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Abstract

Type of a tree or species of a tree is its most extraneous property. Remote

sensing has served as great solution to the problems related to manually acquiring

data for tree species classification. Most of the studies in this area of research use

Lidar & satellite imagery or combination of data sources. But these techniques have

some disadvantages like Lidar is not cost effective in smaller areas and ineffective

in rainfall. Hyper-spectral data is not feasible and Multi-spectral data are prone to

factors such as viewing angle, sun angle, day / year time (seasons). Some studies

have used optical imagery with the combination of other data sources. The optical

imagery that have been used does not provide aerial view but side view of the tree

which is not feasible to acquire for large areas. Therefore, there is a need for the

solution which is effective, economical and scalable. A little research has been done

on the classification, with over head view, using low cost commercial drones with

optical sensors.

In this research optical aerial imagery has been used for tree species classification.

Combination of statistical and spatial features is used as input to the two classifiers

artificial neural network (ANN) and support vector machine (SVM). The results

show that 97.4% and 96.26% accuracy, respectively, has been achieved.
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Chapter 1

Introduction

1.1 Overview

Trees play a fundamental role in the ecology. Apart from providing renewable

resources for human activities, they contribute to ecosystem, environment, economy

and society. As a most important natural resource, trees need to be preserved for

clear economical and environmental reasons. Efficient forest management is the an-

swer to preservation of the forest and vegetation[5]. For better understanding of

forest ecosystems and management it is very important to know the tree species

composition of a forest. It would produce valuable information which would be of

great help in estimation of the forest’s economic value. In order to make efficient

decisions, forest species composition is most sought pieces of information for forest

preservation, planning and management, it is essential to obtain timely, accurate

and periodic information regarding tree species[6]. Determining the tree species is

an important topic in forest investigation, management, planning, inventory, envi-

ronmental protection and statistics for relating forest resources[7],[8],[9] to mitigate

problems like deforestation, response to global climate changes and extinction of cer-

tain species. Tree species classification is also an important component of vegetation

resource mapping and wild life habitat mapping. Not only in forest but also in ur-

ban areas vegetation has very vital role in land surface temperature, urban climate,

thermal environment, air quality and noise levels[10],[11],[12],[13],[14]. Detailed and

up-to-date information regarding urban vegetation is required for long-term plan-
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Chapter 1: Introduction

ning purposes.

Government and companies conduct the detailed classification of urban trees via

ground surveys, manual photo interpretation, aerial photography, or remote sensing

interpretation. However, conventional ground surveys and manual photo interpre-

tation can be cost- and time intensive due to the urban scene complexity, landscape

dynamics, and accessibility constraints for private areas. Although field surveys and

manual visual interpretation has been a common practice for decades but it is not a

viable option especially if species mapping and classification is to be done on a large

areas and such information, e.g. vegetation mapping and specie distribution, was

not available for most previous urban centers [15],[16],[17]. Remote sensing serves as

great solution to the problems related to manually acquiring data. New possibilities

and opportunities are offered by innovative methods, rapid evolution of technology

and latest sensors to carry out remote sensing tasks. Advancement in image cap-

turing and image processing technique has allowed image analysis at large scale and

at fine level. Remote sensing is usually carried out using aircraft or satellite. Useful

information can be extracted and employed for tree species related applications.

1.2 Problem Statement

Classification of tree species using spectral and spatial features with advanced

machine learning algorithms.

11



Chapter 1: Introduction

1.3 Aims and Objectives

The main objectives of thesis are:-

• Collection of data-set using aerial optical imagery.

• Spectral and spatial feature extraction for species classification.

• Classify tree species using machine learning algorithms

12



Chapter 2

Literature Review

Tree detection and tree species classification requires remote sensing data with

high spectral information and detailed information of the geometry in order to ex-

tract useful features for classification.

The types of data that are used in tree species classification:

• LiDAR

• Multispectral & Hyper-spectral

• Optical Imagery

2.1 LiDAR

LiDAR is an effective remote sensing method used to examine earth’s surface.

It is a safe and fast method for surveying. It measures the distance of the object by

illuminating light pulses on the target object using pulsed laser light. Reflected light

is sensed by the sensors. Sensors measure the time taken for the pulses to return.

These pulses with other airborne data are used to generate the precise 3-Dimensional

information of earth’s surface. It is a very popular and most preferred technique

in remote sensing to collect data for tree species classification because of its precise

data collection and accuracy. Latest development & technological advancements

has allowed LiDAR systems to capture data from 2500m away with accuracy 5mm

13



Chapter 2: Literature Review

Apart from being precise and accurate, it can be used at any time of the day. It is

not affected by the light variations and can be used at night time. LiDAR provides

a much higher surface density. LiDAR system is equipped with sensors that are not

affected by the geometric distortions such as angular landscapes. It makes complex

data analysis easier as it can be integrated with other data sources. It is a versatile

technology as it can operate in extreme weather conditions and has minimum human

dependency as most processes are automated. Another great feature of LiDAR is

that it can be used on the surfaces that are featureless an inaccessible.

LiDAR is a the most popular tool in tree species classification because canopy

height models (CHMs) can be obtained by using pulses from above tree crown and

surface of the terrain. CHMs are used to acquire information regarding tree height,

crown area and shape of an individual tree[18]. The approach proposed by Bin

Wu et al.[19] derives CHMs from airborne LiDAR data and then contours on the

basis of CHMs. Furthermore, Hierarchical structures of tree crowns are extracted

followed by tree crown delineation accurately 94.21% and 75.07% in two forests.

Lin Cao et al.[20] used small footprint full waveform LiDAR data and obtained

accuracy of 68.6% for six, 75.8% for 4 species classes, and 86.2% for specie classi-

fication between conifers and other broad leaf trees. first a digital terrain model

(DTM) was created from point cloud data. For tree detection canopy height model

(CHM) based algorithm was applied. Full waveform matrix were extracted from

voxel based waveform approach which fer fed to Random Forest(RF) to get classi-

fication results. Daniele Marinelli et al.[21] exploited the fusion of multi-temporal

LiDAR data. Their method was effective and produced confirmed results by first

accurately characterizing crown shapes from high density data and later obtaining

tree parameters from low density point data. Approach proposed by L.I.Duncanson

et al.[22] uses watershed algorithm based delineation of CHM as several other devel-

oped crown delineation algorithms are good at extracting individual tree informa-

tion from LiDAR point cloud data but have difficulty in discriminating the overlap

crowns and also may fail to detect under-story trees. Algorithm used by them cor-

rectly identified 70%,50%,35% and 21% dominant, co-dominant, intermediate and

14
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suppressed trees respectively. C.Vega et al.[23] introduced a framework known as

PTrees. It is a point based segmentation approach for extraction of tree crowns from

LiDAR point cloud data. Their research introduces new normalization approach for

crown identification and characterization as they used absolute maxima rather than

local maxima in order to locate the top peaks in point cloud data. Their framework

was tested in 3 forest areas where they detected 82% of trees correctly and less than

10% false detection rate. Victor et al.[24] aslo proposed a segmentation algorithm

to extract tree crowns using airborne LiDAR data and achieved 98.98%, 92.25% and

74.75% accuracy in three forest areas of 1 ha. Two Step approach was introduced

by Antonio Ferraz et al.[25] which extracted individual tree crowns over tropical

forest using LiDAR data. They used adaptive mean shift (ADM3D)[26] technique

to properly extract individual tree.

Like every other technology LiDAR has limitations and cons. It is cost effective

when dealing with the vast areas but has a high operational cost when used in

applications where surveying is required on smaller area. It works great in almost

all weather conditions but can be ineffective in heavy rainfall and low hanging clouds.

Data quality is degraded in situations where sun angles are high and huge reflections

as LiDAR works on the phenomenon of reflections. It works great on uniform

surfaces but when used on water or on non-uniform surfaces it may not be reliable as

depth of the water may affect the reflections. In addition it may not work as reliably

on dense forest canopies and thick vegetation as pulses of LiDAR may not be able to

penetrate. LiDAR collects huge amount of data points which help in creating precise

and accurate 3-Dimensional view of the surface but analysis and interpretation is

time consuming and increases the overall cost. There are no international protocols

that guide the collection of LiDAR data. In instances where the beam is strong it

can be harmful for human eye. LiDAR technology loses its accuracy and precision

on altitude higher than 2500m because pulses will not be effective at this height.
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2.2 Multispectral & Hyper-spectral

Images of earth and other planets obtained from satellites are known as satellite

imagery. Among many uses and applications of satellite imagery, multispectral and

hyper-spectral, its use in forestry has been in high demand. In terms of resolution,

satellite images have three main types of resolution:

• Spatial resolution: is what size of surface area an image pixel represents.

• Spectral resolution: is defined by the interval size of the wavelength and

the intervals that were measured by the sensors.

• Temporal resolution: is amount of time lapsed to capture same surface area.

Apart from LiDAR, multi-spectral and hyper-spectral data provided by

satellites are prevalently used tool for tree classification[27][28] because of improved

results in classification[29]. Unique opportunities for resource mapping at tree

species level are brought by the arrival of latest satellites such as Sentinel-2, WorldView-

3, WorldView-2, RapidEye and Pleiades[30]. Hyper-spectral data provide high spa-

tial resolution combined with very fine spectral resolution which results in better tree

species classification. Yuanyong Dian et al.[31] tested the effectiveness of combining

spectral and spatial features for tree species classification. In order to reduce the

dimensionality of the hyper-spectral image and highlight the variations minimum

noise fraction(MNF) was used. to extract the features of the canopy GLCM was

used and support vector machine SVM was used as classifier. Results of their exper-

iment showed 85.92% of accuracy in classification of forest trees. Among 64 bands of

AisaEAGLE-II Paras et al.[32] exploited 8-11 selected hyper-spectral bands on pixel

level and plot level classification. Their research obtained accuracy and kappa of

93.50% 0.90 respectively. Their results show that, compared to pixel level, spatially

aggregated plot level classification produce better results.

For identification of land use[33][34] and other features like soil[35], vegetation

type[36] etc, hyper-spectral imagery provide better results due to high spectral res-
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olution and large number of spectral bands. It is also very productive and effec-

tive in mapping diverse environments like estuaries[37] tropical rain forest[38] and

marshlands[39]. Prem Chandra et al. [40] divided the hyper-spectral data to spec-

tral ranges and performed principle component analysis (PCA). First three principle

components of each spectral range were fused to make new data set. Their result

shows that it contained 99.42% of the information of the original hyper-spectral

data. Data set made from principle components was fed into maximum likelihood

classification (MLC) and obtained the overall accuracy of 96.38% which is more

than the accuracy of MLC applied on hyper-spectral data, 89.67%.SVM was used

for classification of hyper-spectral data by Moses et al.[41]. Their method accurately

mapped (overall accuracy = 89.3%) three dominant species found in Dukuduku for-

est in South Africa.For the development of the environmental support and decision

systems tree species distribution and land usce/land cover classes is important[42].

Akhtar Jamil and Bulent Bayram used an ensemble classifiers approach. They used

classifiers different from different families to classify data into four classes. Output

obtained from each classifier was then combined to get final results[42].

Jili Li et al.[6] classified three tree species using multispectral data. They de-

veloped local binary pattern(LBP) based index that proved to be very effective and

over all accuracy of 77% was obtained. Classification was performed on pixel level

and object level. But they classified the trees in generic categories i.e. High Value

Species(HS), Medium Value Species(MS) and Low Value Species. Dawei Wen et al.

[43] semantically classified urban tree species but into generic categories i.e. Road-

side, Residential etc.

Weijia Li et al.[44] designed and implemented a deep convolution neural network

based framework for tree detection using multispectral data. They achieved 92%-

97% accuracy in the areas which is crowded and crowns overlap. Xiaojing Huang et

al.[45] also detected trees using multispectral data with total accuray of 93%. They

proposed a method multiresolution object based tree mapping method that includes
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gaps, crown size and postion of the trees.

However, the main disadvantage of hyper-spectral data is its cost and complex-

ity. Large storage area is required to store hyper-spectral data. In addition fast

computers are required to process the hyper-spectral data. Which if used for small

area could be quite costly. Another hurdle faced by the researchers is program-

ming of hyper-spectral satellite to only transmit important images, as storage and

transmission of all data could prove to be difficult and expensive[46][47][48]. Multi-

spectral data are prone to factors such as viewing angle, sun angle, day / year time

(seasons). In addition to the above mentioned disadvantages of satellite imagery,

trade off between spectral resolution and SNR is required as high spectral resolution

reduces SNR[49].
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2.3 Optical Imagery

Optical images are acquired using the optical part of the spectrum which encom-

passes the visible, infrared and ultraviolet bands of the electromagnetic spectrum.

Optical images can be displayed in a way that is visible to human eye, such as nat-

ural colors. They can also be represented using false color, as in infrared.Leaves are

the main objects that absorb light, in the visible part of the spectrum. They are

able to do so because of the presence of foliar photosynthetic chlorophyll a and b

and caratenoids[50].

Generally optical remote sensing imagery has been used for mapping vegetation,

land-cover and land-use in many areas for past several decades. The first attempt

to use remote sensing data for classification purposes was applied on natural forests

using satellite images (such as Landsat TM and later ETM+)[51]. Hongyu Huang

et al.[52] used optical imagery using um-manned aerial vehicle (UAV) for individual

tree crown delineation (ITDC). Optical images are often combined with other data

sources e.g. laser point cloud to include spectral information[53],[54].Wen Zang et

al.[55] used optical imagery with Lidar for automatic forest species classification.

Their study had two stages. First segmentation of the trees using novel algorithm

and second stage was tree species classification. Clark et al. used optical imagery

with hyper-spectral data to achieve 86% of over-all accuracy.

Techniques that are traditionally used in optical remote sensing suffer from a lack

of the ability to capture three-dimensional forest structural details, particularly in

areas where trees are unevenly-aged, forests with multiple species canopy layers[56].

Among many significant advantages that optical remote sensing has over SAR

remote sensing is that many optical remote sensing data sets with medium spatial

resolution are available online for free, which reduces the cost of analysis consider-

ably. At any given time, optical time series have better temporal resolution than

SAR, when they are not obscured by clouds[57] as there are more optical remote
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sensing systems. Additionally, optical imagery also is not affected by speckle and is

quite efficient for land cover classification such as distinguishing among urban areas,

vegetative surfaces, and water[58]

Advancement in technology and technical development has led to an alternate

to above mentioned data sources for remote sensing. ’Unmanned Aerial Vehicles’

(UAVs) has made the acquisition of image data efficient and economical. UAV also

known as drone and ‘Low Altitude Remote Sensing (LARS)[59] is an important de-

velopment because of its low cost and practicality. Apart from providing its amazing

maneuverability, UAV systems also provides high resolution colored images acquired

by low cost cameras that can be integrated with the UAVs. These images can be

processed as per desired purposes[60]. Optical imagery using UAVs can serve as

an alternate to all the disadvantages and cons of other data sources as UAVs are

portable weigh less and can be operated with low cost cameras to get images. Hung

et al.[61] used RGB imagery, vision band only, for tree crown detection. Geometry,

appearance and color segmentation was used for template matching. Malek et al.[62]

also used vision spectrum to detect palm trees. Ramesh Kestur et al.[63] proposed

a neural network based approach for tree crown detection, delineation, and count-

ing using high resolution RGB images for spectral-spatial classification. Some areas

that were not trees were classified as trees due to spectral intensity similarities. In

order to overcome this problem spatial feature classification was done. Results were

compared with K-Means spectral-spatial clustering. Object based analysis of RGB

optical images was used to detect trees by Serdar Selim et al.[64].

Very less work has been done on the classification, with over head view, using

low cost commercial drones with optical sensors.
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2.4 Combination of data sources

Use of individual data sources i.e. LiDAR, ALS, Satellite Imagery and to some

extent Optical Imagery has bee investigated in many studies to improve the tree

species classification, forest inventory, forest management and other applications.

To make reliable, proper and effective decision, a single data source might not be

adequate enough. For example, hyper-spectral optical data cannot provide the 3-

dimensional data required like plant height and structure of the canopy. LiDAR

data can provide the 3-D information required as mentioned but it will not work

in the classification and differentiation of the tree species with the same height but

this problem is solved by the hyper-spectral data. But once the complementary

information of the two sources are combined, new information provides better and

comprehensive interpretation for tree species classification.

Koetz et al. [65] fused LiDAR and HS bands using support vector machines for

classification of fuel composition. Their results reported better classification per-

formances in comparison to the results of the individual sensors. Dalponte et al.

[66] -combined remote sensing data, LiDAR and Hyper-spectral data, for the clas-

sification of complex areas of the forest. In order to integrate acquired multi-sensor

information, appropriately, multiple classifiers were used. acquired. [67] presented

a model based on Random Forest for the fusion, automatically, Hyper-spectral and

LiDAR data. This model was used to classify eight tree species of African sa-

vanna. Their experiment showed that once some features such as height, extracted

from one data source, are combined with the complementary attributes like spec-

tral information, extracted from the other data source, can considerably improve

the performance of the classification model. Reference [68] proposed and presented

model based om kernel learning that could manage fusion of heterogeneous features

that were acquired from Hyper-spectral and LiDAR data sources. Gaussian kernels

were used to model the similarity of feature between two different data sources.

A framework was proposed by Yokoya et al. [69] to investigate the visual quality

of landscape. The framework compared the physical features mastered from inte-
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grated use of data sources, Hyper-spectral and LiDAR, with the expertise based

on human understanding. The approach utilized in [70] fuses together spectral fea-

tures, in this case, first few principal components extracted from the pre-processed

hyper-spectral data with sizes and shapes of individual trees derived from the Li-

DAR data after individual tree-crown were delineated. Coillie et al. [71] combined

PCA features in augmentation from two sources, Hyper-Spectral and LiDAR, by

transferring the both sources to PCA doamin. Optimal feature set was selected

on the basis accuracy, for classification. Buddenbaum et al. [72] also fused images

from Hyper-spectral and LiDAR data sources for classification of tree species on

the basis of their age. Using image segmentation techtniques,using LiDAR data

as source, geometric information was derived[73]. This information was integrated

with the spectral information extracted from hyper-spectral data to classify urban

areas. Usually multi-sensor data fusion is to stack multiple feature sources together

and use these as the input of a classifier, a simple and directional method. This

is commonly used in remote sensing. Wenzhi Lioa et al. [74] proposed framework

for deep fusion. It integrates the complementary information derived from hyper-

spectral and LiDAR data to map tree species. In addition to the above, the fusion of

’single-band’ or ’multi-band’ LiDAR with Hyper-spectral data, to map tree species,

has been investigated. A solution was proposed for estimating crown size of tree

species by the integration of multi-sensor data. Results of their experiments on

fusing real APEX hyper-spectral and LiDAR data proved to be effective. Proposed

method gives improvements in comparison to use of single data source or current

deep fusion architecture. Classification accuracies ranging from 82.21% to 87.10%

and 76.71% to 83.45%, respectively, were achieved. Luxia et al [75] used the fusion

of hyper-spectral data and remote sensing data, LiDAR, for mapping urban tree

species. They evaluated the potential of the technologies using random forest clas-

sifier. Crown structural information, derived from LiDAR data, was combined with

spectral indices (vegetation indices) and achieved overall accuracy of 51.1%, 61.0%,

and 70.0% using hyper-spectral, LiDAR and the combined data respectively.
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Matheus Pinheiro Ferreira et al. [76] discriminated and mapped tree species

in tropical seasonal semi-deciduous by using airborne hyper-spectral and simulated

multispectral data. Crown eight tree species were quantified on the basis of spectral

variability and three supervised machine learning classifiers were applied to discrim-

inate the species at the pixel level. For the classification of tree species, Holmgren

et al. [54] exploited multispectral imagery fusion and LiDAR data.

Combining two resources may fruitful in terms of increase in the classification

results but the computational complexity would also increase. In addition, so will

the cost of acquiring and processing of the data especially if used in smaller areas.
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Methodology

The proposed methodology for tree species classification comprises of four main

blocks as shown in the Figure 3.1. The first step towards the objectives is acquisition

if data which involves extensive UAV flight operations on target study area. The

acquired data is then pre-processed to create an orthomap. Features were extracted

from the data and were fed to the classifiers for the final classification

Figure 3.1: Method adopted for Tree Species Classification
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3.1 Study Area and Data Set

Data set utilized in this study comes from the Kalowal area in the province of

Punjab, Pakistan. Its coordinates are 31.85◦N and 72.97◦E. Prevailing climate of

this is area is known as local steppe climate. Temperature here averages 23.9◦. The

average rainfall in this area is 403mm. June is the warmest month and the average

temperature in Kalowal is 34.1◦. It is an agricultural area and its main vegetation

are sugarcane, wheat, corn and seasonal fruits (Guava and citrus fruits).

The area was surveyed and selected on 9th February 2019. Area chosen was a

privately owned land. 3 sites were chosen. They were orchards of guava, Fruiter &

Musammi(types of oranges). Among total plantations of fruits, Guava is percentage

of Guava and Citrus (Musammi & Fruiter) is 30-35 and 65-70 respectively.

Total 15 acres of study area was used of which around 3 acres were covered with

guava trees, Musammi trees occupied 3.5 acres of the area and around 6 acres was

covered by Fruiter trees. The area is shown in the Figure 3.2 below.

Figure 3.2: Orthomap of the orchards. Musammi(left), Guava(bottom),

Fruiter(right)
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Optical Imagery was captured on 16th of February 2019 at 11 AM using UAV

drone. To capture the optical imagery (only RGB) DJI Phantom 4 Pro was utilized

shown in the Figure 3.3 below.

Figure 3.3: DJI Phantom 4 Pro

Its is like an entry level DSLR for sky that is designed for cinematography and

photography to provide live HD view. It is one of the most intelligent and easy to

operate drone available. It is ready to be sent up in the sky , out of the box.

This drone has a 4k (4096 x 2160) camera & ultrasonic sensor that is required

for calculating range and distances of the objects from the height of the drone. It

has a 3 axis gimbal which is very active in making photos and videos. The remote

operates on high frequency using 2.4 GHz which can provides control for up to 7km

of range and about 33 feet height. Table 3.1 shows specifications of DJI Phantom 4

Pro.
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Parameter Detail
Max Ascent Speed S-mode: 6 m/s, P-mode: 5 m/s
Max Descent Speed S-mode: 4 m/s, P-mode: 3 m/s
Max Flying Speed modes (S,A,P): 45 mph, 36mph, 31mph

Operating Temperature 32◦to 104◦F (0◦to 40◦C)
Sensing System Infrared

Positioning System GPS/GLONASS
Operating Frequency 2.400 - 2.483 GHz and 5.725 - 5.825 GHz

Altitude Range 0 - 33 feet (0 - 10 m)
Camera Sensor 1” CMOS, Effective pixels: 20M

Modes Still photography and Video Recording
Picture Format JPEG, DNG (RAW), JPEG + DNG
Video Format MP4/MOV (AVC/H.264; HEVC/H.265)

Table 3.1: Specifications of DJI Phantom 4 Pro

It comes with the inbuilt capability of obstacle detection and collision avoidance

during the flight. If it detects and object in its path, either it will stop or auto-

matically change the course around the object. For object detection and collision

avoidance, this machine uses front, backward, and rear looking optical sensors to

detect objects to 50 feet in front of and 30 feet beneath.

DJI go 4 app was used to fly the drone using android mobile by mounting the

mobile device on the remote controller of the DJI drone. It is the base app for any

DJI drones like Mavic, Mavic pro and Phantom. It controls the drone as well as

takes the imagery and video. In addition to this it also provides calibration options

for the gimbal.

In order to generate orthomap of the desired orchards, ’Pix4d Mapper’ software

was used. It is a photogrammetry software, used by professionals, that uses images

to generate textured models, digital surfaces & terrain models, point clouds, ortho-

mosiacs etc shown in the Figure 3.4.
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Figure 3.4: Types of outputs by Pix4D Mapper

In this research, orthomosiac option was utilized to get the desired orthomap

of the study area as shown Figure 3.2. The mobile application of this software

was connected with the drone for automated flights of drone and taking automated

imagery of the orchids by giving it the proper constraints and location. You have

to give the area to be covered like 50x30 and the height like 50 meters and then

you would randomly select the lines of the drone flight by adjusting them with your

fingers according to your requirement. After the images were taken they were fed to

pix4d mapper windows software for the stitching and creation of orthomap as shown

in the Figure 3.2. This app not only stitches the pictures but also provides some

pre-processing like noise removal, image sharpening and geo-referencing.In addition

to the above it generates detailed report for the project. Some details have been

shown below in Table 3.2
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Parameter Detail
Project Name Orchards

Date S-mode: 2019-02-16
Camera/Imagery Type FC6310˙8.8˙5472x3078 (RGB)

GSD 1.41 cm / 0.55 in
Area Covered 0.041 km2 / 4.0800 ha / 0.02 sq. mi. / 10.0872 acres
No. of Images 78

No. of calibrated Images 78
No. of Geolocated Images 78

Table 3.2: Orthomap Details generated by Pix4d Mapper

Images were captured at 60m altitude with 1.41cm ground sampling distance

(GSD). Total 78 images of the area were captured and stitched together with 80%

overlap for the creation of ortho-map. Overlap information is shown in the Figure

3.5, generated by the software Pix4D Mapper.

Figure 3.5: Number of overlapping images computed for each pixel of the orthomo-

saic

29



Chapter 3: Methodology

Color No. of Images
Red 1

Orange 2
Yello 3

Light Green 4
Green 5+

Table 3.3: Number of Overlapping Images

Red and yellow areas indicate low overlap for which poor results may be gener-

ated. Green areas indicate an overlap of over 5 images for every pixel as shown in

Table 3.3. Good quality results will be generated as long as the number of keypoint

matches is also sufficient for these areas. Small blue dots shown in the Figure 3.6

below are pin locations at which picture were taken.

Figure 3.6: Drone trajectory to capture pictures at different position starting at big

blue dot
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3.2 Pre-Processing

Orthomap cannot be used as a input for extraction of required features as or-

thomaps are aerial view of the area. It contains images/information of areas that

are not of interest like grass, soil, roads etc. Area of interest is only trees. Only the

images of trees are required.

There are two ways to detect trees out of a picture to be fed for feature extraction:

1) Manually or 2)Automatically. Tree detection actually itself is an area of research

which is out of the scope of this research study. This study solely focuses on the

classification of tree species. Therefore, trees were extracted manually by using

GIMP software. GIMP is a free cross-platform image/graphic editor. The best

feature of this software is that we can crop out the area of interest from center to

outwards in multiple shapes. All you need is to define the size of the area that

needs to be cropped and multiple scale levels are available. For example area can

be cropped in inches, percentage, pixels, points, picas, centimeter , millimeter and

many more. This study uses rectangular shaped 200 x 200 in pixel scale, as our

minimum grain level for feature extraction is pixel. All that is needed to be done is

that you have to pin point to the center of the tree canopy, a rectangular block will

be formed and ready to be cropped. Using the above mentioned procedure, 533 tree

images were extracted in total as shown in the Figure 3.7 below. In order to carry

out proper classification all the images should be standardized. So, all 533 images

are of same size.

Figure 3.7: Tree images extracted from orthomap
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It may seem that Figure 3.7 does not show complete canopy of the tree but it

contains all the required matter for feature extraction. As there were 3 types of

trees, their respective images were stored in separate folders.
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3.3 Feature Extraction

The aim for this research is to use spectral and spatial feature for tree species

classification using optical imagery using RGB channels.

Spectral features uses the value of single pixel while spatial features uses the

values of neighboring pixels into consideration as well.

3.3.1 Colour Images

A RGB image also known as colour image is made from the amalgamation of

some basic colours. Every single pixel of an image can be broken down into red,

green and blue values. If we break an image (M x N) into 3 RGB channels, as

shown in Figure 3.8 below, we would get 3 matrices of dimensions M x N arranged

sequentially. [77]

Figure 3.8: RGB Image decomposed into 3 channels

The three images formed from each channel can be used as an input and other

features like mean, SD, variance, Entropy etc. can be calculated from it.
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Although RGB colour space is most widely used. But it is not accurate in accor-

dance to human visual perception and statistical analysis. So, HSV colour space is

used for to get accurate colour statistics for features extraction. HSV is a non-linear

transform of RGB colour space that it describes colour to perception relationship

more accurately than RGB.Figure 3.9 shows HSV model. HSV separates colour

into hue, saturation and value which means it can define colour into colour, inten-

sity and brightness. Hue represents the property of the colour like blue, yellow, red

etc. Saturation represents the intensity perceived and ‘Value’ represents brightness

perceived. [78]

Figure 3.9: HSV color model

RGB colour space can be converted to HSV colour space by following formulas:

h =



0, if max=min

(60◦ × g−b
max−min + 360◦)mod360◦, if max=r

(60◦ × b−r
max−min + 120◦), if max=g

(60◦ × r−g
max−min + 240◦), if max=b

(3.1)
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s =


0, if max=0

max−min
max = 1− min

max, otherwise

(3.2)

v = max, (3.3)

RGB values used in above formulas are normalized from 0-1. Many statistical

feature such as standard deviation etc are calculated for all 6 channels and used as

a feature for classification. Explanation of features used in this study are as follows.

3.3.2 DCT

Discrete cosine transform (DCT) is a Fourier related transform which was pro-

posed by Ahmed et al.[79] in 1974. It is similar to Discrete Fourier Transform

(DFT). It represents an image in terms of sum of cosine functions but only using

real numbers[80]. It is almost twice the length equivalent to DFT. Several variants

of DCT have been proposed[81]. DCT has been widely used in face recognition and

compression algorithms. It is used for extracting texture features of an image[80].

It does not reduce the data dimension but stores most of the information in few

numbers of coefficients in compressed for[3]. DCT coefficients of M x N image can

be calculated by the following equations:

F (u, v) =
1√
MN

α(u)α(v)
M−1∑
x=0

N−1∑
y=0

I(x, y) cos
(2x+ 1)uπ

2M
cos

(2y + 1)vπ

2M

(3.4)

where α(ω) is defined by:

α(ω) =


1√
2

ω = 0,

1 otherwise

(3.5)
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F (u, v) is matrix (2D) of coefficients, in frequency domain, and I(x,y) are in-

tensity value at respective position in an image matrix (spatial domain).

DCT converts image from spatial domain to frequency domain. DCT coefficients

can be divided into three sub-bands: Low, Medium & High frequency. As shown in

Figure 3.10 below

Figure 3.10: (a) Original Picture (b) Frequency Domain (c)DCT Coefficients Low,

Medium and High

Low frequencies correlate with illumination while high frequencies show noise

and small details. Middle frequencies actually are those which contain the useful

information regarding the image structure.

The inverse of the DCT can be calculated by the following equation:

u(n) =
N−1∑
k=0

α(k)v(k) cos
(2n+ 1)kπ

2N
(3.6)
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3.3.3 GLCM

Gray Level Co-occurrence Matrix, in short GLCM, is a method used to extract

textural features from statistical distribution of intensities in an image at specified

positions relative to each other for statistical texture analysis. It is also known

as Gray Level Dependency Matrix and first introduced by Harlick et al.[4] It is

an image analysis technique. It is a tabulation of how different combinations gray

level intensities occur in an image. In texture analysis order of the feature means

number pixel used to check combination. GLCM is a method to extract second

order statistical texture features. As shown in the Figure 3.11, GLCM is showing

Figure 3.11: Original Image(Left) & its GLCM(Right)

the occurrence of combinations adjacently on the right of the pixel of interest (i.e.

‘11’ has occurred once and ‘12’ has occurred twice). Pixel can be chosen at different

angles and at different offset too as shown in the Figure 3.12 . It is not necessary

that pixels have to be adjacent.
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Figure 3.12: Different angles at which GLCM can be calculated

Properties of GLCM:

• Matrix is square in shape.

• Number of rows and columns are equal to the quantization levels of an image.

• It is symmetrical about diagonal.

Work of Harlick et al.[4] and Conners et al.[82] show that number of texture

features can be extracted from GLCM. Few are discussed below.

To explain various textural features, following notations are used.

gij = (i, j)th entry in GLCM

gx(ij) = ith marginal probability matrix entry, obtained by summing rows of gij =

Ng∑
j=1

g(i.j)
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Ng = Number of gray level distinct levels in image

∑
i

=

Ng∑
i=1∑

j

=

Ng∑
j=1

gy(i) =

Ng∑
i=1

g(i, j)

gx+y(k) =

Ng∑
i=1

Ng∑
j=1

g(i, j) where i+j=k=2,3,.....2Ng

gx−y(k) =

Ng∑
i=1

Ng∑
j=1

g(i, j) where i-j=k=0,1.....Ng − 1

• Energy

Energy =
∑
i

∑
j

(gij)
2 (3.7)

This feature is also known by the name of uniformity or angular second mo-

ment. It measures pixel pair repetitions. It basic functionality is to detect

disorders in texture.[4][83]
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• Entropy

Entropy = −
∑
i

∑
j

gij log2(gij) (3.8)

It measures complexity of an image. More non-uniformity the image has,

in terms of texture, more entropy it has. Entropy is inversely but strongly

correlated to energy.[4][83]

• Contrast

Contrast =
∑
i

∑
j

(i− j)2gij (3.9)

Contrast measure the spatial frequency of an image. It is the actually difference

between maximum and minimum values or local variation of neighboring set

of pixels. [83][84]

• Variance

Variance =
∑
i

∑
j

(i− µ)2gij (3.10)

Variance, statistical measure associated with GLCM, is a measure of hetero-

geneity and is correlated strongly with standard deviation (first order statis-

tical measure). [4] [83][84]
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• Inverse Difference Moment(IDM)

IDM =
∑
i

∑
j

1

1 + (i− j)2
gij (3.11)

It is also known as homogeneity. When all the elements in an

image have same value then the homogeneity value is maximum.

If energy is kept constant, contrast and IDM are strongly but

inversely correlated.[83]

• Correlation

Correlation =

∑
i

∑
j(ig)gij − µxµy
σxσy

(3.12)

where µx, µy, σx and σy are the means and standard deviation of gx and gy

It is a measure of the gray tone linear dependencies of pixels at positions

specific positions relative to each other.[83][84]

• Sum Average

Sum Average =

2Ng∑
i=2

igx+y(i) (3.13)

• Sum Entropy

Sum Entropy = −
2Ng∑
i=2

gx+y(i) log gx+y(i) (3.14)
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• Sum Variance

Sum Variance = −
2Ng∑
i=2

(i− sa)2gx+y(i) (3.15)

• Difference Variance

Difference Variance = vairance of gx−y (3.16)

• Difference Entropy

Difference Entropy = −
Ng−1∑
i=0

gx−y(i) log gx−y(i) (3.17)

• Maximum Correlation Coefficient

MCC = (Second largest eigen value of Q)0.5 (3.18)

where Q(i, j) =
∑
k

g(i, k)g(j, k)

gx(i)gy(k)
(3.19)

• Information Measures of Correlation

IMC1 =
HXY −HXY 1

max(HX,HY )
(3.20)
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IMC2 =
√

1− exp(−2.0(HXY 2−HXY )) (3.21)

HXY = −
∑
i

∑
j

gij log2 gij (3.22)

where HX and HY are the entropies of g˙i and g˙j

HXY1 = −
∑
i

∑
j

gij log2(gx(i)gy(j)) (3.23)

HXY2 = −
∑
i

∑
j

gx(i)gy(j) log2 gx(i)gy(j) (3.24)
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3.3.4 Intensity

There are several basic features (statistical or spectral) that can be calculated

by intensities of an image. [85]

• Intensity Mean

Intensity Mean =

∑
x

N
(3.25)

It simple an average of all the intensity values of an image.

• Intensity Median

It is the middle value if all the intensity values of an image are arranged in

ascending order.

Median = centre value when n is a odd number.

Median = two central values when n is a even number.

• Intensity Mode

Most frequently occurring intensity value is its mode.

• Intensity Lit Mean

The mean intensity of set of pixels whose intensity value is greater than the

mean intensity of all pixels.

• Max/Top Intensity

The maximum value of pixel intensity.

• Min Intensity

The minimum pixel intensity.
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• Intensity Standard Deviation

ISD =

√
1

N

∑
i=1

N(xi − µ)2 (3.26)

xi means pixel under consideration, µ represents mean of the pixel values. N

represents total number of pixels.

• Intensity Entropy

Entropy of pixel intensities means average information or degree of randomness

in an image.

IE = −
∑
i,j

pij log2(pij) (3.27)

Pij represents probability of occurrence of intensity value under consideration.

• Intensity Skewness

Skewness also known as standardized third moment of intensity distribution.

It basically represents imbalance distribution from the mean value.

IS =
m3

m
3
2
2

(3.28)

IS =
m3

σ3

m3 =

∑N
i=1(xi − xavg)3

N
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σ ==

√∑n
i=1(xi − µ)2

N

IS =
1

N

∑N
i=1(xi − µ)k3

σ3

IS =
1

N

∑N
i=1(xi − µ)3

(
∑N

i=1(xi−µ)2)
3
2

N
3
2

IS =
√
N

∑N
i=1(xi − µ)3

(
∑N

i=1(xi − µ)2)
3
2

m3 represents third moment and σ is standard deviation. If the tail of the

distribution curve is towards left then it is call negatively skewed and if tail

lies at the positive side or right side of the mean value than then it is known

as positively skewed. Furthermore, if value of skewness is 0, it means data is

evenly distributed[86] as shown in Figure 3.13 below.

Figure 3.13: Positively skewed, Normally Distributed and negatively skewed His-

tograms
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• Intensity Kurtosis

IK =

∑
(xi − µ)4

Nσ4
(3.29)

Kurtosis characterizes the flatness or peakedness of a distribution in re-

lation with normal distribution. It is also known as the fourth moment. If

the kurtosis value is less than 0, platykurtic, it means that the frequencies

throughout the curve are closer to be equal (i.e., the curve is more flat and

wide) relatively flat distribution as shown in Figure 3.14 and vice versa for

leptokutic.[86]

Figure 3.14: Platykurtic & Leptokutic
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3.3.5 LBP

LBPs stand for ‘Local Binary Patterns’. They describe texture and shape of a

digital image. The concept of LBPs was introduced in 1993 but it became popular

in the 1996 by the work of Ojala et al. [87]. Local representation of texture in an

image is computed by LBPs by comparing each pixel with its surrounding pixels.

LBPs work on grayscale image. So, image of interest is to be converted in grayscale.

Divide the image into grid of cells (usually 16 x 16 grids) as shown in the Figure

3.15 below.

Figure 3.15: Grayscale image divided into cells

Each box represents a cell and each cell contains equal number of pixels. For

Each cell of grayscale image we chose a neighbourhood of size r that surround the

center pixel. The original version of LBP uses 3 x 3 kernel window to compute LBP

of a central pixel.

Figure 3.16: Thresholding to make binary pattern
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Let us take an example of 3 x 3 window, used to calculate the LBP of a pixel in

a cell of a grayscale image shown in Figure 3.16. Central pixel, in red, is compared

with its 8 neighbouring pixel and threshold. If value of neighbouring pixel is greater

or equal than the central value the, allocate ‘0’ to that pixel. If neighbouring pixel’s

intensity value is less than the central pixel then allocate ‘1’ to that pixel. Allocation

of ‘0’ and ‘1’ can be used the other way around as well. To calculate LBP value

for the central pixel, we can start from any neighbouring pixel and work our way

anti-clock or clockwise. But make sure that pattern, clock or anti-clock, is consistent

for all the pixels in the image. Starting from top right would make the binary code

11101000 if we move clockwise. This binary sequence is to be converted to decimal

as shown in the Figure 3.17 below.

Figure 3.17: Converting binary code to decimal value

Decimal value for the combination turns out to be 23. Value 23 will be stored in

central pixel of interest for which we have calculated the LBP. With 8 surrounding

pixels total 256 (2ˆ8) combinations of LBPs can be created. This process is to be

created for each pixel in the cell. Last step is to calculate the histogram of the cell

which shows the frequency of occurrence of decimal values stored in the cell. His-

togram actually shows how many times a LBP has occurred. Histograms of all the

cells are then concatenated to produce the final image. Histogram can be treated

as a feature vector.

The primary benefit of the aforementioned basic LBP is that we can capture fine

grained details. LBP can be represented by the following equation:

49



Chapter 3: Methodology

LBP (xc, yc) =

7∑
n=0

2ng(In − I(xc, yc)) (3.30)

I(n) is intensity value of neighbouring pixel and I(xc, yc) is the value of central

pixel.

Drawback of LBP is that small scale textures that may have negligible or no

contribution at all are also calculated. In addition the basic LBP comes with the

following drawbacks: long histograms, sensitive to image rotation, small spatial area

of support (we cannot capture details at varying scales but only for fixed 3 x 3 win-

dows), a loss of local textural information, and sensitive to noise.Researchers have

made efforts, listed in the Table 3.4, to overcome the problems related to the con-

ventional LBP.

In this research study conventional LBP with 3 x 3 kernel has been used.
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Variations Properties Ref #
Enhancing the Discriminative Ability

Mean LBP Consider the effects of central pixel; present complete structure pattern [88, 89, 90]
Hamming LBP Incorporate non-uniform patterns into uniform patterns [91]
Extended LBP Discriminate the same local binary patter; cause high dimensionality [92, 93]

Completed LBP Include both sign and magnitude information of the local region [94]
Improving Robustness

Local Ternary pattern Bring in new threshold; no longer strictly invariant [95]
Soft LBP Not invariant to monotonic grayscale changes; cause high computational complexity [96]

Choosing the neighborhood
Elongated LBP Extract anisotropic information and lose anisotropic information; not invariant to rotation [97]

Multi-Block LBP Capture micro and macro -structure information [98, 99]
Three/Four Patch LBP Encoode patch type of information [100]

Extending to 3D
3D LBP Extended LBP to 3D volume of data [101, 102]

Volume LBP Describe dynamic texture; cause high dimensionality [103, 104]
Combining with other features

LBP & Gabor Wavelet Combine the advantages of Gabor & LBP; increase time cost & high dimensionality [105, 106, 107, 108, 109]
LBP & SIFT Bring in the advantages of SIFT; reduces feature vector length [110, 111, 112]

LBP Histogram Fourier Obtain rotation invariance globally for whole region [113]

Table 3.4: Types of LBP algorithms
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3.3.6 Gabor Filter

Gabor filter was named after Dennis Gabor. It is linear filter that is used in the

field of image processing for edge detection, feature extraction,texture analysis etc.

Theses filters are well suited for applications like texture segmentation spatial and

frequency domain as they have the optimal localization property[114]. Basically,

they allow certain band of frequencies to pass and block others that is why they are

also known as special classes of band pass filter. In simple terms, you can think of

a gabor filter as a sinusoidal waves signals of a particular frequency and orientation

that is modulated by a Gaussian wave.[115]

In order to analyze the texture of an image or to extract features from an image,

a bank of gabor filters are used at different orientations/angles as shown in the

Figure 3.18 below. In this research, orientation at angles 0◦, 45◦, 90◦, 135◦have been

used.

Figure 3.18: Orientations of gabor filters

When we convolve the input image with the with all the gabor filters, patterns

in the image are highlighted. When the image is passed through the filter bank,

edges that are oriented as the orientation of the filter gets detected. The highest
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response of a gabor filter is at edges and at points in the image where there is a

change in texture.[116]

Gabor function:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y

′2

2σ2
)exp(i(2π

x
′

λ
+ ψ))

(3.31)

Real Component:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y

′2

2σ2
)cos(2π

x
′

λ
+ ψ)

(3.32)

Imaginary Component:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x
′2 + γ2y

′2

2σ2
)sin(2π

x
′

λ
+ ψ)

(3.33)

Where

x
′
= xcos(θ) + ysin(θ)

y
′
= −xsin(θ) + ycos(θ)
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Gabor function is controlled by the following five parameters:

λ–Lambda is wave length of the sinusoidal component. It is responsible for

controlling the stripes of gabor function. Increase in wavelength would result in

thicker stripes.

θ–theta represents the orientation of the normal to the parallel stripes of gabor

filter. θ = 0◦ represents vertical orientation/position of gabor filter.

ψ–psi represents the phase offset of the sinusoidal function.

γ–gamma or aspect ration actually controls the height of thr hgabor function.

Height of the gabor function and value of gamma are inversely proportional. More

the aspect ratio less the the height of the gabor function.

σ– sigma or bandwidth governs the overall size of the envelope of gabor func-

tion. Value of σ is directly proportional to the stripes of the gabor function. if the

value of σ is increased from 30 to 45, the number of stripes in the gabor function

increases.

Stripes basically are the frequencies as mentioned before gabor filter bank acts as a

classes of band pass filter.[116]

Parameter Value
Gamma 0.3
Lambda 3.51 - 22.57
Sigma 2.81 - 18.01
Theta 0◦, 45◦, 90◦, 135◦

Table 3.5: Values of Gabor parameters in this research study
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For image decomposition, feature extraction and creation of the feature

matrix Matlab R2015a was used. All the images were imported into Matlab one

by one. Each of the images were then decomposed into 6 channels R, G, B, H, S, &

V. Then features were extracted for each image.

Total feature matrix had a size of 533 x 200100 as shown in the Table 3.6. 533

represents number of rows and 200100 represents columns. Each row represents a

image and column represents features. Number of columns appear to be more than

the number of features. That is because some features i.e. DCT produce an image

of 200 x 200 that were used as it is. These 2D matrices are converted into row

matrix and concatenated with rest of the features.

Class Name Size
Musammi 141 x 200100

Guava 183 x 200100
Fruiter 209 x 200100
Total 533 x 200100

Table 3.6: Feature Matrix size for each class
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Classifier

After detailed literature review of the classifiers used for tree species classifica-

tion, ANN and SVM were chosen as base classifiers for this research.

4.1 Artificial Neural Network

Neural nets, more precisely referred as ‘Artificial Neural Network’ are actu-

ally coded implementation of how human brain (neural structure) works or human

brain/biologically inspired set of algorithms. It is also known as ‘artificial neural

systems’, ‘parallel distributed processing system’ and ‘connectionist system’ [117]

which are designed to recognize patterns.

Our brain is made up of millions of cells known as neurons that process the

information in form of electrical signals. Figure 4.1 shows a single biological neuron.

Figure 4.1: Human biological neuron
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The functionality of dendrites is that it receives the signal from other neurons.

The signal is processed by the ‘cell body’ also known as ‘soma’. All the received

signals are summed up to generate an input. When a certain defined threshold level

is reached by an input, a neuron is fired and the output signal flows to axon and

onto other neurons. ‘Synapses’ is basically point that connects neurons. The next

neuron either accepts or rejects the output of the previous neuron based on the

signal strength.[118]

Figure 4.2: Artificial neuron

Figure 4.2 shows the working of artificial neuron. Artificial neuron or a single

node works in the same way as human neuron. X1, x2, x3 are the input signals

that are multiplied by the weights (w1, w2 ....) and are fed into artificial neuron

which acts like cell body in human neural system. All the inputs are summed in

the artificial computing unit. The sum of all inputs is passed through the node’s

activation function. An activation function is critical and important part of a neural

network. The function of the activation function is to determine whether the signal

should progress through the network and to what extent or whether a neuron should

be fired or not (in terms of human neuron). It applies transformation on the weighted

sum of inputs and thresholds the output to show whether or not the information,

neuron has received, is relevant for the task at hand.
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=
∑

(weight× inputs) + bias (4.1)

Main utility of ‘bias‘ is to make a zero weighted sum non zero or scale up the re-

sponse of the system. If we do not apply activation function, then the output would

be a linear output/function which would simply be a ‘Linear Regression Model’.

We need non-linear functions, so that ANN can be applied to any complex function

and any complicated data. Another feature of activation function is that it should

be differentiable because when we want to update the curve, we should know how

much change and in which direction the change is occurring. This process is called

back propagation. According to the current and desired output error is computed

and then weights are adjusted so that the desired output can be produced.

Activation functions can be divided into two types:

• Linear activation function

• Non-linear activation function
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The Figure 4.3 shows the list of common activation functions used in ANN:

Figure 4.3: Types of activation function

The highest block of machine learning is called a layer. Architecture of neural

network contains input, hidden (can be more than one) and an output layer as shown

in the figure 4.4 below.
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Figure 4.4: Architecture of a neural network

Middle layer is called hidden because its output is hidden or not visible. Each

layer contains multiple neurons/nodes and is connected to the nodes of the next

layer. Dependency of the relationship between nodes is weights that are associated

with the connection between the nodes. The weights are adjusted by calculating

error so that cost function can be reduced. Cost function is basically the measure of

how close actual output is from the expected. Common optimization algorithms that

are used to adjust weights are stochastic gradient descent, batch gradient descent,

or mini-batch gradient descent algorithms etc. In short, a layer receives weighted

inputs; transform it with an activation/transfer function and pass on the output to

the next layer. A layer is usually uniform which means that it usually contains one

type of activation function.
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4.1.1 Training a neural network

Figure 4.5: A simple neural network

Consider the architecture of simple neural network shown in the Figure 4.5 above.

i1 and i2 are inputs 1 and 2, w1 to w8 are the weights associated with respective

connection shown in the picture above. o1 and o2 are outputs of the network. b2

and b2 are biases used in each layer to make a zero summed input to non-zero value.

Input received by h1 and h2 nodes are calculated by the following formula

neth1 = (ω1 × i1) + (ω2 × i2) + (b1) (4.2)

neth2 = (ω3 × i1) + (ω4 × i2) + (b1)

Outputs of h1 and h2 are calculated by the following formula (depends upon the

activation used by the layer)
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outh1 =
1

1 + e−neth1
(4.3)

outh2 =
1

1 + e−neth2

Network outputs o1 and o2 are calculated by

neto1 = (ω5 × outh1) + (ω6 × outh2) + (b2 × 1) (4.4)

neto2 = (ω7 × outh1) + (ω8 × outh2) + (b2 × 1)

Error can be calculated of each neuron and to get total error summation is used

ETotal =
∑ 1

2
(target− output)2 (4.5)

Let us say we want to calculate the error of o1 and o2

E01 =
1

2
(target01 − output01)2 (4.6)

E02 =
1

2
(target02 − output02)2

In order to adjust weights, we have to do the process shown in the Figure 4.6.

We need to calculate each piece of the equation
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Figure 4.6: Error claclulation process

ETotal =
1

2
(target01 − output01)2 +

1

2
(target02 − output02)2

(4.7)

∂ETotal

∂out01
= 2× 1

2
(target01 − out01)2−1 ×−1 + 0 (4.8)

out01 =
1

1 + e−net01
(4.9)

∂out01

∂net01
= out01(1− out01) (4.10)

neto1 = (ω5 × outh1) + (ω6 × outh2) + (b2 × 1)

∂net01

∂ω05
= 1× outh1× ω1−1

5 + 0 + 0 (4.11)
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Putting it all together

∂ETotal

∂ω05
=
∂ETotal

∂out01
× ∂out01

∂net01
× ∂net01

∂ω05
(4.12)

To decrease the error we have to adjust the weight

ω+
5 = ω5 − η ×

∂ETotal

∂ω5
(4.13)

Repeat this process to get the new weights ω6, ω7 and ω8.

In the same way perform the back propagation on the hidden layer as done on

output layer to adjust ω1, ω2, ω3 and ω4.

4.1.2 Types of neural networks

There are multiple type neural networks each with different use case and level

of complexity. Figure 4.7 shows types of neural networks and their architectures.
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Figure 4.7: Types of neural networks
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4.1.3 Learning Techniques used in Neural Networks:

There three main types of learning techniques used in machine learning:

• Supervised Learning:

Supervised learning is a machine learning method that uses labelled and known

data to train the neural networks or produce specific outputs by adjustment of

the system [119]. Following is the list classification and regression algorithms.

– Logistic Regression

– Decision Trees

– Support vector machine(SVM)

– k-Nearest Neighbor(KNN)

– Naive Bayes

– Random Forest(RF)

– Linear Regression

– Polynomial Regression

– SVM for regression

These algorithms are categorized under supervised learning

• Unsupervised Learning:

It is a second method associated with machine learning where un-labelled data

is used to draw inferences. All clustering algorithms come under unsupervised

learning algorithms.

– K – means clustering

– Hierarchical clustering

– Hidden Markov models

• Reinforcement Learning:

It is a type of learning where software agents are rewarded with feedback signal

or reinforcement signal to learn its behaviour in a specific context.
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4.1.4 Advantages and applications of neural network

• A neural network can perform tasks that a linear program cannot.

• When an element of the neural network fails, it can continue without any

because of parallel processing nature.

• A neural network learns does not need to be reprogrammed.

• It can be implemented in any application.

• It can be performed without any problem.

Few applications of neural networks are listed below:

• Process modelling and control

• Machine Diagnostics

• Portfolio Management

• Target Recognition

• Medical Diagnosis

• Credit Rating

• Targeted Marketing

• Voice recognition

• Financial Forecasting

• Financial Forecasting

• Fraud detection etc
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4.2 SVM

SVM is an abbreviation of Support Vector Machine. It is an algorithm used in

supervised machine learning mostly for classification. SVM was invented by Vapnik

& Chervonenkis initially. At that time, the algorithm was in early stages as hyper-

planes were used to classify linearly [120]. Later in 1992 Vapnik, Boser & Guyon

suggested a w1way for building a non-linear classifier by suggesting the use kernel

trick in SVM latest paper [121]. It has been treated as one of the dominant classifi-

cation algorithms since then. It has been used for classification in multiple areas like

gene selection [122] cancer classification [123], text classification [124][125], classifica-

tion of remote sensing images [126][127], tree species mapping [128] and many others.

For a dataset consisting of features set and labels set, an SVM classifier builds

a model to predict classes for new examples. It assigns new example/data points to

one of the classes. If there are only 2 classes then it can be called as a Binary SVM

Classifier.

Objective of SVM is basically to separates classes by finding the hyper-plane (for

N dimensional spaces) or a line that separates two classes distinctly. Hyper-planes

are basically boundaries that decide that from which class a data point belongs to.

Figure 4.8: Different hyperplanes
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In order to separate two classes, there may be many possible options of hyper-

plane that can separate the classes as shown in the Figure 4.8 above. But the aim

is to find that hyper-plane (for more than two classes) or a line (in case of two

classes) that has the maximum margin. A margin is actually is a line/hyper-plane

of separation to the closest data points also known as support vectors, Figure 4.9,

of all classes that are in consideration.

Figure 4.9: Different hyper-planes

A good margin is where the distance of line/hype-rplane to support vectors of

each class/feature is maximum as shown in the Figure 4.10 below.

Dimension of data plane is dependent on the number of features being used.

Consider the data points distribution the two classes shown in the Figure 4.11 be-

low. Data point could easily be separated with a line. But what if the distribution

of the two classes was as shown in Figure 4.12?

In this case we need to incorporate the z-axis as shown in the Figure 4.13 and a

clear separation can be seen.
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Figure 4.10: Good and bad margins

Figure 4.11: Classes distributed with simple separation

When we transform into original space form, a circular boundary is mapped

4.14.In addition what if the situation is bit more complex. What if data points

overlap as shown in Figure 4.15 below?
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Figure 4.12: Classes distribution with complex boundary

Figure 4.13: Transition data into 3-D

Possible solutions to the aforementioned problem are shown in the Figure 4.15

above. In Image1 hyper plane has excluded two black dots considering them to

be outliers or exceptions. Image 2 has achieved perfect separation without any

tolerance. In real life examples we need a trade-off because for training millions of

data set requires huge amount of time in order to find the perfect answer.

4.2.1 Tuning Parameters of SVM

1. Kernel

Linear SVM learns about hyper-plane by transforming the problem using lin-

ear algebra. SVM algorithms use a set of mathematical functions that are

defined as the kernel. The function of kernel is to take data as input and

transform it into the required form. Different SVM algorithms use different
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Figure 4.14: Transition back to 2-D after drawing hyper-plane

Figure 4.15: Overlapping distribution and possible hyper-planes

types of kernel functions for transformation such as linear, nonlinear, polyno-

mial, radial basis function (RBF), and sigmoid.[129]

In order to predict a new input for a linear kernel equation is as follows:

f (x) = B(0) +
∑

(ai ∗ (I(x), xi)) (4.14)
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This is an equation calculates a new input vector y taking inner product I(x)

with all support vectors in training data. The learning algorithms must learn

and estimate coefficients B(0) and ai (for each input) from the training data.

The polynomial kernel can be written as

K(I(x), xi) = 1 +
∑

(I(x) ∗ xi)d (4.15)

and exponential as

K(I(x), xi) = e−γ∗
∑

(I(x)−x2
i ) (4.16)

In short, kernels (exponential or polynomial) determine the separation line in

higher dimensions. It is also known as ‘kernel trick’.

2. Regularization

It is a parameter that tells how much misclassification needs to be avoided.

Look at the example in Figure 4.16:

Figure 4.16: Left: Low regularization value, Right: High regularization value
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Image on the left has lower regularization value as it contains some misclassifi-

cation. While on the other hand, image in the right side has high regularization

as it has 0 tolerances for misclassification. The objective of the regularization

parameter is to balance the margin maximization and loss.

3. Gamma Gamma tells us about the support vectors that influence in the

calculation. If gamma is high that means data points that are closer to the

line are under consideration and vice versa as clearly illustrated in the Figure

4.17.

Figure 4.17: Top: High gamma value, Bottom: Low gamma value

4. Margin A margin is a separation of line to the closest class points.A good

margin is one where this separation is larger for both the classes. Figure 4.18

below gives to visual example of good and bad margin.

4.2.2 Cost Function and Gradient Update

As mentioned earlier the objective of the SVM is to find the line or hyperplane

that maximizes the margin. Loss function is used to reduce the cost and maximize

the margin.
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Figure 4.18: Top: Good margin, Bottom: Bad Margin

c(x, y, f (x)) =


0, ify ∗ f (X) ≥ 1

1− y ∗ f (x), else

(4.17)

Initially feature matrix for each class was made separately and using Matlab com-

mand ’.csv’ files were generated. For each class an extra file created that contained

class codes that represented the target. For example target value for Musammi was

’100’, for Guava value was ’010’ and for Fruiter, value was ’001’. From these .csv

files of each class 100 rows, total 300, were used to make another .csv file that would

be used to train the classifier models. Equal number of data rows were selected from

each class sos that the model performance is not towards any class. Rest 232 rows

were used for testing the accuracy of the model.

These 3 files ’train.csv’, ’test.csv’ and ’target.csv’ were fed to the classifiers for

classification. Classification models of both classifiers , Artificial Neural Network

(ANN) & Support Vector Machine, were created using python language. ’Google
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Colaboratory’, an environment for python coding that runs entirely on the cloud and

is free was used for processing. The best part of this environment is that there is no

need to install modules and libraries as we have to do for the python environments,

e.g. jupyter notebook, on our personal computer.
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Performance Evaluation

The metric used to evaluate the output of neural network & SVM model is

’Accuracy’. In classification problems, to find the accuracy of the model a confusion

matrix is used. A confusion matrix, shown in Figure 5.1 provides detail about the

performance of the classification model.

Figure 5.1: Confusion Matrix

The words ’Good’ and ’Bad’ in Figure 5.1 actually represent the classes which

in the case of this research study are ’Musammi’, ’Fruiter’ and ’Guava’.

True Positive (TP) is the case where actual value is true and the model also

predicted the value to be true.

False Negative (FN) is the case where actual value is true and the model

predicted the value to be false.
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False Positive (FP) is the case where actual value is false and the model pre-

dicted the value to be true.

True Negative (TN) is the case where actual value is false and the model also

predicted the value to be false.

Accuracy of a model is calculated by the following equation

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

5.1 Experiments

In order to get the best results from the ANN model, several experiments were

performed. For ANN classification I used Multi-layer Perceptron(MLP). MLP has

a non-linear activation function which can distinguish the data, that is not linearly

separable, easily. In this study multi-layer refers to multiple hidden layers. I used

MLP neural network model because single hidden layer produced 100% accuracy

which shows that the model is over-fitted.
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5.1.1 Experiment 1

Initially, the number of neurons in each hidden layer were kept same as shown

in Figure 5.2. This was done to check what effect number of hidden layers has on

the accuracy of the model and what number of hidden layers are suitable for this

research study.

Figure 5.2: Hidden Layers with equal number of neurons

Number of Layers Accuracy Epochs
1 100% 2500
2 100% 2500
3 86.15% 2500
4 80.52% 2500
5 74.03% 2500
6 93.51% 2500
7 38.53% 2500
8 63.64% 2500
9 86.58% 2500
10 73.16% 2500

Table 5.1: Parameter Details

Epoch shows the number of times data set passes through the model. Figure 5.3

shows the accuracy results achieved.
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Figure 5.3: Accuracy results

It can be seen from the Figure 5.3 that the best result in terms of accuracy,

93.51%, was achieved using 6 hidden layers, excluding the results of hidden layer 1

& 2 as they depict the over-fitted model. Over-fitted models are those that have

mastered training data but have not learned to make the condition generalized.

Confusion matrix of experiment using 6 hidden layers is shown in the Figure 5.4.

Referring to Table 3.6, ’Musammi’ had 41 test images, out which 36 were ac-

curately classified. ’Fruiter’ had 109 test images, out of which 100 images were

accurately classified. Lastly, ’Guava’ had 83 total images for testing the classifica-

tion model and 82 of them were accurately classified by the neural network model

with 6 hidden layers.
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Figure 5.4: Confusion Matrix

5.1.2 Experiment 2

In 2nd experiment I used different numbers of hidden layers with different num-

ber of neurons in it. First hidden layer had most neurons with decreasing number

of neurons in the following layers. Shape of the hidden layer is converging towards

the output layer in this experiment as shown in the Figure 5.5.

Figure 5.5: Converging Hidden Layer
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Number of Layers Accuracy Epochs
1 100% 2500
2 100% 2500
3 72.82% 2500
4 74.03% 2500
5 67.13% 2500
6 79.22% 2500
7 84.85% 2500
8 87.53% 2500
9 71.68% 2500
10 97.4% 2500

Table 5.2: Parameter Details

In this experiment, 10 hidden with converging shape produced the best result

by giving 97.4% of accuracy as shown in the Table 5.2 & Figure 5.6. In both

experiments, 1 & 2, both models proved to be over-fitted when 1 or 2 hidden layers

were used by providing 100% accuracy.

Figure 5.6: Accuracy results

Referring to Table 3.6, ’Musammi’ had 41 test images, out which 40 were ac-

curately classified. ’Fruiter’ had 109 test images, out of which 105 images were

accurately classified. Lastly, ’Guava’ had 83 total images for testing the classifica-

tion model and 82 of them were accurately classified by the neural network model

with 10 hidden layers.
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Figure 5.7: Confusion Matrix

5.1.3 Experiment 3

After experimenting on different hidden layers in ANN model in this research

study I used SVM as a second classifier on my dataset. Table 5.3 show the parameter

details of support vector classifier (SVC) and produced accuracy of 96.26%.

Tuning Parameters Values
Kernel Linear

C (Penalty Parameter)/ Regularization 1
Gamma Auto
Margin Auto

Table 5.3: SVM Parameter Details

Referring to Table 3.6, ’Musammi’ had 41 test images, out which 39 were ac-

curately classified. ’Fruiter’ had 109 test images, out of which 106 images were

accurately classified. Lastly, ’Guava’ had 83 total images for testing the classifica-

tion model and 79 of them were accurately classified by the SVM.
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Figure 5.8: Confusion Matrix

5.1.4 Experiment 4

Feature Accuracy (ANN) Accuracy (SVM)
DCT 76.10% 75.70%
Gabor 82.13% 81.31%
LBP 30.58% 34.58%

GLCM 16.88% 47.66%
Mean 90.04% 88.79%

MaxMean 76.5% 90.65%
MinMean 91.77% 87.85%
Median 89.95% 85.02%
Mode 91.02% 86.25%
Max 97.4% 89.72%
Min 78.05% 86.92%
SD 100% 88.78%

Skewness 93.94% 90.65%
Kurtosis 99.13% 85.05%

Table 5.4: Accuracy comparison of individual features

Accuracy of individual classifiers has been calculated for each feature in the

Table 5.4. The results show that performance of ANN is better that SVM over all

except for few features where SVM performed better.
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Conclusion & Future Work

This research study classified tree species using optical aerial imagery, extracted

spatial and spectral features and use machine learning algorithms for classification.

Aerial imagery of three species of trees, Musammi, Guava, Fruiter, were obtained

and used as a data set in this research study. Spatial features,i.e. LBP, DCT,

Gabor and other intensity based features like Mean, Median, Standard Deviation

etc, were extracted which contributed significantly for high value of classification.

Detailed analysis was done to get the best approach for tree species classification.

After studying around 50 research papers and doing literature review two machine

learning techniques were, Artificial Neural Network (ANN) and Support Vector Ma-

chine(SVM), for tree species classification as these two techniques are mostly used.

These methods, ANN and SVM, turned out to be very useful and gave good results

by producing 97.4% and 96.26% accuracy respectively for three classes of trees.

In order to use aerial imagery at larger scale, the next step is to extract other

features i.e. morphological features (branchstarness, granulometry), gradient based

feature (Forstner, gradstarness, gradanistropy, gradentropy), wavelet based features,

geometric features i.e. features that describe the shape, area or boundary on aerial

imagery and use them for tree species classification as these aforementioned classes

of features were not used. Feature matrix utilized in this research was large and

effect of over fitting was quite prominent, may be because of small data-set, Di-

mensionality reduction (decreasing the number of dimensions in the feature vector)
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could be another way forward to reduce the size of the feature matrix. In addi-

tion,feature selection could also be incorporated and use only that feature contribute

the most, produce optimum results and make the classification model more robust.

Furthermore, it is claimed that spatial features are more robust to factors i.e. sun-

illumination and viewing angle must be confirmed by experiment. Another topic of

future work that can be added to this research is tree detection.
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