USE OF ALTERNATE GAS FOR FFC UREA PLANT IN PLACE OF MARI GAS

By

Fatima Asad

Hamza Nauman

Shafay Ahad

School of Chemical and Materials Engineering National University of Sciences and Technology 2020

USE OF ALTERNATE GAS FOR FFC UREA PLANT IN PLACE OF MARI GAS

By

Leader- 00000192845 Fatima Asad Member 1- 00000194738 Hamza Nauman Member 2- 00000194216 Shafay Ahad

A THESIS

Submitted to National University of Sciences and Technology in partial fulfilment of the requirements for the degree of

B.E CHEMICAL ENGINEERING

School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) July, 2020

CERTIFICATE

This is to certify that work in this thesis has been completed by Ms. Fatima Asad, Mr. Hamza Nauman and Mr. Shafay Ahad under the supervision of Dr. Salman Raza Naqvi at School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, H-12, Islamabad, Pakistan.

Advisor:

Dr. Salman Raza Naqvi Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology

Submitted Through:

HOD Dr. M. Bilal Khan Niazi

Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology

Principal/Dean **Dr. Zakir Hussain** School of Chemical and Materials Engineering National University of Sciences and Technology

DEDICATION

TO OUR PARENTS

Without whom none of this would have been possible and for their support throughout our lives.

AND TEACHERS

For inspiring us and supporting us throughout the entirety of this project.

ACKNOWLEDGEMENTS

First of all, we would like to express our utmost gratitude to **Almighty Allah**. Without His mercy, we would never been able to complete our project.

We would like to thank our parents for their support for motivating and praying for us.

We are thankful to our supervisor **Dr. Salman Raza Naqvi** for his continuous support during the project. We are thankful to the faculty and staff of SCME for creating a learning environment and guiding to complete the project. We are thankful to the industry **"Fauji Fertilizer Company Limited"** particularly **Mr. Tehseen Ullah Khan** for their continuous support during the project.

ABSTRACT

Mari gas is a depleting non-renewable resource and needs to be replaced as a raw material for manufacturing of Urea. The project aims to anticipate the impacts of using a mixture of 70% Mari gas and 30% RLNG in a pre-existing ammonia plant. Material and energy balance applied on the system reviled the hydrogen production and thermal demand of the system increased. The HYSYS simulation coincided with our findings. The primary and secondary reformers, HTS and LTS reactors, Methanator and Ammonia reactor are all redesigned with some main heat exchanges. The cost analysis and HAZOP analysis of the plant is also carried out.

TABLE OF CONTENTS

LIST OF FIGURESXII
LIST OF TABLESXIV
CHAPTER 1 1
INTRODUCTION 1
1.1 Scope of the Project: 1
1.2 Introduction to Ammonia:
1.2.1 Chemical and Physical Properties of Ammonia:
1.2.2 Chemical Reactivity of Ammonia:5
1.2.2.1 Combustion:
1.2.2.2 Reaction with water:5
1.2.2.3 Self-dissociation Reaction:5
1.2.3 Applications and Uses of Ammonia:5
1.2.3.1 Fertilizer Production:5
1.2.3.3 Cleaner purposes: 6
1.2.3.4 Fermentation process:
1.2.3.5 Refrigeration:
1.2.3.6 Textile: 6
1.2.3.7 Other Industrial Uses:
1.2.3.8 Ammonia as Energy Transporter:
CHAPTER 2
LITERATURE REVIEW
2.1 Haber Bosch Process:
2.2 Ammonia Production Using Naphtha:
2.2.1 Syngas Production
2.2.2 Ammonia Synthesis

2.3 Alternatives to Haber-Bosch process:	11
2.3.1 R-LNG (as compared to other fuels):	12
Fuel Preheater for LNG	14
2.4 Carbon Deposition in Steam Reforming and Methanation	15
2.4.1 Structure of Carbon & Coke	15
2.4.2 Removal	15
CHAPTER 3	16
AMMONIA PRODUCTION PROCESS AT FFC	16
3.1 Desulphurization:	16
3.2 Primary Steam Reforming	16
3.3 Secondary Reformer:	17
3.4 Shift Conversion:	17
3.4.1 High-Temperature Shift Converter:	17
3.4.2 Low-Temperature Shift Converter:	17
3.5 Carbon Dioxide Removal:	18
3.5.1 Regeneration of the Benfield Solution:	18
3.6 Methanator:	18
3.7 Ammonia Synthesis & Refrigeration:	19
3.8 Compression of Synthesized Gas & Recycling of Unreacted Gas:	19
3.9 Synthesis Loop Cooling & Purging:	19
3.10 Separation & Refrigeration of Ammonia:	20
3.11 Process Flow Diagram (PFD):	21
CHAPTER 4	22
MATERIAL BALANCE	22
4.1 Material balance on Reactors:	22
4.1.1 Primary Reformer:	23
4.1.2 Secondary Reformer:	23

4.1.3 High Temperature Shift Reactor:	24
4.1.4 Low Temperature Shift Reactor:	25
4.1.5 Methanator:	25
4.1.6 Ammonia Reactor:	26
4.2 Material balance on Benfield Section:	27
4.3 Material balance on Separator:	28
CHAPTER 5	29
ENERGY BALANCE	29
5.1 Assumptions and formulas used in energy balance:	29
5.2 Energy Balance on furnace and Reactors:	30
5.2.1 Furnace:	30
5.2.2 Primary Reformer:	31
5.2.3 Secondary Reformer:	32
5.2.4 High Temperature Shift Reactor:	33
5.2.5 Low Temperature Shift Reactor:	33
5.2.6 Methanator:	34
5.2.7 Ammonia reactor:	34
5.3 Energy balance on Compressors:	35
5.3.1 Compressor 1:	35
5.3.2 Compressor 2:	36
5.3.3 Compressor 3:	36
5.3.4 Compressor 4:	37
5.3.5 Compressor 5:	37
5.4 Energy balance on Heat Exchangers:	
6.1 ASPEN HYSYS Model of the plant:	41
6.2 Material balance Using HYSYS:	42
6.3 Energy balance using HYSYS:	44

CHAPTER 7	45
SELECTION AND EQUIPMENT DESIGN	45
7.1 Design Calculations of Reactors:	45
7.1.1 Primary Reformer R-101:	45
No of tubes:	45
Volume of reactor:	46
Volume of Catalyst:	46
Weight of Catalyst:	46
Space Velocity:	46
Comparison:	46
7.1.2 Secondary Reformer R-102:	47
Selection:	47
Weight of Catalyst:	47
Volume of catalyst:	48
Volume of reactor:	48
Height of reactor:	49
Space Velocity:	49
7.1.3 High Temperature Shift R- 103:	50
Selection:	50
Weight of Catalyst:	50
Volume of catalyst:	51
Volume of reactor:	51
Height of Reactor:	51
Space velocity:	51
Comparison:	51
7.1.4 Low Temperature Shift R- 104:	52
Selection:	52

Weight of catalyst:	
Volume of catalyst:	53
Volume of reactor:	53
Height of Reactor:	54
Space velocity:	54
7.1.5 Methanator R-105:	
Selection:	
Weight of catalyst:	
Volume of catalyst:	
Volume of reactor:	
Height of Reactor:	
Space velocity:	
7.1.6 Ammonia reactor 106:	
Selection:	
Weight of catalyst:	
Rate constant	60
Volume of catalyst:	60
Volume of Reactor:	60
Height of reactor:	61
7.2 Heat Exchangers Designing:	
7.2.1 E-2(Shell and Tube Heat Exchanger)	62
Heat duty:	62
Flow rate of Water:	62
Log Mean Temperature Difference (LMTD):	62
Shell side co-efficient:	65
Tube side co-efficient:	
Mean Wall Temperature $oldsymbol{ heta} t$:	

Overall coefficient:	68
Pressure drop Calculation:	69
7.2.2 E-7 (Shell and Tube Heat Exchanger)	69
Heat duty:	70
Flow rate of Water:	70
Log Mean Temperature Difference (LMTD):	70
Shell side co-efficient	71
Tube side co-efficient	72
Mean Wall Temperature <i>θt</i> :	72
Overall Co-efficient:	73
Pressure drop:	73
7.2.3 E-5 (Shell and Tube Heat Exchanger)	74
Heat duty:	74
Flow rate of Water:	74
Log Mean Temperature Difference (LMTD):	74
Shell side co-efficient	75
Tube side co-efficient	76
Mean Wall Temperature <i>θt</i> :	77
Overall Co-efficient:	77
Pressure drop:	77
7.2.4 E-3 (Shell and Tube Heat Exchanger)	
Heat duty:	
Flow rate of Water	
Log Mean Temperature Difference (LMTD):	79
Shell side co-efficient:	80
Tube side co-efficient:	80
Mean Wall Temperature $oldsymbol{ heta t}$:	

Overall coefficient:	81
Pressure drop:	81
7.2.5 E-10 (Shell and Tube Heat Exchanger)	82
Heat duty:	82
Log Mean Temperature Difference (LMTD):	82
Shell side co-efficient:	83
Tube side co-efficient:	84
Mean Wall Temperature <i>θt</i> :	85
Overall Co-efficient	85
Pressure drop	85
CHAPTER 8	87
COSTING AND HAZOP ANALYSIS	87
8.1 Costing of Reactors:	87
8.1.1 Primary Reformer:	87
8.1.2 Secondary Reformer:	
8.1.3 High Temperature Shift:	
8.1.4 Low Temperature Shift:	
8.1.5 Methanator:	
8.1.6 Ammonia Reactor:	90
8.2 Costing of Furnace:	90
8.3 Costing of Heat Exchangers:	91
8.3.1 Exchanger E-1	92
8.3.2 Exchanger E-2	92
8.3.3 Exchanger E-3	92
8.3.4 Exchanger E-4	93
8.3.5 Exchanger E-5	93
Table 33 Heat Exchangers Costs	94

8.4 Costing of Compressors:	94
8.4.1 Compressor C1:	95
8.4.2 Compressor C2:	96
8.4.3 Compressor C:3	96
8.4.4 Compressor C4:	96
8.4.5 Compressor C5:	97
8.6 Total Cost:	98
8.7 HAZOP Analysis:	101
8.7.1 HAZOP Guide Words:	101
8.7.2 HAZOP Analysis of heat exchanger:	102
8.7.3 HAZOP analysis of secondary reformer:	103
CHAPTER 9	105
	105
INTRUMENTATION AND PROCESS CONTROL	105
INTRUMENTATION AND PROCESS CONTROL	103 105 105
INTRUMENTATION AND PROCESS CONTROL 9.1 Control loop and its components: 9.2 Control loop Applied on heat exchanger:	103 105 105 106
INTRUMENTATION AND PROCESS CONTROL 9.1 Control loop and its components: 9.2 Control loop Applied on heat exchanger: 9.3 Control Loops applied on Secondary Reformer:	103 105 105 106 106
INTRUMENTATION AND PROCESS CONTROL 9.1 Control loop and its components: 9.2 Control loop Applied on heat exchanger: 9.3 Control Loops applied on Secondary Reformer: 9.4 Temperature Control Loop on Secondary Reformer	103 105 105 106 108
 INTRUMENTATION AND PROCESS CONTROL. 9.1 Control loop and its components:	103 105 105 106 108 108
 INTRUMENTATION AND PROCESS CONTROL. 9.1 Control loop and its components:	103 105 105 106 108 108 109
 INTRUMENTATION AND PROCESS CONTROL. 9.1 Control loop and its components:	103 105 105 106 106 108 108 109 111
 INTRUMENTATION AND PROCESS CONTROL. 9.1 Control loop and its components:	103 105 105 106 106 108 108 109 111 113

LIST OF FIGURES

Figure 1: Structure of ammonia molecule	3
Figure 2:Applications of ammonia	6
Figure 3: Power plant using ammonia as energy carrier	7
Figure 4: Process flow diagram for ammonia production	21
Figure 5 :Primary reformer	23
Figure 6:Secondary reformer	24
Figure 7: Hts reactor	24
Figure 8:lLs reactor	25
Figure 9: Methanator reactor	25
Figure 10: Ammonia reactor	26
Figure 11: Benfield section	27
<u>F</u> igure 12: Separator	28
Figure 13: Furnace	
Figure 14: Hysys simulation model a	41
Figure 15: Hysys simulation model b	42
Figure 16: Screenshot 1	42
Figure 17: Screenshot 2	43
Figure 18: Screenshot 3	43
Figure 19: Energy balance screenshot	44
Figure 20: Correction factor graph	63
Figure 21: Shell and tube heat exchanger 'u' ranges	64
Figure 22: Bundle diameter graph	65
Figure 23:Pitch factor table	65
Figure 24: Reynolds number and jhgraph	66
Figure 25: Jh factor graph for tube side	67
Figure 26: Jh factor graph for tube side	67
Figure 27: Jh factor graph	69
Figure 28: Cost indexing graph (b)	91
Figure 29: Index graph (a) for costing of exchangers	91
Figure 30:Compressor costing graph	94

Figure 31:Compressors cost index	95
Figure 32: Capital cost estimation factors list	98
Figure 33: Summary of production cost	98
Figure 34: Pid of exchanger	106
Figure 35:Pid of reformer	107
Figure 36 :Temperature control pid	111
Figure 37: Simulink plot	112

LIST OF TABLES

Table 1: FFC ammonia and urea production stats	1
Table 2: Mari gas composition	2
Table 3: Physical properties of ammonia	4
Table 5: Priimary reformer material balance	23
Table 6: Material balance of secondary reformer	24
Table 7:Material balance of hts reactor	24
Table 8: Material balance of lts	25
Table 9: Material balance of methanator	25
Table 10: Material balance of ammonia reactor	26
Table 11: Material balance of benfield section	27
Table 12: Material balance of separator	
Table 13: Energy balance on furnace	
Table 14: Energy balance of primary reformer	
Table 15: Energy balance of secondary reformer	
Table 16: Hts energy balance	
Table 17: Lts energy balance	
Table 19:Ammonia reactor energy balance	
Table 20: Compressor 1 energy balance	35
Table 21: Compressor 2 energy balance	
Table 22: Compressor 3 energy balance	
Table 23:Compressor 4 energy balance	
Table 24: R- 101 specification comparison	47
Table 25: R-102 specification comparison	49
Table 26 R-103 specifications comparison	52
Table 27: R-104 specifications comparison	54
Table 28: R-105 specifications comparison	58
Table 29: R-106 specifications comparison	61
Table 30: Fouling factor table	68
Table 31: Costing index table	
Table 32: Heat exchangers costs	94

Table 33: Physical cost of plant	
Table 34: Total capital cost of the plant	
Table 35: Fixed capital cost of the plant	
Table 36: Fixed operating cost of the plant	100
Table 37: Variable operating cost of the plant	100
Table 38: Total operating cost of the plant	100
Table 39: Revenue and profits	
Table 40: Hazop guide words	102
Table 41: Hazop analysis of heat exchanger	102
Table 42: Hazop analysis of secondary reformer	
Table 43: Variable table	
Table 44: Mixed feed composition	113
Table 45: Mari feed composition	113
Table 46: Product composition using mixed feed	
Table 47: Product composition with mari feed	

CHAPTER 1

INTRODUCTION

1.1 Scope of the Project:

The Fauji Fertilizer Company (FFC) is the one of growing manufacturer of urea in Pakistan with a total capacity of 2 million tonnes per annum [1]. FFC has three urea plants under its flag, two of them (Plant-I and Plant-II) in Goth Machhi and one (Plant-III) is present in Mirpur Mathelo. The ammonia and urea capacity of each plant is given in the following table [2]:

Sr. No.	Plant Name	Plant	Ammonia	Urea
		Location	Production	Production
			(MT/Year)	(MT/Year)
1.	Base Unit-	Goth Machhi	403,000	695,000
	Goth Machhi			
2.	Expansion	Goth Machhi	363,000	635,000
	Unit-Goth			
	Machhi			
3.	Mirpur	Mirpur	413,000	718,000
	Mathelo Unit	Mathelo		

Table 1 FFC Ammonia and Urea Production Stats

The scope of this project covers the FFC urea plants located in Goth Machhi. Ammonia is used as a raw material for the production of urea. The FFC manufactures ammonia which is used in the production of urea by the reforming of Mari gas. Mari gas is a non-renewable natural resource which is depleting due to high consumption rates. FFC plant 1 and 2 utilize 184 (MMSCFD) of Mari gas [3]. The depletion of Mari reserves at Daharki has cause FFC to look for alternatives for its raw material from Mari gas to something else. Meanwhile the load shedding of Mari gas to the production plants continues. The accessible alternative to deal with the shortfall of the process gas is to import re-gasified liquified natural gas (RLNG) and use a mixture of Mari gas and LNG as the process gas for production of RLNG to the feed gas changes its composition hence changing the operational requirements of the process.

Mari gas Components	Moles
Nitrogen	337
Carbon dioxide	149.73
Methane	1494.5
Ethane	3.75
Propane	0
Butane	0

Mari gas supplied to FFC plant 1 and 2 from Daharki has following composition:

Table 2 Mari gas Composition

The Mari gas supplied to FFC urea plant is utilized as process gas as well as fuel. The focus of this research project is to determine a ratio of Mari gas and RLNG as a process gas which shall produce profitable urea without major alterations to the standing Ammonia-Urea plant.

The project entails a detailed study and analysis of using mixture of RLNG and Mari gas as a feed stream to the plant providing a cost and safety analysis to anticipate the feasibility of using RLNG as a partial substitute of Mari gas. The focus of the project is to investigate and anticipate the impact of changing feed on the plant and how will it affect the production of urea in terms of plant's operating conditions and economics.

1.2 Introduction to Ammonia:

Ammonia as a chemical compound having no colour with a piquant odourl and alkaline in nature. Naturally, ammonia is very scarce and is produced as a result of degradation of organic molecules like proteins present in plants and animal wastes. Ammonia is consistently and constantly is being produced in soil based on the rate of microbial activity and conditions of the soil [4]. Artificially ammonia is produced majorly using the Haber's process. Ammonia is the among the top ten large scale commercially produced chemicals and around 130 million tonnes of ammonia are produced annually [5]. Majorly ammonia is used to produce fertilizers as it is too volatile to be directly introduced to plants as a nitrogen substitute.

1.2.1 Chemical and Physical Properties of Ammonia:

Ammonia is a polar covalent compound which has hydrogen bonding among its molecules. Ammonia is a good organic solvent due to its lower dielectric constant. Following are the chemical and physical properties of ammonia:

Figure 1 Structure of Ammonia molecule

Property	Detail
Molecular mass	17.03 g/mol
Odor/Smell	Sharp, irritating
Physical state	Gas (at room temperature)
Melting point	-77.7°C
Boiling point	-33.35°C
Flash point	11°C
Decomposition point	500°C

Heat of fusion	58.1 KJ/mol
Heat of combustion	-316 KJ/mol
Heat of vaporization	23.3 KJ/mol
Vapor density	0.5697
Density (liquid)	0.6818 g/L
Density (gas)	0.7710 g/L
Critical temperature	132.4°C
Critical pressure	111.3 atm

Table 3 Physical Properties of Ammonia

Property	Details	
Chemical formula	NH3	
Reactivity	Quite reactive	
Type of base	Weak	
Affinity (water)	High	
Oxidation power	Strong reducing agent	
Volatility	Increases with increase in pH	
Corrosiveness	Corrosive to some metal	

Table 4 Chemical Properties of Ammonia

1.2.2 Chemical Reactivity of Ammonia:

1.2.2.1 Combustion:

Combustion of Ammonia is difficult as it requires a lot of energy to produce N_2 gas and water.

$$4NH_3 + 3O_2 + heat \rightarrow 2N_2 + 6H_2O$$

However, in the presence of catalyst NOx's are produced

1.2.2.2 Reaction with water:

Ammonia on it own dissolve in water with release of heat.

$$NH_3 + H_2 0 \rightleftharpoons NH_4^+ + OH^-$$

NH₄OH is basically aqueous solution of ammonia and is basic in nature. In equilibrium

Molar solution of 1.0 of NH3 produces 4.2 milli moles of hydroxide ion.

1.2.2.3 Self-dissociation Reaction:

Ammonia undergoes auto ionization like water to its acid and base conjugate.

$$2NH_3$$
 (aq) $\rightleftharpoons NH_4^+$ (aq) $+ NH_2^-$ (aq)

 NH_3 is a weak base.

1.2.3 Applications and Uses of Ammonia:

Following are the major applications of ammonia:

1.2.3.1 Fertilizer Production:

Mainly ammonia is used in the manufacturing and production of fertilizers. It serves as a best nitrogen based nutrient supply for the soil which helps in production of food crops. Ammonia cannot be directly introduced to the soil due to its volatility but is 1.2.3.2 Water Purification:

Ammonia is used in purification of water supplies. It is used to produce monochloro-amine which is used as a disinfectant and helps in purifying water thus reducing the risk of water borne diseases.

1.2.3.3 Cleaner purposes:

Ammonia is used as cleaning purposes in household which is usually ammonium hydroxide. It is mostly used in cleaning of stainless steel, ovens and soaking things. The ammonia used in household usually consist of 5 to 10 % of ammonia.

1.2.3.4 Fermentation process:

In fermentation industry the solution of ammonia (having 16% to 24% ammonia) is used in industry of fermentation. They are the source of N₂ for microorganism and vary pH level during fermentation process,

1.2.3.5 Refrigeration:

It is used as a refrigerant gas and used in ACs because it can adsorb huge amount of heat from outside refrigerator.

1.2.3.6 Textile:

Ammonia can also be used in the making of synthetic fibre such rayon and nylon fabric. It can be used in dyeing and scouring of silk, cotton, and wool.

1.2.3.7 Other Industrial Uses:

Many products are made of ammonia which includes plastics, explosives, fabrics, dyes, and pesticides. It is used as stabilizer to carry out several functions. It is used in

the manufacturing of compounds like nitric acid, Hydrogen cyanide, Ammonium carbonate and many other compounds.

1.2.3.8 Ammonia as Energy Transporter:

Ammonia due to its flexible nature and being carbon free carrier offers good energy density as compared to compressed air. These properties of ammonia suggest that it can be useful in the future for the transportation purposed and power houses.

Figure 3 Power plant using ammonia as energy carrier

CHAPTER 2

LITERATURE REVIEW

Ammonia is made of two elements nitrogen and hydrogen, formed from a gas phase mixture of the aforementioned in a ratio of almost 1 to 3, with the formula NH₃. It is a stationary binary hydride, and the most simplistic pnictogen hydride, Ammonia has no color of its gas and a pungent odour. Either advertently or indirectly, ammonia considered as the basic component material for the integration of many pharmaceutical goods.

Before the Haber-Bosch Process, NH₃ was accumulated from the process of dry distillation of nitrogen compound vegetable. Reduction of nitrous acid is done by distillation or nitrites with hydrogen. It was also obtained when coal was distilled or when ammonium salts were decomposed by alkaline hydroxides.

2.1 Haber Bosch Process:

Following are some of the typical processes used in the manufacture of NH₃ by Haber Bosch process; steam reforming in primary reformer, air in secondary reformer, Water gas shift, removal of carbon oxides, syntheses of Ammonia and finally discarding of un-necessory gases. This process is even more cheap, in terms of consumption of energy when excess air in the secondary reforming is rescued and when the reforming gas is treated with different hydrogen rich steam and returns that steam to the synthesis gas. After carbon monoxide is removed, the reformer product gas is then compressed by, at the least, 50 per cent, if no more. The same process consequently can also occur at a plant which has a gas circulator, even if the plant does not have an air compressor. The synthesis gas is kept at a pressure of about 40 to 80 bar abs. The temperature of about range 350 to 430 C is usually provided or maintained at the outlet, in a presence of catalyst consisting of cobalt, iron and other reaction promoting compounds. From other stream of the reformer product gas, the hydrogen-rich stream is recovered.

2.2 Ammonia Production Using Naphtha:

Ammonia is produced in plants, which can be used as feed for Naphtha acts as a production of hydrogen, while the required amount of N₂ is extracted from the air. Naphtha feed, which tends to have a higher carbon to hydrogen ratio (CHR), when is worked with, the generated CO₂ tends to be excessive. In a R-LNG the CO₂, that is generated, is quite less, naptha has higher CRH then ammonia. The ammonia production is a process which can be divided into 2 sections: Syngas Production (preparation of feedstock) and Synthesis of ammonia.

2.2.1 Syngas Production

This part of the process includes desulphurisation, steam reforming which is done in primary reformer, air reforming (secondary reforming), methanation, water gas shift reactions of carbon monoxide, and removal of carbon dioxide.

The process of desulphurisation is then further divided into 2 parts: predesulphurisation, or PDS, and final desulphurization, or FDS. In Predesulphurisation, sulphur compounds, which are organic removal is done by converting them to hydrogen sulphides, with the use of a catalyst. This then is separated from the inlet by distillation.

2.2.2 Ammonia Synthesis

In this process the nitrogen and hydrogen reacts in a ratio of 1 and 3 to form ammonia, referred to as synthesis gas or syngas. For that, the reaction of reformation is split into 2 sections: primary reformer and secondary reformer.

In primary reforming, where there is steam, hydrocarbon reforming takes place. This is a controlled reaction, in order to maintain a percentage of 10.5% of the gas which is present in product stream, that is actually needed to perform overall air reforming which is done in secondary reformer. But when using natural gas, the gas now sulphur free, is fed to steam and endothermic reaction in nature takes place and metallic nickel is used as a catalyst in the primary reformer.

In secondary reformer, the nitrogen, by air reforming, is obtained for ammonia synthesis. By combustion of molecules of the mixture of gases in air, heat is supplied here. The gas being burnt then provides the heat which is then used for the reforming process or what is left of it. Whereas after the reforming section is done, the product stream consists of H₂, N₂, CO, CO₂, and 0.3 mol% of unreacted hydrocarbons. And Since only pure nitrogen and pure hydrogen gases are needed for ammonia synthesis, any carbon oxide is removed, as it is also necessary, from the raw Syngas. For the secondary reformer using natural gas, the processed gas exits the primary reformer and then enters a secondary reformer. Compressed and processed air from the atmosphere is then heated in the convection zone. An air gas reaction then occurs at the upper available space of the secondary reformer. The reformer output stream may contain carbon monoxide and some varying amounts of carbon Dioxide, but that amount is dependent upon the process technology and feedstock. Carbon oxides are removed from the equation using shift converters and Carbon Dioxide absorbers.

In a Water gas shift converter, the CO is the reducing agent for water to produce hydrogen and carbon dioxide gases. The carbon Monoxide is thus converted promptly into removable carbon dioxide. The carbon Dioxide is then removed by absorbing in 0.31 mol % MDEA (methyl di-ethanol-amine.) Even after a shift reaction and the removal of carbon dioxide from the stream, the output stream still consists of some traces of carbon monoxide and carbon dioxide. Whereas, when it comes to using natural gas, the gases that are exiting the secondary reformer after the reaction are extremely hot. The heat that is obtained from these gases is then utilised to produce a high-pressure stream. This high-pressure stream then is used to run a high-pressure turbine. Here the process of the shift converter can be divided further into 2 parts: High temperature shift converter and low temperature shift converter.

In a high temperature shift converter, the gases from the secondary reformer are cooled down by passing them through a waste heat reboiler. The reformed gas from the secondary converter now contains some carbon monoxide. The carbon monoxide is then converted into carbon dioxide by oxidising it by reacting carbon monoxide with steam. Iron oxide is already present in the gas and is used as a catalyst here to speed and help the oxidation reaction. On the other hand, in a low temperature shift converter, the gas is cooled down by passing it through a waste heat re-boiler. The gas, which has now been cooled, is fed to an LTS and here it reacts with steam. Copper (II) Oxide is used as a catalyst and passing the gas through the LTS helps to dilute the concentration of carbon monoxide in the gas. The gas still contains carbon dioxide and carbon monoxide. Carbon dioxide is removed from the gas with a process known as "Benfield System." During this process, Carbon dioxide is absorbed by the Benfield solution, which consists of hot potassium carbonate K₂CO₃, potassium bicarbonate KHCO₃, diethanolamine (DEA) as a promoter and potassium metavanadate KVO₃ as a corrosion inhibitor. Packed bed absorbers containing Pall Rings absorb carbon dioxide. The gas injected from the bottom is then sprayed with the Benfield solution from the top. The solution then flows down and absorbs carbon dioxide from the gas and is then called Rich carbon dioxide solution. This solution is then passed onto the stripping tower from an outlet at the bottom and is regenerated into Benfield solution again. Of all the processes involved that tend to remove carbon oxides from the stream, methanation might be the simplest one, but that still does not mean it is easy. This method is used to lower the carbon dioxide concentration in the output stream to below 10 ppm. The stream outputting after methanation has a composition of nitrogen gas to hydrogen gas of 1 to 3 and is referred to as syngas. Even for the methanation of the stream, natural gas is required as that stream too has carbon monoxide and carbon dioxide. Here carbon Monoxide and carbon Dioxide are converted into methane gas. This is a reverse process to hydrogenation reaction and methane is not a catalyst poisoning agent.

2.3 Alternatives to Haber-Bosch process:

Ammonia has a great importance in production of hydrogen in future as it is a good source of hydrogen. Even though ammonia, for a large percentage of global production, is used for the production of fertilisers, it has also been used as a fuel for space heating and in transport vehicles. Ammonia is produced through Haber-Bosch process, a well-known and a very energy and capital taking process at the present, and is considered to be an good energy storage source, moreover, the infrastructure for its transport is readily available and its distribution is also readily available in many countries throughout the world.

There are many new process which are under way, in order to search for the more efficient and cheap processes of excellent ammonia production growth forecast. The electrochemical tracks, among these methods, have the potential to extensively decrease the energy feed. It also has the potential to easy operate the reactor plans and to decrease the difficulty and expenses of the balance of plants as contrasted to the traditional ammonia generation techniques.

2.3.1 R-LNG (as compared to other fuels):

Process of Naphtha reforming in presence of steam and usage of Naphtha as a fuel, the ammonia plant was designed. Whereas another type of plant of ammonia is being designed for natural gas as the fuel. The plant allows the usage of R-LNG feed, Naphtha feed or mixed feed. The R-LNG can also be used as a fuel for the feed re-heaters or the primary reformer. Although, in order for the R-LNG to be used, new and additional equipment is needed to be incorporated. Some alterations or modifications are also required to some of the processes or process parameters in order to accommodate the overall changes in the whole process and overall reforming process and reaction. The industry is looking to make a switch from Naphtha or natural gas to R-LNG when it comes to the ammonia production. This is a plausible effort by the industry folks to utilise cleaner and cheaper feed stocks or fuel. This helps the industry to achieve a reduction in consumption of energy in the syngas unit varily. Using a Life Cycle Assessment or an LCA, different methods for the production of ammonia can be compared and evaluated. The first ammonia production system consists of an electrolyser for the production of hydrogen gas and a Haber-Bosch plant for the process of ammonia synthesis. Many resources can be utilised to fulfil the energy requirements of the system, hydropower sector, nuclear power, biomass, or waste of munciple. The LCA, or the check the cycle of life, methodology is utilised to identify the quality of environmental effects in increasing earth temperature potential, abiotic depletion, or toxicity of human. Each type of category is assessed during the LCA for each method. Whilst the unfamiliar production of ammonia options are carried competitively in terms of environmental effects, and energy and energy efficiency, both are treated as important criteria for practical application of ammonia production. It can be inferred from the check the life cycle, or the LCA results that municipal waste incineration plants, or the hydropower-based ammonia production methods have the least environmental impact as compared to other considered methods. The greenhouse gas emission which prediction is done already, or the GHG, is calculated for carbon dioxide emission per production of kg of ammonia. The

index of sustainability values are also calculated according to the comparatively evaluated energy and energy efficiencies of the system, which also serves as an indicator of any potential improvement.

Using glucose as a substrate, the production of bio-hydrogen was investigated for the ammonia inhibition-I batch and continuous flow reactors. The rate of production of bio-hydrogen was highly dependent on the pH and the concentration of ammonia. In batch tests, the yield of hydrogen remained relatively constant, but in continuous flow tests, yields of hydrogen and rate of production of hydrogen, both were adversely affected by ammonia.

There has been a proposal of using hydrogen as a source of fuel cells thanks to the catalytic decomposition of ammonia. However, the catalyst required is ruthenium, which is quite costly. Even though there are many connections for the catalyst activity that imply that there are many potential and useful alternatives, but the particular candidate differs.

Changes to Traditional Plant to Accommodate the Usage of R-LNG

LNG Preheater

In order to preheat the natural gas a heater is required. Cylindrical draft type heaters are being used by using fuel which is natural gas.

New Sulphur Absorbers

The PDS, or pre-desulphurisation, is eliminated from the overall process as the sulphur content in the feed stream is low. Only the FDS, or the final desulphurisation, section remains a part of the process in the flow line. In a single sulphur absorber, the accessible volume of sulphur absorption catalyst is not enough to give a consistent catalyst continuance. A new sulphur absorber is placed upstream, as it is necessary, and as such the existing comes at the downstream position. Here, the absorber tends to act as a backup absorber in a case when the new absorber is removed or is not in service for catalyst replacement, or if sulphur breakthroughs from the new absorber. Now, desulphurisation is referred to as hydro-desulfurization and now consists of 2 processes; first, the organic contents of sulphur are being converted into hydrogen sulphide in a hydrogenator and then the hydrogen sulphide is removed by absorbing it in the sulphur absorbers. Each

has its own catalyst bed consisting of a high-density zinc oxide as the catalyst. The benefit of uniquely tailored fluid units, its robustness and dependability are the working temperature.

Modification & Rerouting of Piping around HDS

After the new reactor is installed, some alterations or modifications are required. An additional upstream inlet is required for water for the existing hydrogenation reactor, as R-LNG is being used as feedstock, for suppression of all reactions taking place in reactor that involves hydrocracking. It is because there is no moisture in R-LNG.

Reformer Burners

The traditional ammonia production plants use primary reformers designed for the vaporised Naphtha combustion along with off gasses that ae present in nozzle, but volumetric flow of the fuel is increased when the feedstock is switched to R-LNG from commonly used Naptha, and there is need to install new burners that have dual nozzel. Moreover, fuel headers size is not sufficient for the massive volumetric flow in case of R-LNG feedstock. If the current fuel headers are to be used, this can result in maldistribution of the fuel present in burner as there will be a great drop in the pressure. A fuel header is needed, suitable or compatible with the usage for R-LNG and the fuel headers can be used for off gas combustion as well as for Naptha.

Fuel Preheater for LNG

Normally supply of Regasified Natural Gas is at a battery limit, the depressurisation of the pressure of fuel gas will result in a notable decrease in temperature. There is will be suitable to install a new fuel preheater

Mixing Point of Feed Stream

As plant has capacity to continues its operation both for LNG as well as Naptha, it is mandatory to have an accurate method for measuring amount of carbon present in feed so control of steam to carbon ratio will become easy. A vortex flow meter is installed for this very purpose along with flow orifice already present in the bypass over the existing feed control valve. On basis of large range of flows measurements, determination of feed's molecular weight has become easy and straightforward.

2.4 Carbon Deposition in Steam Reforming and Methanation

2.4.1 Structure of Carbon & Coke

Carbon is a outlet of carbon monoxide incongruity while coking is manufactured from breakdown or reduction of feed on metals. Actually the coke forms, nevertheless, varies from high molecular weight hydrocarbons to carbon, depends upon the condition under which the coking started and forged or carbon or coke species are seen in reforming with steam; whisker like carbon formed at higher temperatures and including hydrocarbon films made by polymerization or pyrolytic carbon from cracking of hydrocarbons. Recent studies of the a very good nickel having a bonding and structure of carbon on it and covers by diffraction (LEED) and Auger electron spectroscopy (AES) confirm the presence of "dispersed" or atomic carbon stable and polymerized carbon stable.

2.4.2 Removal

One of the major and severe problems in conventional steam reforming using R-LNG is the formation of coke. The usual molar ratio of steam to methane that is done in steam reformer or the initial composition, with or feed is with oxygen and it is well distributed in the tubes of primary reformer reactor. It is quite clear that adding the oxygen will help move the system far from the boundary because O_2 aids to prevent the formation of the coke deposits inside the tubes of primary reformer, as its importantly know all the process take place under catalyst. Extracting hydrogen gas leads to the travel of the reactant side operation point along a line directed away. Extraction of hydrogen might very well, by permeation, not lead any greater chances of deposition of carbon may actually reduce the formation of the coke. This is a very crucial search with practical demonstration, and it is also notable that there have not been any idea of for formation of coke in the FDMR reactor, as usually hydrogen removal, like decreasing the amount of water will also increase the formation of carbon on tubes of reformer. Although it can reasonably be inferred that there is still a great need for confirmation that if it will be this way for the longer duration of the processes or operations that the approximated hours of the experimentatio

CHAPTER 3

AMMONIA PRODUCTION PROCESS AT FFC

In Pakistan, Ammonia preparation plants extract H₂ from a hydrocarbon in the form of natural gas. And as with all Ammonia preparation plants, N₂ is distilled from atmospheric air. Some of the processes of utmost importance, when it comes to preparation of Ammonia, are mentioned below:

Hydrogen (H₂) and Nitrogen (N₂) are mixed, the resultant compound is called Ammonia. The H₂ to N₂ ratio is 3 to 1, respectively. The mixture might also contain, to a limited degree, some inert gases, i.e. Argon or Methane.

In the desulphurization section, the process gas is utterly desulphurized.

The Hydrocarbon, now desulphurized, is now converted to raw synthesis gas, collectively with steam and air. This gas contains Hydrogen, Nitrogen, Carbon Dioxide, and Carbon Monoxide. This reformation happens at approx. 30 Kg/cm².

During Gas Purification, Carbon Monoxide is converted into Carbon Dioxide and Hydrogen, and then Carbon Dioxide is removed by absorbing it into The Benfield Solution.

In Ammonia Synthesis, using a catalytic reaction, the purified synthesis gas is then converted into Ammonia, after being compressed to a pressure of 260 Kg/cm².

3.1 Desulphurization:

The natural gas that is supplied to the plant, is kept at a pressure between 38-45 Kg/cm², as a pressure of approx. 40 Kg/cm² is required for the process. The natural gas is then heated in a preheater and passed through a de-sulphizer, where the sulphur in the natural gas is removed. But it is normally bypassed since no sulphur is present in current feed.

3.2 Primary Steam Reforming

After then the feed which is sulphur-free gas with steam. The following is the resultant reaction of Methane and Steam.

Steam reforming reaction.

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

 $CO + H_2O \rightarrow CO2 + H_2$

This highly endothermic reaction contains metallic Nickel as the catalyst in the primary reformer.

3.3 Secondary Reformer:

Processed gas, from the primary reformer, now enters a secondary reformer. In the convection zone, compressed, processed air from the atmosphere is heated.

In the upper, available space of secondary reformer, an air gas reaction occurs. There is a High gas temperature at the bottom and front of the catalyst bed, because of the combustion of air. 950 °C is the approx. exit temperature, whereas the reaction, in contact with the catalyst, will occur at approx. 1100-1200 °C.

3.4 Shift Conversion:

The gases, exiting secondary reformer, are extremely hot and tend to have a temperature of more than 1000 °C. The heat from these gases is then utilized in the production of high-pressure steam, which tends to be of approx. 34 Kg/cm² pressure. This high-pressure steam is then used to run a high-pressure turbine.

The process of shift conversion is divided into two steps.

3.4.1 High-Temperature Shift Converter:

Hot gases, from the secondary reformer, are then cooled down to a temperature of 336 °C, after passing them through a waste heat re-boiler. The now reformed gas, from the secondary reformer, contains about 11.9% CO. This CO is oxidized into CO₂ by reaction with steam, using Iron Oxide as the catalyst, that is already present in the gas.

$$\mathrm{CO} + \mathrm{H_2O} \rightarrow \mathrm{CO_2} + \mathrm{H_2}$$

3.4.2 Low-Temperature Shift Converter:

The gas, with the temperature of up to 430 °C, is cooled to a temperature of 203 °C by passing it through waste heat re-boiler. Now cooled gas is fed to LTS, where it

again reacts with steam and CuO is used as the catalyst. After passing through LTS, CO's concentration is lessened to approx. 0.18%.

$$\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2$$

3.5 Carbon Dioxide Removal:

The gas now contains 18.5% CO₂ and 0.18% CO. The CO₂ is removed from the gas by a process called "Benfield System."

During this process, CO_2 is absorbed by the Benfield Solution, that is the Pot. Carbonate Solution.

Packed bed absorbers, containing Pall Rings, absorb CO₂. Gas injected from the bottom is sprayed with The Benfield Solution, from the top. The solution flows down and is called Rich CO₂ solution.

The gas, consisting of 0.1% CO₂, is released from the top, and the CO₂ Rich solution is passed on to the stripping tower, from the bottom, where it is regenerated into Benfield Solution again.

3.5.1 Regeneration of the Benfield Solution:

Regeneration of The Benfield Solution occurs in the stripper, in which, CO_2 is divested from the Rich CO_2 Benfield Solution.

The operation conditions for stripper are:

- 1. High temperature
- 2. Low pressure

The solution enters from the top of the stripper and passes through many plates and sieves. The stripper operates at a low and high temperature. The CO₂-free solution is then sent back to the absorber from the bottom. LS provides the heat in the stripper. The excess CO₂ is then transported to a Urea Preparation Plant.

3.6 Methanator:

The gas still consisting of CO and CO_2 . CO and CO_2 are then converted into Methane. The process is an inverse of a reforming process and is an exothermic hydrogenation reaction. Methane is not a catalyst poisoning agent.
3.7 Ammonia Synthesis & Refrigeration:

The synthesised gas, after being compressed to a pressure of approx. 250 Kg/cm₂, is passed to an axial radial flow converter at a temperature of about 380-520 °C. The gas is passed over Iron which acts as a catalyst, and about 33% of the gas is converted into Ammonia. The reaction effluent is cooled Ammonia, which liquified and separated. The un-reacted gas is recycled.

Main steps involved are:

- 1. Synthesis gas compression and recycle of unreacted gas.
- 2. Separation of ammonia and refrigeration.
- 3. Ammonia storage.

3.8 Compression of Synthesized Gas & Recycling of Unreacted Gas:

Synthesized gas is compressed from a pressure of 26 Kg/cm² to a pressure of 250 Kg/cm², with a 4-case centrifugal compressor. The last casing contains a recirculator, with an impeller and adjustable inlet guide vanes, and re-circulator raises the pressure of the recycled gas, to the extent of pressure drop in the synthesis loop. A set of 2 turbines runs the compressor, extracting and condensing the steam. These turbines are provided with 100 Kg/cm² steam, produced in The Ammonia Plant. Steam is extracted at approx. 37 Kg/cm² and is used for the turbines.

3.9 Synthesis Loop Cooling & Purging:

A synthesis loop consists of an axial radial converter. The gas flows through 3 catalyst beds, in the inward direction.

The gas is inserted in the loop, after compression, in between 2 Ammonia chillers. This removes the minute traces of CO_2 and H_2O vapours in the methanator. Failure to remove these can result in the formation of Carbamate, which is corrosive to the catalyst. In exchanger, the mixture is chilled, and Ammonia is liquified and extracted in an Ammonia Separator. The gas, from the separator, is heated in the exchanger. The gas's pressure is raised by passing it through re-circulator. The gas is further heated in an exchanger tube side and admitted to the converter.

3.10 Separation & Refrigeration of Ammonia:

Converter effluent, consisting of Synthesized Ammonia, unreacted gas (after cooling), is purged and mixed with make-up synthesis gas and is further cooled in the II chiller. Liquid Ammonia is separated in a separator. Liquid Ammonia is then inserted, from a separator, in a down Vessel, and its pressure is reduced to approx. 25 Kg/cm². Ammonia is then supplied to a Urea Plant directly from this vessel. The excessive liquid Ammonia, from Knock-out drums, is depressurized to 3.5 Kg/cm² and is sent to Ammonia Storage. Some Ammonia from that storage is recycled for refrigeration loop, that consists of a compressor, condensers, and a Knock-out vessel.

3.11 Process Flow Diagram (PFD):

Figure 4 Process Flow Diagram for ammonia production

CHAPTER 4

MATERIAL BALANCE

In this chapter, we did material balance to find out the impact of new feed on the plant. The manual calculations were done by hand and also on excel sheet for further improvements. Material balance on reactors and separation columns and Benfield section was applied as they are the main units installed.

1 kgmol/day was taken as the basis of the material balance and the plant was assumed to be at steady state, implying there is no accumulation. Process flow diagrams are also been added for reference and to understand process. Furthermore, equations and formulas are given where required and tables are been formed to show input and output streams of raw materials and products.

Material Balance is important because it tells us about flow rates and how the equipment is handling and doing the required job. Usually we apply law of conservation of mass for material balance that says that mass can neither be created nor destroyed.

4.1 Material balance on Reactors:

To apply material balance on the reactors following steps were followed:

- 1. The material balance was applied on basis of one hour.
- Steady state process was assumed meaning no accumulation.
 In out = Generation Consumption + Accumulation
 Applying steady state process condition (Accumulation=0)
 In out = Generation Consumption
- 3. All the units were converted into kgmol
- 4. Conversions of each reactor occurring in the reactor were calculated Conversion (%) = $\frac{\text{Moles in feed stream} - \text{Moles in product stream}}{\text{Moles in feed stream}} * 100$
- 5. These conversions were then used to find the moles of reactant of each reaction.

4.1.1 Primary Reformer:

Following are the reactions and their conversions that occur in primary reformer:

$CH_4 + H_2 O \rightarrow CO + 3H_2$	Conversion=72%
$CO + H_2O \rightarrow CO_2 + H_2$	Conversion=48%
$C_2H_6 + 4H_2O \rightarrow 2CO_2 + 7H_2$	Conversion=100%
$C_2H_8 + 6H_2O \rightarrow 3CO_2 + 10H_2$	Conversion=100%
$C_4 H_{10} + 8H_2 0 \rightarrow 4CO_2 + 13H_2$	Conversion=100%

3		Prin		
		Components	In (3)	Out (5)
		Nitrogen	235.85	235.87
		Carbon dioxide	104.52	747.98
		Methane	1604.68	449.32
		Ethane	29.61	0
		Propane	6.50	0
		Butane	2.47	0
		Water	5775	3887.72
Primary Reformer		Hydrogen	0	4324.45
	5	Carbon monoxide	0	600.8
		Total moles	7759	10246.1

Figure 5 Primary Reformer

Table 5 Primary reformer material balance

4.1.2 Secondary Reformer:

$2H_2 + O_2 \rightarrow 2H_2O$	Conversion=100%
$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	Conversion=100%
$2CO + O_2 \rightarrow 2CO_2$	Conversion=100%
$CH_4 + H_2O \rightarrow CO + 3H_2$	Conversion=90%
$CO_2 + H_2 \rightarrow CO + H_2O$	Conversion=100%

Figure 6 Secondary Reformer

Table 6 Material balance of Secondary Reformer

4.1.3 High Temperature Shift Reactor:

In the high temperature shift reactor CO is converted into CO_2 in the presence of iron oxide catalyst.

<i>CO</i> +	$H_20 \rightarrow$	$CO_{2} +$	H_2 Conve	rsion=48%
	2-	2		

High temperature Shift					
Components	In (6)	Out (7)			
	SR Outlet	To LTS			
Nitrogen	1465.7	1465.7			
Carbon dioxide	747.98	1528.33			
Methane	36.64	36.64			
Water	4144.6	3364.24			
Hydrogen	4900.8	5681.15			
Carbon monoxide	1013.45	233.093			
Argon	14.85	14.85			
Total moles	12324.2	12324.1			

Figure 7 HTS Reactor

Table 7 Material balance of HTS reactor

4.1.4 Low Temperature Shift Reactor:

In the LTS reactor remaining CO is being converted into CO_2 in the presence of CuO catalyst. The material balance of the reactor is as follows:

 $CO + H_2O \rightarrow CO_2 + H_2$ Conversion = 92%

Figure 8 LTS Reactor

Table 8 Material balance of LTS

4.1.5 Methanator:

In the Methanator, CO and CO_2 are removed from the process stream by converting them into methane and water.

Figure 9 Methanator Reactor

Table 9 Material balance of methanator

4.1.6 Ammonia Reactor:

	Ammonia Reactor					
14	Components	IN (14)	OUT (15)			
//////	Nitrogen	4645.45	3275.04			
Ammonia	Methane	3218.55	3218.55			
Keactor	Hydrogen	102651.1	98539.92			
	Ammonia	3413.597	6154.418			
\checkmark	Argon	625.55	625.55			
v 15	Total moles	114554.3	207078.3			

Figure 10 Ammonia Reactor

Table 10 Material balance of ammonia reactor

 $N_2 + 3H_2 \rightarrow 2NH_3 + N_2$ Conversion=29.3%

4.2 Material balance on Benfield Section:

Material balance of the Benfield section, in which CO_2 is stripped off from the process stream before it moves to the ammonia reactor, is as follows:

Figure 11 Benfield Section

Benfield Section						
Componente	In		Out			
Components	From	Steam	CO2 to Urea	Fo Methanator	Benfield Condensate	Condensate
Nitrogen	1465.7	0	4.67	1460.86	0.164	0
Carbon dioxide	1742.78	0	1731.7	7.595	3.4856	0
Methane	36.64	0	0	36.64	0	0
Water	3149.79	691	95.214	42.517	715.81	2987.228
Hydrogen	5895.6	0	9.216	5885.497	0.9778	0
Carbon monoxide	18.647	0	0	18.647	0	0
Argon	14.85	0	1.6305	13.219	0	0
Total	12324	691	1842.4305	7464.975	720.4374	2987.228

Table 11 Material balance of Benfield Section

4.3 Material balance on Separator:

Figure 12 Separator

	Separator					
Components		IN		Out		
	11	20	19	14	17	
Nitrogen	1425.9	0.0072	3220.74	4645.45	1.17	
Methane	61.38	0.1198	3170.63	3218.55	13.57	
hydrogen	5660.4	0.3568	97032.34	102651.1	41.93	
argon	12.9	0.0376	616.88	625.55	4.27	
Ammonia	0	21.4122	6056.38	3413.59	2664.5	
Total moles	7160.6	21.9	110096.9	114554.3	2725.4	

Table 12 Material balance of separator

CHAPTER 5

ENERGY BALANCE

In this chapter, energy balance of on the ammonia plant using mixed feed of LNG and Mari gas was applied. The manual calculations were done by hand and also on excel sheet for further improvements. Energy balance on furnace, reactor, compressors, and multiple heat exchangers was applied as they are the main units impacted by the changed feed.

The main equation used in this balance was the law of conservation of energy i.e. energy of input streams will be equal to outlet streams if there is no accumulation or generation of energy. Equations and formulas are given where required and tables are been formed to show input and output streams of raw materials and products. Energy balance is very important because it provides information about heat input, output, accumulation, and temperatures of streams etc.

Values of different factors such as specific heats were either taken from Perry's chemical engineering or by using Aspen HYSYS (As it gives values of C_p , C_v , average temperatures etc.). Temperatures of different streams were taken from the literature review or from different research papers.

5.1 Assumptions and formulas used in energy balance:

Following assumptions were made for the energy balance of the plant:

1. The process is considered as steady state process which implies:

$$\Delta U + \Delta E_k + \Delta E_p = Q - W_s + W_{fl}$$
$$\Delta E_k = \Delta E_p = 0$$
$$\Delta H = Q + W_{fl}$$

2. For energy balance of a component of a plant involving a reaction following equation is used:

$$\Delta H_{r,t} = \Delta H_P - \Delta H_R + \Delta H_{reaction} \text{ (kJ/hr)}$$

3. Enthalpy of each stream was calculated using following formula:

$$H_{\rm T} = \int_{Td}^{T} Cp * dT \qquad (kJ /hr)$$

4. To calculate C_p of a mixed stream, containing more than one chemical species following formula was used:

 $Cp (mixture) = x_a C_p a + x_b C_p b + x_c C_p c + \dots$

5. Calculation for the power of the compressor was done by calculating the work done by the compressor and then dividing it by isentropic efficiency.

$$P = \frac{P_s}{E} \quad (MW)$$

5.2 Energy Balance on furnace and Reactors:

5.2.1 Furnace:

In furnace the feed gas is pre-heated to achieve around 532 °C of temperature. This is done in order to achieve better heat efficiency of the process. If the furnace step is skipped more thermal energy will be required in the primary reformer which is quite hard to achieve. The furnace heats the feed gas in three passes rather in a single pass. This is done to make the pre-heating process form effective and efficient.

Figure 13 Furnace

Furnace						
Parameters	Fi	irst	Second		Third	
	P	ass	Pass		F	Pass
	In	Out	In (1)	Out (1)	In (3)	Out (3)
	(1)	(1)				
Temperature (C)	41.9	247	247	418	384	532
Pressure(Kg/cm ²)	38.8	38.7	38.7	37.8	37.8	34.3
Cp (KJ/mole ^{*°} C)	39.86	46.98	46.98	55.48	43.53	45.51
Moles	1984	1984	1984	1984	7759	7759
Enthalpy(kJ/hr)	3.30E	2.30E+	2.30E+	4.60E+	1.30E+	1.80E+08
	+06	07	07	07	08	
Q (KJ/hr)	1.98	8E+07	2.20	E+07	5.7	0E+07

Table 13 Energy balance on Furnace

5.2.2 Primary Reformer:

The energy balance of the primary reformer is as follows:

Enthalpy = $H = m C_p dT$

 $H_{in} = 7759 * 45.51 * (372)$

 $H_{in} = 1.80 * 10^{8} \text{ kJ/hr}$

Similarly, the enthalpy of the outlet stream is calculated, and it comes to be:

H_{out} = 3.20 * 10⁸ kJ /hr

Heat of reaction is calculated by combining the all reactions taking place in primary reformer as mentioned in material balance.

Heat of reaction = 262237.8 kJ /hr

 $\Delta H_{r,t} = \Delta H_P - \Delta H_R + \Delta H_{reaction}$

 $\Delta H_{r.t} = 1.4 * 10^{8} \text{ kJ/hr}$

As flow work is zero in this case of reactor hence Q = $1.4 * 10^{8}$ kJ /hr.

Primary Reformer					
Parameters	In (3)	Out (5)			
Temperature (°C)	532	805			
Pressure (Kg/cm ²)	34.3	31.7			
Cp (KJ/mole ^{*°} C)	45.51	39.08			
Moles	7759	10246			
Enthalpy(kJ/hr)	1.80E+08	3.20E+08			
Heat of Reaction	262237.8				
Q(KJ/hr)	1.40E+08				

Table 14 Energy balance of Primary reformer

5.2.3 Secondary Reformer:

Similar calculations for energy balance are done in secondary reformer as were done on the primary reformer. Following is the table of energy balance calculations of secondary reformer:

Secondary Reformer					
Parameters	In	Out			
	5	4	6		
Temperature (°C)	805	117	951		
Pressure (Kg/cm ²)	31.7 32.4		30.6		
Cp (KJ/mole ^{*°} C)	39.18	30.69	37.73		
Moles	1.025e00+4	1584	1.23E+04		
Enthalpy(kJ/hr)	8.60E+06 4.40E+08				
Heat of Reaction	-1.00E+05				
Q(KJ/hr)	4.30E+08				

Table 15 Energy balance of Secondary reformer

5.2.4 High Temperature Shift Reactor:

The energy balance of the HTS is as follows:

High Temperature Shift (HTS)						
Parameters In (6) Out (7)						
Temperature ([°] C)	370	429				
Pressure (Kg/cm ²)	30.3	29.8				
Cp (KJ/mole ^{*°} C)	34	34.86				
Moles	1.23	E+04				
Enthalpy(kJ/hr)	1.50E+08	1.80E+08				
Heat of Reaction	-3.24E+04					
Q (KJ/hr) 2.9e00+7						

Table 16 HTS energy balance

5.2.5 Low Temperature Shift Reactor:

Following is the summary of energy balance of LTS.

Low Temperature Shift (LTS)			
Parameters	In	Out	
Temperature ([°] C)	203	217	
Pressure (Kg/cm ²)	29	28.4	
Cp(KJ/mole ^{*°} C)	33.61	33.7	
Heat of Reaction	-8.90E+	-03	
Moles	1.23E+04		
Enthalpy(kJ/hr)	8.40E+07	9.00E+07	
Q (KJ/hr)	6.10E+	06	

Table 17 LTS energy balance

5.2.6 Methanator:

Energy balance on the methanator is as follow

Methanator			
Parameters	In	Out	
Temperature (°C)	300	317	
Pressure (Kg/cm ²)	27.2	26.8	
Cp (KJ/mole ^{*°} C)	29.65	29.8	
Moles	7465	7465	
Enthalpy(kJ/hr)	6.60E+07	6.83E+07	
Heat of Reaction	-4977		
Q(KJ/hr)	2.29E+06		

5.2.7 Ammonia reactor:

Ammonia Reactor			
Parameters	In (14)	Out (15)	
Temperature (°C)	164	346	
Pressure (Kg/cm ²)	245	241	
Cp (KJ/mole ^{*°} C)	30.39	31.38	
Moles	1.15E+05	111813.5	
Enthalpy(kJ/hr)	5.70E+08	1.20E+09	
Heat of Reaction	-269144.01		
Q(KJ/hr)	7.06E+08		

Table 18 Ammonia reactor energy balance

5.3 Energy balance on Compressors:

5.3.1 Compressor 1:

To calculate power required for the operation of compressor 1 first work done by it was calculated and the dividing it by isentropic efficiency of the compressor.

$$\Delta U + \Delta E_k + \Delta E_p = Q - W_s + W_{fl}$$
$$\Delta E_k = \Delta E_p = 0$$
$$\Delta H = Q + W_{fl}$$

In case of compressors $W = \Delta H$ so:

Enthalpy = $H = m C_p dT$

H in = 1.98 * 10 ³ * 39.05 * (41.9-38)

 $H_{in} = 2.90 * 10^{6} \text{ kJ/hr}$

Similarly, the enthalpy of the outlet stream is calculated, and it comes to be:

 $H_{out} = 3.30 * 10^{6} \text{ kJ/hr}$

Power of compressor $1 = (4 * 10^{5}) / (0.75) = 1.36 \text{ MW}$

C-1			
Parameters	In	Out	
Temperature (°C)	38	41.9	
Pressure (Kg/cm ²)	37	38	
Cp (KJ/mole ^{*°} C)	39.05	39.89	
Moles	1.98E+03		
Enthalpy(kJ/hr)	2.90E+06	3.30E+06	
Efficiency	75%		
Power (MW)	1.36		

Table 19 Compressor 1 energy balance

5.3.2 Compressor 2:

C- 2			
Parameters	In	Out	
Temperature ($^{\circ}$ C)	10	115.4	
Pressure (Kg/cm ²)	25.4	60	
Cp(KJ/mole ^{*°} C)	28.95	29.33	
Moles	7.16E+03		
Enthalpy(kJ/hr)	2.07E+06	2.40E+07	
Efficiency	75%		
Power (MW)	8.48		

Table 20 Compressor 2 energy balance

5.3.3 Compressor 3:

	C-3	
		Out
Temperature (°C)	49	109.3
Pressure (Kg/cm ²)	59.5	94.3
Cp (KJ/mole* [°] C)	29.32	29.54
Moles	7.16E+03	
Enthalpy(kJ/hr)	1.03E+07	2.31E+07
Efficiency	75%	
Power (MW)	4	.7

Table 21 Compressor 3 energy balance

5.3.4 Compressor 4:

C- 4			
Parameters	In	Out	
Temperature (°C)	38	165	
Pressure (Kg/cm ²)	94	236	
Cp (KJ/mole* [°] C)	29	30.07	
Moles	7.16E+03		
Enthalpy (Kj/hr)	8.04E+06	8.04E+06	
Efficiency	75%		
Power (MW)	9.9		

Table 22 Compressor 4 energy balance

5.3.5 Compressor 5:

C- 5			
Parameters	In	Out	
Temperature (°C)	34	44.1	
Pressure (Kg/cm ²)	231	247	
Cp (KJ/mole ^{*°} C)	30.6	30.6	
Moles	1.15	5E+05	
Enthalpy (Kj/hr)	1.19E+08	1.38E+08	
Efficiency	75%		
Power (MW)	7.037		

Table 24 Compressor 5

5.4 Energy balance on Heat Exchangers:

F	E-1		l	E-2	
Tube S	Side (Gas)		Tube S	Side(Gas)	
Parameters	In	Out	Parameters	In	Out
			Temperature (°C)	429	328
Temperature (°C)	951	370	Pressure(Kg/cm ²)	29.8	29.4
Pressure(Kg/cm ²)	30.6	30.3	Cp(KJ/mole*C)	34.86	34.21
Cp(KJ/mole*C)	37.73	34.01	Moles	1.23	E+04
Moles	1.23	E+04	Fnthalny	1 80F+07	1 38E+08
Enthalpy	4.40E+08	1.50E+08		1.001107	1.001.00
Q(KJ/hr)	-2.87	E+08	Q(KJ/hr)	-4.60	E+07
Shell Si	ide (BFW)		Shell Si	ide(BFW)	
Parameters	In	Out	Parameters	In	Out
			TEMP diff	4	5
TEMP diff	4	5	Cp (KJ/mole*C)	75.	38
Ср (КJ/mole*С) Moles	86	.38 08	Moles	135	84
Q(KJ/hr)	2.90	E+08	Q(KJ/hr)	4.53I	E+07

ſ

Table 25 E1 energy balance

E-3			
Tube Side (Gas)			
Parameters In Out			
Temperature (°C)	75	36	
Pressure(Kg/cm ²)	26.4	25.7	
Cp(KJ/mole*C)	29.8	29.35	
Moles	7.24	E+03	
Enthalpy	1.68E+07	7.60E+06	
Q(KJ/hr)	-2.87E+08		
Shell S	Side (CW)		
TEMP diff	10		
Cp (KJ/mole*C)	75.38		
Moles	12100		
Q(KJ/hr) 2.90E+08		E+08	

Table 26 E2 energy balance

E-4			
Tub	e Side		
Parameters	In	Out	
		200	
Temperature (°C)	66	300	
Pressure(Kg/cm ²)	27.4	27.2	
Cp(KJ/mole*C)	29.05	29.65	
Moles	74	65	
Enthalpy	1.40E+07	6.60E+07	
Q(KJ/hr)	5.20E+07		
She	ll Side		
Temperature (C)	317	75	
Pressure(Kg/cm2)	26.8	26.4	
Cp(KJ/mole*C)	29.8	29.8	
Moles	7235		
Enthalpy	6.83E+07	1.68E+07	
Q(KJ/hr)	-5.17	E+07	

Table 27 E-3 energy balance

Table 28 E-4 Energy balance

E-5				
Tube	Side(Gas)			
Parameters	In	Out		
Temperature (°C)	115.4	49		
Pressure(Kg/cm ²)	60	59.5		
Cp(KJ/mole*C)	29.33	29.32		
Moles	7.16E+03			
Enthalpy	2.40E+07 1.03E+0			
Q(KJ/hr)	-1.37E+07			
Shell S	Shell Side(BFW)			
TEMP diff	10			
Cp(KJ/mole*C)	75.38			
Moles	18260			
Q(KJ/hr) 1.35E+07		E+07		

E-6					
Tube	Side(Gas)				
Parameters	In	Out			
Temperature (°C)	36	10			
Pressure(Kg/cm ²)	25.7	25.4			
Cp(KJ/mole*C)	28.97	28.95			
Moles	7.16E+03				
Enthalpy	7.40E+06	2.07E+06			
Q(KJ/hr)	-5.30	E+06			
Shell S	ide(BFW)				
TEMP diff	3	9			
Cp(KJ/mole*C)	29.1				
Moles	4611				
Q(KJ/hr)	5.23	E+06			

Table 29 E-5 energy balance

E-7				
Tube S	Side(Gas)			
Parameters	In	Out		
Temperature (°C)	109.3	38		
Pressure(Kg/cm ²)	94.3	94		
Cp(KJ/mole*C)	29.54	29.66		
Moles	7.16E+03			
Enthalpy	2.31E+07	8.04E+06		
Q(KJ/hr)	-1.40E+07			
Shell	Side(CW)			
TEMP diff	1	5		
Cp(KJ/mole*C)	Cp(KJ/mole*C) 75.38			
Moles	12381.2			
Q(KJ/hr)	1.39	E+07		

Table 30 E-6 energy balance

E-8				
Tube S	Side(Gas)			
Parameters	In	Out		
Temperature (°C)	165.1	38		
Pressure(Kg/cm ²)	236	235.5		
Cp(KJ/mole*C)	30.07	30.6		
Moles	7.16E+03			
Enthalpy	3.50E+07	8.30E+06		
Q(KJ/hr)	-2.66	E+07		
Shell S	Side (CW)			
TEMP diff	1	0		
Cp(KJ/mole*C)	75.38			
Moles	35000			
Q(KJ/hr)	2.63	E+07		

Table 31 E-7 energy balance

Table 32 E-8 energy balance

E-9					
Shell Side					
Parameters	In	Out			
Temperature (°C)	44.1	164			
Pressure(Kg/cm ²)	247	245			
Cp(KJ/mole*C)	30.68	30.39			
Moles	1.46E+05				
Enthalpy	1.38E+08	5.70E+08			
Q(KJ/hr)	4.30E+08				
Tub	e Side				
Temperature (C)	346	223			
Pressure(Kg/cm2)	241	240.5			
Cp(KJ/mole*C)	31.36	31.36			
Moles	1.15	E+05			
Enthalpy	1.24E+09	7.83E+08			
Q(KJ/hr)	-4.25	E+08			

E-10					
Shell Side					
Parameters	In	Out			
Temperature (°C)	179.65	13			
Pressure(Kg/cm ²)	235	234			
Cp(KJ/mole*C)	31.36	31.49			
Moles	6.29E+08	4.50E+07			
Enthalpy	1.12	E+05			
Q(KJ/hr)	-5.80	E+08			
Shell S	ide (BFW)				
Parameters	In	Out			
TEMP diff	150				
Cp(KJ/mole*C)	75.38				
Moles	50000				
Q(KJ/hr)	5.75	E+08			

Table 33 E-9 energy balance

Table 35 E-10 energy balance

Е	E-11			E-12			
Tul	Tube Side			Tube Side			
Parameters	In	Out		Parameters	In	Out	
				Tommorrature (oC)	12.2	0.2	
Temperature (°C)	223	179.65		Temperature (°C)	12.3	-9.3	
Pressure(Kg/cm ²)	240.5	235		Pressure(Kg/cm ²)	234	232	
Cp(KJ/mole*C)	31.36	31.36		Cp(KJ/mole*C)	30.07	30.6	
Moles	1.18E+05			Moles	7.16E+03		
Enthalpy	7.83E+08	6.20E+08		Enthalpy	3.50E+07	8.30E+06	
Q(KJ/hr)	-1.50	50E+08		Q(KJ/hr)	9.20E+07		
She	ell Side			Shell Side			
Temperature (C)	-9.3	34		Temperature (C)	45	45	
Pressure(Kg/cm2)	232	231		Pressure(Kg/cm2)	29.01	29.01	
Cp(KJ/mole*C)	31.11	30.67		Cp(KJ/mole*C)	21030	21030	
Moles	1.15	5E+05		Moles	1.70	E+08	
Enthalpy	3.30E+07	1.19E+08		Enthalpy	45	45	
Q(KJ/hr)	-1.52	E+08		Q(KJ/hr)	29	.01	

Table 36 E-11 energy balance

Table 37 E-12 energy balance

CHAPTER 6

SIMULATION

Based on real time industrial data simulations are performed for the process using ASPEN HYSYS V 8.8. Ammonia, oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen, methane, ethane, propane, butane, and argon were selected as the components for simulation. For the process, Peng Robinson was selected as the fluid package. The process gas is preheated in a furnace and then send to the primary reformer reactor [12] [13].

6.1 ASPEN HYSYS Model of the plant:

Figure 14 HYSYS Simulation Model A

6.2 Material balance Using HYSYS:

Name	pr-in	pr-out	1	Air	Sr-out	2	In-HTS
Vapour Fraction	1	1	0	1	1	0	1
Temperature [C]	532	805	805	117	951	951	370
Pressure [kPa]	3363.681653	3108.708699	3108.708699	3177.355264	3108.708699	3108.7087	3108.708699
Molar Flow [kgmole/h]	7758.63	10246.5692	0	1583.817	12324.88492	0	12324.88492
Mass Flow [kg/h]	142308.2528	142309.1734	0	45793.18542	188102.1348	0	188102.1348
Liquid Volume Flow [m3/h]	207.3150492	288.1857671	0	52.62925098	345.0141584	0	345.0141584
Heat Flow [kJ/h]	-1410939958	-1053370486	0	1976240.245	-1020577672	0	-1277454800
Name	Hts-out	3	IN-E3	IN-LTS	OUT-LTS	4	Ip steam
Vapour Fraction	1	0	1	1	1	0	1
Temperature [C]	429	429	328	203	217	217	180
Pressure [kPa]	3108.708699	3108.708699	3108.708699	3108.708699	3108.708699	3108.7087	114.2068791
Molar Flow [kgmole/h]	12324.88492	0	12324.88492	12324.88492	12324.88492	0	691
Mass Flow [kg/h]	188101.9008	0	188101.9008	188101.9008	188101.8365	0	12448.43443
Liquid Volume Flow [m3/h]	367.6913942	0	367.6913942	367.6913942	373.9232164	0	12.47355589
Heat Flow [kJ/h]	-1282084349	0	-1325127110	-1377480148	-1380073620	0	-163478057.8
Name	Vap 1	B-Condensate 1	Vap 2	B-condensate2	To methanaor	CO2 to Urea	out 13
Vapour Fraction	1	0	1	0	1	0	1
Temperature [C]	45.3	45.3	15.03353542	15.03353542	-153.0752698	-153.07527	100
Pressure [kPa]	114.2068791	114.2068791	114.2068791	114.2068791	114.2068791	114.206879	980.6652048
Molar Flow [kgmole/h]	10028.73947	2987.145447	9312.357555	716.3819182	7438.464831	1873.89272	7438.464831
Mass Flow [kg/h]	146731.6704	53818.60057	133823.5224	12908.14798	54956.13316	78867.3892	54956.13316
Liquid Volume Flow [m3/h]	332.4676925	53.92907977	319.5326043	12.93508822	224.4924146	95.0401897	224.4924146
Heat Flow [kJ/h]	-891413820	-850286783.4	-727227356.4	-205608017.6	-45564846.3	-770781612	8045357.622

Figure 16 Screenshot 1

Name	out 12	Methantor in	Methanator-out	5	To Utilities	To methanato	To compressor
Vapour Fraction	1	1	1	0	1	1	1
Temperature [C]	200	300	317	317	300	300	317.0000384
Pressure [kPa]	1961.33041	2549.729533	2549.729533	2549.729533	2549.729533	2549.72953	2549.729533
Molar Flow [kgmole/h]	7438.464831	7438.464831	7312.856609	0	72.89695534	7365.56788	7312.856609
Mass Flow [kg/h]	54956.13316	54956.13316	54417.54171	0	538.570105	54417.5631	54417.54171
Liquid Volume Flow [m3/h]	224.4924146	224.4924146	220.7448661	0	2.200025664	222.292389	220.7448661
Heat Flow [kJ/h]	29690829.01	51610213.57	49391970.67	0	505780.093	51104433.5	49391979.04
Name	water	out	out 1	out 2	7	out 3	out 4
Vapour Fraction	0	1	0.997986708	1	0	1	1
Temperature [C]	317.0000384	105	36	-39.57697781	-39.57697781	10	114.339992
Pressure [kPa]	2549.729533	2549.729533	2549.729533	2549.729533	2549.729533	2490.88962	5770.234065
Molar Flow [kgmole/h]	0	7312.856609	7312.856609	7278.641113	34.21549603	7278.64111	7278.641113
Mass Flow [kg/h]	0	54417.54171	54417.54171	53800.98289	616.558823	53800.9829	53800.98289
Liquid Volume Flow [m3/h]	0	220.7448661	220.7448661	220.1269518	0.61791432	220.126952	220.1269518
Heat Flow [kJ/h]	0	3785773.651	-11507807.86	-18516677.77	-9959637.329	-8060358.27	13951830.82
Name	out5	out 6	out 7	out 8	out 9	mixed stream	cooled stream
Vapour Fraction	1	1	1	1	1	1	0.975134956
Temperature [C]	49	109.3004879	38	165.0205125	38	14.3270273	-9.3
Pressure [kPa]	5770.234065	9069.191814	9069.191814	22692.59284	22692.59284	22692.5928	22692.59284
Molar Flow [kgmole/h]	7278.641113	7278.641113	7278.641113	7278.641113	7278.641113	111572.168	111572.1678
Mass Flow [kg/h]	53800.98289	53800.98289	53800.98289	53800.98289	53800.98289	506228.514	506228.5143
Liquid Volume Flow [m3/h]	220.1269518	220.1269518	220.1269518	220.1269518	220.1269518	3317.48981	3317.489807
Heat Flow [kJ/h]	18768.85171	12885853.6	-2448431.806	25377811.33	-2546418.097	-563917166	-695946100

Figure 17 screenshot 2

Name	P-Ammonia	recycled gas	heated stream	compressed gas	otlet7	Product	6
Vapour Fraction	0	1	1	1	1	1	0
Temperature [C]	-9.3	-9.3	34	39.48564153	164	204.3	204.3
Pressure [kPa]	22692.59284	22692.59284	22692.59284	23751.71126	24026.29752	24026.2975	24026.29752
Molar Flow [kgmole/h]	2774.246817	108797.921	108797.921	108797.921	108797.921	106008.38	0
Mass Flow [kg/h]	46725.75987	459502.7544	459502.7544	459502.7544	459502.7544	459501.361	0
Liquid Volume Flow [m3/h]	77.11264014	3240.377167	3240.377167	3240.377167	3240.377167	3148.28353	0
Heat Flow [kJ/h]	-188765482	-507180618.3	-362087809.3	-343642494.1	68771538.98	59403199.5	0
Name	out 10	out 11	remaining	to ko	ko	off gases	recycle
Vapour Fraction	1	1	1	1	0.970392757	1	0
Temperature [C]	204	13	13	13	-9.6	-9.6	-9.6
Pressure [kPa]	24026.29752	24026.29752	24026.29752	24026.29752	24026.29752	24026.2975	24026.29752
Molar Flow [kgmole/h]	106008.3795	106008.3795	105255.72	752.6594947	752.6594947	730.375322	22.28417232
Mass Flow [kg/h]	459501.3607	459501.3607	456238.9011	3262.459661	3262.459661	2887.3906	375.0690632
Liquid Volume Flow [m3/h]	3148.283527	3148.283527	3125.930714	22.35281304	22.35281304	21.7331074	0.619705589
Heat Flow [kJ/h]	58419877.18	-569007890.1	-564967934.1	-4039956.02	-4966622.291	-3452044.3	-1514577.988
Name	recycled 1	recycled 2	LNG+Mari	outlet	HP steam	HP+LNG+Mari	Outlet1
Vapour Fraction	0	1	1	1	1	1	1
Temperature [C]	-9.6	13	-43.18991026	418	350.6250445	367.371047	196.9147001
Pressure [kPa]	24026.29752	24026.29752	3804.980995	3706.914474	3726.527778	3706.91447	3795.174343
Molar Flow [kgmole/h]	22.08145572	104271.4452	1983.63	1983.63	5775	7758.63	1983.63
Mass Flow [kg/h]	371.6580015	452055.8734	38271.04754	38271.04754	104037.2053	142308.253	38271.04754
Liquid Volume Flow [m3/h]	0.614070145	3096.748785	103.0678926	103.0678926	104.2471566	207.315049	103.0678926
Heat Flow [kJ/h]	-1500798.07	-559869949.8	-171773849.6	-129973849.6	-1337966108	-1467939958	-151973849.6

Figure 18 screenshot 3

6.3 Energy balance using HYSYS:

Name	Q-PR	Q-SR	Q-E1	Q-HTS	Q-E2	Q-E3	Q-LTS
Heat Flow [kJ/h]	357569471.5	30816575.2	256877128	-4629548.8	43042761.3	52353038	-2593471.69
Name	Q1-Benfield	Q2-Benfield	Q3-Benfield	Q1	Q-E5	Q-E6	Q-Methanator
Heat Flow [kJ/h]	-198148925	-41421554.3	-89119101.6	0	21645471.4	21919385	-1712462.81
Name	Q-Seperator	Q-E7	Q-E8	Q2-Seperator	Q-E9	QC-2	Q-E10
Heat Flow [kJ/h]	8.367990762	45606205.4	15293581.5	-16968507	-10456319.5	22012189	13933062
Name	QC-3	Q-E11	QC-4	Q-E12	Q-E13	Q1-Seperato	r Q-E14
Heat Flow [kJ/h]	12867084.75	15334285.4	27826243.1	27924229.4	132028934	0	145092809
Name	QC-5	Q-15	Q-Ammonia	Q-16	Q-17	Q-18	Q-E4
Heat Flow [kJ/h]	18445315.12	412414033	-9368339.47	983322.336	627427767	926666.27	53610203.9
Name	QF-1	QF-3	QF-2	QC-1			
Heat Flow [kJ/h]	5700000	19800000	22000000	1332000			

Figure 19Energy balance screenshot

CHAPTER 7

SELECTION AND EQUIPMENT DESIGN

7.1 Design Calculations of Reactors:

Q = Heat Flow	V _r = Volume of reactor
V _b = Volume of bed	N= No of tubes
E = Void Fraction	Q _{avg} = Average heat flux
L = Length of tube	I.D = Internal Diameter of tube
W = Weight of catalyst	Vc = Volume of catalyst

7.1.1 Primary Reformer R-101:

Selection:

Primary reformer is a type of furnace having tubes in it. Reactions are taking place in these tubes having catalyst in it and they are heated by the burners inside the walls of furnace. For designing we chose it to be a Foster Wheelar side fired reformer due to reduced methane slip and it can bear small amount of coking because of propane and butane in our feed. Tubes and Outer body are made of stainless steel which are bearable for the reactor pressure. Design calculations are given below [14].

No of tubes:

$$N = Q/\pi^* I.D^* L^* Q_{avg}$$
 (i)

Q= 8.545x10^7 kcal/hr

I.D = 0.113m

L = 11m

Qavg= 65800 kcal/m²hr

By putting these values in above Equation (i) we get no of tubes,

N= $(8.545 \times 10^7)/(\pi)^*(0.113)^*(11)^*(65800)$

N= 332 tubes

Volume of reactor:

Volume of reactor = $N.\pi.ID^2.L/4$

 $V_r = (332)^* (3.14)^* (0.113) 2^* .11/4$

$$V_r = 36.6 m^3$$

Volume of Catalyst:

Catalyst used R-67R-7H (Ni 15%, MgO25%, Al2O360%)

Bulk density of catalyst = 970 kg/m^3

Voidage = E = 0.131

 $E = (V_r - V_c)/V_r$

As we know E and Vr, by putting values we get V_c. (Volume of Catalyst)

 $V_c = 31.8 m^3$

Weight of Catalyst:

Weight of Catalyst = (Bulk density) *(Volume of catalyst)

Weight of catalyst = (970) * (31.8)

Weight of catalyst = 30,846 kg

Space Velocity:

Space Velocity = Volumetric Feed Flow rate/ Volume of reactor

Space velocity = 173801/36.6*3600

Space velocity = 1.31 sec⁻¹

Comparison:

By comparing the design calculation, we can clearly see the impact of feed on primary reformer specifications. As the duty is increased the weight of catalyst and volume of reactor also increased for the reforming reaction to take place. No. of tubes of primary reformer also increased.

Specifications	100% Mari Gas	70% Mari Gas and 30% LNG
Duty	7.39x10 ⁷ kcal/hr	8.545x10^7 kcal/hr
Internal Dia of tube	0.113m	0.113m
Length of tube	11m	11m
Average heat flux	65800 kcal/m ² hr	65800 kcal/m ² hr
Volume of Catalyst:	27.6m ³	31.8m ³
Volume of reactor	31.8m ³	36.6m ³
Voidage	0.131	0.131
Weight of Catalyst:	26,543 kg	30,846 kg
No. of tubes	288	332

Table 23 R- 101 Specification comparison

7.1.2 Secondary Reformer R-102:

There are two types of reactions that are involved in primary reformer, three of them are combustion reactions and then another type is reforming reaction which is involved in the reactor bed [15].

We will take into account reforming reaction which is taking place in the bed for the design of this reactor.

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

Selection:

Is this reactor, we have combustion reactions and reforming reactions. The purpose is to extract nitrogen from air for ammonia reaction. So, we need a reaction having burner in it for combustion. And for reforming reaction we need to have a packed bed reactor under it where the reforming reaction takes place. Packed bed reaction is required as it is a catalytic reaction and gaseous phase reaction and also it gives more conversion per weight of catalyst.

Weight of Catalyst:

The catalyst used in secondary reformer: RKS-2&; RKS-2-7H

Catalyst composition = NiO, Promotor/Carrier = MgO/ Al₂O₃

Design equation for the reactor design is,

$$\frac{W}{F_{AO}} = \int_0^{X_A} \frac{dX_A}{-r_a} \qquad \text{(ii)}$$

Rate equation $-r_a = K C_{Ch4}{}^n C_{H20}{}^m$

Order of reaction is n = 1, m= 1 Conversion Xa = 90%

$$F_{Ao} = C_{Ao}.V_o$$
, $C_{Ch4} = C_{Ao} = 0.98 \text{ mol}/m^3$

 $M = C_{H20} / C_{Ch4} = 8.70$

 $K = 2.5 \times 10^{-2} \text{ mol}^{-1} \text{ sec}^{-1}$

Putting this value in equation (ii)

$$M_{\rm Ch4.Vo} = \int_0^{X_{\rm A}} \frac{dX_{\rm A}}{KCh4(1-Xa)(M-Xa)}$$

Solving the integral by area under the curve we get,

Weight of catalyst = 32,568

Weight of catalyst = 32,568 kg of catalyst

Bulk density of catalyst = 1070 kg/m^3 (Bulk density)

Volume of catalyst:

Volume of catalyst = Weight of catalyst/ Bulk density of catalyst

Volume of catalyst = 32568/1070

Vc=30.43m³

Volume of reactor:

Voidage = 0.25

 $E = (V_b - V_c)/V_b$

Volume of reactor bed = V_b = 40.57 m³

With 20% clearance, Vr = 1.20*Vb

 $Vr = 48.684 m^3$

Height of reactor:

 H_r = Vr/ $\pi^*D^2/4$, D_r = 4m

$$H_r = 3.87m$$

Space Velocity:

Space Velocity = Volumetric Feed Flow rate/ Volume of reactor

Space Velocity= 457.5/48.684*3600

Space velocity = 2.6 x 10³sec⁻¹

Comparison:

Specifications	100% Mari Gas	70% Mari Gas and 30% LNG
Internal Dia of tube	3m	3m
Height of reactor	6.19 m	6.87m
Volume of Catalyst:	28.4m ³	30.43m ³
Volume of reactor	43.76m ³	48.684 m ³
Voidage	0.25	0.25
Weight of Catalyst:	29,580 kg	32,568 kg

Table 25 R-102 Specification comparison

Due to change in feed, outlet of primary reformer is changed which is inlet of secondary reformer, due to which in order to get desirable conversion volume of reactor and catalyst has also been increased.

7.1.3 High Temperature Shift R- 103:

Selection:

For high temperature shift reactor, it was chosen as packed bed reactor because it will give more conversion per weight of catalyst and high temperature shift conversion is a gaseous phase reaction. The reaction is exothermic and favoured at low temperature but due to high concentration of reactants converted into product, It will have low reaction rate, so for high rate of reaction it takes place at high temperature in presence of selective catalyst (iron based) which is being used. Stainless steel material of reactor is used as it is less corrosive and can bear reactor pressure and temperature [13].

This reactor involves the following reaction,

$$\mathrm{CO} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{CO}_2 + \mathrm{H}_2$$

Conversion Xa = 77%

Catalyst used = SK-201-2

Catalyst composition = $Fe_3O_4 \sim 80-90\%$

Promotor/Carrier = $Cr_2O_3 \sim 8-13\% / CuO \sim 1-2\%$

Weight of Catalyst:

Design equation used for reactor design is,

$$\frac{W}{F_{AO}} = \int_0^{X_A} \frac{dX_A}{-r_a} \qquad \text{(iii)}$$

 $-r_a = K C_{CO^n} C_{H2O^m}$ Order of reaction n = 1, m=0

 $F_{Ao} = C_{Ao}.V_o$,

 $Vo = 276062 \text{ m}^3/\text{hr}$

After re arranging equation (iii) becomes,

$$\frac{W}{\text{CCo.Vo}} = \int_0^{X_A} \frac{dX_A}{\text{K} \text{CCO}(1-\text{Xa})}$$
$$\frac{W}{\text{Vo}} = \int_0^{X_A} \frac{dX_A}{\text{K}(1-\text{Xa})}$$
$$\text{K} = 6.031 \text{ sec}^{-1}$$
$$\text{Vo} = 276062 \text{ m}^3/\text{hr}$$

Putting these values we get weight of catalyst,

$$\frac{W}{276062} = \int_0^{0.77} \frac{dX_A}{6.031(1 - Xa)}$$

Weight of catalyst = 66829.79 kg

Volume of catalyst:

Bulk density of catalyst: 1050kg/m³

Volume of catalyst = Weight of catalyst/ Bulk density of catalyst

Volume of catalyst = 66829.79/1050

$V_c = 64.64 \text{ m}^3$

Volume of reactor:

Voidage = 0.044

 $E = (V_b - V_c)/V_b$

 $V_b = 67.61 m_3$

29% clearance gives the volume of reactor,

Vr = 1.29*Vb

$V_r = 87.22m^3$

Height of Reactor:

 $D_{\rm r} = 4.3 {\rm m}$

 $Hr = Vr / \pi^* D2 / 4$

Height of reactor = 4.65m

Space velocity:

Space Velocity = Volumetric Feed Flow rate/ Volume of reactor

Space Velocity= 276057/87.22*3600

Space Velocity = $2.3 \times 10 - 4 \sec^{-1}$

Comparison:

The comparison for both feed in HTS is being shown in table, the amount of carbon monoxide to convert into carbon dioxide is increased for new feed as compare to

previous feed. Therefore amount of catalyst also increased to undergo the reaction	
at given conversion. In this way the volume of reactor also increased	

Specifications	100% Mari Gas	70% Mari Gas and 30% LNG
Internal Dia of tube	4.3m	4.3m
Height of reactor	7 m	7.64 m
Volume of Catalyst:	82 m ³	86.12 m ³
Volume of reactor	102.5 m ³	111 m ³
Voidage	0.036	0.036
Weight of Catalyst:	86,920 kg	91,288 kg

Table 26 R-103 Specifications comparison

7.1.4 Low Temperature Shift R- 104:

Selection:

For low temperature shift reactor, it was chosen as packed bed reactor because it will give more conversion per weight of catalyst and CO conversion is a gaseous phase reaction. The reaction is exothermic and favoured at low temperature in presence of selective catalyst (iron based) which is being used. Here low temperature is maintained because amount of CO which needs to be converted is low hence low rate of reaction is not a problem in this case. Stainless steel material of reactor is used as it is less corrosive and can bear reactor pressure and temperature. Design calculations for the specification of low temperature shift are given below.

This reaction involves the following reaction, but at low temperature.

$$\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2$$

Conversion Xa = 92%

Catalyst used = Katalco 83-3

Catalyst composition = CuO 51%

Promotor/Carrier = Al₂O₃18%/ZnO 31%

Weight of catalyst:

Design equation used for reactor design is,

$$\frac{W}{F_{AO}} = \int_0^{X_A} \frac{dX_A}{-r_a} \quad \text{(iii)}$$

-r_a= K $C_{CO^n}C_{H2O^m}$ Order of reaction n = 1, m=1.4

 $F_{Ao} = C_{Ao}.V_o$, $A_0 = CO$, $B_0 = H_2O$

 $C_{Ao} = 8.44 \times 10^{-4} \, mol/m^3$

 $C_{Bo} = 0.0121 \text{ mol}/\text{m}^3$

$$\frac{W}{\text{CCo. Vo}} = \int_0^{X_A} \frac{dX_A}{\text{K CCO}^{2.4}(1 - xa)(M - 1.4xa)}$$

K = 1.23x10⁴

By solving integral area under the curve we get,

 $\frac{W}{276050} = \frac{0.2024}{1.23 \times 10^4 (8.44 \times 10^{-4})^{1.4}}$

Weight of catalyst = 91288 kg

Volume of catalyst:

Bulk Density of Catalyst = 1060 kg/m^3

Volume of catalyst = Weight of catalyst/ Bulk density of catalyst

Volume of catalyst = 91288/1060

$V_c = 86.12m^3$

Volume of reactor:

E = (Vb - Vc)/Vb

E = 0.036

$$E = (Vb-Vc)/Vb$$

 $Vb = 89.33m^3$

25% clearance of reactor with bed

Volume of reactor, Vr= 1.25*89.336

 $Vr = 111.67 m^3$

Height of Reactor:

Dr = 4.3m

 $Hr = Vr / \pi^* D2/4$

Height of reactor = 6.15m

Space velocity:

Space Velocity = Volumetric Feed Flow rate/ Volume of reactor

Space Velocity= 276057/111.67 *3600

Space Velocity = 0.685 sec⁻¹

Comparison:

Specifications	100% Mari Gas	70% Mari Gas and 30% LNG
Internal Dia of tube	4.3m	4.3m
Height of reactor	5.8 m	6.09 m
Volume of Catalyst:	61m ³	64.4m ³
Volume of reactor	84 m ³	87.22 m ³
Voidage	0.04	0.04
Weight of Catalyst:	64,050 kg	66,829 kg

Table 27 R-104 Specifications comparison

The comparison for both feed in HTS is being shown in table, as the amount of carbon monoxide to convert into carbon dioxide is increased as compare to previous feed. The amount of catalyst also increased to undergo the reaction at given conversion. In this way the volume of reactor also increased.
7.1.5 Methanator R-105:

Selection:

Methanator consist of two reactions in which carbon dioxide and carbon monoxide is being completely removed as it can cause coking in ammonia synthesis convertor. It is gaseous phase catalytic reaction, so we chose packed bed reactor. It can also give higher conversion per weight of catalyst. Stainless steel is used as material of reactor because it can bear reactor temperature and pressure. Design calculation for specification of reactor are given below.

These two reactions took place in methanator,

$$CO + 3H_2 \rightarrow CH_4 + H_2O$$
$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

Weight of catalyst:

For both of reactions weight of catalyst is determined individually and then by combined weight of catalyst is being calculated.

Design equation used for reactor design is,

$$\frac{W}{F_{AO}} = \int_0^{X_A} \frac{dX_A}{-r_a} \quad \text{(iii)}$$

For reaction 1: -

 $-r_a = K C_{CO2^n} C_{H2^m}$ Order of reaction n = 1, m=1

 F_{Ao} = $C_{Ao}.V_o$, A_0 = CO_2 , B_0 = H_2

 $C_{Ao} = 4.54 \times 10^{-5} \text{ mol}/\text{m}^3$

 $C_{Bo} = 0.03519 \text{ mol}/\text{m}^3$

M = 775.26

V_o=16321.2m³/hr k= koe^{-Ea/RT}

K = 2.7 x 10⁵ mol⁻¹ sec⁻¹

$$\frac{W}{Vo} = \int_0^{X_A} \frac{dX_A}{K \, CCo2(1-xa)(775.26-xa)}$$

By solving the integral by area under the curve and putting the values we get,

$$\frac{W}{163213.1} = \frac{20.6}{2.7 \times 10^5 (4.54 \times 10^{-5})}$$

W₁ = 27426.84kgs of Catalyst

$$\frac{W}{F_{AO}} = \int_0^{X_A} \frac{dX_A}{-r_a} \quad \text{(iii)}$$

For reaction 2: -

 $-r_a = K C_{CO^n} C_{H2^m}$ Order of reaction n = 1, m=1

 $F_{Ao} = C_{Ao}.V_o$, $A_0 = CO$, $B_0 = H_2$

 $C_{Ao} = 1.11 \times 10^{-4} \, mol/m^3$

 $C_{Bo} = 0.03519 \text{ mol/m}^3$

M = 315.26

V₀=16321.2m³/hr

k= koe^{-Ea/RT}

 $K = 2.7 \ge 10^5 \text{ mol}^{-1} \text{ sec}^{-1}$

$$\frac{W}{Vo} = \int_0^{X_A} \frac{dX_A}{K \, CCo(1-xa)(315.26-xa)}$$

By solving the integral by area under the curve and putting the values we get,

 $\frac{W}{163213.1} = \frac{83.31}{3.5 \times 10^7 (1.11 \times 10^{-4})}$

W₂ = 34999.36 kgs of Catalyst

 $W_{t} = W_{1} + W_{2}$

$W_{T=} 62426.171 \text{ kg of catalyst}$

Volume of catalyst:

Bulk Density of Catalyst = 950 kg/m^3

Volume of catalyst = Weight of catalyst/ Bulk density of catalyst

Volume of catalyst = 62426.171/950

$$Vc = 65.71m^3$$

Bulk Density of Catalyst = 950 kg/m^3

Volume of catalyst = Weight of catalyst/ Bulk density of catalyst

Volume of catalyst = 62426.171/950

 $Vc = 65.71m^3$

Volume of reactor:

E = 0.04

E = (Vb - Vc)/Vb

Vb= 68.44m³

20% clearance to reactor with bed,

Vr= 1.20*(68.44)

Vr=82.128m³

Height of Reactor:

Dr = 3.5m

 $Hr = Vr / \pi^* D^2 / 4$

Height of reactor = 8.54 m

Space velocity:

Space Velocity = Volumetric Feed Flow rate/ Volume of reactor

Space Velocity= 16321.2/82.128*3600

Space Velocity = 5.52x10⁻⁵ sec⁻¹

Comparison:

Specifications	100% Mari Gas	70% Mari Gas and 30% LNG
Internal Dia of tube	3.5 m	3.5 m
Height of reactor	8.1 m	8.54 m
Volume of Catalyst	62 m ³	65.71 m ³
Volume of reactor	78 m ³	82.12 m ³
Voidage	0.04	0.04
Weight of Catalyst:	58,900 kg	62,426 kg

Table 28 R-105 Specifications comparison

As the amount of carbon dioxide and carbon monoxide is being increased as compare to previous feed. The amount of catalyst required to achieve conversion also increased. In this way the volume of catalyst also increased.

7.1.6 Ammonia reactor 106:

Selection:

For the selection of ammonia reactor, it is gaseous phase reaction in the presence of catalyst, so we choose packed bed reactor as it gives higher conversion per weight of catalyst. Stainless steel type 316 is being used as material of reactor as it can bear the reactor temperature and pressure. Calculation for the design of specification are given below [16].

The reaction takes place in ammonia reactor is

 $N_2 + 3H_2 \rightarrow 2NH_3$

The conversion of this reaction is 29.3%

The catalyst used in this reaction is triple promoted iron oxide catalyst

(Fe₂O₃, FeO) promoted by (K₂O, CaO, Al₂O₃).

Weight of catalyst:

The design equation for the reactor is following:

$$\frac{W}{F_{AO}} = \int_0^{X_A} \frac{dX_A}{-r_a}$$

Where the rate equation is,

$$\boldsymbol{r}_{NH_3} = 2k \left(K_a^2 a_{N_2} \left[\frac{a_{H_2}^3}{a_{NH_3}^2} \right]^{\alpha} - \left[\frac{a_{NH_3}^2}{a_{H_2}^3} \right]^{1-\alpha} \right)$$

Where

K = Equilibrium constant

k = rate constant

ai = activity coefficient of component i

 α = constant which takes a value of 0.5-0.75. In this work it is assumed to be 0.5.

As,

ai=fi/fo

Fo is reference fugacity, taken as 1 atm.

Fugacity can be calculated from value of fugacity coefficient as: $fi = \phi i Pi$

$$\phi_{H_2} = \left(exp \left(exp \left(-3.802T^{0.125} + 0.541 \right) P - exp \left(-0.1263T^{0.5} - 15.98 \right) P^2 \right) + \left(300 \left(exp \left(-0.011901T - 5.941 \right) \left(exp \frac{P}{300} \right) \right) \right) \right) \right)$$

$$\emptyset_{N_2} = \begin{pmatrix} 0.93431737 + 0.2028538x10^{-3}T + 0.295896x10^{-3}P \\ -0.270727x10^{-6}T^2 + 0.4775207x10^{-6}P^2 \end{pmatrix}$$

 $\emptyset_{NH_3} = \begin{pmatrix} 0.1438996 + 0.2028538x10^{-2}T - 0.4487672x10^{-3}P \\ -0.1142945x10^{-5}T^2 + 0.2761216x10^{-6}P^2 \end{pmatrix}$

 $\phi_{H2} = 1.002$ $\phi_{N2} = 1.080$ $\phi_{NH3} = 1.098$

Pi = xi*P for calculation of partial pressure.

For equilibrium constant:

$$\log_{10} K = -2.691122 \log_{10} T - 5.519265 \times 10^{-5} T$$

+ 1.848863 ×
$$10^{-7}T^2 + \frac{2001.6}{T} + 2.6899$$

Rate constant

K= Koexp(Ea/RT)

ko = Arrhenius coefficient = (8.849 x10¹⁴)

E= Activation energy with temperature its mean value is 40765 Kcal/kmol

R=Universal Gas constant R (8.314 kJ/kmol.K)

Putting all the values and differential equations are solved using Euler's method with step size of 0.005. In the first bed reaction is carried out until, Xf=0.293. At this conversion, the required catalyst weight and volume is:

$$\frac{W}{4645} = \int_0^{X_A} \frac{dX_A}{-ra}$$

Weight of catalyst = 31536.47 kg

Volume of catalyst:

As we know the bulk density of catalyst= 1250kg/m³

Volume of catalyst = Weight of catalyst/ Bulk density of catalyst

Volume of catalyst = 31536.47 /1250

Vc = 25.22918 m³

Volume of Reactor:

E= 0.5

E = (Vb - Vc)/Vb

Vb= 50.45 m³

20% clearance to reactor with bed,

Vr= 1.20*(50.45)

Vr=60.54m³

Height of reactor:

Dr = 4.3m

 $Hr = Vr / \pi^* D^2 / 4$

Height of reactor = 4.17m

Comparison:

As the amount of hydrogen and nitrogen is increased as compare to previous feed. The weight of catalyst also increased to achieve required conversion in a specific time. Volume of reactor also increases

Specifications	100% Mari Gas	70% Mari Gas and 30% LNG
Internal Dia of tube	3.5 m	3.5 m
Height of reactor	5.9 m	6.29 m
Volume of Catalyst:	23.8 m ³	25.2 m ³
Volume of reactor	57.24 m ³	60.54 m ³
Voidage	0.5	0.5
Weight of Catalyst:	30,225 kg	31,536 kg

Table 30 R-106 specifications comparison

7.2 Heat Exchangers Designing:

7.2.1 E-2(Shell and Tube Heat Exchanger)

Water (Shell side):	Process gas (Tube side):
K = 0.6108 W/m.ºC	K = 0.1287 W/m.ºC
$\mu = 8.9 \text{ x } 10^{-4} \text{ Ns/m}^2$	μ = 2.17 x 10 ⁻⁵ Ns/m ²
C _p = 4.312 kJ/kg. °C	C _p = 2.203 kJ/kg. °C
$ ho = 1000 \text{ kg/m}^3$	ṁ = 5.25 kg/s
ṁ = 67.92 kg/s	$\rho = 8.1 \text{kg/m}^3$

 T_{hi} = 429 °C ; T_{ho} = 328 °C

 T_{ci} = 30 °C ; T_{co} = 45 °C

Heat duty:

 $Q = \dot{m} \ge C_p \ge \Delta T$

= 5.25 x 2.203 x 101

= 12777.7 kW

Flow rate of Water:

 $Q = \dot{m} \times C_p \times \Delta T \rightarrow \dot{m} = \frac{Q}{Cp \times \Delta T}$ $\dot{m} = \frac{12777.7}{4.312 \times 15}$

mˈ = 67.92 kg/s

Log Mean Temperature Difference (LMTD):

$LMTD = \frac{\Delta T2 - \Delta T1}{\ln\left(\frac{\Delta T2}{\Delta T1}\right)}$	ΔT_2 = Temperature difference of hot
$\operatorname{III}\left(\frac{\Delta T_{1}}{\Delta T_{1}}\right)$	

fluids

 ΔT_1 = Temperature difference of cold

fluids

 $LMTD = \frac{101 - 15}{\ln(101/15)}$

$$R = \frac{T_{1-} T_2}{t_2 - t_1}$$

$$S = \frac{t_2 - t_1}{t_1 - t_1}$$

$$R = \frac{429 - 328}{45 - 30} = 2.24$$

$$S = \frac{45 - 30}{429 - 45} = 0.112$$

LMTD = 325.19 °C

From graph, 1 shell and 2 tube passes

 $F_t = 0.98$

So, corrected LMTD (Δt) = 0.987 x325.19 = 318.68 °C

From figure,

Shell and tube exchangers			
Hot fluid	Cold fluid	$U (W/m^2 °C)$	
<i>Heat exchangers</i> Water	Water	800-1500	
Organic solvents	Organic solvents	100 - 300	
Light oils	Light oils	100 - 400	
Heavy oils	Heavy oils	50-300	
Gases	Gases	10 - 50	
Coolers			
Organic solvents	Water	250-750	
Light oils	Water	350-900	
Heavy oils	Water	60-300	
Gases	Water	20-300	
Organic solvents	Brine	150 - 500	
Water	Brine	600-1200	
Gases	Brine	15 - 250	
Heaters			
Steam	Water	1500 - 4000	
Steam	Organic solvents	500 - 1000	
Steam	Light oils	300 - 900	
Steam	Heavy oils	60 - 450	
Steam	Gases	30-300	
Dowtherm	Heavy oils	50-300	
Dowtherm	Gases	20-200	
Flue gases	Steam	30 - 100	
Flue	Hydrocarbon vapours	30-100	
Condensers			
Aqueous vapours	Water	1000 - 1500	
Organic vapours	Water	700-1000	
Organics (some non-condensables)	Water	500-700	
Vacuum condensers	Water	200 - 500	
Vaporisers			
Steam	Aqueous solutions	1000 - 1500	
Steam	Light organics	900 - 1200	
Steam	Heavy organics	600-900	

- -

Figure 21 Shell and tube heat exchanger 'U' ranges

 $U = 300 \text{ W/m}^2 \circ \text{C}$ from above table

$$A = \frac{12777.7}{300 \times 318} = 133.65 \text{m}^2$$

0.03m Outer diameter and 0.025m Internal diameter - BWG 17

Length of tube = L = 3.66

Area of tube = $\pi x 3.66x 0.03 = 0.3447 m^2$

Number of tubes required = $\frac{133.65}{0.334}$ = 387 tubes

Bundle diameter = $D_b = d.(\frac{N_s}{K})^{0.25} = 0.838 \text{ mm}$ From graph

Figure 22 Bundle diameter graph

Clearance = 0.093

No. passes	1	2	4	6	8
K1 n1	0.319 2.142	0.249 2.207	0.175 2.285	0.0743 2.499	0.0365
Square pitch, p	$r = 1.25d_{o}$				
No. passes	1	2	4	6	8
K1 n1	0.215 2.207	0.156 2.291	0.158 2.263	0.0402 2.617	0.0331 2.643

Figure 23 Pitch Factor table

Shell diameter = 0.838 +0.093 = 0.9134m

Shell side co-efficient:

Baffle spacing $(l_B) = 0.5 \text{ x } D_s = 0.4657 \text{ m}$

 $P_t = 1.25 \text{ x } d_0 = 0.0375 \text{ m}$

$$A_{s} = \frac{(P_{t-} d_{0}) \times D_{s}}{P_{t}} \text{ change}$$

 $A_s = 0.18628 \text{ m}^2$

Mass velocity (Ga) = $\frac{\omega}{A_s} = \frac{67.97}{A_s} = 346.61 \text{ kg/m}^2 \text{s}$

$$D_{\rm e} = \frac{1.10}{d_0} \left(P t^2 - 0.917 d_0^2 \right)$$

 $D_e = 0.021$

 $Re_{b} = 9571$

Figure 24 Reynolds number and Jh Graph

From figure, J_h = 0.006

 $Pr = \frac{\mu x Cp}{K} = 5.572$ $\frac{h_o}{\theta_s} = \frac{J_h x \operatorname{Re} x \operatorname{Pr}^{0.33} x K_f}{\operatorname{De}} = 28882.15 \text{ W/m}^2. \text{ °C} \qquad \theta_s = 1$

 $h_o = 28882.15 \text{ W/m}^2. \text{ °C}$

Tube side co-efficient:

Tube cross section area= $\frac{\pi}{4}d_i^2$

 $= 0.0005 \text{ m}^2$

Tube per pass = $\frac{387.72}{2}$ = 193.86 tubes

Total flow area = 193.86 x 0.0005 = 0.09693 m²

Mass velocity (Ga) = $\frac{\omega}{A} = \frac{52.22}{0.09693} = 538.73 \text{ kg/m}^2\text{s}$ $u = \frac{538.7}{8.81} = 61.21 \text{ m/s}$ $Re = \frac{Di \times Ga}{\mu} = 620562.212$ $\Pr = \frac{\mu \times Cp}{K} = \frac{2.17 \times 10^{-5} \times 2.23}{0.127} = 0.373$ 10 L/D = 24Heat transfer factor, j_h 120 500 10-2 10 10⁴ 10⁵ 10¹ 10² 10³ 10⁶ Figure 25 Jh factor graph for tube side

L/d = 146.4

From figure, heat transfer factor $(J_h) = 0.003$

$$\frac{h_i}{\theta_t} = \frac{J_h \, \mathrm{x} \, \mathrm{Re} \, \mathrm{x} \, \mathrm{Pr}^{0.33} \, \mathrm{x} \, \mathrm{K}_\mathrm{f}}{\mathrm{d}_\mathrm{i}} = \frac{0.003 \, \mathrm{x} \, 620562.212 \, \mathrm{x} \, (0.337)^{0.33} \, \mathrm{x} \, 0.1287}{0.025}$$

$$\frac{n_i}{\theta_t} = 6854 \text{ W/m}^2.\text{°C}$$

Mean Wall Temperature θ_t :

$$\left(\frac{\mu}{\mu_w}\right)^{0.14} = 1$$

 $h_i = 6854 \text{ W/m}^2.^{\circ}\text{C}$

Overall coefficient:

$$h_{io} = h_i \times \frac{\text{ID}}{\text{OD}} = \times \frac{0.025}{0.03}$$
$$h_{io} = 5711 \text{ W/m}^2. \text{ °C}$$
$$U_c = \frac{\text{hio} \times \text{ho}}{\text{hio} + \text{ho}} = 4760 \text{ W/m}^2. \text{ °C}$$

For $R_d = 0.003$

Table 12.2. Fouling factors (coef	fficients), typical values
-----------------------------------	----------------------------

Fluid	Coefficient (W/m ² $^{\circ}$ C)	Factor (resistance) (m ² °C/W)
River water	3000-12,000	0.0003-0.0001
Sea water	1000-3000	0.001-0.0003
Cooling water (towers)	3000-6000	0.0003-0.00017
Towns water (soft)	3000-5000	0.0003-0.0002
Towns water (hard)	1000-2000	0.001-0.0005
Steam condensate	1500-5000	0.00067-0.0002
Steam (oil free)	4000-10,000	0.0025 - 0.0001
Steam (oil traces)	2000-5000	0.0005 - 0.0002
Refrigerated brine	3000-5000	0.0003-0.0002

Table 31 Fouling factor table

$$R_d = \frac{Uc - UD}{UD * Uc}$$

 $U_D = 302 \text{ W/m}^2. \text{ °C}$

Since,

$$\frac{U_{cal} - U_{ass}}{U_{ass}} \ge 100 = 7 \% < 30 \%$$

Hence the design is acceptable.

Pressure drop Calculation:

Shell side

$$\Delta P_{\rm s} = 8 \text{ x } J_{\rm f} \text{ x} \left(\frac{\text{Ds}}{\text{d}_{\rm e}}\right) \left(\frac{\text{L}}{\text{L}_{\rm B}}\right) \frac{\rho \mu^2}{2} \left(\frac{\mu}{\mu_{\rm w}}\right)^{-0.14}$$

Figure 27 J_f factor graph

From figure, $J_f = 0.051$

$$= 8 \ge 0.051 \ge \left(\frac{0.9314}{0.021}\right) \left(\frac{3.66}{0.4657}\right) \left(\frac{997 \ge 364.5}{997}\right)^2$$

 $\Delta P_s = 2274 Pa = 0.32 psi$

Tube side

$$\Delta P_{t} = N_{p} \left[8 \times J_{h} \times \left(\frac{L}{d_{i}}\right) \left(\frac{\mu}{\mu_{w}}\right)^{-m} + 2.5 \right] \times \frac{\rho u_{t}^{2}}{2}$$

$$= 2[8 \times 0.003 \times (387.72) + 2.5] \times \frac{8.8 (61.21)^2}{2}$$

ΔPt = 38726.2 Pa = 5.6 psi

7.2.2 E-7 (Shell and Tube Heat Exchanger)

Water (Shell side):

Process gas (Tube side):

K = 0.6108 W/m.ºC	K = 0.1454 W/m.ºC
$\mu = 8.9 \text{ x } 10^{-4} \text{ Ns/m}^2$	μ = 1.27 x 10 ⁻⁵ Ns/m ²
C _p = 4.312 kJ/kg. °C	C _p = 3.967 kJ/kg. °C
$\rho = 1000 \text{ kg/m}^3$	m = 14.94 kg/s
ṁ = 90.6kg/s	$\rho = 12.99 \text{kg}/\text{m}^3$

 $T_{hi} = 115.4$ °C ; $T_{ho} = 49$ °C

 $T_{ci} = 30 \text{ °C}$; $T_{co} = 40 \text{ °C}$

Heat duty:

 $Q = \dot{m} \ge C_p \ge \Delta T$

= 90.6 x 4.312 x 10

= 3805 kW

Flow rate of Water:

Q = $\dot{m} \times C_p \times \Delta T$ → $\dot{m} = \frac{Q}{Cp \times \Delta T}$ $\dot{m} = \frac{3805}{4.312 \times 10}$ $\dot{m} = 90.6 \text{kg/s}$

Log Mean Temperature Difference (LMTD):

$$LMTD = \frac{\Delta T2 - \Delta T1}{\ln \left(\frac{\Delta T2}{\Delta T_1}\right)} \qquad \Delta T_2 = Temperature difference of hot$$

fluids

 ΔT_1 = Temperature difference of cold

fluids

$$LMTD = \frac{75.4 - 19}{\ln (75.4/19)}$$

LMTD = 40.91 °C

$$R = \frac{T_{1-} T_2}{t_2 - t_1}$$

$$S = \frac{t_2 - t_1}{t_1 - t_1}$$
$$R = \frac{122 - 70}{30 - 20} = 6.64$$
$$S = \frac{30 - 20}{122 - 20} = 0.13$$

From graph,1 shell and 4 tube passes

$$F_t = 0.98$$

So, corrected LMTD (Δt) = 0.98 x40.19 = 40.09 °C

 $U = 300 \text{ W/m}^2 \circ \text{C}$ from above table

$$A = \frac{3805 7}{300 \times 40.0} = 316.3 \text{m}^2$$

0.03m Outer diameter and 0.025m Internal diameter - BWG 17

Length of tube = L = 3.046

Area of tube = πx = 3.046x0.03 = 0.2869 m²

Number of tubes required = $\frac{316.3}{0.2869}$ = 1102 tubes

Bundle diameter = $D_b = d.(\frac{N_s}{K})^{0.25} = 0.838 \text{ mm}$

From graph Clearance = 0.096

Shell diameter = 0.838 +0.096 = 0.96m

Shell side co-efficient

Baffle spacing (l_B) = 0.5 x D_s = 0.467 m

$$P_t = 1.25 \text{ x} d_o = 0.0375 \text{m}$$

$$A_s = \frac{(P_{t-} d_0) \times D_s}{P_t} \text{ change}$$

 $A_s = 0.18628 \text{ m}^2$

Mass velocity (Ga) = $\frac{\omega}{A_s} = \frac{90.97}{0.1868} = 485.01 \text{ kg/m}^2\text{s}$

$$D_{\rm e} = \frac{1.10}{d_0} \left(P_{\rm t}^2 - 0.917 d_0^2 \right)$$

 $D_e = 0.021$

 $Re_b = 12731$

From figure, $J_h = 0.007$

$$Pr = \frac{\mu \times Cp}{K} = 5.6$$

$$\frac{h_o}{\theta_s} = \frac{J_h \times \text{Re} \times Pr^{0.33} \times K_f}{\text{De}} = 4720 \text{ W/m}^2 \cdot \text{°C} \qquad \theta_s = 1 \qquad (6.26)$$

$$h_o = 4720 \text{ W/m}^2 \cdot \text{°C}$$

Tube side co-efficient

Tube cross section area= $\frac{\pi}{4}$ d_i²

 $= 0.0005 \text{ m}^2$

Tube per pass = $\frac{1102}{4}$ = 275.586 tubes

Total flow area = 275.586 x 0.0005 = 0.1377 m²

Mass velocity (Ga) = $\frac{\omega}{A} = \frac{14.94}{0.1377} = 538.73 \text{ kg/m}^2\text{s}$ u = $\frac{108.52}{12.99} = 8.52 \text{ m/s}$ Re= $\frac{\text{Di x Ga}}{\mu} = 216923.84$ Pr = $\frac{\mu \text{x Cp}}{K} = \frac{1.22 \times 10 - 5(3.967 \times 10 - 3)}{0.1454} = 0.348$ L/d = 121.84

From figure, heat transfer factor $(J_h) = 0.0038$

$$\frac{h_i}{\theta_t} = \frac{J_h \times \operatorname{Re} \times \operatorname{Pr}^{0.33} \times \operatorname{K}_f}{d_i} = 3385 \text{ W/m}^2.^{\circ}\text{C}$$
$$\frac{h_i}{\theta_t} = 3385 \text{ W/m}^2.^{\circ}\text{C}$$

Mean Wall Temperature θ_t :

$$\left(\frac{\mu}{\mu_{W}}\right)^{0.14} = 1$$

$$h_i = 3385 \text{ W/m}^2.^{\circ}\text{C}$$

Overall Co-efficient:

 $h_{io} = h_i \ge \frac{10}{00} = \ge \frac{0.025}{0.03}$ $h_{io} = 2820 \text{ W/m}^2. \circ \text{C}$ $U_c = \frac{\text{hio} \ge \text{ho}}{\text{hio} + \text{ho}} = 1765 \text{ W/m}^2. \circ \text{C}$ For $R_d = 0.003$ $R_d = \frac{Uc - UD}{UD * Uc}$ $U_D = 280.38 \text{ W/m}^2. \circ \text{C}$ Since,

 $\frac{U_{cal} - U_{ass}}{U_{ass}} \ge 100 = 7 \% < 30 \%$

Acceptable design is achieved.

Pressure drop:

Shell side

$$\Delta P_{\rm s} = 8 \text{ x } J_{\rm f} \text{ x} \left(\frac{\text{Ds}}{\text{d}_{\rm e}}\right) \left(\frac{\text{L}}{\text{L}_{\rm B}}\right) \frac{\rho \mu^2}{2} \left(\frac{\mu}{\mu_{\rm w}}\right)^{-0.14}$$

From figure, $J_f = 0.007$

$$= 8 \ge 0.007 \ge \left(\frac{0.9314}{0.021}\right) \left(\frac{3.066}{0.467}\right) (997) \left(\frac{485.5}{997}\right)^2$$

 $\Delta P_s = 88.25 \text{ Pa}$

Tube side

$$\Delta P_{t} = N_{p} \left[8 \times J_{h} \times \left(\frac{L}{d_{i}} \right) \left(\frac{\mu}{\mu_{w}} \right)^{-m} + 2.5 \right] \times \frac{\rho u_{t}^{2}}{2}$$
$$= 2 \left[8 \times 0.0038 \times (121.84) + 2.5 \right] \times \frac{12.7 \ (8.531)^{2}}{2}$$

ΔPt = 5863 Pa

7.2.3 E-5 (Shell and Tube Heat Exchanger)

Water (Shell side):	Process gas (Tube side):
K = 0.6108 W/m.ºC	K = 0.1408 W/m.ºC
$\mu = 8.9 \text{ x } 10^{-4} \text{ Ns/m}^2$	μ = 1.236 x 10 ⁻⁵ Ns/m ²
C _p = 4.312 kJ/kg. °C	C _p = 3.913 kJ/kg. °C
$\rho = 1000 \text{ kg/m}^3$	mˈ = 20.61 kg/s
ṁ = 79.36 kg/s	$\rho = 12.1 \text{kg}/\text{m}^3$

$$T_{hi} = 105^{\circ}C$$
; $T_{ho} = 36^{\circ}C$

 $T_{ci} = 60 \text{ °C}$; $T_{co} = 70 \text{ °C}$

Heat duty:

$$Q = \dot{m} \ge C_p \ge \Delta T$$

= 20.61 x 3.913 x 69

= 3566 kW

Flow rate of Water:

$$Q = \dot{m} \times C_p \times \Delta T \rightarrow \dot{m} = \frac{Q}{Cp \times \Delta T}$$
$$\dot{m} = \frac{3566}{4.312 \times 10}$$
$$\dot{m} = 79.36 \text{ kg/s}$$

Log Mean Temperature Difference (LMTD):

$$LMTD = \frac{\Delta T2 - \Delta T1}{\ln\left(\frac{\Delta T2}{\Delta T1}\right)} \qquad \Delta T_2 = Temperature difference of hot$$

fluids

fluids

LMTD = $\frac{69-10}{\ln (69/10)}$ LMTD = 29.40 °C R = $\frac{T_{1-}T_{2}}{t_{2}-t_{1}}$ S = $\frac{t_{2}-t_{1}}{t_{1}-t_{1}}$ R = $\frac{105-36}{70-60} = 6.9$ S = $\frac{70-60}{105-60} = 0.22$

From graph, 1 shell and 2 tube passes

 $F_t = 0.96$

So, corrected LMTD (Δt) = 0.96 x29.40= 28.22 °C

From figure, $U = 300 \text{ W/m}^2 \text{ °C}$

$$A = \frac{3566}{300 \times 28.22} = 271 m^2$$

0.019m Outer diameter and 0.016m Internal diameter - BWG 17

Length of tube = L = 6.096

Area of tube = $\pi x6.096x0.019 = 0.3637 \text{ m}^2$

Number of tubes required = $\frac{271}{0.3637}$ = 745 tubes

Bundle diameter = $D_b = d.(\frac{N_s}{\kappa})^{0.25} = 0.714 \text{ mm}$

From graph Clearance = 0.092

Shell diameter = 0.714 +0.092 = 0.806m

Shell side co-efficient

Baffle spacing (l_B) = 0.5 x D_s = 0.403 m

 $P_t = 1.25 \text{ x} d_o = 0.02375 \text{ m}$

$$A_{s} = \frac{(P_{t-} d_{0}) \times D_{s}}{P_{t}} \text{ change}$$

$$A_{s} = 0.1612 \text{ m}^{2}$$
Mass velocity (Ga) = $\frac{\omega}{A_{s}} = \frac{79.37}{0.1612} = 492.301 \text{ kg/m}^{2}\text{s}$

$$D_{e} = \frac{1.10}{d_{0}} (P_{t}^{2} - 0.917 d_{0}^{2})$$

$$D_{e} = 0.0134$$
Reb = 8302
From figure, J_{h} = 0.0003
Pr = $\frac{\mu \times Cp}{K} = 1.49$

$$\frac{h_{o}}{\theta_{s}} = \frac{J_{h} \times \text{Re} \times \text{Pr}^{0.33} \times \text{K}_{f}}{\text{De}} = 1281 \text{ W/m}^{2} \cdot \text{°C}$$

$$\theta_{s} = 1$$

$$h_{o} = 1281 \text{ W/m}^{2} \cdot \text{°C}$$
Tube side co-efficient

(6.26)

Tube side co-efficient

Tube cross section area= $\frac{\pi}{4}$ d_i²

Tube per pass = $\frac{745}{2}$ = 372.56 tubes

Total flow area = $372.57 \times 0.000201 = 0.074574 \text{ m}^2$

Mass velocity (Ga) =
$$\frac{\omega}{A} = \frac{20.61}{0.03744} = 276 \text{ kg/m}^2\text{s}$$

 $u = \frac{276}{12.1} = 22.802 \text{ m/s}$
 $\text{Re} = \frac{\text{Di x Ga}}{\mu} = 357267.18$
 $\text{Pr} = \frac{\mu \text{ x Cp}}{K} = \frac{1.22 \times 10 - 5(3.967 \times 10 - 3)}{0.1454} = 0.3418$
 $\text{L/d} = 381$

From figure, heat transfer factor $(J_h) = 0.0035$

$$\frac{h_i}{\theta_t} = \frac{J_h \operatorname{x} \operatorname{Re} \operatorname{x} \operatorname{Pr}^{0.33} \operatorname{x} \operatorname{K}_f}{d_i} = 7721 \text{ W/m}^2.\text{°C}$$

$$\frac{h_i}{\theta_t} = 7721 \text{ W/m}^2.\text{°C}$$

Mean Wall Temperature θ_t :

$$\left(\frac{\mu}{\mu_{w}}\right)^{0.14} = 1$$

 $h_i = 7721 \text{ W/m}^2.^{\circ}\text{C}$

Overall Co-efficient:

$$h_{io} = h_i \, \mathrm{x} \, \frac{\mathrm{ID}}{\mathrm{OD}} = 7721 \, \mathrm{x} \, \frac{0.016}{0.019}$$

 h_{io} =6501 W/m². °C

$$U_c = \frac{hio \times ho}{hio + ho} = 1124 \text{ W/m}^2. \text{ °C}$$

For $R_d = 0.003$ from table

 $R_d = \frac{Uc - UD}{UD * Uc}$

$$U_D = 312 \text{ W/m^2}. \circ C$$

Since,

$$\frac{U_{cal} - U_{ass}}{U_{ass}} \ge 100 = 14.3 \% < 30 \%$$

Acceptable design

Pressure drop:

Shell side

$$\Delta P_{\rm s} = 8 \text{ x } J_{\rm f} \text{ x} \left(\frac{\text{Ds}}{\text{d}_{\rm e}}\right) \left(\frac{\text{L}}{\text{L}_{\rm B}}\right) \frac{\rho \mu^2}{2} \left(\frac{\mu}{\mu_{\rm w}}\right)^{-0.14}$$

From figure, $J_f = 0.003$

$$= 8 \ge 0.003 \ge \left(\frac{0.806}{0.034}\right) \left(\frac{6.096}{0.403}\right) \left(\frac{(997) \ge 492}{997}\right)^2$$

 $\Delta P_{\rm s}$ = 5301 Pa

Tube side

$$\Delta P_{t} = N_{p} \left[8 \times J_{h} \times \left(\frac{L}{d_{i}} \right) \left(\frac{\mu}{\mu_{w}} \right)^{-m} + 2.5 \right] \times \frac{\rho u_{t}^{2}}{2}$$
$$= 2 \left[8 \times 0.0035 \times (381) + 2.5 \right] \times \frac{12.7 (22)^{2}}{2}$$
$$\Delta Pt = 77117 \text{ Pa}$$

7.2.4 E-3 (Shell and Tube Heat Exchanger)

Water (Shell side):	Process gas (Tube side):
K = 0.6108 W/m.ºC	K = 0.1408 W/m.ºC
$\mu = 8.9 \text{ x } 10^{-4} \text{ Ns/m}^2$	μ = 1.236 x 10 ⁻⁵ Ns/m ²
C _p = 4.312 kJ/kg. °C	C _p = 3.913 kJ/kg. °C
$\rho = 1000 \text{ kg/m}^3$	ḿ = 22.3 kg/s
ṁ = 67.86 kg/s	$\rho = 12.1 \text{kg}/\text{m}^3$

 T_{hi} = 328°C ; T_{ho} = 203 °C

 T_{ci} = 30 °C ; T_{co} = 77 °C

Heat duty:

 $\mathbf{Q}=\dot{\mathbf{m}} \ge \mathbf{C}_{\mathrm{p}} \ge \Delta \mathbf{T}$

= 67.86 x 3.913 x 45

= 15000 kW

Flow rate of Water

$$Q = \dot{m} \times C_p \times \Delta T \rightarrow \dot{m} = \frac{Q}{Cp \times \Delta T}$$
$$\dot{m} = \frac{15000}{4.312 \times 45}$$
$$\dot{m} = 67.86 \text{ kg/s}$$

Log Mean Temperature Difference (LMTD):

$$LMTD = \frac{\Delta T2 - \Delta T1}{\ln \left(\frac{\Delta T2}{\Delta T1}\right)} \qquad \Delta T_2 = Temperature difference of hot$$

fluids

 ΔT_1 = Temperature difference of cold

fluids

LMTD =
$$\frac{125 - 45}{\ln (125/45)}$$

LMTD = 78.30 °C
R = $\frac{T_1 - T_2}{t_2 - t_1}$
S = $\frac{t_2 - t_1}{t_1 - t_1}$
R = $\frac{328 - 203}{75 - 30} = 2.77$
S = $\frac{75 - 30}{328 - 30} = 0.15$

From graph, 1 shell and 2 tube passes

 $F_t = 0.98$

So, corrected LMTD (Δt) = 0.96 x78.03= 77.281 °C

 $U = 300 \text{ W/m}^2 \circ \text{C}$ from above table

$$A = \frac{1500000}{300 \text{ x } 77.22} = 646.98 \text{m}^2$$

0.003m Outer diameter and 0.025m Internal diameter - BWG 17

Length of tube = L = 3.66

Area of tube = $\pi x3.66x0.03 = 0.345 m^2$

Number of tubes required = $\frac{646.98}{0..345}$ = 1875 tubes

Bundle diameter = $D_b = d.(\frac{N_s}{K})^{0.25} = 1.72 m$

From graph Clearance = 0.95

Shell diameter = 1.72 +0.95 = 2.76m

Shell side co-efficient:

Baffle spacing $(l_B) = 0.5 \text{ x } D_s = 1.335 \text{ m}$ $P_t = 1.25 \text{ x} d_0 = 0.0375 \text{m}$ $A_s = \frac{(P_{t-} d_0) \times D_s}{P_{t-}}$ change $A_s = 0.534 \text{ m}^2$ Mass velocity (Ga) = $\frac{\omega}{A_s} = \frac{22.5412}{0.534} = 127 \text{ kg/m}^2 \text{s}$ $D_e = \frac{1.10}{d_0} \left(P_t^2 - 0.917 d_0^2 \right)$ $D_e = 0.02123$ $Re_{b} = 3039$ From figure, $J_h = 0.0007$ $Pr = \frac{\mu x Cp}{\kappa} = 0.00621$ $\frac{h_o}{\theta_s} = \frac{J_h \operatorname{x} \operatorname{Re} \operatorname{x} \operatorname{Pr}^{0.33} \operatorname{x} \operatorname{K}_f}{\operatorname{De}} = 9155.38 \text{ W/m}^2 \cdot {}^{\circ}\mathrm{C} \qquad \theta_s = 1$ $h_o = 9155.38 \text{ W/m}^2. \, ^{\circ}\text{C}$ **Tube side co-efficient:** Tube cross section area= $\frac{\pi}{4}d_{i^2}$ $= 0.0005 \text{ m}^2$ Tube per pass = $\frac{1875}{2}$ = 937.56 tubes Total flow area = 937.56 x 0.0005 = 0.4687 m² Mass velocity (Ga) = $\frac{\omega}{A} = \frac{52.19}{0.467} = 111.35 \text{ kg/m}^2 \text{ s}$ $u = \frac{52.196}{12.6} = 73.7 \text{ m/s}$ $Re = \frac{Di \times Ga}{\mu} = 1360000$ $Pr = \frac{\mu x Cp}{\kappa} = 0.0556$

L/d = 146

From figure, heat transfer factor $(J_h) = 0.0035$

$$\frac{h_i}{\theta_t} = \frac{J_h \, x \, \text{Re} \, x \, \text{Pr}^{0.33} \, x \, \text{K}_f}{d_i} = 3680 \, \text{W/m}^2.^{\circ}\text{C}$$

 $\frac{h_i}{\theta_t}$ = 3680 W/m².°C

Mean Wall Temperature θ_t :

$$\left(\frac{\mu}{\mu_{W}}\right)^{0.14} = 1$$

 $h_i = 3680 \text{ W/m}^2.^{\circ}\text{C}$

Overall coefficient:

$$h_{io} = h_i \ge \frac{10}{00} = 3680 \ge \frac{0.025}{0.03}$$

$$h_{io} = 3066 \text{ W/m}^2. \text{ °C}$$

$$U_c = \frac{hio \times ho}{hio + ho} = 2297 \text{ W/m}^2. \text{ °C}$$

For $R_d = 0.003$ from table

$$R_d = \frac{Uc - UD}{UD * Uc}$$

$$U_D = 291 \text{ W/m^2}. \circ C$$

Since,

$$\frac{U_{cal} - U_{ass}}{U_{ass}} \ge 100 = 3,06 \% < 30 \%$$

Acceptable design

Pressure drop:

Shell side

$$\Delta P_{\rm s} = 8 \ge J_{\rm f} \ge \left(\frac{\rm Ds}{\rm d_e}\right) \left(\frac{\rm L}{\rm L_B}\right) \frac{\rho \mu^2}{2} \left(\frac{\mu}{\mu_{\rm w}}\right)^{-0.14}$$

From figure, $J_f = 0.005$

$$= 8 \ge 0.005 \ge \left(\frac{2.67}{0.0213}\right) \left(\frac{3.66}{1.335}\right) \left(\frac{1000 \ge 492}{1000}\right)^2$$

 $\Delta P_s = 27000 \text{ Pa}$

Tube side

$$\Delta P_{t} = N_{p} \left[8 \times J_{h} \times \left(\frac{L}{d_{i}} \right) \left(\frac{\mu}{\mu_{w}} \right)^{-m} + 2.5 \right] \times \frac{\rho u_{t}^{2}}{2}$$
$$= 2 \left[8 \times 0.0017 \times (146) + 2.5 \right] \times \frac{8.11 \ (13.72)^{2}}{2}$$

 $\Delta Pt = 68.5 k Pa$

7.2.5 E-10 (Shell and Tube Heat Exchanger)

Process Gas (Shell side):	Process gas (Tube
side):	
K = 0.1452 W/m.ºC	K = 0.1408 W/m.ºC
μ = 1.204 x 10 ⁻⁵ Ns/m ² Ns/m ²	μ = 1.236 x 10 ⁻⁵
C _p = 4.312 kJ/kg. °C	C _p = 3.913 kJ/kg. °C
$\rho = 8.1 \text{ kg/m}^3$	$\rho = 12.1 \text{kg/m}^3$

 $T_{hi} = 346^{\circ}C$; $T_{ho} = 223^{\circ}C$

 $T_{ci} = 44 \,^{o}C$; $T_{co} = 164 \,^{o}C$

Heat duty:

 $\mathbf{Q}=\dot{\mathbf{m}} \ge \mathbf{C}_{\mathrm{p}} \ge \Delta \mathbf{T}$

= 31.9 x 3.913 x 123

= 11900 kW

Log Mean Temperature Difference (LMTD):

$$LMTD = \frac{\Delta T2 - \Delta T1}{\ln\left(\frac{\Delta T2}{\Delta T1}\right)} \qquad \Delta T_2 = Temperature difference of hot$$

fluids

fluids

 $LMTD = \frac{123 - 120}{\ln (123/120)}$ LMTD = 121.49 °C $R = \frac{T_1 - T_2}{t_2 - t_1}$ $S = \frac{t_2 - t_1}{t_1 - t_1}$ $R = \frac{346 - 223}{164 - 44} = 1.023$ $S = \frac{164 - 44}{346 - 44} = 0.39$

From graph, 1 shell and 2 tube passes

 $F_t = 0.96$

So, corrected LMTD (Δt) = 0.96 x121.49= 116.63 °C

From figure, $U = 300 \text{ W/m}^2 \text{ °C}$ from above table

 $A = \frac{1190000}{300 \times 116.22} = 102.03 \text{m}^2$

0.025m Outer diameter and 0.022m Internal diameter - BWG 17

Length of tube = L = 4m

Area of tube = $\pi x4x0.025 = 0.191 m^2$

Number of tubes required = $\frac{102.03}{0.19}$ = 534 tubes

Bundle diameter = $D_b = d.(\frac{N_s}{K})^{0.25} = 0.8074 \text{ mm}$

From graph Clearance = 0.089

Shell diameter = 0.8074 +0.089 = 0.8969m

Shell side co-efficient:

Baffle spacing $(l_B) = 0.5 \times D_s = 0.445 \text{ m}$

Pt = 1.25 x d_o = 0.031255m
A_s =
$$\frac{(P_{t-} d_0) \times D_s}{P_t}$$
 change
A_s = 0.178 m²
Mass velocity (Ga) = $\frac{\omega}{A_s} = \frac{85}{0.179} = 477 \text{kg/m}^2 \text{s}$
De = $\frac{1.10}{d_0}$ (Pt² - 0.917do²)
De = 0.0177
Reb = 4036
From figure, J_h = 0.0021
Pr = $\frac{\mu \times Cp}{K} = 0.0031$
 $\frac{h_o}{\theta_s} = \frac{J_h \times \text{Re} \times \text{Pr}^{0.33} \times \text{K}_f}{\text{De}} = 1449 \text{ W/m}^2. \text{ oc}$ $\theta_s = 1$

 $h_o = 1449 \text{ W/m}^2. \text{ °C}$

Tube side co-efficient:

Tube cross section area= $\frac{\pi}{4}$ di² = 0.00038 m²

Tube per pass = $\frac{534}{2}$ = 267 tubes

Total flow area = $267 \times 0.00038 = 0.1014m^2$

Mass velocity (Ga) = $\frac{\omega}{A} = \frac{130.35}{0.1014} = 128.5 \text{ kg/m}^2\text{s}$

$$u = \frac{27128,56}{8.11} = 15.802 \text{ m/s}$$

$$Re = \frac{\text{Di x Ga}}{\mu} = 13523$$

$$Pr = \frac{\mu x \text{ Cp}}{K} = 0.0035$$

$$L/d = 181$$

From figure, heat transfer factor $(J_h) = 0.0035$

 $\frac{h_i}{\theta_t} = \frac{J_h \times \operatorname{Re} \times \operatorname{Pr}^{0.33} \times \operatorname{K}_f}{d_i} = 6869 \text{ W/m}^2.\text{°C}$ $\frac{h_i}{\theta_t} = 6869 \text{ W/m}^2.\text{°C}$

Mean Wall Temperature θ_t :

 $(\frac{\mu}{\mu_{W}})^{0.14} = 1$

$$h_i = 6869 W/m^2.°C$$

Overall Co-efficient

$$h_{io} = h_i \ge \frac{10}{00} = 6869 \ge \frac{0.022}{0.025}$$

 $h_{io} = 6044 \text{ W/m}^2. \text{ °C}$

$$U_c = \frac{hio x ho}{hio + ho} = 1168 W/m^2$$
. °C

For $R_d = 0.003$ from table

 $R_d = \frac{Uc - UD}{UD * Uc}$

$$U_D = 259 \text{ W/m^2}. \circ C$$

Since,

$$\frac{U_{cal} - U_{ass}}{U_{ass}} \ge 100 = 13 \% < 30 \%$$

Acceptable design

Pressure drop

Shell side

$$\Delta P_{\rm s} = 8 \text{ x } J_{\rm f} \text{ x} \left(\frac{\text{Ds}}{\text{d}_{\rm e}}\right) \left(\frac{\text{L}}{\text{L}_{\rm B}}\right) \frac{\rho \mu^2}{2} \left(\frac{\mu}{\mu_{\rm w}}\right)^{-0.14}$$

From figure, $J_f = 0.0021$

$$= 8 \ge 0.003 \ge \left(\frac{0.025}{0.0177}\right) \left(\frac{4}{0.45}\right) \left(\frac{(9.1) \ge 5.8}{2}\right)^2$$

 $\Delta P_s = 29.01 \text{k Pa}$

Tube side

$$\Delta P_{t} = N_{p} \left[8 x J_{h} x \left(\frac{L}{d_{i}} \right) \left(\frac{\mu}{\mu_{w}} \right)^{-m} + 2.5 \right] x \frac{\rho u_{t}^{2}}{2}$$

$$= 2[8 \times 0.04 \times (181) + 2.5] \times \frac{8.1 \ (15.8)^2}{2}$$

ΔPt =68.8k Pa

CHAPTER 8

COSTING AND HAZOP ANALYSIS

Costing is very important because after efficiency it is the economics that matter in designing a plant. The design Engineer must be able to make quick, fast costing estimates to decide between different processes and to choose between them. Chemical plants are made to build profits, so it is very important to do cost analysis before any plant can be placed. For calculating cost of reactors in plant following

Equipment	Size unit, S	Size range	Constant C,£ C,\$		Index n	Comment
<i>Agitators</i> Propeller Turbine	driver power, kW	5-75	1200 1800	1900 3000	0.5 0.5	
<i>Boilers</i> Packaged up to 10 bar 10 to 60 bar	kg/h steam	$(5-50) \times 10^{3}$	70 60	120 100	0.8 0.8	oil or gas fired
<i>Centrifuges</i> Horizontal basket Vertical basket	dia., m	0.5-1.0	35,000 35,000	58,000 58,000	1.3 1.0	carbon steel $\times 1.7$ for ss
Compressors Centrifugal	driver power, kW	20-500	1160	1920	0.8	electric, max. press.
Reciprocating			1600	2700	0.8	50 bar
Belt 0.5 m wide 1.0 m wide	length, m	2-40	1200 1800	1900 2900	0.75 0.75	
<i>Crushers</i> Cone Pulverisers	t/h kg/h	20-200	2300 2000	3800 3400	0.85 0.35	
<i>Dryers</i> Rotary Pan	area, m ²	5 - 30 2 - 10	21,000 4700	35,000 7700	0.45 0.35	direct gas fired
<i>Evaporators</i> Vertical tube Falling film	area, m ²	10-100	12,000 6500	20,000 10,000	0.53 0.52	carbon steel
Filters Plate and frame Vacuum drum	area, m ²	5 - 50 1 - 10	5400 21,000	8800 34,000	0.6 0.6	cast iron carbon steel
<i>Furnaces</i> Process Cylindrical Box	heat abs, kW	$10^3 - 10^4$ $10^3 - 10^5$	330 340	540 560	0.77 0.77	carbon steel ×2.0 ss
Reactors Jacketed, agitated	capacity, m ³	3-30	9300 18,500	15,000 31,000	0.40 0.45	carbon steel glass lined
Tanks Process vertical horizontal Storage floating roof	capacity, m ³	1-50 10-100 50-8000	1450 1750 2500	2400 2900 4350	0.6 0.6 0.55	atmos. press. carbon steel ×2 for
cone roof		50-8000	1400	2300	0.55	stainless

table was used:

`Table 32 Costing Index table

8.1 Costing of Reactors:

8.1.1 Primary Reformer:

 Q_{avg} = 65800lcal/hr

Qavg= 7652241W/m²

C = 540 n = 0.77 From Table

Ce= CQⁿ

 $Ce = (540) (765241)^{0.77}$

Ce= \$ 3111128

Cost of Catalyst = $\frac{450}{ft^2}$

 $Vc = 31.8m^{3}$

Total Cost of catalyst = \$6221731.9

Total Cost of primary reformer = \$ 3111128 + \$ 6221731.9

Total Cost of primary reformer = \$ 3733302

8.1.2 Secondary Reformer:

Weight of catalyst = 32568 kg

 $Vc = 30.43 m^3$

 $V_R = 48.64 \text{ m}^3$

Cost of catalyst = $373/ft^3$

Total cost of catalyst = Cc x Vc

Total cost of catalyst = \$ 493495

 $C = 540 \ n = 0.77 \ Q = 1.19 \times 10^5 \ kW$

 $Ce = CQ^n$

Ce = \$ 4370840

Total cost of Secondary Reformer = \$4864335

8.1.3 High Temperature Shift:

Weight of catalyst = 66289.7 kg

Cost of catalyst = \$21/kg

Total cost of catalyst = \$ 1403425.59

 $Vc = 87.22 m^3$

$$Ce = CQ^n$$

Q = Vr = 87.22 m 3

C = 31000 n = 0.40 From Table

Total cost of HTS = \$ 1588611

8.1.4 Low Temperature Shift:

Weight of catalyst = 91288 kg

Cost of catalyst = \$ 32/kg

Total cost of catalyst = \$ 2921216

 $Vc = 87.22 m^3$

$$Ce = CQ^n$$

Q = Vr = 111.67 m 3

C = 31000 n = 0.45 From Table

Cost of reactor = \$ 258781.4

Total Cost of LTS = \$ 31999.7

8.1.5 Methanator:

Weight of catalyst = 68426 kg

Cost of catalyst = \$ 15/kg

Total cost of catalyst = \$ 936392

$$Ce = CQ^n$$

Q = Vr = 48.68 m 3

C = 15000 n = 0.45 From Table

Cost of reactor = \$86181

Total Cost of methanator = \$ 1022574

8.1.6 Ammonia Reactor:

Weight of catalyst = 31535.47 kg

Cost of catalyst = \$ 43/kg

Total cost of catalyst = \$ 1356068

 $Vc = 25.2 m^3$

 $Ce = CQ^n$

Q = Vr = 60.54 m 3

C = 15000 n = 0.45 From Table

Cost of reactor = \$ 5869420.9

Total Cost of Ammonia reactor = \$ 6005488

8.2 Costing of Furnace:

 $Q = 2.77 \ge 10^5 \text{ kW}$

C = 560 n = 0.77

 $Ce = 560 \text{ x} (2.77 \text{ x} 10^6)^{0.77}$

Cost of furnace = \$8687552
8.3 Costing of Heat Exchangers:

For costing of Heat Exchangers, the first step is to know the area of heat exchanger. By knowing the area, material of shell and tubes, pressure of heat exchanger and type of head of heat exchanger we can calculate the cost of heat exchanger in 2004

Figure 29 index graph (A) for costing of exchangers

Figure 28 Cost indexing graph (B)

by using these graphs. We need calculate cost of heat exchanger for the 2020. For this purpose, graph (B) is used.

By using this formula, we can calculate the cost of heat exchanger in 2020.

Cost in 2020 = (<u>Cost in 2004</u>) (<u>Index in 2020</u>)

(Index in 2004)

8.3.1 Exchanger E-1

 $Area = 336m^2$

Cost in 2004 = (Bare cost from figure) x (Pres. Factor) x (T.F)

Carbon steel shell and carbon steel tubes From Figure

Cost in 2004= (50,000) x (1.3) x (1) = \$65000

Index in 2004 = 111 From Figure

Index in 2020 = 167

Cost in 2020 = (<u>Cost in 2004</u>) (Index in 2020)

Index in 2004

Cost in 2020 = \$97792

8.3.2 Exchanger E-2

Area = $133m^2$

Cost in 2004 = (Bare cost from figure) x (Pres. Factor) x (T.F)

Carbon steel shell and stainless-steel tubes From Figure

Cost in 2004= (60,000) x (1.25) x (0.85) = \$63750

Index in 2004 = 111 From Figure

Index in 2020 = 167

Cost in 2020 = (<u>Cost in 2004</u>) (<u>Index in 2020</u>)

Index in 2004

Cost in 2020 = \$ 959125

8.3.3 Exchanger E-3

 $Area = 646m^2$

Cost in 2004 = (Bare cost from figure) x (Pres. Factor) x (T.F)

Carbon steel shell and carbon steel tubes From Figure

Cost in 2004= (105000) x (1.3) x (1) = \$136500

Index in 2004 = 111 From Figure

Index in 2020 = 167

Cost in 2020 = (<u>Cost in 2004</u>) (Index in 2020)

Index in 2004

Cost in 2020 = \$ 205346

8.3.4 Exchanger E-4

Area = 550 m^2

Cost in 2004 = (Bare cost from figure) x (Pres. Factor) x (T.F)

Carbon steel shell and carbon steel tubes From Figure

Cost in 2004= (105000) x (1.3) x (1) = \$130000

Index in 2004 = 111 From Figure

Index in 2020 = 167

Cost in 2020 = (<u>Cost in 2004</u>) (Index in 2020)

Index in 2004

Cost in 2020 = \$ 197363

8.3.5 Exchanger E-5

Area = 271 m^2

Cost in 2004 = (Bare cost from figure) x (Pres. Factor) x (T.F)

Carbon steel shell and carbon steel tubes From Figure

Cost in 2004= (105000) x (1.3) x (1) = \$104000

Index in 2004 = 111 From Figure

Index in 2020 = 167

Cost in 2020 = (<u>Cost in 2004</u>) (<u>Index in 2020</u>)

Index in 2004

Cost in 2020 = \$ 156468

Similarly, the cost of remaining heat exchangers is calculated and given in the table below.

Exchangers	Cost
E-6	(\$)215144
E-7	(\$)195585
E-8	(\$)219055
E-9	(\$)234702
E-10	(\$)244481
E-11	(\$)260349
E-12	(\$)215144
E-13	(\$)191673

Table 33 Heat Exchangers Costs

8.4 Costing of Compressors:

For the costing of compressors, we need to know about the capacity of compressor. By using graph below with known capacity, we can calculate the purchased cost in 1998.

After calculating the purchase cost, we can find the cost index in 1998 and 2020.

Using this formula, we the find the cost of compressor in 2020.

Cost in 2020 = (<u>Cost in 1998</u>) (Index in 2020)

Index in 1998

8.4.1 Compressor C1:

Power = 1.36 MW

Capacity = 28439 ft³/min

Engineering News Record Construction Cost Index Published in the Engineering News Pacard Figure 31 Compressors Cost Index

Year	Annual Average
1913	100
1960	824
1965	971
1970	1381
1975	2212
1980	3237
1985	4195
1990	4732
1995	5471
1996	5620
1997	5825
1998	5920
1999	6060
2000	6222

Cost of compressor in 1998 = \$1500000 From Figure

Cost in 2020 = (<u>Cost in 1998</u>) (Index in 2020)

Index in 1998

Cost index in 1998 = 5920 From Figure

Cost index today = 6288

Cost in 2020 = 1500000 x 6288/5920

Cost in 2020 = \$1593243

8.4.2 Compressor C2:

Power = 8.48 MW

Capacity =177331 ft³/min

Cost of compressor in 1998 = \$8000000 From Figure

Cost in 2020 = (<u>Cost in 1998</u>) (Index in 2020)

Index in 1998

Cost index in 1998 = 5920 From Figure

Cost index today = 6288

Cost in 2020 = 8000000 x 6288/5920

Cost in 2020 = \$ 8497297

8.4.3 Compressor C:3

Power = 4.60 MW

Capacity = 98285 ft³/min

Cost of compressor in 1998 = \$ 500000 From Figure

Cost in 2020 = (<u>Cost in 1998</u>) (Index in 2020)

Index in 1998

Cost index in 1998 = 5920 From Figure

Cost index today = 6288

Cost in 2020 = 500000 x 6288/5920

Cost in 2020 = \$ 5310810

8.4.4 Compressor C4:

Power = 9.9 MW

Capacity = $207026 \text{ ft}^3/\text{min}$

Cost of compressor in 1998 = \$ 11000000 From Figure

Cost in 2020 = (<u>Cost in 1998</u>) (Index in 2020)

Index in 1998

Cost index in 1998 = 5920 From Figure

Cost index today = 6288

Cost in 2020 = 11000000 x 6288/5920

Cost in 2020 = \$ 1163783.78

8.4.5 Compressor C5:

Power = 7.03 MW

Capacity = 147218 ft³/min

Cost of compressor in 1998 = \$ 7000000 From Figure

Cost in 2020 = (<u>Cost in 1998</u>) (Index in 2020)

Index in 1998

Cost index in 1998 = 5920 From Figure

Cost index today = 6288

Cost in 2020 = 7000000 x 6288/5920

Cost in 2020 = \$ 7435135

8.6 Total Cost:

		Process type	
Item	Fluids	Fluids- solids	Solids
1. Major equipment, total purchase			
cost	PCE	PCE	PCE
f_1 Equipment erection	0.4	0.45	0.50
f ₂ Piping	0.70	0.45	0.20
f 3 Instrumentation	0.20	0.15	0.10
f_4 Electrical	0.10	0.10	0.10
f 5 Buildings, process	0.15	0.10	0.05
*f ₆ Utilities	0.50	0.45	0.25
*f7 Storages	0.15	0.20	0.25
*f ₈ Site development	0.05	0.05	0.05
*f9 Ancillary buildings	0.15	0.20	0.30
2. Total physical plant cost (PPC) $PPC = PCE (1 + f_1 + \dots + f_9)$			
$= PCE \times$	3.40	3.15	2.80
f_{10} Design and Engineering	0.30	0.25	0.20
f_{11} Contractor's fee	0.05	0.05	0.05
f_{12} Contingency	0.10	0.10	0.10
$= PPC \times$	1.45	1.40	1.35

Table 6.1. Typical factors for estimation of project fixed capital cost

*Omitted for minor extensions or additions to existing sites.

Figure 32 Capital cost estimation factors list

Table	6.	6.	Summarv	of	prod	uction	costs
	· · · ·		Contractory (-	P1 00		

Variable costs 1. Raw materials 2. Miscellaneous materials 3. Utilities 4. Shipping and packaging	<i>Typical values</i> from flow-sheets 10 per cent of item (5) from flow-sheet usually negligible
Sub-total A	
Fixed costs 5. Maintenance 6. Operating labour 7. Laboratory costs 8. Supervision 9. Plant overheads 10. Capital charges 11. Insurance 12. Local taxes 13. Royalties	5–10 per cent of fixed capital from manning estimates 20–23 per cent of 6 20 per cent of item (6) 50 per cent of item (6) 10 per cent of the fixed capital 1 per cent of the fixed capital 2 per cent of the fixed capital 1 per cent of the fixed capital
Sub-total B	
Direct production costs A + B 13. Sales expense 14. General overheads 15. Research and development	20–30 per cent of the direct production cost
Sub-total C	
Annual production $cost = A + B + C =$	
Production cost $f/kg = \frac{Ann}{Ann}$	ual production cost ual production rate

Figure 33 Summary of production cost

Table 34 Physical Cost of Plant

Items	Cost (\$ Million)
Equipment Erection	0.4
Piping	0.70
Instrumentation	0.20
Electrical	0.10
Process	0.15
Storages	0.50
Purchase Cost Equipment (PCE)	87
Physical Plant Cost (PPC)	295

Table 33 Physical Cost of Plant

TOTAL CAPITAL COST	
Working Capital (WC)	29.09 \$ Million
Total Capital	458 \$ Million

Table 34 Total capital cost of the plant

FIXED CAPITAL	
Items	Cost (\$ Million)
Design and Engineering	0.30
Contingencies	0.05
Contractor's fees	0.10
Fixed Capital (FC)	428

Table 35 Fixed capital Cost of the plant

FIXED OPERATING COST			
Items	Cost (\$ Million)		
Maintenance	32.9		
Capital Charges	45.8		
Plant Overhead	9.2		
Local Taxes	4.5		
Royalties	4.5		
Fixed Operating Cost (FOC)	96.5		

Table 36 Fixed Operating Cost of the Plant

VARIABLE OPERATING COST		
Items	Cost (\$ Million)	
Raw Material	.8	
Shipping and packaging	Negligible	
Variable Operating Cost (VOC)	.8	

Table 37 Variable Operating Cost of the plant

TOTAL OPERATING COST	
Items	Cost (\$ Million)
Direct Production Cost	97.29
Sales Expense	
General Overheads	19.5
Research & Development	
Total Operating Cost	116.3

Table 38 Total operating cost of the plant

REVENUE & NET PROFIT	
Cost of Urea	\$ 27/kg
Per annum Urea Production	724 e+06 kg
Revenue	\$145 Million
Net Profit	\$ 32 Million

Table 39 Revenue and profits

8.7 HAZOP Analysis:

HAZOP analysis stands for hazard and operability analysis. This safety analysis finds its application in identifying potential risks and hazards surrounding an industrial process. HAZOP analysis deals to minimize accidents at plants that can lead to undesirable products. Following are the goals achieved by HAZOP hazard analysis:

- 1. Identification of hazard.
- 2. Extent of the damage.
- 3. Guidelines to solve the problem.

8.7.1 HAZOP Guide Words:

HAZOP utilizes a set of Guide words that identify probable deviations that can occur during a chemical process. These guide words prove their worth by allowing a systematic and consistent procedure through brainstorming. Some of these guide words which are selected by the risk management teams and are used for hazard management are as follows:

Sr.	Guide Word	Meaning
No.		
1	NO or NOT	Complete contradiction of original design
2	LESS	Decrease quantitatively
3	MORE	Increase quantitatively
4	AS WELL AS	Qualitative enhancement

5	REVERSE	Opposite to the original design
6	OTHER	Entire design
	THAN/INSTEAD	
7	PART OF	Qualitative modification/decrease

Table 40 HAZOP guide words

8.7.2 HAZOP Analysis of heat exchanger:

GUIDE WORDS	DEVIATIONS	CAUSES	CONSEQUNCES	ACTIONS
NO	No flow of	Flow control	Process Gas not	Install High
	cooling water	valve closed	cooled to desired	Temp Alarm
	cooring reace	ruire ciebeu	temperature	1 cmp 1 mm
		Pipe Blockage	temperature	
LESS	Less flow of	Flow control	Temperature of	Install High
	cooling water	valve closed	process gas	Temp Alarm
		Pipe blockage	remain constant	
		- F8-		
MORE	More flow of	Malfunctioning	Process gas	Install Low
	cooling water	of control valve	Temperature	Temp Alarm
			decreases from	
			required value	
D.F.U.F.D.O.F.				
REVERSE	Reverse flow of	Failure of	No outlet for the	Install Check
	process gas	process flow	next reactor.	Valve
		inlet valve		
OTHER THAN	Another	Water source	Ineffective Cooling	Check
	Material beside	contaminated		Concentration
	cooling water			of water in
				Water storage
				tank.

Table 41 HAZOP analysis of heat exchanger

8.7.3 HAZOP analysis of secondary reformer:

GUIDE	DEVIATIONS	CAUSES	CONSEQUNCES	ACTIONS
WORDS				
NO	No Flow of	Feed Line	No reaction	Open Valve To
	reactant	valve is closed	takes place	Allow Reactant
				into the reactor
		Feed Line is	No reactant	Clear Blockage in
		blocked	enters the	feedline
			reactor	
Less	Less Flow of	Feed Line is	Reactants falls	Join/Repair and
	Reactant	loose.	out from field	seal Feed line.
			line before	
			entering reactor	
	Less	Fuel Line is	Incomplete	Repair and seal
	Temperature	loose.	Combustion will	fuel line
			take place.	
	Less	Opening of	Required	Install pressure
	Pressure	PCV.	conversion is not	Control Loop.
			achieved.	
	Less	Valve Opening	Less optimum	Periodic
	Residence	Malfunction	yield	maintenance or
	Time			check up on the
				valve
More	More	Compressor	Reactor operate	Trigger automatic
	Pressure	Control	at high	Shutdown.
		Failure	Temperature	
			than required.	

	More	Very high	Damage catalyst	Equip reactor
	Temperature	amount of fuel	and equipment	system with fail
		and air flow	inside the	open or fail close
		inside the	reactor	valve system.
		reactor.		
As well as	Another	Contamination	Inadequate	Check
	Material	of fuel storage	Combustion in	Composition of
	beside Fuel.	tank.	reactor.	fuel in storage
				tank

Table 42 HAZOP analysis of secondary reformer

CHAPTER 9

INTRUMENTATION AND PROCESS CONTROL

Instrumentation is termed as the use of measuring instruments to look and control a process variable such as level, pressure, flow, temperature, speed. The process control is an emerging field of study in engineering which deals with designing of algorithms and devices for maintaining the output of a specific process with a required range. In process control, control loops and controllers are used to regulate a chemical process and improve effectiveness of the process [17]. Controller is a tool that collects data from a measurement device, contrasts that statistical information to a predetermined set point, and, if needed, suggests a control component to take remedial act. Following are the type of process variables:

- 1. Measured/controlled Variable-is the situation of the process fluid that must be kept at the specified set point.
- 2. Manipulated Variable- The factor that is changed to keep the process variable at set point.

Set point is the value for a process variable which is to be retained at a constant value.

9.1 Control loop and its components:

A control loop is the base on which the architect of process control systems that are applied in the industry. Physically a control loop consists of all the elements that are necessary to control and adjust the set point of the controlled variable.

Following are the components of the control loop:

- 1. Sensors- Device that can access the changes in condition and it is the first thing to measure the variable process in control loop.
- 2. Transducer- Device that translates a mechanical signal into an electrical signal.
- 3. Converters or relay- The conversion of one signal to another signal from a device
- 4. Transmitters- The conversion of reading from sensor to a signal.

- 5. Signals which are pneumatic, analog or digital.
- 6. Indicators-It is a device which is readable by humans and can show information like pressure gauge.
- 7. Records- To record the output from a device.

9.2 Control loop Applied on heat exchanger:

Temperature control loop is applied on the heat exchangers in order to maintain the temperature of the process gas outlet. The control loop applied is based on feedback mechanism in which the action of the system is based on the output of the process.

Manipulated Variable: Cooling water Flow rate Controlled Variable: Temperature of process gas TIT: Temperature Indicator Transmitter TRC: Temperature Recorder Controller TY: Temperature Relay TCV: Temperature Control Valve

Figure 34 PID of Exchanger

9.3 Control Loops applied on Secondary Reformer:

Following control loops were applied on the secondary reformer in order to maintain the temperature of outlet of the process stream and to maintain the pressure of the reactor.

PIT: Pressure Indicator Transmitter

PCR: Pressure Controller Recorder

PY: Pressure Relay

PCV: Pressure Control Valve

FIT: Flow Indicator Transmitter

FCR: Flow Controller Recorder

FV: Flow Relay

FCV: Flow Control Valve

Transfer functions were calculated according to the give calculations and the PID of the control loops was simulated using Simulink. The transfer calculations are given as follows with the Simulink simulation and its results.

9.4 Temperature Control Loop on Secondary Reformer

9.4.1 Transfer Function Derivation:

Apply energy balance on the Secondary Reformer:

(Rate of flow of energy into tank) - (Rate of flow of energy out of tank) +
(Rate of flow of energy on from heat source) =
(Rate of energyaccumulation in tank)

Connecting this energy balance in symbols results in:

$$wC(T_i - T_{ref}) - wC(T - T_{ref}) + q = \rho VC \frac{dT}{dt} - (1)$$

Where T_{ref} is the reference of temperature and C is the capacity of heat of the fluid. At steady state, dT/dt is zero, and (1) can be written as:

$$wC(T_{is} - T_s) + q_s = 0 - (2)$$

Where subscript s has been used to indicate steady state. Subtracting Eq. (2) from Eq. (1) gives:

$$wC(T_i - T_{is}) - wC(T - T_s) + q - q_s = \rho VC \frac{d(T - T_s)}{dt} - (3)$$

If we assume that T_i is constant (and so $T_i = T_{is}$) and introduce the deviation variables,

$$T' = T - T_s$$
$$Q = q - q_s$$

Eq. (3) becomes:

$$-wCT' + Q = \rho VC \frac{dT'}{dt} - (4)$$

Taking Laplace transforms of Eq. (4) gives:

$$-wCT'(s) + Q(s) = \rho VCsT'(s) - (5)$$

Rearranging Eq. (5) produces the following first-order transfer function relating T'(s) and Q(s):

$$\frac{T'(s)}{Q(s)} = \frac{1/wC}{\left(\frac{\rho V}{w}\right)s+1} = \frac{K}{\tau s+1} - (6)$$

9.4.2 Transfer Function for thermocouple:

In order to derive it following assumptions are made:

1.Only film around bulb provide resistance to heat transfer.

2.Only mercury has thermal capacity and can attain uniform temperature instantly.

3. No expansion or contraction of glass wall containing mercury will take place

By applying unsteady-state energy balance,

(*Input rate*) – (*Output rate*) = (*Rate of accumulation*)

We will get:

$$hA(x-y) - 0 = mC\frac{dy}{dt} - (7)$$

In the equation above,

A = surface area of the bulb

C = heat capacity of mercury,

m = Mass in pounds of Mercury.

t = time in unit hour.

h = heat transfer coefficient, Btu/(ft3*h*°F)

This equation states when the heat flows through any film of resistance surrounding a bulb internal energy (mercury) will increase. This increment in value of internal energy can also tell us about temperature changes as well as mercury's expansion depicts thermometer reading. Value of h always depends upon the flow rate and fluid characteristics in which it is present and also the dimensions of involving bulb, h is always constant for thermometer

For steady state process:

$$hA(x_s - y_s) = 0 \qquad -(8)$$

Difference of Equation 7 and 8 will give us

$$hA\{(x - x_s) - (y - y_s)\} = mC \frac{d(y - y_s)}{dt} - (9)$$

 $X=(x-x_s)$

 $Y=(y-y_s)$

Then Eq 9 will now become

$$hA(X-Y) = mC\frac{dY}{dt}$$

Now, if

$$\tau = \frac{mC}{hA}$$

Then

$$(X-Y) = \tau \frac{dY}{dt} - (10)$$

Taking Laplace of Eq 10

$$X(s) - Y(s) = \tau s Y(s)$$

By Rearranging,

$$\frac{Y(s)}{X(s)} = \frac{1}{\tau s + 1}$$

9.5 PID of Temperature control loop

Figure 36 temperature Control PID

Data

P=10

I=3

D=3

For sensor, $\tau = 0.5$

For system, $\tau = 0.5$

Simulink Plot of Temperature control Loop

Figure 37 Simulink Plot

CONCLUSION

Mari Gas Feed			
Components	Moles		
Nitrogen	337		
Carbon dioxide	149.73		
Methane	1494.5		
Ethane	3.75		
Propane	0		
Butane	0		
Total Moles	1984		

The feed comparison is as follows:

Mari Gas (70%) and LNG (30%)		
Components	Moles	
Nitrogen	235.85	
Carbon dioxide	104.52	
Methane	1604.68	
Ethane	29.617	
Propane	6.504	
Butane	2.471	
Total Moles	1984	

Table 45 Mari feed composition

Table 44 Mixed feed composition

From the feed comparison it is clear that number of moles of methane and ethane has increased on the other hand moles of nitrogen has decreased.

Through the moles comparison and cost analysis it is found that using a mixture of RLNG (30%) and Mari gas (70%) as the feed stream in the pre-existing ammonia plant is feasible for profitable urea production. To conclude, the cost of urea produced by using the suggested methodology increases but as suggested by the material balance the amount of moles of ammonia and subsequently urea are also increasing due to increasing H:C ratio as proved by material balance. This increased production of Urea can increase the revenue and the company can still earn profits in the manageable range. Moreover, the RLNG which is to be imported from Qatar is subsidized by the Government of Pakistan to give incentives to the fertilizer companies. The subsidy on RLNG also helps improve the profits for FFC. The thermal demand of the process will also be augmented but within a bearable

range as evidenced by energy balance. This thermal energy demand can easily be managed as it is in a considerable rage. The increased moles of feed require the reactors to have more catalyst for good conversion. The usefulness of this study is in the fact that FFC will not require to change its whole operation rather few alterations to the plant can help them produce urea without big investments. The only adverse impact using a mixture of RLNG and Mari gas is the potential of coke formation due to the presence of propane and butane in the feed. Other alternative technologies like coal or biomass gasification will require FFC huge investments for new equipment and to setup a new plant. Our proposed solution will not only help FFC to continue produce urea at a steady pace but allows urea production to increase with minor changes to pre-existing plant equipment.

Product Stream using Mari Gas		
Components	Moles	
Nitrogen	6.03	
Methane	17.18	
Water	0	
Hydrogen	14.77	
Ammonia	2567	
Argon	2.99	
Total Moles	2607.97	

Product Stream Using Mixture		
Components	Moles	
Nitrogen	1.17	
Methane	13.57	
Water	0	
Hydrogen	41.93	
Ammonia	2712	
Argon	4.27	
Total Moles	2774.44	

Table 47 Product composition with Mari feed

Table 46 Product composition using mixed feed

REFERENCES

- [1] "About Us Fauji Fertilizer Company Limited." https://www.ffc.com.pk/company-profile/about-us/ (accessed Jun. 14, 2020).
- [2] "Manufacturing Plants Fauji Fertilizer Company Limited." https://www.ffc.com.pk/manufacturing-plants/ (accessed Jun. 14, 2020).
- [3] "Mari Petroleum Company Limited." https://mpcl.com.pk/operations/customers/ (accessed Jun. 14, 2020).
- [4] J. R. Freney, J. R. Simpson, and O. T. Denmead, "Volatilization of ammonia," in *Gaseous Loss of Nitrogen from Plant-Soil Systems*, Springer Netherlands, 1983, pp. 1–32.
- [5] "Ammonia Physical And Chemical Properties Of Ammonia Ammonium, Nitrogen, Salts, and Called - JRank Articles." https://science.jrank.org/pages/290/Ammonia-Physical-chemicalproperties-ammonia.html (accessed Jun. 14, 2020).
- [6] "4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY."
- [7] A. E. A. Langel, "United States Patent (19)," no. 19, 1981.
- [8] C. H. Bartholomew, "Catalysis Reviews: Science and Reforming and Methanation Carbon Deposition in Steam Reforming and Methanation," *Catal. Rev. Sci. Eng.*, vol. 24, no. 1, pp. 67–112, 1982, doi: http://dx.doi.org/10.1080/03602458208079650.
- [9] M. T. KHAN, "FFC MAMOON FINAL REPORT.".
- [10] F. Flow, H. Transfer, and M. Transfer, "Coulson & Richardson's."
- [11] "Chemical Process Technology, 2nd Edition | Wiley." https://www.wiley.com/enus/Chemical+Process+Technology%2C+2nd+Edition-p-9781444320251 (accessed Jul. 10, 2020).

- [12] A. A. AL-Dhfeery and A. A. Jassem, "Modeling and simulation of an industrial secondary reformer reactor in the fertilizer plants," *Int. J. Ind. Chem.*, vol. 3, no. 1, pp. 1–8, Dec. 2012, doi: 10.1186/2228-5547-3-14.
- [13] D. Falleiros, B. Lima, F. A. Zanella, M. K. Lenzi, and P. M. Ndiaye, "4 Modeling and Simulation of Water Gas Shift Reactor: An Industrial Case." Accessed: 10-Jul-2020. [Online]. Available: www.intechopen.com.
- [14] C. Kallegoda, "Basic Design of Tubular Steam Reformer." Accessed: 10-Jul-2020. [Online]. Available: https://www.academia.edu/34590154/Basic_Design_of_Tubular_Steam_R eformer.
- [15] "Basic Principles and Calculations in Chemical Engineering David Mautner Himmelblau, James B. Riggs - Google Books." https://books.google.com.pk/books/about/Basic_Principles_and_Calculati ons_in_Che.html?id=Jk26u6f5roC&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepag e&q&f=false (accessed Jul. 10, 2020).
- [16] "Catalytic Ammonia Synthesis: Fundamentals and Practice Google Books." https://books.google.com.pk/books?id=3UM1CHjElUIC&pg=PA213&lpg=P A213&dq=what+is+temkin+tyzhez+equation&source=bl&ots=NAGoSuWx rb&sig=ACfU3U2YP5SVuLAFKhOW4QryKp7oLlS9Lg&hl=en&sa=X&ved=2 ahUKEwiNoJqBh7nqAhUc4OAKHaOBBKgQ6AEwAHoECAoQAQ#v=onepag e&q=what is temkin tyzhez equation&f=false (accessed Jul. 10, 2020).
- [17] P. C. Fundamentals, "Instrumentation & Control Process Control Fundamentals," pp. 1–39.