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Abstract 

 

Wind forecasting for the commercial-scale wind farm is vital for grid management issues, 

energy trading, tariff adjustment, and maintenance issues. Forecasting of the wind farm 

located in the complex terrain causes a major challenge. The challenge for the prediction 

of wind resources for that wind farm immensely increases if inter-farm wakes affect wind 

farms and under the severe variations of seasonal changes. The Weather Research and 

Forecasting (WRF) model is used for the mesoscale wind resource forecasting for the 

wind farm under the effect of immense and complex wakes from neighboring wind farms. 

The test case wind farm is located in the complex terrain of the Jhimpir wind corridor, 

Sindh, Pakistan. Simulation for forecasting was done for two cases i.e. Without inter-farm 

wakes and With Inter-farm wakes, during the prediction of wind resources for the wind 

farm. A significant reduction in error assessment parameters has been observed for Case 

2. For the month of June (Summer), the mean absolute errors in wind speed prediction 

were reduced by 7.7 %. In the month of January (Winter), 14 % of error reduction in mean 

absolute error was observed. The power predicted was improved by 15 % and 26 %, for 

June and January, respectively. However, the forecasting skill of the WRF is deteriorated 

in the winter. The Pearson correlation factor asses the forecasting skill of the WRF for 

wind power prediction, the value of correlation in June is 0.82 and for winter its value is 

0.27. 

Keywords: wind farm; energy forecasting; wake interference; seasonal variation; 

mesoscale simulation 
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Chapter 1 
Introduction 

 

 Motivation 

Conventional fossils have been the sole sources of energy for many years until the research 

in the alternative sources had broken through. With the increase in the efficiency, 

alternative sources of energy, which is commonly called renewable sources, gain special 

attention due to global concern on the depletion of the conventional source of energy and 

global warming. International countries have agreements such as the Kyoto Protocol, in 

which member countries are committed to providing certain percent of their energy 

demands with renewable [1]. Wind energy gained an important source of power 

production among all the renewable sources of energy, due to advancements in research 

and technology in the wind sector. Global wind-generation installed capacity has 

increased by the factor of 75 over the two decades, from 7.5 GW in 1997 to 664 GW in 

2018 [2]. The power sources of wind energy around the world including the US are in the 

complex terrain due to flow enhancement and channeling by the topographic features[2]. 

However, before integrated those power into the national grids, accurate estimation of 

potential contribution is necessary to ensure efficient utilization [3]. Therefore, accurate 

atmospheric modeling about complex terrain is necessary for forecasting wind production. 

Unlike other sources of renewable sources, wind energy has peculiar characteristics, it 

changes with the spatial, diurnal, seasonal, and temporal variations. Also, unlike the 

traditional source of energy, intermittency of wind energy poses a huge challenge for wind 

energy resource planners. Wind energy forecasting is very essential for grid maintenance 

timing, day-ahead energy trading in the market, reducing the imbalance between charges 

and penalties, and efficient project management issues. 

In 2013, Pakistan meteorological Department conducted a survey entitled “Wind potential 

survey in the coastal area of Pakistan”. That study was funded by the Ministry of Science 

and Technology. That study proposed the “Gharo-Jhimpir region” as the economically 

feasible areas to established wind farms after this study number of wind farms establishing 
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in that region is increasing. With the increase in wind farms numbers, the need to provide 

accurate wind resource for the wind farms under the influence of inter-farm wakes is the 

challenge, that wind farms are facing. 

 Case Study 

In 2013, the Meteorological Department of Pakistan (PMD) conducted a survey entitled 

“Wind Power Potential Survey of Coastal Areas of Pakistan”, funded by the Ministry of 

Science and Technology. That study enabled PMD to identify the potential “wind 

corridors” where economically feasible could be established. The Gharo-Jhimpir wind 

corridor in Sindh was identified as the most lucrative site for wind power plants. The wind 

power potential covered an area of 9700 sq.km with a gross wind power potential of 43000 

MW.   The test case wind farm is the Fauji Fertilizer Company Energy Limited 

(FFCEL)wind farm, which is situated in the Jhimpir Corridor shown in Fig 1.1, The FFC 

wind farm is operational since 2013. It has a production capacity of 49.5 MW. It contains 

33 wind turbines of Nordex S 77 with each having the 1500 KW maximum power.  All 

the wind farms are now under the influence of wakes from the neighboring wind farms. 

Figure 1.1 The FFCEL Wind Farm located in the Jhimpir wind corridor 
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wakes from the upstream wind farms cause loss of power production in downstream 

farms. 

In this study, I forecasted the wind resources for the wind farm, which is under the 

influence of intra and inter farm wakes. That wind farm is prone to the extreme seasonal 

variation throughout the year. These factors make this study one of its kind for the wind 

speed and power forecasting for a wind farm. The mesoscale Numerical Weather 

Prediction (NWP), Weather Research and Forecasting (WRF) are used with the Wind 

Farm Parametrization scheme to estimate the wind farms’ wakes.   

 Objectives 

This study was carried out to achieve the following objectives  

a. short-term wind forecasting of the wind farm under the influence of inter-farm 

wakes 

b. total power prediction of the wind farm 

c. evaluation of variation in wind speed by the seasonal changes 

d. error analysis in power prediction by individual turbines 

the methodology which was used in this study is shown in Fig. 1.2. The Time-dependent 

data, Geographical data, and Wind turbines data serve the inputs for the WRF model. After 

the WRF model is set, two types of simulations were designed to run i.e. without interfarm 

wake and with interfarm wake. Then the predicted output of the WRF is compared with  

 

Figure 1.2 Methodology applied for the current study 
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the observed data of wind speeds from the met mast and wind turbines, and power data of 

wind turbine of the wind farm   

  Thesis Outline 

The following is a summary of the different chapters in this thesis. 

Chapter 2 discusses the different forecasting models and techniques used by the scientific 

community to predict wind resource estimation. This chapter also discusses the different 

forecasting models for the wind speed and power forecasting of a wind farm. The WRF 

mesoscale model is discussed, the pros and cons of different technique of forecasting are 

also discussed 

Chapter 3 describes the FFCEL wind farm and the neighboring wind farms 

specifications. The WRF parameters which are used are also discussed along with the 

design of simulations for the study 

Chapter 4 includes the validation of the WRF results with observed values of met mast 

and wind farm. Different statistical parameters are assessed for the errors in wind speed 

and power  

Chapter 5 discusses the results of the study. The effects of inter-farm wakes on the wind 

speed forecasting are discussed. Changes in the wind direction in different seasons are 

analyzed. Errors emerge from neglecting inter-farm wakes in each wind turbine is 

discussed. Total power of the wind farm is estimated in different cases  

Chapter 6 conclusions, which are drawn from the study are included in this chapter. It 

also discusses the future studies emerges from this study 

Chapter 7 discusses the author’s research work during his semester-long exchange 

program at Arizona State University (ASU), USA. 
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Summary 

Over the last decade, the number of wind farms has been establishing in the Jhimpir wind 

corridor, Pakistan, this raises the problem of wind forecasting of the wind farm under the 

influence of inter-farm wakes from the neighboring wind farms. The Jhimpir lies in the 

complex region and experiences extreme seasonal variation around the year. This factor 

makes prediction of wind resources for the test case wind farm in Jhimpir a new case to 

study. 
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Chapter 2 
Literature Review 

 

In the past, various studies have been done to predict wind energy for wind farms and sites 

all over the globe. In Jamaica, a random probability distribution was made from the past 

data, and time series were then tested with the observed data [1]. Wind speed was 

forecasted for the aa wind turbines in the Pomeroy, Iowa wind farm, USA [2]. By coupling 

mesoscale model with microscale is another very innovative way to forecast i.e. coupling 

mesoscale model with CFD was used to predict the wind speed in the Nygaard, Norway 

and also coupling Windsim with the mesoscale was used for wind prognostication of the 

wind farm in Manisa, Turkey [3]-[4]. A hybrid method, coupling physical method with 

the statistical method is also used by some scientists to predict the wind speed. Kalman 

filter and genetic algorithm as the statistical methods with the physical method were used 

for the wind characteristics prediction in Japan and Spain, respectively [5]-[6]. These 

studies include wind speed prediction from a 24 to 72h forecast horizon. These studies did 

not include inter-farm wake for the wind speed prediction. 

Upstream wind farms produce wakes, these wakes cause the loss in the power in the 

downstream wind turbines. These wakes are imminent as wind farms are established with 

the minimum distance between them due to the cost and land constraints. Wakes from the 

utility-scale wind turbines persist for 8-10 diameter of that turbine [7]. As wakes can cause 

a loss in the power production of wind turbines, hence it can lead to an increase in the cost 

of electricity generations. Wind farm optimization is done by Jonas et al. [8], used three 

different models to propose optimal horizontal distance between turbines, for these intra-

farm wakes to get a minimum. [9] used different flow cases to find the wake effects of 

neighboring wind turbines, he analyzed the effect of the wake is maximum on the 

downstream wind turbines that are directly in front of upstream wind turbines. The 

analytical modeling of the wind turbine was done to estimate the velocity distribution 

behind the wind turbine is done by [10]. Two different techniques were carried by [11] 

toanalyze the wakes of neighboring wind turbines. Gonzalez et al. [12] proposed the 
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nature of wind turbine used and spacing between wind turbines can affect wind farm 

efficiency. 

A wind speed forecasting for a wind farm neglecting the inter-farm wakes could give an 

overestimation of speed, which leads to large errors in power output because of cubic 

relation between speed and power. Even a small error in wind speed could increase to 

three times in the power estimation [13]. [14] analyzed the wind speed forecasting catering 

the intra-farm wakes on the real onshore wind farm, he discovered 0.5% loss in wind 

resource even after 17 km behind wind farm. [15] proposed that a 35 % loss in power 

prediction due to the wake effect of upstream wind turbines. Both intra- and-inter-farm 

wake flows affect wind resources by different wind turbine s in an onshore wind farm. 

Due to land constraints, wind farms are developed uncoordinated with less than the 

nominal distance between them, thus give large errors in wind power prediction. Spatial 

and geographical parameters should be catered as these parameters affect the atmospheric 

boundary layer while prediction wind speed forecasting. 

 Techniques of Wind Speed Forecasting 

2.1.1 Statistical Methods 
There are mainly two techniques for wind speed forecasting i.e. statistical methods and 

physical methods. Statistical models are used to predict wind speed for very short-term 

prediction. These models are auto recursive, these models tune their parameters based on 

the difference between predicted and original values c. Such studies include forecasting 

using Kalman filters [17], ARMA (Auto Regression Moving Average) functions [18],  

functions using neural networks [19]-[20], the fuzzy logic method [21], and Box-Jenkins 

models [1]. The Forecasting skills depend on the reliability of the past data and the number 

of points in that data [22], [23] demonstrated difficulties of using past data in wind speed 

forecasting. As the lead time increases the error in wind speed forecasting increases. 

2.1.2 Physical Methods 
For the wind speed forecasting more than 6hrs time horizon, there is another method 

which gives an excellent first approximation of wind resource estimation i.e. Numerical 

Weather Prediction (NWP) models [24]-[25]. NWP models use meteorological data for 

wind speed forecasting [26]. NWP models are very effective, as these models solve 
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conservation of mass, energy, heat, and momentum equations on a real location and 

geographical grid points in the three dimensions. These models also include the effect of 

latitude, longitude, and topography of the location. NWP models have certain merit over 

statistical methods, these can scale downwind speed to the hub-height of the wind turbine, 

do not have missing data and give high resolution in horizontal and vertical domains [27]-

[28]. These models can be used for the wind farm layout and power curve of wind turbines 

in the wind farm. NWP models use interpolation techniques to scale down the wind speed, 

accounting for the description of the terrain. Collecting terrain information is rather a 

difficult task. Modeling techniques to estimate wind speed now are more and more 

accurate. NWP models are run on supercomputers, as they require immense computational 

power [29]. 

2.1.2.1 WRF 
Wind farm characterization can be used in current modeling tools that used atmospheric 

interaction with the wind farm in their simulations. The WRF [30] is the current state of 

the art modeling tool, which is developed on the MM5 model. It uses terrain information 

and eulerian based specification for the particle flow in wind resource forecasting. WRF 

uses microphysics parametrization schemes, long and short-wave radiations, planetary 

boundary layer, cumulus process, and surface processes, to enhance the interaction of the 

atmosphere with the terrain. These models use physical parametrization to resolve the 

complex process and predict temperature, wind speed, and water vapor over the three 

dimensions[31]-[32]. [2] and [33] used the WRF to predict wind speed turbine-hub height. 

The WRF has the excellent capability to predict wind speed over the complex terrain [28], 

[34]-[35]. Like other NWP, the WRF can perform simulation less than few hundred 

meters, Large-eddy simulation (LES) has proven to be the very effective technique used 

for the wind farm characterization and estimation of the turbulent phenomena and its 

mixing and its effect on the wind farm [10], [36]-[37]. Although, LES [38] has excellent 

ability to resolve the wake phenomena but they require extensive computational power, 

that is why LES has not been very effective for the  short term forecasting. NWP models 

have ability to resolve the wind turbine drag and turbulent mixing of upstream wind farm 

and can evaluate the irregularities by the wake without using extensive computational 

power, unlike LES [11]. 
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Summary 

Around the globe, many methods of forecasting have been done by using different 

techniques. The forecasting involves the prediction of wind resources for the sites and 

wind power plants. Statistical and Physical methods are the two types commonly used for 

forecasting. The WRF mesoscale model can be used for the wind speed and power 

forecasting of the wind farm and can be used to estimate the wind wakes using wind farm 

parameterization schemes. 
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Chapter 3 
Wind farms specification and WRF configuration  

 Wind Farm Parameters 

FFC Energy Limited (FFCEL) is in the Jhimpir wind corridor, which is in the southern 

province of Pakistan. It is operational since 2013. It has a production capacity of 49.5 

MW. It contains 33 S77 Nordex wind turbines, each having a maximum power of 1500 

KW. The hub height and rotor diameter of the wind turbines are 80 m and 77 m, 

respectively. The topography of the area where the farm is situated is complex. The 

FFCEL wind farm is surrounded by three neighboring wind farms operated by Zorlu in 

the south-west, Three Gorges First (TGF) in the north-west, and Master Wind Energy 

Figure 3.1 Layout of the FFCEL wind farm with neighboring wind farm 
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limited (MWEL) in the north-east side is shown in Figure 3.1. The technical details of the 

four wind farms are shown in Table 3.1 

Table 3.1 Wind Farm specification of the FFCEL with neighboring wind 

Wind Farm FFCEL Zorlu TGF Master 

Wind Turbine 
Model 

Nordex 
S77 

Vestas 
V90 1.8 

MW 

VensysV62 
1.2 MW 

Goldwind 
GW77 1.5 

MW 

GE 1.6 
XLE 

No. of Wind 
Turbines 

33 x 1.5 
MW 

28 x 1.8 
MW 

5 x 1.2 MW 
33 x 1.5 

MW 
33 x 1.6 

MW 
Rotor diameter 
(m) 

77 90 62 77 82.5 

Hub Height (m) 80 80 69 85 80 
Power Density 
(m2/ kW) 

3.11 3.5 2.5 3.1 3.6 

Distance from 
the FFCEL (m) 

- ~790 ~1390 ~800 

 

 WRF Model Configuration 

The WRF version 4.1 is used for the study, which is the latest version used for operational 

weather forecasting and atmospheric research [1]. The resolution of spatial grids can be 

increased up to a few hundred meters in the WRF. The model is set up for four two-way 

nested domains with an advanced horizontal resolution of 9000, 3000, 1000, and 333.33m. 

Warner’s [2] requirement for setting up the domains was fulfilled including the parent 

(d01) and three nested grids (d02, d03, d04). Domain and grids point resolution is shown 

in Table 3-2. The innermost domain d04 is centered at 25.075 o N and 67.972 o E, which 

is the location of a met mast located adjacent to the FFCEL wind farm. The highest 

resolution domain covers an approximate area of 55 km x 55 km, which gives suitable 

information about the meteorological effects which are occurring locally near the wind 

farm. The 333m innermost domain’s resolution gives more than adequate information 

regarding the wind farm and topographical characteristics of terrain [3]-[4]. This scheme 

represents the turbine as a source of turbulence that converts the kinetic energy into useful 

energy (extracted by the turbine) and turbulent kinetic energy in the form of wind turbine 

wake to the downstream wakes. 
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Table 3.2 Detail of domains and grid points 

Domains 1 2 3 4 
Grid Points 79 x 79 112 x 112 142 x 142 166 x 166 
dx=dy (km) 9 3 1 0.33 

Vertical Levels 40 40 40 40 
Global Forecasting System (GFS) [5] data of grid-scale 004 (0.50) is used as an initial 

condition. The data was obtained from the National Center of Environmental Prediction 

(NCEP), which updated after 6h interval. The data is publicly available for commercial 

use. The Moderate Resolution Imaging Spectroradiometer (MODIS) data with a high 

resolution of 30 arc seconds was used as a boundary condition in the forecasting model. 

The physics schemes option includes the newer version of the rapid radiative transfer 

model for both long and short wave [6].  New Thompson et al. [7] is used for the 

microphysical process. The land fluxes were resolved by the unified Noah model [8]. The 

turbulent phenomena near the boundary layer were resolved by the Mellor-Yamada [9] 

planetary boundary layer scheme. Convection which is occurring during the interaction of 

the atmosphere is characterized by the Tiedtke scheme [10].  

The wind farm parameterization scheme which was developed by Fitch et al. [11] is used 

to evaluate the wind turbine wakes and effects on wind power production. This scheme 

represents the turbine as a source of turbulence that converts the kinetic energy into useful 

energy (extracted by the turbine) and turbulent kinetic energy in the form of wind turbine 

Figure 3.2  a) Wind farm layout                                      b) WRF model nested domains 
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wake to the downstream wakes. The vertical shear produce near the boundary layer of the 

surface by the momentum sink is accounted for by the MYNN. The effects of buoyancy 

and stability after the momentum sink and turbulent mixing is also characterized by the 

planetary boundary layer scheme MYNN. 

 Simulation Setup 

Table 3.3 Simulation design for two cases i.e. Without Inter-farm and With Inter-farm wakes 

 Case 1: Without considering 
inter-farm wake 

Case 2: With considering inter-
farm wake 

Season Beginning Date End Date Beginning Date End Date 
Summer 1 Jun 2018, 0000 

hrs. UTC 
8 June 2018, 

0000 hrs. UTC 
1 June 2018, 

0000 hrs. UTC 
8 June 2018, 

0000 hrs. UTC 
1 Jul 2018, 0000 

hrs. UTC 
8 July 2018, 

0000 hrs. UTC 
1 July 2018, 

0000 hrs. UTC 
8 July 2018, 

0000 hrs. UTC 
Winter 1 Jan 2019, 0000 

hrs. UTC 
8 Jan 2019, 

0000 hrs. UTC 
1 Jan 2019, 0000 

hrs. UTC 
8 Jan 2019, 

0000 hrs. UTC 
 

Figure 3.3 Wind farm layout, categorizing wind turbines in two sets i.e. A: with 
less intra-farm spacing between wind turbines, B: With more intra-farm spacing 

between them 
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To evaluate the influence of wind farms' wake effects on the accuracy of wind speed 

forecasting, two different sets of simulations were designed. One set included the inter-

farm wake effects emerging from the three neighboring wind farms, while the other set 

catered only the intra-farm wake effects of FFCEL and ignored the inter-farm wakes. Both 

sets were simulated for 7 days in two summer months of June and July and a winter month 

of January is shown in Table 3.3. The wind characteristics remarkably alter between the 

two seasons so the effect of seasonal variation on forecasting accuracy was essential to 

study. The wind speed and power results obtained from this study were also compared 

with the observed data obtained from the FFCEL wind farm. The forecasted wind speed 

at the turbine hub height is then used for power calculation using the power curve provided 

by the manufacturer of the wind turbine.
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Summary 

The FFCEL wind farm has the capacity of a power generation of 49.5 MW. It is 

surrounded by three neighboring wind farms. The WRF is used for the wind resource 

prediction of the FFCEL wind farm. Different physics schemes have been used to simplify 

the atmospheric interaction with the terrain. Simulations were designed to cater to the 

effect of wakes of neighboring wind farms in two different seasons of years. 
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Chapter 4 
WRF Model Validation 

 

 Error Parameters 

The real-time observed data from the met mast and wind speed and power data from the 

wind turbine are utilized to access the accuracy of forecasting skills of the WRF 

forecasting model. Wind speed data from the turbine was collected by the anemometer 

located on the nacelle of each turbine. The data was available for the 10 min interval 

frequency, where each point represents the average of 10 mins.  The data collected from 

the nacelle give the real scenario on the turbine height [1]. 

Different statistical parameters are then computed to analyze the ability of forecasted 

accuracy of the model. Mean absolute error (MAE) is the most important, is used to check 

the precision of the model. It represents the absolute average error between forecasted and 

observed values. To check, whether the model is overestimating or underestimating the 

forecasted values from the observed values, there is another parameter, mean bias error 

(MBE), which gives adequate information about the sensitivity of the model. Root mean 

square error (RMSE) is a measure of the absolute deviation of forecasted values from the 

observed values. With respect to power prediction, normalized mean absolute error 

(NMAE) is used, it represents the normalized mean absolute error of power prediction in 

each turbine. In Equations 1-4 [2]  i represent the observation in time, n is the total number 

of observations,  f and Obs are predicted and observed values, respectively 
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The wind direction is also an important parameter to check the forecasted skills of the 

model. Wind direction predicted by the WRF is then compared from observed wind 

direction from met mast. 

Table 4.1 Statistical Error analysis for both cases 

 Case 1: Without considering 
inter-farm wake 

Case 2: With considering 
inter-farm wake 

MAE 
(ms-1) 

MBE 
(ms-1) 

RMSE 
(ms-1) 

MAE 
(ms-1) 

MBE 
(ms-1) 

RMSE 
(ms-1) 

Summer June 1.30 -0.85 1.63 1.20 -0.51 1.52 
July 1.34 -0.57 1.66 1.32 -0.18 1.64 

Winter January 1.87 -0.15 2.42 1.59 0.25 2.02 

 

Table 4.1 represents the error in both cases as the WRF predicted the wind speed during 

the simulation. 
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Summary 

Different statistical error assessment was performed to assess the forecasting skills of the 

WRF mesoscale forecasting model. The output of the WRF models was compared with 

the observed data of the met mast and wind farm. A considerable amount of error 

reduction was observed for Case 2 when inter-farm was included in wind resource 

forecasting. 
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Chapter 5 
Results and Discussion 

 

 Wind speed and Direction analysis 

Wind speed from both cases i.e. Case 1: without inter-farm wakes and Case 2: with inter-

farm wakes were compared with met mast observed data, which is situated adjacent to the 

FFCEL wind farm. Wind speed variation for the first seven days in June 2018, July 2018, 

and January 2019 is presented in Fig 5.1, where the trends for both Case 1 and Case 2 

follow the observed values. 

Figure 5.1 
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The error analysis of wind speed in the region is represented in table 4.1. A notable 

decrease in all the parameters was observed in Case 2 due to inter-farm wake effects. MAE 

was reduced to about 7.7 % for Case 2, in June in Fig 5.1. A significant improvement of 

40 % was observed in MBE, for Case 1 its value is -0.85 ms-1 and for Case 2 its value is -

0.51 ms-1. RMSE values showed a slight improvement in both cases, for Case 1 its value 

is 1.63 ms-1 and for Case 2 its value is 1.52 ms-1. For July, both cases showed mixed results 

with slight variations. Insignificant variation was observed for MAE and RMSE from 

observed values. But a considerable improvement of 68% was observed for the MBE in 

Case 2. Overall, the WRF model follows the observed trend with great accuracy. During 

January, the mean wind speeds were on the lower side than the months in summer. The 

RMSE and MAE are on the higher side than from summer are shown in Fig 5.1., but the 

reduction in the error showed the inclusion of inter-farm wake effects.  14 % MAE was 

improved in the Case 2 relative to Case 1, while MBE increases for Case 2 as the WRF 

overestimates the wakes mixing. The mean value of wind direction predicted by the WRF 

for the June is 2220, and while mean observed value of direction is 2470 The WRF 

predicted wind direction is particularly in the north west direction. 

Figure 5.2 Speed deficit is observed due to the Inter farm wakes for both cases, Case 1: 
without Inter-farm wakes, Case 2: With inter-farm wakes, Approx. 1 ms-1 of wind speed 

deficit is observed due to upstream wind farm 
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For the winter seasons, as the lead time increases the forecasting skill of model degrade 

significantly. Negative MBE for almost all turbines shows that underestimation of wakes 

by the WRF and overestimation of speed in the summer and vice versa in the winter 

season. Another crucial parameter to assess the forecasting accuracy of the model is wind 

direction estimation. The WRF predicted wind direction for both cases with excellent 

similitude with the observed value of met mast, Fig 5.2. represents the wind direction in 

terms of wind-rose. Wind direction for Case 2 and observed 

The mean value of wind direction predicted by the WRF for the June is 2220, and while 

mean observed value of direction is 2470. The mean difference of 330 was observed in 

June. For July, the mean value of direction predicted by the WRF is 2240 and the observed 

value is 2410, the mean difference of 180 was observed. For January, the WRF predicted 

wind direction to be 1050, while the observed value is 800. WRF and overestimation of 

speed in the summer and vice versa in the winter season. Another crucial parameter to 

assess the forecasting accuracy of the model is wind direction estimation WRF and 

overestimation of speed in the summer and vice versa in the winter season. Another crucial 

parameter to assess the forecasting accuracy of the model is wind direction estimation. 

Another crucial parameter to assess the forecasting accuracy of the model is wind 

direction estimation. 

Figure 5.3 Comparison of predicted wind direction with observed values for the months of (a) June, 
(b) July, and (c) January 
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 Error Analysis of turbines 

5.2.1 Mean Absolute Error 
MAE for all 33 turbines in FFCEL wind farm is determined for both cases i.e. without 

inter-farm wake and with inter-farm wake as shown in Fig 5-3. MAE is relatively constant 

throughout the summer season, with a value of around 1.23 ms-1 for Case 1 and 1.09 ms-1   

for Case 2. The maximum reduction 0f 30% in MAE was observed for turbine 18 in Case 

2.  For July, a 39 % reduction in error was observed for turbine 10 for Case 2. During the 

month of winter, the value of MAE for both cases is higher than the summer, with an 

average value of 2.3 ms-1 for Case 1 and 1.8 ms-1 for Case 2. The turbines 16-33 showed 

a significant reduction in error for Case 2.  This shows that these turbines are under the 

influence of inter-farm wakes from upstream wind farms than the rest of the turbines. 

Figure 5.4 
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Neglecting inter-farm wakes during the prediction of wind speed could give erroneous 

results. 

 

 

Figure 5.5 
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During the first 2 days of June, the WRF showed significant error. Like wind speed, the 

WRF underestimated power most of the time.  While in the winter, the WRF overestimates 

the power prediction with a larger deviation.   

 

 

Figure 5.6 
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5.2.2 Root Mean Square Error 
The RMSE is shown in the fig, for Case 1 its value is 1.53 ms-1 and for Case 2 it is 1.36 

ms-1. A maximum reduction in error of 20 % was observed in turbine 18. For July, the 

value of RMSE for Case 1 is 1.53 ms-1 and for Case 2 it is 1.36 ms-1 and the maximum 

reduction in error occurs for the turbine 10 which is 23%.  Like the MAE, RMSE in the 

winter season is higher side than summer is shown in Fig 5.4., with the value of 2.7 ms-1 

and 2.2 ms-1 for Case 1 and Case 2, respectively. During the winter month, the maximum 

reduction of 30% in RMSE is observed for turbine 19. 

Figure 5.7 
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 Power Prediction Analysis 

The total power generation of the FFCEL wind farm was predicted by the WRF for both 

cases and compare with the actual power production of the FFCEL in Fig 5.5., illustrates 

the forecasted and observed power values for seven days in June 2018, July 2018, and 

January 2019.  During the first 2 days of June, the WRF showed significant error. Like 

wind speed, the WRF underestimated power most of the time.  While in the winter, the 

WRF overestimates the power prediction with a larger deviation. The errors in wind power 

are higher because errors came from the wind speed prediction, small error in wind speed 

increased by three times for power estimation. The errors in wind power are higher 

because errors came from the wind speed prediction, small error in wind speed increased 

by three times for power estimation.   

Figure 5.8 
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To evaluate the accuracy of the WRF in wind power prediction in determining the power 

output of the FFCEL, the Correlation plot is shown in Fig 5.6., For the month of June, the 

value of Pearson Correlation R for both cases is 0.80 and 0.82, respectively for both cases. 

For July, the value of R is 0.38 and 0.79, respectively for both cases. And lastly, for 

January, the value of R is 0.25 and 0.27, respectively.  This shows that the predictive skill 

of the WRF is improved for Case 2 while catering to the inter-farm wake. 

Figure 5.9 Wind power forecasting analysis for the month of June, set A turbines is 
represented in (a) turbine 1, (b) Turbine 3, (c) Turbine 11, where (d)Turbine 16, (e) Turbine 
22, (f) Turbine 31 represent set B turbines, ∆ represents the reduction in % deficit reduction 

in normalized power prediction 
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5.3.1 Normalized Mean Absolute Error 
The mean value of NMAE is shown in Fig 5-7., the mean value of NMAE for all turbines 

in June for both cases is 13 % and 11%, respectively for Case 1 and Case 2. A maximum 

Figure 5.10 
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reduction of 28 % in error was observed for turbine 28. For July, the mean value of NMAE 

for Case 1 is 14 % and for Case 2 it is 10 %.  Similar to MAE and RMSE, the value of 

NMAE for the winter season is on the higher side. 

The mean value of NMAE for Case 1 is 19 % and Case 2 is 14 %. A maximum error 

reduction in prediction is observed for turbine 24, which is 47%. Another important 

parameter is the Pearson correlation coefficient for the normalized absolute power 

prediction, in June R is 0.82, while in July it is 0.79 and in January it is in the lower side, 

which is 0.27. 

Figure 5.11 Comparison of normalized mean absolute error values, (NMAE) in %, of power 
generated by individual turbines for Case 1: without inter-farm wake effects and Case 2: With 
inter-farm wake effects 
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In all the parameters, catering inter-farm wakes reduced the errors and increased the 

forecasted skills.  

 

 

 

 

Figure 5.12 Comparison of predicted and observed total power generation of FFCEL 
for the months of (a) June, (b) July, and (c) January 
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Summary 

MAE is reduced by 7.7 % in June at wind speed. A 14 % error reduction was observed in 

MAE in January. The WRF excellently estimated the wind directions. In June, a mean 

error of 13 % in NMAE is observed in all turbines in Case 1 and 11% was observed in 

Case 2. The forecasting skill of the WRF model was also assessed by another factor i.e. 

Pearson Correlation Factor. The WRF has a correlation of 0.82 in June and 0.27 in 

January. 
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Chapter 6 
Conclusions 

 

 Conclusions 

The discrepancies in the power prediction are observed due to inherent uncertainties in 

the WRF mesoscale model. Like other NWP models, the WRF only estimates the 

atmospheric interaction with the topography of the area by simplifying the physical 

process [1]. Error in the prediction also comes from the inadequacies of physical 

parametrization which leads to inability NWP models to successfully solve the sub-grid-

level issues and also the skill of interpolation is affected. Not selecting the right initial and 

boundary conditions for the model also lead to the error in the forecast in NWP models. 

Error in wind speed is tripled, while power prediction in NWP, because of the cubic 

relation of wind speed and power. Therefore, high skill is required for wind energy 

forecasting [2]. 

1. A unique study of wind speed and power forecasting was done for the 

commercial-scale wind farm in the Province of Sindh, Pakistan. The test case 

wind farm is under the influence of inter-farm wake and extreme seasonal 

variation 

2. In the span of simulations, the WRF overestimated the wind speeds when the mean 

wind speeds were high (summer), while underestimated the wind speed when the 

mean wind speeds were low(winter) 

3. In the span of simulations, the WRF overestimated the wind speeds in the 

summer seasons, when the mean wind speeds were high. MBE was negative 

in summer, as the WRF underestimated the inter-farm wake mixing in the 

downstream wind. The WRF underestimated the wind speed in the winter 

season 

4. The WRF was used with the Wind Farm Parametrization scheme to estimates 

the far inter-farm wakes while predicting wind resources. The simulation is 

run for two seasons i.e. summer and winter 
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5. The WRF, underestimated the inter-farm wakes in summer, while it overestimated 

the wakes in winter 

6. Although the wind farm is located in complex terrain, the WRF estimated the inter-

farm wakes with great accuracy 

7. The WRF estimated the inter-farm wake effect in the forecasting with great 

accuracy. Although wind farms located in complex terrain, it is a major 

challenge to accurately simulate the complex atmospheric circulation. 

8. The MAE in wind speed for the summer is improved up to 7.7%, while in the 

winter, a maximum of 14 % reduction in MAE was observed. 

9. Wind direction for both the seasons was predicted by the WRF with great skill. In 

summer, a mean difference of only 33o. while in winter, the WRF predicted mean 

wind direction of 105o, while the mean observed value was 80o 

10. The mean NMAE of power in each turbine was improved while considering 

interfarm wakes. In summer, 15 % improvement was observed in mean value, 

while in winter, mean value improvement of 26 % was observed. 

 

 Future Research Work 

This study opens the gate for abundant research in the future. Some of the suggestions are 

a) Coupling CFD with the mesoscale models can be used for wind resource 

prediction, for accurate estimation of intra-farm wakes 

b) A hybrid model, coupling statistical model with the NWP model can be used 

to decrease the computational load on computers 

c) Wind farm optimization study can be carried out, with the wind farm 

parameterization scheme used to calculate far wakes 

d) The WRF can be used for the wind resource forecasting for the wind farm in 

urban areas  

e) The WRF can be used to validate wake models by comparing LES with the 

wake model in the WRF and empirical model 
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Chapter 7 
Research exchange Work 

 

 Lidar Lab in ASU 

I spent one semester in the Lidar Lab of Dr. Ronald Calhoun at Arizona State University 
at Tempe Campus. There I studied the working and applications terrestrial and airborne 
Lidar in the field of forestry, resource assessment, aviation, and unmanned vehicles. I have 
done the semester-long project entitled “Design and fabrication of an ultra-sonic 
anemometer”, using the Arduino and cheap ultrasonic sensors. I designed the schematic 
diagram of the project in EAGLE CAD. After I designed, I fabricated with the available 
resources is shown Fig 7.1(a) to make a finished product. Then I tested the fabricate 
anemometer Fig 7.1 (b) in the wind tunnel to validate the theoretical results. 

7.1.1 Ultra-Sonic Anemometer 
An Ultra-Sonic Anemometer is a device which is used to detect and measure the speed of 
wind and its direction with greater accuracy than a mechanical anemometer. A mechanical 
anemometer uses abrasion or physical touch of wind on its cup shaped body, that 
decreases its precision and accuracy. But the ultra-sonic anemometer uses sound waves 
for wind speed measurements. A lidar works similar to the Ultra-Sonic anemometer, there 
are some differences such as Lidar uses light waves, and obviously it does not require any 
medium to pass, higher clock speed to respond, but the ultra-sonic anemometer uses lower 
speed clock. 

  

   

Figure 7.1(a) Fabricated ultrasonic anemometer (b) Testing in the wind tunnel 
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The validation results are shown in Fig 7.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Speed variation ultrasonic anemometer with actual data 
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Chapter 8 
Appendices 

Appendix A: WRF Preprocessing System Domains 
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Abstract 

Forecasting skills for a wind farm would significantly degrade if the complex wake effects 
of the upstream wind farms are excluded, especially when they are spatially close to each 
other. In this study, the Weather Research and Forecasting (WRF) model has been used 
to predict wind speed and power for a wind farm in Pakistan in the presence of wake 
interference from neighboring wind farms for two different seasons. Forecasting is done 
for two different cases i.e. without and with inter-farm wake effects, and different 
statistical error parameters were evaluated based on the real observations. A significant 
reduction in errors was observed in the latter case. For instance, the mean absolute errors 
in wind speed prediction were reduced by 7.7% and 14% in June (summer) and January 
(winter) respectively, by the inclusion of inter-farm wake effects. Similarly, an improved 
forecast of power output was obtained by incorporating the interaction of upstream wind 
farms i.e. a reduction of 15% and 26% in the normalized mean absolute error in power 
output values was observed for June and January, respectively. However, the prediction 
accuracy of power output substantially deteriorated in the winter season. 

Keywords: wind farm; energy forecasting; wake interference; seasonal variation; 
mesoscale simulation 

1 Introduction  

There has been a remarkable growth in renewable energy generation over the past few 
years due to lower costs, government incentives, economic growth, and environmental 
concerns emerging from the utilization of traditional fossil fuels. An increase in wind 
turbine capacity factors and lower production costs over the last two decades have made 
wind energy an effective source of renewable energy. Global wind-generation installed 
capacity has increased from 7.5 GW in 1997 to 564 GW in 2018 with electricity generated 

 
1 Corresponding author, Email: adeeljaved@uspcase.nust.edu.pk  
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by wind energy resources accounted for 16% of the electricity generated by total 
renewable sources in 2016 [1]. Unlike traditional resources, the wind has unique 
characteristics as it varies substantially in the spatial domain along with temporal, diurnal, 
and seasonal variations. Therefore, wind energy production rate fluctuates more strongly 
than traditional fossil fuel sources of energy and other renewable sources. Intermittency 
of wind poses a huge risk for energy planning of electrical grids i.e. baseload management, 
managing demand and supply gap, and maintenance issues of wind farms, which can lead 
to a great economic loss if not anticipated. To make wind energy a reliable source for 
power generation, a dependable forecast is imperative. To forecast wind speed at different 
time horizons is a main concern for the wind energy planners. The benefits of wind power 
forecasting lie in the reduction of imbalance charges and penalties, grid maintenance 
issues, efficient project management planning, operational issues, and advance energy 
trading in the market.  

The current techniques for wind speed and power forecasting mainly include statistical 
and physical methods. Statistical methods are utilized for very short-term predictions. 
These models are supposed to alter the model parameters based on the difference between 
predicted and past values, as these models are auto recursive [2]. An immense range of 
time series models has been proposed for statistical wind speed on various averaging 
intervals. Such models include forecasting time series using Kalman filters [3],  ARMA 
(Autoregression moving average) functions [4], functions built using artificial neural 
networks [5]-[6], the fuzzy logic method [7], and Box-Jenkins models [8]. The forecasting 
skills of these models depend on the reliability [9] of the past data sets and the number of 
observed points (resolution) in those data sets. [10] demonstrated that there are many 
difficulties in the forecasting of energy demands using historical data points. As the lead 
time of wind-speed forecasting increases, the precision of statistical models degrades 
immensely. 

For the wind speed forecasting of more than 6 hrs time horizon, physical models give an 
excellent estimation of wind energy resources, for instance, NWP (Numerical Weather 
Prediction) models [11]-[12]. Physical models such as NWP use weather and 
meteorological data for wind speed prediction [13]. NWP models are very effective 
models, as these solve the numerical equations of conservation of mass, energy, and heat 
on the real-locations and geographical grids points in all three dimensions.  These models 
include the effect of latitude, longitude, and elevation of certain locations, and several 
other factors such as roughness and effect of topography. NWP models have certain merits 
over statistical models: these can scale-down wind speed to the turbine-hub height, give 
high resolution in vertical and horizontal domains, and do not have missing data amount 
[14]-[15]. These models are also used to produce the wind farm layout, speed in the local 
area, and power curves of the wind turbine on the farm. NWP models use interpolation 
techniques to scale-down wind speed by also using the terrain account of the wind farm. 
Collecting information regarding the description of the terrain is one of the most 
difficulties in the implementation of physical models.  
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Various studies have been conducted on wind speed and power forecasting for sites and 
wind farms all over the globe. For instance, stochastic and hourly wind speed forecasts in 
Jamaica employed past data to produce real-time series which was validated with the 
observed data [8]. The physical method of forecasting was utilized to predict wind speeds 
for the turbines in the Pomeroy, Iowa wind farm, USA [16]. Coupling mesoscale models 
with microscale models such as Computational Fluid Dynamics (CFD) and WindSim 
were some methods applied for the wind prognostication in wind farms of Nygard, 
Norway [17], and Manisa, Turkey [18] respectively. Some studies involved models that 
are a combination of physical and statistical methods, also referred to as hybrid methods, 
to predict wind characteristics. For instance, [19] utilized the Kalman filter, and [20] 
employed a genetic algorithm to clean out the physical model output for wind farms in 
Awaji, Japan, and Satavento, Galicia, respectively. These studies include the forecasting 
time horizon ranging from 24 to 72 hours however did not consider the wake effects of 
wind turbines while forecasting wind characteristics.  

The wind resource forecasting for a certain wind farm without the inclusion of intra-farm 
wakes (wakes produced from inside a wind farm) and inter-farm wakes (wakes produced 
by neighboring wind farms) would give overestimation in wind speed, which would 
ultimately produce large discrepancies in the power output because of the cubic relation 
between wind speed and power. Even a small forecast error in speed enhances error to 
three times in the wind power estimation [21]. Complex wakes to emerge from the vortex 
of wind turbines greatly reduce the wind resource for the downstream wind turbines and 
hence forecasting wind resources to encounter the characteristic intermittency should also 
cater to the holistic wake phenomenon to generate a reliable data. Wakes from commercial 
wind turbines can endure a minimum distance downstream of 8 to 10 times the turbine’s 
rotor diameter [22]. Wakes have an adverse effect on wind power production which leads 
to an increase in the cost of electricity [23]. A study [24] analyzed the wind speed and 
power prediction under the influence of intra-farm wakes on a real onshore wind farm and 
found out a 0.5% loss in wind resource even 17 km downstream of a wind farm. Two 
different techniques were used for evaluating the wake effects of neighboring wind farms 
by Lundquist et al. [25]  and nearly 5% loss of generation in a downstream wind farm was 
observed. Li et al. [26] examined the impact of wakes on wind power prediction using 
Jensen and Larsen wake models and concluded a power loss of 35% in the downstream 
wind turbines. Both intra- and inter-farm wake flows affect the wind characteristics 
experienced by different turbines in an onshore wind farm. In addition to wake flows, 
uncoordinated design and development can result in less than the nominal distance 
between wind farms thus large errors in power output prediction. Moreover, spatial and 
geographic parameters that influence the local atmospheric boundary layer must be 
considered while forecasting wind speeds in complex terrain.  

Wind turbines wake estimation models range from analytical to numerical, and mesoscale 
to microscale models. All these methods have their own merits and also come with some 
restraints. Several past studies have evaluated the accuracy of wake prediction methods 
under different types of operating conditions. Some famous analytical models are assessed 
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and compared by [27], who recommended that Jensen, and Xie and Archer wake models 
to be best for overall accuracy. [28] concluded that the accuracy of analytical wake 
prediction methods depends upon the downstream distance from a wind turbine. Modified 
2D Jensen-Gaussian model [a more realistic analytical model] capture the wake effects 
from a wind turbine more accurately [29]. Most of the analytical methods do not include 
the effects of complex terrain and also ignore the dependency of wake models with respect 
to time i.e. these models consider speed deficit produced from a wind turbine as solely a 
function of distance, which underestimates the wake losses [30]. Numerical models like 
Computational Fluid Dynamics (CFD) models are although more accurate but are not used 
for wake analysis of whole wind farms for their high computational expenses [31]-[32]. 
CFD models use Navier-Stokes equations to compute the velocity deficit behind wind 
turbines. High fidelity Large Eddy Simulations (LES) results have been best in accordance 
with the measured data as compared to previously mentioned methods [33]. LES models 
are best suited for the near wakes as these models resolve hub and tip vortices near wind 
turbine blades. But LES is not suitable for resolving the wake flows emerging from whole 
wind farms due to excessive computational power required. 

Fitch et al. [34] developed a Wind Farm Parameterization (WFP) scheme that resolves 
wind turbine wakes at the mesoscale level. In this scheme, wind turbines act as a source 
of drag and turbulent kinetic energy to the oncoming wind. This leads to a loss in 
momentum and a wind speed deficit based on the wind turbine thrust and power curve 
data provided by the manufacturer. This WFP scheme is implemented in a NWP model: 
the Weather Research and Forecasting (WRF) model [35] which is a current state of the 
art modeling tool developed on the MM5 model. The WRF uses terrain information and 
the eulerian based specification for the particle flow coordinate model in wind speed 
forecasting. To enhance the interaction of the atmosphere with the terrain of the area, the 
WRF employs microphysics parametrization schemes, long and short-wave radiations, 
planetary boundary layer schemes, cumulus process, and surface processes. The model 
uses physical parametrization to resolve the complex processes to predict temperature, 
wind speed, water vapors over real three-dimensional domains [36]-[37].  [16], and [38] 
used the WRF model to evaluate wind speed on the turbine-hub height. The WRF model 
has the excellent capability to predict wind speed and can also predict wind direction over 
the complex terrain [39], [15], [40].  Like other NWP models, the WRF model can perform 
simulations with a resolution of fewer than a hundred meters. The WRF model integrated 
with the WFP scheme has the ability to account for the drag and turbulent mixing of the 
upwind wind farm and can evaluate the irregularities of those wakes without using 
excessive computational resources unlike LES [25].  

In this study, the authors focus on a utility-scale wind farm located in a complex terrain 
that is under the influence of wakes emerging from neighboring, closely spaced, upstream 
wind farms. The test case wind farm also experiences extreme variations in the wind 
direction over different seasons. The wind speed and power of the said wind farm will be 
predicted using the WRF mesoscale model by including the intra- and inter-farm wake 
effects, and the effect of seasonal variation on the prediction accuracy will be evaluated. 
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The test case wind farm lies in the province of Sindh, Pakistan. The main objectives of 
this study are (a) short-term wind forecasting of the wind farm under the influence of inter-
farm wakes, (b) evaluation of variation in wind speed forecast accuracy under seasonal 
changes, (c) total power prediction of the wind farm,  and (d) error analysis in power 
prediction of individual turbines. 

Section 2 of this paper details the technical specifications of wind farms under study, the 
methodology applied to obtain forecast data, the configuration of the WRF model, and 
information related to geographical domains and physics schemes. Error parameters used 
to check the validity of the forecasted wind speeds and power are also described in the 
same section. Section 3 discusses the forecast results obtained by the WRF model and 
their comparison with the observed data of met mast and wind turbines in the wind farm. 
This section also discusses the errors in the power prediction of individual wind turbines 
under two different seasons. Section 4 presents the summary and main conclusions that 
emerged from this research work. 

 

2 Methodology  

2.1 The test case wind farm 

The FFC Energy Limited (FFCEL) wind farm is located in the Jhimpir region of the 
southern province of Sindh, Pakistan. The FFCEL wind farm is under operation since 
2013. It contains 33 x Nordex S77 wind turbines, with each turbine having 1500 kW of 
maximum rated power. The total wind power production capacity of the FFCEL wind 
farm is 49.5 MW. The hub height and rotor diameter of all the turbines are 80 m and 77m, 
respectively. Fig. 1 depicts the terrain in which wind farms and met mast lies in the Jhimpir 
area [41]. The test case wind farm lies on uneven terrain, with uncoordinated wind farms 
surrounding it and experiencing extreme seasonal variations, that make this wind farm a 
unique case to study. The FFCEL wind farm is surrounded by three neighboring wind 
farms operated by Zorlu in the South-West, Three Gorges First (TGF) wind farm in the 
North-West, and Master Wind Energy limited (MWEL) in the North-East side (Fig. 2). 
The technical details of the four wind farms are shown in Table 1. Fig. 3 [41] illustrates 
that the two most dominant wind directions in the Jhimpir region are South-west and 
North-East which occur in Summer and Winter, respectively. In the summer months, the 
main hindrances to the FFCEL wind farm for a cleaner wind resource are the Zorlu and 

Figure 2. Wind farms layout in the Figure 1. Terrain altitude of Jhimpir, 
Pakistan. Wind farms in this study are 
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the TGF wind farms, while in the winter season, hindrance comes in the form of the Master 
wind farm. As the wind changes its direction in the two most dominant seasons of the 
year, these upstream wind farms are the source of wind turbines wakes to the test case 
wind farm FFCEL, that is why wind speed forecasting is done for two seasons in this study 
while catering to the wind direction and wake flows of the upstream wind farms. 

 

 

2.2 WRF model configuration 

The WRF model version 4.1 is used for this study, which is the latest version and is 
commonly used for the operation of weather forecasting and atmospheric research [35]. 
The methodology applied to obtain the wind speed and power forecast for the FFCEL 
wind farm using the WRF model is presented in Fig. 4. The Moderate Resolution Imaging 
Spectroradiometer (MODIS) geographical data with a high resolution of 30 arc seconds 
is used as a boundary condition in the forecasting model.  The Global Forecasting System 
(GFS) [42] data of grid/scale 004 (0.5o) is used as an initial condition. This data was 
obtained from the National Centers for Environmental Prediction (NCEP) which updates 

 

Wind Farm FFCEL Zorlu TGF Master 
Wind Turbine 
Model 

Nordex 
S77 

Vestas 
V90 1.8 

MW   

VensysV62 
1.2 MW 

Goldwind 
GW77 1.5 

MW 

GE 1.6 
XLE 

No. of Wind 
Turbines 

33 x 1.5 
MW 

28 x 1.8 
MW   

5 x 1.2 MW 33 x 1.5 
MW 

33 x 1.6 
MW 

Rotor diameter 
(m) 

77  90  62 77   82.5 

Hub Height 
(m) 

80  80   69 85              80 

Power Density 
(m2/ kW) 

3.11          3.5                                                              2.5 3.1    3.6 

Distance from 
the FFCEL 
(m) 

-                   ~790 ~1390 ~800 

Table 1. Wind farms’ technical 
specifications 

Figure 3. Observed wind speeds and 
directions for the year 2018 in the Jhimpir 
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it after 6 hrs interval. The GFS data from the previous day run is used as the forecasting 
tool for future prediction. Both data sets are freely available for research purposes. The 
WRF model employs Arakawa C-grid staggering with a mass-based terrain-following 
vertical coordinate to solve for different atmospheric parameters using Elurian based 
conservation equations of mass, momentum, and energy. Wind turbine parameters are also 
fed into the model that include geographical coordinates of wind turbines, power curve, 
and thrust curve data. The model forecasts different atmospheric parameters by 
interpolating the gridded initial data on the domains’ grid cells at each time interval. 
Parameters like wind speed at the hub height can be extracted in the post-processing phase 
using data interpolation in the grid cells where wind turbines are located. The forecasted 
wind speed data is then compared with the data observed from the nacelle mounted 
anemometer at each wind turbine. 

 

The resolution of spatial grids can be increased up to a few hundred meters in the WRF 
model. The model is set with four two-way nested domains with an advanced horizontal 
resolution of 9000, 3000, 1000, and 333 m. While setting the domains, requirements for 
the configurations of the domains were met, as proposed by Warner [43], including the 
parent (d01) and three nested grids (d02, d03, d04). Domains resolution, grid points, and 
vertical levels are listed in Table 2. The innermost domain d04 is centered at 25.075 o N 
and 67.972 o E (Fig. 5). The highest resolution domain covers an approximate area of 55 
km x 55 km, which gives suitable information about the meteorological effects which are 
occurring locally near the wind farm. The 333 m inner-most domain’s resolution gives 
more than adequate information about the wind farm and topographical characteristics of 
the terrain [24], [39]. 

Figure 4. Methodology applied for the current 
study. 
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Physics schemes options include a newer version of rapid radiative transfer model 
longwave [44] and rapid radioactive transfer model shortwave was used. New Thompson 
et al. [45] was used to resolve the microphysical processes, the unified Noah model [46] 
resolved the land surface fluxes. Turbulent phenomena occurring near the boundary layer 
were resolved by the Mellor-Yamada (MYNN) [47] as the planetary boundary layer(PBL) 
scheme. Convection which is occurring during the interaction of the atmosphere is 
characterized by the Tiedtke scheme [48]. The WFP scheme developed by Fitch et al. [34]  
is used to evaluate the wind turbines’ wake and the effect of those wakes on the wind 
farm’s power production. This scheme represents a wind turbine as a source of turbulence 
that converts kinetic energy from the wind into useful energy (extracted by the turbine) 
and turbulent kinetic energy that produces downstream turbulence. The vertical shear 
produce near the boundary layer of the surface by the momentum sink is accounted for by 
the MYNN. The effects of buoyancy and stability after the momentum sink and turbulent 
mixing is also characterized by the planetary boundary layer scheme MYNN. 

 

2.3 Simulations setup 

Figure 5. WRF model nested domains. D04 
represents the area of interest and has the highest 
resolution of 333 m. 

 

Domains 1 2 3 4 
Grid Points 79 x 79 112 x 112 142 x 142 166 x 166 
dx=dy (km) 9 3 1 0.33 

Vertical Levels 40 40 40 40 
 

Table 2. WRF model domains’ 
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To evaluate the influence of wind farms' wake effects on the accuracy of wind speed 
forecasting, two different sets of simulations were designed. One set included the inter-
farm wake effects emerging from the three neighboring wind farms, while the other set 
catered only the intra-farm wake effects of FFCEL and ignored the inter-farm wakes. Both 
sets were simulated for 7 days period in two summer months of June and July and a winter 
month of January. The wind characteristics remarkably alter between the two seasons so 
the effect of seasonal variation on forecasting accuracy was essential to study. The wind 
speed and power results obtained from this study were also compared with the observed 
data obtained from the FFCEL wind farm. The forecasted wind speed at the turbine hub 
height is then used for power calculation using the power curve provided by the wind 
turbine manufacturer. 

 

2.4 Error parameters 

The real-time observed data recorded by the met mast, and the wind speed and power data 
obtained from the turbines are utilized to assess the accuracy of the forecasting model. 
Wind speed at each turbine is collected by the anemometers located on top of the nacelle. 
This data was available at a frequency of 10 minutes intervals where each value 
represented an average data of 10 mins. Nacelle wind observations give a more real 

scenario at the turbine hub height [19]. 

Different statistical parameters are computed from the output data of simulations to 
analyze the accuracy of forecasting ability. Mean absolute error (MAE) represented in 
Equation 1, is the most important parameter used to check the precision of the prediction 
skill of the model. It represents the absolute average error between observed and 
forecasted values. To check whether the model is under or overestimating the forecasted 
data from observed value, there is another parameter mean bias error (MBE) represented 
in Equation 2, which gives adequate information about the sensitivity of the model. 
Equation 3 represents the root mean square error (RMSE), it is the measure of the absolute 
deviation of the predicted values from the observed values. For wind power production, 
the normalized mean absolute error (NMAE) (Equation 3) is used which represents the 
percentage of error in the power production of each wind turbine. In Equations 1-4  [24], 
i represent the observation in time, n is the total number of observations,  f and Obs are 

 

 Case 1: Without considering 
inter-farm wakes 

Case 2: With considering inter-
farm wakes 

Season Beginning Date End Date Beginning Date End Date 
Summer 1 Jun 2018, 

0000 hrs. UTC 
8 June 2018, 

0000 hrs. 
UTC 

1 June 2018, 
0000 hrs. UTC 

8 June 2018, 
0000 hrs. 

UTC 
1 Jul 2018, 0000 

hrs. UTC 
8 July 2018, 

0000 hrs. 
UTC 

1 July 2018, 
0000 hrs. UTC 

8 July 2018, 
0000 hrs. 

UTC 
Winter 1 Jan 2019, 

0000 hrs. UTC 
8 Jan 2019, 
0000 hrs. 

UTC 

1 Jan 2019, 
0000 hrs. UTC 

8 Jan 2019, 
0000 hrs. 

UTC 

Table 3. Simulations setup  
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predicted and observed values, respectively. For MAE, MBE, and RMSE f and Obs are 
wind speeds, while for NMAE these variables represent power output values. 
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3 Results and Discussion 

3.1 Wind speed and direction forecast analysis 

Wind speeds from both cases i.e. Case 1: without inter-farm wakes and Case 2: with inter-
farm wakes were compared with the met mast data which is situated adjacent to the 
FFCEL wind farm. Wind speed variation for the first seven days in June 2018, July 2018, 
and January 2019 is presented in Fig. 6, where the trends for both Case 1 and Case 2 
follow the observed values.  

 

The error analysis for wind speed forecasting in the region is presented in Table 4. A 
notable decrease in all the error parameters has been observed for Case 2 due to the 
inclusion of inter-farm wake effects. MAE for June was reduced by about 7.7% for Case 
2. A significant improvement of 40% in the bias error (MBE) was recorded which is -0.85 
ms-1 for Case 1 and it has decreased to -0.51 ms-1 for Case 2. RMSE values showed a little 
variation for the two cases and are reduced from 1.63 ms-1 in Case 1 to 1.52 ms-1 in Case 
2. In July, the results of both cases show mixed results with minor differences. 
Insignificant improvement was noted for MAE and RMSE values which represent the 
deviation from the observed values. But a considerable decrease in MBE is found with an 
improvement of about 68%. Overall, the WRF model follows the observed trend with 
great accuracy. During January, the mean value of wind speeds is on the lower side than 

Figure 6. Temporal variation between forecasted (without and with inter-farm 
wake effects) and observed wind speed for the first week in months of (a) June, 
(b) July, and (c) January 
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in the summer months. WRF underestimated the wind speed, except for days 2 and 3 as 
represented in Fig 6(c). The MAE and RMSE values are higher as compared to the 
summer season but a reduction in errors is noted for Case 2 that includes wake effects 
emerging from neighboring wind farms. MBE gets increased and a positive deviation is 
observed in the forecasted values for Case 2. A considerable amount of 14% improvement 
was observed in MAE for Case 2 relative to Case 1, while MBE increases for Case 2 as 
the WRF overestimates the wake mixing. Even though prediction skills degrade with the 
increase in the lead time of the forecast, on the second day there are not many errors as 
compared to day one results for the summer season, and in both cases, discrepancies are 
very small. For the winter season, as the lead time increases, forecasting skill degrades 
significantly. Negative MBE for almost all turbines shows that underestimation of wakes 
by the WRF and overestimation of speed in the summer season and vice versa in the winter 
season. 

 

Another crucial parameter to assess the forecasting model is the estimation of wind 
direction. The WRF predicted the wind direction for both cases with excellent similitude 
with the observed values of wind direction. Fig. 7 illustrates the prediction of wind 
direction using wind rose chart for Case 2 and those were then validated by the direction 
observed by the met mast located adjacent to the FFCEL. In June, the mean wind direction 
predicted by the WRF model is 222o while the mean observed direction is 247o. A mean 
error of 33o is observed for the whole week of June. 66% of the sample in the WRF data 
lies in the speed range of 10-13 ms-1, while approx. 58% of the observed sample lies in 
the identical speed range. In July, the mean wind direction predicted by the WRF was 224o 
degrees and the observed wind direction was 241o, the mean error of 18o degrees was 
observed. Forecasting skill for wind direction of the WRF model enhanced in July. 
Approximately 67% of the WRF samples lied in the speed range of 10-13 ms-1, while 
more than more 70% of observed samples lied in the same wind speed range. In January, 
similar to wind speeds, the errors in the wind directions were high. The mean predicted 
wind direction of the WRF and observed was 105o and 80o, respectively. The mean error 
in wind direction in the winter month came out to be 50o. More than 57% of predicted 
data by WRF lied in the wind speed of 7-10 ms-1 while approximately 47% of observed 
samples lied in the exact wind speeds range.  

3.2 Wakes Analysis of the wind farm 

 

  Case 1: Without considering inter-
farm wake 

Case 2: With considering inter-farm 
wake 

  MAE (ms-

1) 
MBE (ms-

1) 
RMSE (ms-

1) 
MAE (ms-

1) 
MBE (ms-

1) 
RMSE (ms
1) 

Summer June 1.30 -0.85 1.63 1.20 -0.51 1.52 
July 1.34 -0.57 1.66 1.32 -0.18 1.64 

Winter Januar
y 

1.87 -0.15 2.42 1.59 0.25 2.02 

Table 4. Statistical analysis of forecasted 
wind speeds 
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It can be inferred from Fig. 7 that in the Summer months of June and July, Zorlu and TGF 
wind farms act as upstream wind farms and a wind resource deficit for the FFCEL wind 
farm. Similarly, in the winter month of January, the Master wind farm acts as an upstream, 
wake producing wind farm for the FFCEL wind farm. Fig. 8 illustrates the wind speed 
contours in July when the wind approaches the Jhimpir region from the South-West 
direction. A significant decrease in wind resource available for the FFCEL can be 
observed for Case 2. Fig. 9 [41]  further quantifies these wake losses in terms of percentage 
speed deficit contours, and speed deficit experienced by individual turbines in the 
presence of upstream wind farms. A speed loss of more than 12% was observed for the 
wind turbines located in the South-East region.  

 
Figure 7. Comparison of predicted 
wind direction with observed values 
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Using the data shown in Fig. 8 and Fig. 9, the wind turbines in FFCEL can be divided into 
two sets as shown in Fig. 10. Set A (turbines no. 1-12, 14-15, 33) of wind turbines is less 
influenced by the upstream wind farms wakes than the Set B (turbines no. 13, 16-32). 
Three wind turbines from each row in both sets were selected to analyze the wind speed 
and power variation experienced over seven days in June and January. Turbines number 
1, 3, and 11 are present in 1st, 2nd and 3rd row, respectively in set A, while turbines number 
22, 16, and 31 are from set B, and are present in 1st, 2nd and 3rd row respectively. 

Figure 8. Wind speed contours during the Summer month of July when wind 
approaches the Jhimpir region from the South-West direction. Shown for (a) 
Without inter-farm wakes (Case 1), and (b) With inter-farm wakes (Case 2). 

Figure 9. Speed deficit due to upstream wind farms on the FFCEL (a) Speed 
deficit contours (b) Speed deficit experienced by individual wind turbines  
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Figure 11. represents the time-series graphs of wind speed prediction of the selected wind 
turbines for both Case 1 and Case 2, as well as the observed values for June. The symbol 
delta ∆ in Fig. 11 and Fig. 12 represents the reduction in Mean Absolute Error (MAE) in 
ms-1 for Case 2 as compared to Case 1. The set A turbines 1, 3, and 11 show little 
improvement in the MAE, while the set B turbines 16, 22, and 31 show significant 
improvement in the MAE for Case 2. The forecasting accuracy is much improved in Case 
2 for set B wind turbines because these turbines are under high influence of upstream wind 
farms’ wakes and ignoring these wake flows can cause huge uncertainties. There is 
another parameter used to assess the prediction accuracy of a forecasting model known as 
the Pearson correlation coefficient (R). The WRF model showed a significant 
improvement in the correlation factor for Case 2 that includes the inter-farm wakes in 
wind speed forecasting. Wind speed prediction of the selected wind turbines for January 
(winter season) is demonstrated in Fig 12. Similar to the summer season, the improvement 
in the MAE for Set B wind turbines is higher. Master wind farm acts as the upstream wind 
farm as noticed from Fig 7. Although turbines in the set B are experiencing more inter-
farm wakes, the prediction of wind speed using inter farm wake parametrization also 
significantly improves the forecasting skill of the WRF for the turbines in the set A. 
Although ∆ in MAE for January shows improvement like the summer season, there is a 
slight change in R when wakes effects are included. 

Figure 10. Wind farm layout, categorizing wind 
turbines in two sets i.e. A: under less influence 
of inter-farm wakes, B: under more influence of 
inter-farm wakes 
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Figure 11.  Wind speed forecasting analysis for the month of June. Set A turbines ares 
presented in (a) Turbine 1, (b) Turbine 3, and (c) Turbine 11, whereas (d) Turbine 16, (e) 
Turbine 22, and (f) Turbine 31 present set B turbines. ∆ represents the reduction in MAE 

-1 

Figure 12. Wind speed forecasting analysis for the month of January. Set A turbines ares 
presented in (a) Turbine 1, (b) Turbine 3, and (c) Turbine 11, whereas (d) Turbine 16, (e) 
Turbine 22, and (f) Turbine 31 present set B turbines. ∆ represents the reduction in MAE 
in ms-1 for Case 2 as compared to Case 1. R1 and R2 represents the Pearson correlation for 
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The normalized wind power of the selected wind turbines from set A and set B predicted 
by the WRF relative to observed power for June is presented in Fig 13. The symbol delta 
∆ in Fig. 13 and Fig. 14 represents the percentage reduction in Normalized Mean Absolute 
Error (MAE) for Case 2 as compared to Case 1. Like speed, wind power forecast is 
significantly improved for set B turbines. It can also be seen in Fig 13. that even for the 
set A turbines, the power forecast is noticeably improved if wind speed forecasting is done 
using the WFP scheme.  More than 2.7 % improvement of NMAE is observed for all the 
turbines in the set B when inter-farm wake effects are included in the forecast. Figure 14.  
presents the normalized power of the selected turbines in January. Although forecasted 
power data of all wind turbines experienced an improvement by the inclusion of inter-
farm wake effects, it can be seen that the set B turbines have undergone more improvement 

Figure 8-13. Wind power forecasting analysis for the month of June.  Set A turbines 
ares presented in (a) Turbine 1, (b) Turbine 3, and (c) Turbine 11, whereas (d) Turbine 
16, (e) Turbine 22, and (f) Turbine 31 present set B turbines. ∆ represents the % 

Figure14. Wind power forecasting analysis for the month of January. Set A turbines 
ares presented in (a) Turbine 1, (b) Turbine 3, and (c) Turbine 11, whereas (d) Turbine 
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in forecasted power as compared to set A with an exception of turbine 1. More than 3.5 % 
improvement in forecasted power was observed in set B turbines using the inter farm wake 
parametrization. 

3.3 Error Analysis of Individual Turbines 

3.3.1 Mean Absolute Error 

MAE in wind speed forecast of all 33 turbines in FFCEL wind farm is determined for both 
cases i.e. without and with inter-farm wake effects as shown in Fig. 15. MAE is relatively 
constant throughout the summer season, with a value of around 1.23 ms-1 for Case 1, and 
1.09 ms-1 for Case 2. Among all the turbines for June, the maximum reduction of error 
occurs for the turbine 18 in Case 2 which is 30%. For July, the maximum reduction in 
error occurs for turbine 10 which is 39%. During the winter season, MAE for both the 
cases is higher as compared to the summer season, with an average value of 2.3 ms-1 for 
Case 1 and 1.8 ms-1 for Case 2. The maximum reduction in MAE occurs for turbine 19 in 
January in Fig 15 (c). Set B turbines (Fig. 10) showed a significant amount of MAE 
reduction for Case 2 in both summer and winter season. This indicates that these turbines 
are under high influence of inter-farm wake effects than Set A turbines, and ignoring the 
interference effects of neighboring wind farms can lead to substantial errors in wind speed 
forecasting. 

 

 

3.3.2 RMSE 

The mean value of RMSE (see Fig. 16) is 1.53 ms-1 for Case 1 and 1.36 ms-1 for Case 2 
during June, and the maximum reduction in error of 20% is observed for the turbine 18.  
For July, the value of RMSE for Case 1 is 1.53 ms-1 and for Case 2 it is 1.36 ms-1 and the 
maximum reduction in error occurs for the turbine 10 which is 23%. Like MAE, RMSE 
for the winter season is on the higher side for both the cases, having average values of 

Figure 15. Comparison of mean absolute errors (MAE) of wind speed 
experienced by individual turbines for Case 1: Without inter-farm wake effects 
and Case 2: With inter-farm wake effects for (a) June, (b) July, and (c) January. 
Error values are higher in January as compared to the summer months. 
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about 2.7 ms-1 and 2.2 ms-1 for Case 1 and Case 2 respectively. During the winter month, 
the maximum reduction of 30% in RMSE is observed for turbine 19. 

 

3.4 Power prediction analysis 

The total power generation of the FFCEL wind farm is evaluated and compared with the 
observed power output of the wind farm. Fig. 17 illustrates the forecasted and observed 
power values for seven days in June 2018, July 2018, and January 2019. The WRF model 
underestimates the power prediction in June (Fig. 17(a)). During the first two days of the 
month, power prediction shows significant errors from observed values because wind 
speeds are also underestimated during the same period. In July, the WRF model predicted 
the power generation with high accuracy throughout the week except for the last two days 
when it underestimated the power prediction (Fig. 17(b)). In January (Fig. 17(c)), the 
WRF overestimated the power prediction of the wind farm most of the time and displayed 
a higher deviation from observed values than the summer months. Overall, a high 
correspondence between the power forecasted in Case 2 (with inter-farm wakes) and the 
observed power can be seen in all three months. 

 

To evaluate the prediction accuracy of the WRF model in determining the total power 
output of FFCEL, correlation plots are presented in Fig. 18. In these plots, the Pearson 
correlation coefficient (R) is used to find the extent of linearity between observed and 
forecasted values. For June and July (Fig. 18(a, b)), R has values of 0.82 and 0.79 

Figure 16. Comparison of root mean square error (RMSE) values of wind speed 
experienced by individual turbines for Case 1: Without inter-farm wake effects and 
Case 2: With inter-farm wake effects for (a) June, (b) July, and (c) January. 

Figure 17. Comparison of forecasted and observed total power generation in 
FFCEL for the months of (a) June, (b) July, and (c) January 
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respectively presenting a high accuracy of predicted power generation for Case 2. A huge 
increase in wind power correlation is recorded between forecasted and observed values 
for July by including the inter-farm wake effects. Conversely, the prediction power of the 
WRF model drops remarkably in January (Fig. 18(c)) when R has a value of only 0.27 for 
Case 2.  

 

The mean value of NMAE (see Fig. 19) for all the turbines for Case 1 is 13% and Case 2 
is 11% for June. Improvement of 15% was observed for the mean value of NMAE. A 
maximum reduction in error for wind power prediction is observed for turbine 28 having 
a value of 28%. For July, the average value of NMAE for both the cases is approximately 
14% and a reduction of 10% in NMAE is observed for turbine 10. Like MAE and RMSE, 
NMAE is on the higher side in the winter season. The value of NMAE for Case 1 is 19% 
and Case 2 is 14%, hence a 26% reduction in the mean value was observed for Case 2. A 
maximum error reduction in prediction is observed for turbine 24, which is 47%. In all the 
parameters, used to evaluate the accuracy of forecasting skills of the WRF mesoscale 
model, catering to the inter-farm wakes emerging from the neighboring wind farms 
decreased the errors and increased forecasting skills. 

The discrepancies observed in the power generation emerge from the uncertainties 
inherent in the WRF mesoscale model. Like other NWP models, the WRF only estimates 
the atmospheric interaction with the orography of the area by simplifying the physical 
processes [40]. Errors in the forecasted values also come from the inadequacies of physical 
parametrization and which leads to the inability of NWP models to successfully solve sub-
grid level issues and its skill of interpolation is affected, although it has its error of 
interpolations. Not selecting the right initial and boundary conditions for the model will 
also lead to the forecast errors in the NWP models. Errors in wind speed are tripled, when 
power is predicted in the NWP, because of cubic relation between speed and power. 
Therefore, a high skill forecasting model is required for the estimation of energy 
production applications [49]. Typically, bias errors in the wind speed are on the lower side 
but, if the spatial relationship with the atmospheric interaction is considered, the 
discrepancies become larger. Another possible cause of errors in results is maybe WRF 
underestimates wind speeds if mean observed wind speeds are high and overestimates 
when wind speeds are low. 

Figure 18. Comparison of predicted and observed total power generation of 
FFCEL for the months of (a) June, (b) July, and (c) January 
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4 Conclusion 

In this study, the WRF model integrated with Wind Farm Parameterization (WFP) scheme 
is used for the wind speed and power forecasting of a utility-scale onshore wind farm 
which is situated in complex terrain. The forecasted data was compared with the observed 
data to assess the forecasting skills of the model. The test case wind farm has high 
occupancy and also experiences wake interference from neighboring wind farms. 
Furthermore, the wind characteristics of the Jhimpir region, where the wind farms exist, 
undergo extreme seasonal variations. Main conclusions emerged from this study are: 

 Extreme variations in wind characteristics were observed for the current season. 
During the summer months of June and July, high mean wind speeds from the 
Arabian sea approach the Jhimpir region from South-West direction. The wind 
direction is completely reversed during the winter month of January when it 
approaches the region from the North-East direction. The mean average wind 
speed during January is also reduced and it exhibits more variability as compared 
to the summer season. This variation in wind characteristics affected the test-case 
wind farm’s power production and the direction of incoming wake flow. 

 In the span of simulations, the WRF overestimated the wind speeds in the summer 
season, when the mean wind speeds were high. MBE was negative in summer, as 
the WRF underestimated the inter-farm wake mixing in the downstream wind.  
The WRF underestimated the wind speed in the winter season and overestimated 
wakes due to low mean wind speed. The MAE in wind speed for the summer is 
reduced up to 7.7% by including the inter-farm wakes, while in the winter season, 
a maximum of 14 % reduction in MAE was observed with the inclusion of inter-
farm wake effects.  

 Two sets of wind turbines were identified, i.e. set A and set B, in the test-case wind 
farm based on the wake flow analysis. Set B of wind turbines recorded more 
influence from upstream wake flows as compared to the set A. A wind speed 
deficit of more than 12% was found in the set B wind turbines. One wind turbine 
from each row in both sets of turbines was selected to further analyze the wind 

Figure 19. Comparison of normalized mean absolute error values, (NMAE) in %, of 
power generated by individual turbines for Case 1: without inter-farm wake effects 
and Case 2: With inter-farm wake effects. 
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speed and power forecast for two different cases i.e. Case 1: Without inter-farm 
wakes, and Case 2: With inter-farm wakes. Wind speed and power forecast results 
close to the observed data were recorded for the selected wind turbines for Case 2. 
Moreover, a significant reduction in MAE and RMSE was observed in Case 2 for 
the set B wind turbines as compared to set A. This result bolsters the significance 
of including the inter-farm wake effects in the forecasting of wind data. Similar to 
the wind speed, a high correlation between the predicted power values in Case 2 
and the observed data was found for summer months. The NMAE for set B wind 
turbines was also reduced considerably with the inclusion of wake effects.  

 The WRF model exhibited lower accuracy during the winter season with high 
RMSE values in wind speed and high NMAE values in the power output of 
individual turbines. It can be inferred that the accuracy of the model is dependent 
on different atmospheric parameters including wind speed. The higher 
discrepancies in the model’s output during the winter season also emerge from the 
uncertainties inherent in the atmospheric model, initial and boundary conditions, 
and over-simplification of physical processes. 
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Nomenclature 

Variables WRF Weather Research and Forecasting 

Obs Observed values FFCEL Fauji Fertilizer Company Energy 
Limited 

f Forecasted values  TGF Three Gorges wind farm 

n Total number of observations MW Megawatt 

dx Horizontal resolution GFS Global Forecasting System 

dy Vertical resolution NCEP National Center for Environmental 
Prediction 

R1 Pearson Correlation for Case 1 MODIS Moderate Imaging 
Spectroradiometer 

R2 Pearson Correlation for Case 2 MYNN Mellor–Yamada Nakanishi Niino 

  PBL Planetary boundary layer 

Acronyms MAE Mean Absolute Error 

GW Gigawatt MBE Mean Bias Error 

CFD Computational Fluid 
Dynamics 

RMSE Root Mean Square Error 
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NWP Numerical Weather Prediction NMAE Normalized Mean Absolute Error 

MM5 Mesoscale Model R Pearson Correlation Coefficient 

LES Large-eddy Simulation UTC Coordinated Universal Time 
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