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Abstract 

Physiological signals are recorded through electrodes that sense electrical activity 

in the biological systems. Synchronization among physiological signals is important for 

studying the communication mechanisms occurring within and between different 

physiological systems (e.g. EEG-EEG or EEG-EMG). The aim of this study is to compute 

the level of synchronization in physiological signals during single trials in real time.   

Synchronization is the rhythmic adjustments of self-sustained oscillators because 

of coupling (e.g. classic clock pendulum). Phase synchronization is the relative temporal 

constancy of phases of two physiological signals that shows the electrical/oscillatory 

activity in the body. This oscillatory/electrical activity is called “phase locked” if it occurs 

time-locked to a stimulus event.  A method called Single Trial Phase Locking Value 

(SPLV) is used in this study for computation of synchrony levels among physiological 

signals during single trials in real-time. 

Two types of physiological signals i.e. EEG and EMG are used in this study. First, 

SPLV method was developed for offline studies of phase synchronization for EEG data. 

Based on SPLV results for offline data, SPLV offline method was optimized for use in 

real-time. For real-time, EEG and EMG signals were used following a finger tapping 

protocol. For EMG, SPLV’s were computed by placing electrodes at mid-belly point and 

First Dorsal Interosseous (FDI) muscles of both hands. For EEG, electrodes were placed 

at left and right sensory motor cortex (C3 and C4 according to international 10-20 system). 

Subjects were asked to perform the same finger tapping task. 
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xii 
 

Real-time single trial phase synchronization can be used to study the plasticity 

induced in different parts of the brain. This study can be further utilized for neuro-muscular 

studies for rehabilitation applications. This method can also be used to study diverse 

functions such as motor activity, working memory, associative memory, attention, object 

recognition, awareness, perceptual organization or muscular activity during a specific task 

in real-time. 
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1. Electrophysiology 

Biological cells and tissues exhibit electrical properties. The study of these electrical 

properties is known as Electrophysiology. It comprises measuring the changes in voltage 

or electric current on various scales ranging from single ion channel proteins to entire 

organs like the heart or brain. The term Electrophysiology is defined Scanziani et al as: 

“Electrophysiology is the science and branch of physiology that pertains to the flow of 

ions (ion current) in biological tissues and, in particular, to the electrical recording 

techniques that enable the measurement of this flow.” (Scanziani & Hausser, 2009) 

Two types of electrophysiological signals are focused in this study; 

Electroencephalography and Electromyography. In neuroscience, it involves measurement 

of action potential activity of neurons produce electrical signals. When electrical activity 

of a large network of neurons is measured, it is called Electroencephalography. Similarly, 

recording the electrical activity produced by action potentials in muscles is called 

Electromyography. The classical method for measurement of electrophysiological signals 

is placing electrodes on variety of preparations for biological signals. 

1.1  Physiological Signals 

Electrophysiological recordings are generally termed as Electrography (“electro” 

meaning “electrical” and “graphy” meaning “recording”). The recorded signal obtained is 

called Electrogram. The term Electrography is a general term and may also refer to other 

types of recording such as Electrophotography. Therefore, to specify electrophysiological 

signals, they are usually called by specified name in a pattern i.e. electro- + [specify body 

part] + -graphy (abbreviated as ExG). Generally, electrogram refers to electrocardiogram 
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that has been recorded by invasive placing of electrodes (Kim, Bang, & Kim, 2004). Table 

1 shows different modes of “ExG” signals.   

Table 1: Types of Physiological Signals 

Modality Abbreviation Body Part Grade 

Electrocardiography ECG or EKG Heart 

(cardiac 

muscle), 

with 

cutaneous 

noninvasive 

electrodes 

3 

Electroencephalography EEG Brain 

(cerebral 

cortex), with 

extracranial 

electrodes 

3 

Electromyography EMG Muscles 

from the 

whole body 

(skeletal and 

smooth 

muscles) 

3 

Intracardiac electrogram EGM Heart 

(specifically, 

the cardiac 

muscle), 

with 

intracardiac 

electrodes 

(invasive) 

2 

Electrocorticography ECoG Brain 

(cerebral 

cortex), with 

intracranial 

electrodes 

2 

Electrooculography EOG Eye (full 

globe) 

2 

Electroretinography ERG Eye (retina) 2 

Electronystagmography ENG Eye (via the 

corneoretinal 

potential) 

2 
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Electrocochleography ECOG or 

ECochG 

Cochlea 2 

Electrogastrography EGG Stomach 

(smooth 

muscle) 

2 

Electrogastroenterography EGEG Stomach and 

bowel 

(smooth 

muscle) 

2 

Electroatriography EAG Cardiac 

muscle 

(atrial) 

1 

Electroventriculography EVG Cardiac 

muscle 

(ventricular) 

1 

Electroglottography EGG Glottis 1 

Electropalatography EPG Tongue 

(palatal 

contact) 

1 

Electroblepharography EBG Eyelid 

muscle 

1 

 

Physiological signals can be recorded at three different levels from the body depending 

upon the placement of electrodes. These three levels are as under; 

a. Cellular 

b. Invasive 

c. Non invasive 

 

1.2  Electroencephalography (EEG) 

1.2.1 Introduction 

Electroencephalography (EEG) is a monitoring method for electrophysiological signals 

to record electrical activity of the brain. It is generally noninvasive, which means electrodes 
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are placed along the scalp. However, invasive method for placing electrodes is sometimes 

used in specific conditions. EEG records voltage variations produced from ionic current 

within the neurons of the specific part of brain (Niedermeyer & da Silva, 2005). For clinical 

applications, EEG denotes the recording of the brain's impulsive electrical activity for a 

specified period of time, which is recorded from numerous electrodes placed on the scalp. 

The applications in diagnostic domain are generally focused on the spectral study of EEG, 

i.e. the spectrum type of neural oscillations (known as "brain waves") that is a prominent 

feature in EEG signals. 

1.2.2 Origin of Brain Waves 

When thousands or millions of neurons fire together, they generate electrical potentials. 

These electrical potentials can be recorded inside brain, surface of the brain and even on 

the scalp. These electrical signals recorded corresponds to the oscillatory activity of the 

brain and therefore these are called “brain waves”. When these brain waves are recorded 

from scalp using noninvasive surface electrodes, they are called EEG 

(Electroencephalographs) and their study is called Electroencephalography. Brain waves 

cannot be recorded for a single neuron on the scalp. This activity is always recorded for a 

whole network of neurons oscillating at a specific time. More the number of neurons, better 

will be the electrical activity recorded at scalp.  

1.2.3 Signal Characteristics 

EEG recordings are usually defined by two major phenomena; rhythmic activity and 

transients. When the recorded signals are classified according to the frequency bands, it is 

called the rhythmic activity. The frequency bands are given specific names like alpha, beta, 
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theta and delta bands. Each frequency band is found to have specific distributions over the 

scalp and are also biologically significant. Spectral methods are used to extract these 

frequency bands from raw signals. Certain signal processing tools are available for this 

purpose like EEGLAB for MATLAB or Neurophysiological Biomarker Toolbox. 

Computational signal analysis and processing of EEG signals is often termed as 

Quantitative Electroencephalography (qEEG). 

Broad frequency range for most of the cortical signals is reported between 1-40 Hz 

frequency bands. Frequencies above or below this range are often discarded because they 

likely occur as a result of certain artifacts when standard clinical methods are used to record 

signals. This frequency spectrum is then subdivided into narrow frequency bands 

depending on the origin and brain activity for which signals are recorded. These signals 

are weak signals in terms of voltage. Their voltages range from 0-200 uV (Tatum, 2014). 

Table 2 shows the detailed specifications of these narrow frequency bands along with their 

voltage levels, origin and brain activity during which they might occur.  

Table 2: Frequency bands for brain waves 

Wave Amplitude Frequency 

(Hz) 

Origin Activity 

Alpha 30-50 uV p-p 8-13 Occipital (Intense) 

Parietal 

Frontal 

Eye close 

Relaxing 

Beta <20uV p-p 15-30 Parietal 

Frontal 

Mental 

Activity 

Theta <100 uV p-p 4-7 Parietal and 

Temporal (Young 

children 

Drowsiness, 

Arousal 

(Young 

children) 

•Emotional 

stress, 

frustration, 
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disappointment 

(Adults) 

Delta 100-200 uV 

p-p 

<4 Frontal (Adults) 

Posterior(Children) 

Deep Sleep 

Infancy 

Mu 30-50 uV p-p 8-13 Sensorimotor 

cortex 

Motor Activity 

Motor imagery 

 

1.3  Electromyography (EMG) 

1.3.1 Introduction 

Electromyography is the technique that records muscle activity. Muscle activity may 

occur as a response to electrical activity inside muscle fibers, stimulation of muscle due to 

a nerve impulse at rest and during muscle movements involving contraction and relaxation. 

EMG signals are acquired using surface electrodes that can be placed on a certain body 

muscle (noninvasive). Muscle should exhibit no electrical activity when electrodes are 

placed on a muscle at rest. Since a noise factor is always present while recording signals, 

a white noise can be seen as an output for a muscle at rest (Siriprayoonsak, 2005). 

Whenever, there is an activity in muscle, it contracts due to action potentials generated 

within muscles that will produce electrical activity. The strength of this electrical activity 

depends on the extent to which muscles contract (Bronzino, 1999).  

EMG signals are found clinically useful in the diagnosis of neuromuscular diseases, 

neuropathic diseases and myopathic diseases.  Along with clinical applications, EMG 

signals are also very useful in the field of prosthetics; to control prosthetic devices like 

prosthetic limbs (Herrera, Bernal, Isaza, & Adjouadi, 2004). EMG signals have a wide 

range of applications in the field of robotics as well. They can be used to control computers 

and other gadgets. Devices are available with EMG based interface and are used to control 
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mobile robots and electric wheelchairs. Muscle-computer interface can be used to move 

mouse pointers and play interactive video games. 

1.3.2 Origin of Electromyograms 

   Electrical excitation of skeletal muscle is initiated and regulated by the central and 

peripheral nervous systems. The signals are originated at the junction of Nerves and 

muscles called motor points. Whenever the brain sends a contraction signal through nerves 

to the muscles, an electrical activity is generated in the muscles because of action potentials 

generated in muscles and thus EMG is originated. That’s why these signals are called 

Neuro-Muscular signals. An electrode placed on the motor point of that muscle will record 

this electrical activity. The strength of electrical activity depends on the extent to which 

muscles contract and the strength of muscle as well. Figure 1 shows the mechanism through 

which EMG signals are originated and recorded. 

 

Figure 1 Origin of muscle signals 

1.3.3 Signal Characteristics 

A raw EMG signals is a bipolar signals having random fluctuations that has been 

acquired using surface electrode placed on muscle (Lamb & Hobart, 1992). The voltage 
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levels typically range form 2-10 mV before amplification. The frequency band that 

contains the usable information is a wide frequency band ranging from 0-500 Hz. This 

means the significant energy of the signal is above the level of electrical noise in the 

frequency band. Generally, the dominant energy of EMG signals lies between 50-150 Hz 

frequency band (Nawab, Wotiz, Hochstein, & De Luca, 2002). Figure 2 shows the raw 

EMG signal in time domain and its corresponding frequency domain signal. It can be seen 

that the dominant energy is in the lower frequencies. 

 

Figure 2: Raw EMG signal (black) and corresponding frequency spectrum (red) 

2. Synchronization 

Synchronization is a phenomenon in physics having a long tradition, starting from the 

observation of two oscillating pendulums at a time by Huygens in 1665. Synchronization 

is a nonlinear phenomenon observable in several natural and technical systems, including 

the biological aspect of human brain (Jovanov et al., 2003). 
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Synchronization can be explained as the rhythmic adjustments of self-sustained 

oscillators as a result of coupling. A self-sustained oscillator can be defined as a dynamic 

system capable of generating oscillations out of itself instead of being stimulated by an 

external rhythm. A very basic example of oscillatory self-sustained system is classic clock 

pendulum. It is self-sustained in the sense that it has an internal energy reservoir comprising 

of weights. The periodic oscillatory motion of pendulum is generated by utilizing this 

energy. Amplitude and frequency of oscillations are the two basic phenomenon of the 

pendulum clock mechanism. Amplitude and frequency of oscillating body will remain 

constant under ideal conditions (no friction). 

Synchronized oscillatory activity can also be understood by taking example of two 

simple pendulums. A simple pendulum is a mass “m” attached to a fixed point via cable of 

length “l” and oscillating along x-axis making an angle “θ” with the ground. When two 

simple pendulums; 1 and 2; oscillate together making an angle “θ1 “and “θ2 “respectively 

at any instant of time “t”, they are said to be synchronous. This situation is explained in the 

Figure 3 below; 

 

Figure 3: Synchronization pattern for simple pendulum 
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2.1  Phase Synchronization 

The phenomenon of synchronization can be seen in nature in all living organisms. This 

phenomenon is used on a large scale by researchers to study different natural phenomenon 

occurring in different organs of the body. The part of body for which synchronization 

phenomena is observed is actually a natural “sub-system”. This helps researchers in 

studding interaction between natural sub-systems. Synchronization between signals can be 

studied for two features; amplitude and phase”. Amplitude synchronization corresponds to 

synchronization between networks (neurons or muscle fibers). Phase synchronization 

corresponds to frequency of firing rates (action potentials). This study focus only on phase 

synchronization between physiological signals (EEG and EMG). 

Phase synchronization in terms of physiological signals can be defined as; 

“Phase synchronization is locking of the phases of two physiological signals that shows 

the electrical/oscillatory activity in the body.” (Varela, Lachaux, Rodriguez, & Martinerie, 

2001). 

Let there be two electrodes I and j, placed at two different regions of a natural sub-system 

(brain or muscles), the difference of phase between these two signals can be showed as: 

𝜑𝑖,𝑗 = 𝑛𝜑𝑖(𝑡) − 𝑚𝜑𝑗(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

where n and m are integers, 𝜑𝑖 and 𝜑𝑗 denote the phases of the electrodes I and j, 

and 𝜑𝑖,𝑗 is defined as their relative phase. High values of 𝜑𝑖,𝑗 (that is, close to 1) indicate 

that “i” reproduces the variations of j, with a time lag t that can be different from zero 

(König, Engel, Roelfsema, & Singer, 1995). Similarly, if one is interested in the relation 

between the signals at a specific frequency f, one can band-pass signals from i and j 
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narrowly around f, and estimate their coherence, which is simply the correlation coefficient 

between the band-passed signals. 

In order to investigate synchronization of chaotic systems, Rosenblum et al. 

(Rosenblum, Pikovsky, & Kurths, 1996) replaced this condition of phase locking by the 

weaker condition of phase entrainment: 

|𝜑𝑖,𝑗| = | 𝑛𝜑𝑖(𝑡) − 𝑚𝜑𝑗(𝑡)| < 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Synchrony measures the relation between the temporal structures of the signals 

regardless of signal amplitude. Two signals are said to be synchronous if their rhythms 

coincide. This idea can be made more precise in several ways. In its classical sense, the 

term synchrony has been applied to signals that had a dominant oscillatory mode, either 

originally or after filtration around a chosen frequency𝜔 . Such signals can be written in 

frequency domain with the even weaker condition of frequency locking (Mormann, 

Lehnertz, David, & Elger, 2000) 

〈𝜔𝑖,𝑗〉 = 𝑛〈𝜔𝑖〉 − 𝑚〈𝜔𝑗〉 

= 𝑛 〈
𝑑𝜑𝑖(𝑡)

𝑑𝑡
〉 − 𝑚 〈

𝑑𝜑𝑗(𝑡)

𝑑𝑡
〉 − 0 

where 〈 〉 denotes averaging over time, and 𝜔𝑖,𝑗  the relative frequency of the systems. 

2.2  Phase Synchronization in Physiological Signals 

The concept of phase synchronization is used on a large scale to study the interaction 

between different physiological signals. In case of EEG, phase synchronization is used to 

study interaction between different cortical areas; both on inter-hemispheric and intra-

hemispheric levels. This shows how different cortical regions interact in order to complete 
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a specific task like learning or a motor task. In case of EMG, phase synchronization concept 

is used to study how different muscle pairs interact during a specific task. The level of 

phase synchronization thus obtained indicates how muscle pairs are activated.  

2.2.1 Phase Synchronization in EEG 

Phase synchronization in EEG has been used by researchers to study interaction 

between different cortical regions. Almost all of these studies are conducted offline; i.e. 

signal analysis is performed on recorded signals. Learning and cognition is a hot research 

area and researchers have used phase synchronization to study increase or decrease in 

learning during different mental tasks (Chen, Madhavan, Rapoport, & Anderson, 2013; 

Glennon, Keane, Elliott, & Sauseng, 2015; Lachaux et al., 2000; Sadeghi, MacKay, van 

Dam, & Thompson, 2011). Motor activity and motor imagery has also been studied to 

study interaction between different parts of sensorimotor cortex during various tasks (Hsu, 

2013; Krusienski, McFarland, & Wolpaw, 2012). These signals are not only important for 

research purpose, but are also used clinically for the detection of mental diseases like 

Parkinson’s (Ahn, Zauber, Worth, Witt, & Rubchinsky, 2015; Swann et al., 2015), Strokes 

(Ewen et al., 2015; Lei Wang, Guo, Sun, Jin, & Tong, 2012), Alzheimer (Knyazeva et al., 

2013), Epilepsy (Vecchio et al., 2015),  

2.2.2 Phase Synchronization in EMG 

Phase synchronization concept is also widely used for EMG signal analysis.  A key 

feature of dominant mechanisms for processing of information from motor activities is 

impulsive oscillatory activity. This activity can be distinguished using physiological 

signals i.e.  electroencephalographic (EEG) and electromyographic (EMG) signals 
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(Boonstra & Breakspear, 2012).  Paired EEG–EMG and EMG–EMG synchronization 

study have been applied to evaluate the muscular oscillatory input to the motor units (Lejun 

Wang et al., 2015). Specifically, synchronization pattern of synergistic and homonymous 

motor unit activation is caused by common synaptic input from the last order neuronal 

branches to the motor neurons of spinal cord (Keen, Chou, Nordstrom, & Fuglevand, 

2012).  This can be computed using EMG–EMG coherence or phase synchronization 

analysis methodologies. EMG–EMG coherence computes the common oscillatory drive to 

muscular co-contraction or to two fragments of the particular muscle (Farmer, 1998; van 

Asseldonk, Campfens, Verwer, van Putten, & Stegeman, 2014). Earlier researchers have 

showed that intermuscular and intramuscular coherence in frequency bands of beta (15–35 

Hz) and gamma (35–60 Hz) are mainly caused by motor cortex (Chang et al., 2012). 

However,  coherence in alpha band (8–12 Hz) is caused due to certain other reasons 

(McAuley & Marsden, 2000). Not only coherence method in frequency domain has been 

used, there are several studies that detected a phase lag among the EEG and EMG 

recordings (Halliday, Conway, Farmer, & Rosenberg, 1998). Also, both signals are phase 

locked (phase synchronized) (Ushiyama et al., 2011). This shows that phase 

synchronization of EMG signals among muscular co-contractions might show information 

about cortical-related modulation. Common oscillatory drive is found to be very closely 

related to the actions of cortico-motoneuronal cells found in cortex. Their activity is 

synched with action potentials of motor units in groups of instantaneously active muscles  

(McKiernan, Marcario, Karrer, & Cheney, 2000). This proposes that there exists a close 

relation among EMG–EMG synchrony and central descending drive among pairs of 

agonist and antagonist muscles. 
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3. Methods for the Evaluation of Phase Synchronization 

Numerous different methodologies have been used for the computation of 

synchronization among oscillating signals. Among these methods, most successful are the 

Phase Locking value (PLV) method,(Aydore, Pantazis, & Leahy, 2013; Lachaux, 

Rodriguez, Martinerie, & Varela, 1999; Tass et al., 1998) and Phase Cross Coherence 

(PCC) method (Mormann et al., 2000; Varela et al., 2001). In PLV approach, the phases of 

oscillating signals are computed using wavelet transform (WT) analysis or by using the 

analytical signal computed through the Hilbert transform (HT) (Pfurtscheller & Da Silva, 

1999). These methods are developed to obtain the phases between pairs of oscillating 

signals inside a moderately narrow frequency bandwidth, and to compute synchronization 

among those oscillating signals by computing the extent of constancy of the phase 

relationship among the two signals. Alternative methods are present for the quantification 

of synchronization between oscillating signals, such as Mutual Information (MI), Shannon 

Entropy (SE), and synchronization likelihood methods (Hurtado, Rubchinsky, & Sigvardt, 

2004; Mormann et al., 2000; Yeung, Bogacz, Holroyd, & Cohen, 2004). 
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Single-trial Phase Locking Value (SPLV) approach was selected for the 

computation of phase synchronization in this study. Prior to implementation of system in 

real-time, offline algorithm was developed. This is a common practice to develop offline 

algorithm before switching to real-time implementation as evident from previous studies 

(Brunner, Scherer, Graimann, Supp, & Pfurtscheller, 2006; Quiroga, Kraskov, Kreuz, & 

Grassberger, 2002; Sadeghi et al., 2011). For offline system development, SPLV algorithm 

was first implemented on simulated signals and then on recorded physiological signals 

(EEG and EMG) during different tasks. The same system was then implemented in real-

time to compute the level of synchronization for physiological signals. This section 

discusses in detail the methodology used for both offline and real-time system 

implementations. 

This section is divided into two parts, offline phase and real-time/online phase as 

shown in the block diagram below; 

 

Figure 4: System Flow Chart 
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4. Algorithm Selection 

Among several techniques used for the quantification of phase synchronization, PLV 

and PCC were found to be efficient methods as mentioned in previous studies (Aydore et 

al., 2013; Chang et al., 2012; Doesburg & Ward, 2009). These two methods, and some 

other methods available for the calculation of phase synchronization are equally applicable 

for offline phase synchronization computation. For real-time implementation of a system, 

generally there are factors like computational cost and temporal delay that have to be 

considered. A method with least computational cost and hardware with minimum temporal 

delays is the main goal of study. Keeping these scenarios in mind, Phase Locking Value 

method was found to be the best for implementation in a real-time system. Phase Locking 

Value takes into account only the instantaneous phase of the signal, therefore reducing the 

computational cost. Evidences are present in literature for the reliability of this method 

during online phase synchronization analysis (Aydore et al., 2013; Brunner et al., 2006; 

Chen et al., 2013; Sadeghi et al., 2011; Y. Wang, Hong, Gao, & Gao, 2006). 

4.1  Single-trial Phase Locking Value 

Phase Synchronization Value (PLV) has been widely used for the computation of phase 

synchrony among physiological signals. This method is regarded as the best method for 

task dependent physiological signals (EEG and EMG). PLV quantifies the spontaneous 

relation between the phases of two signals at a given time. This instantaneous phase 

relationship is then averaged either over the total number of trials or over the total number 

of time points. When averaging is done over total number of trials that are time locked to 

a repetitive event, it is called Phase Locking Value (PLV). PLV is a multi-trial 
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computational method in this study, averaging is done over total number of time points and 

is thus called Single-trial Phase Locking Value (SPLV). 

Suppose two real signals 𝑠1(𝑡) and 𝑠2(𝑡) that are physiological signals acquired using 

the surface electrodes 1 and 2, places on two different points of the body part under 

observation. Suppose also that these signals are pre-processed and filtered in the frequency 

band of interest (alpha, beta, gamma or delta). Analytical signals for 𝑠1(𝑡) and 𝑠2(𝑡) will 

be; 

𝑧𝑖(𝑡) = 𝐴𝑖(𝑡)𝑒𝑗𝜑𝑖(𝑡) 

For 𝑖 = {1 2} for signals from electrode 1 and 2, and 𝑗 = √−1.    𝐴𝑖(𝑡) Is the analytical 

signal obtained using the Hilbert Transform (HT) as? 

𝐴𝑖(𝑡) = 𝑠𝑖(𝑡) + 𝑗𝐻𝑇(𝑠𝑖(𝑡)) 

where 𝑗𝐻𝑇(𝑠𝑖(𝑡)) is the Hilbert transform of 𝑠𝑖(𝑡) defined as; 

𝐻𝑇𝑠𝑖(𝑡) =
1

𝜋
𝑃. 𝑉. ∫

𝑠𝑖(𝑡)

𝑡 − 𝜏

∞

−∞

𝑑𝜏 

and P.V. represents Cauchy principal value. After obtaining analytic signals, the relative 

phase between signals can be calculated as 

∆𝜑(𝑡) = 𝑎𝑟𝑔 (
𝑧1(𝑡)𝑧2

∗(𝑡)

|𝑧1(𝑡)||𝑧2(𝑡)|
) 

Using this relative phase, instantaneous PLV is computed as suggested by Lachaux 

et al. (Lachaux et al., 1999) as 

𝑃𝐿𝑉(𝑡) = |𝐸[𝑒𝑗∆𝜑(𝑡)]| 
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Here E[.] represents the Expectation value. PLV values range between [0 1], where 

0 corresponds to no synchronization in phase values and 1 corresponds to the signals those 

are perfectly phase synchronized. In this study, Hilbert Transform is used to compute 

analytical signal. However, continuous Morlet wavelet transform approach can be used to 

obtain complex signals producing separate band pass filtered for individual scales of 

wavelet transform.  

Instantaneous PLV’s are averaged over total number of trials or time points to 

obtain a single PLV value (Lachaux et al., 2000; Lachaux et al., 1999; Liang, Choi, Qin, 

Pang, & Heng, 2014; Yeung et al., 2004). The non-parametric estimation factor can be 

replaced by a averaging the instantaneous phase differences over the total number of trials 

as shown below; 

  

𝑃𝐿𝑉 = |
1

𝑁
∑ 𝑒𝑗∆𝜑𝑖(𝑡)

𝑁

𝑛=1

| 

where n indexes the trial number and N is the total number of trials. ∆𝜑𝑖(𝑡) Is the 

instantaneous phase difference i.e. ∆𝜑𝑖(𝑡) = 𝜑1(𝑡) − 𝜑2(𝑡). 

For the calculation of single trial phase locking value SPLV, averaging is done over 

time points instead of averaging over epochs or trials. SPLV is calculated by taking a time 

of few hundreds of milliseconds before and after the trigger (stimulus). Data at the start 

and end of EEG signal is redundant and is automatically rejected when a filter of higher 

order is applied. For SPLV, the equation will become,  

𝑆𝑃𝐿𝑉 = |
1

𝑇
∑ 𝑒𝑗∆𝜑𝑖(𝑡)

𝑇

𝑡=1

| 
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where T is the total time period of a single epoch, and t is the time instant for which 

SPLV is computed. SPLV computation steps are shown in the block diagram below which 

is a summary of steps explained mathematically here. 

 

 

Figure 5: SPLV Block diagram 

5. Offline Phase 

An efficient working offline system development is always the first step before 

implementing a system in real-time. For this purpose, the selected algorithm i.e. SPLV was 

first implemented on a simulated data and results were analyzed. This algorithm was then 

used to detect the phase synchronization on recorded physiological signals. These signals 

were EEG signals recorded during visuomotor task for a previous study (Anwar, Navid, 

Khan, & Kitajo, 2015). 

 

 

 

t 



                                                                                      Methodology 
 

22 
 

5.1  Simulation 

To simulate physiological signals offline, two sinusoidal signals were simulated. Each 

sine wave corresponding to data acquired from a sensor for physiological signal. Two sine 

waves 𝑎1(𝑡) and 𝑎2(𝑡) were created with similar amplitude (amp=1) and for a time period 

of 2 seconds (2000 msec). 𝑎1(𝑡) had a fixed frequency of 10 Hz throughout the time period. 

𝑎2(𝑡) was simulated such that it had varying frequencies between 8-13 Hz (alpha rhythms). 

Each random frequency in this band was assigned for a period of 200 msec. This means 

there were total 10 frequencies in 𝑎2(𝑡) between 8-13 Hz for a period of 2 seconds. 
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In the figures above, Channel 1 corresponds to 𝑎1(𝑡) and Channel 2 corresponds 

to 𝑎2(𝑡). As mentioned earlier, SPLV measures the extent to which phase (frequency) 

remains locked during a specified time interval. This means that SPLV will be maximum 

during the time interval when frequencies of both channels is constant. To evaluate this, 

frequency was set to 10 Hz during 600-800 msec interval for 𝑎2(𝑡) shown in the bounding 

box in above figure. Frequency domain plots (FFT) for both channels 𝑎1(𝑡) and 𝑎2(𝑡) are 

shown in Figure 7 below. 

 

Figure 7 Channel 1 FFT 

 

Figure 8 Channel 2 FFT 
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SPLV’s were computed for each 200 msec interval for both channels (𝑎1(𝑡), 𝑎2(𝑡)) 

and the results were analyzed.  

5.2  EEG Data 

After the successful results for simulated data, SPLV was applied on offline EEG data. 

This data was recorded during a visuomotor task for the study of Anwar et al. (Anwar et 

al., 2015). A summary of experiment for recording this data is mentioned here for instance. 

The study was composed of two experiments and evaluating nonverbal components of the 

revised Wechsler Adult Intelligence Scale (WAIS-R). In the first experiment, the ability to 

suppress movement related motor rhythms was evaluated using EEG. In the second 

experiment, motor adaptation as the perceptual motor ability of aiming (i.e. the ability to 

rapidly and accurately move the dominant hand towards a small target) was evaluated by 

introducing visuomotor perturbations during reaching movements. For each participant the 

experiment 1 and 2 was conducted on same day while WAIS-R was administrated on a 

different day. During the experiment, the subject was asked to hit a target appearing on a 

screen with the help of a stylus pen placed on a tablet. The target appeared on different 

positions in the screen and the task was to hit the target within given time interval. Figure 

9 shows the experimental setup for recording this data. 



                                                                                      Methodology 
 

26 
 

  

Figure 9: Visuomotor Task for EEG data (Anwar et al., 2015) 

  

5.2.1 Data Specifications 

EEG data used for computation of offline SPLV was a three dimensional 64 channel 

data with 512 trials (epochs). Each trial was 2.5 seconds long. 64 channel data corresponds 

to 64 cortical positions on brain as decided by International 10-20 system (Herwig, Satrapi, 

& Schönfeldt-Lecuona, 2003; Okamoto et al., 2004). 64 electrodes were placed at these 

positions. Cortical area position and corresponding electrode number at each position are 

shown in the figure below; 
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Figure 10: Channel locations according to 10-20 system and corresponding electrode 

numbers 

Sampling rate was set to 500 Hz. Each trial start at 0 sec and ends at 2.498 sec. This 

means there are total 1250 frames or time points and each time point corresponds to 2 msec 

of data. Complete specifications of data are shown in table below. 

Table 3: EEG Data Specifications 

Parameter Specification 

Channels 64 

Sampling 

Rate 

500 

Epochs 512 

Time per 

epoch 

2.5 seconds 
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Frames per 

epoch 

1250 

Epoch Start 

Time 

0.000 

seconds 

Epoch End 

Time 

2.498 

seconds 

 

5.2.2 Software 

MATLAB® (Matlab Inc.) was used for the computation of SPLAV. Matlab DSP 

(Digital Signal Processing) toolbox was used for the signal processing part and EEGLAB 

toolbox was used for initial analysis of offline EEG data. 

5.2.3 Single Trial Analysis 

For each single trial, stimulus or trigger was given at 750th time point. From literature, 

it is proved that a time period of few hundred milliseconds before and after the stimulus is 

used for calculating SPLV (Doesburg & Ward, 2009). In this case, two time windows were 

created and were named as “pre-trigger window” and “post-trigger window”. Pre-trigger 

window constituted of time interval 550-749 time points (1 time point = 2 msec) and post-

trigger window constituted of time interval 751-950 time points. This means that SPLV 

was computed 400 msec before and 400 msec after trigger. A single trial, single channel 

raw data is shown in the figure below. Trigger point and pre-trigger and post-trigger 

windows are highlighted in this figure. 
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Figure 11: Visualization of single channel, single trial data 

Epochs or triggers were divided into three learning phases and were named pre-

learning phase, learning phase and post-learning phase according to the protocol. Table 

below shows the distribution of trials in accordance with three learning phases. 

Table 4: Trial Distribution 

Phase Trial 

Number 

Pre- Learning 1-192 

Learning 193-420 

Post-Learning 421-512 

 

Averaged SPLV’s were calculated for each learning phase for seven different 

channel pairs to check the brain connectivity during the visuomotor task. These channel 

pairs were selected to study the connectivity between left and right motor cortex, left and 

right parietal cortex, frontal and parietal cortex, left and right frontal cortex, two pairs of 

neighboring channels and a pair of channels that are far away spatially. Spatially close 

channel pairs were selected to examine either there is cross talk between neighboring 
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electrodes or not. Spatially far away channels were also examined to show the low 

connectivity between two inactive channels. These channel pairs are as follows; 

 

Figure 12: Selected channel pairs for SPLV computation 

6. Real-time Phase 

After testing SPLV methodology on simulated data and offline EEG data, the same 

algorithm was implemented in real-time for EEG and EMG signals. The offline algorithm 

developed was made optimal to work efficiently for real-time system. While working in a 

system in real-time, major challenges are to handle computational cost, time lags and run-

time errors. Therefore, SPLV method was kept simple to have least computational cost. 

EEG and EMG signals were provided to the system and SPLV’s were displayed in real-
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time. This section discusses the real time system, hardware and task for EEG and EMG 

signals in detail. 

6.1  System Overview 

Figure 13 shows the overall real-time implementation. CH1 and CH2 corresponds to 

signals acquired from two electrodes placed either on scalp (EEG) or on muscles (EMG). 

Each block is discussed in detail below. 

 

Figure 13: Real-time System Implementation block diagram 

6.2  Signal Acquisition 

Signals were acquired using dry surface electrodes filled with conductive gel. The 

hardware used for the conversion of analogue signals to digital signals was Powerlab® by 

ADInstruments. Powerlab is a powerful and user friendly system which is used to record 

and analyze data acquired from physiological signals. It allows recording from 4 channels 
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at a time. Powerlab hardware has a system time lag of 50-60 msec as mentioned in used 

manual for this hardware. After acquisition, analogue data is sent to a software called 

LabChart in which signal is amplified, filtered, sampled and then displayed as a digital 

signal on screen. The acquisition system is shown in detail in the block diagram below; 

 

Figure 14: Signal Acquisition 

6.3  Signal Processing 

LabChart software is compatible with Matlab. Therefore, after receiving signal in 

LabChart, samples were sent to Matlab for the computation of SPLV. A buffer was created 

in Matlab that received data at a sampling rate of 1000 Hz from LabChart for 400 msec 

(400 samples). These samples were bandpass filtered; 8-13 Hz for EEG and 5-200 Hz for 

EMG signals; using a 50th order FIR bandpass filter (a notch filter at 50 Hz was also used 

for EMG signals). These filtered signals were then used to compute analytical signals using 

Hilbert transform. The HT consists of a vector containing analytical amplitude as a real 

part, and analytical amplitude as imaginary part. Analytical phase were extracted for each 
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sample, which is actually the instantaneous phase for each signal. Relative phase was 

computed by subtracting the instantaneous phase of each signal within the buffer. These 

relative phase differences were averaged over total number of time points for the buffer i.e. 

400 time points to get the SPLV value. A sample for the procedure of computing SPLV for 

a buffer of EMG signal is shown in the figure below. 

 

Figure 15: Real-time SPLV calculation for a buffer of 400 msec of EMG data 

6.4  Experimental Setup 

Real-time SPLV was implemented both for EEG and EMG signals. In both cases 

subject was asked to perform the same task i.e. finger tapping. Subjects were seated on a 

comfortable chair with their hands straight on an adjustable stool. Subjects heard a beep 

randomly after 750-850 msec. After hearing beep, the task was to tap index fingers of both 

hands either in-phase or out-of-phase. SPLV’s were computed against each trigger (beep) 
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and displayed on the screen numerically and in the form of colored bars. These colored 

bars were assigned colors according to threshold values for SPLV’s as shown below; 

 

Table 5: SPLV Color Bars according to threshold values 

SPLV 

Value 

0-0.25 0.26-0.5 0.51-

0.75 

0.76-1.00 

Color 

bar 

RED YELLOW BLUE GREEN 

 

For EEG recordings, electrodes were placed at the left and right motor cortex to 

record motor rhythms when left and right hand fingers are tapped. Signals were band-pass 

filtered in mu-band (8-13) Hz in this case as motor activity is dominant in this frequency 

band. According to international 10-20 system, these motor points are named C3 and C4 

respectively as shown in the Figure 16. For recording EMG signals, electrodes were placed 

at First Dorsal Interosseous (FDI) muscle and FDI mid belly points (Kleim, Kleim, & 

Cramer, 2007). In this case, signals were filtered in the frequency band of 5-200 Hz with a 

notch filter at 50 Hz. Although range of frequency for EMG signals range up to 500 Hz, it 

was found that dominant energies were present only in lower frequencies. An experimental 

setup for real-time EMG recordings is shown in Figure 17. 
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Figure 16: Electrodes placed at left and right motor cortex for EEG recordings 

 

Figure 17: For EMG recordings, Electrodes are placed at first dorsal interosseous (FDI) 

muscle and FDI mid belly points (Kleim, Kleim, & Cramer, 2007) 
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Figure 18: Experimental set-up for the real-time single trial phase synchrony detection of 

EMG signals.  
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7. Results 

7.1  Simulation 

SPLV’s were computed for every 200 msec interval of simulated signals. For sinusoid 

corresponding to channel 1, frequency was kept constant at 10 Hz throughout the time 

interval. For Sinusoid corresponding to channel 2, frequency was varied randomly between 

[8 13] Hz for every 200 msec interval. Table 6 shows the frequency value at every 200 

msec interval for both channels and SPLV obtained for that interval. A graph showing 

SPLV at each 200 msec interval was plotted and is shown in the Figure 19 below; 

Table 6: SPLV’s for every 200 msec interval of simulated signals 

Time 

interval 

(msec) 

𝒙𝟏(𝒕) 

(Hz) 

𝒙𝟐(𝒕) 

(Hz) 

SPLV 

0-200 10 11.8 0.19 

201-400 10 8.5 0.16 

401-600 10 12 0.05 

601-800 10 10 1.00 

801-

1000 

10 11 0.11 

1001-

1200 

10 9 0.09 

1201-

1400 

10 8.5 0.10 

1401-

1600 

10 11 0.93 

1601-

1800 

10 12.5 0.13 
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1801-

2000 

10 13 0.03 

 

 

Figure 19: SPLV’s for every 200 msec interval of simulated signals 

 

Another graph was plotted for the simulated sinusoids such that Channel 1 frequency (F1) 

was kept constant to 10 Hz for 2000 msec time interval just like before. Channel 2 

frequency (F2) was varied 50 times between [8-13] Hz for 2000 msec interval, each time 

with an increment of 0.1. The SPLV’s obtained against channel pairs is shown in the Table 

7 below and the graph for these values is plotted and shown in Figure 20. 

Table 7: SPLV’s with F2 varying between 8-13 Hz 

F1 (Hz) 10 10 10 10 10 10 10 10 10 10 

F2(Hz) 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 

SPLV 0.0487 0.0769 0.0822 0.0592 0.0592 0.0664 0.1102 0.1196 0.0857 0.0857 

F1(Hz) 10 10 10 10 10 10 10 10 10 10 
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F2(Hz) 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10 

SPLV 0.1037 0.1838 0.2100 0.1564 0.1564 0.2337 0.4999 0.7510 0.9359 1.000 

F1(Hz) 10 10 10 10 10 10 10 10 10 10 

F2(Hz) 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11 

SPLV 0.9355 0.7609 0.5099 0.2316 0.2316 0.1559 0.2198 0.1942 0.1037 0.1037 

F1(Hz) 10 10 10 10 10 10 10 10 10 10 

F2(Hz) 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12 

SPLV 0.0849 0.1293 0.1212 0.0667 0.0667 0.0583 0.0919 0.0886 0.0491 0.0491 

F1(Hz) 10 10 10 10 10 10 10 10 10 10 

F2(Hz) 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13 

SPLV 0.0443 0.0714 0.0701 0.0389 0.0389 0.0357 0.0584 0.0582 0.0323 0.0323 

 

 

Figure 20: SPLV’s with F2 varying between 8-13 Hz 
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7.2  Offline Phase 

7.2.1 EEG Data 

The total 512 trials of EEG data were divided into three learning phases; pre-learning, 

learning and post-learning phases. SPLV’s were calculated for each trial and then averaged 

for total number of trials for respective phase. Out of 64 channels, 7 channel pairs were 

selected for SPLV calculation. Results for each learning phase 200 msec before and 200 

msec after the presentation of trigger are shown in Table 8. 

Table 8: SPLV: Pre-learning phase 

Channel Pre 

Trigger 
Post 

Trigger 

C3-C4 0.5075 0.5169 

P3-P4 0.4829 0.5339 

Fz-Pz 0.4311 0.4562 

F3,F4 0.3823 0.3593 

C3,CP3 0.7953 0.7812 

C5,CP3 0.7322 0.7200 

F5,PO4 0.2632 0.2513 

 

Table 9: SPLV: Learning phase 

Channel Pre 

Trigger 
Post 

Trigger 

C3-C4 0.5075 0.5160 

P3-P4 0.4829 0.5330 

Fz,Pz 0.4311 0.4562 
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F3,F4 0.3823 0.3593 

C3,CP3 0.7953 0.7812 

C5,CP3 0.7322 0.7200 

F5,PO4 0.2632 0.2513 

 

Table 10: SPLV: Post-learning phase 

Channel Pre 

Trigger 
Post 

Trigger 

C3-C4 0.4707 0.5433 

P3-P4 0.5046 0.5592 

Fz,Pz 0.4166 0.4360 

F3,F4 0.4491 0.4296 

C3,CP3 0.7032 0.8184 

C5,CP3 0.8003 0.7995 

F5,PO4 0.2694 0.2753 

 

A comparison was done between the three learning phases during pre-trigger and 

post-trigger phase for each channel pair selected. The results are shown graphically below; 
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Figure 21: SPLV’s Comparison during learning phases 

7.3  Real-time Phase 

Results were displayed in real-time continuously within 400 msec after trigger. Four 

windows were shown in display panel showing data received at channel 1 and 2, trigger 

point and a colored bar set according to threshold levels for SPLV. SPLV values were also 

displayed numerically over the colored bar. Since the results were shown in real-time, a 

few screen shots of the output window are shown here. 
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Figure 22: Real-time SPLV display (Sample # 1) 

 

Figure 23: Real-time SPLV display (Sample # 2) 
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Figure 24: Real-time SPLV display (Sample # 3) 

 

Figure 25: Real-time SPLV display (Sample # 4)
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8. Discussion 

8.1  Summary 

The aim of this study is to compute level of synchronization for physiological signals 

by utilizing the phase of signals during single trials in real-time. 

Physiological signals are recorded through electrodes; electrodes sense the 

electrical activity in biological systems. Synchronization among physiological signals is 

important for studying the communication mechanisms occurring within and between the 

physiological systems (e.g. EEG-EEG or EEG-EMG). The aim of this study is to compute 

the level of synchronization in physiological signals during single trials in real time.   

Synchronization can be explained as the rhythmic adjustments of self-sustained 

oscillators as a result of coupling (e.g. classic clock pendulum). Phase synchronization is 

the relative temporal constancy of phases of two physiological signals that shows the 

electrical/oscillatory activity in the body. When this electrical/oscillatory activity gets 

time-locked to a stimulus event, it is called phase locking. A method called Single Trial 

Phase Locking Value (SPLV) has been used in this study for computation of synchrony 

levels among physiological signals during single trials in real-time. 

Two types of physiological signals i.e. EEG and EMG are used in this study. First, 

SPLV method was developed for offline studies of phase synchronization for EEG data. 

(This data was recorded for another study). Based on SPLV results for offline data, SPLV 

offline method was optimized for use in real-time. For real-time, EEG and EMG signals 

were used following a finger tapping protocol. For EMG, SPLV’s were computed by 

placing electrodes at mid-belly point and First Dorsal Interosseous (FDI) muscles of both 
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hands. For EEG, electrodes were placed at left and right sensory motor cortex (C3 and C4 

according to international 10-20 system). Subjects were asked to perform same finger 

tapping task. 

Real-time single trial phase synchronization can be used to study the plasticity 

induced in different parts of the brain. This study can be further utilized for neuro-muscular 

studies for rehabilitation applications. This method can also be used to study diverse 

functions such as motor activity, working memory, associative memory, attention, object 

recognition, awareness, perceptual organization or muscular activity during a specific task 

in real-time. 

The overall system displayed results with a time lag of 130-170 msec in real time. The 

real-time display of phase synchronization level is helpful in understanding the level of 

interaction between physiological signals under study. 

8.2  Why Phase Synchronization? 

For any sinusoidal signal, two main factors are of interest, amplitude and phase. Every 

signal is actually a synodical signal in nature. That means it contains both factors of 

amplitude and phase. In case of physiological signals, phase corresponds to the firing rates 

which are actually the action potentials (Varela et al., 2001). A high firing rate for neurons 

shows greater number of action potentials. Phase synchronization is always computed in 

form of relative phase between two signals time-locked to a stimulus. Both signals are 

acquired from the two different regions of a physiological system. The extent to which the 

signals are phase synchronized, shows the extent of interaction between two regions. 
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8.3  Methodology  

8.3.1 Why SPLV is used? 

There are many techniques available in literature for the computation of phase 

synchronization. These methods are efficient and produces good results. However, these 

techniques are effective only for offline computation of phase synchronization. For the 

development of a real-time system, computational cost and temporal lag are the two major 

issues. Keeping this in mind, a major challenge was the development of such an algorithm 

that is not only computationally effective, but also efficient in terms of keeping the phase 

information intact. 

Single-trial Phase Locking Value (SPLV) method was found to be best suitable method 

for real-time implementation. This method is already used on large scale for the 

computation of phase synchronization for offline data (Aydore et al., 2013; Lachaux et al., 

2000). The major advantage of using this method is that it takes in to account only the 

instantaneous phase of the signals. No windowing is involved in this method. Instantaneous 

phase quantification allows us to compute SPLV for any desired length of trial. Also, 

because of the use of Hilbert Transform for obtaining analytical signal, the phase of the 

signal remains preserved, which is of course the major factor of system. 

Phase Cross Coherence (PCC) is regarded as one of the best methods for computing 

phase synchronization for offline data. It utilizes the cross-spectral density of the frequency 

domain FFT signal. This method is not recommended for use in real-time system 

implementation because it involves an additional factor of amplitude, which is an extra 

computational cost and not affordable on real-time system. 
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8.3.2 Simulation 

Simulation is always the first step before the actual implementation of the system. Two 

signals of 2000 msec length were stimulated having different frequencies. Frequency for 

the first signal was kept constant to 10 Hz, for a second signal frequency was varied after 

every 200 msec between 8-13 Hz randomly (Figure 6). A change in frequency shows a 

phase shift. Using this phase shift, the phase synchronization method was verified. It is 

evident that whenever the phase remains constant, the signals will remain synchronized. 

To verify this for SPLV method, a known frequency of 10 Hz was inserted at a known time 

interval (600-800 msec) of the second signals. This makes the frequency same for both 

signals during this interval, and so there is no phase shift. So, SPLV was found maximum 

during this interval (Table 6).  

It was also found from Table 7 that SPLV tends to maximum value when the 

frequencies of both signals come close to each other and tends to minimum as soon as the 

frequency goes far apart. The trend of Figure 20 verifies this observation. 

8.3.4 Offline Phase 

The EEG data used for the offline system development, was divided into three 

learning phases. The task was performed in 512 trials. The task was performed 512 time 

will certain gaps. This suggests that learning to perform the given task should improve as 

the number of trials increase. SPLV’s were computed for each trial and was then averaged 

over total number of trials for the particular learning phase (Table 8-10).  

Six different types of electrode pairs were selected out of 64 channel data (Figure 

12). Since this data was recorded for a visuomotor task, sensorimotor, frontal and parietal 
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cortex were involved during this task. To find out how these parts interact, SPLV’s were 

calculated between left and right motor cortex, left and right parietal cortex, frontal and 

parietal cortex, left and right frontal cortex. Additionally, three other channel pairs were 

also checked to find out the cross talk between neighboring electrodes and its effect of 

SPLV. It was found that there is a high SPLV for signals from neighboring electrodes. This 

is because of the cross talk factor. For electrodes from two far away cortical regions that 

do not interact with each other, a very low SPLV was found. 

SPLV comparison was done in pre-trigger and post-trigger phase. Pre-trigger 

analysis of signals corresponds to the movement preparation which actually starts few 

hundred milliseconds before the actual trigger. A graph was generated to know the trend 

of synchronization between three learning phase separately during pre-trigger and post-

trigger for three channel pairs. It was found that as the number of trials increase, the 

synchronization among signals also increase. This shows a learning trend that subject has 

learnt the task and now the two brain regions are interacting more effectively (Figure 21). 

8.3.5 Real-time Phase 

The implementation of SPLV algorithm in real-time showed effective results. 

Utilizing the instantaneous phase of SPLV method, buffers were created for 400 msec and 

cleared after the display of SPLV on screen. During the in phase finger tapping task, both 

for EEG and EMG, SPLV’s showed a maximum trend and remain above 0.5. As soon as 

the subject was asked to start tapping out of phase, the SPLV was dropped to less than 0.25.  
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8.3.5.1 Time Delay 

A total time delay of 130-170 msec was found in the system. This includes both 

hardware and software delays. PowerLab® has an in-built system delay of 50-60 msec as 

mentioned in the manual for hardware. This time delay cannot be catered. Temporal lags 

on software side were minimized by keeping the algorithm as simple as possible. This time 

lag is acceptable for the system as the SPLV changes can easily be seen relative to task 

performance. 

8.3.5.2 Filtering 

Band pass filtering of physiological signals is a vital step and pre-processing stage 

for the computation of phase locking value. Filter selection was a challenging stage during 

the algorithm development. With an increase in filter order, a greater attenuation is 

produced in the beginning of signal, which can lead to loss of important information. An 

IIR filter with a lower order of 5-10 can be used to accomplish band pass filtering. 

However, IIR is an unstable filter and does not keep the phase information intact. It can be 

used for signal analysis of other types where phase information is not important, but in this 

study, phase is the most important factor. Therefore, a FIR filter was used in real-time 

system. FIR filter is a stable filter and keeps phase information preserved. The higher order 

issue was resolved by increasing the time points or samples. In this way, signal around 

trigger will remain preserved even after attenuation of starting signal. 

8.4 Limitations and Implications 

For the real-time system, buffer is cleared once new samples are available. 

Therefore, if one wants to study the trend of phase synchronization during the experiment, 
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an offline data analysis will be performed to obtain the complete graph. It is possible to 

develop an algorithm, that can draw a graph in real-time. This graph can also be used as a 

feedback for the subject to show him how better he is performing. Options are always 

available for the reduction of temporal lag. Minimizing this lag can improve the system 

performance. 

9. Conclusion 

This study presents a computationally efficient real-time phase synchronization 

detection system. This system can detect the level of synchronization between two 

physiological signals, and provides the extent to which the two regions of body interact. 

This system can be applied both in clinical and research domains. Being real-time system, 

provides an ease of analyzing physiological signals instantly.
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