio of the particle
diameter to the interference lattice spacing dp/δf). For example, in measur-
ing the velocities of large particles, the recommended spacing of interference
lattice must exceed the particle diameter or be comparable to it. My investi-
gations have revealed that this is not quite true.

An LDA 10 two-channel three-beam laser Doppler anemometer (manu-
factured by Dantec, Denmark) operating according to a differential scheme
was used for measurements. We used only one channel of this LDA for mea-
surements of the axial velocity of particles. The source of radiation in the
system is provided by a Russian-made LG-106-ml argon laser. In view of the
characteristic features of indicatrices of large particles, all measurements were
performed under conditions of forward scattering. An expander (55X12 Beam
Expander) and a front lens with a focal distance of 310 mm were used in the
optical system: as a result, the measuring volume could be reduced (intensity
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level e−2) to 0.091 × 0.091 × 1.04 mm, which corresponds to the interference
lattice spacing δf = 2.97 µm.

The light scattered by particles which find their way into the measuring
volume is collected by the receiving optics of photomultipliers (PM), the signal
from which is delivered to the Doppler signal processor of the counter type
(55L90a LDA Counter Processor). The 55L90a processor manufactured by
Dantec operates in the frequency range from 2 kHz to 100 MHz and has a
time resolution of 2 ns.

When a 55L90a processor is used in experiments, two characteristics serve
as indicators of the quality of the Doppler signal, namely:

1. The data rate (intensity) DpV, kHz
2. The reliability of the incoming signals V , %.

The data rate (intensity) is an extensive quantity, because it depends
directly on the concentration of light-scattering particles in the measuring
volume and on the sensitivity of the receiving system of the LDA.

The signal reliability (in operation in the “5/8” mode) is defined by the
number of particles (in percentage terms), the difference between whose veloc-
ities (determined by their time of flight of five and eight spacings of interfer-
ence lattice) does not exceed the preassigned error (this error was usually 3%).
The signal reliability is the main characteristic of its quality and is directly
related to the error of measurement. The signal reliability may be reduced for
a number of reasons.

Given later are some of these reasons:

1. An inadequate sensitivity of the receiving optoelectronic system of the
LDA, which results in low values of the data rate (DpV = 0−0.1 kHz).
This is due to the following factors:
– An inadequate voltage applied to the PM
– A low number density of light-scattering particles
– An inadequate amplification of the signal delivered from the PM
– Weak focusing of the PM optics

2. An excess sensitivity of the optoelectronic system of the LDA, which
results in too high values of the data rate (DpV = 10−100 kHz). More
often than not, this is caused by the same (but opposing) factors:
– Too high a voltage applied to the PM
– A high number density of light-scattering particles
– An excess amplification of the signal delivered from the PM

3. The operation in too narrow a frequency range preassigned by the high-
pass and low-pass filters, as well as by the value of the electronic frequency
shift. In this case, it is likely that the probability density curve of velocities
(respective frequencies) of particles does not fit the selected frequency
range.

Figure 3.6 gives an example of the distributions of particle velocities as
functions of signal reliability. In this example, the decrease in signal reliability
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Fig. 3.6. The velocity of large particles being measured as a function of signal
quality (Vxv max is the value of particle velocity obtained for the maximal quality of
signal): (1) SiO2 particles (200 µm), (2) Fe particles (150 µm), and (3) Pb particles
(59 µm)
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Fig. 3.7. The signal quality as a function of the interference lattice spacing: (1) SiO2

particles (200 µm), (2) Fe particles (150 µm), and (3) Pb particles (59 µm)

was caused by the excess sensitivity of the optoelectronic system of the LDA
because of too high a voltage applied to the PM. One can readily infer from
Fig. 3.6 the existence of a minimal value of signal reliability, at which the ve-
locities of large particles may be measured with minimal error. This reliability
is V = 15%.

Figure 3.7 gives the distributions of reliability of signals as functions of the
interference lattice spacing for some of the particles used. Analysis of these
distributions shows that:

1. The signal reliability depends strongly on the interference lattice spacing
and on the physical and optical properties of light-scattering particles

2. For each variety of particles, there exists a minimal value of the interference
lattice spacing, which corresponds to the lower limit of signal reliability
(V = 15%) at which the error of velocity measurement is minimal. For
example, for glass particles 200 µm, the minimal spacing of interference
lattice is δf min = 2 µm, and for particles of iron 150 µm in diameter and
lead 59 µm in diameter, δf min = 5 µm and 7 µm, respectively
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3. An increase in the interference lattice spacing results in a higher signal
quality; a value of the interference lattice spacing exists above which almost
no change of signal reliability is observed. For the particles used in the
experiments, this value of the interference lattice spacing is in the range
δf = 12–16 µm.

One must bear in mind that an increase in the lattice spacing causes
an increase in the measuring volume, thereby reducing the locality of
measurements. This fact assumes special importance just in measuring the
velocities of large particles for which the size of the “effective” measuring
volume may exceed significantly that of the measuring (interference) volume
determined by the intensity level e−2. The method of approximate estimation
of the value of “effective” measuring volume for large light-scattering particles
was described in [33].

3.4.2 Measurement of the Velocities of Polydisperse Particles

Because the overwhelming majority of flows contain significantly polydisperse
particles, it is this particular fact that has a determining effect on the shaping
of the statistical properties of the dispersed phase. In this subsection, we treat
the basics of the procedure of correct measurements of instantaneous velocities
of polydisperse particles using LDA. This problem assumes special urgency
because of the specific features (identified in Sect. 3.3) arising during LDA
investigations of heterogeneous flows.

Figure 3.8 gives a typical mass distribution of particles in the form of a
histogram obtained using sieve analysis. Note that a strong correlation exists
between the mass distribution of particles and their number distribution [27].
For the example at hand, one can readily demonstrate that the respective
distributions of particles actually coincide. Therefore, in further analysis, we
will restrict ourselves to treating the mass distribution alone. In order to find
the probability density function (PDF) of particle sizes, we will determine the
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Fig. 3.8. A histogram of the mass distribution of spherical SiO2 particles with
a rated diameter of 200 µm (the curve indicates the approximating PDF of parti-
cle sizes)
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average diameter of particles and its mean-square deviation. We assume an
equiprobable distribution of particles within each one of N fractions to derive

Mdp =
N
∑

1

dpi
P (dpi

), (3.9)

where Mdp is the mathematical expectation of the particle diameter, dpi
is

the average value of diameter of particles of the ith fraction, P (dpi
) is the

probability that a particle belongs to the ith fraction, and
∑N

1 P (dpi
) = 1 is

the normalization condition.
Given the average diameter of particles, the dispersion may be determined

from the relation

Ddp =
N
∑

1

(dpi
− Mdp)2P (dpi

). (3.10)

The mean-square deviation of particle diameters is related to dispersion as:

σ =
√

Ddp. (3.11)

Table 3.1 gives the data necessary for the calculation of mathemat-
ical expectation and mean-square deviation of particle diameters. By
using relations (3.9)–(3.11), one can readily obtain Mdp = 194.1 µm and
σ = 15.64 µm.

For further analysis, we will assume that the particle distribution obeys
the normal law. In this case, the statistical parameters of particle sizes found
earlier, namely, Mdp and σ fully define their PDF.

In performing probability calculations, it is convenient to use the
dimensionless PDF which has the following form for the normal law of
distribution:

f(d̄p) = fmax exp
[

− (d̄p − Md̄p)2

2σ̄2

]

, (3.12)

where fmax = 1√
2πσ̄

, d̄p = dp
A , σ̄ = σ

A , and
∞
∫

0

f(d̄p)d(d̄p) = 1 is the normaliza-

tion condition.

Table 3.1. Parameters of the distribution of glass particles with a rated diameter
of 200 µm

Characteristics of particle distribution
fraction no. dpi(µm) ∆dpi(µm) P (dpi)

1 137 24 0.02
2 163 28 0.04
3 193.5 33 0.87
4 230 40 0.06
5 273.5 47 0.01
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In order to reduce the concrete distribution f(dp) to the form of (3.12), it
is necessary to determine the normalizing constant A. One can easily do this
using the following relation:

A =
N
∑

1

P (dpi
)∆dpi

, (3.13)

where ∆dpi
is the difference between the maximal and minimal diameters

of particles of the ith fraction. We use the data of Table 3.1 to obtain
A = 33.18 µm from (3.13). Given the constant, we determine the average
diameter of particles and its mean-square deviation in a dimensionless form in
accordance with (3.12) as Md̄p = 5.850 and σ̄ = 0.4714. The expression for
the dimensionless PDF of particle sizes takes the form:

f(d̄p) =
1√

2π 0.4714
exp
[

− (d̄p − 5.850)2

2 × 0.47142

]

. (3.14)

The PDF of particle sizes is given in Fig. 3.8.

Determination of Mathematical Expectation of the Particle
Diameter and Its Mean-Square Deviation

In order to estimate the averaged velocities of particles and their mean-square
deviations using the procedure described in [28], it is necessary to know the
average diameters of particles and their deviations. In performing measure-
ments of particle velocities at some fixed values of LDA sensitivity (defined
primarily by the value of voltage applied to the photomultiplier – PM), we
investigate in fact the velocity of particles whose distribution is truncated
on the left rather than the velocity of the entire set of polydisperse particles
whose distribution obeys the normal law. As a result, the measured values of
statistical characteristics of particle motion turn out to be different from their
actual values (this fact will be analyzed later).

The truncated normal distribution in the general case is defined by four
parameters [1], namely, (1) the mathematical expectation of initial normal
distribution Md̄p, (2) the mean-square deviation of the initial normal distri-
bution σ̄, (3) the point of truncation on the left d̄p1, and (4) the point of
truncation on the right d̄p2.

The expressions for mathematical expectation M0d̄p and mean-square
deviation σ̄0 of truncated normal distribution have the form [1]:

M0d̄p = Md̄p + Bσ̄, (3.15)

σ̄0 = σ̄
√

1 − B2 − C[t2f(t2) − t1f(t1)], (3.16)
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where

B =
f(t1) − f(t2)
F (t2) − F (t1)

, C =
1

F (t2) − F (t1)
, t1, 2 =

d̄p1, 2 − Md̄p

σ̄
,

f(t1,2) =
1√
2π

exp(−t2/2), and F (t1, 2) =
∫ t1, 2

0

f(t1, 2)dt.

We will determine the mathematical expectations and mean-square devi-
ations of the family of truncated normal distributions, which is obtained from
initial distribution (3.14). In so doing, we will vary the coordinate of the point
of truncation on the left in the range 0 ≤ d̄p1 < Md̄p + 6.58σ̄; in view of the
value of normalizing constant, this corresponds to the range of particle diam-
eters of 0 ≤ dp1 < 297 µm. The maximal coordinate of the point of truncation
on the left is taken to be equal to the possible particle size dp max = 297 µm
(see Fig. 3.8 and Table 3.1). The coordinate of the point of truncation on the
left will also be taken to be d̄p2 = Md̄p + 6.58σ̄.

The distributions of mathematical expectation of particle diameter
M0dp = f1(dp1) and its mean-square deviation σ0 = f2(dp1), obtained as
a result of calculations, may be further used to determine the averaged
particle velocity and its mean-square deviation. The results of calculation of
averaged velocities of single glass particles under conditions of their gravity
sedimentation in air at rest Vx and their mean-square deviations σ0V are
given in Fig. 3.9 in a dimensional form.

In order to evaluate the developed procedure for estimation of averaged
velocities and their mean-square deviations, measurements of the respective
parameters were performed [30].

Figure 3.10a gives the distribution of averaged velocities of glass particles
as a function of the sensitivity of the receiving optoelectronic system of the
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Fig. 3.9. The effect of the position of the point of truncation of normal distribution
on (a) the averaged particle velocity and (b) the mean-square deviation of the
particle velocity
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Fig. 3.10. The effect of the sensitivity of the optoelectronic system of LDA on the
measured values of (a) the averaged velocity and (b) the mean-square deviation of
the particle velocity: (1) glass (200 µm), (2) glycerin + water (2–5 µm)

LDA, which is defined by the value of voltage applied to the PM. One can see
that the obtained values of averaged velocity of particles depend strongly on
the LDA sensitivity. This is apparently associated with the fact that the par-
ticles used in our investigation are polydisperse. Therefore, in the case of low
values of voltage applied to the PM (U = 0.25–0.5 kV), when the amplitude
of signals from small particles does not exceed the threshold of sensitivity of
the receiving system of the LDA, only the signals from large particles exhibit-
ing high values of velocity under conditions of this investigation are admit-
ted for statistical treatment. When the LDA sensitivity is increased, signals
from every smaller particles are admitted. As a result, the averaged particle
velocity begins to decrease. In the case of high values of voltage on the PM
(U = 0.8–1.15 kV), when signals from the smallest particles are admitted for
analysis, the averaged velocity of the latter particles ceases to decrease and
reaches its minimal value. The distribution of averaged particle velocity given
in Fig. 3.10a agrees well with the similar distribution obtained as a result of
analysis (see Fig. 3.9a). Because of this, the minimal value of averaged velocity
may be treated as the averaged velocity of the entire set of polydisperse par-
ticles. Therefore, the failure to include the effect of sensitivity of the receiving
system of LDA on the measured value of averaged velocity of polydisperse
particles may lead to significant errors.

Also given in Fig. 3.10a are the results of LDA measurements of the
averaged velocity of air under conditions of turbulent downward pipe flow.
The measurements were performed at a single point on the pipe axis. In these
measurements, light-scattering centers were provided by particles prepared of
a mixture of glycerin (50%) and water (50%) using a generator of micron-sized
particles (Dantec, Denmark). The size of these tracer particles simulating the
carrier air motion was in the range from 2 to 5 µm. Although these parti-
cles are significantly polydisperse, one can see in Fig. 3.10a that the averaged
velocity of tracer particles does not depend on the sensitivity of the receiving
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optoelectronic system of LDA. Firstly, this is associated with the fact that the
inertia of the tracer particles is so low that the difference between the velocities
of the largest and smallest particles does not exceed 10−4% and is within the
error of these measurements. Secondly, the absolute difference in size between
these particles is insignificant, and the respective range of intensity of light
scattered by these particles may lie within one step during variation of the
PM voltage (∆U = 0.05 kV).

By their nature, the experimentally observed fluctuations of the veloc-
ities of tracer particles are turbulent fluctuations acquired by them in the
process of interaction with turbulent eddies of carrier air. As to the mean-
square deviation of the velocities of micron-sized particles, shown in Fig. 3.10b,
this deviation (as well as the averaged velocity) remains unvaried during the
variation of voltage on the PM for the reasons given earlier.

Unlike the case of tracer particles, the measured mean-square deviation
of the velocities of large polydisperse glass particles depends largely on the
sensitivity of the receiving system of LDA (see Fig. 3.10b). In the case of
high values of voltage on the PM (U = 0.8–1.15 kV), when signals from the
entire set of polydisperse particles are admitted for analysis, the mean-square
deviation of the velocities of these particles ceases to increase and reaches its
maximal value. The distribution of the fluctuation velocity of glass particles
given in Fig. 3.10b agrees well with the similar distribution obtained as a
result of theoretical analysis (see Fig. 3.9b). Therefore, the maximal value of
the obtained distribution may be treated as an unbiased value of mean-square
deviation of the velocities of polydisperse particles. The foregoing leads one to
infer that the failure to include the effect of sensitivity of the receiving system
of LDA on the measured value of fluctuation of the velocities of polydisperse
particles (as well as in the case of measurement of their averaged velocities)
may lead to significant errors.

The foregoing is clearly supported by the distributions of the velocities of
glass particles, which are given in Fig. 3.11 in the form of histograms obtained
for selected values of voltage on the PM.
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Fig. 3.11. The distribution of the velocities of glass particles for selected values of
voltage on the PM: (1) U = 0.3 kV, (2) U = 0.6 kV, and (3) U = 0.9 kV
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Heterogeneous flows which occur naturally and are employed in technical
devices are often accompanied by physicochemical processes which lead to a
variation of the composition of the dispersed phase. Such processes include
combustion, phase transitions, coagulation, fragmentation, and so on. This
makes obvious the urgency of investigation of flows with particles exhibiting
different properties and, consequently, different velocities. The capabilities
and limitations of LDA in the investigation of flows carrying bidisperse solid
particles were treated in [29]. Three main types of heterogeneous flows with
bidisperse particles are known, namely, flows of continuous media carrying
solid particles of the same material but of different size, flows with particles of
the same size but of different density, and flows of particles of the same size and
material but of different “effective” density (hollow particles, porous particles,
and the like). The main objective in studying the behavior of bidisperse parti-
cles moving in flows is to determine the PDF of their velocities. The obtained
PDF of the velocities of particles may be used to find the averaged velocity
of the entire plurality of particles, its mean-square deviation, and other nec-
essary statistical parameters. The results of measurements performed in [29]
demonstrated the possibility of using LDA for studying the fields of velocities
of large bidisperse particles of the same optical properties.

3.4.3 Monitoring of the Accuracy of the Results

One can monitor the validity of the choice of parameters of the measuring sys-
tem and estimate the error of the results in the investigation of the velocities of
large solid particles by way of measuring one of the most important character-
istics of particle inertia, namely, the free-fall velocity (settling velocity). The
methods of determining this characteristic of particles and the obtained results
were described by Gorbis [8]. He determined the settling velocity by measur-
ing the limiting rates of sedimentation of particles in air at rest. According to
the principle of relativity of motion, the rate of sedimentation of particles and
the velocity of flow suspending them are equal. This is easy to demonstrate.

We will write the equation for the determination of the averaged velocity
of motion of a single spherical particle under the effect of the forces of gravity
and aerodynamic drag of the medium in the following form:

dVx

dτ
=

Ux − Vx

τp
± g, (3.17)

where g is the acceleration of gravity.
We will consider the motion of relatively large non-Stokesian (1 < Rep <

1, 000) particles. In this case, the time of dynamic relaxation of a particle has
the form

τp =
τp0

1 + Re2/3
p /6

(3.18)

where τp0 = ρpd2
p/18µ is the time of dynamic relaxation of a Stokesian

particle.
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We will derive from (3.17) an expression for determining the settling
velocity. For this purpose, we will take into account the fact that Vx = 0
and dVx/dτ = 0. Then, we have

Ux =
gτp0

1 + 1
6

(

Uxdp
ν

)2/3
. (3.19)

We will now turn to (3.17) with a view to determining the limiting rate of
gravity sedimentation of particles in a medium at rest. For this case, we will
take into account the fact that Ux = 0 and dVx/dτ = 0. Consequently, (3.17)
yields

Vx =
gτp0

1 + 1
6

(

Vxdp
ν

)2/3
. (3.20)

On analyzing the resultant relations (3.19) and (3.20) for the same physical
properties of the medium and particles, one can infer that the limiting rate
of sedimentation of particles and the settling velocity are equal.

Equation (3.20) is further used in a dimensionless form; for this purpose,
we multiply both its parts by dp/ν. As a result, we have:

Vxdp

ν
=

gτp0dp

ν

[

1 + 1
6

(

Vxdp
ν

)2/3
] . (3.21)

The following expression derived from (3.21) may be used to estimate the
precision of LDA measurements of the rates of sedimentation of particles:

Rep =
Arp

18
(

1 + 1
6Re2/3

p

) , (3.22)

where Rep = Vxdp/ν is the Reynolds number of a particle, calculated by
the particle velocity; and Arp = gρpd3

p /ρν2 is the Archimedes number for
the particle. Relation (3.22) is based on the empirical (repeatedly verified and
widely covered in the literature) dependence for the coefficient of aerodynamic
drag for non-Stokesian particles.

Figure 3.12 gives the results of comparison of the measured (using the
above-described techniques of optimization of LDA parameters) values of
averaged velocities of polydisperse large particles with those predicted by rela-
tion (3.22). Some parameters of the transmitting and receiving systems of LDA
10 anemometer (Dantec) used in test experiments are given in Table 3.2. Based
on these data, one can make an inference about good agreement between
experiment and theory.

3.4.4 Measurement of the Relative Concentration of Particles

The concentration of particles is one of the basic physical parameters which
define the characteristics of motion of the dispersed phase, as well as the
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Fig. 3.12. Comparison of the calculated and measured velocities of large particles:
(1) glass (50 µm), (2) glass (100 µm), (3) glass (200 µm), (4) iron (100 µm), (5) iron
(150 µm), (6) copper (130 µm),(7) lead (59 µm), and (8) curve by relation (3.22)

Table 3.2. Basic parameters of the optical system of LDA

no. parameter value

1 laser radiation wavelength λ, µm 0.5145

2 laser beam diameter (level e−2)dL, mm 1.15

3 beam expansion coefficient E 1.95

4 focal distance of the front lens f , mm 310

5 receiving optics angle α, deg. 7

6 beam intersection angle θ, deg. 1.98

7 dimensions of the measuring volume 0.091×0.091×5.24
(level e−2) dx × dy × dz, mm

8 interference lattice spacing δf , µm 14.87

9 number of spacing in the measuring 6
volume Nf

extent to which the dispersed phase affects the flow of the carrier medium. The
distribution of particles in space may be significantly nonuniform, for example,
in the vicinity of the surface of a body subjected to a heterogeneous flow.
Because of this, correct measurements of the concentration of large particles
present an urgent problem.

It is the objective of this section to review the capabilities of an LDA com-
mercially produced by Dantec as regards the measurement of the distributions
of relative concentration of large particles under conditions of a dust-laden gas
flow [32].

Two methods of measuring the relative concentration of particles are
described later along with the data of test experiments.

Conditions of Test Measurements

The experiments were performed for a downward turbulent flow of air in a pipe
of inside diameter D = 64 mm. The Reynolds number was ReD = 11, 200 with
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the averaged velocity of air on the pipe axis Uxc = 2.8 m s−1. The distribution
of the relative concentration of particles was measured in the cross-section
spaced at distance L = 1,280 mm from the beginning of the pipe and the point
of inlet of the dispersed phase. The pipe average mass flow-rate concentration
of particles was determined by the weighing method and was 〈MG〉 = 0.4.
The true mass and mass flow-rate concentrations of particles are related by:

〈M〉
〈MG〉 =

〈Ux〉
〈Vx〉 , (3.23)

where 〈Ux〉 and 〈Vx〉 denote the pipe cross-section average velocities of the
carrier phase and particles, respectively.

For conditions of our experiments, 〈M〉 = 0.36. The delivery of particles
was organized in the cross-sectional region of the pipe so that the particle
distribution in the measuring cross-section would be other than uniform.

The dispersed phase was provided by spherical glass particles of mass
average diameter dp = 100 µm.

Methods of Measuring the Particle Concentration

An LDA 10 two-channel three-beam laser Doppler anemometer (manufactured
by Dantec, Denmark) operating according to a differential scheme was used
in the experiments. Only one channel of this LDA was used in developing the
procedure of measurement of the particle concentration and in performing the
experiments. A Doppler signal processor of the counter type (55L90a LDA
Counter Processor) was used for measuring the particle concentration. The
basic parameters of the optical system of the LDA used in the experiments
are given in Table 3.3.

Note that the investigations were performed with a view to measuring the
relative concentration of particles for a pipe flow. The absolute cross-section
average value of the particle concentration was determined by the weighing
method. The determination of local values of absolute concentration of large
particles is complicated by the fact that large particles scatter light from a
volume whose magnitude exceeds significantly that of the LDA measuring
volume determined by the intensity level e−2. This was demonstrated earlier.
A number of researchers tried to find the value of the measuring volume
for particles of an arbitrary size and determine the absolute value of their
concentration [2, 15,24].

Measurement of the Relative Concentration of Particles
by the Frequency of Incoming Signals

The data rate is an extensive quantity because it depends directly on the
concentration of light-scattering particles in the measuring volume, on their
velocity, and on the sensitivity of the receiving system of the LDA.

We will use simple relations to demonstrate the correlation between the
particle concentration and the basic characteristics of Doppler signals. The
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Table 3.3. Basic parameters of the optical system of LDA

no. parameter value

1 laser radiation wavelength λ, µm 0.5145

2 laser beam diameter (level e−2) dL, mm 1.15

3 beam expansion coefficient E 1.95

4 focal distance of the front lens f , mm 310

5 polarization of probing beams vertical

6 aperture D of the receiving optical system, mm 47

7 diameter d of the diaphragm of the receiving
0.1

optical system, mm

8 angle β between the axis of the receiving
3optical system and the plane normal

to the probing plane, deg.

9 angle α between the axis of the receiving optical
7

system and the probing plane, deg.

10 beam intersection angle θ, deg. 9.08

11 dimensions of the measuring volume (level e−2)
0.091×0.091×1.15

dx × dy × dz, mm

12 interference lattice spacing δf , µm 3.25

13 number of spacings in the measuring volume Nf 28

total rate of data from the particles of the dispersed phase may be determined
as:

Dp =
DpV

V
, (3.24)

where DpV is the “reliable” data rate.
The total signal rate and the particle concentration in a flow are related as:

Dp = N × Vx × S, (3.25)

where N is the number density of particles (the number of particles per
unit volume), Vx is the projection of the particle velocity on the direction of
measurements, and S is the area of the section through the “effective” volume
by a plane normal to the direction of measurements.

Most frequently employed in the theory of heterogeneous flows is the
concept of mass concentration of particles, the expression for which has the
following form in the case of low-volume content of the dispersed phase:

M =
Φρp

ρ
=

Nρpπd3
p

6ρ
. (3.26)

We use expressions (3.25) and (3.26) to find the correlation between the
mass concentration of particles in a flow and the total data rate,

M =
Dpρpπd3

p

6ρVxS
. (3.27)
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We write relation (3.27) for some arbitrary point of a heterogeneous flow
(all parameters at this point will be indicated by the subscript 0). Under
conditions in which ρ, ρp, and dp are constants, relation (3.27) assumes the
form:

M0 =
Dp0ρpπd3

p

6ρVx0S0
. (3.28)

Given the invariant sensitivity of the LDA (which is defined primarily
by the value of voltage applied to the PM) and the same parameters of the
optoelectronic system, we can assume that S = S0. As a result, relations (3.27)
and (3.28) yield the correlation between the values of mass concentration of
particles at two points of flow,

M

M0
=

DpVx0

Dp0Vx
. (3.29)

The thus obtained expression leads one to infer that the total signal rates
and the velocities of light-scattering particles must be measured in order to
determine the relative concentration of disperse inclusions.

Figure 3.13 gives the distribution of the mass concentration of particles
over the pipe cross-section (r is the distance from the pipe axis), which was
obtained as follows:

1. The data rates were measured at ten selected points over the pipe cross-
section DpV = DpV(r) at a constant sensitivity of the LDA (the voltage
applied to the PM was U = 1 kV). Simultaneously with the data rate, the
reliability of data at the foregoing points was registered in order to derive
the relation V = V (r).

2. The total data rate was determined by relation (3.24), i.e., Dp(r) = DpV(r)
V (r) .

3. The particle velocity distribution over the pipe cross-section was measured,
Vx = Vx(r).

4. Some function γ = γ(r) was obtained by dividing Dp = Dp(r) by the
local value of velocity, i.e., γ(r) = Dp(r)

V̄x(r)
, where V̄x(r) = Vx(r)

Vxc
. Here, Vxc

is the particle velocity on the pipe axis. According to relation (3.29), a
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Fig. 3.13. The distribution of the mass concentration of particles over the pipe
cross-section
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local value of mass concentration of particles is directly proportional to
the obtained function, i.e., M ∼ γ.

5. The average (over the pipe cross-section) value of function γ was found by
the relation

〈γ〉 =
2

R2

∫ R

0

γ(r)rdr.

6. The average (over the cross-section) value of mass concentration (which
may be readily found given the values of 〈MG〉, 〈Ux〉, and 〈Vx〉) was placed
in correspondence with the obtained value of 〈γ〉. The sought distribution
of the particle concentration was determined as:

M(r) =
γ(r)
〈γ〉 〈M〉. (3.30)

Figure 3.13 demonstrates clearly that the value of mass concentration of
particles on the pipe axis is M ≈ 0.6 and is three times the respective value
in the wall region.

The estimates reveal that the procedure described earlier enables one to
perform measurements of the relative concentration of particles with an error
of 15% or less. Note that the main contribution to this error of measurement
is made by the accuracy of determining the total data rate.

Measurement of the Relative Concentration of Particles
by the PM Anode Current

A microammeter, which operates in the range of 0–100 µA and measures the
strength of the anode current from the PM, is used to measure the relative
concentration of particles by this method. The current strength depends on
the LDA sensitivity and the physical and optical properties of light-scattering
particles, as well as on the particle concentration and velocity. It is obvious
that, for identical particles (dp = const, ρp = const.) at a constant sensitivity
of the LDA, the current strength will depend on the particle concentration and
velocity, i.e., I ∼ MVx. However, significant difficulties are involved in deriving
the theoretical dependence of the anode current I = I(M , Vx). Therefore,
the ammeter was calibrated directly by delivering a heterogeneous flow with
known (previously measured) distributions of the particle concentration and
velocity.

The sequence of evaluation of this method of determining the particle
concentration was as follows:

1. Measurements of the current strength I = I(r) at the same ten selected
points over the pipe cross-section under the conditions described earlier
for different values of voltage on the PM.

2. Measurements of the distribution of particle velocity over the pipe cross-
section Vx = Vx(r).
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3. Obtaining the relation I ′ = I ′(r) by way of dividing I = I(r) by the local
value of velocity V̄x = V̄x(r), i.e., I ′(r) = I(r)/V̄x(r). The obtained distrib-
utions I ′ = I ′(M) are given in Fig. 3.14. In so doing, the values of particle
concentration were taken to be known and borrowed from Fig. 3.13. One
can well see that the current strength for the conditions of our experiments
is directly proportional to the value of mass concentration.

4. Determining the average (over the pipe cross-section) value of I ′ by the
relation

〈I ′〉 =
2

R2

∫ R

0

I ′(r)rdr.

5. The average (over the cross-section) value of mass concentration 〈M〉 was
placed in correspondence with the obtained value of 〈I ′〉. As a result, we
have the distribution of particle concentration as:

M(r) =
I ′(r)
〈I ′〉 〈M〉. (3.31)

Figure 3.15 gives the concentration of the dispersed phase, measured by
the value of PM current, for different values of LDA sensitivity. This figure
shows good agreement between the distributions of particle concentration,
obtained using different methods.
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Fig. 3.14. The PM current as a function of mass concentration of particles:
(1) U = 0.85 kV, (2) U = 1 kV, and (3) U = 1.15 kV

0 4 8 12 16 20 24 28 32
r,�mm

0

30

50

70

M
,�

%

10

Fig. 3.15. The distribution of mass concentration of particles over the pipe cross-
section: (1) U = 0.85 kV, (2) U = 1 kV, (3) U = 1.15 kV; the curve indicates the
distribution of concentration obtained by the data rate
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The inaccuracy of measurement of the PM current strength makes the
main contribution to the error of measurement of the relative concentration
of particles. The estimates have shown this error to be within 25%.

3.5 Special Features of Studies of the Effect
of Solid Particles on Gas Flow

In order to study the inverse effect of particles on the characteristics of
gas flow, it is necessary to perform measurements of the fields of instanta-
neous velocities of tracer particles, which simulate the motion of a continuous
medium, in the presence of particles of the dispersed phase and subsequent
statistical treatment of the measurement results. The main problem involved
in performing such measurements in heterogeneous flows consists in the prob-
ability of emergence of cross-talk from particles of both types (small tracer
particles and large particles of the dispersed phase) present in the flow. The
accuracy of the results depends largely on the extent to which the signals may
be separated from the foregoing particles. Note that the LDAs commercially
produced by TSI (USA) and Dantec (Denmark) are not equipped with signal
selection devices. Nevertheless, in recent years the LDA has become the basic
tool employed in the investigation of heterogeneous flows. In performing such
experiments, researchers were forced to develop devices for signal discrimi-
nation. Described later are methods of signal selection and the procedure of
theoretical estimation of the efficiency of amplitude selection of signals and
its experimental monitoring.

3.5.1 Estimation of Cross-Talk: Methods of Signal Selection

Prior to making provisions for signal selection, the expected cross-talk Ψ may
be estimated as follows:

Ψ =
D′′

p

D′′
Σ

=
D′′

p

D′′
pf + D′′

p

, (3.32)

where D′′
p is the rate of data from particles of the dispersed phase when per-

forming measurements in a heterogeneous flow, D′′
Σ is the total data rate, and

D′′
pf is the rate of data from tracer particles when performing measurements

in a heterogeneous flow.
We will determine the rate of data from the particles of the dispersed phase

when performing measurements in a heterogeneous flow by taking this rate to
be equal to the number flow rate of solid particles through the cross-section
of the measuring volume of the LDA, i.e., D′′

p = NVxS.
The number flow rate of particles of the dispersed phase through the

measuring volume may be determined as:

NVxS =
GMp

mp
(3.33)
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where GMp is the mass flow rate of particles of the dispersed phase through
the cross-section of the measuring volume, and mp is the mass of a single
particle of the dispersed phase.

We will determine the mass flow rate of particles as:

GMp = MGGMg = MGρUxS, (3.34)

where MG is the mass flow-rate concentration of the dispersed phase, GMg

is the mass flow rate of the carrier phase through the cross-section of the
measuring volume, ρ is the density of the carrier phase, Ux is the averaged
velocity of the carrier phase in the direction of measurements, and S is the
cross-sectional area of the measuring volume.

We take S ≈ dxdz and mp = ρp
πd3

p
6 to derive

D′′
p ≈ MGUx

(

6
πd3

p

)

dxdz

(

ρ

ρp

)

, (3.35)

where dx and dz are the dimensions of the measuring volume of the LDA in
the direction of measurements and along the optical axis, respectively.

The value of the total data rate in performing measurements in a hetero-
geneous flow may be determined with adequate accuracy only experimentally.
For preliminary estimation, we will ignore the effect of the presence of solid
particles on the rate of data from tracer particles and will take the total data
rate to be equal to the characteristic value in the case of LDA measurements
in single-phase flows, i.e., D′′

Σ ≈ 104. As a result, the cross-talk will be defined
by the expression:

Ψ ≈ 6ρMGUxdxdz

ρpπd3
pD′′

Σ

. (3.36)

Therefore, if the number density of particles of the dispersed phase is neg-
ligible compared to the number density of tracer particles (for example, in
flows with relatively large particles at low values of the mass flow-rate con-
centration), the cross-talk will be weak. In this case, there is no need for signal
selection, and the procedure of measurements in a heterogeneous flow will not
differ from the procedure of standard LDA measurements. The foregoing is
supported graphically by Fig. 3.16 which gives the values of cross-talk, calcu-
lated by formula (3.36), as a function of the mass concentration of particles of
the dispersed phase and of their size. The estimates were made using the fol-
lowing values characteristic of LDA investigations of air flows with solid parti-
cles: Ux = 10 m s−1, dx = 0.1 mm, dz = 1.0 mm, ρ/ρp = 0.001, and D′′

Σ = 104.
We will take the cross-talk value of 1% to be its adequate value. Then, one
can infer from Fig. 3.16 that the signal selection is necessary for particles of
sizes dp1 = 100 µm, dp2 = 200 µm, dp3 = 500 µm, and dp4 = 1, 000 µm, start-
ing with the following values of mass concentration: MG1 = 1%, MG2 = 5%,
MG3 = 100%, and MG4 = 1, 000%.
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Fig. 3.16. The cross-talk as a function of mass concentration and particle size:
(1) 20 µm, (2) 50 µm, (3) 100 µm, (4) 200 µm, (5) 500 µm, and (6) 1,000 µm

Basic methods of signal selection of the following three types exist [3, 13]:

1. The method based on the intensity of radiation scattered by particles.
The method is further based on the fact that the amplitude of a signal
from large particles of the dispersed phase is higher than that from tracer
particles defining the gas phase. The effective signal extraction may be
accomplished by suppressing the signal of higher amplitude as overload.

2. The method based on the dependence of the visibility of a Doppler signal
on the size of light-scattering particles. The use of this method presumes
simultaneous measurements of particle velocities and sizes.

3. The method based on the Doppler signal frequency. The use of this method
is possible in the presence of a difference between the instantaneous veloc-
ities of carrier gas and disperse particles, i.e., when the probability density
curves for the velocities of both phases do not intersect. In this case, one
can readily eliminate the cross-talk by operating in the frequency range in
which the signals of the phase of interest to us are located.

The most efficient and simple to realize of the methods of signal selec-
tion described earlier in the case of using commercially available LDAs is the
method of amplitude discrimination. As was already noted, a signal from large
particles of the dispersed phase is higher in amplitude than that from tracer
particles. Therefore, by lowering the threshold amplitude for the input signal
admitted for further processing, one can significantly reduce the rate of data
from particles of the dispersed phase and, consequently, the value of cross-talk.
It does not appear possible to fully eliminate the cross-talk, because large par-
ticles are also capable of producing a signal of low amplitude (lower than the
operation threshold of the discriminator) when they pass in the vicinity of the
external boundary of the measuring volume (up to a distance of ndz/2 from
the axis of the measuring volume (n> 1), where the amplitude is equal to
the minimal threshold of operation (sensitivity) of the optoelectronic system
(see Fig. 3.17)). This fact restricts the use of the present method of signal
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Fig. 3.17. The distribution of the intensity of scattered light for large and small
particles and the respective measuring volumes

selection as regards the particle size and concentration. For example, Modar-
ress et al. [14] observed that the amplitude method performs adequately in
the presence of particles more than 200 µm in size in the flow with a mass
flow-rate concentration MG = 0.8.

3.5.2 Estimation of the Efficiency of Amplitude Selection
of Signals

This section contains a description of the procedure for approximate estima-
tion of the efficiency of amplitude selection of signals from particles of the
dispersed phase when performing measurements of the velocity of the gas
phase of heterogeneous flow.

We will write the following expression for the amplitude of signal from a
light-scattering tracer particle as a function of the distance z to the axis of
the measuring volume [2] (see Fig. 3.17):

Ipf(z) = Ipf max exp

[

−2
(

z

dz/2

)2
]

, (3.37)
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Ipf(0) = Ipf max =
8PLeηqηpfG(dpf)

πd2
f k

2hcL
, (3.38)

Here, Ipf(0) is the amplitude of signal from a tracer particle passing
through the center of the measuring volume, PL is the laser radiation power,
e is the elementary charge, ηq is the quantum efficiency, ηpf is the visibility of
the tracer particle signal, G(dpf) is the dissipative function, df is the diameter
of focused laser beam at the waist, k is the wave number, h is the Planck
constant, and cL is the velocity of light.

We will define the amplitude of signal of a tracer particle on the boundary
of the measuring volume (determined by the intensity level e−2) Ipf(dz/2) =
Ipf max exp(−2) as the threshold of sensitivity of the receiving optoelectronic
system.

The following expressions similar to (3.37) and (3.38) may be written for
the amplitude of signal from a large particle of the dispersed phase (dp > dpf):

Ip(z) = Ip max exp

[

−2
(

z

dz/2

)2
]

, (3.39)

Ip(0) = Ip max =
8PLeηqηpG(dp)

πd2
f k

2hcL
, (3.40)

where Ip(0) is the amplitude of signal from a particle of the dispersed phase,
which passes through the center of the measuring volume; ηp is the visibility
of signal of the particle of the dispersed phase; and G(dp) is the dissipative
function.

We use relations (3.37) and (3.39) to find the value of the “effective”
measuring volume along the optical axis for particles of the dispersed phase dzp

(see Fig. 3.17). The problem consists in searching for some distance zp = dzp/2
= ndz/2 in the case of which the amplitude of signal from large particles of the
dispersed phase will be equal to the threshold of sensitivity of the receiving
optoelectronic system,

Ip(zp) = Ip(ndz/2) = Ip max exp(−2n2) = Ipf max exp(−2). (3.41)

Simple transformations of (3.41) produce:

n =
(

1 − 1
2

ln
Ipf max

Ip max

)1/2

. (3.42)

Therefore, the “effective” measuring volume for large particles of the
dispersed phase along the optical axis will be:

dzp = ndz = dz

(

1 − 1
2

ln
Ipf max

Ip max

)1/2

. (3.43)

The amplitude selection of signals makes it possible to reduce the rate
of delivery of data from particles of the dispersed phase D′′

p when perform-
ing measurements in a heterogeneous flow and thereby reduce the value of
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cross-talk. In order to simplify subsequent analysis, we will assume that the
presence of tracer particles has no effect on the rate of delivery of data from
particles of the dispersed phase, i.e., D′′

p ≈ D′
p (D′

p is the rate of delivery of
data from particles of the dispersed phase in the absence of tracer particles).
In this case, we will determine the effectiveness of amplitude discrimination
(degree of suppression of signals from particles of the dispersed phase) from
the expression

Ea =
D′

pa

D′
p

, (3.44)

where D′
pa is the “suppressed” rate of data from particles of the dispersed

phase in the course of amplitude selection of signals.
In using (3.44), one can readily see that the degree of suppression of signals

from the dispersed phase will be complete (equal to unity) in the case of
D′

pa = D′
p. We will take the distribution (number density) of particles of the

dispersed phase over the cross-section of the “effective” measuring volume to
be uniform. Clearly, the rate of delivery of data D′

p is proportional to the
measuring volume dzp.

By reducing the amplitude of the input signal to be treated, we reduce
the measuring volume region for large particles and, consequently, the rate of
delivery of data. We find some distance zpa in the case of which the value of
the amplitude of signal from a particle of the dispersed phase will be equal to
that of the maximal amplitude of signal from a tracer particle Ipf max,

Ip (zpa) = Ip max exp

[

−2
(

zpa

dz/2

)2
]

= Ipf max. (3.45)

It is obvious that the maximal effectiveness of signal selection may be
attained only if the amplitude threshold of input signal is lowered to a value
equal to that of the maximal amplitude of signal from a tracer particle (no
reduction of the rate of delivery of data from tracer particles D′

pf(D
′′
pf) occurs

in this case). After simple transformations of (3.45), we have:

zpa =
dz

2

(

−1
2

ln
Ipf max

Ip max

)1/2

(3.46)

or

dzpa = 2zpa = dz

(

−1
2

ln
Ipf max

Ip max

)1/2

. (3.47)

We use (3.43), (3.44), and (3.47) to write

D′
pa

D′
p

=
dzpa

dzp
=

dz

(

− 1
2 ln Ipf max

Ip max

)1/2

dz

(

1 − 1
2 ln Ipf max

Ip max

)1/2
. (3.48)
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Therefore, we have the following equation for the effectiveness of amplitude
selection of signals:

Ea =
D′

pa

D′
p

=
[

1 − 2
ln(Ipf max/Ip max)

]−1/2

. (3.49)

We will now analyze (3.49) for two extreme cases, namely:

1. When the size of particles of the dispersed phase is comparable to the size
of tracer particles

(

dpf

dp
→ 1,

Ipf max

Ip max
→ 1
)

and Ea =
D′

pa

D′
p

→ 0,

the amplitude selection of signals is not effective.
2. When the size of particles of the dispersed phase is much larger than the

size of tracer particles
(

dpf

dp
→ 0,

Ipf max

Ip max
→ 0
)

and Ea =
D′

pa

D′
p

→ 1,

the amplitude selection of signals will be effective (the degree of suppres-
sion of signals from particles of the dispersed phase will be complete).

For qualitative estimation of the effectiveness of amplitude selection of
signals using relation (3.49), one needs to know the ratio between the maximal
amplitudes of signals of tracer particles and particles of the dispersed phase;
however, this cannot be done using expressions (3.37) and (3.39), because each
one of these expressions contains two unknowns, namely, the signal visibilities
ηpf and ηp and the dissipative functions G(dpf) and G(dp).

As for all other quantities appearing in (3.37) and (3.39), they may be
taken to be constant for particles of both types with the given adjustment of
the optoelectronic system.

We can make the following assumptions in order to determine the ratio of
signal amplitudes:

1. The signal visibility is inversely proportional to the diameter of light- scat-
tering particle,

ηp

ηpf
=

dpf

dp
. (3.50)

2. We will consider three possible options with regard to unknown dissipative
functions, namely,

[

G(dp)
G(dpf)

]

i

=
(

dp

dpf

)j

, (3.51)

where i = 1, 2, 3 and j = 1.5, 2, 3.
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With the assumptions made, we derive the following versions of the ratio
between the amplitudes of signals of particles of the dispersed phase and of
tracer particles:

(

Ip max

Ipf max

)

i

=
(

dp

dpf

)j

, (3.52)

where i = 1, 2, 3 and j = 0.5, 1, 2.
As a result, (3.49) yields three different relationships for the estimation of

the effectiveness of amplitude selection of signals,

Eai
=
[

1 − 2
ln(dpf/dp)j

]−0.5

, (3.53)

where i = 1, 2, 3 and j = 0.5, 1, 2.
The effectiveness of the amplitude selection of signals as a function of the

ratio between the diameters of particles of the dispersed phase and of tracer
particles is given in Fig. 3.18. This figure supports the foregoing observation
that the use of amplitude discrimination does not enable one to fully eliminate
cross-talk.

A further increase in the effectiveness of signal selection using an ampli-
tude discriminator may be attained by increasing the number of interference
fringes required for monitoring the reliability of signal. This possibility was
mentioned, for example by Rogers and Eaton [19] who measured the kine-
matic parameters of carrier air in the presence of copper particles 70 µm with
mass concentration M = 0.2.

When an LDA 10 two-channel three-beam laser Doppler anemometer
(manufactured by Dantec, Denmark) and a Doppler signal processor of the
counter type (55L90a LDA Counter Processor) are employed, regarded as
reliable is the signal (in operation in the “5/8” mode) from particles for which
the difference between velocities determined by the time of flight of five and
eight interference fringes is within the preassigned error. Signals accepted
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Fig. 3.18. The effectiveness of the amplitude selection of signals as a function of
the ratio between the diameters of particles of the dispersed phase and of tracer
particles (curves 1–3 are plotted by relations (3.53))
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for statistical treatment are those from particles which passed not less than
eight interference fringes of the measuring volume. If a large particle of the
dispersed phase passes the boundary of the measuring volume and crosses a
smaller number of interference fringes than that required for checking the reli-
ability, the signal from this particle is not reliable and will not be accepted for
further treatment. This factor causes a reduction of the “effective” measuring
volume of particles of the dispersed phase. One must bear in mind that the
requirement defining the minimal number of interference fringes leads to a
reduction of the measuring volume for tracer particles as well (see Fig. 3.17);
this causes a decrease in the rate of delivery of data from the latter parti-
cles and, therefore, is a factor causing in increase in cross-talk. It is only by
reducing the “effective” measuring volume with the requirement defining the
minimal number of interference fringes (Fig. 3.17) that a complete suppres-
sion of signals from particles of the dispersed phase may be accomplished
(D′

p(D′′
p) = 0, Ψ = 0) provided the condition dzpa ≥ dzp min is valid.

In this case, the efficiency of the amplitude discriminator in performing
measurements of the velocity of the gas phase of heterogeneous flow will be
defined by the expression:

Ea =
D′

pa + D′
p min

D′
p

. (3.54)

In view of the fact that the rates of delivery of data D′
p, D′

pa, and D′
p min,

are proportional (in a first approximation) to dzp, dzpa, and (dzp – dzp min),
respectively, we can write:

Ea =
dzpa + dzp − dzp min

dzp
(0 ≤ Ea ≤ 1) (3.55)

or, in view of (3.53),

Eai
= 1 +

[

1 − 2
ln(dpf/dp)j

]−0.5

− dzp min/dzp (0 ≤ Eai
≤ 1), (3.56)

where the ratio dzp min/dzp is determined from (3.43) and (3.52) given the
number of interference fringes required for checking the reliability of the signal
and the parameters of the optical scheme (laser radiation wavelength, angle
of intersection of laser beams forming the measuring volume, and the number
of interference fringes in the measuring volume).

As a result, the region of possible values of cross-talk prior to experiments
in measuring the parameters of the carrier phase of heterogeneous flow involv-
ing the use of amplitude selection of signals may be estimated as:

Ψai
≈ (1 − Eai

)Ψ, (3.57)

where the signal selection efficiency Ea is determined from (3.53) or (3.56),
and the “initial” (without signal selection) value of cross-talk Ψ is determined
from (3.36).
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Monitoring of the Signal Selection

This section contains a description of the procedure for monitoring the
efficiency of amplitude selection of signals when performing measurements
of the parameters of the carrier phase.

In the experiments, the value of interference must be monitored, strictly
speaking, at every measurement point. This may be done as follows. According
to (3.32), the cross-talk is defined by the following expression:

Ψ =
D′′

p

D′′
Σ

=
D′′

p

D′′
pf + D′′

p

. (3.58)

The value of D′′
Σ must be determined experimentally. We will use the fore-

going assumption that D′′
p ≈ D′

p to determine the maximum possible value of
cross-talk. The rate of delivery of data from particles of the dispersed phase in
the absence of tracer particles D′

p may likewise be determined experimentally.
As a result, the maximum expected cross-talk is found from the relation:

Ψmax ≈ D′
p

D′′
Σ

. (3.59)

An example of experimental determination of cross-talk is given in
Fig. 3.19. The basic parameters of flow are as follows: a rising turbulent
flow of air in a pipe (channel axis) with glass particles 100 µm in diameter,
the averaged velocity of air Ux = 6.4ms−1, M = 0.26, and the size of tracer
particles (glycerin + water) dpf = 2–5 µm.

The sequence of operations in determining the cross-talk was as follows:

1. Delivery of tracer particles into the flow.
2. Determination of the rate of delivery of data from tracer particles in a

single-phase flow D′
Σ = D′

Σ(Ie) with a varying amplitude threshold for
the input signal from photomultiplier Ie given a constant sensitivity of the
LDA optoelectronic system.
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Fig. 3.19. An example of experimental determination of cross-talk: (a) the rate of
delivery of data as a function of threshold voltage for the input signal ((1) D′

Σ , (2)
D′′

Σ , (3) D′
p); (b) the maximal cross-talk as a function of threshold voltage
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3. Termination of the delivery of tracer particles.
4. Delivery of particles of the dispersed phase.
5. Determination of the rate of delivery of data from particles of the dispersed

phase D′
p = D′

p(Ie) with a varying amplitude threshold for the input
signal from photomultiplier Ie given a constant sensitivity of the LDA
optoelectronic system. In so doing, the sensitivity (the voltage applied to
the photomultiplier) must be equal to that observed when deriving the
relationship D′

Σ = D′
Σ(Ie).

6. Delivery of tracer particles into a heterogeneous flow.
7. Determination of the total rate of delivery of data D′′

Σ = D′′
Σ(Ie) given a

constant sensitivity of LDA.
8. Determination of the maximum possible cross-talk,

Ψmax(Ie) ≈
D′

p(Ie)
D′′

Σ(Ie)
, (3.60)

Figure 3.19b demonstrates that, in the case of threshold voltage Ie =
10 dB, the value of cross-talk does not exceed 1%, which may be regarded
as quite acceptable in performing measurements of the velocity of the carrier
phase of a heterogeneous flow.

3.6 Experimental Apparatuses

The wealth of experience gained from investigations of turbulent single-phase
flows is used in designing experimental apparatuses to study turbulent hetero-
geneous flows. Nevertheless, some concrete problems may be identified, which
the researchers of particle-laden flows must solve. These problems include the
introduction of the dispersed phase into a turbulent flow of gas, development
of conditions for hydrodynamic and thermal stabilization of heterogeneous
flow, and the trapping of particles.

Two experimental facilities have been developed at the Institute of
High Temperatures of the Russian Academy of Sciences (IVTAN) for the
investigation of the structure of turbulent heterogeneous flows, those for
studying upward and downward flows of gas suspension. Both facilities oper-
ate in an open (with respect to gas and dispersed phase) circuit. This scheme
enables one to determine the concentration of solid particles with the desired
accuracy by way of direct separate measurements of the flow rate of gas and
solid particles. The use of an open circuit further enables one to fairly simply
adjust the flow rates of both phases of heterogeneous flow. In the overwhelm-
ing majority of studies of the structure, hydraulic drag, and heat transfer of
dust-laden flows, air was used as the carrier medium. This is explained by its
availability and low cost compared to other gases, which is very important in
the case of open-circuit facilities. Note that the use of air is further convenient
from considerations of the necessity of comparing the measurement results
with the data of other researchers for generalizing the results.
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3.6.1 Experimental Setup for Studying Upward Flows
of Gas Suspension

A basic diagram of the setup is given in Fig. 3.20. Air is delivered via silencer
into the inlet pipe of an RGN-300 gas blower with the maximal capacity
of 0.5 kg s−1 at excess pressure of 0.03 MPa. The flow rate is adjusted by
way of by-passing air to the atmosphere using by-pass and mainline gates
remote-controlled from the operator’s desk. The flow rate is measured by
a flowmeter in the form of a precalibrated “quadrant” nozzle. Air is then
passed into a receiver required for damping pulsations from the gas blower,
passes through a segment of the delivery line, and comes to the inlet of the
experimental section. This inlet consists of a rectangular tank with an inner
frame for increasing the strength and rigidity of the structure. The tank has a
flange on its upper face, to which a sleeve and a vertical pipe of 12Kh18N10T
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Fig. 3.20. Schematic of the experimental setup for studying the structure of upward
heterogeneous flows: (1) silencer, (2) gas blower, (3) by-pass gate, (4) mainline gate,
(5) by-pass line, (6) flowmeter, (7) receiver, (8) segment of delivery line, (9) inlet of
the experimental section, (10) sleeve, (11) vertical pipe, (12) bar, (13) reducer, (14)
rod with a hemispherical end, (15) cyclone, (16) solid particle delivery unit, (17)
generator of micrometer-sized tracer particles, (18) conveying air
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(chrome–nickel–titanium) stainless steel with an inside diameter of 64 mm and
wall thickness of 6 mm are secured. The pipe is 1,500 mm long. A slit for the
inlet and outlet of LDA probing beams (LDA 10 by Dantec) is provided in
the pipe wall at a distance of 300 mm from the upper end. In order to provide
for tightness of the experimental section, the slit is covered by transparent
windows attached to the pipe by tie pins such that the planes of the windows
are located normally to the optical axis of the LDA transmitting optics. A
rod serving as a body subjected to flow is placed coaxially in the pipe by
means of a bar and a guide tube welded into a reducer. The flow passes the
experimental section and the reducer to get into a TsN15Y cyclone, after
which it is discharged into the atmosphere.

A displacement-type unit for the delivery of solid particles was used to
develop a heterogeneous flow. The operating principle of this delivery unit is
as follows. Solid particles are poured into a 3-l glass bottle. When compressed
air is fed into the bottle, the particles are forced out into the delivery line
where they are picked up by conveying air. The resultant dust–air mixture is
delivered via distributing union into the circuit of the experimental section.
This structure of delivery unit makes possible a wide-range variation of the
flow rate of particles depending on the pressure difference across the delivery
unit and provides for the time constancy of the flow rate.

A 55L18 generator of micrometer-sized particles (made by Dantec,
Denmark) utilizing a glycerin–water mixture is used to introduce tracer
particles into the flow, which simulate the motion of carrier medium. Parti-
cles 2–5 µm in size are generated.

The measuring region is scanned using two 57H00 traverse systems by
Dantec which make it possible to automatically move a rod with an accuracy
of ±10 µm along the vertical axis and to move the measurement point proper
(LDA measuring volume) with the same accuracy along the horizontal axis.

3.6.2 Experimental Setup for Studying Downward Flows
of Gas Suspension

A diagram of the setup is given in Fig. 3.21. The working section is a vertical
pipe of 12Kh18N10T (chrome-nickel-titanium) stainless steel with an inside
diameter of 46 mm and wall thickness of 2 mm. The pipe is 2,500 mm long.
A slit 12 mm wide for the inlet and outlet of probing beams of the laser Doppler
anemometer (LDA 10 by Dantec) is provided in the pipe wall at distance
L = 1,380 mm from the upper end. Air is delivered into the working section
via receiver from bottles into which it is prepumped by a compressor (model
K2-150). In order to develop a heterogeneous flow, particles are charged into
a 2-l “feeder” and poured downwards via opening in the “feeder” cover and
a centering tube welded into the reducer. The flow rate of particles is varied
by using “feeder” covers with openings of different diameters. The particles
are taken up by the air flow, pass the working section, and are deposited in a
gravitational chamber.
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Fig. 3.21. Schematic of the experimental setup for studying the structure of down-
ward heterogeneous flows: (1) vertical pipe, (2) slit for the inlet and outlet of LDA
beams, (3) unit of LDA transmitting optics, (4) receiver, (5) bottles with com-
pressed air, (6) compressor, (7) solid particle feeder, (8) centering tube, (9) redicer.
(10) gravitational precipitation chamber, (11) generator of micrometer-sized tracer
particles, (12) rod with a hemispherical end

Micrometer-sized tracer particles are introduced into the flow for perform-
ing measurements of the carrier phase velocity; the Dantec-made generator of
particles is used for this purpose. The pipe cross-section is scanned using a
traverse system which makes it possible to automatically move the measuring
volume with an accuracy of ±10 µm.

3.6.3 The Choice of Particle Characteristics: An Example

The physical properties of particles (first of all, their size and density) and
the working range of concentrations must be selected strictly in accordance
with the objectives of investigation. For example, it was predominantly non-
equilibrium flows that served the subject of experimental investigations at
the IVTAN facilities described earlier (see Table 1.1). Heterogeneous flows
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(a)(a) (b)(b)

(c)(c) (d)(d)

(e)(e) (f)(f)

Fig. 3.22. Photographs of particles of: (a) glass (50 µm), (b) glass (100 µm), (c) glass
(200 µm), (d) iron (100 µm), (e) iron (150 µm), and (f) lead (59 µm)

of this class are characterized by the presence of interphase dynamic slip
in averaged and fluctuation motions. The Stokes numbers in averaged and
large-scale fluctuation motions for such flows are Stkf = τp/Tf ≈ O (1) and
StkL = τp/TL ≈ O (1). The characteristic time of the carrier phase in average
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Table 3.4. Parameters of employed spherical particles

no. material rated
diameter,

µm

mean-square
deviation of

the diameter,
µm

density of the
particle material,

kg m−3

time of
dynamic

relaxation
(Stokes law),

s

country

1 SiO2 50 5 2,550 0.020 Japan

2 SiO2 100 8 2,550 0.08 Japan

3 SiO2 200 16 2,550 0.32 Japan

4 Fe 100 9 7,800 0.24 Japan

5 Fe 150 12 7,800 0.54 Japan

6 Cu 130 18 8,900 0.46 Russia

7 Pb 59 0.6 11,340 0.12 Russia

motion Tf usually exceeds the integral Lagrangian scale of turbulence TL which
characterizes the lifetime of energy-carrying eddies. For obtaining a steady-
state heterogeneous flow (ensuring a complete acceleration of particles) at the
measuring cross-section, it is necessary that the characteristic time of carrier
gas would be at least several times that of dynamic relaxation of particles τp.
The characteristic time of carrier gas in averaged motion may be estimated
as the ratio of the length of experimental section (distance from the point of
injection of particles to the measuring cross section) to the characteristic value
of averaged velocity, i.e., Tf = L/Ux. For the experimental setups, L = 1.2
to 1.4 m, and Ux = O (10 m/s). Therefore, the characteristic time of carrier
gas in averaged motion Tf amounts to hundreds of milliseconds. Because of
this, the time of relaxation of particles τp ≈ ρpd2

p/18 µ must be of the order
of 0.1 s or less. The size and density of particles of the dispersed phase were
selected in view of this requirement. Photographs of some particles used in
the experiments are given in Fig. 3.22. The basic parameters of solid particles
are given in Table 3.4.

The subject of investigations was largely provided by weakly dust-laden
flows in which the presence of the dispersed phase has an inverse effect on
the characteristics of carrier gas. The volume concentration of particles in
such flows varies in the range Φ = 10−3–10−6 (Fig. 1.8). The presence of
solid particles (with a relative density of the material ρp/ρ = 103−104)
predetermines the following working range of values of mass concentration:
0.001−0.01 < M < 1−10.



4

Particle-Laden Channel Flows

4.1 Preliminary Remarks

Studying the behavior of solid particles in a turbulent flow and their inverse
effect on the characteristics of carrier gas presents one of the fundamental
problems in the mechanics of heterogeneous media. The features characteristic
of particle motion and the intensity of interphase processes are largely defined
by the inertia of the dispersed phase and its concentration in the flow.

The investigation of heterogeneous flows in channels (in particular, in
pipes) is not a trivial problem. Studying the motion of particles in the flow
field of the gas carrying them in the presence of gradients of averaged and
fluctuation velocities and temperatures (in the case of nonisothermal flow)
in the radial direction is not a simple problem per se. The gradient pattern
of the profiles of averaged and fluctuation parameters of carrier gas leads to
the nonuniformity of the force factors acting on a particle in the longitudinal
and radial directions. This causes the formation of significantly nonuniform
profiles of averaged and fluctuation velocities, temperatures, and concentra-
tions of particles. The presence of shear profiles of characteristics of particles
makes rather difficult the study of their inverse effect on the characteristics of
the carrier medium. Therefore, as a result of their complexity, heterogeneous
flows in pipes remain little-studied in spite of the numerous investigations of
these flows.

In this chapter, we will describe and analyze the results of investigations
of turbulent flows with solid particles in channels. Section 4.2 is devoted to
treatment of the characteristics of motion of particles and carrier phase under
conditions of heterogeneous flows of different types. In Sect. 4.3, the model is
described which was developed for the inclusion of the effect of the dispersed
phase on the turbulent energy of gas.
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4.2 The Behavior of Solid Particles and Their Effect
on Gas Flow

In this section, we will treat the experimental data on the distribution of
averaged and fluctuation velocities of a “pure” gas, of a gas in the presence
of particles, and of solid particles proper for heterogeneous flows in channels
under conditions of the concentration and inertia of the dispersed phase vary-
ing in a wide range. Also described below are various attempts of generalizing
the available experimental data.

Historically, it turned out that the theory of turbulent heterogeneous
jets made greater progress in its development. This is associated with the
obviousness of the practical application of dust-laden flows of this class and
with the relative simplicity of performing experimental investigations. Early
studies of heterogeneous jets [15, 20] revealed that the presence of particles
leads to a decrease in the intensity of turbulence of carrier gas. The particles
caused a variation in the energy spectrum of turbulence as well, by suppress-
ing the high-frequency components. These results were confirmed by more
recent investigations (for example, [8, 23, 30, 37] and others) performed for a
wide range of particle concentrations and sizes, as well as of the density ratio
of the phases.

Early investigations of heterogeneous flows in channels are also described
in [4, 7, 26, 32–34]. They are largely devoted to flows with spherical particles
in vertical pipes, with a mass flow rate concentration MG ≤ 5. A detailed
review of papers published before 1969 is found in [26]. A typical tool emp-
loyed in these experiments was provided by Pitot tubes for measuring the
velocity of carrier gas and various photographic techniques for measuring the
particle velocity. The investigations revealed the effect of particles on the pro-
file of averaged velocity of the carrier phase in the case of mass concentration
MG > 1. It was impossible to directly measure the intensity of gas turbulence.
Soo et al. [33] investigated the behavior of gas turbulence in the presence of
particles using the diffusion of gas indicator. These measurements (valid in
the vicinity of the pipe axis) failed to reveal any effect of particles on the
intensity of turbulence. Nevertheless, a decrease in the integral Lagrangian
scale of turbulence was demonstrated.

More recent investigations of heterogeneous flows in channels were largely
performed using various modifications of LDA which enable one to measure
the velocities of both phases [16,19,21,24,25,29,35,36,38,39,42–44].

4.2.1 Averaged Velocities of Gas and Particles

We will now turn to analyzing the presently available data on the distribution
of averaged velocities of gas in the presence of particles and of the particles
proper under conditions of heterogeneous flows of different types.
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Equilibrium Flow

The case of equilibrium heterogeneous flow is an extreme case whose mathe-
matical and physical simulation presents no serious difficulties. Low-inertia
particles which are present in an equilibrium flow follow completely the tur-
bulent fluctuations of the carrier gas velocity (see Table 1.1). As a result, the
profile of averaged velocity of these particles will exactly repeat the respective
profile for the carrier phase. In particular, such low-inertia particles are invo-
lved in the investigation of single-phase flows using LDA. The thus measured
velocity of tracer particles is associated with the gas velocity. True, one must
bear in mind the fact that the volume (mass) concentration of low-inertia
tracer particles introduced into a single-phase flow is negligible. Because of
this, the inverse effect on the characteristics of turbulence of the carrier phase
(in particular, on the distribution of averaged velocity) is likewise insignif-
icant. The effect of such particles on gas must increase with their concen-
tration. I am not aware of experimental investigations aimed at studying
equilibrium heterogeneous flows with significant concentrations of particles.
However, Boothroyd [3] assumed that the increase in the concentration of
such particles will bring about a variation of the physical properties of het-
erogeneous medium compared to those of a flow of “pure” gas. The density of
material of solid (liquid) particles exceeds significantly the density of carrier
gas, i.e., ρ = ρp/ρ ≥ 103; therefore, the “effective” density of heterogeneous
flow must increase with the concentration of the dispersed phase. In a first
approximation (ignoring the volume taken up by particles), this characteristic
will be determined as follows:

ρe = ρ + Φρp = ρ(1 + M). (4.1)

The increase in the density of the carrier phase will result in a decrease in its
kinematic viscosity,

νe =
µ

ρe
. (4.2)

In turn, the decrease in the viscosity of gas will cause a variation of the basic
process characteristic of turbulent flow, namely, the Reynolds number, the
expression for which will take the form

ReD =
〈Ux〉2R

νe
. (4.3)

One can infer from (4.3) that the presence of such low-inertia particles will
cause in increase in the Reynolds number.

Quasiequilibrium Flow

Heterogeneous flows of this type are characterized by the equality of averaged
velocities of the carrier and dispersed phases (see Table 1.1). The respective



94 4 Particle-Laden Channel Flows

distributions of averaged velocities over the channel cross-section will also
have a similar form. However, unlike the case of equilibrium flow, the particle
inertia will be sufficient for the presence of difference between the fluctuation
velocities of gas and suspended particles. Because the values of the Stokes
number of these particles in large-scale fluctuation motion are of the order
of unity, i.e., StkL ≈ O(1), these particles will be entrained in the fluctua-
tion motion by large-scale eddies of carrier gas and take up the energy from
the latter eddies. As a result, the intensity of turbulent fluctuations of the
continuous phase may decrease significantly with increasing concentration of
particles. A decrease in gas fluctuations will cause some laminarization of tur-
bulent flow, which will result in a less flat profile of averaged velocity of the
gas phase of heterogeneous flow.

Nonequilibrium Flow

Heterogeneous flows of this type are most complex from the standpoint of
both mathematical and physical simulation. Such flows are most frequently
encountered in nature and find practical application: this explains special
interest shown in them by researchers.

Maeda et al. [24, 25] studied a developed upward turbulent flow of air in
pipes of diameter D = 38 mm and D = 56 mm in the presence of spherical
particles of glass (dp = 45 µm and dp = 136 µm) and copper (dp = 93 µm).
The mass flow rate concentration of the dispersed phase was varied in the
range MG = 0.1−0.54. The velocity of carrier air was Uxc = 4.1−5.7 m s−1.
Experiments revealed that the profile of averaged velocity of particles was
flatter as compared to the respective profile for the carrier phase. The flatness
of the velocity profile increased with the inertia of particles. It was further
revealed that, in the case of values of concentration MG ≥ 0.3, the presence of
particles resulted in a significant flattening of the profile of averaged velocity
of the gas phase. This effect increased further with increasing inertia of the
dispersed phase.

Lee and Durst [21] investigated a fully developed upward turbulent flow of
air in a pipe of diameter D = 42 mm with glass particles (dp = 100, 200, 400,
and 800 µm). The mass flow rate concentration of the dispersed phase was
varied in the range from MG = 1.2 for small particles to MG = 2.5 for
large particles. The velocity of carrier air was Uxc = 5.7 m s−1. Investigations
revealed that the large particles make flatter the profile of averaged velocity of
gas by causing its value to decrease in the vicinity of the axis and to increase
in the vicinity of the wall.

The most integrated study of nonequilibrium heterogeneous flows in pipes
is described in [35,36,38,43]. Tsuji et al. [35,36] performed measurements for
a flow with large particles.

An example of the data obtained by Tsuji et al. [36] on the distributions
of averaged velocities of “pure” air and of air in the presence of particles
(dp = 200 µm, ρp = 1, 000 kg m−3) for an upward turbulent flow in a pipe of
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Fig. 4.1. The distribution of averaged velocities of pure air and of air with plastic
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Fig. 4.2. The distribution of averaged velocities of (1–3) solid particles and (4)
“pure” air: (1) glass particles (50 µm), (2) alumina particles (50 µm), (3) glass par-
ticles (100 µm)

diameter D = 30.5 mm is given in Fig. 4.1. By and large, the results given in
this figure agree with the inferences made in [21,24,25]. One can see that, in the
case of values of concentration MG ≈ M ≥ 1.3, the presence of particles results
in a significant flattening of the profile of averaged velocity of carrier air.

Varaksin et al. [43] investigated an upward turbulent flow of air in a pipe
of diameter D = 64 mm with nonspherical particles of alumina (dp = 50 µm,
ρp = 3, 950 kg m−3) and spherical particles of glass (dp = 50 µm and dp =
100 µm). The mass flow rate concentration of particles was varied in the range
〈MG〉 ≈ M = 0.12−0.39. The averaged velocity of carrier air was Uxc =
6.4 m s−1. The measured distributions of averaged velocities of “pure” air and
solid particles over the pipe cross-section are given in Fig. 4.2. One can see
in this figure that the velocity of solid particles is lower than that of carrier
air in almost the entire cross-section of the pipe (except for the wall region),
which is natural for the case of upward flow. Note further that no impact of
the concentration of particles on their averaged velocity was observed (it was
within the experimental error). This was to be expected, because the volume
concentration of particles under conditions of this investigation was low ΦG =
(3.64−7.9) × 10−5 for alumina particles and ΦG = 5.65 × 10−5 − 1.84 × 10−4
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Fig. 4.3. The distribution of averaged velocities of (1–3) the gas phase of heteroge-
neous flow and (4) “pure” air in universal coordinates: (1) M = 0.39, glass particles
(50 µm); (2) M = 0.26, alumina particles (50 µm); (3) M = 0.39 glass particles
(100 µm)

for glass particles; this corresponds to the region of dilute heterogeneous flow
(see Fig. 1.8) where the interparticle interaction is negligible.

The profiles of averaged velocity of “pure” air and of the air phase of
heterogeneous flow are given in universal coordinates in Fig. 4.3. The distri-
butions of velocities of air in the presence of particles correspond to the cases
of maximal content of particles in the flow, i.e., MG = 0.26 and MG = 0.39 for
flows with particles of alumina and glass, respectively. On analyzing Fig. 4.3,
one can conclude that the effect of particles on the distribution of averaged
velocity of the carrier phase is negligible. On the one hand, this is attributed
to low values of the concentration of the dispersed phase. Another reason is
the fact that the particles employed in the experiments exhibited a relatively
low inertia; therefore, the profiles of their averaged velocity and of carrier air
velocity are similar in shape (see Fig. 4.2). Evidence of this is the fact that
the most important characteristic of heterogeneous flow, namely, the averaged
Reynolds number of a particle, remained constant for particles of all types in
a large region of the pipe (r/R = 0−0.6). This characteristic assumed the
following values in the above-identified region of flow: Rep ≈ 2.6 for alumina
particles, and Rep ≈ 1.7 and Rep ≈ 8.5 for glass particles 50 and 100 µm in
diameter, respectively.

Varaksin and Polyakov [38] investigated a downward turbulent flow of
air in a pipe of diameter D = 46 mm with spherical particles of glass
(dp = 50 µm). The mass flow rate concentration of particles was varied in
the range MG ≈ M = 0.05−1.2. The averaged velocity of carrier air was
Uxc = 5.2 m s−1. The results of measurements of the longitudinal and trans-
verse components of averaged velocities of “pure” air and solid particles over
the pipe cross-section are given in Fig. 4.4. One can see in this figure that
the longitudinal component of averaged velocity of glass particles is higher
than the respective characteristic for carrier air in the entire cross-section of
the pipe. This indicates that the stabilization of heterogeneous flow, whose
main criterion is the completion of acceleration of particles, has terminated on
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Fig. 4.4. The distributions of (a) longitudinal and (b) transverse components of
averaged velocities of (1) “pure” air and (2–4) glass particles in a downward turbu-
lent flow in a pipe (Uxc = 5.2 m s−1 ReD = 15, 300): (2) M = 0.05, (3) M = 0.35,
(4) M = 1.2

reaching the measuring cross-section. Figure 4.4a demonstrates that the pro-
file of the longitudinal component of averaged velocity of particles is flatter as
compared to the similar profile for air in the r/R ≤ 0.9 region. The flatness of
the profile of velocity of particles decreases with the increase in their concen-
tration. This is apparently associated with the fact that the increase in the
concentration of particles intensifies the interphase exchange of momentum in
averaged motion, which leads to the convergence of the profiles of the gas and
solid phases.

The profiles of the transverse component of averaged velocities of air and
glass particles, given in Fig. 4.4b, clearly demonstrate the fact that the value
of this characteristic for both phases of heterogeneous flow is close to zero
(the deviations are within the experimental error).

Flow with Large Particles

Heterogeneous flows of this type are characterized by the fact that the
relaxation time of particles exceeds significantly the characteristic time of
large-scale turbulent eddies, i.e., StkL → ∞. Such particles will not react
to turbulent fluctuations of the carrier phase velocity, and the distributions
of their averaged velocities will be almost uniform over the channel (pipe)
cross-section. This observation may be clearly supported by the data of Tsuji
et al. [36] on the distributions of averaged velocities of “pure” air and plas-
tic particles (dp = 3, 000 µm, ρp = 1, 000 kg m−3) over the pipe cross-section,
given in Fig. 4.5. This figure may further lead one to infer the presence of
significant dynamic slip between the phases in averaged motion. The presence
of phase slip leads to intensive exchange of momentum between the gas and
particles; this will cause the flattening of the profile of averaged velocity of
the carrier phase.
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Fig. 4.5. The distributions of averaged velocities of (1) “pure” air and (2–4) plastic
particles in an upward turbulent flow in a pipe (Uxc ≈ 20 m s−1, ReD ≈ 3.1 × 104):
(2) MG = 1.2, (3) MG = 2.2, (4) MG = 3

4.2.2 Fluctuation Velocities of Gas and Particles

We will now analyze the presently available experimental data on the distribu-
tion of fluctuation (mean- square) velocities of gas in the presence of particles
and of the particles proper under conditions of heterogeneous flows of different
types.

Equilibrium Flow

As was observed in Sect. 4.2.1, in the case of such a heterogeneous flow,
the particles follow completely the turbulent fluctuations of the carrier gas
velocity. This is due to the fact that the time of dynamic relaxation of parti-
cles is negligible compared to the characteristic time of large-scale turbulent
eddies (StkL → 0) and less than (or of the same order with) the time of
small-scale eddies, i.e., StkK ≈ O(1). As a result, the distribution of fluctu-
ation (mean-square) velocities of extremely low-inertia particles (as well as
the distribution of their averaged velocities) will exactly repeat the respective
profile for the carrier phase.

QuasiEquilibrium Flow

It was mentioned above that the values of the Stokes number of particles in a
flow of this type in large-scale fluctuation motion are of the order of unity, i.e.,
StkL ≈ O(1). Heterogeneous flows of this type are further characterized by
the presence of dynamic slip in fluctuation motion. In the case of low values
of the Stokes number in large-scale fluctuation motion (say, at StkL < 0.1),
the particles will have little effect on the intensity of turbulent fluctuations of
the carrier phase velocity. In this case, the particles will be entrained in the
fluctuation motion by way of spending the energy of high-frequency small-
scale eddies whose contribution to the total turbulent energy is small. The
effect of the dispersed phase on the energy of turbulent fluctuations of carrier
gas will increase with the inertia of particles (their Stokes number StkL).
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air and air in the presence of plastic particles in an upward turbulent flow in a
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(4) M = 1.3, (5) M = 1.9, (6) M = 3.2

Nonequilibrium Flow

The distributions of fluctuation velocities of “pure” air and air in the presence
of plastic particles (dp = 200 µm, ρp = 1, 000 kg m−3), borrowed from [36], are
given in Fig. 4.6. It follows unambiguously from this figure that the presence of
relatively low-inertia particles leads to the suppression of the intensity of tur-
bulent fluctuations of carrier air in the entire cross-section of the pipe. As the
mass concentration of the dispersed phase increases, this effect increases until
M ≈ MG = 1.3, and then decreases somewhat at MG = 1.9 and MG = 3.2.
At high values of the mass concentration of particles, the profile of fluctu-
ation velocity of air becomes almost uniform in a large region of the pipe
(r/R = 0−0.8). This is apparently due to the fact that the impact made
by the particles on the distribution of averaged velocity of air for the given
concentrations of particles becomes significant (see Fig. 4.1). The flatness of
the profile of averaged velocity of the carrier phase causes the decrease in
the velocity fluctuations and their leveling off over the pipe cross-section.
Therefore, the particles affect the intensity of turbulence of gas indirectly by
affecting the profile of averaged velocity of the carrier phase.

We will now consider the data of [43] on the profiles of fluctuation veloc-
ities of the carrier phase of heterogeneous flow for the case where the pres-
ence of particles has no effect on the profile of averaged velocity of gas (see
Figs. 4.2 and 4.3). The results of measurements of the longitudinal and trans-
verse components of fluctuation velocity of carrier gas are given in Figs. 4.7
and 4.8, respectively. One can make the following conclusions from Fig. 4.7
(1) all particles employed in the experiment caused a decrease in the intensity
of longitudinal fluctuations of carrier air in almost the entire cross-section of
the pipe (in the range of 0 ≤ r/R ≤ 0.9−0.95); (2) the maximal damping was
observed in the vicinity of the pipe axis; and (3) the degree of suppression
of longitudinal fluctuations of velocity increases with an increase in the mass
concentration of particles and with a decrease in their inertia.
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Fig. 4.7. The distributions of the longitudinal component of intensity of fluctuations
of velocities of (1) “pure” air and (2–5) the gas phase of heterogeneous flow in the
presence of particles of (a) alumina (50 µm) ((2) M = 0.12, (3) M = 0.18, (4) M
= 0.26); (b) glass (50 µm) ((2) 0.12, (3) 0.18, (4) 0.26, (5) 0.39); (c) glass (100 µm)
((2) 0.12, (3) 0.18, (4) 0.26, (5) 0.39)

Analysis of the distributions of transverse fluctuations of velocity of carrier
air, which are given in Fig. 4.8, reveals the following (1) all particles caused
a decrease in the intensity of transverse fluctuations of the gas phase in the
entire cross-section of the pipe; (2) the maximal damping of fluctuations was
observed in the axial region of the pipe, and the impact made by the pres-
ence of particles increases with an increase in their concentration and with a
decrease in their inertia; and (3) some tendency is observed for the maximum
in the distribution of fluctuations of velocity of the gas phase of heterogeneous
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Fig. 4.8. The distributions of the transverse component of intensity of fluctuations
of velocities of (1) “pure” air and (2–5) the gas phase of heterogeneous flow in the
presence of particles of (a) alumina (50 µm) ((2) M = 0.12, (3) M = 0.18, (4) M
= 0.26); (b) glass (50 µm) ((2) 0.12, (3) 0.18, (4) 0.26, (5) 0.39); (c) glass (100 µm)
((2) 0.12, (3) 0.18, (4) 0.26, (5) 0.39)

flow to shift in the direction of the wall compared to the similar distribution
for single-phase flow.

The suppression of turbulent fluctuations by particles is largely caused
by their involvement in fluctuation motion due to interaction with turbulent
eddies of the carrier medium. The higher the degree of involvement of particles
in fluctuation motion, the greater their effect on the fluctuation velocity of
air. The parameter of dynamic inertia of particles in large-scale fluctuation
motion is provided by the respective value of the Stokes number StkL.
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As the inertia of particles increases, their fluctuation velocity becomes ever
lower in the process of interaction with turbulent eddies and, consequently,
they take up a smaller amount of turbulent energy from the carrier gas. For
example, in the wall region the parameter of particle inertia (Stokes num-
ber) increases abruptly compared to its value in the vicinity of the pipe axis
because of the decrease in the characteristic lifetime of energy-carrying tur-
bulent eddies (eddies characterized by small size and high values of velocity
fluctuations exist in the vicinity of the wall). Therefore, the involvement of
particles in fluctuation motion and, consequently, the additional dissipation
of turbulence caused by the presence of particles turn out to be less significant
than in the vicinity of the pipe axis.

Velocity fluctuations of a steady-state gas flow are defined by the turbulent
pattern of flow. As to fluctuations of particle velocities, they may be due to
various reasons. Therefore, before analyzing the data on distributions of fluc-
tuation velocities of particles, we will dwell briefly on these reasons which are
given schematically in Fig. 4.9. The following fluctuations of velocity of par-
ticles moving in a turbulent flow of gas in channels (pipes) may be identified.

First, these are the turbulent fluctuations of velocity of the dispersed
phase, which are associated with the involvement of particles in fluctuation
motion by turbulent eddies of the carrier phase (they were already mentioned
above); secondly, fluctuations of velocity of particles due to their polydisper-
sion, i.e., to the presence of particles of different sizes (and, as a consequence,
of different averaged velocities) in the flow; thirdly, fluctuations of velocity of
particles because of the variation of their velocities in the process of interac-
tion of particles with one another and with the channel wall; and, fourthly,
velocity fluctuations due to migration of particles in a region with a shear of
averaged velocity of the dispersed phase.

Figure 4.10 gives profiles of the longitudinal and transverse components of
intensity of fluctuations of velocities of “pure” air, air in the presence of par-
ticles and particles of glass for different values of their concentration [38]. One
can see in the figure that the intensity of longitudinal fluctuations of velocity
of particles in the axial region of the pipe is σVx

= (υ′2
x )1/2/Uxc ≈ 8% for a

low concentration of particles (M = 0.05) and exceeds the respective charac-
teristic for carrier gas (air) σUx

= (u′2
x )1/2/Uxc ≈ 6%. As the concentration

of particles increases, the intensity of fluctuations of their velocities in the
region identified above decreases to become σVx

≈ 7% and σVx
≈ 5% at M =

0.35 and M = 1.2, respectively. The observed fluctuations of velocity of par-
ticles in the vicinity of the pipe axis are caused mainly by their involvement
in fluctuation motion by turbulent eddies of the carrier phase and by their
polydispersion. The decrease in the intensity of fluctuations of velocity of par-
ticles with an increase in their concentration may apparently be explained
as follows. The Stokes number in large-scale fluctuation motion is deter-
mined as:

StkL =
τp

TL
. (4.4)
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Fig. 4.9. Main reasons for the emergence of fluctuations of velocities of particles in
turbulent flows in channels (a) Interaction between particles and turbulent eddies
of the carrier phase; (b) Presence of particles of different sizes in the flow; (c) Inter-
particle collisions and collisions of particles with the channel wall; (d) Migration of
particles in a region with transverse shear of averaged velocity
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Fig. 4.10. The distributions of (a) longitudinal and (b) transverse components of
intensity of fluctuations of velocities of (1) “pure” air, (2, 3) air in the presence of
particles, and (4–6) solid particles in a downward turbulent flow in a pipe (Uxc =
5.2 ms−1, ReD = 15, 300) : (2,4) M = 0.05, (3, 5) M = 0.35, (6) M = 1.2

Here, the relaxation time of particles is determined by relation (1.56),
and the integral Lagrangian time scale of turbulence which characterizes the
lifetime of energy-carrying turbulent eddies may be represented as

TL =
c
1/2
µ k

ε
=

l

c
1/4
µ k1/2

, (4.5)

where cµ = 0.09.
The turbulent energy of the carrier phase is estimated as:

2k =
∑

i

u′2
i = u′2

x + u′2
r + u′2

ϕ ≈ u′2
x + u′2

r + (u′2
x + u′2

r )/2. (4.6)

For the glass particles employed and for the conditions of the investigation
being described, one can use (4.4) in view of (4.5) and (4.6) to derive StkL ≈ 1
for the pipe axis. This implies that the particles are relatively readily involved
in large-scale fluctuation motion and, therefore, take up the energy of turbu-
lent eddies of the carrier phase. This effect increases with the concentration
of particles. A decrease in the intensity of turbulent fluctuations of the carrier
phase leads to a decrease in fluctuations of velocities of solid particles.

In the case of a high concentration of particles, the collisions between them
begin to play a decisive part in the formation of the statistical characteristics
of the dispersed phase. The interparticle exchange of momentum brings about
the leveling off of the velocities of the dispersed phase, which is a factor
conducive to a decrease in the intensity of fluctuations of velocities of particles
due to their polydispersion.

The longitudinal component of the intensity of fluctuations of particle
velocity increases significantly with decreasing distance from the pipe wall
(see Fig. 4.10a). At a distance of 2 mm from the wall, which corresponds to the
measurement point closest to the wall (y+ ≈ 20), the intensity of fluctuations
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of particle velocity is σVx
≈ 12% (M = 0.05) which is higher than its value for

air. The intensity of fluctuations of velocity of particles in the vicinity of the
wall increases significantly with the concentration of particles and becomes
σVx

≈ 16% and σVx
≈ 24% at M = 0.35 and M = 1.2, respectively. Note that

the degree of involvement of particles in large-scale turbulent motion and,
consequently, their impact on the intensity of air fluctuations on approaching
the wall decrease significantly because of the abrupt increase in the relative
inertia of particles (Stokes number StkL).

The experimentally observed increase in the fluctuations of particle velo-
city in this region of the pipe is mainly caused by the high gradients of ave-
raged velocity of the carrier phase (see Fig. 4.4a). The nonuniformity of the
air velocity profile further defines the nonuniformity of the profile of averaged
velocity of particles which increases with the concentration of particles (see
Fig. 4.4a). The particles perform transverse motions as a result of the shear
of averaged velocity of air, as well as of the involvement of these particles by
turbulent eddies of the carrier phase in the direction normal to the pipe wall.
The “free-fall” of particles in a region with different values of averaged velocity
of the dispersed phase causes the emergence of high values of fluctuations of
particle velocity in the wall region of the pipe.

Excess of fluctuations of velocity of particles over those of the carrier phase
was first predicted theoretically by Liljegren [22]. This effect was also revealed
in [31,45] in large eddy simulation of particle dynamics in a channel flow and in
a flow in a homogeneous shear layer. Excess of fluctuations of particle velocity
over those of carrier gas velocity was obtained by Zaichik and Alipchenkov [50]
who analyzed the motion of particles in an inhomogeneous turbulent flow using
a kinetic equation for the probability density function of velocity of particles.
An increase in the intensity of fluctuations of particle velocity on approaching
the wall was registered experimentally in [19, 27]. Varaksin et al. [44] also
observed excess of longitudinal fluctuations of velocity of glass particles 100 µm
in diameter over those of carrier air velocity in almost the entire cross-section
of the pipe for a low concentration of the dispersed phase. They revealed
a strong dependence of longitudinal fluctuations of particle velocity on the
local concentration of the dispersed phase under conditions of significantly
nonuniform distribution of the latter phase over the pipe cross-section.

We will consider the data obtained in [38] for the profiles of the trans-
verse component of the intensity of fluctuations of velocities of “pure” air
σUr

= (u′2
r )1/2/Uxc and particles σVr

= (υ′2
r )1/2/Uxc. The distributions given

in Fig. 4.10b indicate that the intensity of fluctuations of particle velocity in
the transverse direction is lower than that for the carrier phase in the en-
tire cross-section of the pipe. The observed fluctuations of particle velocity in
the direction being treated are largely caused by the involvement of the dis-
persed phase in fluctuation motion by turbulent eddies of the carrier phase.
The difference in the sizes of particles does not result in the emergence of
“additional” fluctuations of velocity of the dispersed phase as in the case of
fluctuations in the longitudinal direction described above. This is due to the
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fact that the transverse component of averaged velocity of particles of different
sizes is close to zero (see Fig. 4.4b). An increase in the concentration of parti-
cles causes intensification of interphase exchange of momentum in fluctuation
motion in the direction being treated. This leads to a decrease in the inten-
sity of fluctuations of carrier air velocity, which, in turn, causes the observed
decrease in the fluctuations of particle velocity in the transverse direction. The
impact made by the pipe wall consists in that it “interferes” with fluctuations
of velocity of the dispersed phase in the direction being treated, which results
in the decrease and tendency to zero of the intensity of fluctuations of particle
velocity on approaching the wall.

Figure 4.11 gives the distributions of turbulent energy of “pure” air k
determined by relation (4.6) and of energy of fluctuations of particle veloc-
ity kp. The approximate estimation of the energy of fluctuations of particle
velocity was made using the expression

2kp =
∑

i

υ′2
i = υ′2

x + υ′2
r + υ′2

ϕ ≈ υ′2
x + 2υ′2

r (4.7)

The assumption of the equality of the tangential (not measured in the
experiments) and transverse components of fluctuation velocity of particles
υ′2

ϕ ≈ υ′2
r , which is made in (4.7), may be argued as follows. The averaged

velocity of particles in the tangential direction (as well as in the transverse
one) is close to zero. Therefore, the possibility of emergence of “additional”
fluctuations of velocity of particles in this direction because of the difference
between their averaged velocities due to polydispersion (as in the case of
longitudinal fluctuations) is ruled out. In view of the foregoing, possible fluc-
tuations of velocities of particles in the tangential direction are mainly caused
by their interaction with turbulent eddies of the carrier phase. The similar-
ity of the intensity of fluctuations of carrier air velocity and their frequency
spectrum in the transverse and tangential directions suggests that the respec-
tive fluctuations of particle velocity will apparently be similar in magnitude.
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Fig. 4.11. The distributions of (1) turbulent energy of “pure” air and (2–4) energy
of fluctuations of particle velocity in a downward turbulent flow: (2) M = 0.05,
(3) M = 0.35, (4) M = 1.2
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On analyzing the data given in Fig. 4.11, one can conclude that the energy
of fluctuations of velocity of particles is lower than the turbulent energy of
carrier air in the axial region of the pipe. The energy of fluctuations of particle
velocity decreases with increasing concentration of particles in this region of
flow. In the wall region of the pipe, the increase in the concentration of the
dispersed phase, on the contrary, results in a significant increase in the energy
of fluctuations of particle velocity. This characteristic of motion of particles
in the vicinity of the wall may exceed significantly the turbulent energy of
carrier air.

Flow with Large Particles

We will use the data of Tsuji et al. [36] as an example to illustrate the effect of
large particles on the intensity of fluctuations of carrier air velocity. Figure 4.12
gives the results of measurements of distributions of fluctuation velocities
of “pure” air and air in the presence of plastic particles (dp = 3,000 µm,
ρp = 1,000 kg m−3 in the pipe cross-section. One can see from these data
that the presence of large particles in the flow leads to a significant increase
in the intensity of turbulent fluctuations of gas velocity. The observed effect
is largely due to the formation of turbulent wakes behind moving particles,
which leads to additional generation of turbulence. The effect of generation of
fluctuations of gas velocity increases with the concentration of particles and
with the distance from the pipe wall.

4.2.3 The Effect of Particles on the Energy Spectrum
and Scales of Turbulence of Gas

The data of Tsuji et al. [36] on the impact made by particles on the energy
spectrum of turbulent fluctuations of air velocity in the case of nonequilibrium
heterogeneous flow are given in Fig. 4.13. One can see that the presence of
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Fig. 4.12. The distributions of the intensity of fluctuations of velocities of (1) “pure”
air and (2–4) air in the presence of plastic in an upward turbulent flow in a pipe
(Uxc ≈ 13 m s−1, ReD ≈ 2.2 × 104): (2) MG = 0.6, (3) MG = 2.3, (4) MG = 3.4
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Fig. 4.13. The impact made by the concentration of plastic particles 200 µm in
diameter on the energy spectrum of turbulence of carrier air (a) r/R = 0 ((1) MG

= 0, (2) MG = 1.3, (3) MG = 3.2); (b) r/R = 0.521 ((1) 0, (2) 1.3, (3) 3.2); (c) r/R
= 0.912 ((1) 0, (2) 1.3, (3) 3.2)

plastic particles (dp = 200 µm) in the flow results in a decrease in low-
frequency components and increase in high-frequency components of the en-
ergy spectrum of turbulence. This effect increases with the concentration of
particles and with the distance from the pipe wall.
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Fig. 4.14. The impact made by the concentration of plastic particles 3,000 µm in
diameter on the energy spectrum of turbulence of carrier air (a) r/R = 0 ((1) MG

= 0, (2) MG = 1.1, (3) MG = 3.4); (b) r/R = 0.521 ((1) 0, (2) 1.1, (3) 3.4); (c) r/R
= 0.912 ((1) 0, (2) 1.1, (3) 3.4)

Figure 4.14 gives the results of Tsuji et al. [36] on the effect of the dis-
persed phase on the energy spectrum of fluctuations for a flow with large par-
ticles. These data lead to an unambiguous inference that the presence of large
plastic particles (dp = 3,000 µm) in the flow has no effect on the frequency
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characteristics of turbulence in the entire investigated range of concentrations
over the entire cross-section of the pipe. It was mentioned above that experi-
ments revealed a significant increase in the intensity of fluctuations of carrier
air velocity in a flow with large particles. We will suggest that the frequency
characteristics of turbulence generated in the wake behind particles were close
to the respective parameters of “pure” gas; as a result, the presence of particles
made no effect on the spectrum of turbulent fluctuations.

We will now turn to treating the results of investigation of the effect of
particles on the scales of turbulence of carrier gas. One of the methods of
determining the spatial scale is that associated with measuring the distrib-
ution of the coefficient of Eulerian time autocorrelation Rx,τ defined by the
expression

Rx,τ =
u′

x,τ1
u′

x,τ2

u′2
x

, (4.8)

where u′
x,τ1

and u′
x,τ2

are the values of the longitudinal component of fluctu-
ation velocity of gas at the instants of time τ = τ1 and τ = τ2.

Figure 4.15 gives measured distributions of Eulerian time correlation in
single-phase and heterogeneous flows [12]. Experiments were performed for a
stabilized turbulent flow in a horizontal square channel (55×55 mm2). The dis-
persed phase was provided by glass particles (dp = 100–160 µm). The mass
concentration of particles was varied in the range MG ≈ M = 0–1.0. The
dynamic phase slip in averaged motion was 3 ms−1.
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Fig. 4.15. The effect of the concentration of particles on the autocorrelation func-
tion in a turbulent flow of air in a horizontal pipe (Uxc = 23 ms−1, ReD = 8×104):
(1) M = 0, (2) M = 0.33, (3) M = 0.66, (4) M = 1
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We will use the distributions of correlation Rx,τ given in Fig. 4.15 to
determine the integral time scale of turbulence as follows:

TE =
∫ ∞

0

Rx,τ (τ)dτ. (4.9)

The integral Eulerian time scale of turbulence may be obtained using the
relation

LE = Ux

∫ ∞

0

Rx,τ (τ)dτ = UxTE . (4.10)

We use relations (4.9) and (4.10) and the data in Fig. 4.15 to determine the
scales of turbulence of “pure” air TE0 = 4.35 × 10−4 s and LE0 = 0.01 m.
The presence of particles in the flow results in a significant reduction of the
scales of turbulence. For example, we obtained TE/TE = LE/LE0 = 0.8 and
TE/TE0 = LE/LE0 = 0.15 for the values of concentration M = 0.33 and
M = 1.0, respectively.

4.2.4 Generalization of Data

Attempts at generalizing the available experimental data for heterogeneous
flow of different types in searching for dimensionless parameters which define
the effect of solid particles on the flow of carrier gas were made in [9–11,
13, 14]. Gore and Crowe [9] suggested using the ratio of particle diameter to
characteristic length scale of flow, dp/l, as the main dimensionless parameter
defining the interaction between particles and turbulence. They demonstrated
the existence of the critical value of this parameter, below which the particles
suppress the turbulence and above which they generate the turbulence. This
critical value is dp/l ≈ 0.1. The length scale of flow (the size of energy-carrying
eddies) l was determined from the data of Hutchinson et al. [17]. Hutchinson
et al. [17] demonstrated that, for flows in pipes, l ≈ 0.2R in the vicinity of
the axis and decreases to zero on the wall beginning with r/R > 0.7. Gore
and Crowe [10] then found that the critical value of dp/l increases linearly
with the distance from the pipe axis and reaches dp/l ≈ 0.3 in the vicinity
of the wall. It was mentioned that this parameter provides an answer only
to the question of the direction of modification of turbulence (generation or
dissipation) rather than to that of the magnitude of this variation.

The effect of another dimensionless parameter, namely, the Reynolds num-
ber of particle Rep determined by the averaged relative velocity between
phases, on the interaction between disperse impurity and turbulence of car-
rier gas was studied by Hetsroni [13,14]. The data of Gore and Crowe [9] were
used to assume that large particles (Rep > 400) cause eddies behind them,
which destabilize the flow and transform the energy of averaged motion to
high-frequency components of the energy spectrum of turbulence. Small par-
ticles (Rep < 110) largely suppress the turbulent energy and spend it for their
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own acceleration (involvement in fluctuation motion). As to medium-sized
particles (110 < Rep < 400), they will have a mixed effect on turbulence.

Gore and Crowe [11] continued attempts at finding criteria defining the
variation of the intensity of turbulence caused by the presence of the dis-
persed phase. Nine physical quantities were identified describing the nature
of heterogeneous flows, namely:

1. Particle diameter dp

2. Density of the particle material ρp

3. Mass concentration of particles M
4. Density of carrier gas ρ
5. Averaged velocity of gas Ux

6. Dynamic viscosity of gas µ
7. Averaged relative velocity between phases W = |Ux – Vx|
8. Characteristic size of energy-carrying eddies l
9. Fluctuation (mean-square) velocity of single-phase flow (u′2

x0
)1/2

The application of the π-theorem led to the following six dimensionless
criteria:

(u′2
x )1/2

(u′2
x0

)1/2
= f

(

ρp

ρ
,
ρDUx

µ
,
ρWdp

µ
,

l

dp
,
(u′2

x0
)1/2

W
,M

)

. (4.11)

Gore and Crowe [11] noted that only four of the foregoing criteria (in which
W is absent) may be determined with adequate accuracy without perform-
ing experiments. An attempt to combine these criteria into some modified
Stokes number StkLm = ρpd2

pUx/18 µl and use this number for describing the
available experimental data failed to produce a positive result.

The authors of several other studies (in addition to those described above)
also tried to find analytically the parameters which define the process of inter-
action between suspended particles and turbulence of carrier gas [28,29,47–49].

An analytical investigation of additional dissipation of turbulence in a
heterogeneous flow containing low-inertia particles was performed by Rogers
and Eaton [28] ignoring the volume taken up by the particles. They analyzed
the equation for turbulent energy of the carrier phase

Dk

Dτ
= P − ε − 1

τp

∑

i

[

M(u′
iu

′
i − u′

iυ
′
i)

+(Ui − Vi)m′u′
i + (m′u′

iu
′
i − m′u′

iυ
′
i)
]

, (4.12)

where P and ε denote the generation and dissipation of turbulence (they
are analogous to the respective terms in the equation for single-phase flow).
Rogers and Eaton [28] further performed some simplifications of (4.12) in
application to the conditions of boundary layer on a flat plate. First, the
fluctuation component of mass concentration has a negligible value for flows
with particles of StkL > 1; as a result, triple correlations of the right-hand
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part of the equation m′u′
iu

′
i and m′u′

iυ
′
i are small compared to other terms.

Second, the experimental data were used to demonstrate that the averaged
relative velocity between particles and carrier gas in the longitudinal direction
is of the same order as the fluctuation velocity of gas. The relative velocity
in the normal direction has a small value, and the averaged relative velocity
in the azimuth direction is almost zero. Therefore, the term (Ui − Vi)m′u′

i is
of the order of triple correlation and may likewise be ignored.

After simplifications, the equation for turbulent energy (4.12) assumed the
form

Dk

Dτ
= P − ε −

∑

i

M(u′
iu

′
i − u′

iυ
′
i)

τp
(4.13)

Rogers and Eaton [27] found that u′
yυ′

y � u′
yu′

y and u′
zυ

′
z � u′

zu
′
z. It was

further observed that u′
xυ′

x may be a significant part of u′
xu′

x. As a result,
Rogers and Eaton [28] inferred that the additional dissipation of turbulence
in a flow with small solid particles will depend on:

1. The averaged value of mass concentration M
2. The time of dynamic relaxation of particle τp

3. The correlation u′
xυ′

x

Parameters other than those given above, which define the modification
of turbulent energy of carrier gas, were found by Sato et al. [29]. They stud-
ied upward and downward flows of air with Ni–Zn–ferrite particles (dp =
145 µm, ρp = 5,360 kgm−3) in a 30 × 80 mm2 rectangular channel under the
effect of magnetic field. This field was generated by two permanent magnets
embedded in the wall. The distributions of the longitudinal and normal com-
ponents of averaged and fluctuation (mean-square) velocities were obtained
for both phases of heterogeneous flow in the presence and absence of magnetic
field. The measurements revealed that the magnetic field causes an increase
in the normal component of averaged and fluctuation velocities of particles.
This is the reason for the rise of relative velocity between phases and for the
increase in the local concentration of particles in the region where the magnets
are located. Analysis of the resultant data, as well as the application of the
inferences of Rogers and Eaton [28], resulted in revealing the following four
parameters (factors) which define the modification of turbulence for the given
experimental conditions:

1. Modified Reynolds number of particle

Repm −
√

(Vx − Ux)2 + (Vy − Uy)2dp

ν
.

2. Ratio of the sums of both components of fluctuation (mean-square) veloc-
ity of particles and air

α =
(υ′2

x )1/2 + (υ′2
y )1/2

(u′2
x )1/2 + (u′2

y )1/2
.
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3. Effect of local concentration of particles

−(Ui − Vi)m′u′
i − (m′u′

iu
′
i − m′u′

iυ
′
i).

4. Correlation u′
iυ

′
i.

The mathematical model describing the processes of generation and dissi-
pation of turbulence in solid particle-laden flows was suggested by Yarin and
Hetsroni [47]. This model is based on the concepts of the pioneering study
by Abramovich [1] of the effect of solid particles on the fluctuation velocity
of carrier gas. The suggested model rests upon the modified Prandtl mixing
length theory and takes into account two main sources of production of tur-
bulence in heterogeneous flows, namely, the gradient of averaged velocity of
carrier gas and turbulent wakes behind moving particles. The system of input
equations includes (1) the equation of conservation of momentum of individ-
ual turbulent eddy and of particles moving in this eddy, (2) the equation of
particle motion within a turbulent eddy, and (3) some relations for the flow
in the wake behind a particle. The analytical solution of the obtained system
of equations resulted in obtaining four dimensionless criteria responsible for
the modification of turbulence in heterogeneous flows, namely:

1. The dimensionless diameter of particles dp = dp/l

2. The modified Reynolds number of particle Repm = (u′2
x0

)1/2dp/ν
3. The mass concentration of particles M
4. The dimensionless density (density ratio of the phases) ρ̄ = ρp/ρ

It was further demonstrated by Yarin and Hetsroni [47] that, in the case
of flow with relatively small particles (Rep < 400), the modification of turbu-
lence is defined only by the value of mass concentration of particles M . For
a flow with large particles (Rep > 1,000), the variation of turbulent fluctua-
tions will depend on the ratio between mass concentration and dimensionless
density M/ρ̄, i.e., it will be defined by the volume concentration of disperse
impurity Φ.

Comparison of the intensities of turbulence of polydisperse and monodis-
perse flows was made in [48]. Polydisperse flow was meant a heterogeneous
flow in which the dispersed phase is represented by particles of two different
sizes. The flow of both types contained relatively small spherical particles,
such that the effect of turbulent wakes behind the particles was negligible,
i.e., Rep < 110. The relations derived from the solution of the set of equations
analogous to that of [47] resulted in finding:

1. The intensity of turbulence of polydisperse flow is defined by the following
parameters – the total mass concentration of the dispersed phase, the mass
concentrations of small and large particles, the ratio of the diameters of
large and small particles, the density ratio of the phases, the values of the
Reynolds number for small and large particles, and the ratio of the mixing
length to the diameter of large (small) particles.
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2. An increase in the total mass concentration leads to a decrease in turbulent
fluctuations of carrier gas velocity.

3. The intensity of turbulence of polydisperse flow may be higher or lower
than that of monodisperse one, depending on the ratios of diameters and
mass concentrations of large and small particles.

4. In the case of equality of mass concentrations of polydisperse and monodis-
perse flows, as well as of mass concentrations of large and small particles
of polydisperse flow, the intensity of turbulence of polydisperse flow will
be higher if the diameter of large particles is larger than the diameter of
particles of monodisperse flow and lower if the diameter of large particles
is smaller than the diameter of particles of monodisperse flow.

5. If all other parameters are constant, an increase in the mass concentration
of small particles leads to an increase in additional dissipation of turbu-
lence, while an increase in the mass concentration of large particles, on the
contrary, leads to a decrease in dissipation of turbulence of polydisperse
flow.

Yuan and Michaelides [49] developed a simplest theoretical model which
takes into account the processes of additional generation and additional dissi-
pation of turbulent energy in heterogeneous flows with large and small parti-
cles, respectively. We will not present the final expression for determining the
value of turbulent energy of carrier gas in the presence of particles, which was
obtained by Yuan and Michaelides [49], because some mathematical inaccu-
racies were committed in deriving this expression. Note, however, two useful
qualitative inferences concerning the suppression and production of turbulent
energy in flows with extremely small (τp � τ) and extremely large (τp 
 τ)
particles. Here, the time τ is the least of two times, namely, the lifetime of
turbulent eddy and the time of residence of a particle in an eddy. It was found
that the dissipation of turbulence in the case of very small particles is pro-
portional to the cube of particle diameter, and the generation of turbulence
is proportional to the square of this diameter.

The foregoing description of the results of investigations of particle-laden
flows in channels leads one to conclude that the question of finding dimension-
less parameters which define the effect of particles on the flow of the carrier
phase still remains open.

4.3 Simulation of the Effect of Particles
on Turbulent Energy of Gas

It is the objective of this section to analyze separately the laminarizing (dis-
sipative) effect of finely divided impurity [40], the turbulizing effect of large
particles due to formation of a wake [52], and the combined effect of both
mechanisms on a turbulent flow of gas in a pipe [41]. The physical mech-
anisms of additional dissipation and additional generation of turbulence in
heterogeneous flows are shown schematically in Fig. 4.16.
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Fig. 4.16. Basic physical mechanisms of modification of turbulent energy in gas
flows with low-inertia and large particles

4.3.1 The Dissipation of Turbulent Energy by Small Particles

The additional dissipation of turbulent energy of carrier flow, which is due to
the presence of particles, is defined by the relation

εp =
2M(k − kd)

τp
, (4.14)

where k = 1
2

∑

i u′
iu

′
i and kd = 1

2

∑

i u′
iυ

′
i denote the turbulent energy of

carrier gas and the kinetic energy of interphase interaction, respectively.
Within the locally uniform approximation, which is valid for relatively

small particles (StkL = τp/TLp < 1) [51], the kinetic energy of interphase
interaction is directly related to the turbulent energy of carrier flow by

kd = fuk, fu =
1
τp

∫ ∞

0

Ψu(ξ) exp(−ξ/τp)dξ, (4.15)

where Ψu(ξ) is the time autocorrelation function of fluctuations of gas velocity
along trajectories of particles.

We preassign Ψu(ξ) in the form of two-scale parabolic–exponential
function [6]

Ψu =

⎧

⎨

⎩

1 − ξ2/τ2
Tp, ξ ≤ ξ0,

2ξ0TLp

τ2
Tp

exp( ξ0−ξ
TLp

), ξ > ξ0,
(4.16)

which satisfies the conditions Ψu(ξ0 − 0) = Ψu(ξ0 + 0) and Ψ ′
u(ξ0 − 0) =

Ψ ′
u(ξ0 + 0) at ξ0 =

(√

1 + Z2
p − 1

)

TLP , where Zp = τTp/TLp.
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Here, TLp is the integral time macroscale of fluctuations of gas velocity
which is calculated along trajectories of particles and characterizes the time of
their interaction with energy-intensive turbulent eddies of carrier flow, and τTp

is the differential time microscale which characterizes the time of interaction
of particles with small-scale turbulent motion. In the case of small particles,
when the effects of “inertia” and “crossing of trajectories” may be ignored [46],
TLp coincides with the integral Lagrangian scale of turbulence at infinitely
high values of the Reynolds number TL, and τTp becomes equal to the Taylor
time microscale for fluctuations of gas velocity τT. The integral time scale of
turbulence is defined by the relation

TL =
C

1/2
µ k

ε
, (4.17)

where ε is the rate of dissipation of turbulent energy, and the constant
Cµ = 0.09.

The quantity Z = τT/TL which characterizes the ratio of micro- and
macroscales is a function of the Reynolds number, and Z → 0 at Re → ∞.

The coefficient of involvement of particles in turbulent motion fu in (4.15)
in view of expression (4.16) for the autocorrelation function takes the form

fu = 1 +
2Stk2

L

Z2
p

⎡

⎣

StkL +
√

1 + Z2
p

1 + StkL
exp

⎛

⎝−
√

1 + Z2
p − 1

StkL

⎞

⎠− 1

⎤

⎦ . (4.18)

In accordance with (4.15) and (4.18), the additional dissipation of turbulent
energy (4.14) is represented as

εp =
2Mk∆p

TLp
, ∆p =

1 − fu

StkL
, (4.19)

where ∆p is the additional dissipation factor,

∆p =
2StkL

Z2
p

⎡

⎣−
StkL +

√

1 + Z2
p

1 + StkL
exp

⎛

⎝−
√

1 + Z2
p − 1

StkL

⎞

⎠+ 1

⎤

⎦ . (4.20)

At Zp → 0 (Re → ∞), (4.18) yields the known expression for the coefficient
of involvement of particles in large-scale turbulent motion

fu = ∆p = (1 + StkL)−1, (4.21)

which corresponds to preassigning the autocorrelation function in the form of
the exponential dependence

Ψu = exp
(

− ξ

TLP

)

(4.22)
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The exponential function (4.22) describes well the behavior of the autocorre-
lation function at high values of the Reynolds number except for the neighbor-
hood of ξ = 0, because it does not meet the condition of symmetry Ψ ′

u(0) = 0.
As a result of this defect in the behavior of Ψu at ξ → 0, the additional dis-
sipation (4.19) in determining the dissipation factor according to (4.21) does
not go to zero for inertialess particles (τp → 0) but tends to a finite limit.
Therefore, formula (4.21) for the additional dissipation factor ∆p (as well as
for the coefficient of involvement fu) may be used only for particles whose
relaxation time exceeds the time microscale of turbulence.

Figure 4.17 gives the additional dissipation factor ∆p as a function of the
Stokes number StkL. One can see that the function ∆p = ∆p(StkL) is char-
acterized by the presence of a maximum whose position tends to the point
StkL = 0 as Zp decreases. At Zp � 1, the value of this maximum is close to
unity and corresponds to the point StkL = Z2

p/2. Therefore, formula (4.21)
for ∆p turns out to be valid for particles whose parameter of inertia satisfies
the condition StkL 
 Z2

p/2.
The effect of small particles on the turbulence of carrier flow may be

characterized by the ratio of additional dissipation of turbulent energy εp to
viscous dissipation ε. As applied to a pipe flow, the value of ε is determined
from the relation

ε =
C

3/4
µ k3/2

l
, (4.23)

where l is the Prandtl–Nikuradse mixing length,

l = 0.4y(1 − 1.1y + 0.6y2 − 0.15y3), y = y/R. (4.24)

It is assumed that the particles are rather small, so that the effects of “inertia”
and “crossing of trajectories” may be ignored for the time of their interaction
with energy-intensive turbulent eddies; therefore, TLp is taken to be equal
to TL. We will further omit from analysis the case of very small particles
which do not obey the condition StkL 
 Z2/2. Then, in view of (4.17),
(4.19), (4.21), and (4.23),
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Fig. 4.17. The additional dissipation factor as a function of the parameter of inertia
of particles: (1) Zp = 0, (2) 0.1, (3) 0.2, (4) 0.3
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εp

ε
=

2M∆p

C
1/2
µ

=
2M

C
1/2
µ

(

1 + C
1/4
µ τpk

1/2

l

) , (4.25)

where τp = τpu∗0/R, k = k/u2
∗0, l = l/R and u∗0 is the dynamic velocity

(friction velocity) in the absence of particles in the flow.
According to (4.25), the effect of relatively small particles on turbulence is

defined primarily by the mass concentration M and dimensionless relaxation
time τp. As the inertia of particles decreases (to a certain extent), the lam-
inarizing effect of the dispersed phase on the flow increases. The parameter
l in (4.25) allows for the increase in the effect of the dispersed phase with
increasing distance from the wall; this is attributed to the decrease in the
relative inertia of particles with increasing time scale of turbulence.

4.3.2 The Generation of Turbulent Energy by Large Particles

Semiempirical reasoning is used in [5, 18, 49] to introduce into the equation
of balance of turbulent energy of continuous carrier phase additional terms
due to the generation of turbulent fluctuations of velocity at high values of
the Reynolds number of the flow past particles. Yarin and Hetsroni [47] used
directly the self-similar solution for the far axisymmetric turbulent wake [2]
in order to estimate the turbulization of flow by large particles. Naturally,
this approach is valid only in the case of a very low volume concentration of
the dispersed phase, in the absence of interference of wakes behind individual
particles. Rather than employing the solution for self-similar turbulent wake
for direct calculation of the turbulent characteristics of carrier flow, I use this
solution for determining the additional generation of turbulence in the balance
equation for fluctuation energy. This interpretation of self-similar solution
(i.e., using this solution locally rather than integrally) makes the suggested
model valid for various two-phase turbulent flows and gives reason to hope for
its validity under conditions of both low and moderate volume concentrations
of particles.

The distribution of averaged velocity in a self-similar axisymmetric turbu-
lent wake behind a body (particle) subjected to flow is described as follows [2]:

Uδ − Ux

Uδ − U0
= f(η), (4.26)

where

f(η) = (1 − η3/2)2, η = y/δ, δ = 3(β2CDd2
p/16A)1/3x1/3,

A =
∫ 1

0

f(η)ηdη =
9
70

, Uδ − U0 =
Uδ

9
(CDd2

p/16Aβ4)1/3x−2/3.

Here, x and y are coordinates in the longitudinal and transverse directions
to the main flow, U0 is the velocity on the axis (y = 0), Uδ is the velocity of
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unperturbed flow outside of the wake limits, δ is the wake half-width, dp is
the particle diameter, and CD is the particle drag coefficient. The constant β
is defined as the ratio of the mixing length l to the wake half-width (l = βδ)
and is taken to be equal to 0.2.

In order to calculate the turbulent characteristics of flow in a wake, we will
use the balance equation for turbulent energy in a diffusionless approximation,
i.e., assuming generation to be equal to dissipation

−u′
xu′

y

∂Ux

∂y
= ε. (4.27)

The Reynolds shear stress is determined using the Kolmogorov–Prandtl
relation,

−u′
xu′

y = Cµ
k2

ε

∂Ux

∂y
. (4.28)

Equations (4.27) and (4.28) in view of (4.23) give the following for the rate of
dissipation of turbulent energy:

u′
xu′

y = −
(

βδ
∂Ux

∂y

)2

, k =
1

C
1/2
µ

(

βδ
∂Ux

∂y

)2

, ε = (βδ)2
(

∂Ux

∂y

)3

.

(4.29)
In accordance with (4.29), the distribution of generation of turbulent energy
over the cross-section of the wake behind a particle is defined by the expression

P = −u′
xu′

y

∂Ux

∂y
= (βδ)2

(

∂Ux

∂y

)3

or, in view of (4.26),

P = −β2(Uδ − U0)3

δ
f ′3(η) =

(

CDd2
p

16Aβ4

)2/3

× U3
δ

81x7/3
η3/2(1 − η3/2)3 (4.30)

We will now calculate the additional generation of turbulent energy in the
volume of a cell per particle. We assume the distribution given by (4.30) to
be valid up to the particle surface and derive

Pp =
1
Ω

∫

Pdω =
2π

Ω

∫ dc/2

dp/2

∫ δ

0

Pydydx

=
B

27 × 211/3

(

CD

Aβ

)4/3

Φ(1 − Φ2/9)
U3

δ

dp
, (4.31)

where B = − ∫ 1

0
f ′3(η)ηdη = 0.6.

Here Ω = N−1
p = πd3

c/6 is the cell volume, Np is the number of particles
per unit volume, dc is the conditional diameter of cell, and Φ = πd3

pNp/6.
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Strictly speaking, formula (4.31) is valid for low volume concentrations of
particles (Φ � 1). Therefore, the additional generation of turbulence in the
wake behind particles will be finally represented as

Pp = a

(

CD

β

)4/3

Φ
W 3

dp
, a = 0.027, (4.32)

where Uδ is replaced by W = |Ux – Vx| (which corresponds to the modulus of
relative averaged velocity of the continuous and dispersed phases).

Note that (4.32) turns out to be rather close in form to the expres-
sion for additional generation of turbulent fluctuations at high values of the
Reynolds number of flow past particles, which was obtained semiempirically by
Derevich [5].

The ratio of Pp to viscous dissipation ε may be used as the quantity
characterizing the effect of additional generation in the wake behind particles
on the turbulence of carrier flow,

Pp

ε
=

a

C
3/4
µ

(

CD

β

)4/3
ΦW

3
l

dpk
3/2

, (4.33)

where W = W/u∗0 and dp = dp/R
One can see from (4.33) that the effect of large particles on turbulence

is largely defined by the volume concentration Φ (rather than by the mass
concentration M , as in the case of finely divided impurity), the dimensionless
velocity of interphase slip W , and the dimensionless diameter dp. The turbu-
lizing effect of the dispersed phase on the flow increases with the particle size
(because the value of C

4/3
D W

3
/dp increases). The parameter l̄ in (4.33) indi-

cates that the turbulizing effect of large particles, as well as the laminarizing
effect of small particles in accordance with (4.25), increases with the distance
from the wall.

4.3.3 The Effect of Particles on Turbulent Energy of Gas

We will consider the effect of the dispersed phase on the turbulence intensity
of a steady-state hydrodynamically developed flow in a vertical round pipe.
The balance equation for turbulent energy is used to analyze the effect of
particles on the level of turbulence,

Dk

Dτ
= D + P − ε + Pp − εp. (4.34)

The term on the left-hand side of (4.34) denotes the time variation and
convective transfer of turbulent energy. The terms on the right-hand side,
respectively, describe the diffusion transfer due to fluctuations of velocity and
pressure, the generation of turbulence from averaged motion, the dissipation
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of turbulent energy, and the additional generation and dissipation due to the
presence of particles in the flow. In the treated case of steady-state hydrody-
namically developed flow, the left-hand part of (4.34) vanishes. Further, with
a view to deriving a simple analytical relation for the effect of particles on tur-
bulence, we will perform analysis in the so-called diffusionless (algebraic) app-
roximation, i.e., disregarding the contribution by the diffusion term in (4.34).

The generation of turbulent energy in (4.34) due to the shear of averaged
velocity is defined by the relation

P = −u′
xu′

y

∂Ux

∂y
= Cµ

k2

ε

(

∂Ux

∂y

)2

, (4.35)

where x is the longitudinal coordinate along the pipe axis, and y is the trans-
verse coordinate directed from the wall toward the pipe axis.

The contribution of additional dissipation εp to the balance of turbulent
energy (4.34) is significant only for relatively small particles (StkL < 1).
Therefore, the time of interaction between particles and turbulent eddies TLp

may be taken to be equal to the time scale of turbulence TL, because the error
in determining TLp plays no significant part due to the small contribution of
εp to (4.19) for large particles. Then, (4.34) in view of (4.17), (4.19), (4.23),
(4.32), and (4.35) yields the following expression for the turbulent energy of
carrier flow:

k =

l2

C
1/2
µ

(

∂Ux

∂y

)2

+ a

C
3/4
µ

(

CD
β

)4/3
ΦW 3l
k1/2dp

1 + 2M∆p

C
1/2
µ

. (4.36)

We will assume that the impact of the dispersed phase on the profile of
averaged velocity of gas, as well as that on the distribution of mixing length,
may be ignored in analyzing the effect of the dispersed phase on the intensity
of turbulent energy (in a first approximation). In addition, we will restrict
ourselves to treating the particles which satisfy the condition StkL 
 Z2/2.
In this case, expression (4.36) in view of (4.21) may be represented as

k

k0
=

1 +
a

C
3/4
µ

(

CD

β

)4/3
ΦW

3
l

k
3/2

0 dp

(

k0

k

)1/2

1 + 2M/(C1/2
µ [1 + C

1/4
µ (τpk

1/2

0 /l)(k/k0)1/2])
, (4.37)

where k0 = k0/u2
∗0 and k0 is the turbulent energy in the absence of particles

from the flow.
In the case of small particles, when the additional generation of turbulence

in the wake behind particles is of no importance, (4.37) yields

k

k0
=

1

1 + 2X/C
1/2
µ

, (4.38)

where X = M

1+C
1/4
µ (τpk

1/2
0 /l)(k/k0)1/2

.
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Fig. 4.18. The effect of low-inertia particles on the distribution of turbulent energy
of gas over the cross-section of a pipe (a) alumina (50 µm), (b) glass (50 µm), (c) glass
(100 µm); lines 1–4 – formula (4.38): (1) M = 0.12, (2) 0.18, (3) 0.26, (4) 0.39

In Fig. 4.18, relation (4.38) is compared with the experimental data of [43]
for small particles on the distribution of the turbulent energy of gas related
to the respective value obtained in the absence of particles from the flow.
The transversal component of velocity fluctuations (not measured in the ex-
periments) was calculated in terms of the longitudinal and transverse com-
ponents using the relation u′

ϕ
2 = (u′

x
2 + u′

r
2)/2. One can see in Fig. 4.18
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Fig. 4.19. The effect of low-inertia particles on the intensity of turbulence: (1) glass
(50 µm), (2) alumina (50 µm), (3) glass (100 µm). The line indicates calculation by
formula (4.38)

that, indeed, the presence of relatively small particles in the flow causes the
suppression of turbulence. In so doing, the laminarizing effect of the dispersed
phase in accordance with (4.38) increases with the mass concentration of par-
ticles and with the distance from the wall. As the inertia of particles increases
(in the range being treated), their impact on turbulence decreases.

Figure 4.19 gives all experimental data from Fig. 4.18, generalized in the
coordinates k/k0 with respect to X. One can infer from Fig. 4.19 that the
experimental data are grouped together fairly densely in the form of depen-
dence of k/k0 on X and are described adequately by formula (4.38). Note
that formula (4.38) does not satisfy the obvious passage to the limit for the
case of inertialess particles, namely, k → k0 at τp → 0. Therefore, as was
already mentioned, formula (4.38) is valid for analysis of the effect made on
turbulence by particles whose relaxation time exceeds the time microscale.
Relation (4.20) may be used to provide for a correct passage to the limit at
τp → 0 for the purpose of calculating the additional dissipation factor.

In the case of large particles, where the additional dissipation of turbulence
is insignificant, formula (4.37) yields

k

k0
= 1 +

(

k0

k

)1/2

bY,

b =
a

C
3/4
µ β4/3

, (4.39)

Y =
C

4/3
D ΦW

3
l

dpk
3/2

0

.

In Fig. 4.20, relation (4.39) is compared with the experimental data of [36]
for large particles on the distribution of turbulence intensity related to the
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Fig. 4.20. Comparison of (1–3) results of calculation by formula (4.39) and (4–6)
experimental results of investigation of the effect of large plastic particles on the
distribution of turbulent energy of gas over the pipe cross-section (a) 1,500 µm
((1, 4)Φ = 0.00071, (2, 5) 0.0023, (3, 6) 0.0035); (b) 3,000 µm ((1, 4) Φ = 0.00071,
(2, 5) 0.0027, (3, 6) 0.004)

respective value obtained in a single-phase flow over the pipe cross-section
under conditions of upward flow. Because Tsuji et al. [36] measured only
the axial component of velocity fluctuations, their relative value was taken
to be equal to relative turbulent energy. One can see in Fig. 4.20 that, in
accordance with (4.39), the turbulizing effect of the large-particle dispersed
phase increases with the volume concentration and particle size, as well as
with the distance from the wall. Therefore, as in the case of finely divided
impurity, the wall region turns out to be more conservative (less sensitive)
compared to the flow core as regards the effect of the dispersed phase on the
turbulent structure of carrier flow.

Figure 4.21 gives the experimental data of Fig. 4.20 generalized in the co-
ordinates k/k0 with respect to Y . One can see that the experimental data
are generalized fairly well in the form of dependence of k/k0 on Y and are
described adequately by formula (4.39).

We will perform a qualitative analysis of the effect of particles on the
turbulence of carrier flow under conditions of flow in a vertical pipe. The
averaged velocity of interphase slip will be estimated as

W = τpg, (4.40)

where g is the acceleration of gravity, and the time of dynamic relaxation
of particles is defined by the known relation (1.56),

τp = τp0/C(Rep), τp0 = ρpd2
p/18ρν, Rep = Wdp/ν. (4.41)

The particle drag coefficient is

CD = 24C(Rep)/Rep. (4.42)
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Fig. 4.21. The effect of large plastic particles on the turbulent energy of gas:
(1) formula (4.39), (2–4) 1,500 µm, (5–7) 3,000 µm

Relations (4.40) and (4.41) will be written in dimensionless form as

W = τpG, τp =
ρp

ρ

d
2

pR+

18C(Rep)
, (4.43)

where
G = gR/u2

∗0, and R+ = Ru∗0/ν.

We will restrict ourselves to analyzing the effect of the dispersed phase on the
turbulent energy of flow at the pipe center (on the axis), where we can assume

l = 0.14, k0 = 1.

Then, it follows from (4.37) in view of (4.42) and (4.43) that the effect of the
dispersed phase on the turbulent energy of carrier flow is represented in the
form of the following functional dependence:

k

k0
= f(ρp/ρ, Φ, dp, R+, G). (4.44)

The importance of individual parameters in (4.44) varies with increasing par-
ticle size. For example, the importance of the gravity parameter G defin-
ing the averaged interphase slip is significant only for large particles. In the
case of small particles, the effect of individual parameters on turbulence in
accordance with (4.38) shows up in terms of the complexes M = (ρp/ρ)Φ and
τp ∼ (ρp/ρ)d

2

pR+. In the case of large particles, in accordance with (4.39),
Φ, dp, and W ∼ [(ρp/ρ)dpG]1/2 become the determining parameters.
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Particle-Laden Flows Past Bodies

5.1 Preliminary Remarks

The chapter deals with solid particle-laden flows past bodies. This problem
emerged as a result of studies of motion of various flying vehicles in a dust-
laden atmosphere, as well as of motion of two-phase heat-transfer agents in
flow trains of power plants. The presence of solid particles may cause a signif-
icant (sometimes, many times over) increase in heat fluxes, as well as erosion
wear of the surface subjected to flow. These phenomena are due to the com-
bined effect of a number of reasons, which include the variation of the structure
of flow incident on a body and of the characteristics of the boundary layer
developing on the body subjected to flow, as well as particle/surface collisions,
variation of the surface roughness, and so on. The intensity of the processes
which accompany heterogeneous flows past bodies depends on the inertia and
concentration of particles. Note that the inertia of particles depends directly
on the geometry and parameters of flow and may vary in a very wide range for
the same particles. The presence of different characteristic times (lengths) of
carrier flow (in the vicinity of the critical point of the body subjected to flow
and along its surface, turbulent scales proper, and so on) complicates seriously
the study of such flows and generalization of data. As to the concentration of
particles, its value may be many times the “initial” value in an unperturbed
flow due to abrupt deceleration of flow on approaching the body, particle/
wall interaction, and interparticle collisions. When particles move along the
surface in the boundary layer characterized by significant gradients of veloc-
ity and temperature (in the case of nonisothermal flow), their distribution is
often complex, and the value of concentration is likewise higher than that in
the flow incident on the body.

Studies into heterogeneous flows past bodies are mainly aimed at (1)
investigating the motion of particles and determining their trajectories,
(2) determining the effect of particles on the flow of gas, and (3) inves-
tigating the processes of interaction of particles with the surface subjected to
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flow, including the erosion of material. Primary consideration will be given
to the first two problems.

Described and analyzed below are the results of mathematical and phys-
ical simulation of particle-laden flows past bodies. Section. 5.2 is devoted to
treatment of the characteristics of dust-laden flows in the region of the critical
(frontal) point of a body. The characteristic features and parameters of hetero-
geneous flows along the surface subjected to flow will be treated in Sect. 5.3.
The results of investigations of the drag of bodies subjected to heterogeneous
flows are described in Sect. 5.4.

5.2 A Flow with Particles in the Region
of the Critical Point of a Body

In order to analyze the physical processes occurring in the region of the
frontal point of a body subjected to heterogeneous flow, one must know the
distributions of velocities, temperatures (in the case of nonisothermal flow),
and concentration of particles. A very appropriate (in my opinion) classifica-
tion of possible modes of heterogeneous flows past bodies was suggested by
Tsirkunov [25]. This classification is given in Fig. 5.1 with the Stokes num-
ber ranges in accordance with the classification of particle-laden gas flows
suggested in Sect. 1.5.

(a)

(e)(d)

(c)(b)

Fig. 5.1. The classification of modes of heterogeneous flows past bodies: (a) equilib-
rium flow, quasiequilibrium flow, Stkf → 0; (b) weakly dust-laden nonequilibrium
flow, flow with large particles, Stkf ≈ O(1); (c) highly dust-laden nonequilibrium
flow, flow with large particles, Stkf ≈ O(1); (d) flow past a body in the case of an
absorbing wall; (e) flow past a body with the formation of a film
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Sedimentation factor The sedimentation (trapping) factor of particles is an
important integral characteristic of heterogeneous flows past bodies. This fac-
tor is the ratio of the number of particles which collided with the body to the
number of particles which could collide with the body if their lines of flow
were straight lines.

In the case of axisymmetric flow (for example, flow past a sphere), where
the size of particle is negligible compared to the size of body, particles are uni-
formly distributed in the incident flow, and their trajectories are symmetrical,
the sedimentation factor may be determined as

η = y 2
cr, (5.1)

where y cr = ycr/R is the dimensionless distance from the symmetry axis of
flow, at which the particles (in a flow unperturbed by the presence of a body)
only touch the body while flowing past it. The particles, whose coordinates
in the incident flow are y > ycr, do not collide with the body.

In the case of plane flow (for example, transverse flow past an infinite
cylinder or plate), expression (5.1) for the sedimentation factor is simplified
and takes the form

η = y cr, (5.2)

We will now analyze the results of theoretical and experimental investiga-
tions of motion of particles and determination of their effect on the flow of
carrier gas in the vicinity of the critical points of bodies subjected to flow.

5.2.1 Theoretical Investigations

One of the early investigations of particle trajectories under conditions of
potential heterogeneous flow past a sphere was performed by Michael and
Norey [11]. Because the velocities of gas and particles away from the body
surface were taken to be equal to each other, the flow away from the body,
treated by Michael and Norey [11], may be classified as quasiequilibrium (see
Table 1.1). As a result of the difference between the velocities of the phases
due to particle inertia in the vicinity of the frontal point, this flow became
nonequilibrium. The calculations were performed for the case where the resis-
tance of particles obeys the Stokes law. As to the concentration of particles, a
weakly dust-laden flow without inverse effect of particles on the carrier gas was
treated. The interaction between the particles and the sphere was not treated,
because it was assumed that the particles were absorbed by the surface of the
sphere.

The velocity field of gas was defined by the following relations:

Ux = 1 +
y2 − 2x2

2(x2 + y2)5/2
, Uy =

−3xy

2(x2 + y2)5/2
(5.3)

where Ux = Ux/Ux0, Uy = Uy/Ux0, x = x/R, and y = y/R (R is the radius
of the sphere).
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Table 5.1. The effect of gravity on the sedimentation factor of particles under
conditions of potential heterogeneous flow past a sphere (ε = τp0g/Ux0)

Sktf η η

downward flow upward flow

ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.05 ε = 0.1 ε = 0.2

0 0.0025 0.0081 0.029 0 0 0

0.3 0.16 0.21 0.29 0.048 0 0

0.7 0.40 0.44 0.50 0.54 0.49 0.31

2 0.67 0.71 0.74 0.62 0.58 0.49

5 − − − − 0.79 0.74

The center of the coordinate system was located at the center of the sphere,
and the x-axis was directed downstream, so that the critical point had the
coordinates x = −1 and y = 0.

The Lagrangian equations of particle motion were written as

StkfV x
dV x

dx
= Ux − V x, (5.4)

StkfV x
dV y

dx
= Uy − V y, (5.5)

where Stkf = τp0Ux0/R.
The boundary conditions for (5.4) and (5.5) are as follows: x = −∞,

V x = Ux = 1, and V y = Uy = 0.
Michael and Norey [11] then changed from Cartesian to cylindrical coor-

dinates.
The trajectories of particles motion were obtained as a result of compu-

tations. Figure 5.2 gives the limiting trajectories of particles (corresponding
to ycr) for different values of Stkf . One can use the foregoing data to readily
determine the values of the sedimentation factor of particles as a function of
the Stokes number in averaged motion. These values are η = 0.035, η = 0.35,
and η = 0.82 for the values of Stokes number Stkf = 0.2, Stkf = 0.7, and
Stkf = 5, respectively.

Michael and Norey [11] further investigated the effect of gravity on the
sedimentation of particles. They treated two cases, namely, those of downward
and upward flows of gas suspension past a sphere. For this purpose, the term
ε = ±τp0g/Ux0 (where g is the acceleration of gravity) was introduced into
the right-hand part of (5.4). It is obvious that the effect of gravity will be
significant only when the free-fall velocity of particles τp0g and the velocity
Ux0 of flow in which they are suspended are of the same order of magnitude.

Table 5.1 gives values of the sedimentation factor of particles as a func-
tion of their inertia. One can see from the data in the table that the inclusion of
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Fig. 5.2. Limiting trajectories of particles under conditions of potential heteroge-
neous flow past a sphere: (1) Stkf = 0.2, (2) Stkf = 0.7, (3) Stkf = 5.0
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Fig. 5.3. Trajectories of particles 10 µm in diameter (Stkf = 0.2) under conditions
of transverse potential heterogeneous flow past a cylinder: (ρp = 1, 400 kg m−3,
Ux0 = 6 m s−1)

gravity causes an increase in the sedimentation factor in the case of downward
flow past a sphere and a decrease in the sedimentation factor in the case of
upward flow. Therefore, as the particle inertia increases and the flow velocity
decreases, the failure to include the gravity force may lead to significant errors.

In a more recent study, Morsi and Alexander [12] calculated particle tra-
jectories under conditions of transverse potential flow past a cylinder. In this
study (as in [11]), the motion of single particles was treated, where inter-
particle collisions and their effect on gas were ignored. Compared to [11], an
attempt was made to include the difference of the particle drag from that
according to the Stokes law and particle motion from the Saffman lift force.

The particle trajectories obtained as a result of calculations are given in
Figs. 5.3–5.5.

The studies cited above dealt with rather idealized cases of flow past
bodies. The calculations did not include the effect of the viscous boundary
layer developing on the body subjected to flow, and the motion of particles
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Fig. 5.4. Trajectories of particles 20 µm in diameter (Stkf = 0.83) under conditions
of transverse potential heterogeneous flow past a cylinder: (ρp = 1, 400 kg m−3,
Ux0 = 6 m s−1)
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Fig. 5.5. Trajectories of particles 100 µm in diameter (Stkf = 20) under conditions
of transverse potential heterogeneous flow past a cylinder: (ρp = 1, 400 kg m−3,
Ux0 = 6 m s−1)

reflected from the body was not treated, as well as the inverse effect of par-
ticles on gas. The nonisothermality of flow, which causes the emergence of
the thermophoresis force, may also have a significant effect on the process
of dust-laden flow past a body. In what follows, we will consider the results
of studies whose authors tried to take into account some or the other of the
physical factors listed above.

A viscous heterogeneous flow past the frontal surface of a sphere at val-
ues of the Reynolds number of Repm = Ux0R/ν = 103−107 was treated by
Tsirkunov [24]. The carrier gas was assumed to be incompressible, and the
concentrations of particles – negligible, so that the particles have no effect
on the flow of continuous medium. The calculations revealed that the bound-
ary layer distorts strongly the trajectory of particles and prevents them from
moving toward the wall. This is attributed to the fact that the viscous gas is
decelerated more intensively than the ideal one; this, in turn, leads to a more
intensive deceleration of solid particles. The particles moving in the boundary
layer in the vicinity of the surface subjected to flow lose their velocity abruptly,
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“hover,” and then drift along the body surface. As a result, the sedimenta-
tion factor of particles decreases. Tsirkunov [24] further made an important
inference that, at Stkf = τp0Ux0/R ≥ 0.2, the boundary layer hardly affects
the particle motion, while at Stkf ≤ 0.11 its effect is significant. The critical
value of the Stokes number Stkfcr corresponding to collisionless flow of par-
ticles past a body decreases with increasing Reynolds number Repm. This is
apparently associated with the fact that an increase in the Reynolds number
leads to a decrease in the boundary layer thickness, which causes a reduction
of the forcing-back effect of the boundary layer.

The characteristic features of weakly dust-laden heterogeneous flow past
a cylindrical surface under nonisothermal conditions were considered in the
review of Spokoyny and Gorbis [23]. Analysis of the process of nonisothermal
sedimentation revealed that, in the region of low-inertia particles for which
the inertial mechanism of sedimentation is no longer valid (Stkf < Stkfcr),
the intensity of sedimentation increases abruptly with nonisothermality and
is largely defined by thermophoresis.

The conditions of inertial sedimentation of Stokesian particles in the case of
a laminar heterogeneous jet flowing from a plane-parallel channel were studied
by Dombrovsky and Yukina [6–8]. The Stokes number was determined as
follows: Stkfm = τp0|∂Ux/∂y|x,y=0. It was demonstrated that, at Stkfm > 0.5,
the decrease in the sedimentation factor due to the variation of trajectories of
particles in the boundary layer does not exceed 15% even at low values of the
Reynolds number. However, the components of velocity of particles at the wall
suffered a significant decrease. This fact becomes important in studying the
mechanical impact of particles on the wall surface. Dombrovsky and Yukina [8]
further study the effect of the blowing of gas off the obstacle surface on the
conditions of sedimentation. It has been demonstrated that, at high values of
the Reynolds number, the blowing off of gas hardly affects the critical Stokes
number in the investigated range of variation of the parameters.

In all of the studies referred to above, it was assumed that the particles
which get to the body surface disappear from the flow. This formulation of
the problem is acceptable when the dispersed phase is taken to be provided by
liquid droplets or particles which form a thin film along the surface subjected
to flow after getting to the body.

Vittal and Tabakoff [32] investigated a heterogeneous flow past a cylinder
in view of the boundary layer, of the inverse effect of particles on gas, and
of the effect of reflected particles. A flow with a relatively low-volume con-
centration of particles was treated; therefore, the interparticle interaction was
disregarded. The parameters of continuous medium were calculated using the
Eulerian approach, and the force of aerodynamic drag alone was taken into
account in the Lagrangian equations of particle motion.

As a result of collisions with the surface, particles lose a part of their
momentum and change the direction of motion. In order to calculate the
particle trajectory after collision with the wall, one needs to know the mag-
nitude and direction of the particle velocity vector. As is observed in [32],
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the rebound parameters are statistical and are largely defined by the particle
angle of incidence. The following empirical relations were used in the calcula-
tions for the recovery factors of velocity after impact:

Vn2

Vn1

= 1 − 0.4159β + 0.4994β2 − 0.292β3, (5.6)

Vτ2

Vτ1

= 1 − 2.12β + 3.0775β2 − 1.1β3, (5.7)

where Vn1 and Vτ1 denote the normal and tangential (to the body surface)
components of particle velocity prior to collision, respectively; and Vn2 and
Vτ2 denote the components of particle velocity after collision, respectively. In
(5.6) and (5.7), β is the angle (in radians) between the direction of particle
velocity prior to collision and the tangent to the surface.

The thus calculated trajectories of quartz particles (ρp = 2, 444 kg m−3)
of different sizes moving in an air flow past a cylinder (R = 1.5675 mm)
for the Reynolds number Repm = 2Ux0R/ν = 40 are given in Figs. 5.6–5.8.
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Fig. 5.6. Trajectories of particles 10 µm in diameter (Stkf = 0.09) under conditions
of transverse heterogeneous flow past a cylinder: (ρp = 2, 444 kg m−3, Repm = 40):
lines indicate potential flow, and circles indicate viscous flow
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Fig. 5.7. Trajectories of particles 40 µm in diameter (Stkf = 1.4) under conditions
of transverse heterogeneous flow past a cylinder: (ρp = 2, 444 kg m−3, Repm = 40):
lines indicate potential flow, and circles indicate viscous flow
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Fig. 5.8. Trajectories of particles 140 µm in diameter (Stkf = 17) under conditions
of transverse heterogeneous flow past a cylinder: (ρp = 2, 444 kg m−3, Repm = 40):
lines indicate potential flow, and circles indicate viscous flow
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Fig. 5.9. The sedimentation factor of particles under conditions of flow past a
cylinder 3.175 mm in diameter (Repm = 40) as a function of the Stokes number:
(1) potential flow, (2) viscous flow

One can see that the trajectories of different particles differ strongly form
one another in that the small particles do not collide with the body surface
while the large particles collide with the body and deflect sideways. The par-
ticle motion is affected significantly by the boundary layer. The inclusion of
the viscosity of gas results in an increase in the effective size of the cylinder by
the displacement thickness of boundary layer; this affects the trajectories of
particles and causes a decrease in their sedimentation factor. A graphic proof
of the foregoing is provided by Fig. 5.9 which gives the distributions of the
trapping coefficients of particles for the cases of both viscous and ideal fluid
flow past a cylinder.

A disadvantage of the study [32] is the failure to include the force of gravity
which, for the conditions of this investigation, should have made a significant
impact by causing a variation of the trajectories of particles and disturbing
the flow symmetry in the treated case of horizontal flow.

Some researchers investigated supersonic heterogeneous flow past bodies
[21, 22]. However, these theoretical studies were performed for low values of
mass concentration of particles, which enables one to study the dynamics of
both incident and reflected particles in the preassigned velocity field of gas.
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The simulation of external supersonic heterogeneous flow past blunt bodies
in view of the inverse effect of particles on gas was performed in [4, 5]. The
dynamics of particles were calculated using the Eulerian continuous approach.
Trajectories of particles under conditions of transverse dust-laden flow of a
plate of finite thickness were obtained in these studies. The distributions of
longitudinal velocity of gas in the presence of particles of different sizes and
of particles proper ignoring their reflection from the body surface, which were
obtained by Davydov and Nigmatulin [4], are given in Fig. 5.10. The resul-
tant data indicate that the velocities of the gas and dispersed phases differ
significantly. The velocity of particles on the plate surface increases with the
particle inertia. The presence of large particles in the flow makes a strong
impact on the distribution of carrier gas velocity in the stagnation region.

Figures 5.11 and 5.12 give streamlines of carrier gas and suspended par-
ticles [4]. One can see that small particles tend to follow the lines of flow of
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Fig. 5.10. Profiles of the longitudinal component of (1–3) the gas velocity in the
presence of particles and of (4–7) the velocity of particles, M = 5, Ma0 = 5.0: (1, 5)
dp = 4.2 µm, (2, 6) dp = 42 µm, (3, 7) dp = 420 µm, (4) dp → 0
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Fig. 5.11. Streamlines of carrier gas (solid lines) and small particles (dotted lines)
under conditions of heterogeneous flow past a plate: dp = 0.42 µm, M = 5,
Ma0 = 5.0
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Fig. 5.12. Streamlines of carrier gas (solid lines) and large particles (dotted lines)
under conditions of heterogeneous flow past a plate: dp = 420 µm, M = 5, Ma0 = 5.0

gas, and their trajectories are curved significantly. On the other hand, large
particles hardly change their almost straight trajectories in the vicinity of the
plate surface.

Davydov et al. [5] calculated a flow past a plate in view of particles reflected
from the frontal surface. The investigation was performed within the sug-
gested mathematical model of three-velocity and three-temperature medium.
Therefore, a “phase” of reflected particles which fly from the surface of the
body subjected to flow toward the incident heterogeneous flow is introduced
in the vicinity of the frontal surface along with the gas phase and “phase”
of incident particles. At some values of concentration of the dispersed phase,
collisions occur between incident and reflected particles; these collisions result
in the variation of velocities of particles of both types. This causes the need
for taking into account some effective force of interaction between particles
from among the acting forces, as well as the “phase” transition of incident
to reflected particles and vice versa. Because the resultant “phase” transition
will be the transition from reflected to incident particles, only one source term
is introduced in the continuity equations of these “phases” [5].

The following relations were employed in calculating the particle/wall
interaction:

Vn2

Vn1

= 1,
Vτ2

Vτ1

= 0.7. (5.8)

Analysis of the set of equations obtained by Davydov et al. [5] revealed
eight dimensionless parameters which define the intensity of physical processes
under conditions of supersonic heterogeneous flow past bodies. These para-
meters include the Mach number of unperturbed flow, the adiabatic expo-
nent for gas, the recovery factor of longitudinal component of velocity, the
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mass concentration of particles in unperturbed flow, the degree of inertia of
particles, the parameter of velocity nonequilibrium of incident and reflected
particles, the parameter which characterizes the variation of mass concentra-
tion due to collisions, and the Reynolds number calculated by the particle
diameter.

5.2.2 Experimental Investigations

This section deals with the results of experimental investigation of the char-
acteristics of heterogeneous flow in the neighborhood of the frontal point of
the body subjected to flow [27, 28]. Cylinders with ends of different configu-
rations were used as models. Primary consideration was given to the study of
trajectories of solid particles in the vicinity of bodies subjected to flow and to
the interaction between the dispersed phase and the surface of models.

The employed setup is described in Chap. 3. The experiments were per-
formed for a downward turbulent flow of air in a pipe of inside diameter
D = 64 mm. The Reynolds number was ReD = 11, 200 with the averaged
velocity of air on the pipe axis Uxc = 2.8 m s−1. The models (cylinders 11 mm
in diameter) were placed within the pipe such that the cylinder axis and the
pipe axis coincided (see Fig. 3.21). Spherical particles of glass of different sizes
were used as the dispersed phase in the experiments.

The objective was to study the dynamics of large solid particles in the
vicinity of the body subjected to flow. The measure of size or inertia of parti-
cles is characterized by their Stokes number in averaged motion. This Stokes
number is determined as follows (see Table 1.1):

Stkf =
τp

Tf
, (5.9)

where τp is the time of dynamic relaxation of particle, and Tf is the charac-
teristic time of carrier gas in averaged motion. The characteristic time may
be estimated as

Tf =
L

Uxc
, (5.10)

where L is the distance from the critical point of the body upstream, at which
the curvature of streamlines of gas begins. In a first approximation, one can
assume L ≈ R, where R is the cylinder radius.

Note that the characteristic time of the carrier phase in averaged motion is
determined in a different manner from the case of heterogeneous flows in chan-
nels (see Sect. 3.6). The characteristic time of the carrier phase in averaged
motion in the neighborhood of the frontal point of a model becomes much
shorter. As a result, the weakly dust-laden nonequilibrium heterogeneous flow
incident on a body in the vicinity of its surface may be classified as a flow
with large particles. Evidence of this may be provided by the calculated values
(given in Table 5.2) of the Stokes number of particles used in the experiments
under the conditions described above.
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Table 5.2. Characteristics of employed spherical particles

no. material rated
diameter,

µm

density of
particle
material

Stokes number in
averaged motion
(experiment),

Stkf

Stokes number in
averaged motion

(calculation),
Stkf

1 SiO2 50 2,550 10.5 9
2 SiO2 100 2,550 32 29
3 SiO2 200 2,550 82 77
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Fig. 5.13. The velocity field for air in the neighborhood of a cylinder with a hemi-
spherical end

A large particle is a particle whose Stokes number is of the order of ten
or higher. In this case, particles do not follow the streamlines of carrier gas,
which bend in the vicinity of the body, deviate from these lines, and experience
collisions with the body. The emergence of the “phase” of reflected particles
in the flow complicates the flow pattern significantly.

We will now analyze the obtained results. Figures 5.13–5.15 give the
velocity fields for air and particles incident on and reflected from the body.
The mass concentration of particles during measurements was M = 0.007.
As was demonstrated by the result of investigations described in Chap. 4, the
presence in the flow of particles in such insignificant concentrations does not
affect the parameters of flow of the carrier phase. Indeed, the value of volume
concentration of particles Φ = 3.3× 10−6 (at which the mode with single par-
ticles is realized, see Fig. 1.8) corresponds to this value of mass concentration
of the dispersed phase.

The obtained results indicate that the deceleration of air (curvature of
the lines of flow) begins from a distance x ≈ R (see Fig. 5.13). The data of
Fig. 5.14 clearly indicate that the sedimentation factor of particles employed
in the experiment was close to unity, η ≈ 1.
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Fig. 5.14. The velocity field for incident glass particles (100 µm) in the neighbor-
hood of a cylinder with a hemispherical end
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Fig. 5.15. The velocity field for glass particles (100 µm) reflected from the surface
of a cylinder with a hemispherical end

The velocity field for solid particles given in Fig. 5.15 in the immediate
vicinity of the model surface may be used to determine the recovery factor of
the longitudinal and normal components of velocity of particles in their inter-
action with the wall. For example, the recovery factor of velocity of particles
incident on the critical point of a body is Vx2/Vx1 ≈ 0.8.

Note that the problem of construction of trajectories of solid particles in
the neighborhood of the critical point of a body using the measurement results
is far from simple. The presence at some arbitrary points of space of some
characteristic distributions of velocities corresponding to particles of different
“types” seriously complicates analysis of the experimental data. Indicative of
this are the results given below.

The scheme of a flow of gas with large solid particles is given in Fig. 5.16.
Examples of measured distributions of velocities of the dispersed phase at
some selected points are given in Fig. 5.17.
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Fig. 5.16. The scheme of a heterogeneous flow in the vicinity of a cylinder with a
hemispherical end. The measured distributions of particle velocities at characteristic
points 1, 2, 3, and 4 given in Figs. 5.17a, 5.17b, 5.17c, and 5.17d, respectively
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Fig. 5.17. Measured distributions of velocities of glass particles (100 µm): (a) x =
10 mm, y = 0, M = 0.007; (b) 1, 0, 0.007; (c) −1, 6, 0.007; (d) 1, 0, 0.4. The
numerals indicate the distributions of (1) incident particles, (2) reflected particles,
(3) reflected particles with “positive” velocities, (4) incident particles after collision
with reflected ones, (5) reflected particles after collision with incident ones

The center of the rectangular coordinate system (x − y) is located at the
critical point of the body. The x-axis is directed upstream. The location of
measurement points 1–4 is shown schematically in Fig. 5.16.

The distribution of particle velocities in an unperturbed flow on the pipe
axis at a distance x = 10 mm from the critical point of the body (point 1) is
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given in Fig. 5.17a. One can see that the averaged velocity of incident parti-
cles in the flow unperturbed by the presence of the body is Vx ≈ 3.1 m s−1,
i.e., exceeds the carrier air velocity, which is not surprising in the case of
downward flow. One can further infer from the data of Fig. 5.17a that the
mean-square deviation of particle velocity is σVx

≈ 10%. The numerous rea-
sons for the emergence of fluctuations of velocities of solid particles suspended
in a turbulent gas flow are analyzed in Chap. 4.

The distribution of particle velocities at point 2 (see Fig. 5.16) located
at a distance x = 1 mm from the body surface at M = 0.007 is given in
Fig. 5.17b. One can see that a “phase” of reflected particles arises in addition
to that of incident particles, with the reflected particles moving toward the
main flow; therefore, their velocities assume negative values. The averaged
velocity of reflected particles is lower than that of incident particles and is
Vx ≈ 2.5 m s−1.

The measured velocities of particles at point 3 (x = −1 mm, y = 6 mm) for
a low concentration of the dispersed phase are given in Fig. 5.17c. The data
are clearly indicative of the presence of distributions of three characteristic
types. The distribution of the first type relates to incident particles which
experienced no collisions with the body. The averaged velocity of these parti-
cles is Vx ≈ 3.1 m s−1. The distribution of the second type relates to reflected
particles for which the value of the recovery factor of the longitudinal com-
ponent of velocity vector is low, Vx ≈ 0.2 m s−1. These particles change the
direction of their motion by almost 90◦ after collision with the body. The dis-
tribution of the third type corresponds to reflected particles with “positive”
velocities, Vx = 1.4 m s−1. These particles, which moved toward the main flow
after rebounding from the body, stopped and began accelerating again along
the body surface. The trajectories of such particles are shown schematically
in Fig. 5.16.

The measured particle velocities at point 4 (see Fig. 5.16) located at a
distance x = 1 mm from the body surface for a high concentration of the
dispersed phase in incident flow (M = 0.4) are given in Fig. 5.17d. One can see
that, compared to the case of low concentration of particles (see Fig. 5.17b),
two new characteristic distributions of velocity appear. The probability of
collision of incident and reflected particles increases with the concentration of
particles. It is apparently with this factor that two experimentally observed
“additional” distributions of velocities are associated, which relate to colliding
incident particles (Vx ≈ 1.4 m s−1) and reflected particles (Vx ≈ 1 m s−1).

The following point is important. As the concentration of particles
increases, a tendency is observed for the convergence of velocities of inci-
dent and reflected particles and for the increase in the probability of repeated
collisions between them; this leads to entanglement of the particle trajectories.
As a result, the obtained distributions of velocities will not exhibit clearly
defined maxima but will be more “diffuse.”
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Fig. 5.18. The scheme of a heterogeneous flow in the vicinity of a cylinder with a
flat end. The measured distributions of velocities of particles 100 µm in diameter at
characteristic points 1, 2, 3, 4, 5, and 6 are given in Figs. 5.20a, 5.20b, 5.20c, 5.20d,
5.20e, and 5.20f, respectively

Described below are the results of investigation of the dynamics of large
solid particles under conditions of longitudinal heterogeneous flow of a cylinder
11 mm in diameter with a flat end. The scheme of gas flow for this case is given
in Fig. 5.18. Examples of measured distributions of velocities of the dispersed
phase at some selected points are given in Figs. 5.19–5.21.

The distributions of velocities of glass particles (dp = 50 µm) are given in
Fig. 5.19. The distribution of the first type relates to incident particles. The
averaged velocity of these particles is Vx ≈ 3 m s−1. The distribution of the
second type corresponds to reflected particles which move toward the main
flow. The velocity of these particles in the vicinity of the wall (x= 1 mm) is
Vx ≈ 2.4 m s−1 (see Fig. 5.19f). The velocity of reflected particles decreases
with increasing distance from the wall. The “phase” of reflected particles
disappears at a distance x ≈ 15 mm from the wall (see Fig. 5.19a). The distri-
bution of the third type relates to incident particles which made a transition
from the “phase” of reflected particles. These particles,on the contrary, ac-
celerate on approaching the body, and their velocity at a distance x = 1 mm
from the model is Vx ≈ 1.3 m s−1 (see Fig. 5.19f).

The distributions of velocities of larger glass particles (dp = 100 µm) are
given in Fig. 5.20. The averaged velocity of incident particles is Vx ≈ 3.2 m s−1,
which exceeds the velocity of smaller particles with a rated diameter of 50 µm.
The measurement results given in Fig. 5.20 enable one to analyze the dynam-
ics of particles reflected from the model surface and of incident particles which
experienced a collision with the body and began accelerating again while mov-
ing toward the model. The distribution indicated by numeral 4 corresponds
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Fig. 5.19. Measured distributions of velocities of glass particles (50 µm), M =
0.007, y = 0: (a) x = 15 mm, (b) 12, (c) 9, (d) 6, (e) 3, (f) 1. The numerals indicate
the distributions of (1) incident particles, (2) reflected particles, (3) incident particles
after collision with the model surface
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Fig. 5.20. Measured distributions of velocities of glass particles (100 µm), y = 0:
(a) x = 40 mm, M = 0.007; (b) 30, 0.007; (c) 20, 0.007; (d) 10, 0.007; (e) 1,
0.007; (f) 1, 0.4. The numerals indicate the distributions of (1) incident particles,
(2) reflected particles, (3) incident particles after the first collision with the surface,
(4) reflected particles after the second collision with the surface
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Fig. 5.21. Measured distributions of velocities of glass particles (200 µm),
M = 0.007, y = 0: (a) x = 100 mm, (b) 80, (c) 60, (d) 40, (e) 20, (f) 1. The numerals
indicate the distributions of (1) incident particles, (2) reflected particles, (3) incident
particles after collision with the model surface, (4) reflected particles after the second
collision with the model surface, (5) incident particles after the second collision with
the model surface
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to reflected particles after the second collision with the model. An increase in
the concentration of particles leads to collisions between particles representing
different “phases” such as incident, reflected, and so on. As a result, the mea-
sured distributions of velocities become less “clearly defined.” For example,
particles appear in the region of the critical point of the body, whose velocity
is close to zero (see Fig. 5.20f). This fact causes an increase in the particle
concentration in this region of flow. Note that large particles exhibit a higher
inertia and, as a result, propagate through a larger distance toward the flow.
Indeed, the rebound of large particles (dp = 100 µm) is x ≈ 30 mm, while
the respective quantity for small particles (dp = 50 µm) is x ≈ 12 mm (see
Fig. 5.19).

Figure 5.21 gives the distributions of velocities of even larger particles of
glass (dp = 200 µm). The averaged velocity of incident particles is Vx ≈
3.9 m s−1. Particles reflected from the surface have a velocity Vx ≈ 3 m s−1

(at a distance x = 1 mm). Because large particles are characterized by a high
inertia, their deceleration after interaction with the model during the motion
toward the flow is less intensive. At a distance x ≈ 100 mm, the “phase” of
reflected particles changes to the “phase” of incident particles. The respective
distributions of velocities of particles “merge” (see Fig. 5.21a). The particles
accelerate repeatedly and, as they approach the body, they reach a velocity
Vx ≈ 2.1 m s−1 in the vicinity of the model. The distribution of velocities
of particles reflected after the second collision with the surface at a distance
x = 1 mm are given in Fig. 5.21f. Also given in this figure is the distribution of
velocities of incident particles which experienced two collisions with the body.

The distributions of velocities of glass particles with diameters dp =
50, 100, and 200 µm as functions of the distance to the critical point of the
body are given in Figs. 5.22–5.24, respectively. The data in the figures give a
clear idea of the motion of glass particles of different sizes, including incident,
reflected from the model, and repeatedly incident on the surface.
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Fig. 5.22. The distribution of the velocity of glass particles (50 µm) in the neigh-
borhood of a body with a flat end (y = 0)
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Fig. 5.23. The distribution of the velocity of glass particles (100 µm) in the neigh-
borhood of a body with a flat end (y = 0)
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Fig. 5.24. The distribution of the velocity of glass particles (200 µm) in the neigh-
borhood of a body with a flat end (y = 0)

We will systematize the experimental data described above for the purpose
of determining the size of the region of existence of rebounded particles and
of the value of the recovery factor of velocity of a particle reflected from the
surface when it is repeatedly incident on the body subjected to flow.

Figure 5.25 gives the results of generalization of data on the rebound of
particles as a function of their inertia (Stokes number). One can see in this
figure that the rebound of particles from the model surface is directly propor-
tional to the inertia of the dispersed phase in the investigated range of values
of the Stokes number.

The effect of the inertia of the dispersed phase on the recovery factor
of velocity of particles in their repeated interaction with the model surface
(the ratio of velocities of incident particles on the wall in the secondary and
primary collisions kw31 = Vx3/Vx1) is shown in Fig. 5.26. The data in the
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Fig. 5.26. The effect of the inertia of particles on the recovery factor of their
velocities

figure indicate that this factor exhibits some tendency for an increase with
increasing inertia of the dispersed phase and, for the described experimental
conditions, is approximately kw31 ≈ 0.5.

Now, a few words about the generalization of data on the sedimentation
factor of particles. Analysis of the dependence of the sedimentation factor of
particles on the Stokes number η = η (Stkf) reveals [10] that each distribution
has two bends. These bends correspond to two “critical” values of the Stokes
number, namely, minimal Stkf min and maximal Stkf max. For low values of the
Stokes number (Stkf < Stkf min), the sedimentation factor is negligible, i.e.,
η → 0. In the other limiting case, that of high values of the Stokes number
(Stkf > Stkf max), the sedimentation factor is close to unity, i.e., η → 1. As to
the order of magnitude of the given “critical” values of the Stokes number,
it is clear from simple physical considerations that Stkf min = O(0.1) and
Stkf max = O(10). Nevertheless, the presently available calculation data and
experimental results do not enable one either to construct a “universal” curve
of sedimentation of particles or to plot a family of curves for a fairly wide range
of variation of flow parameters (determining dimensionless complexes). The
region of likely values of the sedimentation (trapping) factor of particles given
in Fig. 5.27 as a function of the most important parameter, i.e., the Stokes
number, describes the majority of the investigation results given above.
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Fig. 5.27. The sedimentation factor of particles as a function of the Stokes number

Proceeding from the calculation data and experimental results described
above, we will list the main factors which have an effect on the value of η:

1. The potentiality of flow (the effect of the boundary layer causes a decrease
in η and becomes significant at Stkf < 0.2).

2. The gravity force (causes a significant increase in η at Stkf < 0.3 and
ε > 0.05 in the case of downward flow and a significant decrease in η at
Stkf < 2 and ε > 0.05 in the case of upward flow).

3. The nonisothermality of flow (causes an increase in η at Stkf < 0.1).
4. The axial symmetry of flow (the curvature of the streamlines of flow begins

at a shorter distance compared to the case of plane flow, which causes an
increase in the inertia of particles and in η).

5.3 A Particle-Laden Flow in the Boundary Layer
of a Body Subjected to Flow

In this section, we analyze the results of theoretical and experimental investi-
gations of the behavior of particles and their inverse effect on the parameters
of gas flow in a boundary layer. The study of the effect of particles on a
boundary-layer flow is a problem which is far from ordinary. In the light of
the presently available experimental data, it appears obvious that the dis-
persed phase may have a dual effect on a near-wall flow. Firstly, the dispersed
phase may affect the flow in a boundary layer by way of modification of inci-
dent flow. Secondly, particles make a direct impact on the flow in a boundary
layer due to their inertia, namely, due to the presence of dynamic and thermal
(in the case of nonisothermal flow) slip.
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5.3.1 Theoretical Investigations

We will begin treatment from the simplest cases of flow. Osiptsov [15] studied
the development of profiles of the longitudinal and transverse components of
velocity of gas and solid particles, as well as of the concentration of parti-
cles in a laminar boundary layer of a semiinfinite flat plate. The theoretical
investigation was performed within the model of two interpenetrating con-
tinua [14]. It was assumed that the particles are spheres of the same radii,
and that their volume concentration was low. Because the physical density of
particles is several orders of magnitude higher than the carrier gas density,
the Stokes force was taken to be the only force of interphase interaction in
the entire computational domain in the boundary layer.

The laminar heterogeneous flow treated by Osiptsov [15] may be classified
(see Chap. 1) as quasiequilibrium, because the velocities of the carrier and dis-
persed phases were taken to be equal to each other. The presence of dynamic
slip due to the inertia of particles in the flow in a boundary layer caused this
flow to become nonequilibrium. In the calculations, the mass concentration of
particles was varied in a wide range; this resulted in a significant impact of
the dispersed phase on the parameters of gas flow.

Figure 5.28 gives the distributions of the longitudinal component of veloc-
ity for both phases of heterogeneous flow in a boundary layer, as well as the
Blasius profile corresponding to laminar single-phase flow, for different values
of dimensionless longitudinal coordinate. The latter coordinate was rendered
dimensionless as follows:

x̄ =
x

lp
=

x

τpVx0
=

18xµ

ρpd2
pVx0

, (5.11)
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Fig. 5.28. The development of profiles of the longitudinal component of velocity
of gas and particles (M = 3): (a) x̄ = 0.2 (Stkf = 5), (b) x̄ = 1.0 (Stkf = 1), (c)
x̄ = 12 (Stkf = 0.083); (1) Blasius profile, (2) carrier phase, (3) particles
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where x is the longitudinal coordinate reckoned from the beginning of the
plate, lp is the length of dynamic relaxation (deceleration) of a particle, and
Vx0 is the velocity of particle in incident flow (in this case, it is equal to the
respective velocity for gas, Vx0 = Ux0).

The dimensionless length of dynamic relaxation x̄ is the reciprocal of the
local Stokes number in averaged motion (see Table 1.1), i.e., Stkf = 1/x̄.
Note that this Stokes number is different from the respective Stokes numbers
which characterize the processes of relaxation of averaged velocities of gas and
particles under conditions of pipe flow (see Sect. 3.6) and in the neighborhood
of the critical point of the body subjected to flow (see Sect. 5.2.1).

Figure 5.28 demonstrates that the longitudinal velocity of particles is
higher than the gas velocity in the entire boundary layer; in so doing, at
x̄ < 1 (Stkf > 1) it is other than zero on the plate surface. This fact is
due to the inertia of particles. The velocity difference between the phases
leads to an intensive exchange of momentum; as a result, the velocity profile
of the gas phase is much flatter compared to the case of single-phase flow.
Osiptsov [15] observes that the relaxation of the phase velocities terminates
in fact at x̄ = 5 (Stkf = 0.2), and the flow structure is of the same type for dif-
ferent values of mass concentration of particles M . The profiles of longitudinal
velocities of both phases at high values of x̄ (low values of Stkf) become self-
similar. These limiting profiles may be obtained from the solution of Prandtl
equations for a single-phase gas of higher density ρe = ρ + Φρp = ρ(1 + M).
Therefore, after the relaxation of velocities, this flow once again (as in the
case of flow incident on a plate) becomes quasiequilibrium.

Figure 5.29 gives profiles of the transverse component of velocity of the
gas phase and particles. One can see in the figure that a region with Vy < Uy

exists in the boundary layer in the case of low values of x̄ (high values of
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Fig. 5.29. The development of profiles of the transverse component of velocity of
gas and particles (M = 3): (a) x̄ = 0.2 (Stkf = 5), (b) x̄ = 1.0 (Stkf = 1), (c)
x̄ = 12 (Stkf = 0.083); (1) carrier phase, (2) particles
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Stkf); this implies the crossing of the streamlines of carrier gas by particles
in the wall direction. Osiptsov [15] further observes that the relaxation of the
transverse components of phase velocities occurs over a much greater length
than in the case of longitudinal components.

The obtained distributions of the concentration of particles demonstrated
that, at x̄ < 1 (Stkf > 1), the density of the dispersed phase increases
monotonically on approaching the plate and reaches a finite value Mw =
M0/(1 − x̄) on the wall. At x̄ ≥ 1 (Stkf ≤ 1), the concentration of particles
tends to infinity as the wall is approached.

More recently, Osiptsov [16] studied zones of unrestricted increase of con-
centration of particles in flows. Unfortunately, his inferences made in [16] were
not supported by experimental results. Apparently, no such data are available
at present either.

Osiptsov [15] further calculated local coefficients of friction cf for different
values of the mass concentration of particles. The distributions of this charac-
teristic of flow are given in Fig. 5.30. The quantity cf

√
Rex is plotted on the

ordinate and is determined as

cf

√

Rex =
τw

√
Rex

ρU2
x0

= µ

(

∂Ux

∂y

)

w

√
Rex

ρU2
x0

, (5.12)

where τw is the local shear stress on the wall, and Rex = (Ux0x)/ν is the
local Reynolds number.

One can see in Fig. 5.30 that the value of coefficient of friction in a hetero-
geneous flow is much higher than in a single-phase flow. The friction increase
on the wall at x̄ < 1 (Stkf > 1) is attributed to the increase in the velocity
gradient of carrier gas in this region of flow because of the interphase exchange
of momentum. The velocity of particles downstream decreases and their con-
centration increases. As a result, the gas velocity gradient decreases to cause
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Fig. 5.30. The distribution of the coefficient of friction along a plate: (1) M = 0,
(2) M = 3, (3) M = 10, (4) M = 20
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a decrease in the coefficient of friction. At x̄ → ∞ (Stkf → 0), the coefficient
of friction tends to its limiting value

cf =
0.332(1 + M)1/2

√
Rex

, (5.13)

which corresponds to the Blasius solution for a single-phase gas of higher
density.

It will be recalled that Osiptsov [15] used the Stokes force as the only
force defining the motion of particles in a laminar boundary layer. Attempts
at taking into account the effect of the Saffman lift force caused by the
nonuniformity of the gas velocity field were made by Osiptsov [17] and Nau-
mov [13]. As to another force which also causes transverse migration of par-
ticles, namely, the Magnus force, Naumov [13] showed that, at Repm < 10,
where Repm = Ux0dp/ν, the projection of this latter force onto the transverse
axis is much smaller than that of the Saffman force. Note that the Reynolds
number Repm employed here in analyzing the flow in a laminar boundary layer
is an analog of the particle Reynolds number Rep constructed by the relative
velocity between the phases, because the gas velocity in the near-wall region
is close to zero, and the velocity of particles at low values of x̄ (high values of
Stkf) differs little from the gas velocity in the external flow.

Figure 5.31 gives the distribution of the transverse velocity of particles
along a plate [13]. Plotted on the abscissa are values of the dimensionless
transverse velocity of particles V̄y = Vy

√

x/Ux0ν. The prolate boundary-layer
coordinate ϕ = y

√

Ux0/νx is plotted on the ordinate. One can see that, at
x̄ < 2(Stkf > 0.5), the transverse velocity of particles assumes negative values
in the vicinity of the wall, i.e., it is directed toward the wall. This is attributed
to the fact that, along with high gradients of longitudinal velocity of gas, a
significant difference between the longitudinal velocities of the phases (see
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Fig. 5.31. The development of profiles of the transverse component of velocity of
particles in the near-wall region (M = 3, ρ̄ = 103, Repm = 1): (1) x̄ = 0.2 (Stkf = 5),
(2) x̄ = 0.4 (Stkf = 2.5), (3) x̄ = 1.0 (Stkf = 1), (4) x̄ = 2.0 (Stkf = 0.5), (5)
x̄ = 3.0 (Stkf = 0.33)
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Fig. 5.32. The profiles of the concentration of particles at M = 3, ρ̄ = 103, x̄ =
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Fig. 5.28a) is present in the near-wall region in the vicinity of the leading
edge of the plate; this results in the emergence of the Saffman force. The
longitudinal velocity of particles in this region of flow exceeds the gas velocity;
therefore, the Saffman force acting on the particles causes their displacement
in the plate direction. The difference between the longitudinal velocities of the
phases decreases with increasing distance from the leading edge of the plate
(see Fig. 5.28); this causes a decrease in the Saffman force. As a result, when
x̄ increases (Stkf decreases), the region of negative values of the transverse
velocity of particles narrows down and, at x̄ = 3 (Stkf = 0.33), disappears.

Figure 5.32 gives the distributions of the concentration of particles in a
single cross-section of the flow for different values of the Reynolds number
Repm [13]. The distribution of the concentration of particles at Repm = 0,
i.e., in the absence of dynamic slip between the phases, repeats exactly the
distribution obtained by Osiptsov [15] disregarding the Saffman force. An
increase in the Reynolds number causes an increase in the Saffman force; this,
in turn, leads to an increase in the transverse velocities of particles. The flow
of particles settling out on the wall causes a decrease in the concentration of
impurity in the near-wall region. Therefore, an increase in the impact made
by the Saffman force on the dynamics of particles is accompanied by a quali-
tative transformation of the profile of their concentration, which results in the
disappearance of the region with the maximum of concentration of particles
in the vicinity of the wall. A similar inference was made in [17] in calculating
the motion of dust-laden gas in the initial region of a flat channel and round
pipe, where the effect of the Saffman force is also significant.

The inclusion of the Saffman force leads to a significant variation of the
distributions of the coefficient of friction along the plate in a laminar bound-
ary layer. Figure 5.33 gives calculated values of the coefficient of friction for
different values of the Reynolds number Repm [13]. The dashed line corre-
sponds to the Blasius solution for a single-phase laminar boundary layer.
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Fig. 5.33. The distribution of the coefficient of friction along a plate (M = 3, ρ̄ =
103): (1) Repm = 0, (2) Repm = 1, (3) Repm = 2

The distribution of friction on a plate at Repm = 0 hardly differs from that
obtained by Osiptsov [15] and given in Fig. 5.30. As the Reynolds number
increases, the concentration of particles in the wall region decreases (as was
shown above); this causes a decrease in the intensity of interphase exchange
of momentum. As a result, the gas velocity profile is less flat, the velocity
gradient on the wall decreases, and the maximal value in the distribution
cf

√
Rex decreases as well (see Fig. 5.33). At the same time, the decrease in

the coefficient of friction along the plate at the Reynolds number other than
zero is smoother. This smoothness is attributed to the fact that the presence
of particles moving in the wall direction (these particles are characterized by
higher value of longitudinal velocity than the particles moving in the imme-
diate vicinity of the wall) causes an increase in the extent of the region of
relaxation of longitudinal velocities of the phases, in which high values of the
coefficient of friction are observed.

The foregoing leads one to infer that the failure to include the Saffman
lift force acting on particles in the calculation of a laminar heterogeneous
boundary layer at Repm ≤ 1 may result in significant errors.

5.3.2 Experimental Investigations

The characteristics of a turbulent heterogeneous boundary layer developing
on a flat plate were studied by Rogers and Eaton [18–20]. The distributions
of averaged velocities of air and particles of glass are given in Fig. 5.34. The
data in the figure show that the particles in upward flow move slower than air.
The difference between the velocities of the dispersed and gas phases is close
to the free-fall velocity and is almost constant over the entire boundary layer.
The cross-section being treated is located at a distance x = 0.55 m from the
beginning of the plate, which corresponds to the values of the Stokes number
Stkf = 0.24 and Stkf = 0.63 for particles 50 and 90 µm in size, respectively.
These values of the Stokes number indicate that the relaxation of velocities of
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Fig. 5.34. The distributions of averaged velocities in a turbulent boundary layer
on a plate (x = 0.55 m, Ux0 = 8 m s−1, Rex = 2.9×105, M = 0.02): (1) air, (2) glass
particles (50 µm), (3) glass particles (90 µm)
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Fig. 5.35. The distributions of the longitudinal component of fluctuation velocity
in a turbulent boundary layer (x = 0.55 m, Ux0 = 8 m s−1, Rex = 2.9× 105): (1) air,
(M = 0), (2) air (M = 0.02), (3) glass particles (50 µm), (4) glass particles (90 µm)

the phases has in fact terminated on reaching this cross-section. The experi-
mental results demonstrated that, at M = 0.02, the particles made no impact
on the distribution of averaged velocity of carrier air.

Profiles of the longitudinal component of fluctuation velocity of “pure”
air, of air in the presence of particles, and of glass particles of different sizes
in a turbulent boundary layer are given in Fig. 5.35. One can infer that the
presence of particles in the flow had no effect on the distribution of fluctu-
ation velocity of the carrier phase in the boundary layer. The magnitude of
fluctuations of velocities of glass particles 50 µm in diameter is close to the
respective characteristic for air. The fluctuations of velocities of large particles
90 µm in diameter exceed those of the carrier phase. Simple estimates indicate
that the smaller particles must be readily involved in the fluctuating motion
by turbulent eddies. As to the larger particles, the high values of fluctua-
tion velocities are due to the use of polydisperse particles in the experiments
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Fig. 5.36. The distribution of the transverse component of fluctuation velocity in a
turbulent boundary layer (x = 0.55 m, Ux0 = 8 m s−1, Rex = 2.9 × 105, M = 0.02):
(1) air (M = 0), (2) glass particles (50 µm), (3) glass particles (90 µm)

(see Sect. 4.2.2). The increase in fluctuation velocities of particles of both types
in the wall region (where the relative inertia of the dispersed phase increases
with decreasing characteristic times of energy-carrying eddies) is attributed
to the nonuniformity of distributions of averaged velocities of particles.

Figure 5.36 gives the distribution of the normal component of fluctuation
velocity. One can infer that the particle fluctuation velocities in the direction
being treated are lower than the respective fluctuation velocities of air. The
difference between the fluctuations of velocities of the gas and dispersed phases
increases in the near-wall region. On the one hand, this is attributed to the
fact that the spectrum of fluctuations of air velocity in the normal direction
is characterized by higher frequencies [18], and the particles are less entrained
by turbulent eddies of the carrier phase. On the other hand, the averaged
velocity of particles in the direction being treated is close to zero in the entire
cross-section of the boundary layer. Consequently, possible movements of the
dispersed phase in the transverse direction do not result in the emergence of
“additional” fluctuations (as was the case with longitudinal fluctuations).

Rogers and Eaton [20] attempted a study of the effect of particles on the
characteristics of a turbulent boundary layer developing on a flat plate. Copper
particles 70 µm in diameter at a mass concentration M = 0.2 were used in
experiments. The observed effect of particles on the distributions of averaged
and fluctuation velocities of carrier air was insignificant and did not exceed the
experimental error. This is attributed to the relatively low concentration of
the dispersed phase. In spite of this, the presence of particles made an impact
on the spectrum of longitudinal fluctuations of gas velocity by suppressing the
low- frequency components (Fig. 5.37).

A heterogeneous boundary layer was experimentally investigated in detail
in [26, 29–31]. The boundary layer developed along the side surface of a rod
with a hemispherical end placed within a vertical pipe (see Fig. 3.20). The rod
was subjected to an upward flow of air. The dispersed phase was provided in
the experiments by particles of alumina (Al2O3) with a mass average size of
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Fig. 5.37. The effect of the presence of copper particles (70 µm) on the energy
spectrum of air turbulence in a turbulent boundary layer (x = 0.85 m, Ux0 = 8 m s−1,
Rex = 4.5 × 105): (a) y+ = 100 (b) y+ = 300; (1) M = 0, (2) M = 0.2
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Fig. 5.38. The distributions of averaged velocities in a “pseudolaminar” boundary
layer (Rex = 2.1 × 104, Ux0 = 13.3 m s−1): (1)air (M = 0), (2) air (M = 0.18), (3)
air (M = 0.26), (4) Al2O3 particles, (5) theoretical Blasius profile (σU = 0), (6)
σU = 3.66%, (7) σU = 7.79%

50 µm. The average (over the pipe cross-section) mass flow-rate concentration
of particles was varied in the range 〈MG〉 ≈ M = 0 − 0.26. It was assumed
that, given such parameters of particles and concentrations, the effect of the
dispersed phase on incident air flow must be minimal. The measurements
performed in an incident (unperturbed by the rod) flow revealed that the
presence of particles does not cause a variation of the profile of averaged
velocity of carrier air flow.

Profiles of averaged velocities of “pure” air, of air in the presence of parti-
cles, and of solid particles proper were measured in all regions of the boundary
layer, namely, in the laminar, transition, and turbulent ones. Examples of ob-
tained distributions of velocities are given in Figs. 5.38–5.40. The data in these
figures correspond to the Reynolds number ReD = 5.5×104. One can see in
all graphs that the velocity of particles in the vicinity of the boundary of the
boundary layer is lower than the carrier gas velocity and amounts to approx-
imately 90% of the velocity of external flow. At the same time, the velocity
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Fig. 5.39. The distributions of averaged velocities in the transition region of a
boundary layer (Rex = 7 × 104, Ux0 = 13.3 m s−1): (1)air (M = 0), (2) air (M =
0.18), (3) air (M = 0.26), (4) Al2O3 particles
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Fig. 5.40. The distributions of averaged velocities in a turbulent boundary layer
(Rex = 1.54 × 105, Ux0 = 13.3 m s−1): (1)air (M = 0), (2) air (M = 0.18), (3) air
(M = 0.26), (4) Al2O3 particles

of particles in the vicinity of the wall because of their inertia exceeds signifi-
cantly the velocity of air throughout the investigated region in the boundary
layer and, especially so, in the region of laminar flow.

The laminar profile of single-phase flow was much flatter than the classical
theoretical Blasius profile (σU → 0) because of the turbulence of external flow
(under conditions of these experiments, σUx

= (u′
x)1/2/Ux0 ≈ 6.5%). The

conventional Blasius profile for a laminar boundary layer of single- phase
flow on a flat plate is represented in the coordinates Ux/Ux0 = f(ϕ), where
ϕ = y

√

Ux0/νx. At ϕ = 5.0, the relative velocity Ux/Ux0 = 0.99, i.e., this value
of ϕ defines the boundary layer thickness δ99, namely, δ99/x = 5/

√
Rex. When

δ99 is determined in this conventional manner, the prolate boundary-layer
coordinate ϕ is related to the relative coordinate y = y/δ99 by the relation ϕ =
5(y/δ99) ≡ 5y. In Fig. 5.38, the Blasius profile is plotted for the experimentally
obtained value of δ99 = 0.85 mm. The measurement cross-section is spaced
at a distance x = 23.6 mm (which corresponds to Rex= 2.1×104) reckoned
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from the forward stagnation point along the surface subjected to flow. Given
the validity of the foregoing correlations between δ99/x and Rex, which are
characteristic of an unperturbed flow past a flat plate, the calculated value
is δ99 = 0.81 mm; this is only several percent different from the measured
value on a hemispherically blunted rod. This fits the literature data of [9]
according to which the turbulization of external flow must cause an increase
in the thickness of laminar boundary layer.

Also given in Fig. 5.38 is the distribution of velocity in a “pseudolaminar”
single-phase boundary layer for the degree of turbulence (intensity of fluctu-
ations) in incident flow of σU = 3.66% and 7.79% according to the data of [9]
for a similar value of the Reynolds number Rex = 2·104. Dyban and Epik [9]
define the laminar boundary layer in a turbulized flow as “pseudolaminar,”
because it is characterized by intensive fluctuations of local parameters. In
this layer, the predominating influence of molecular viscosity is retained; the
equilibrium region of generation and dissipation of turbulence (which is char-
acteristic of a turbulent boundary layer), i.e., the region of logarithmic law of
the wall, is not realized in the layer. One can readily observe that the data
obtained for a single-phase flow are located between the respective data of [9]
for the velocity distribution in a laminar boundary layer and, therefore, agree
with these data.

The presence of particles in the flow has a significant effect on the profile
of averaged velocity of the carrier phase in the “pseudolaminar” boundary
layer (see Fig.5.38). The profile becomes flatter because of the acceleration
of air by particles in the vicinity of the wall. This fits the inferences made
by Osiptsov [15]. The difference between the velocities of single-phase and
heterogeneous flows reaches its maximum precisely in the vicinity of the wall,
where the maximal difference is observed between the velocities of the gas
and solid phases because of the inertia of particles. The Reynolds number of
a particle in this region exceeds significantly the respective characteristic in
incident flow and is Rep = 15–25. The particles make flatter the profile of
averaged velocity and cause an increase of the gradient of this velocity on the
wall; this leads to an increase in friction in the laminar region of the boundary
layer. The flattening of the velocity profile further leads to a decrease in the
form factor of profile in this region and brings its value closer to that which
is characteristic of a turbulent boundary layer; therefore, it expedites the
beginning of alternating laminar-turbulent flow.

Two methods were used to determine the beginning of laminar-turbulent
transition, namely, (1) by the minimum in the distribution of averaged velocity
when traversing the measurement point at a fixed distance along the rod
surface, and (2) by the beginning of an abrupt decrease in the form factor of
the profile of averaged velocity.

The determination of the beginning of laminar-turbulent transition by
the minimum of averaged velocity is illustrated by Fig. 5.41. The distance
from the wall (y = 0.2 mm), at which the traversing along the surface was
performed, was selected experimentally so that the minimum would be defined
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Fig. 5.41. The determination of the coordinate of the beginning of laminar turbu-
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Fig. 5.42. The distributions of the form factor of the profile of averaged velocity
(Ux0 = 13.3 m s−1): (1) M = 0, (2) M = 0.18, (3) M = 0.26

most clearly. The distribution of the form factor H of the velocity profile is
given in Fig. 5.42. This characteristic is determined as follows:

H =
δ∗

δ∗∗
, (5.14)

where the displacement thickness δ∗ and the momentum thickness δ∗∗ are
found for incompressible flow as

δ∗ =

δ99
∫

0

(

1 − Ux

Ux0

)

dy, δ∗∗ =

δ99
∫

0

Ux

Ux0

(

1 − Ux

Ux0

)

dy (5.15)

One can see in Fig. 5.42 that the value of the form factor of the velocity
profile under conditions of single-phase flow is much lower than that for the
classical laminar boundary layer (H = 2.6, σU → 0) and is H ≈ 2.10–2.15.
This is due to the higher degree of turbulence in the flow core. As was already
mentioned above, the presence of particles in the flow results in a flatter profile
of averaged velocity and, thereby, causes a decrease in the value of the form
factor to H ≈ 2.0 at the concentration of the dispersed phase M = 0.18 and
to H ≈ 1.90–1.92 at the concentration M = 0.26.
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In analyzing Figs. 5.41 and 5.42, one can infer that, in the case of single-
phase flow, the laminar-turbulent transition begins at x = 55–60 mm, which
corresponds to the values of the Reynolds number in the range Rex cr1 =
4.88×104–5.32×104. For a heterogeneous flow, the laminar-turbulent transi-
tion begins earlier, namely, at x = 40–50 mm (Rex cr1 = 3.55×104−4.43×104)
and x = 36–44 mm (Rex cr1 = 3.19×104−3.90×104) for mass concentrations
M = 0.18 and M = 0.26, respectively. Note that it is in the case of determin-
ing the coordinate of the point of beginning of laminar-turbulent transition
that the above-described fact of actual absence of the effect of particles on
the structure of incident flow assumes great importance. It is well known that,
in the case of single-phase flow, a decrease in the intensity of turbulence of
incident flow causes a significant delay of the beginning of laminar-turbulent
transition. For the performed experiments, the degree of turbulence of “pure”
air was σUx

≈ 6.5% in the flow core; in the presence of particles, this degree
decreased to σUx

≈ 5.6%; in accordance with the available literature data, this
should not have resulted in a significant increase in the first critical Reynolds
number Rex cr1. Therefore, the experiments revealed the impact made by the
presence of solid particles on the beginning of laminar-turbulent transition.

Figure 5.39 demonstrates the distributions of averaged velocities of “pure”
air and of both phases of heterogeneous flow in the transition region of the
boundary layer. In spite of the fact that the difference between the velocities
of the phases in the wall region decreases, the turbulizing effect of particles
on the alternating laminar-turbulent flow is as intensive as in the case of
“pseudolaminar” boundary layer. This effect is reflected by the significant
flattening of the profile of carrier gas velocity. As to the effect of particles on
the termination of laminar-turbulent transition, no such effect was revealed.

Profiles of averaged velocities of “pure” air and of both phases of heteroge-
neous flow in a turbulent boundary layer are given in Fig.5.40. The measured
distributions of velocities in the turbulent boundary layer are within the
relaxation region, i.e., the region where the velocity of particles decreases
downstream. For example, in the case of the cross-section shown in Fig. 5.40,
the velocity of the dispersed phase in the vicinity of the wall still remains
much higher than the velocity of single-phase flow. As a result, the qualitative
pattern of distributions of velocities of the gas and solid phases in the turbu-
lent boundary layer remains the same as that in the cases shown in Figs. 5.38
and 5.39.

Measurements were further made of profiles of the degree of turbulence in a
turbulent boundary layer for selected cross-sections. Figure 5.43 gives a typical
distribution of the intensity of turbulence for the cross-section x= 173.6 mm
(the respective distributions of averaged velocities are given in Fig. 5.40). One
can see that the presence of particles leads to a significant suppression of
the intensity of turbulent fluctuations of the carrier phase, which reaches its
maximum in the immediate vicinity of the wall.

It is known that the main mechanism of dissipation of turbulence by par-
ticles is their involvement in the fluctuation motion by turbulent eddies. The
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Fig. 5.43. The distributions of the intensity of turbulence of air in a turbulent
boundary layer (Rex = 1.54× 105, Ux0 = 13.3 m s−1): (1) M = 0, (2) M = 0.18, (3)
M = 0.26

experimentally observed fact of maximal suppression of turbulent fluctuations
in the vicinity of the wall merits attention, because it is not obvious how tur-
bulent eddies with short characteristic lifetimes (which are observed in the
wall region) manage to significantly affect the velocity of rather inertial par-
ticles. We will try to explain the experimentally observed high dissipation of
turbulence using the results of analysis of the equation of transfer of kinetic
energy of carrier air, which will be written in the following simplified form:

Dk

Dτ
= P − ε − εp, (5.16)

where P = νt(∂Ux/∂y)2 is the term responsible for the generation of turbu-
lence; ε is the term responsible for the dissipation of turbulence (in a first
approximation, this term may be taken to be equal to the respective term for
single-phase flow); and εp is the term defining the additional dissipation of
turbulence due to the presence of particles. The expression for εp is written as

εp =
1
τp

∑

i

[M(u′
iu

′
i − u′

iv
′
i) + (Ui − Vi)m′u′

i + (m′u′
iu

′
i − m′u′

iv
′
i)]. (5.17)

In the case of flow with Stokesian particles, the second term in the right-
hand part of the expression for εp is small compared to the first term. The
third term containing triple correlations is also ignored usually. As applied
to the conditions of the given investigations, the presence of two main factors
is assumed which cause a higher dissipation of turbulence compared to the
case of flow with Stokesian particles. These factors include (1) the presence of
significant difference between the averaged velocities of the phases causes an
intensive exchange of momentum, flattening of the profile of averaged velocity
of the carrier phase in the near-wall region (y = 0.03− 0.1), a decrease in the
velocity gradient in this region, and a decrease in the generation of turbulence
P; and (2) the presence of dynamic slip in averaged motion in the longitudinal
direction causes an increase in additional dissipation εp due to the increase
in the first term on the right-hand side of (5.17).
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5.4 The Body Drag in Particle-Laden Flows

Investigations of aerodynamic drag of bodies moving in a heterogeneous flow
include experimental studies [1–3].

The drag of flat aluminum wedges with apex angles α = 10–180˚ in a flow
of air (Ux0 = 200 m s−1) with particles of alumina (Al2O3, ρp = 3,900 kg m−3)
of mass average sizes dp = 16–88 µm was studied by Balanin and Lashkov
[2]. The cross-section average mass flow-rate concentration of particles was
measured in the range 〈MG〉 = 0–0.3. A strain-gauge balance was used to
measure the drag force in a two-phase flow. It was assumed that the total force
FΣ acting on the model in a heterogeneous flow consisted of two independent
terms, namely, the gas phase impact force F0 and the particle impact force Fp,

FΣ = F0 + Fp (5.18)

If the drag coefficient Cxp due to the impact of particles is introduced, (5.18)
gives

FΣ

F0
= 1 +

Cxpρp〈Φ〉〈V 2
x 〉

Cx0ρ〈U2
x〉

, (5.19)

where Cx0 is the coefficient of drag due to the effect of “pure” air; 〈Ux〉 and
〈Vx〉 denote the model cross-section average velocities of air and particles,
respectively; and 〈Φ〉 is the volume concentration of particles.

The relative drag force FΣ/F0 as a function of the concentration of parti-
cles of different sizes for a wedge with an angle of 120◦ is given in Fig. 5.44.

Equation (5.19) yields the following relation:

Cxp

Cx0
=
(

FΣ

F0
− 1
)

ρ〈U2
x〉

ρp〈Φ〉〈V 2
x 〉

. (5.20)

Expression (5.20) was used to determine the drag coefficient Cxp which char-
acterizes the force due to particle impacts in terms of the experimentally
measured values of the forces F0 and FΣ.
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Fig. 5.44. The relative drag force as a function of the concentration of particles
for a wedge with an angle of 120◦: (1) dp = 16 µm, (2) 23 µm, (3) 32 µm, (4) 44 µm,
(5) 88 µm
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Fig. 5.45. The relative drag coefficient as a function of the concentration of particles
for a wedge with an angle of 120◦: (1) dp = 16 µm, (2) 23 µm, (3) 32 µm, (4) 44 µm,
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Fig. 5.46. The relative drag coefficient as a function of the particle size for different
angles of wedges: (1) 10◦, (2) 20◦, (3) 40◦, (4) 60◦, (5) 90◦, (6) 120◦, (7) 150◦, (8)180◦

Figure 5.45 gives the relative drag coefficient Cxp/Cx0 as a function of the
concentration of particles. One can see in this figure that this characteristic
is independent of the concentration of particles in a heterogeneous flow.

The relative drag coefficient as a function of the particle size for different
angles of wedges is given in Fig. 5.46. Two regions may be identified on all of
the distribution curves, the boundary between which falls on the particles of
dpcr ≈ 30 µm. When wedges are subjected to heterogeneous flow with particles
of size dp < dpcr, a strong dependence of the drag coefficient on the size of
the dispersed phase is observed. For a flow with particles of dp > dpcr, the
transfer of momentum from the dispersed phase to the model (aerodynamic
drag) ceases to depend on the particle sizes for all angles of wedges.

The effect of the wedge angle on its resistance (Fig. 5.47) turns out to be
rather unexpected (as was observed in [2]). These data lead one to infer that
the maximal effect of the solid phase is attained at an angle α = 20◦ for any
sizes of particles, and the relative drag of blunt bodies in a heterogeneous flow
is lower than that of more pointed bodies.
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Fig. 5.47. The relative drag coefficient as a function of the wedge angle: (1) dp =
16 µm, (2) 23 µm, (3) 32 µm, (4) 44 µm, (5) 88 µm

One can see in the latter two figures that the aerodynamic drag of a body
in a two-phase flow, which was caused by the effect of particles alone (for
certain particle sizes and wedge angles), exceeded the drag in “pure” air by
a factor of 8. Therefore, the data given in Figs. 5.46 and 5.47 are indicative
of the existence of a critical size and a critical angle in the case of which the
process of flow past a body changes qualitatively.

The rise of aerodynamic drag of bodies in heterogeneous flows is defined
primarily by the process of particle/surface interaction. The intensity of this
process is directly dependent on the sedimentation factor which (as was
demonstrated above) is largely defined by the inertia of particles (by the
Stokes number). We will try to analyze the results described above by esti-
mating the Stokes number for these experiments,

Stkf =
τp

Tf
, (5.21)

where τp = τp0/C = ρpd2
p/18µC, C = 1 + Re

2/3
p /6. The Reynolds number

of a particle will be found using the data given in [2] on the dynamic slip of
particles in an unperturbed flow, i.e., 〈Vx〉/〈Ux〉 = 0.75 – 0.58 for particles of
dp = 16–88 µm.

The characteristic time of carrier gas will be estimated as

Tf =
L

Ux0
, (5.22)

where L = h/ sin α/2 (h = 5 mm is a half-height of the cone base).
Figure 5.48 gives the distribution of the Stokes number calculated by

relations (5.21) and (5.22) as a function of the particle size and of the wedge
angle. The number of particles interacting with the body surface increases
with the Stokes number. This leads to an increase in the aerodynamic drag.
The effectiveness of this mechanism terminates when the sedimentation factor
ceases to increase. We will assume for estimation that η ≈ 1 at Stkf ≥ 10.
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Fig. 5.48. The Stokes number of particles of different sizes as a function of the
wedge angle: (1) dp = 16 µm, (2) 23 µm, (3) 32 µm, (4) 44 µm, (5) 88 µm

Then, the data given in Fig. 5.48 lead one to infer that, in the case of particles
of dp ≥ 32 µm and wedge angles α ≥ 20◦, the sedimentation factor is η ≈ 1.
Therefore, when the above-identified values of the size of particles and of the
angle of wedges are attained, the increase in the aerodynamic drag due to
collisions between the dispersed phase and the surface of bodies subjected to
flow must cease.

In addition to direct interaction between the particles and the wall, the
drag coefficient of a body may be affected by processes such as the inverse
effect of particles on the parameters of carrier gas and on collisions between
particles. Due to their inertia, the particles incident on a body exhibit a higher
velocity than the decelerating gas. As a result, the particles accelerate the gas
to cause an increase in the body drag. On the contrary, the particles reflected
from a body move toward the gas; this is a factor causing a decrease in the gas
velocity and in the coefficient of aerodynamic drag of the body. Note that the
particles reflected from a body apparently make a stronger impact (compared
to the incident particles) on the parameters of gas flow, because these particles
move under conditions in which the dynamic slip between the phases is several
times higher. The number of reflected particles and their effect on the carrier
phase increases abruptly with increasing size (inertia) of the dispersed phase
and increasing wedge angle; this leads to a decrease in the aerodynamic drag.
This inference is supported by the results of experiments in rebound of inertial
particles given in Sect. 5.2. Apparently, the experimentally observed decrease
in the relative resistance of blunt bodies compared to that of pointed ones is
associated with the mechanism of inverse effect of particles on gas described
above.
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The characteristics of turbulent flows of air in the presence of solid particles in
pipes (channels) and under conditions of flow past bodies have been treated.
The basic results given in the book include:

1. The suggested classification of turbulent heterogeneous flows by the volume
concentration and inertia (Stokes number) of particles in averaged, large-
scale, and small-scale fluctuation motion.

2. The solution of a large complex of metrological problems associated with
the diagnostics of the structure of particle-laden turbulent flows of gas.

3. Detailed analysis of the characteristics of motion of particles and of their
inverse effect on the parameters of carrier gas under conditions of flow in
vertical pipes and of flow past bodies.

4. The description (based on unified methodology within a single mathemat-
ical model) of the processes of additional dissipation and additional gener-
ation of turbulence in heterogeneous flows with relatively low- inertia and
large particles, respectively.

Note at the same time that many of the important problems and aspects of
the theory of turbulent flows of gas with solid particles have been hardly dealt
with in the book. These are the characteristic features of highly dust-laden
flows, the regularities of formation of profiles of concentration of the dispersed
phase, heterogeneous flows in horizontal channels, the characteristic features
of high-velocity flows with solid particles, the sedimentation of particles on
channel walls, and many others.

One can use the suggested classification of turbulent heterogeneous flows
to estimate in advance (prior to investigations) the presence and intensity of
determining interphase interactions and exchange processes. The thus devel-
oped classification may be recommended for use in theoretical and experimen-
tal investigations of multiphase flows of various types.

The investigations referred to in the book are not characterized by a clearly
defined application pattern; therefore, the results of these investigations will
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find application in the most diverse spheres of human activities. We will take
a brief look at possible spheres of practical utilization of these results.

The developed procedure of measurements in heterogeneous flows opens up
extensive possibilities for improvements in the diagnostics of multiphase flows.
The diagnostics of heterogeneous flows pursue two objectives, namely, those
of (1) determining the characteristics of flow for the purpose of maintaining
optimal process conditions and (2) obtaining data to be employed in the
calculations of concrete processes.

Examples of devices in which the thus developed diagnostic procedures
may be employed to advantage include devices for sand- and shot-blasting of
various surfaces, pneumatic conveyers of loose materials, classifiers of polydis-
perse materials by the particle size, various dust collectors, devices for thermal
preparation of coal in schemes for energy-technology utilization of fuel, com-
bustors of heat engines, devices for heat treatment of loose materials, heat
exchangers with two-phase working media, and so on and so forth.

Such procedures may be further recommended for use in performing mea-
surements in flows of gas suspensions resulting from natural processes (fogs,
sandstorms, forest fires, volcanic eruptions, etc.) and from human activities
(production of dust and harmful exhausts by moving vehicles and atmospheric
pollution by industrial emissions).

Priority problems associated with the diagnostics of turbulent heteroge-
neous flows today include:

1. The investigation of the characteristics of highly dust-laden flows which
involve collisional interaction of particles.

2. The measurements of the fields of correlation of fluctuations of velocities
of the carrier and dispersed phases, correlations of fluctuations of concen-
tration and velocity of particles, and so on.

3. The investigation of the impact made by particles on the fine structure
of turbulence of carrier flow, in particular, on the spectrum of turbulent
fluctuations of velocity and on the microscales of turbulence.

4. The investigation of the statistical parameters of flows with substantially
polydisperse particles, as well as with bidisperse, hollow, porous part-
icles, etc.

5. The development of methods of local measurement of the temperature
of continuum flow, as well as of fluctuations of this temperature in the
presence of particles.

In view of the rate of development of the methods of experimental investi-
gation of heterogeneous flows, as well as of ever growing interest of numerous
research teams in studying such flows, one can hope that the problems listed
above will be solved in the nearest future.

The investigation results make it possible to predict the effect of parti-
cles on the turbulent energy of carrier flow. The understanding of the physics
of interaction between particles and surrounding gas further enables one to
control the integral characteristics of flow, such as friction and heat transfer.
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The control of the properties of continuum flows in flow trains of power plants
by introducing particles of certain physical properties into the flow at certain
concentration of particles may be very effective. However, one must bear in
mind that the presence of particles in flows almost always entails the possi-
bility of sedimentation of particles on the walls, erosion, and other negative
effects.

The investigation results described in the book make it possible to raise
the intensity of processes occurring in heat exchangers, which utilize gas sus-
pensions, by optimal selection of the basic structural (pipe diameter, etc.) and
process (gas velocity) parameters, as well as of the properties (thermal and
dynamic inertia) of the employed particles.

Examples of practical uses of “gas–solid particles” heterogeneous flows
may be further provided by pulverized-coal ducts and pneumatic conveyers
of loose materials; in the nearest future, such devices may possibly present
an alternative to automobile and railroad transport. The consumption of en-
ergy for the pipeline conveyance of various materials are directly associated
with the pressure loss due to a number of reasons such as the roughness of
pipe walls, the conveyer length, the pipe diameter, the density, viscosity, and
velocity of gas, the type of material being conveyed, the density, size, and
velocity of particles, and so on. Investigations revealed that, in addition to
the above-identified parameters taken into account in designing pneumatic-
conveyance systems, one must further take into account the Stokes number
of particles of the material being conveyed in large-scale fluctuation motion.
The correct choice of this characteristic of heterogeneous flow will make it
possible to significantly lower the level of turbulent fluctuations of velocity of
the carrier gas phase and, consequently, reduce the hydraulic resistance and
loss of pressure due to conveyance.

The process of dissolution of solid particles is a typical mass-exchange
process extensively employed in the chemical industry. The inclusion of the
modification of turbulence by particles will make it possible to optimize
column-type units for dissolving particles in a fluidized bed; this will raise
significantly the efficiency of this process.

The foregoing may be extended to various devices capable of heat treat-
ment of loose materials (heating, drying, cooling, sintering, etc.) and employed
in the food, medical, and other industries.

Note that the model of additional generation and dissipation of turbu-
lent energy of gas flow by particles, described in this book, may be used in
calculating and designing various turbulence stimulators and damping grids
extensively employed in power generation and in aviation and space engineer-
ing.

I hope that this monograph will generate interest among students, post-
graduates, and researchers involved in investigations of hydrodynamics and
heat transfer in solid particle-carrying heterogeneous flows and will give im-
petus to further development of the theory of multiphase flows.
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Thermal relaxation, of particles, 18
Thermophoresis force, 132

and particle motion, 34, 35
Time averaging, 2
Transfer equation

Reynolds stresses, 4
turbulent dissipation, 8
turbulent energy, 6
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Trapping coefficients, 135
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motion, 34
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autocorrelation function in, 110
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generation and dissipation of, 114,
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integral Eulerian time scale of, 111
laminarization of, 94
modification of, 114
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Turbulence hypotheses, 4, 5
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low-inertia particle effect on, 124
Turbulence models

algebraic, 4–6
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averaged velocities in, 156, 157, 160
fluctuation velocity in, 157, 158
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dissipation of, 116–120
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equation for, 112, 113
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balance equation for, 121
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