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ABSTRACT

Scientific demonstration is a fundamental component for the investigation and outline of a

dynamical systems. For the most part, extensive and complex models are acquired from

physical systems. A few illustrations are automated broadcast communications, mechanical

and numerous other complex systems. These systems are administered by the fractional dif-

ferential, Laplace and integro-differential equations and so forth. For the investigation and

plan of such systems, diminished request models are alluring that give a decent estimation

of the original systems. In most recent couple of decades, remarkable exploratory work has

been done on various parts of approximation of original systems. Existing techniques of

approximation of original systems are having some limitations to perform the approxima-

tion of systems and obtain the stable approximated systems. New techniques are proposed

that reduce these 1-D systems into their reduced order form. The proposed technique en-

sures the stability of the reduced order system and also provides the low approximation error

as compared to other existing stability preserving techniques. This thesis is also fulfilling

the limitation of previous 1-D Lower Order Approximation Systems techniques incase of

continuous and discrete Gramians based Lower Order Approximation Systems. Simula-

tion results show the effectiveness of the proposed transformation along with 1-D stability

preserving technique. This thesis is also fulfilling the instability issue of lower order ap-

proximation of original systems by introducing different algorithms, static state feedback

controller of lower order approximated systems incase continuous time systems, static ob-

server based state feedback controller for continuous time systems, static state feedback

controller of lower order approximated systems incase discrete time systems, static observer

based state feedback controller for discrete time systems. Lower Order Approximation Sys-

tems algorithms primarily based on spectral projection strategies are composed of primary

matrix computations such as fixing linear systems, matrix products, and QR factorizations.

The use of these libraries enhances both the reliability and portability of the Lower Order

Approximation routines. The performance will depend on the efficiency of the underlying

serial and parallel computational linear algebra libraries and the verbal exchange routines.

In this thesis, control design of approximated models along with different examples among

different techniques are presented which shows the effectiveness of the proposed techniques.

iii



DEDICATION

Dedicated to my mother Captain Rehmat Noor, my sister Colonel Huma Nasir and my son

Taha for their endless love and support

iv



ACKNOWLEDGEMENTS

It brings me fathomless joy to have first journal of my life, how this concept became a reality

is prodigious in terms of its efforts and deity. Certainly, the biggest influence with respect to

background, motivation direction and profound help has been from Muhammad Imran, who

has been a great mentor in his talks and actions. Not only this, he has proven to be a brother,

a friend, a guide and beyond which many relationships can be labelled to his accounts. With

him, equal efforts are credited to my colloquial sister, Sammana Batool, who has been a

page turner of my life. Her efforts for the completion of this paper and putting it to reality

are phenomenal. No words can describe the gratitude.

I would like to express my appreciation to Doctor Ayesha Maqbool at Military

College of Signals for having compassion for listening to my ailments, domestic problems

and cramped schedules. She has been a source of help in her humble capacity. I would like

to thank Associate Professor Bilal Rauf and Associate Professor Farkhanda Afzal for their

support and help. In general, I would like to thank all my instructors, who have chipped into

my expedition for my knowledge and making me what I’m today.

Most of All I’m most grateful to my mother, who has been the real source

behind my every success and prosperity till today. She is a person whose encouragement

has given me a power, unparalleled, every time when I had a fall.

v



TABLE OF CONTENTS

ABSTRACT iii

DEDICATION iv

ACKNOWLEDGEMENTS v

LIST OF FIGURES viii

LIST OF TABLES xiii

NOTATION xv

ACRONYMS xvi

1 INTRODUCTION 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Low Dimensional Approximated Systems . . . . . . . . . . . . . . . . . 4

1.3 Feedback Control Design of Low Dimensional Approximated Systems . 12

2 CONTROL DESIGN OF APPROXIMATED SYSTEMS USING FEEDBACK

ANALYSIS OF STATES AND OUTPUT FOR DISCRETE TIME SYSTEMS 15

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 WZ’s Technique [41] . . . . . . . . . . . . . . . . . . . . . . . . . 17

vi



2.1.2 Existing Stability Preserving Frequency Limited Techniques . . . . 19

2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 CONTROL DESIGN OF APPROXIMATED SYSTEMS USING FEEDBACK

ANALYSIS OF STATES AND OUTPUT FOR CONTINUOUS TIME SYS-

TEMS 51

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 GJ’s Technique [38] . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.2 Existing Stability Preserving Frequency Limited Techniques . . . . 55

3.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 SIMULATION OF PRACTICAL APPLICATIONS 81

4.1 Simulation of Discrete Time Systems . . . . . . . . . . . . . . . . . . . . 81

4.2 Simulation of Continuous Time Systems . . . . . . . . . . . . . . . . . . 86

5 CONCLUSION AND FUTURE WORK DIRECTIONS 144

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Future Work and Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 145

BIBLIOGRAPHY 146

vii



LIST OF FIGURES

1.1 Feedback Control Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Various Schemes for Lower Order Approximation. . . . . . . . . . . . . . 5

1.3 Expert procedure lower order approximation flow-chart showing the mode

cyclic operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Open-loop balancing method. . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Balancing parallel method of Schur decomposition. . . . . . . . . . . . . . 10

2.1 State Feedback Control for Lower Order Approximated System . . . . . . . 27

2.2 Observer Based State Feedback Control for Lower Order Approximated

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Error comparison for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . 38

2.4 Error comparison - zoom-in view for 2nd order LOAS . . . . . . . . . . . . 38

2.5 Natural response for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . 39

2.6 Impulse response for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . 39

2.7 Step response for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Bode plot for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Nyquist plot for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Root Locus plot for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . 41

2.11 Error comparison for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . 42

viii



2.12 Error comparison - zoom-in view for 3rd order LOAS . . . . . . . . . . . . 42

2.13 Natural response for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . . 43

2.14 Impulse response for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . 43

2.15 Step response for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . . . 44

2.16 Bode plot for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . . . . . 44

2.17 Nyquist plot for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . . . . 45

2.18 Root Locus plot for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . . 45

2.19 Error comparison for 5th order LOAS . . . . . . . . . . . . . . . . . . . . 46

2.20 Error comparison - zoom-in view for 5th order LOAS . . . . . . . . . . . . 46

2.21 Natural response for 5th order LOAS . . . . . . . . . . . . . . . . . . . . . 47

2.22 Impulse response for 5th order LOAS . . . . . . . . . . . . . . . . . . . . 47

2.23 Step response for 5th order LOAS . . . . . . . . . . . . . . . . . . . . . . 48

2.24 Bode plot for 5th order LOAS . . . . . . . . . . . . . . . . . . . . . . . . 48

2.25 Nyquist plot for 5th order LOAS . . . . . . . . . . . . . . . . . . . . . . . 49

2.26 Root Locus plot for 5th order LOAS . . . . . . . . . . . . . . . . . . . . . 49

3.1 State Feedback Control for Lower Order Approximated System . . . . . . . 62

3.2 Observer Based State Feedback Control for Lower Order Approximated

System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Error comparison for 1st order LOAS . . . . . . . . . . . . . . . . . . . . 71

3.4 Error comparison - zoom-in view for 1st order LOAS . . . . . . . . . . . . 72

3.5 Natural response for 1st order LOAS . . . . . . . . . . . . . . . . . . . . . 72

ix



3.6 Impulse response for 1st order LOAS . . . . . . . . . . . . . . . . . . . . . 73

3.7 Step response for 1st order LOAS . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Bode plot for 1st order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 Nyquist plot for 1st order LOAS . . . . . . . . . . . . . . . . . . . . . . . 74

3.10 Root Locus plot for 1st order LOAS . . . . . . . . . . . . . . . . . . . . . 75

3.11 Error comparison for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . 75

3.12 Error comparison - zoom-in view for 2nd order LOAS . . . . . . . . . . . . 76

3.13 Natural response for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . 76

3.14 Impulse response for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . 77

3.15 Step response for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . . 77

3.16 Bode plot for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . . . . 78

3.17 Nyquist plot for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . . . 78

3.18 Root Locus plot for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . . 79

4.1 Error comparison for 1st order LOAS . . . . . . . . . . . . . . . . . . . . 82

4.2 Error comparison - zoom-in view for 1st order LOAS . . . . . . . . . . . . 83

4.3 Error comparison for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . 84

4.4 Error comparison - zoom-in view for 2nd order LOAS . . . . . . . . . . . . 84

4.5 Error comparison for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . 85

4.6 Error comparison - zoom-in view for 3rd order LOAS . . . . . . . . . . . . 86

4.7 Error comparison for 1st order LOAS . . . . . . . . . . . . . . . . . . . . 88

4.8 Error comparison - zoom-in view for 1st order LOAS . . . . . . . . . . . . 88

x



4.9 Error comparison for 2nd order LOAS . . . . . . . . . . . . . . . . . . . . 89

4.10 Error comparison - zoom-in view for 2nd order LOAS . . . . . . . . . . . . 90

4.11 Error comparison for 3rd order LOAS . . . . . . . . . . . . . . . . . . . . 91

4.12 Error comparison - zoom-in view for 3rd order LOAS . . . . . . . . . . . . 91

4.13 Error comparison for 4th order LOAS . . . . . . . . . . . . . . . . . . . . 92

4.14 Error comparison - zoom-in view for 4th order LOAS . . . . . . . . . . . . 93

4.15 Error comparison for 5th order LOAS . . . . . . . . . . . . . . . . . . . . 94

4.16 Error comparison - zoom-in view for 5th order LOAS . . . . . . . . . . . . 95

4.17 Error comparison in entire frequency range for 1st order LOAS . . . . . . . 96

4.18 Error comparison plot in pin point frequency interval for 1st order LOAS . . 96

4.19 Error comparison in entire frequency range for 2nd order LOAS . . . . . . 97

4.20 Error comparison plot in pin point frequency interval for 2nd order LOAS . 98

4.21 Error comparison in entire frequency range for 3rd order LOAS . . . . . . . 99

4.22 Error comparison plot in pin point frequency interval for 3rd order LOAS . 99

4.23 Error comparison in entire frequency range for 4th order LOAS . . . . . . . 100

4.24 Error comparison plot in pin point frequency interval for 4th order LOAS . 101

4.25 Error comparison in entire frequency range for 5th order LOAS . . . . . . . 102

4.26 Error comparison plot in pin point frequency interval for 5th order LOAS . 102

4.27 Error comparison in entire frequency range for 6th order LOAS . . . . . . . 104

4.28 Error comparison plot in pin point frequency interval for 6th order LOAS . 104

4.29 Error comparison in entire frequency range for 7th order LOAS . . . . . . . 106

xi



4.30 Error comparison plot in pin point frequency interval for 7th order LOAS . 106

4.31 Error comparison in entire frequency range for 8th order LOAS . . . . . . . 108

4.32 Error comparison plot in pin point frequency interval for 8th order LOAS . 108

4.33 Error comparison in entire frequency range for 9th order LOAS . . . . . . . 110

4.34 Error comparison plot in pin point frequency interval for 9th order LOAS . 111

4.35 Error comparison in entire frequency range for 10th order LOAS . . . . . . 113

4.36 Error comparison plot in pin point frequency interval for 10th order LOAS . 113

4.37 Error comparison in entire frequency range for 11th order LOAS . . . . . . 115

4.38 Error comparison plot in pin point frequency interval for 11th order LOAS . 116

4.39 Error comparison in entire frequency range for 12th order LOAS . . . . . . 118

4.40 Error comparison plot in pin point frequency interval for 12th order LOAS . 118

4.41 Error comparison in entire frequency range for 13th order LOAS . . . . . . 121

4.42 Error comparison plot in pin point frequency interval for 13th order LOAS . 121

4.43 Error comparison in entire frequency range for 14th order LOAS . . . . . . 124

4.44 Error comparison plot in pin point frequency interval for 14th order LOAS . 124

4.45 Error comparison in entire frequency range for 15th order LOAS . . . . . . 127

4.46 Error comparison plot in pin point frequency interval for 15th order LOAS . 127

xii



LIST OF TABLES

2.1 LOAS for 2nd order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 LOAS for 3rd order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 LOAS for 5th order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Poles location of the LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 LOAS for 1st order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 LOAS for 2nd order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Poles location of the LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 1st Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.2 2nd Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3 3rd Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4 4th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.5 5th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.6 6th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.7 7th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.8 8th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.9 9th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.10 9th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.11 10th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xiii



4.12 11th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.13 12th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.14 13th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.15 14th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.16 15th Order LOAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.17 Poles Locations of LOAS from (1st-15th) order LOAS . . . . . . . . . . . . 139

4.18 Poles Locations of LOAS from (1st-15th) order LOAS . . . . . . . . . . . . 140

4.19 Poles Locations of LOAS from (1st-15th) order LOAS . . . . . . . . . . . . 141

4.20 Poles Locations of LOAS from (1st-15th) order LOAS . . . . . . . . . . . . 142

4.21 Poles Locations of LOAS from (1st-15th) order LOAS . . . . . . . . . . . . 143

xiv



NOTATION

xv



ACRONYMS

Lower Order Approximated Systems LOAS

Frequency Limited Lower Order Approximated Systems FLLOAS

Impulse Response Gramian IRG

Frequency Limited Impulse Response Gramian FLIRG

Infinite Impulse Response IIR

Discrete Fourier transform DFT

Discrete Time Systems DTS

Continous Time Systems CTS

xvi



Chapter 1

INTRODUCTION

1.1 Overview

Control is employed to exchange the conduct of a model for this purpose it behaves in a

special way over time. For example, we have a tendency to would maybe select the tempo

of a car on the highway to continue to be as shut as conceivable to sixty miles per hour in

spite of workable hills or unsafe wind; or we have a tendency to may additionally choose an

craft to comply with a liked altitude, heading, and tempo profile unbiased of wind gusts; or

we have a tendency to would possibly favor the temperature and stress in an pretty reactor

vessel in an in the main natural motion plant to be maintained at liked levels of these are

being achieved these days by control methods and as a result the higher than are examples

of what computerized control constructions are designed to attempt to do, barring human

intervention control is used every time portions like speed, altitude, temperature, or voltage

want to be created to behave in some proper over time.

To reap some grasp into how an computerized system operates we shall rapidly appear at

the temporal control mechanism at some point of a automotive. It is per chance instructive

to suppose about first how a ordinary driver ought to control the car speed over uneven

terrain. The driver, with the aid of fastidiously staring at the meter, and exactly developing

or reducing the gas flow to the engine, exploitation the throttle, will maintain the speed quite
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accurately. Higher accuracy will possibly be carried out with the aid of capability. An auto-

mated temporal system, additionally referred to as cruise control, works with the resource of

means of exploitation the difference, or error, between the unique and preferred speeds and

data of the car’s response to gas will lengthen and reduces to calculate through means of the

use of some algorithmic rule an appropriate treadle position, therefore to energy of the steady

state error to zero. This name method is named an affect guidelines and it’s enforced in the

controller. The device configuration is tested in Fig. 1.1. The vehicle dynamics of interest

are captured in the plant, data involving the unique output is fed to the controller with the

useful resource of sensors, and subsequently the manage choices are enforced by means of

way of the usage of a tool, the mechanism, that changes the function of the fuel pedal. The

information of the car’s response to fuel will enlarge and reduces is most in many instances

captured at some factor of a mathematical model. Certainly in an auto at present day there

are larger computerized control structures like the anti-lock brake machine (ABS) and emis-

sion control. The utilization of remarks control preceded manipulate theory, outlined inside

the following sections, thru over 2000 years. The predominant remarks system on file is

that the widespread Water Clock of Ktesibios in Alexandria, Egypt, from the 3rd century BC.

Figure 1.1: Feedback Control Model.

2



To diagram a controller that produces a device behave in the direction of a appropriate

manner, we desire some way to predict the habits of the parts of interest over time, specifi-

cally how they alter in response to virtually one of a sort inputs. Mathematical fashions are

most regularly used to predict future behavior, and gadget plan methodologies are supported

such models, critical mathematical thoughts and skills, like fixing differential equations and

the use of laplace transform. The role of manage concept is to help us reap insight on how

and why remarks control constructions work and how to systematically deal with countless

plan and contrast problems. Specifically, the following troubles are of every smart magni-

tude and theoretical interest:

The Role of Control Theory

1. Stability and stability margins of closed-loop systems.

2. how speedy and convenient the error between the output and the point is pushed to zero.

3. how well the gadget handles surprising external disturbances, sensor noises, and interior

dynamic changes.

In the following, modeling and assessment are first introduced, followed via way of an

summary of the classical layout strategies for single-input single-output plants, sketch eval-

uation methods, and implementation problems. Alternative structure techniques are then

temporarily bestowed. Finally, For the sake of simplicity and brevity, the discussion is

confined to linear, time invariant systems. Results per chance located inside the literature

for the cases of linear, time-varying systems, and conjointly for nonlinear systems, systems

with delays, constructions represented by using partial differential equations, then on; these

3



results, however, have a tendency to be extra constrained and case dependent.

The proportional-integral-derivative (PID) controller, described through

u = KP e+KI

∫
e+KDė (1.1)

is a significantly beneficial manipulate approach that was invented over eighty years past.

Here KP , KI and KD are controller parameters to be elect, normally with the aid of trial

and error or via way of the use of a search table in alternate apply. The goal, as internal the

controller example, the energy of the steady state error to zero at some point of a best manner.

All three phrases equation. 1.1 have specific bodily meanings in this e is that the modern

day error,
∫

e is that the amassed error, and ė represents the trend. This, alongside aspect the

integral grasp of the causative relationship between the manage signal (u) and additionally

the output (y), varieties the premise for engineers to “tune”, or alter, the controller parameters

to fulfill the seem to be specifications. This intuitive style, due to the fact it seems, is spare for

a quantity of control applications. To this day, PID control continues to be the predominant

strategy in trade and is discovered in over 95 proportion of industrial applications. Its success

can additionally be attributed to the simplicity, efficiency, and effectiveness of this technique.

1.2 Low Dimensional Approximated Systems

The derivation of a sensible numerical model is central to get a decent comprehension of the

dynamical conduct of physical systems being referred to or to control its behaviour keep-

ing in mind the end goal to accomplish required execution determinations. Reduction of

complex frameworks, (for example, chip outline, liquid stream, mechanical systems repro-

4



duction) yields substantial scale systems. In spite of the progression of innovation and the

regularly expanding computational speed, the investigation, control and enhancement of sub-

stantial scale frameworks is testing (if not unthinkable), because of costly calculations and

capacity prerequisites. In this manner, procedure of creating a low-dimensional or lower or-

Figure 1.2: Various Schemes for Lower Order Approximation.

der approximation of systems that gives a decent gauge of the original higher order model is

known as approximated systems various schemes are organized in Fig. 1.2 . By and large, the

point of approximated systems is to discover lower order approximation of systems which

approximate the information content of the original systems. This is accomplished with a

lower storage requirements and additional assessment time. Approximated systems has as-

sumed a critical part in current control systems research and got ample consideration in the

most recent couple of decades. One of the critical factor of approximated systems is the

reduction of the error which arises from the distinction between the original and lower or-

der approximation of systems frequency response. Furthermore, the system properties like

5



stability, input-output behaviour and frequency response error bound are also of main con-

cern during the process of approximated systems. Numerical properties, for example, com-

putational speed and precision, storage requirements and so on assume an imperative part

in computational effectiveness of the approximated systems procedures. The error bound

equation for approximated systems procedure gives the approximation error. It will assist

the designer to choose approximated structures machine for the involved software [1]- [21].

We proposed to utilize a rule-based technique to remedy this issue. To this purpose, an

growth of statistics base is in increase so that after the desire of approximation algorithm, a

appear for the fundamental splendid validation standards will be performed. Moreover, in

the match that the divulge approval comes about are not regarded satisfactory, expert pro-

cedure may additionally offer assist the purchaser to re-configure the via and massive less-

ening bother following the cyclic plot represented in Fig.1.3. One of the most widely used

approximated systems methods is balanced truncation (BT) [22]. Moore [22], introduced

the balanced truncation procedure to perform the approximated systems, it also has a error

bound formula. A first arrangement of the open-loop balancing algorithm applied is reported

in Fig.1.4. In addition global parallelization method has been carried out, resulting in a sec-

ond scheme, proven in Fig. 1.5. However, it uses full frequency range for the approximated

systems thats why its encourages to introduce the frequency weights. Enns [23] procedure

was augmentation of BT [22] to introduction of frequency weights. These assigned weights

are valuable for the frequency value shaping of the approximated systems error. Enns [23]

technique may utilize input weighting, output weighting or both. In any case, for uneven

6



Figure 1.3: Expert procedure lower order approximation flow-chart showing the mode cyclic
operation.
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Figure 1.4: Open-loop balancing method.
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weighting or stability of lower order approximation of systems is ensured. However, for

both sided weighting case, stability is not ensured. To defeat this insecurity issue of both

sided weighting, a few adjustments to Enns [23] technique have been suggested. To con-

quer Enns [23] downside, Lin and Chiu [24] have proposed an alternate strategy that ensures

stability when both sided weighting is available. In any case, their procedure can work just

when the weighting function used here can be strictly proper and there occurs non poler

zero cancellation while framing the augmented systems. These confinements of Lin and

Chiu [24] procedure were later adjusted by Sreeram etal [25] and Varga and Anderson [26],

which summed up to incorporate proper weights, while holds the stability of the lower order

approximation of systems even at the point when poles zero cancelation happen. Be that

as it may, Varga and Anderson [26] procedure produces an indistinguishable outcome from

Enns [23], espacially in appliances involving controller reduction. So for controller reduc-

tion issue, if Enns [23] procedure yields unstable lower order approximation of systems, aso

by Varga and Anderson [26] technique. Wang et al’s [27] technique also throws light on the

instability issue of Enns [23], thus not just give stable lower order approximation of systems

within the sight of both sided weighting additionally provide a priori error bound. The er-

ror of approximation by Wang et al [27] was later modified by Varga and Anderson [26].

As indicated by Sreeram [28], this strategy (and modification by Varga and Anderson) are

realization dependent. This implies that for identical systems, distinctive models can be de-

rived and obtained from various realizations. Another forms of techniques was proposed

based on partial fraction, Latham and Anderson [29]. Several frequency weighted model

9



reduction (FWMR) techniques in view of partial fraction expansion idea have been taken

after [30]- [34]. Error bounds exist for certain exceptional sort of weighting function. Victor

Sreeram [35] technique gives low approximation error but have no theocratical justification.

in Fig.1.4. Sahlan and Sreeram [36], in spite of the fact that gives low approximation error

Figure 1.5: Balancing parallel method of Schur decomposition.

when contrasted with Enns [23] technique, and other surely understood FWMR procedures,

yet this technique is realization dependent. This idea of FWMR encourages introduction of

10



limited frequency range during the process of approximated systems. Later on, Gawronski

and Jaung (GJ) [38] announced the frequency limited Gramians based approximated sys-

tems technique for the continuous time systems. However, this technique also has some

limitations regarding its stability. The introduced Gramians sometimes produce negative

definiteness that may cause unstable . This limitation was covered by Gugercin and Anau-

los (GA) [39]and Victor Sreeram (VS) [35]. GA [39] ensured the stability by introducing

the square root related to eigenvalues of input-output related matrices. VS [35] ensured the

stability, by picking up only positive eigenvalues and ignoring negative eigenvalues of input

output related matrices. Recently, Imran [40] proposed a new way to ensure the stability

of lower order approximation of systems by choosing circular way of multiplication, divi-

sion and negative of averaging. This technique also has a drawback that the new diagonal

matrix will have last eigenvalue as zero, nullifying the effect of last eigenvalue that may

cause a huge variation in original system. These techniques also provides an error bound

formula. For the discrete time systems Wang and Zilouchian (WZ) [41] proposed a new

technique incase of limited frequency Gramians. However, this technique also may cause

unstable lower order approximation of systems. The modification is carried out and new way

is proposed to ensure the stability of lower order approximation of systems for the discrete

time systems. Victor Sreeram (VS) [42] and Imran [43] proposed a new way to ensure the

stability of lower order approximation of systems. VS [42] ensured the stability by intro-

ducing two algorithms, in first algorithm the stability is ensured by taking absolute of the all

the eigenvalues of some input-output matrices. Whereas, in second algorithm the negative

11



eigenvalues are ignored and only taking the positive eigenvalues of some input output matri-

ces to ensure the stability. Later on, Imran [43] proposed a new way to ensure the stability

of the lower order approximation of systemsby taking the least eigenvalue and subtracting

it from all the eigenvalues from some input output related matrices to ensure the stability of

lower order approximation of systems. However, this technique may cause larger variation

as compared other techniques. This technique is nullifying the effect of last eigenvalues that

may cause larger variation. The proposed technique also provides the error bound formula.

Approximated systems for 1-D systems providing good sight for researchers.

1.3 Feedback Control Design of Low Dimensional Approximated Systems

The state of a dynamical device may want to be a combination of variables that lets in

prediction on further future improvement of a system. During this Thesis we are going to

explore the thought of dominant a gadget thru state feedback. We count on that the device

required to be managed is delineate via a linear state model and accommodates a single

input. The comments manipulate are developed step with the aid of step victimisation one

single idea: the positioning of control system eigenvalues at desired locations. It seems

that the controller comprises a terribly mesmerising shape that applies to a number of sketch

methods. This chapter be considered as an example of techniques of many analytical designs.

If the nation of a machine is no longer available for direct measurement, it is often practicable

to see the state by way of means of reasoning related to the kingdom via our statistics of the

dynamics and a lot of constrained measurements. This is done using or constructing an

“observer” that makes use of measurements of the inputs and outputs of a linear system,
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alongside with a mannequin of the device dynamics, to estimate the state. The essential

factors of the assessment and designs throughout this chapter are carried out for structures

with one enter and one output, however, it turns out that the structure of the controller and

additionally the varieties of the equations are exactly the equal for structures with many

inputs and masses of outputs. There also are severa choice sketch techniques that provide

controllers with equal structure. A attribute attribute of a controller with kingdom feedback

and an observer is that the first-class of the controller is given through the complexity of the

gadget to be controlled. So the controller genuinely carries a model of the system. This is an

instance of the indoors model principle that says that a controller ought to have an internal

mannequin of the controlled system.

Enns [23] technique may utilize input weighting, output weighting or both. In any case, for

uneven weighting, stability of lower order approximation of systems is ensured. However,

for both sided weighting case, stability is not ensured. Gawronski and Jaung (GJ) [38]

highlighted the frequency limited Gramians based approximated systems technique for the

continuous time systems. However, this technique also has some limitations regarding its

stability. The introduced Gramians sometimes produce negative definiteness that may cause

unstable.

For the discrete time systems Wang and Zilouchian (WZ) [41] proposed a new technique

incase of limited frequency Gramians. However, this technique also may cause unstable

lower order approximation of systems.

To defeat this insecurity issue of Enns [23], Gawronski and Jaung (GJ) [38] and Wang and
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Zilouchian (WZ) [41] we proposed a new scheme that ensure the stability of lower order

approximation of systems by design a feedback controller. That not only ensure the stability

of the lower order approximation of systems but produces low error and error bound as

compared to existing stability preserving techniques [24], [25], [26], [26], [28], [29], [39],

[35], [40], [42], [43].
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Chapter 2

CONTROL DESIGN OF APPROXIMATED SYSTEMS USING

FEEDBACK ANALYSIS OF STATES AND OUTPUT FOR

DISCRETE TIME SYSTEMS

The process of Lower Order Approximation System (LOAS) is to reduce a system from

higher order to its lower order for ease in simulation, analysis and design of complex sys-

tems, filters and controller [11]- [14]. Balance truncation [22] is a common and useful

scheme to get stable LOAS for stable original system. Moreover the scheme also has error

bounds. However it uses full frequency range to get LOAS. This encourages to introduce

the frequency weights to perform LOAS. Enns [23] extended the work of balance truncation

technique to incorporate frequency weights. Enns [23] method may use single sided (in-

put/output) and double sided weights. It yields stable LOAS when use only one side weights

whereas with two sided weights, LOAS is unstable. To overcome the problem of Enns,

many other techniques are given in literature [25]- [37]. In some cases, a specific range of

frequency can be of interest. Wang and Zilouchian (WZ) [41] proposed a frequency limited

technique without explicit weights. It can yield unstable LOAS and no error bound exist. To

overcome the problem of WZ’s [41], Victor Sreeram (GS) [42] proposed two methods which

ensures and guarantee the LOAS stability. The work in [42] guarantees stability of LOAS

and carry error bounds. New measures are suggested to provide stable LOAS by introducing
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controller for unstable states which bring positive eigenvalues in negative half plan hence

stability of LOAS is guaranteed and error bound also exist. The suggested techniques gives

better results than existing LOAS techniques for stability preservation.

2.1 Preliminaries

Consider a discrete time system be given as:

x(k + 1) = Ãx(k) + B̃u(k) (2.1)

y = C̃x(k) + D̃u(k)

G̃(z) = C̃(zI − Ã)−1B̃ +D, (2.2)

where Ã ∈ Rn×n, B̃ ∈ Rn×m, C̃ ∈ Rp×n, D ∈ Rp×m and {Ã, B̃, C̃,D} is its nth order

minimal realization with p outputs and m inputs. The LOAS

xr(k + 1) = Ãrxr(k) + B̃ru(k) (2.3)

yr(k) = C̃rxr(k) +Dru(k)

G̃r(z) = C̃r(zI − Ãr)−1B̃r +Dr, (2.4)

is obtained by approximating the actual system (in the desired limited frequency range

[ω1, ω2]) where ω2 > ω1, where {Ãr ∈ Rr×r, B̃r ∈ Rr×m, C̃r ∈ Rp×r, Dr ∈ Rp×m} with
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r < n.

P̃c =
1

2π

∫ π

−π
(ejωI − Ã)−1B̃B̃T (e−jωI − ÃT )−1dω (2.5)

Q̃o =
1

2π

∫ π

−π
(e−jωI − ÃT )−1C̃T C̃(ejωI − Ã)−1dω (2.6)

P̃c and Q̃o satisfy

ÃP̃cÃ
T − P̃c + B̃B̃T = 0 (2.7)

ÃT Q̃oÃ− Q̃o + C̃T C̃ = 0 (2.8)

Using the Parseval’s relationship

P̃c(ω) =
1

2π

∫ +ω

−ω
(ejωI − Ã)−1B̃B̃T (ejωI − ÃT )−1dω

Q̃o(ω) =
1

2π

∫ +ω

−ω
(e−jωI − ÃT )−1C̃T C̃(e−jωI − Ã)−1dω

2.1.1 WZ’s Technique [41]

Let P̃W and Q̃W be defined as

P̃W (ω) =
1

2π

∫ +ω

−ω
(ejωI − Ã)−1B̃B̃T (ejωI − ÃT )−1dω

Q̃W (ω) =
1

2π

∫ +ω

−ω
(e−jωI − ÃT )−1C̃T C̃(e−jωI − Ã)−1dω

These Gramians PW and QW satisfy

ÃP̃W Ã
T − P̃W + X̃W = 0 (2.9)

ÃT Q̃W Ã− Q̃W + ỸW = 0 (2.10)
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where

X̃W = B̃B̃TF ∗ + FB̃B̃T (2.11)

ỸW = C̃T C̃F + F ∗C̃T C̃ (2.12)

F = −ω2 − ω1

4π
I +

1

2π

∫
δω

(ejωI − Ã)−1dω (2.13)

F ∗ is conjugate transpose of F , δω is the integration of interval [ω1, ω2]. Let

T TW Q̃WTW = T−1W P̃WT
−T
W = diag(σ1, σ2, · · · , σn) (2.14)

where σj ≥ σj+1, j = 1, 2, . . . , n − 1, σr > σr+1 and TW is used to get LOAS by

transforming the actual system into a balanced realization. The LOAS obtained G̃r(z) =

C̃r(zI − Ãr)−1B̃r +Dr.

T−1W ÃTW =

 Ar A12

A21 A22

 , T−1W B̄ =

 Br

B2

 (2.15)

C̃TW =

[
Cr C2

]
, D = Dr (2.16)

The possibly indefinite matrices XW and YW can be decomposed as

X̃W = USWU
T =

[
U1 U2

] SW1 0

0 SW2


 UT

1

UT
2

 (2.17)

ỸW = V RWV
T =

[
V1 V2

] RW1 0

0 RW2


 V T

1

V T
2

 (2.18)

where

SW1 = diag(s1, · · · , sl−1) ≥ 0, SW2 = diag(sl, · · · , sn) < 0, RW1 = diag(r1, · · · , rp−1) ≥
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0, RW2 = diag(rp, · · · , rn) < 0. (l− 1) and (p− 1) are the singular values which is positive

of X̃W and ỸW respectively.

Remark 1 Since XW and YW are negative/semi-negative definite, which results unstable

LOAS [42].

2.1.2 Existing Stability Preserving Frequency Limited Techniques

Let PF and QF satisfy

ÃPF Ã
T − PF +BFB

T
F = 0 (2.19)

ÃTQF Ã−QF + CT
FCF = 0 (2.20)

BS1 = U

 S
1/2
W1

0

0 |SW2|1/2



BS2 = U

 S
1/2
W1

0

0 0


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BI =


U(SW − snI)1/2 for sn < 0

US
1/2
W for sn ≥ 0

CS1 =

 R
1/2
W1

0

0 |RW2|1/2

V T

CS2 =

 R
1/2
W1

0

0 0

V T

CI =


(RW − rnI)1/2V T for rn < 0

R
1/2
W V T for rn ≥ 0.

Let TF is obtained as:

T TF QFTF = T−1F PFT
−T
F =



σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


The LOAS are obtained after transforming the original system using the matric TF similar

to equations (13) − (14). These LOAS which are obtained here are stable guaranteed and

their error bounds also exists. Let new virtual/fictitious controllability P̃MI and observability

Q̃MI Gramians are computed as

ÃPMIÃ
T − P̃MI +BMIB

T
MI = 0 (2.21)

ÃTQMIÃ− Q̃MI + CT
MICMI = 0 (2.22)

The new virtual matrices BMI and CMI where
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BMI = U

 S
1/2
W1

0

0 S
1/2
MI2

 = US
1/2
MI ,

CMI =

 R
1/2
W1

0

0 R
1/2
MI2

V T = R
1/2
MIV

T

where

SMI2 =

{
(SW2 .sl) for l < n

RMI2 =

{
(RW2 .rp) for p < n

Let similarity transformation matrix TMI is calculated as

T TMIQMITMI = T−1MIPMIT
−T
MI = diag{σ1, σ2, σ3 . . . , σn}

where σj ≥ σj+1 and σr ≥ σr+1. The LOAS is obtained as

T−1MIÃTMI =

 Ar A12

A21 A22

 , T−1MIB̃ =

 Br

B2

 (2.23)

C̃TMI =

[
Cr C2

]
, D = Dr (2.24)
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Let an contragredient transformation matrix T (as used in transforming original native sys-

tem) is obtained as

T TQMIT = T−1PMIT
−T =



ς1 0 · · · 0

0 ς2 · · · 0

· · · · · · . . . · · ·

0 0 · · · ςn


where ςj ≥ ςj+1, j = 1, 2, 3, . . . , n − 1, ςk > ςk+1. Lower order approximated systems are

calculated by applying transformation matrix and balancing the transformed realization.

Remark 2 Since X̃W ≤ BMIB
T
MI ≥ 0, ỸW ≤ CT

MICMI ≥ 0, PMI > 0 and QMI > 0.

Which implies the minimality of the realization (Ã, BMI , CMI) and stability of the LOAS is

guaranteed.

Theorem 1 Let rank
[
BMI B̃

]
= rank [BMI ] and rank

 CMI

C̃

 = rank [CMI ] follow-

ing error bound holds

‖G̃(z)− G̃r(z)‖∞ ≤ 2‖LMI‖‖KMI‖
n∑

j=r+1

σj
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where

LMI =


CV R

−1/2
MI ifRW2 exists

CV R
−1/2
W otherwise

KMI =


S
−1/2
MI UTB ifSW2 exists

S
−1/2
W UTB otherwise

Proof: Since rank
[
BMI B̃

]
= rank [BMI ] and rank

 CMI

C̃

 = rank [CMI ], the

relationships B = BMIKMI and C = LMICMI hold. By partitioning BMI = BMI1

BMI2

 , CMI =

[
CMI1 CMI2

]
and substituting Br = BMI1KMI , Cr = LMICMI1

respectively yields

‖G̃(z)− G̃r(z)‖∞ = ‖C̃(zI−Ã)−1B̃−C̃r(zI−Ãr)−1B̃r‖∞

= ‖LMICMI(zI − Ã)−1BMIKMI

−LMICMI1(zI − Ãr)−1BMI1KMI‖∞

= ‖LMI(CMI(zI − Ã)−1BMI

−CMI1(zI − Ãr)−1BMI1)KMI‖∞

≤ ‖LMI‖‖(CMI(zI − Ã)−1BMI

−CMI1(zI − Ãr)−1BMI1)‖∞‖KMI‖

If {Ãr, BMI1 , CMI1} is LOAS obtained from original system {Ã, BMI , CMI}.

‖(CMI(zI − Ã)−1BMI−CMI1(zI − Ãr)−1BMI1)‖∞≤2
n∑

j=r+1

σj.
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Therefore,

‖G̃(z)− G̃r(z)‖∞ ≤ 2‖LMI‖‖KMI‖
n∑

j=r+1

σj

Remark 3 XG ≥ 0 and YG ≥ 0 which implies PG = PF = PMI and QG = QF = QMI .

Otherwise PG < PMI and QG < QMI . Moreover, Hankel values satisfy : (λj[PGQG])1/2 ≤

(λj[PMIQMI ])
1/2

2.2 Main Results

The LOAS are obtained after transforming the original system using the matric TF similar to

equations (13)− (14). These LOAS have their stability guaranteed and have error bounds.

The existing stability preserving techniques [42], [40] modified XG and YG to ensure posi-

tive/semipositive definite.

Let controllability PEI and observability QEI Gramians are computed as

ÃPEIÃ
T − PEI +BEIB

T
EI = 0 (2.25)

ÃTQEIÃ−QEI + CT
EICEI = 0 (2.26)

The input and output related matrices are given as BEI and CEI . Let similarity transforma-

tion matrix TEI is calculated as

T TEIQEITEI = T−1EI PEIT
−T
EI = diag{σ1, σ2, σ3 . . . , σn}
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where σj ≥ σj+1 and σr ≥ σr+1. The LOAS is obtained as

T−1EI ÃTEI =

 Ar A12

A21 A22

 , T−1EI B̃ =

 Br

B2

 (2.27)

C̃TEI =

[
Cr C2

]
, D = Dr (2.28)

TEI (used to transform the original system) is obtained as

T TEIQEITEI = T−1EI PEIT
−T
EI =



ς1 0 · · · 0

0 ς2 · · · 0

· · · · · · . . . · · ·

0 0 · · · ςn


where ςj ≥ ςj+1, j = 1, 2, 3, . . . , n − 1, ςk > ςk+1. Lower order approximated models are

calculated by applying transformation matrix and partitioning the transformed realization.

Remark 4 Since X̃W = BEIB
T
EI ≤ 0, ỸW = CT

EICEI ≤ 0, PEI ≤ 0 and QEI ≤ 0.

Therefore, the realization is minimal (Ã, BEI , CEI) is not stable and stability of lower order

approximated system is not ensured.

Design of Feedback Controller for Lower Order Approximated System:

Let LOAS,

xr(k + 1) = Ãrxr(k) + B̃ru(k) (2.29)

yr(k) = C̃rxr(k) +Dru(k)
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G̃r(z) = C̃r(zI − Ãr)−1B̃r +Dr, (2.30)

is obtained by approximating the actual system (in the desired limited frequency range

[ω1, ω2]) where ω2 > ω1, where {Ãr ∈ Rr×r, B̃r ∈ Rr×m, C̃r ∈ Rp×r, Dr ∈ Rp×m} with

r < n. To make LOAS stable introducing State Feedback Controller and Output Feedback

Controller with states Feedback using unstable lower order approximated system as given

above, lower order control law is applying in above system u(k) = −Krxr + û to feed-

back its lower order states to stabilizing the lower order approximated system which is given

following,

xr(k + 1) = Ãrxr(k) + B̃r(−Krxr + û)

yr(k) = C̃rxr(k) +Dr(−Krxr + û)

xr(k + 1) = (Ãr − B̃rKr)xr + B̃rû

yr(k) = (C̃r −DrKr)xr +Drû

Ĝr(z) = (C̃r −DrKr)(zI − (Ãr − B̃rKr))
−1B̃r +Dr,

where {(Ãr − B̃rKr) = Âr ∈ Rr×r, B̃r = B̂r ∈ Rr×m, (C̃r −DrKr) = Ĉr ∈ Rp×r, Dr =

D̂r ∈ Rp×m} with r < n. Stable lower order approximated system will be given as,

x̂r(k + 1) = Ârxr + B̂rû (2.31)

ŷr(k) = Ĉrxr + D̂rû
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Ĝr(z) = Ĉr(zI − Âr)−1B̂r + D̂r, (2.32)

Lower Order Approximated System is also give in Fig. 2.1

Figure 2.1: State Feedback Control for Lower Order Approximated System

Remark 5 Since X̃W = BEIB
T
EI ≤ 0, ỸW = CT

EICEI ≤ 0, PEI ≤ 0 and QEI ≤ 0. Which

implies the minimality of the realization (Ã, BEI , CEI) and stability of (Âr, B̂r, Ĉr) lower

order approximated system is guaranteed given in Fig. 2.1.

Design of Observer Based Feedback Controller for Lower Order Approximated System:

Let LOAS,

xr(k + 1) = Ãrxr(k) + B̃ru(k) (2.33)

yr(k) = C̃rxr(k) +Dru(k)

G̃r(z) = C̃r(zI − Ãr)−1B̃r +Dr, (2.34)

is obtained by approximating the actual system (in the desired limited frequency range

[ω1, ω2]) where ω2 > ω1, where {Ãr ∈ Rr×r, B̃r ∈ Rr×m, C̃r ∈ Rp×r, Dr ∈ Rp×m} with
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r < n.

To make LOAS stable introducing Observer Based State Feedback Controller using unstable

lower order approximated system as given above,

Lower Order Approximated Observer:

x̂r(k + 1) = Ãrx̂r(k) + L(yr − C̃rx̂r) + B̃ru(k)

ŷr(k) = C̃rx̂r(k) +Dru(k)

State Feedback Law:

u(k) = −Krxr + û

lower order control law is applying in above system u(k) = −Krxr + û to feedback its

observer based lower order states to stabilizing the lower order approximated system which

is given following,

x̂r(k + 1) = (Ãr − LCr)x̂r(k) + LC̃rxr + B̃r(−Krx̂r + û)

ŷr(k) = C̃rx̂r(k) +Dr(−Krx̂r + û)

x̂r(k + 1) = (Ãr − LC̃r − B̃rKr)x̂r + B̃rû

ŷr(k) = (C̃r −DrKr)x̂r +Drû

Ĝro(z) = (C̃r −DrKr)(zI − (Ãr − LC̃r − B̃rKr))
−1B̃r +Dr,
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where {(Ãr − LC̃r − B̃rKr) = Âro ∈ Rr×r, B̃r = B̂ro ∈ Rr×m, (C̃r −DrKr) = Ĉro ∈

Rp×r, Dr = D̂ro ∈ Rp×m} with r < n. Stable lower order approximated system will be

given as,

x̂r(k + 1) = Âroxr + B̂roû (2.35)

ŷr(k) = Ĉroxr + D̂roû

Ĝro(z) = Ĉro(zI − Âro)−1B̂ro + D̂ro, (2.36)

Observer Based Lower Order Approximated System is also give in Fig. 2.2

Figure 2.2: Observer Based State Feedback Control for Lower Order Approximated System
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Remark 6 Since X̃W = BEIB
T
EI ≤ 0, ỸW = CT

EICEI ≤ 0, PEI ≤ 0 and QEI ≤ 0. Which

results the minimality of the realization (Ã, BEI , CEI) and stability of (Âro, B̂ro, Ĉro) lower

order approximated system is guaranteed given in Fig. 2.2.

Theorem 2 Let rank
[
BEI B̃

]
= rank [BEI ] and rank

 CEI

C̃

 = rank [CEI ] following

error bound holds

‖G̃(z)− Ĝr(z)‖∞ ≤ 2‖LEI‖‖KEI‖
n∑

j=r+1

σj

where

LEI =

{
CV R

−1/2
W

KEI =

{
S
−1/2
W UTB

Proof: Since rank
[
BEI B̃

]
= rank [BEI ] and rank

 CEI

C̃

 = rank [CEI ], the relation-

ships B = BEIKEI and C = LEICEI hold. By partitioning BEI =

 BEI1

BEI2

 , CEI =
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[
CEI1 CEI2

]
and substituting B̂r = BEI1KEI , Ĉr = LEICEI1 respectively yields

‖G̃(z)− Ĝr(z)‖∞ = ‖C̃(zI−Ã)−1B̃−Ĉr(zI−Âr)−1B̂r‖∞

= ‖LEICEI(zI − Ã)−1BEIKEI

−LEICEI1(zI − Âr)−1BEI1KEI‖∞

= ‖LEI(CEI(zI − Ã)−1BEI

−CEI1(zI − Âr)−1BEI1)KEI‖∞

≤ ‖LEI‖‖(CEI(zI − Ã)−1BEI

−CEI1(zI − Âr)−1BEI1)‖∞‖KEI‖

If {Âr, BEI1 , CEI1} is LOAS obtained from original system {Ã, BEI , CEI}.

‖(CEI(zI − Ã)−1BEI−CEI1(zI − Âr)−1BEI1)‖∞≤2
n∑

j=r+1

σj.

Therefore,

‖G̃(z)− Ĝr(z)‖∞ ≤ 2‖LEI‖‖KEI‖
n∑

j=r+1

σj

Theorem 3 Let rank
[
BEI B̃

]
= rank [BEI ] and rank

 CEI

C̃

 = rank [CEI ] following

error bound holds

‖G̃(z)− Ĝr(z)‖∞ ≤ 2‖LEI‖‖KEI‖
n∑

j=r+1

σj
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where

LEI =

{
CV R

−1/2
W

KEI =

{
S
−1/2
W UTB

Proof: Since rank
[
BEI B̃

]
= rank [BEI ] and rank

 CEI

C̃

 = rank [CEI ], the relation-

ships B = BEIKEI and C = LEICEI hold. By partitioning BEI =

 BEI1

BEI2

 , CEI =

[
CEI1 CEI2

]
and substituting B̂ro = BEI1KEI , Ĉro = LEICEI1 respectively yields

‖G̃(z)− Ĝro(z)‖∞ = ‖C̃(zI−Ã)−1B̃−Ĉro(zI−Âro)−1B̂ro‖∞

= ‖LEICEI(zI − Ã)−1BEIKEI

−LEICEI1(zI − Âro)−1BEI1KEI‖∞

= ‖LEI(CEI(zI − Ã)−1BEI

−CEI1(zI − Âro)−1BEI1)KEI‖∞

≤ ‖LEI‖‖(CEI(zI − Ã)−1BEI

−CEI1(zI − Âro)−1BEI1)‖∞‖KEI‖

If {Âro, BEI1 , CEI1} is LOAS obtained from original system {Ã, BEI , CEI}.

‖(CEI(zI − Ã)−1BEI−CEI1(zI − Âro)−1BEI1)‖∞≤2
n∑

j=r+1

σj.
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Therefore,

‖G̃(z)− Ĝro(z)‖∞ ≤ 2‖LEI‖‖KEI‖
n∑

j=r+1

σj

Remark 7 XG ≥ 0 and YG ≥ 0 then PG = PF = PEI and QG = QF = QEI . Whereas,

Hankel values satisfy : (λj[PGQG])1/2 = (λj[PEIQEI ])
1/2

2.3 Numerical Simulations

Numerical examples show the proposed technique effectiveness.

Example 1: Consider a transfer function of 6th order Elliptic filter with band-pass

0.2001π − 0.35001π, ripple is 0.2001 dB in the pass band and attenuation is 30 dB on

the stop band.

G(z) =
0.04278z6 − 0.08375z5 + 0.053z4 + 9.499e−18z3 − 0.053z2 + 0.08375z − 0.04278

z6 − 3.419z5 + 6.098z4 − 6.65z3 + 4.761z2 − 2.07z + 0.4722

with desired frequency interval 0.03π − 0.09π.

Analysis & Discussion

Fig. 2.3, 2.11 and 2.19 show the error σ[G(s) − Gr(s)] plot, where Gr(s) is 2nd, 3rd and

5th LOAS obtained using existing and proposed techniques respectively. Fig. 2.4, 2.12 and

2.20 represent zoom-in view of frequency response error. Whereas, Fig. (2.5, 2.13, 2.21),

(2.6, 2.14, 2.22), (2.7, 2.15, 2.23), (2.8, 2.16, 2.24), (2.9, 2.17, 2.25) and (2.10, 2.18, 2.26)

represents impulse response, natural response, the step response, bode Plot, root locus plot

and nyquist plot for the 2nd, 3rd and 5th LOAS obtained using existing and proposed tech-
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Table 2.1: LOAS for 2nd order

Techniques LOAS

Wang and Zilouchian
0.04278z2 − 0.09992z + 0.05708

z2 − 1.844z + 0.7537

Victor Sreeram
0.04278z2 − 0.04446z − 0.05361

z2 − 1.436z + 0.9041

Balance Truncation
0.04278z2 + 0.05752z − 0.1289

z2 − 1.241z + 0.8579

State Feedback Controller
0.04278z2 − 0.0597z + 0.03248

z2 − 0.9035z + 0.1785

Observer Based Controller
0.04278z2 − 0.05346z + 0.02866

z2 − 0.7577z + 0.08924
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Table 2.2: LOAS for 3rd order

Techniques LOAS

Wang and Zilouchian

0.04278z3 − 0.143z2 + 0.1583z − 0.05815

z3 − 2.854z2 + 2.628z − 0.7687

Victor Sreeram

0.04278z3 + 0.01488z2 − 0.1753z + 0.1178

z3 − 1.929z2 + 1.628z − 0.4832

Balance Truncation

0.04278z3 + 0.04466z2 − 0.2025z + 0.123

z3 − 1.957z2 + 1.734z − 0.5957

State Feedback Controller

0.04278z3 − 0.07493z2 + 0.06751z − 0.02804

z3 − 1.264z2 + 0.5051z − 0.06498

Observer Based Controller

0.04278z3 − 0.06099z2 + 0.05557z − 0.02596

z3 − 0.9378z2 + 0.226z − 0.01624
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Table 2.3: LOAS for 5th order

Techniques LOAS

Wang and Zilouchian

0.04278z5 − 0.09989z4 − 0.05579z3 + 0.3482z2 − 0.3526z + 0.1173

z5 − 4.238z4 + 7.549z3 − 7.24z2 + 3.744z − 0.879

Victor Sreeram

0.04278z5 − 0.09298z4 + 0.1294z3 − 0.2209z2 + 0.2355z − 0.09125

z5 − 3.031z4 + 4.518z3 − 3.838z2 + 1.895z − 0.4149

Balance Truncation

0.04278z5 − 0.08901z4 + 0.1101z3 − 0.1719z2 + 0.1718z − 0.05649

z5 − 3.026z4 + 4.569z3 − 3.969z2 + 2.022z − 0.4676

State Feedback Controller

0.04278z5 − 0.04909z4 − 0.1986z3 + 0.5279z2 − 0.4639z + 0.1486

z5 − 3.051z4 + 4.212z3 − 3.04z2 + 1.142z − 0.1478

Observer Based Controller

0.04278z5 − 0.04396z4 − 0.213z3 + 0.546z2 − 0.4751z + 0.1517

z5 − 2.931z4 + 3.874z3 − 2.616z2 + 0.8787z − 0.07388

36



Table 2.4: Poles location of the LOAS

Techniques 2nd Order 3rd Order 5th Order

Wang and Zilouchian 1.2319, 0.61181 1.1461, 1.0962, 0.61181 1.4274, 0.78826± 0.553i, 0.61713± 0.5323i

Victor Sreeram 0.72157± 0.62803i 0.56229, 0.68317± 0.62657i 0.5921, 0.75961± 0.55445i, 0.45991± 0.76215i

Balance Truncation 0.62046± 0.68772i 0.69517, 0.6308± 0.67747i 0.64938, 0.73835± 0.57062i, 0.44979± 0.7903i

State Feedback Controller 0.61181, 0.29172 0.31787, 0.33412, 0.61181 0.23994, 0.61713± 0.5323i, 0.78826± 0.553i

Observer Based Controller 0.61181, 0.14586 0.15894, 0.16706, 0.61181 0.11997, 0.61713± 0.5323i, 0.78826± 0.553i
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Figure 2.3: Error comparison for 2nd order LOAS

Figure 2.4: Error comparison - zoom-in view for 2nd order LOAS
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Figure 2.5: Natural response for 2nd order LOAS

Figure 2.6: Impulse response for 2nd order LOAS
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Figure 2.7: Step response for 2nd order LOAS

Figure 2.8: Bode plot for 2nd order LOAS
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Figure 2.9: Nyquist plot for 2nd order LOAS

Figure 2.10: Root Locus plot for 2nd order LOAS
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Figure 2.11: Error comparison for 3rd order LOAS

Figure 2.12: Error comparison - zoom-in view for 3rd order LOAS
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Figure 2.13: Natural response for 3rd order LOAS

Figure 2.14: Impulse response for 3rd order LOAS

43



Figure 2.15: Step response for 3rd order LOAS

Figure 2.16: Bode plot for 3rd order LOAS
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Figure 2.17: Nyquist plot for 3rd order LOAS

Figure 2.18: Root Locus plot for 3rd order LOAS
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Figure 2.19: Error comparison for 5th order LOAS

Figure 2.20: Error comparison - zoom-in view for 5th order LOAS
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Figure 2.21: Natural response for 5th order LOAS

Figure 2.22: Impulse response for 5th order LOAS
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Figure 2.23: Step response for 5th order LOAS

Figure 2.24: Bode plot for 5th order LOAS
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Figure 2.25: Nyquist plot for 5th order LOAS

Figure 2.26: Root Locus plot for 5th order LOAS
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niques respectively. It can be orchestrated that the proposed technique gives low frequency

response error. Simulation results show that GJ produces relatively less approximation error

as compared to other existing techniques, but it yields sometime unstable LOAS as shown in

Table 2.1, 2.2, 2.3 and 2.4. Proposed techniques produce less error for approximation (when

compared with other preserving techniques for stability) and stable LOAS.

2.4 Conclusion

Improvement in frequency limited LOAS method for discrete systems is suggested. The

suggested method provides stability of LOAS and projected error bounds. The error for

approximation is less and comparable to other existing techniques for preserving stability.

WZ’s technique provide less error for approximation as compared to other persistent tech-

niques, but it occasionally yield unstable LOAS.
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Chapter 3

CONTROL DESIGN OF APPROXIMATED SYSTEMS USING

FEEDBACK ANALYSIS OF STATES AND OUTPUT FOR

CONTINUOUS TIME SYSTEMS

Lower Order Approximation Systems (LOAS) is a process of reducing the higher order sys-

tem to lower order system. Higher order system involve lots of complexity for the analysis,

design and its simulations. In control system theory it is very useful way to reduce the

higher order model and perform tasks. It has several applications in control system the-

ory [11]- [14].

One of the most widely used technique of LOAS is balance truncation [22]. It is used to

obtained the LOAS. It provide the stable LOAS and does provide formula for error bound.

It preserve the properties like input/output behaviour and passivity etc. While performing

LOAS it use full frequency, however, it is not desired always to use ranges of complete fre-

quency. This encourages to operate on frequency weights.

Enns [23] used this idea and announced the frequency weights (input, output and both sided)

to obtain LOAS. It provides the LOAS which is stable in case of single sided weights,

whereas for double sided weights it provide unstable LOAS. To solve this issue many other

techniques have been presented in document [25]- [37].

Gawronski and Jaung (GJ) [38] pioneer of the limited frequency band Gramians based
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LOAS, frequency weights were not used in this technique. Gramians are defined over lim-

ited frequency interval for continuous time system. It may cause unstable LOAS for stable

original system and also not provide computable error bound formula. To solve this issue

Gugercin and Antoulas (GA) [39], Victor Sreeram (VS) [35], Muhammad Imran (MI) [40]

modified GJ’s [38] technique and provide stable LOAS.

In this paper a new way is proposed which provide stability of LOAS and also provide the

computable error bound formula. Results of Simulations explicitly present effectiveness and

validity of the new proposed technique.

3.1 Preliminaries

Imagine a continuous time system which is stable

ẋ = Ãx(t) + B̃u(t) (3.1)

y = C̃x(t) + D̃u(t)

G̃(s) = C̃(sI − Ã)−1B̃ +D, (3.2)

where Ã ∈ Rn×n, B̃ ∈ Rn×m, C̃ ∈ Rp×n, D ∈ Rp×m and {Ã, B̃, C̃,D} is its nth order

minimal realization.

P̃c =
1

2π

∫ ∞
−∞

(jωI − Ã)−1B̃B̃T (−jωI − ÃT )−1dω (3.3)

Q̃o =
1

2π

∫ ∞
−∞

(−jωI − ÃT )−1C̃T C̃(jωI − Ã)−1dω (3.4)
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P̃c and Q̃o satisfy

ÃP̃c + P̃cÃ
T + B̃B̃T = 0 (3.5)

ÃT Q̃o + Q̃oÃ+ C̃T C̃ = 0 (3.6)

By using Parseval’s relationship

P̃c =
1

2π

∫ +ω

−ω
(jωI − Ã)−1B̃B̃T (−jωI − ÃT )−1dω

Q̃o =
1

2π

∫ +ω

−ω
(−jωI − ÃT )−1C̃T C̃(jωI − Ã)−1dω

3.1.1 GJ’s Technique [38]

P̃G and Q̃G can be defined as for limited interval

P̃G = P̃c(ω2)− P̃c(ω1), Q̃G = Q̃o(ω2)− Q̃o(ω1) P̃G and Q̃G satisfy

ÃP̃G + P̃GÃ
T + B̃B̃T = 0 (3.7)

ÃT Q̃G + Q̃GÃ+ C̃T C̃ = 0 (3.8)
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where

X̃G =
(
S̃(ω2)− S̃(ω1)

)
B̃B̃T + B̃B̃T

(
S̃∗(ω2)−S̃∗(ω1)

)

X̃G = U

 SG1 0

0 SG2

UT

ỸG =
(
S̃∗(ω2)−S∗(ω1)

)
C̃T C̃+C̃T C̃

(
S̃(ω2)−S(ω1)

)

ỸG = V

 RG1 0

0 RG2

V T

S̄(ω) =
j

2π
ln

((
jωI + Ã

)(
−jωI + Ã

)−1)

SG1 =


s1 0 · · · 0

0 s2 · · · 0

0 0 · · · sl


, SG2 =


sl+1 0 · · · 0

0 sl+2 · · · 0

0 0 · · · sn


,

RG1 =


r1 0 · · · 0

0 r2 · · · 0

0 0 · · · rk


, RG2 =


rk+1 0 · · · 0

0 rk+2 · · · 0

0 0 · · · rn


l and k are eigenvalues which is positive of X̃G and ỸG respectively. S̃∗(ω) is conjugate

transpose of S̃(ω). Let

T TG Q̃GTG = T−1G P̃GT
−T
G = diag{σ1, σ2, . . . , σn}

and LOAS obtained is

Gr(s) = Cr(sI − Ar)−1Br +Dr, (3.9)
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r is the order of LOAS.

T−1G ÃTG =

 Ar A12

A21 A22

 , T−1G B̃ =

 Br

B2

 (3.10)

C̃TG =

[
Cr C2

]
, D (3.11)

where σj ≥ σj+1, j = 1, 2, 3, . . . , n − 1, σr > σr+1 and TG is used to transform the actual

system. Partitioning transformed system to obtained LOAS.

Remark 8 GJ [38] sometimes produce unstable LOAS because input/output related matri-

ces XG and YGe may be negative-definite or negative semi-definite.

3.1.2 Existing Stability Preserving Frequency Limited Techniques

Let PE and QE satisfy

APE + PEA
T +BEB

T
E = 0 (3.12)

ATQE +QEA+ CT
ECE = 0 (3.13)
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BA = U

 S
1/2
G1 0

0 |SG2|1/2



BS = U

 S
1/2
G1 0

0 0



BI =


U(S − snI)1/2 for sn < 0

US1/2 for sn ≥ 0

CA =

 R
1/2
G1 0

0 |RG2|1/2

V T

CS =

 R
1/2
G1 0

0 0

V T

CI =


(R− rnI)1/2V T for rn < 0

R1/2V T for rn ≥ 0.

Let a transformation matrix TE is obtained as:

T TEQETE = T−1E PET
−T
E =



σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · . . . · · ·

0 0 · · · σn


The LOAS are obtained after transforming the original system using the matrix TE similar

to equations (9)− (10). These LOAS are guaranteed stable and error bounds also exist.

The existing stability preserving techniques [39], [35], [40] modified X̃G and ỸG to ensure
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positive/semipositive definite.

Let new virtual/fictitious controllability Pv and observability Qv Gramians are computed as

ÃPv + PvÃ
T +BvB

T
v = 0 (3.14)

ÃTQv + ÃQv + CT
v Cv = 0 (3.15)

The new virtual input and output matrices respectively are given as Bv and Cv where

ŝ =
n∑

i=l+1

si , r̂ =
n∑

i=k+1

ri

Bv =


U(S − ŝI)1/2 for sn < 0

US1/2 for sn ≥ 0

Cv =


(R− r̂I)1/2V T for rn < 0

R1/2V T for rn ≥ 0.

Let similarity transformation matrix Tv is calculated as

T Tv QvTv = T−1v PvT
−T
v = diag{σ1, σ2, σ3 . . . , σn}

where σj ≥ σj+1 and σr ≥ σr+1. The LOAS are obtained by transforming and partitioning

the similar way of equation (9)− (10).

Remark 9 Since XG ≤ BvB
T
v ≥ 0, YG ≤ CT

v Cv ≥ 0, Pv > 0 and Qv > 0. Which

results, minimality of the realization (Ã, Bv, Cv) and stability of the LOAS is guaranteed.

The stability of LOAS follows from [22] balanced truncation.
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Theorem 4 Let rank
[
Bv B̃

]
= rank [Bv] and rank

 Cv

C̃

 = rank [Cv] following error

bound holds

‖G̃(s)−Gr(s)‖∞ ≤ 2‖Lv‖‖Kv‖
n∑

j=r+1

σj

where

Lv =


CV (R− r̂I)−1/2 for rn < 0

CV R−1/2 for rn ≥ 0

Kv =


(S − ŝI)−1/2UTB for sn < 0

S−1/2UTB for sn ≥ 0

Proof: Since rank
[
Bv B̃

]
= rank [Bv] and rank

 Cv

C̃

 = rank [Cv], the relationships

B̃ = BvKv and C̃ = LvCv hold. By partitioning Bv =

 Bv1

Bv2

 , Cv =

[
Cv1 Cv2

]
and
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substituting Br = Bv1Kv , Cr = LvCv1 respectively yields

‖G̃(s)−Gr(s)‖∞ = ‖C̃(sI−Ã)−1B̃−Cr(sI−Ar)−1Br‖∞

= ‖LvCv(sI − A)−1BvKv

−LvCv1(sI − Ar)−1Bv1Kv‖∞

= ‖Lv(Cv(sI − Ã)−1Bv

−Cv1(sI − Ar)−1Bv1)Kv‖∞

≤ ‖Lv‖‖(Cv(sI − Ã)−1Bv

−Cv1(sI − Ar)−1Bv1)‖∞‖Kv‖

If {Ar, Bv1, Cv1} is model obtained after reduction of original system {Ã, Bv, Cv}.

‖(Cv(sI − A)−1Bv−Cv1(sI − Ar)−1Bv1)‖∞≤2
n∑

j=r+1

σj.

Therefore,

‖G(s)−Gr(s)‖∞ ≤ 2‖Lv‖‖Kv‖
n∑

j=r+1

σj

Remark 10 The rank condition follows from [35].

3.2 Main Results

The existing stability preserving techniques [39], [35], [40] modified XG and YG to ensure

positive/semipositive definite.

Let new virtual/fictitious controllability PEI and observability QEI Gramians are computed
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as

ÃPEI + PEIÃ
T +BEIB

T
EI = 0 (3.16)

ÃTQEI + ÃQEI + CT
EICEI = 0 (3.17)

The new virtual matrices be given as BEI and CEI where Let similarity transformation ma-

trix TEI is calculated as

T TEIQEITEI = T−1EI PEIT
−T
EI = diag{σ1, σ2, σ3 . . . , σn}

where σj ≥ σj+1 and σr ≥ σr+1. The LOAS are obtained by transforming and partitioning

the similar way of equation (9)− (10).

Remark 11 Since XG = BEIB
T
EI ≤ 0, YG = CT

EICEI ≤ 0, PEI > 0 and QEI > 0. Which

results, minimality of the realization (Ã, BEI , CEI) however, stability of the LOAS is not

guaranteed.

Design of Feedback Controller for Lower Order Approximated System:

Let LOAS,

ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t) +Dru(t)

Gr(s) = Cr(sI − Ar)−1Br +Dr,

is obtained by approximating the actual system (in the desired limited frequency range
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[ω1, ω2]) where ω2 > ω1, where {Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ Rp×r, Dr ∈ Rp×m} with

r < n.

To make LOAS stable introducing State Feedback Controller and Output Feedback Con-

troller with states Feedback.

using unstable lower order approximated system as given following,

ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t) +Dru(t)

Gr(s) = Cr(sI − Ar)−1Br +Dr,

lower order control law is applying in above system u(t) = −Krxr+ û to feedback its lower

order states to stabilizing the lower order approximated system which is given following,

ẋr(t) = Arxr(t) +Br(−Krxr + û)

yr(t) = Crxr(t) +Dr(−Krxr + û)

ẋr(t) = (Ar −BrKr)xr +Brû

yr(t) = (Cr −DrKr)xr +Drû

Gr(s) = (Cr −DrKr)(sI − (Ar −BrKr))
−1Br +Dr,

where {(Ar − BrKr) = Âr ∈ Rr×r, Br = B̂r ∈ Rr×m, (Cr −DrKr) = Ĉr ∈ Rp×r, Dr =
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D̂r ∈ Rp×m} with r < n. Stable lower order approximated system will be given as,

˙̂xr(t) = Ârxr + B̂rû (3.18)

ŷr(t) = Ĉrxr + D̂rû

Ĝr(s) = Ĉr(sI − Âr)−1B̂r + D̂r, (3.19)

Lower Order Approximated System is also give in Fig. 3.1

Figure 3.1: State Feedback Control for Lower Order Approximated System

Remark 12 Since XGJ = BEIB
T
EI ≤ 0, YGJ = CT

EICEI ≤ 0, PEI ≤ 0 and QEI ≤ 0.

Therefore, the realization (A,BEI , CEI) is not stable, however, (Âr, B̂r, Ĉr) and stability of

lower order approximated system is guaranteed given in Fig. 3.1.

Design of Observer Based Feedback Controller for Lower Order Approximated System:

Let LOAS,
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ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t) +Dru(t)

Gr(s) = Cr(sI − Ar)−1Br +Dr,

is obtained by approximating the actual system (in the desired limited frequency range

[ω1, ω2]) where ω2 > ω1, where {Ar ∈ Rr×r, Br ∈ Rr×m, Cr ∈ Rp×r, Dr ∈ Rp×m} with

r < n.

To make LOAS stable introducing Observer Based State Feedback Controller.

using unstable lower order approximated system as given following,

ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t) +Dru(t)

Gr(s) = Cr(sI − Ar)−1Br +Dr,

let,

Lower Order Approximated System:

ẋr(t) = Arxr(t) +Bru(t)

yr(t) = Crxr(t) +Dru(t)
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Lower Order Approximated Observer:

˙̂xr(t) = Arx̂r(t) + L(yr − Crx̂r) +Bru(t)

ŷt(k) = Crx̂r(t) +Dru(t)

State Feedback Law:

u(t) = −Krxr + û

lower order control law is applying in above system u(t) = −Krxr + û to feedback its

observer based lower order states to stabilizing the lower order approximated system which

is given following,

˙̂xr(t) = (Ar − LCr)x̂r(k) + LCrxr +Br(−Krx̂r + û)

ŷr(t) = Crx̂r(t) +Dr(−Krx̂r + û)

˙̂xr(t) = (Ar − LCr −BrKr)x̂r +Brû

ŷr(t) = (Cr −DrKr)x̂r +Drû

Gr(s) = (Cr −DrKr)(sI − (Ar − LCr −BrKr))
−1Br +Dr,

where {(Ar − LCr − BrKr) = Âro ∈ Rr×r, Br = B̂ro ∈ Rr×m, (Cr − DrKr) = Ĉro ∈

Rp×r, Dr = D̂ro ∈ Rp×m} with r < n. Stable lower order approximated system will be

given as,

˙̂xr(t) = Âroxr + B̂roû (3.20)

ŷr(t) = Ĉroxr + D̂roû
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Ĝro(s) = Ĉro(sI − Âro)−1B̂ro + D̂ro, (3.21)

Observer Based Lower Order Approximated System is also give in Fig. 3.2

Figure 3.2: Observer Based State Feedback Control for Lower Order Approximated System

Theorem 5 Let rank
[
BEI B̃

]
= rank [BEI ] and rank

 CEI

C̃

 = rank [CEI ] following

error bound holds

‖G̃(s)− Ĝr(s)‖∞ ≤ 2‖LEI‖‖KEI‖
n∑

j=r+1

σj
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where

LEI =

{
CV R

−1/2
W

KEI =

{
S
−1/2
W UTB

Proof:Since rank
[
BEI B̃

]
= rank [BEI ] and rank

 CEI

C̃

 = rank [CEI ], the relation-

ships B = BEIKEI and C = LEICEI hold. By partitioning BEI =

 BEI1

BEI2

 , CEI =

[
CEI1 CEI2

]
and substituting B̂r = BEI1KEI , Ĉr = LEICEI1 respectively yields

‖G̃(s)− Ĝr(s)‖∞ = ‖C̃(sI−A)−1B̃−Ĉr(sI−Âr)−1B̂r‖∞

= ‖LEICEI(sI − A)−1BEIKEI

−LEICEI1(sI − Âr)−1BEI1KEI‖∞

= ‖LEI(CEI(sI − A)−1BEI

−CEI1(sI − Âr)−1BEI1)KEI‖∞

≤ ‖LEI‖‖(CEI(sI − A)−1BEI

−CEI1(sI − Âr)−1BEI1)‖∞‖KEI‖

If {Âr, BEI1 , CEI1} is LOAS of original system {A,BEI , CEI}.

‖(CEI(sI − A)−1BEI−CEI1(sI − Âr)−1BEI1)‖∞≤2
n∑

j=r+1

σj.
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Therefore,

‖G̃(s)− Ĝr(s)‖∞ ≤ 2‖LEI‖‖KEI‖
n∑

j=r+1

σj

Theorem 6 Let rank [BEI B] = rank [BEI ] and rank

 CEI

C

 = rank [CEI ] following

error bound holds

‖G(s)− Ĝr(s)‖∞ ≤ 2‖LEI‖‖KEI‖
n∑

j=r+1

σj

where

LEI =

{
CV R

−1/2
W

KEI =

{
S
−1/2
W UTB

Proof: Since rank [BEI B] = rank [BEI ] and rank

 CEI

C

 = rank [CEI ], the relation-

ships B = BEIKEI and C = LEICEI hold. By partitioning BEI =

 BEI1

BEI2

 , CEI =
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[
CEI1 CEI2

]
and substituting B̂ro = BEI1KEI , Ĉro = LEICEI1 respectively yields

‖G(s)− Ĝro(s)‖∞ = ‖C(sI−A)−1B−Ĉro(sI−Âro)−1B̂ro‖∞

= ‖LEICEI(sI − A)−1BEIKEI

−LEICEI1(sI − Âro)−1BEI1KEI‖∞

= ‖LEI(CEI(sI − A)−1BEI

−CEI1(sI − Âro)−1BEI1)KEI‖∞

≤ ‖LEI‖‖(CEI(sI − A)−1BEI

−CEI1(sI − Âro)−1BEI1)‖∞‖KEI‖

If {Âro, BEI1 , CEI1} is LOAS given of original system {A,BEI , CEI}.

‖(CEI(sI − A)−1BEI−CEI1(sI − Âro)−1BEI1)‖∞≤2
n∑

j=r+1

σj.

Therefore,

‖G(s)− Ĝro(s)‖∞ ≤ 2‖LEI‖‖KEI‖
n∑

j=r+1

σj

Remark 13 For XG ≥ 0, YG ≥ 0 results PG = PE = PEI and QG = QE = QEI .

Otherwise PG < PEI , QG < QEI . Which results Hankel values for frequency limited satisfy

: (λj[PGQG])1/2 ≤ (λj[PEIQEI ])
1/2
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Table 3.1: LOAS for 1st order

Techniques LOAS

Gawronski and Jaung
s− 0.2044

s− 6.454

Gugercin and Antaulos
s+ 3.102

s+ 2.527

Victor Sreeram
s+ 2.176

s+ 0.84

State Feedback Controller
s+ 12.7

s+ 6.454

Observer Based Controller
s+ 6.25

s+ 0.0006454

3.3 Numerical Simulations

Example 1: Consider a following transfer function of a Chebyshev type 2 of 4th order filter

which is high pass with stop band, 11.001 dB ripple and stop band corner frequency 17 Hz.

G(s) =
s4 − 2.9e−15s3 + 289s2 − 7.375e−13s+ 1.044e4

s4 + 22.39s3 + 539.6s2 + 5826s+ 3.704e4

with frequency interval [ω1, ω2] = [7, 18] rad/sec.

Analysis & Discussion

Fig. 3.3 and 3.11 show the error σ[G(s) − Gr(s)] plot, where Gr(s) is 1st and 2nd LOAS

obtained using existing and proposed techniques respectively. Fig. 3.4 and 3.12 represent
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Table 3.2: LOAS for 2nd order

Techniques LOAS

Gawronski and Jaung
s2 − 0.1563s+ 242.2

s2 − 4.531s+ 348

Gugercin and Antaulos
s2 + 0.8167s+ 268.7

s2 + 3.799s+ 328.7

Victor Sreeram
s2 + 0.5517s+ 257.4

s2 + 2.476s+ 336.5

State Feedback Controller
s2 + 8.907s+ 242.2

s2 + 4.531s+ 348

Observer Based Controller
s2 + 4.376s− 105.8

s2 + 0.0004531s+ 3.48e−6

Table 3.3: Poles location of the LOAS

Techniques 1st Order 2nd Order

Gawronski and Jaung 6.454 2.2657± 18.517ij

Gugercin and Antaulos −2.5274 −1.8994± 18.031i

Victor Sreeram −0.83999 −1.238± 18.303ij

State Feedback Controller −6.454 −2.2657± 18.517i

Observer Based Controller −0.0006454 −0.00022657± 0.0018517i
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Figure 3.3: Error comparison for 1st order LOAS
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Figure 3.4: Error comparison - zoom-in view for 1st order LOAS

Figure 3.5: Natural response for 1st order LOAS
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Figure 3.6: Impulse response for 1st order LOAS

Figure 3.7: Step response for 1st order LOAS
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Figure 3.8: Bode plot for 1st order LOAS

Figure 3.9: Nyquist plot for 1st order LOAS
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Figure 3.10: Root Locus plot for 1st order LOAS

Figure 3.11: Error comparison for 2nd order LOAS
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Figure 3.12: Error comparison - zoom-in view for 2nd order LOAS

Figure 3.13: Natural response for 2nd order LOAS
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Figure 3.14: Impulse response for 2nd order LOAS

Figure 3.15: Step response for 2nd order LOAS
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Figure 3.16: Bode plot for 2nd order LOAS

Figure 3.17: Nyquist plot for 2nd order LOAS
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Figure 3.18: Root Locus plot for 2nd order LOAS

zoom-in view of frequency response error. Whereas, Fig. (3.5, 3.13), (3.6, 3.14), (3.7, 3.15),

(3.8, 3.16), (3.9, 3.17) and (3.10, 3.18) represents impulse response, natural response, bode

Plot, step response, root locus plot and nyquist plot for the 1st and 2nd LOAS obtained using

existing and proposed techniques respectively. It can be seen that the suggested technique

gives low frequency response error. Simulation results show that GJ produces less error

for approximation as regards other concurrent techniques, but it occasionally gives yields

unstable LOAS as depicted in Table 3.1, 3.2 and 3.3. Proposed techniques produce less

approximation errata (when analysed and compared with other techniques for preserving

stability) and stable LOAS.

3.4 Conclusion

Novel frequency restrained LOAS method for continuous systems is suggested. The sug-

gested method provide stability of LOAS and gives error bounds equation. The error for
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LOAS is also improved and analysed with different current stability retaining frequency

LOAS procedures. GJ procedure generates low error as related to other existing procedures,

however, it often gives unstable LOAS.
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Chapter 4

SIMULATION OF PRACTICAL APPLICATIONS

4.1 Simulation of Discrete Time Systems

Example:Consider a 4th order mass spring system having following transfer function,

G(z) =
z4 + 1.881z3 + 0.3322z2 − 0.0277z + 0.0228

z4 − 0.265z3 + 0.6974z2 − 0.2011z + 0.2819

with desired frequency interval 0.25π − 0.35π.

Following LOAS obtains for each existing and proposed techniques,

For 1st order LOAS:

Grwz(z) =
z + 2.082

z − 0.04438

Grvs(z) =
z + 2.145

z − 0.0479

Grb(z) =
z + 2.174

z − 0.06168
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Grc(z) =
z + 2.082

z − 0.04438

Groc(z) =
z + 2.082

z − 0.04438

Figure 4.1: Error comparison for 1st order LOAS

For 2nd order LOAS:

Grwz(z) =
z2 + 1.472z − 1.008

z2 − 0.6496z + 0.4088

Grvs(z) =
z2 + 1.568z − 1.012

z2 − 0.62z + 0.3943

82



Figure 4.2: Error comparison - zoom-in view for 1st order LOAS

Grb(z) =
z2 + 2.06z + 0.216

z2 − 0.1756z + 0.4417

Grc(z) =
z2 + 1.472z − 1.008

z2 − 0.6496z + 0.4088

Groc(z) =
z2 + 1.472z − 1.008

z2 − 0.6496z + 0.4088

For 3rd order LOAS:

Grwz(z) =
z3 + 1.52z2 − 1.415z + 0.3989

z3 − 0.7479z2 + 0.4639z − 0.006836
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Figure 4.3: Error comparison for 2nd order LOAS

Figure 4.4: Error comparison - zoom-in view for 2nd order LOAS

84



Grvs(z) =
z3 + 1.824z2 − 0.2002z − 0.804

z3 − 0.2359z2 + 0.1372z + 0.103

Grb(z) =
z3 + 1.883z2 − 0.1498z − 0.946

z3 − 0.2623z2 + 0.2062z − 0.05451

Grc(z) =
z3 + 1.52z2 − 1.415z + 0.3989

z3 − 0.7479z2 + 0.4639z − 0.006836

Groc(z) =
z3 + 1.52z2 − 1.415z + 0.3989

z3 − 0.7479z2 + 0.4639z − 0.006836

Figure 4.5: Error comparison for 3rd order LOAS
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Figure 4.6: Error comparison - zoom-in view for 3rd order LOAS

4.2 Simulation of Continuous Time Systems

Example 1:Consider a 6th order quarter car model having following transfer function,

G(s) =
−2.1s4 − .24s3 − 24.8s2 − .9s− 45.3

s6 + 0.3s5 + 32.9s4 + 3.6s3 + 180s2 + 3.5s+ 119

with desired frequency interval [ω1, ω2] = [10, 15] rad/sec.

Following LOAS obtains for each existing and proposed techniques,

For 1st order LOAS:
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Grgj(s) =
−0.08911

s− 4.826

Grvs(s) =
−0.1236

s+ 0.0001052

Grga(s) =
−0.119

s+ 0.003474

Grc(s) =
−0.08911

s+ 4.826

Groc(s) =
−0.08911

s+ 0.0004826

For 2nd order LOAS:

Grgj(s) =
0.0002342s− 2.106

s2 + 0.2381s+ 22.58

Grvs(s) =
0.00344s− 0.2208

s2 + 0.01054s+ 0.7664

Grga(s) =
0.002426s− 0.2099

s2 + 0.007725s+ 0.7623
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Figure 4.7: Error comparison for 1st order LOAS

Figure 4.8: Error comparison - zoom-in view for 1st order LOAS
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Grc(s) =
0.0002342s− 2.106

s2 + 0.2381s+ 22.58

Groc(s) =
0.0002342s− 2.106

s2 + 0.2381s+ 22.58

Figure 4.9: Error comparison for 2nd order LOAS

For 3rd order LOAS:

Grgj(s) =
−0.0003526s2 − 2.108s+ 11.75

s3 − 5.412s2 + 21.22s− 131.4

Grvs(s) =
0.1586s2 − 0.2392s+ 0.08206

s3 + 0.1934s2 + 0.7674s+ 0.1378
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Figure 4.10: Error comparison - zoom-in view for 2nd order LOAS

Grga(s) =
0.1664s2 − 0.1975s+ 0.1151

s3 + 0.1446s2 + 0.7663s+ 0.1062

Grc(s) =
−0.0003526s2 − 2.108s+ 11.75

s3 + 6.026s2 + 24.73s+ 131.4

Groc(s) =
−0.0003526s2 − 2.108s+ 11.75

s3 + 0.3078s2 + 22.97s+ 0.01314

For 4th order LOAS:

Grgj(s) =
1.801e−7s3 − 2.118s2 − 0.179s− 17.41

s4 + 0.2969s3 + 29.46s2 + 1.755s+ 85.03
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Figure 4.11: Error comparison for 3rd order LOAS

Figure 4.12: Error comparison - zoom-in view for 3rd order LOAS

91



Grvs(s) =
0.0087s3 − 1.866s2 − 0.09502s− 6.771

s4 + 0.2733s3 + 27.02s2 + 0.4052s+ 20.04

Grga(s) =
0.009328s3 − 1.857s2 − 0.09112s− 6.755

s4 + 0.2705s3 + 27.02s2 + 0.4001s+ 20.04

Grc(s) =
1.801e−7s3 − 2.118s2 − 0.179s− 17.41

s4 + 0.2969s3 + 29.46s2 + 1.755s+ 85.03

Groc(s) =
1.801e−7s3 − 2.118s2 − 0.179s− 17.41

s4 + 0.2969s3 + 29.46s2 + 1.755s+ 85.03

Figure 4.13: Error comparison for 4th order LOAS

For 5th order LOAS:
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Figure 4.14: Error comparison - zoom-in view for 4th order LOAS

Grgj(s) =
−1.07e−7s4 − 2.118s3 + 11.93s2 − 16.4s+ 100.6

s5 − 5.421s4 + 27.77s3 − 167.2s2 + 75.06s− 497.9

Grvs(s) =
0.05395s4 − 1.854s3 + 1.189s2 − 6.833s+ 0.7061

s5 + 0.3243s4 + 27.03s3 + 1.864s2 + 20.06s+ 1.081

Grga(s) =
0.05784s4 − 1.84s3 + 1.283s2 − 6.755s+ 0.8813

s5 + 0.3016s4 + 27.03s3 + 1.285s2 + 20.06s+ 0.658

Grc(s) =
−1.07e−7s4 − 2.118s3 + 11.93s2 − 16.4s+ 100.6

s5 + 6.039s4 + 31.31s3 + 171.4s2 + 98.73s+ 497.9
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Groc(s) =
−1.07e−7s4 − 2.118s3 + 11.93s2 − 16.4s+ 100.6

s5 + 0.3093s4 + 29.54s3 + 1.851s2 + 178.8s− 425

Figure 4.15: Error comparison for 5th order LOAS

Example 2: Consider a 16th order chebyshev 1 type filter which passes frequencies be-

tween (10− 17)π and 15 db of ripples in pass band having following transfer function

G(s) =

8139s8 − 3.76e−10s7 − 7.096e− 10s6 − 1.012e−8s5 + 1.583e−6s4 + 1.558e−6s3

+0.0001065s2 + 0.0002075s− 0.001052

s16 + 0.8062s15 + 1458s14 + 1025s13 + 9.125e5s12 + 5.467e5s11

+3.198e8s10 + 1.584e8s9 + 6.866e10s8 + 2.693e10s7 + 9.243e12s6 + 2.686e12s5

+7.621e14s4 + 1.456e14s3 + 3.52e16s2 + 3.308e15s+ 6.976e17

Following LOAS obtains for each existing and proposed techniques,
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Figure 4.16: Error comparison - zoom-in view for 5th order LOAS

For 1st order LOAS:

Grgj(s) =
0.003444

s+ 0.1387

Grvs(s) =
−0.002426

s+ 0.005066

Grga(s) =
−0.01705

s+ 0.01371

Grc(s) =
0.003444

s+ 0.1387
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Figure 4.17: Error comparison in entire frequency range for 1st order LOAS

Figure 4.18: Error comparison plot in pin point frequency interval for 1st order LOAS
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For 2nd order LOAS:

Grgj(s) =
−0.0017s+ 0.08309

s2 + 0.009129s+ 100.1

Grvs(s) =
−0.02136s− 0.04411

s2 + 0.0203s+ 102.4

Grga(s) =
−0.02529s+ 0.009708

s2 + 0.01801s+ 102.1

Grc(s) =
−0.0017s+ 0.08309

s2 + 0.009129s+ 100.1

Figure 4.19: Error comparison in entire frequency range for 2nd order LOAS

For 3rd order LOAS:

97



Figure 4.20: Error comparison plot in pin point frequency interval for 2nd order LOAS

Grgj(s) =
−0.006734s2 + 0.08279s− 0.3869

s3 + 1.076s2 + 100.2s+ 107

Grvs(s) =
−0.01314s2 − 0.04678s+ 0.8388

s3 + 0.02879s2 + 102.4s+ 0.8765

Grga(s) =
−0.009374s2 + 0.002604s+ 1.617

s3 + 0.04225s2 + 102.1s+ 2.514

Grc(s) =
−0.006734s2 + 0.08279s− 0.3869

s3 + 1.076s2 + 100.2s+ 107

For 4th order LOAS:
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Figure 4.21: Error comparison in entire frequency range for 3rd order LOAS

Figure 4.22: Error comparison plot in pin point frequency interval for 3rd order LOAS
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Grgj(s) =
0.0003919s3 − 0.02315s2 + 0.03128s− 1.785

s4 + 0.02109s3 + 203s2 + 2.188s+ 1.03e4

Grvs(s) =
−0.03895s3 + 0.5305s2 − 4.601s+ 54.79

s4 + 0.05388s3 + 226.2s2 + 5.948s+ 1.267e4

Grga(s) =
−0.04579s3 + 0.3244s2 − 5.316s+ 32.48

s4 + 0.05703s3 + 229.7s2 + 6.421s+ 1.304e4

Grc(s) =
0.0003919s3 − 0.02315s2 + 0.03128s− 1.785

s4 + 0.2s3 + 203s2 + 20.3s+ 1.03e4

Figure 4.23: Error comparison in entire frequency range for 4th order LOAS

For 5th order LOAS:
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Figure 4.24: Error comparison plot in pin point frequency interval for 4th order LOAS

Grgj(s) =
0.00224s4 − 0.02487s3 + 0.2685s2 − 1.924s+ 7.271

s5 + 2.424s4 + 203.6s3 + 494.7s2 + 1.036e04s+ 2.523e4

Grvs(s) =
−0.01568s4 + 0.4862s3 + 0.96s2 + 50.04s+ 325.9

s5 + 0.07704s4 + 226.7s3 + 11.6s2 + 1.273e04s+ 336.3

Grga(s) =
−0.02947s4 + 0.2796s3 − 1.347s2 + 27.66s+ 236.2

s5 + 0.07083s4 + 230.5s3 + 9.807s2 + 1.312e4s+ 200.8

Grc(s) =
0.00224s4 − 0.02487s3 + 0.2685s2 − 1.924s+ 7.271

s5 + 2.59s4 + 204s3 + 511.6s2 + 1.04e4s+ 2.523e4

For 6th order LOAS:
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Figure 4.25: Error comparison in entire frequency range for 5th order LOAS

Figure 4.26: Error comparison plot in pin point frequency interval for 5th order LOAS
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Grgj(s) =

−8.205e− 05s5 + 0.006159s4 − 0.01017s3 + 0.7045s2

−0.3223s+ 21

s6 + 0.05274s5 + 312.9s4 + 11.42s3 + 3.267e4s2 + 616.5s

+1.138e6

Grvs(s) =

−0.02851s5 + 0.9971s4 − 9.821s3 + 265s2 − 762.5s

+1.673e4

s6 + 0.08145s5 + 416.9s4 + 22.67s3 + 5.581e4s2 + 1506s

+2.417e6

Grga(s) =

−0.05106s5 + 0.8178s4 − 15.97s3 + 214.9s2 − 1163s

+1.337e4

s6 + 0.09016s5 + 427.5s4 + 25.8s3 + 5.846e4s2 + 1755s

+2.577e6

Grc(s) =

−8.205e−5s5 + 0.006159s4 − 0.01017s3 + 0.7045s2

−0.3223s+ 21

s6 + 1.15s5 + 313.6s4 + 238.3s3 + 3.274e4s2 + 1.234e4s

+1.138e6

For 7th order LOAS:
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Figure 4.27: Error comparison in entire frequency range for 6th order LOAS

Figure 4.28: Error comparison plot in pin point frequency interval for 6th order LOAS
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Grgj(s) =

−0.0006978s6 + 0.006852s5 − 0.1057s4 + 0.8031s3

−5.288s2 + 24.41s− 82.52

s7 + 3.918s6 + 314.5s5 + 1246s4 + 3.3e4s3

+1.32e5s2 + 1.155e6s+ 4.658e6

Grvs(s) =

−0.02696s6 + 1.004s5 − 9.092s4 + 266.9s3

−649.9s2 + 1.684e4s+ 5633

s7 + 0.08994s6 + 418s5 + 26.02s4 + 5.607e4s3

+1926s2 + 2.432e6s+ 1.69e4

Grga(s) =

0.09527s6 + 0.2456s5 + 51.67s4 + 58.58s3

+8694s2 + 3177s+ 4.578e5

s7 + 0.2162s6 + 438.3s5 + 84.42s4 + 6.12e04s3

+1.027e4s2 + 2.744e6s+ 3.922e5

Grc(s) =

−0.0006978s6 + 0.006852s5 − 0.1057s4 + 0.8031s3

−5.288s2 + 24.41s− 82.52

s7 + 5.134s6 + 320s5 + 1500s4 + 3.408e4s3

+1.453e5s2 + 1.207e6s+ 4.658e6

For 8th order LOAS:
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Figure 4.29: Error comparison in entire frequency range for 7th order LOAS

Figure 4.30: Error comparison plot in pin point frequency interval for 7th order LOAS
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Grgj(s) =

2.288e−5s7 − 0.002493s6 + 0.003145s5 − 0.3016s4

+0.1539s3 − 13.49s2 + 2.583s− 210.5

s8 + 0.1131s7 + 438.3s6 + 38.82s5 + 7.218e4s4

+4429s3 + 5.291e6s2 + 1.679e5s+ 1.456e8

Grvs(s) =

0.1146s7 + 0.459s6 + 49.75s5 + 317.8s4

+6644s3 + 6.007e4s2 + 2.759e5s+ 3.331e6

s8 + 0.2107s7 + 638.7s6 + 99.34s5 + 1.469e5s4

+1.489e4s3 + 1.446e7s2 + 7.137e5s+ 5.164e8

Grga(s) =

0.09562s7 + 0.9509s6 + 39.42s5 + 540.4s4

+4905s3 + 9.186e4s2 + 1.847e5s+ 4.777e6

s8 + 0.2319s7 + 648.2s6 + 111.5s5 + 1.512e5s4

+1.703e4s3 + 1.508e7s2 + 8.294e5s+ 5.448e8

Grc(s) =

2.288e−5s7 − 0.002493s6 + 0.003145s5 − 0.3016s4

+0.1539s3 − 13.49s2 + 2.583s− 210.5

s8 + 2.732s7 + 442s6 + 887.6s5 + 7.296e4s4

+9.599e4s3 + 5.331e6s2 + 3.455e6s+ 1.456e8

For 9th order LOAS:
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Figure 4.31: Error comparison in entire frequency range for 8th order LOAS

Figure 4.32: Error comparison plot in pin point frequency interval for 8th order LOAS
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Grgj(s) =

0.0002851s8 − 0.002648s7 + 0.0422s6 − 0.3299s5

+2.665s4 − 15.2s3 + 75.93s2

−244.1s+ 792.3

s9 + 6.134s8 + 441.3s7 + 2759s6 + 7.317e4s5

+4.652e5s4 + 5.4e6s3 + 3.485e7s2

+1.496e8s+ 9.781e8

Grvs(s) =

−0.1168s8 + 2.105s7 − 97.54s6 + 1072s5

−2.647e4s4 + 1.69e5s3 − 2.858e6s2 + 8.342e6s

−1.06e8

s9 + 0.4741s8 + 655s7 + 271.9s6 + 1.543e5s5

+5.502e4s4 + 1.552e7s3 + 4.659e6s2 + 5.645e8s

+1.393e8

Grga(s) =

−0.1269s8 + 2.304s7 − 102.8s6 + 1160s5

−2.733e4s4 + 1.815e5s3 − 2.9e6s2 + 8.908e6s

−1.059e8

s9 + 0.4469s8 + 660.1s7 + 249.8s6 + 1.566e5s5

+4.861e4s4 + 1.585e7s3 + 3.878e6s2

+5.8e8s+ 1.057e8
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Grc(s) =

0.0002851s8 − 0.002648s7 + 0.0422s6 − 0.3299s5

+2.665s4 − 15.2s3 + 75.93s2−

244.1s+ 792.3

s9 + 9.073s8 + 463.7s7 + 3739s6 + 8.006e4s5

+5.738e5s4 + 6.107e6s3 + 3.884e7s2+

1.737e8s+ 9.781e8

Figure 4.33: Error comparison in entire frequency range for 9th order LOAS

For 10th order LOAS:
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Figure 4.34: Error comparison plot in pin point frequency interval for 9th order LOAS

Grgj(s) =

−8.075e−6s9 + 0.001304s8 − 0.000966s7 + 0.1164s6

−0.05621s5 + 6.153s4 − 1.551s3 + 157.7s2

−16.55s+ 1581

s10 + 0.211s9 + 593.7s8 + 104.7s7 + 1.414e5s6

+1.942e4s5 + 1.686e7s4 + 1.592e6s3

+1.006e9s2 + 4.868e7s+ 2.399e10

111



Grvs(s) =

−0.07711s9 − 0.6303s8 − 40.03s7 − 573.9s6 − 6419s5

−1.634e5s4 − 3.279e5s3 − 1.817e7s2

−9.834e05s− 6.905e8

s10 + 0.4907s9 + 844.2s8 + 327.6s7 + 2.754e5s6

+7.869e4s5 + 4.34e7s4 + 8.076e6s3 + 3.312e09s2

+2.998e8s+ 9.81e10

Grga(s) =

−0.06721s9 − 0.9587s8 − 31.95s7 − 781.4s6 − 4158s5

−2.1e5s4 − 6.85e4s3 − 2.259e7s2

+9.465e6s− 8.413e8

s10 + 0.5127s9 + 848.9s8 + 344.7s7 + 2.784e5s6

+8.336e4s5 + 4.409e7s4 + 8.606e6s3

+3.378e9s2 + 3.21e8s+ 1.004e11

Grc(s) =

−8.075e−6s9 + 0.001304s8 − 0.000966s7 + 0.1164s6

−0.05621s5 + 6.153s4 − 1.551s3 + 157.7s2

−16.55s+ 1581

s10 + 4.853s9 + 605.5s8 + 2264s7 + 1.453e5s6

+3.945e5s5 + 1.729e7s4 + 3.043e7s3

+1.022e9s2 + 8.769e8s+ 2.399e10

For 11th order LOAS:

112



Figure 4.35: Error comparison in entire frequency range for 10th order LOAS

Figure 4.36: Error comparison plot in pin point frequency interval for 10th order LOAS
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Grgj(s) =

−6.631e−5s10 + 0.001368s9 − 0.006677s8 + 0.1269s7

−0.5728s6 + 6.891s5 − 22.08s4 + 181.4s3 − 437.2s2

+1871s− 3472

s11 + 4.059s10 + 597.1s9 + 2489s8 + 1.43e5s7

+6.093e5s6 + 1.714e7s5 + 7.437e7s4 + 1.028e9s3

+4.524e9s2 + 2.464e10s+ 1.096e11

Grvs(s) =

0.0779s10 − 2.142s9 + 88.87s8 − 1529s7 + 3.383e4s6

−3.775e5s5 + 5.584e6s4 − 3.847e7s3

+4.1e8s2 − 1.383e9s+ 1.088e10

s11 + 0.6917s10 + 858.4s9 + 498.8s8

+2.845e5s7 + 1.338e5s6 + 4.552e7s5 + 1.646e7s4

+3.52e9s3 + 9.061e8s2 + 1.055e11s+ 1.675e10

Grga(s) =

0.08348s10 − 2.25s9 + 94.26s8 − 1602s7 + 3.575e4s6

−3.954e5s5 + 5.903e6s4 − 4.034e7s3

+4.349e8s2 − 1.453e9s+ 1.162e10

s11 + 0.677s10 + 859.3s9 + 483.3s8 + 2.85e5s7

+1.276e5s6 + 4.562e7s5 + 1.528e7s4 + 3.529e9s3

+8.009e8s2 + 1.058e11s+ 1.32e10
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Grc(s) =

−6.631e−5s10 + 0.001368s9 − 0.006677s8 + 0.1269s7

−0.5728s6 + 6.891s5 − 22.08s4 + 181.4s3

−437.2s2 + 1871s− 3472

s11 + 9.098s10 + 630.3s9 + 4887s8 + 1.57e5s7

+1.035e6s6 + 1.935e7s5 + 1.077e8s4 + 1.182e9s3

+5.499e9s2 + 2.865e10s+ 1.096e11

Figure 4.37: Error comparison in entire frequency range for 11th order LOAS

For 12th order LOAS:
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Figure 4.38: Error comparison plot in pin point frequency interval for 11th order LOAS

Grgj(s) =

7.905e−6s11 − 0.0007995s10 + 0.0007917s9 + 0.009321s8

+0.07658s7 − 4.222s6 + 3.242s5 − 167.6s4 + 71.41s3

−3522s2 + 641.2s− 3.054e4

s12 + 0.1515s11 + 814.4s10 + 123.3s9 + 2.759e5s8

+3.823e4s7 + 4.966e7s6 + 5.711e6s5 + 5.004e9s4

+4.142e8s3 + 2.672e11s2 + 1.172e10s+ 5.904e12
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Grvs(s) =

0.05246s11 − 0.3728s10 + 42.47s9 − 162.3s8 + 1.237e4s7

−7664s6 + 1.623e6s5 + 4.392e6s4 + 9.702e7s3

+6.361e8s2 + 2.115e9s+ 2.464e10

s12 + 0.7086s11 + 1035s10 + 604.8s9 + 4.335e5s8

+1.994e5s7 + 9.402e7s6 + 3.178e7s5 + 1.114e10s4

+2.451e9s3 + 6.854e11s2 + 7.339e10s+ 1.712e13

Grga(s) =

0.05336s11 − 0.3066s10 + 42.72s9 − 103.6s8 + 1.228e4s7

+1.207e4s6 + 1.582e6s5 + 7.547e6s4 + 9.185e7s3

+8.771e8s2 + 1.907e9s+ 3.171e10

s12 + 0.7123s11 + 1036s10 + 608.6s9 + 4.343e5s8

+2.009e5s7 + 9.425e7s6 + 3.203e7s5 + 1.118e10s4

+2.472e9s3 + 6.879e11s2 + 7.404e10s+ 1.719e13

Grc(s) =

7.905e−6s11 − 0.0007995s10 + 0.0007917s9 + 0.009321s8

+0.07658s7 − 4.222s6 + 3.242s5 − 167.6s4 + 71.41s3

−3522s2 + 641.2s− 3.054e4

s12 + 6.2s11 + 833.6s10 + 4062s9 + 2.852e5s8

+1.055e6s7 + 5.135e7s6 + 1.356e8s5 + 5.139e9s4

+8.644e9s3 + 2.712e11s2 + 2.184e11s+ 5.904e12

For 13th order LOAS:
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Figure 4.39: Error comparison in entire frequency range for 12th order LOAS

Figure 4.40: Error comparison plot in pin point frequency interval for 12th order LOAS
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Grgj(s) =

5.783e−5s12 − 0.001467s11 + 0.006104s10

−0.05755s9 + 1.024s8 − 10.39s7 + 37.53s6 − 421.2s5

+1067s4 − 8947s3 + 1.567e4s2 − 7.786e4s

+8.889e4

s13 + 2.8s12 + 860.6s11 + 2544s10 + 3.047e5s9

+9.374e5s8 + 5.686e7s7 + 1.799e8s6 + 5.898e9s5

+1.903e10s4 + 3.227e11s3 + 1.055e12s2 + 7.274e12s

+2.395e13

Grvs(s) =

−0.01096s12 + 0.4963s11 − 25.32s10 + 555.7s9

−1.583e4s8 + 2.172e5s7 − 4.236e6s6 + 3.787e7s5

−5.48e8s4 + 3.021e9s3 − 3.38e10s2 + 9.012e10s

−7.954e11

s13 + 0.7898s12 + 1047s11 + 695.2s10 + 4.435e5s9

+2.384e5s8 + 9.724e7s7 + 4.016e7s6 + 1.164e10s5

+3.399e9s4 + 7.231e11s3 + 1.272e11s2 + 1.822e13s

+1.2e12
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Grga(s) =

−0.01196s12 + 0.5465s11 − 27.61s10 + 607.3s9

−1.73e4s8 + 2.371e5s7 − 4.653e6s6 + 4.146e7s5

−6.072e8s4 + 3.327e9s3 − 3.789e10s2 + 9.997e10s

−9.043e11

s13 + 0.7879s12 + 1047s11 + 691.8s10 + 4.43e5s9

+2.364e5s8 + 9.704e7s7 + 3.96e7s6 + 1.161e10s5

+3.324e9s4 + 7.201e11s3 + 1.222e11s2 + 1.812e13s

+1.072e12

Grc(s) =

5.783e−5s12 − 0.001467s11 + 0.006104s10 − 0.05755s9

+1.024s8 − 10.39s7 + 37.53s6 − 421.2s5 + 1067s4

−8947s3 + 1.567e4s2 − 7.786e4s

+8.889e4

s13 + 6.577s12 + 878.3s11 + 5148s10 + 3.161e5s9

+1.644e6s8 + 5.97e7s7 + 2.743e8s6 + 6.25e9s5

+2.525e10s4 + 3.44e11s3 + 1.216e12s2 + 7.788e12s

+2.395e13

For 14th order LOAS:
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Figure 4.41: Error comparison in entire frequency range for 13th order LOAS

Figure 4.42: Error comparison plot in pin point frequency interval for 13th order LOAS
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Grgj(s) =

−6.984e−6s13 + 0.0007537s12 − 0.0007541s11 − 0.02277s10

−0.1416s9 + 34.6s8 − 5.668s7 + 324.2s6 − 185.3s5

+9840s4 − 3295s3 + 1.637e5s2 − 2.458e4s+ 1.149e6

s14 + 0.4486s13 + 1175s12 + 465.4s11

+5.786e5s10 + 1.958e5s9 + 1.55e8s8 + 4.276e7s7

+2.441e10s6 + 5.113e9s5 + 2.26e12s4 + 3.18e11s3

+1.141e14s2 + 8.049e12s+ 2.423e15

Grvs(s) =

−0.01015s13 + 0.2855s12 − 13.19s11 + 267.3s10

−6291s9 + 9.581e4s8 − 1.44e6s7 + 1.697e7s6

−1.716e8s5 + 1.587e9s4 − 1.028e10s3 + 7.465e10s2

−2.452e11s+ 1.378e12

s14 + 0.7899s13 + 1230s12 + 825.6s11

+6.333e5s10 + 3.496e5s9 + 1.767e8s8 + 7.679e7s7

+2.887e10s6 + 9.234e9s5 + 2.764e12s4 + 5.771e11s3

+1.437e14s2 + 1.466e13s+ 3.135e15
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Grga(s) =

−0.01089s13 + 0.3018s12 − 14.11s11 + 283.4s10 − 6730s9

+1.021e5s8 − 1.546e6s7 + 1.821e7s6 − 1.852e8s5

+1.718e9s4 − 1.117e10s3 + 8.166e10s2

−2.684e11s+ 1.526e12

s14 + 0.7902s13 + 1230s12 + 825.7s11

+6.331e5s10 + 3.496e5s9 + 1.766e8s8 + 7.677e7s7

+2.885e10s6 + 9.23e9s5 + 2.762e12s4 + 5.767e11s3

+1.436e14s2 + 1.465e13s+ 3.131e15

Grc(s) =

−6.984e−6s13 + 0.0007537s12 − 0.0007541s11 − 0.02277s10

−0.1416s9 + 34.6s8 − 5.668s7 + 324.2s6

−185.3s5 + 9840s4 − 3295s3 + 1.637e5s2

−2.458e4s+ 1.149e6

s14 + 0.5456s13 + 1175s12 + 555.2s11

+5.787e5s10 + 2.295e5s9 + 1.55e8s8 + 4.937e7s7

+2.441e10s6 + 5.828e9s5 + 2.26e12s4 + 3.585e11s3

+1.141e14s2 + 8.989e12s+ 2.423e15

For 15th order LOAS:
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Figure 4.43: Error comparison in entire frequency range for 14th order LOAS

Figure 4.44: Error comparison plot in pin point frequency interval for 14th order LOAS
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Grgj(s) =

−2.865e−5s14 + 0.0008359s13 − 0.004622s12 − 0.01176s11

−0.9393s10 + 36.46s9 + 0.8053s8 + 409.6s7

−2214s6 + 1.277e4s5 − 5.959e4s4 + 2.182e5s3

−8.915e5s2 + 1.572e6s− 5.676e6

s15 + 2.021s14 + 1180s13 + 2359s12

+5.834e5s11 + 1.151e6s10 + 1.569e8s9 + 3.041e8s8

+2.478e10s7 + 4.704e10s6 + 2.301e12s5 + 4.266e12s4

+1.164e14s3 + 2.102e14s2 + 2.48e15s+ 4.349e15

Grvs(s) =

−0.01144s14 + 0.3022s13 − 14.81s12 + 284.4s11

−7124s10 + 1.028e5s9 − 1.669e6s8 + 1.846e7s7

−2.076e8s6 + 1.76e9s5 − 1.355e10s4 + 8.498e10s3

−4.042e11s2 + 1.628e12s− 3.193e12

s15 + 0.7924s14 + 1231s13 + 828.7s12

+6.335e5s11 + 3.512e5s10 + 1.768e8s9 + 7.725e7s8

+2.889e10s7 + 9.308e9s6 + 2.766e12s5 + 5.84e11s4

+1.439e14s3 + 1.501e13s2 + 3.138e15s+ 7.231e12
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Grga(s) =

−0.01209s14 + 0.3142s13 − 15.61s12 + 296.2s11

−7511s10 + 1.075e5s9 − 1.763e6s8 + 1.937e7s7

−2.201e8s6 + 1.854e9s5 − 1.443e10s4 + 8.997e10s3

−4.315e11s2 + 1.731e12s− 3.392e12

s15 + 0.7919s14 + 1230s13 + 827.8s12

+6.332e5s11 + 3.507e5s10 + 1.767e8s9 + 7.708e7s8

+2.886e10s7 + 9.279e9s6 + 2.763e12s5 + 5.813e11s4

+1.437e14s3 + 1.489e13s2 + 3.133e15s+ 4.931e12

Grc(s) =

−2.865e−5s14 + 0.0008359s13 − 0.004622s12 − 0.01176s11

−0.9393s10 + 36.46s9 + 0.8053s8 + 409.6s7

−2214s6 + 1.277e4s5 − 5.959e4s4 + 2.182e5s3

−8.915e5s2 + 1.572e6s− 5.676e6

s15 + 2.624s14 + 1181s13 + 2954s12

+5.848e5s11 + 1.388e6s10 + 1.574e8s9 + 3.533e8s8

+2.488e10s7 + 5.263e10s6 + 2.312e12s5 + 4.596e12s4

+1.171e14s3 + 2.182e14s2 + 2.494e15s+ 4.349e15
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Figure 4.45: Error comparison in entire frequency range for 15th order LOAS

Figure 4.46: Error comparison plot in pin point frequency interval for 15th order LOAS
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Table 4.1: 1st Order LOAS

Techniques LOAS
GJ 0.003444

s+ 0.1387
GA −0.01705

s+ 0.01371
VS −0.002426

s+ 0.005066
PT 0.003444

s+ 0.1387

Table 4.2: 2nd Order LOAS

Techniques LOAS
GJ −0.0017s+ 0.08309

s2 + 0.009129s+ 100.1
GA −0.02136s− 0.04411

s2 + 0.0203s+ 102.4
VS −0.02529s+ 0.009708

s2 + 0.01801s+ 102.1
PT −0.0017s+ 0.08309

s2 + 0.009129s+ 100.1
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Table 4.3: 3rd Order LOAS

Techniques LOAS
GJ −0.006734s2 + 0.08279s− 0.3869

s3 + 1.076s2 + 100.2s+ 107

GA −0.01314s2 − 0.04678s+ 0.8388
s3 + 0.02879s2 + 102.4s+ 0.8765

VS −0.009374s2 + 0.002604s+ 1.617
s3 + 0.04225s2 + 102.1s+ 2.514

PT −0.006734s2 + 0.08279s− 0.3869
s3 + 1.076s2 + 100.2s+ 107

Table 4.4: 4th Order LOAS

Techniques LOAS
GJ 0.0003919s3 − 0.02315s2 + 0.03128s− 1.785

s4 + 0.02109s3 + 203s2 + 2.188s+ 1.03e4

GA −0.04579s3 + 0.3244s2 − 5.316s+ 32.48
s4 + 0.05703s3 + 229.7s2 + 6.421s+ 1.304e4

VS −0.03895s3 + 0.5305s2 − 4.601s+ 54.79
s4 + 0.05388s3 + 226.2s2 + 5.948s+ 1.267e4

PT 0.0003919s3 − 0.02315s2 + 0.03128s− 1.785
s4 + 0.2s3 + 203s2 + 20.3s+ 1.03e4

Table 4.5: 5th Order LOAS

Techniques LOAS
GJ 0.00224s4 − 0.02487s3 + 0.2685s2 − 1.924s+ 7.271

s5 + 2.424s4 + 203.6s3 + 494.7s2 + 1.036e04s+ 2.523e4

GA −0.02947s4 + 0.2796s3 − 1.347s2 + 27.66s+ 236.2
s5 + 0.07083s4 + 230.5s3 + 9.807s2 + 1.312e4s+ 200.8

VS −0.01568s4 + 0.4862s3 + 0.96s2 + 50.04s+ 325.9
s5 + 0.07704s4 + 226.7s3 + 11.6s2 + 1.273e04s+ 336.3

PT 0.00224s4 − 0.02487s3 + 0.2685s2 − 1.924s+ 7.271
s5 + 2.59s4 + 204s3 + 511.6s2 + 1.04e4s+ 2.523e4
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Table 4.6: 6th Order LOAS

Techniques LOAS

GJ
−8.205e− 05s5 + 0.006159s4 − 0.01017s3 + 0.7045s2

−0.3223s+ 21
s6 + 0.05274s5 + 312.9s4 + 11.42s3 + 3.267e4s2 + 616.5s

+1.138e6

GA
−0.05106s5 + 0.8178s4 − 15.97s3 + 214.9s2 − 1163s

+1.337e4

s6 + 0.09016s5 + 427.5s4 + 25.8s3 + 5.846e4s2 + 1755s
+2.577e6

VS
−0.02851s5 + 0.9971s4 − 9.821s3 + 265s2 − 762.5s

+1.673e4

s6 + 0.08145s5 + 416.9s4 + 22.67s3 + 5.581e4s2 + 1506s
+2.417e6

PT
−8.205e−5s5 + 0.006159s4 − 0.01017s3 + 0.7045s2

−0.3223s+ 21
s6 + 1.15s5 + 313.6s4 + 238.3s3 + 3.274e4s2 + 1.234e4s

+1.138e6

Table 4.7: 7th Order LOAS

Techniques LOAS

GJ
−0.0006978s6 + 0.006852s5 − 0.1057s4 + 0.8031s3

−5.288s2 + 24.41s− 82.52
s7 + 3.918s6 + 314.5s5 + 1246s4 + 3.3e4s3

+1.32e5s2 + 1.155e6s+ 4.658e6

GA
0.09527s6 + 0.2456s5 + 51.67s4 + 58.58s3

+8694s2 + 3177s+ 4.578e5

s7 + 0.2162s6 + 438.3s5 + 84.42s4 + 6.12e04s3
+1.027e4s2 + 2.744e6s+ 3.922e5

VS
−0.02696s6 + 1.004s5 − 9.092s4 + 266.9s3

−649.9s2 + 1.684e4s+ 5633
s7 + 0.08994s6 + 418s5 + 26.02s4 + 5.607e4s3

+1926s2 + 2.432e6s+ 1.69e4

PT
−0.0006978s6 + 0.006852s5 − 0.1057s4 + 0.8031s3

−5.288s2 + 24.41s− 82.52
s7 + 5.134s6 + 320s5 + 1500s4 + 3.408e4s3

+1.453e5s2 + 1.207e6s+ 4.658e6
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Table 4.8: 8th Order LOAS

Techniques LOAS

GJ
2.288e−5s7 − 0.002493s6 + 0.003145s5 − 0.3016s4

+0.1539s3 − 13.49s2 + 2.583s− 210.5
s8 + 0.1131s7 + 438.3s6 + 38.82s5 + 7.218e4s4

+4429s3 + 5.291e6s2 + 1.679e5s+ 1.456e8

GA
0.09562s7 + 0.9509s6 + 39.42s5 + 540.4s4

+4905s3 + 9.186e4s2 + 1.847e5s+ 4.777e6

s8 + 0.2319s7 + 648.2s6 + 111.5s5 + 1.512e5s4
+1.703e4s3 + 1.508e7s2 + 8.294e5s+ 5.448e8

VS
0.1146s7 + 0.459s6 + 49.75s5 + 317.8s4

+6644s3 + 6.007e4s2 + 2.759e5s+ 3.331e6

s8 + 0.2107s7 + 638.7s6 + 99.34s5 + 1.469e5s4
+1.489e4s3 + 1.446e7s2 + 7.137e5s+ 5.164e8

PT
2.288e−5s7 − 0.002493s6 + 0.003145s5 − 0.3016s4

+0.1539s3 − 13.49s2 + 2.583s− 210.5
s8 + 2.732s7 + 442s6 + 887.6s5 + 7.296e4s4

+9.599e4s3 + 5.331e6s2 + 3.455e6s+ 1.456e8

Table 4.9: 9th Order LOAS

Techniques LOAS

GJ

0.0002851s8 − 0.002648s7 + 0.0422s6 − 0.3299s5
+2.665s4 − 15.2s3 + 75.93s2

−244.1s+ 792.3
s9 + 6.134s8 + 441.3s7 + 2759s6 + 7.317e4s5

+4.652e5s4 + 5.4e6s3 + 3.485e7s2
+1.496e8s+ 9.781e8

GA

−0.1269s8 + 2.304s7 − 102.8s6 + 1160s5
−2.733e4s4 + 1.815e5s3 − 2.9e6s2 + 8.908e6s

−1.059e8

s9 + 0.4469s8 + 660.1s7 + 249.8s6 + 1.566e5s5
+4.861e4s4 + 1.585e7s3 + 3.878e6s2

+5.8e8s+ 1.057e8

VS

−0.1168s8 + 2.105s7 − 97.54s6 + 1072s5
−2.647e4s4 + 1.69e5s3 − 2.858e6s2 + 8.342e6s

−1.06e8

s9 + 0.4741s8 + 655s7 + 271.9s6 + 1.543e5s5
+5.502e4s4 + 1.552e7s3 + 4.659e6s2 + 5.645e8s

+1.393e8

PT

0.0002851s8 − 0.002648s7 + 0.0422s6 − 0.3299s5
+2.665s4 − 15.2s3 + 75.93s2−

244.1s+ 792.3
s9 + 9.073s8 + 463.7s7 + 3739s6 + 8.006e4s5

+5.738e5s4 + 6.107e6s3 + 3.884e7s2+
1.737e8s+ 9.781e8
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Table 4.10: 9th Order LOAS

Techniques LOAS

GJ

0.0002851s8 − 0.002648s7 + 0.0422s6 − 0.3299s5
+2.665s4 − 15.2s3 + 75.93s2 − 244.1s

+792.3
s9 + 6.134s8 + 441.3s7 + 2759s6 + 7.317e4s5

+4.652e5s4 + 5.4e6s3 + 3.485e7s2
1 + .496e8s+ 9.781e8

GA

−0.1269s8 + 2.304s7 − 102.8s6 + 1160s5
−2.733e4s4 + 1.815e5s3 − 2.9e6s2 + 8.908e6s

−1.059e8

s9 + 0.4469s8 + 660.1s7 + 249.8s6 + 1.566e5s5
+4.861e4s4 + 1.585e7s3 + 3.878e6s2

+5.8e8s+ 1.057e8

VS

−0.1168s8 + 2.105s7 − 97.54s6 + 1072s5
−2.647e4s4 + 1.69e5s3 − 2.858e6s2 + 8.342e6s

−1.06e8

s9 + 0.4741s8 + 655s7 + 271.9s6 + 1.543e5s5
+5.502e4s4 + 1.552e7s3 + 4.659e6s2 + 5.645e8s

+1.393e8

PT

0.0002851s8 − 0.002648s7 + 0.0422s6 − 0.3299s5
+2.665s4 − 15.2s3 + 75.93s2 − 244.1s

+792.3
s9 + 9.073s8 + 463.7s7 + 3739s6 + 8.006e4s5

+5.738e5s4 + 6.107e6s3 + 3.884e7s2 + 1.737e8s
+9.781e8
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Table 4.11: 10th Order LOAS

Techniques LOAS

GJ

−8.075e−6s9 + 0.001304s8 − 0.000966s7 + 0.1164s6
−0.05621s5 + 6.153s4 − 1.551s3 + 157.7s2

−16.55s+ 1581
s10 + 0.211s9 + 593.7s8 + 104.7s7 + 1.414e5s6

+1.942e4s5 + 1.686e7s4 + 1.592e6s3
+1.006e9s2 + 4.868e7s+ 2.399e10

GA

−0.06721s9 − 0.9587s8 − 31.95s7 − 781.4s6 − 4158s5
−2.1e5s4 − 6.85e4s3 − 2.259e7s2

+9.465e6s− 8.413e8

s10 + 0.5127s9 + 848.9s8 + 344.7s7 + 2.784e5s6
+8.336e4s5 + 4.409e7s4 + 8.606e6s3

+3.378e9s2 + 3.21e8s+ 1.004e11

VS

−0.07711s9 − 0.6303s8 − 40.03s7 − 573.9s6 − 6419s5
−1.634e5s4 − 3.279e5s3 − 1.817e7s2

−9.834e05s− 6.905e8

s10 + 0.4907s9 + 844.2s8 + 327.6s7 + 2.754e5s6
+7.869e4s5 + 4.34e7s4 + 8.076e6s3 + 3.312e09s2

+2.998e8s+ 9.81e10

PT

−8.075e−6s9 + 0.001304s8 − 0.000966s7 + 0.1164s6
−0.05621s5 + 6.153s4 − 1.551s3 + 157.7s2

−16.55s+ 1581
s10 + 4.853s9 + 605.5s8 + 2264s7 + 1.453e5s6

+3.945e5s5 + 1.729e7s4 + 3.043e7s3
+1.022e9s2 + 8.769e8s+ 2.399e10
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Table 4.12: 11th Order LOAS

Techniques LOAS

GJ

−6.631e−5s10 + 0.001368s9 − 0.006677s8 + 0.1269s7
−0.5728s6 + 6.891s5 − 22.08s4 + 181.4s3 − 437.2s2

+1871s− 3472
s11 + 4.059s10 + 597.1s9 + 2489s8 + 1.43e5s7

+6.093e5s6 + 1.714e7s5 + 7.437e7s4 + 1.028e9s3
+4.524e9s2 + 2.464e10s+ 1.096e11

GA

0.08348s10 − 2.25s9 + 94.26s8 − 1602s7 + 3.575e4s6
−3.954e5s5 + 5.903e6s4 − 4.034e7s3

+4.349e8s2 − 1.453e9s+ 1.162e10

s11 + 0.677s10 + 859.3s9 + 483.3s8 + 2.85e5s7
+1.276e5s6 + 4.562e7s5 + 1.528e7s4 + 3.529e9s3

+8.009e8s2 + 1.058e11s+ 1.32e10

VS

0.0779s10 − 2.142s9 + 88.87s8 − 1529s7 + 3.383e4s6
−3.775e5s5 + 5.584e6s4 − 3.847e7s3

+4.1e8s2 − 1.383e9s+ 1.088e10

s11 + 0.6917s10 + 858.4s9 + 498.8s8
+2.845e5s7 + 1.338e5s6 + 4.552e7s5 + 1.646e7s4

+3.52e9s3 + 9.061e8s2 + 1.055e11s+ 1.675e10

PT

−6.631e−5s10 + 0.001368s9 − 0.006677s8 + 0.1269s7
−0.5728s6 + 6.891s5 − 22.08s4 + 181.4s3

−437.2s2 + 1871s− 3472
s11 + 9.098s10 + 630.3s9 + 4887s8 + 1.57e5s7

+1.035e6s6 + 1.935e7s5 + 1.077e8s4 + 1.182e9s3
+5.499e9s2 + 2.865e10s+ 1.096e11
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Table 4.13: 12th Order LOAS

Techniques LOAS

GJ

7.905e−6s11 − 0.0007995s10 + 0.0007917s9 + 0.009321s8
+0.07658s7 − 4.222s6 + 3.242s5 − 167.6s4 + 71.41s3

−3522s2 + 641.2s− 3.054e4

s12 + 0.1515s11 + 814.4s10 + 123.3s9 + 2.759e5s8
+3.823e4s7 + 4.966e7s6 + 5.711e6s5 + 5.004e9s4
+4.142e8s3 + 2.672e11s2 + 1.172e10s+ 5.904e12

GA

0.05336s11 − 0.3066s10 + 42.72s9 − 103.6s8 + 1.228e4s7
+1.207e4s6 + 1.582e6s5 + 7.547e6s4 + 9.185e7s3

+8.771e8s2 + 1.907e9s+ 3.171e10

s12 + 0.7123s11 + 1036s10 + 608.6s9 + 4.343e5s8
+2.009e5s7 + 9.425e7s6 + 3.203e7s5 + 1.118e10s4

+2.472e9s3 + 6.879e11s2 + 7.404e10s+ 1.719e13

VS

0.05246s11 − 0.3728s10 + 42.47s9 − 162.3s8 + 1.237e4s7
−7664s6 + 1.623e6s5 + 4.392e6s4 + 9.702e7s3

+6.361e8s2 + 2.115e9s+ 2.464e10

s12 + 0.7086s11 + 1035s10 + 604.8s9 + 4.335e5s8
+1.994e5s7 + 9.402e7s6 + 3.178e7s5 + 1.114e10s4

+2.451e9s3 + 6.854e11s2 + 7.339e10s+ 1.712e13

PT

7.905e−6s11 − 0.0007995s10 + 0.0007917s9 + 0.009321s8
+0.07658s7 − 4.222s6 + 3.242s5 − 167.6s4 + 71.41s3

−3522s2 + 641.2s− 3.054e4

s12 + 6.2s11 + 833.6s10 + 4062s9 + 2.852e5s8
+1.055e6s7 + 5.135e7s6 + 1.356e8s5 + 5.139e9s4
+8.644e9s3 + 2.712e11s2 + 2.184e11s+ 5.904e12
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Table 4.14: 13th Order LOAS

Techniques LOAS

GJ

5.783e−5s12 − 0.001467s11 + 0.006104s10
−0.05755s9 + 1.024s8 − 10.39s7 + 37.53s6 − 421.2s5

+1067s4 − 8947s3 + 1.567e4s2 − 7.786e4s
+8.889e4

s13 + 2.8s12 + 860.6s11 + 2544s10 + 3.047e5s9
+9.374e5s8 + 5.686e7s7 + 1.799e8s6 + 5.898e9s5

+1.903e10s4 + 3.227e11s3 + 1.055e12s2 + 7.274e12s
+2.395e13

GA

−0.01196s12 + 0.5465s11 − 27.61s10 + 607.3s9
−1.73e4s8 + 2.371e5s7 − 4.653e6s6 + 4.146e7s5
−6.072e8s4 + 3.327e9s3 − 3.789e10s2 + 9.997e10s

−9.043e11

s13 + 0.7879s12 + 1047s11 + 691.8s10 + 4.43e5s9
+2.364e5s8 + 9.704e7s7 + 3.96e7s6 + 1.161e10s5

+3.324e9s4 + 7.201e11s3 + 1.222e11s2 + 1.812e13s
+1.072e12

VS

−0.01096s12 + 0.4963s11 − 25.32s10 + 555.7s9
−1.583e4s8 + 2.172e5s7 − 4.236e6s6 + 3.787e7s5
−5.48e8s4 + 3.021e9s3 − 3.38e10s2 + 9.012e10s

−7.954e11

s13 + 0.7898s12 + 1047s11 + 695.2s10 + 4.435e5s9
+2.384e5s8 + 9.724e7s7 + 4.016e7s6 + 1.164e10s5

+3.399e9s4 + 7.231e11s3 + 1.272e11s2 + 1.822e13s
+1.2e12

PT

5.783e−5s12 − 0.001467s11 + 0.006104s10 − 0.05755s9
+1.024s8 − 10.39s7 + 37.53s6 − 421.2s5 + 1067s4

−8947s3 + 1.567e4s2 − 7.786e4s
+8.889e4

s13 + 6.577s12 + 878.3s11 + 5148s10 + 3.161e5s9
+1.644e6s8 + 5.97e7s7 + 2.743e8s6 + 6.25e9s5

+2.525e10s4 + 3.44e11s3 + 1.216e12s2 + 7.788e12s
+2.395e13
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Table 4.15: 14th Order LOAS

Techniques LOAS

GJ

−6.984e−6s13 + 0.0007537s12 − 0.0007541s11 − 0.02277s10
−0.1416s9 + 34.6s8 − 5.668s7 + 324.2s6 − 185.3s5

+9840s4 − 3295s3 + 1.637e5s2 − 2.458e4s+ 1.149e6

s14 + 0.4486s13 + 1175s12 + 465.4s11
+5.786e5s10 + 1.958e5s9 + 1.55e8s8 + 4.276e7s7
+2.441e10s6 + 5.113e9s5 + 2.26e12s4 + 3.18e11s3

+1.141e14s2 + 8.049e12s+ 2.423e15

GA

−0.01089s13 + 0.3018s12 − 14.11s11 + 283.4s10 − 6730s9
+1.021e5s8 − 1.546e6s7 + 1.821e7s6 − 1.852e8s5

+1.718e9s4 − 1.117e10s3 + 8.166e10s2
−2.684e11s+ 1.526e12

s14 + 0.7902s13 + 1230s12 + 825.7s11
+6.331e5s10 + 3.496e5s9 + 1.766e8s8 + 7.677e7s7
+2.885e10s6 + 9.23e9s5 + 2.762e12s4 + 5.767e11s3

+1.436e14s2 + 1.465e13s+ 3.131e15

VS

−0.01015s13 + 0.2855s12 − 13.19s11 + 267.3s10
−6291s9 + 9.581e4s8 − 1.44e6s7 + 1.697e7s6

−1.716e8s5 + 1.587e9s4 − 1.028e10s3 + 7.465e10s2
−2.452e11s+ 1.378e12

s14 + 0.7899s13 + 1230s12 + 825.6s11
+6.333e5s10 + 3.496e5s9 + 1.767e8s8 + 7.679e7s7

+2.887e10s6 + 9.234e9s5 + 2.764e12s4 + 5.771e11s3
+1.437e14s2 + 1.466e13s+ 3.135e15

PT

−6.984e−6s13 + 0.0007537s12 − 0.0007541s11 − 0.02277s10
−0.1416s9 + 34.6s8 − 5.668s7 + 324.2s6
−185.3s5 + 9840s4 − 3295s3 + 1.637e5s2

−2.458e4s+ 1.149e6

s14 + 0.5456s13 + 1175s12 + 555.2s11
+5.787e5s10 + 2.295e5s9 + 1.55e8s8 + 4.937e7s7

+2.441e10s6 + 5.828e9s5 + 2.26e12s4 + 3.585e11s3
+1.141e14s2 + 8.989e12s+ 2.423e15
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Table 4.16: 15th Order LOAS

Techniques LOAS

GJ

−2.865e−5s14 + 0.0008359s13 − 0.004622s12 − 0.01176s11
−0.9393s10 + 36.46s9 + 0.8053s8 + 409.6s7
−2214s6 + 1.277e4s5 − 5.959e4s4 + 2.182e5s3

−8.915e5s2 + 1.572e6s− 5.676e6

s15 + 2.021s14 + 1180s13 + 2359s12
+5.834e5s11 + 1.151e6s10 + 1.569e8s9 + 3.041e8s8

+2.478e10s7 + 4.704e10s6 + 2.301e12s5 + 4.266e12s4
+1.164e14s3 + 2.102e14s2 + 2.48e15s+ 4.349e15

GA

−0.01209s14 + 0.3142s13 − 15.61s12 + 296.2s11
−7511s10 + 1.075e5s9 − 1.763e6s8 + 1.937e7s7

−2.201e8s6 + 1.854e9s5 − 1.443e10s4 + 8.997e10s3
−4.315e11s2 + 1.731e12s− 3.392e12

s15 + 0.7919s14 + 1230s13 + 827.8s12
+6.332e5s11 + 3.507e5s10 + 1.767e8s9 + 7.708e7s8

+2.886e10s7 + 9.279e9s6 + 2.763e12s5 + 5.813e11s4
+1.437e14s3 + 1.489e13s2 + 3.133e15s+ 4.931e12

VS

−0.01144s14 + 0.3022s13 − 14.81s12 + 284.4s11
−7124s10 + 1.028e5s9 − 1.669e6s8 + 1.846e7s7
−2.076e8s6 + 1.76e9s5 − 1.355e10s4 + 8.498e10s3

−4.042e11s2 + 1.628e12s− 3.193e12

s15 + 0.7924s14 + 1231s13 + 828.7s12
+6.335e5s11 + 3.512e5s10 + 1.768e8s9 + 7.725e7s8
+2.889e10s7 + 9.308e9s6 + 2.766e12s5 + 5.84e11s4
+1.439e14s3 + 1.501e13s2 + 3.138e15s+ 7.231e12

PT

−2.865e−5s14 + 0.0008359s13 − 0.004622s12 − 0.01176s11
−0.9393s10 + 36.46s9 + 0.8053s8 + 409.6s7
−2214s6 + 1.277e4s5 − 5.959e4s4 + 2.182e5s3

−8.915e5s2 + 1.572e6s− 5.676e6

s15 + 2.624s14 + 1181s13 + 2954s12
+5.848e5s11 + 1.388e6s10 + 1.574e8s9 + 3.533e8s8

+2.488e10s7 + 5.263e10s6 + 2.312e12s5 + 4.596e12s4
+1.171e14s3 + 2.182e14s2 + 2.494e15s+ 4.349e15
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Table 4.17: Poles Locations of LOAS from (1st-15th) order LOAS

LOAS GJ
1st Order −0.13866
2nd Order −0.0045646± 10.007i
33rd Order −1.0682,−0.0037271± 10.01i
4th Order 0.04473± 10.086i,−0.055275± 10.062i
5th Order −2.4349, 0.041504 ± 10.116i,−0.036295 ±

10.062i
6th Order 0.27434 ± 10.316i,−0.28979 ±

10.282i,−0.010912± 10.048i
7th Order −4.0193,−0.010747 ± 10.048i,−0.24253 ±

10.319i, 0.304± 10.375i
8th Order 0.65462 ± 10.75i,−0.67391 ±

10.695i,−0.02581 ± 10.404i,−0.011455 ±
10.049i

9th Order −6.4415, 0.73491 ± 10.885i,−0.5536 ±
10.77i,−0.01601±10.422i,−0.011461±10.049i

10th Order 1.1605±11.536i,−1.1892±11.456i,−0.03056±
11.043i,−0.034795 ± 10.451i,−0.011435 ±
10.049i

11th Order −4.4126,−0.011435 ± 10.049i,−0.035273 ±
10.45i, 0.008128 ± 11.082i,−1.0363 ±
11.492i, 1.2516± 11.671i

12th Order 1.5122 ± 13.057i,−1.4712 ±
12.869i,−0.012079 ± 12.086i,−0.059097 ±
11.247i,−0.034161 ± 10.448i,−0.011435 ±
10.049i

13th Order −3.2806,−0.011435 ± 10.049i,−0.034205 ±
10.448i,−0.047599 ± 11.23i,−0.61062 ±
12.341i, 0.61017± 12.646i, 0.33423± 14.644i

14th Order −0.013441 ± 16.168i, 0.024267 ±
15.821i,−0.018532 ± 12.975i,−0.11566 ±
12.573i,−0.055314 ± 11.235i,−0.034173 ±
10.448i,−0.011435± 10.049i

15th Order −1.761,−0.011435 ± 10.049i,−0.034175 ±
10.448i,−0.054623 ± 11.236i,−0.16944 ±
12.502i, 0.10693 ± 13.063i, 0.043786 ±
15.849i,−0.010985± 16.27i
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Table 4.18: Poles Locations of LOAS from (1st-15th) order LOAS

LOAS GA
1st Order −0.013708
2nd Order −0.010148± 10.121i
33rd Order −1.0682,−0.0037271± 10.01i
4th Order −0.016836± 11.286i,−0.01168± 10.116i
5th Order −0.015313,−0.011534 ± 10.118i,−0.016224 ±

11.319i
6th Order −0.013257 ± 14.066i,−0.019578 ± 11.284i −

0.012243± 10.114i
7th Order −0.14293,−0.011547 ± 10.125i,−0.015477 ±

11.411i,−0.0096191± 14.338i
8th Order −0.027058 ± 15.737i,−0.039528 ±

13.257i,−0.034455 ± 11.082i,−0.014929 ±
10.096i

9th Order −0.18238,−0.01585 ± 10.1i,−0.039582 ±
11.149i,−0.046984 ± 13.446i,−0.02987 ±
15.904i

10th Order −0.038303 ± 16.415i,−0.074675 ±
14.551i,−0.077022 ± 12.321i,−0.051626 ±
10.705i,−0.014706± 10.059i

11th Order −0.12485,−0.014912 ± 10.059i,−0.055536 ±
10.723i,−0.085944 ± 12.418i,−0.081589 ±
14.71i,−0.038118± 16.502i

12th Order −0.035035 ± 16.716i,−0.087104 ±
15.346i,−0.10256 ± 13.326i,−0.079696 ±
11.528i,−0.040449 ± 10.469i,−0.011298 ±
10.049i

13th Order −0.059171,−0.011209 ± 10.05i,−0.041875 ±
10.472i,−0.085566 ± 11.584i,−0.10744 ±
13.466i,−0.085939 ± 15.476i,−0.032329 ±
16.754i

14th Order −0.026293 ± 16.856i,−0.077306 ±
15.883i,−0.1024 ± 14.198i,−0.087303 ±
12.473i,−0.056118 ± 11.236i,−0.034213 ±
10.451i,−0.011486± 10.049i

15th Order −0.0015737,−0.011481±10.049i,−0.034263±
10.451i,−0.056184 ± 11.238i,−0.087137 ±
12.475i,−0.10243 ± 14.198i,−0.077376 ±
15.884i,−0.026272± 16.857i
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Table 4.19: Poles Locations of LOAS from (1st-15th) order LOAS

LOAS GS
1st Order −0.0050659
2nd Order −0.0090048± 10.104i
33rd Order −0.024621,−0.008817± 10.106i
4th Order −0.016788± 11.144i,−0.01015± 10.102i
5th Order −0.026425,−0.01548 ± 11.165i,−0.0098249 ±

10.104i
6th Order −0.012261 ± 13.805i,−0.018019 ±

11.148i,−0.010443± 10.102i
7th Order −0.0069508,−0.010471±10.102i,−0.018214±

11.154i,−0.012807± 13.838i
8th Order −0.026545 ± 15.632i,−0.036331 ±

13.095i,−0.029898 ± 11.001i,−0.012576 ±
10.091i

9th Order −0.18238,−0.01585 ± 10.1i,−0.039582 ±
11.149i,−0.046984 ± 13.446i,−0.02987 ±
15.904i

10th Order −0.038303 ± 16.415i,−0.074675 ±
14.551i,−0.077022 ± 12.321i,−0.051626 ±
10.705i,−0.014706± 10.059i

11th Order −0.12485,−0.014912 ± 10.059i,−0.055536 ±
10.723i,−0.085944 ± 12.418i,−0.081589 ±
14.71i,−0.038118± 16.502i

12th Order −0.035035 ± 16.716i,−0.087104 ±
15.346i,−0.10256 ± 13.326i,−0.079696 ±
11.528i,−0.040449 ± 10.469i,−0.011298 ±
10.049i

13th Order −0.059171,−0.011209 ± 10.05i,−0.041875 ±
10.472i,−0.085566 ± 11.584i,−0.10744 ±
13.466i,−0.085939 ± 15.476i,−0.032329 ±
16.754i

14th Order −0.026293 ± 16.856i,−0.077306 ±
15.883i,−0.1024 ± 14.198i,−0.087303 ±
12.473i,−0.056118 ± 11.236i,−0.034213 ±
10.451i,−0.011486± 10.049i

15th Order −0.0015737,−0.011481±10.049i,−0.034263±
10.451i,−0.056184 ± 11.238i,−0.087137 ±
12.475i,−0.10243 ± 14.198i,−0.077376 ±
15.884i,−0.026272± 16.857i
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Table 4.20: Poles Locations of LOAS from (1st-15th) order LOAS

LOAS Proposed Technique
1st Order −0.13866
2nd Order −0.0045646± 10.007i
33rd Order −1.0682,−0.0037271± 10.01i
4th Order 0.04473± 10.086i,−0.055275± 10.062i
5th Order −2.4349,−0.036295 ± 10.062i,−0.041504 ±

10.116i
6th Order −0.27434 ± 10.316i,−0.28979 ±

10.282i,−0.010912± 10.048i
7th Order −4.0193,−0.010747 ± 10.048i,−0.24253 ±

10.319i, 0.304± 10.375i
8th Order −0.65462 ± 10.75i,−0.67391 ±

10.695i,−0.02581 ± 10.404i,−0.011455 ±
10.049i

9th Order −6.4415,−0.73491 ± 10.885i,−0.5536 ±
10.77i,−0.01601±10.422i,−0.011461±10.049i

10th Order −1.1605 ± 11.536i,−1.1892 ±
11.456i,−0.03056 ± 11.043i,−0.034795 ±
10.451i,−0.011435± 10.049i

11th Order −4.4126,−0.011435 ± 10.049i,−0.035273 ±
10.45i,−0.008128 ± 11.082i,−1.0363 ±
11.492i,−1.2516± 11.671i

12th Order −1.5122 ± 13.057i,−1.4712 ±
12.869i,−0.012079 ± 12.086i,−0.059097 ±
11.247i,−0.034161 ± 10.448i,−0.011435 ±
10.049i

13th Order −3.2806,−0.011435 ± 10.049i,−0.034205 ±
10.448i,−0.047599 ± 11.23i,−0.61062 ±
12.341i,−0.61017±12.646i,−0.33423±14.644i

14th Order −0.013441 ± 16.168i,−0.024267 ±
15.821i,−0.018532 ± 12.975i,−0.11566 ±
12.573i,−0.055314 ± 11.235i,−0.034173 ±
10.448i,−0.011435± 10.049i

15th Order −1.761,−0.011435 ± 10.049i,−0.034175 ±
10.448i,−0.054623 ± 11.236i,−0.16944 ±
12.502i,−0.10693 ± 13.063i,−0.043786 ±
15.849i,−0.010985± 16.27i
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Table 4.21: Poles Locations of LOAS from (1st-15th) order LOAS

LOAS GJ GA GS Proposed Technique
1st Order -0.13866 -0.013708 -0.0050659 -0.13866
2nd Order −0.0045646± 10.007i −0.010148± 10.121i −0.0090048± 10.104i −0.0045646± 10.007i
33rd Order −1.0682,−0.0037271 ±

10.01i
−0.008555,−0.010119 ±
10.122i

−0.024621,−0.008817 ±
10.106i

−1.0682,−0.0037271 ±
10.01i

4th Order 0.04473 ±
10.086i,−0.055275 ±
10.062i

−0.016836 ±
11.286i,−0.01168 ±
10.116i

−0.016788 ±
11.144i,−0.01015 ±
10.102i

0.04473 ±
10.086i,−0.055275 ±
10.062i

5th Order −2.4349, 0.041504 ±
10.116i,−0.036295 ±
10.062i

−0.015313,−0.011534 ±
10.118i,−0.016224 ±
11.319i

−0.026425,−0.01548 ±
11.165i,−0.0098249 ±
10.104i

−2.4349,−0.036295 ±
10.062i,−0.041504 ±
10.116i

6th Order 0.27434 ±
10.316i,−0.28979 ±
10.282i,−0.010912 ±
10.048i

−0.013257 ±
14.066i,−0.019578 ±
11.284i − 0.012243 ±
10.114i

−0.012261 ±
13.805i,−0.018019 ±
11.148i,−0.010443 ±
10.102i

−0.27434 ±
10.316i,−0.28979 ±
10.282i,−0.010912 ±
10.048i

7th Order −4.0193,−0.010747 ±
10.048i,−0.24253 ±
10.319i, 0.304± 10.375i

−0.14293,−0.011547 ±
10.125i,−0.015477 ±
11.411i,−0.0096191 ±
14.338i

−0.0069508,−0.010471±
10.102i,−0.018214 ±
11.154i,−0.012807 ±
13.838i

−4.0193,−0.010747 ±
10.048i,−0.24253 ±
10.319i, 0.304± 10.375i

8th Order 0.65462 ±
10.75i,−0.67391 ±
10.695i,−0.02581 ±
10.404i,−0.011455 ±
10.049i

−0.027058 ±
15.737i,−0.039528 ±
13.257i,−0.034455 ±
11.082i,−0.014929 ±
10.096i

−0.026545 ±
15.632i,−0.036331 ±
13.095i,−0.029898 ±
11.001i,−0.012576 ±
10.091i

−0.65462 ±
10.75i,−0.67391 ±
10.695i,−0.02581 ±
10.404i,−0.011455 ±
10.049i

9th Order −6.4415, 0.73491 ±
10.885i,−0.5536 ±
10.77i,−0.01601 ±
10.422i,−0.011461 ±
10.049i

−0.18238,−0.01585 ±
10.1i,−0.039582 ±
11.149i,−0.046984 ±
13.446i,−0.02987 ±
15.904i

−0.24689,−0.013492 ±
10.1i,−0.033564 ±
11.113i,−0.040445 ±
13.364i,−0.026127 ±
15.837i

−6.4415,−0.73491 ±
10.885i,−0.5536 ±
10.77i,−0.01601 ±
10.422i,−0.011461 ±
10.049i

10th Order 1.1605 ±
11.536i,−1.1892 ±
11.456i,−0.03056 ±
11.043i,−0.034795 ±
10.451i,−0.011435 ±
10.049i

−0.038303 ±
16.415i,−0.074675 ±
14.551i,−0.077022 ±
12.321i,−0.051626 ±
10.705i,−0.014706 ±
10.059i

−0.038762 ±
16.38i,−0.072406 ±
14.477i,−0.072037 ±
12.267i,−0.0477 ±
10.7i,−0.014464 ±
10.062i

−1.1605 ±
11.536i,−1.1892 ±
11.456i,−0.03056 ±
11.043i,−0.034795 ±
10.451i,−0.011435 ±
10.049i

11th Order −4.4126,−0.011435 ±
10.049i,−0.035273 ±
10.45i, 0.008128 ±
11.082i,−1.0363 ±
11.492i, 1.2516± 11.671i

−0.12485,−0.014912 ±
10.059i,−0.055536 ±
10.723i,−0.085944 ±
12.418i,−0.081589 ±
14.71i,−0.038118 ±
16.502i

−0.15883,−0.015056 ±
10.063i,−0.053233 ±
10.736i,−0.082327 ±
12.415i,−0.078604 ±
14.689i,−0.037203 ±
16.485i

−4.4126,−0.011435 ±
10.049i,−0.035273 ±
10.45i,−0.008128 ±
11.082i,−1.0363 ±
11.492i,−1.2516 ±
11.671i

12th Order 1.5122 ±
13.057i,−1.4712 ±
12.869i,−0.012079 ±
12.086i,−0.059097 ±
11.247i,−0.034161 ±
10.448i,−0.011435 ±
10.049i

−0.035035 ±
16.716i,−0.087104 ±
15.346i,−0.10256 ±
13.326i,−0.079696 ±
11.528i,−0.040449 ±
10.469i,−0.011298 ±
10.049i

−0.035365 ±
16.711i,−0.087128 ±
15.329i,−0.10137 ±
13.31i,−0.078224 ±
11.53i,−0.040783 ±
10.475i,−0.011434 ±
10.049i

−1.5122 ±
13.057i,−1.4712 ±
12.869i,−0.012079 ±
12.086i,−0.059097 ±
11.247i,−0.034161 ±
10.448i,−0.011435 ±
10.049i

13th Order −3.2806,−0.011435 ±
10.049i,−0.034205 ±
10.448i,−0.047599 ±
11.23i,−0.61062 ±
12.341i, 0.61017 ±
12.646i, 0.33423±14.644i

−0.059171,−0.011209 ±
10.05i,−0.041875 ±
10.472i,−0.085566 ±
11.584i,−0.10744 ±
13.466i,−0.085939 ±
15.476i,−0.032329 ±
16.754i

−0.065879,−0.011368 ±
10.049i,−0.043121 ±
10.482i,−0.084678 ±
11.606i,−0.10558 ±
13.474i,−0.084868 ±
15.469i,−0.032339 ±
16.749i

−3.2806,−0.011435 ±
10.049i,−0.034205 ±
10.448i,−0.047599 ±
11.23i,−0.61062 ±
12.341i,−0.61017 ±
12.646i,−0.33423 ±
14.644i

14th Order −0.013441 ±
16.168i, 0.024267 ±
15.821i,−0.018532 ±
12.975i,−0.11566 ±
12.573i,−0.055314 ±
11.235i,−0.034173 ±
10.448i,−0.011435 ±
10.049i

−0.026293 ±
16.856i,−0.077306 ±
15.883i,−0.1024 ±
14.198i,−0.087303 ±
12.473i,−0.056118 ±
11.236i,−0.034213 ±
10.451i,−0.011486 ±
10.049i

−0.026311 ±
16.856i,−0.077115 ±
15.883i,−0.10207 ±
14.202i,−0.087473 ±
12.479i,−0.056433 ±
11.236i,−0.034054 ±
10.451i,−0.011514 ±
10.049i

−0.013441 ±
16.168i,−0.024267 ±
15.821i,−0.018532 ±
12.975i,−0.11566 ±
12.573i,−0.055314 ±
11.235i,−0.034173 ±
10.448i,−0.011435 ±
10.049i

15th Order −1.761,−0.011435 ±
10.049i,−0.034175 ±
10.448i,−0.054623 ±
11.236i,−0.16944 ±
12.502i, 0.10693 ±
13.063i, 0.043786 ±
15.849i,−0.010985 ±
16.27i

−0.0015737,−0.011481±
10.049i,−0.034263 ±
10.451i,−0.056184 ±
11.238i,−0.087137 ±
12.475i,−0.10243 ±
14.198i,−0.077376 ±
15.884i,−0.026272 ±
16.857i

−0.0023045,−0.011507±
10.049i,−0.034148 ±
10.451i,−0.056492 ±
11.238i,−0.087233 ±
12.48i,−0.10215 ±
14.202i,−0.077232 ±
15.884i,−0.026268 ±
16.857i

−1.761,−0.011435 ±
10.049i,−0.034175 ±
10.448i,−0.054623 ±
11.236i,−0.16944 ±
12.502i,−0.10693 ±
13.063i,−0.043786 ±
15.849i,−0.010985 ±
16.27i
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Chapter 5

CONCLUSION AND FUTURE WORK DIRECTIONS

5.1 Conclusion

Improved frequency limited state feedback controller of LOAS technique for discrete time

systems is suggested. The proposed technique provides stability of LOAS and gives error

bounds. The estimated error is far less as compared to other conventional existing techniques

for preserving stability. WZ’s technique provide low error for approximation as compared to

others, but it occasionally gives unstable LOAS. Improved frequency limited observer based

state feedback controller is also presented for discrete time systems of LOAS comparison

shows the effectiveness of both procedure as compared to other techniques. Both techniques

provide better as results in terms of natural response, impulse response, step response as

compared to other techniques which shows the effectiveness of proposed algorithms.

Improved frequency limited state feedback controller of LOAS technique for continuous

time systems is suggested. This technique validates stability of LOAS and thus gives also

error bounds. The error for approximation is far less as compared to other conventional

existing stability preserving techniques as of today. Technique of GJ’s provide low error for

approximation as compared to other techniques, but again, gives LOAS which are unstable.

Improved frequency limited observer based state feedback controller is also presented for

discrete time systems of LOAS comparison shows the effectiveness of both procedure as
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compared to other techniques. Both techniques provide better as results in terms of natural

response, impulse response, step response as compared to other techniques which shows the

effectiveness of proposed algorithms.

5.2 Future Work and Directions

For future directions, it is recommended:

• To use static state feedback controller of LOAS for nonlinear systems.

• To use dynamic state feedback controller of LOAS for nonlinear systems.

• To use static observer based feedback controller of LOAS for nonlinear systems.

• To use dynamic observer based feedback controller of LOAS for nonlinear systems.

• To use static state feedback controller of LOAS for incase of exact feedback lineariza-

tion of nonlinear systems.

• To use dynamic state feedback controller of LOAS for incase of exact feedback lin-

earization of nonlinear systems.

• To explore integral static state feedback controller of LOAS for nonlinear systems.

• To build integral dynamic state feedback controller of LOAS for nonlinear systems.

• To find integral static observer based feedback controller of LOAS for nonlinear sys-

tems.
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• To use integral dynamic observer based feedback controller of LOAS for nonlinear

systems.

• To use integral static state feedback controller of LOAS for incase of exact feedback

linearization of nonlinear systems.

• To explore integral dynamic state feedback controller of LOAS for incase of exact

feedback linearization of nonlinear systems.
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