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Abstract 
 

Chaos is a mathematical branch which focuses on dynamic systems and studies their 

behavior. It is a theory that is interdisciplinary and describes that there are some patterns, 

self- similarities, repetitions, feedback loops which are constant, fractals and it relies on 

programming at the starting point which is sensitive to initial conditions. Chaos is something 

in between predictable and unpredictable. It has also been in practice for last two decades in 

cryptography. Hundreds of cryptographic primitives have been designed by using chaos and 

nonlinear dynamics which include both symmetric and asymmetric encryption schemes. 

Their aperiodic behavior attracted researchers to develop different encryption algorithms 

achieving confusion and diffusion by utilizing the properties of these maps. Despite of many 

advantages the cryptographic security of these schemes is still questionable. Specially with 

the increase in computer resources the adversary always considered with added advantage in 

terms of resources and technology. Quantum computation is also one of the latest developing 

technology which has threatened the classical cryptography. This thesis will give analysis of 

chaos-based cryptography while analyzing the cryptographic properties of these maps and 

future of chaos-based cryptography in post quantum era. 
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Chapter 1 
 

Introduction 
 
 

1.1 Overview 
 

Prediction of systems has always been an attraction for scientists for futuristic planning. 

For examples, eclipse dates can be calculated for past and future both. Yet there are 

systems which are unpredictable and generate random behavior, but still fall under the 

laws of physics. Such examples are roll of dice, flow of streams and weather etc. 

However, in recent past scientists realized that there are certain deterministic systems 

which can generate random behaviors. These systems are known as chaotic systems. 

 

Scientists have worked a lot to explore the hidden truth of this universe. Astronomers 

used Newton’s Law to detect the future position of planets and comets. Meteorologists 

used previous data to forecast weather. But they never included every particle of the 

atmosphere to calculate everything, rather they were specific to data effecting their task.  

 

In 1960 an American meteorologist Edward N. Lorenz created a model for weather 

forecasting which included twelve equations showing relationship of different factors 

such as temperature, pressure and wind speed. After every minute his computer printed 

out a row of numbers that represented a day of weather and his model was following 

early weather patterns. One day Lorenz decided to repeat the calculations and started the 

calculations from mid-point, giving inputs from printout. Due to noisy computer he left 

his seat for a cup of coffee and on his return, he was surprised to see results as they were 

totally different as compared to earlier printed results. Since same program being used for 

calculations and all inputs were also from previously calculated data, hence result should 

have been same. Lorenz saw that computer used six digits number for calculation and 

printed data was only three digits (0.567891→ 0.567) and due to this change the system 

behaved differently outputting different result. Lorenz discovered that system was 

sensitive to initial conditions and this is how he introduced Chaos. 

 



2 
 

For more analysis of the systems which are sensitive to initial conditions Lorenz 

simplified the system to three equations and three variables to model convection instead 

of weather. He obtained hundreds of triplets like (9, 20, 0) and plotted these points as 

graph. The resulting pattern was like butterfly (Fig. 1.1) and path never repeated itself. 

The behavior signaled disorder since no path recurred. At same time the behavior 

signaled order since all the paths were confined in overall pattern. Since each set of initial 

conditions will result into different path within the overall pattern, Lorenz concluded, 

“that prediction of sufficiently distant future is impossible by any method, unless the 

present conditions are known exactly. In view of the inevitable inaccuracy and 

incompleteness of weather observations, precise very-long-range forecasting would seem 

to be non-existence” [1]. 

 

Fig.1.1 Lorenz Attractor [1] 

 

1.2 Motivation and Problem Statement 
 

Most of the researchers have been working on Pseudo-Chaos, which approximates 

continuous chaos with floating or fixed-point arithmetic and leads to discrete chaos-like 

system with low cycle lengths. It is essential that stable pseudo-chaotic systems should 

have almost the same period and Lyapunov exponents for all possible initial conditions. 

Majority of the known pseudo-chaotic systems do not fulfill this criterion, but still 

chaotic systems are being used and hardly research has been done to identify the strength 
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of chaotic number generators. There is need to identify which essential properties 

guarantee computational unpredictability of a chaotic system. 

 

Properties of chaotic maps attract researchers for development of different cryptographic 

schemes but still there are certain limitations for its actual implementations which are 

required to be identified. Post quantum cryptography will change the cryptographic 

primitives due to high speed and more storage capacity, especially public key 

cryptography will come to end with implementation of Shor’s Algorithm. There is need 

of new quantum resistant primitives, can chaos-based cryptography be one out of them. 

 

1.3 Objectives 
 

The main objectives of thesis are: - 

 

• To study the Chaotic theory and its application in cryptography. 
 

• To identify the reasons to use the chaotic number generators as pseudorandom 

number generators. 

• To study framework for analysis of pseudorandom numbers generated by chaotic 

systems. 

 

1.5 Thesis Organization 
 

 

The thesis is structured as follows: 
 

• Chapter 2 contains introduction to chaos theory. Different types of attractors and 

use of chaos theory in cryptography are covered in the chapter. 

 
 

• Chapter 3 contains the study of different chaotic maps. The randomness testing 

standards, results of randomness of discussed chaotic maps and their 

cryptographic properties are discussed in this chapter. 

 
 

• Chapter 4 covers the framework and techniques to identify the chaotic region and 

effects of improvisation during implementation of chaotic maps.  
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• Chapter 5 contains analysis of cryptographic properties of chaotic maps. It also 

contains results after analysis of key space generated by logistic map and effects 

of decimal number arithmetic on speed and key space. 

 

• Chapter 6 contains post quantum cryptography effects on public key cryptography 

and effectiveness of chaos-based cryptography.  

 
 

• Chapter 7 marks the end of the document. The conclusion and future of chaos-

based cryptography are suggested in this chapter. 
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Chapter 2 
 

Introduction to Chaos Theory 
 

2.1 Introduction 

Science uses the terms chaos and disorder, along with the term nonrandom and degree of 

predictability makes these terms distinguishable. A nonrandom process is predictable as 

compared to random process which is totally unpredictable. A chaotic process falls in 

between these two extremes of total predictability and total unpredictability. Reason for 

this is that equations can be written to describe the behavior of chaotic systems, hence 

predictable theoretically. Yet unpredictable in practice since being predictable 

temporarily. This chapter will include different types of attractors and use of chaos theory 

in cryptography.    

2.2 Attractors 

As compared to static systems, dynamic systems have constant changing conditions. 

Scientists graph the changing values of system variables to observe the behavior of 

dynamic systems. The resulting graph is known as phase space which is plot of system 

over time. With the time the graph settles into a shape which is known as attractor. So, 

one can say the dynamic behavior is attracted to this geometric shape. 

 2.2.1 Types of Attractors. There are four types of attractors. 

 Fixed point Attractors. In which a moving body comes back to a fixed point.

 This fixed point is an attractor for that body. Example is a swing which move 

 back and forth and eventually comes to rest at a fixed point as shown in Fig. 2.1. 

 

Fig. 2.1 Fixed Point Attractor [1] 
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 Closed – Curved Attractor. Not all attractors are fixed point, some are cyclic 

like pendulum. A clock pendulum repeats its swing and its attractor is known as

 closed curve Fig. 2.2. Another example of closed curve attractor is orbit of moon.  

 

Fig. 2.2 Closed Curve Attractor [1] 

 A system can have more than one attractor depending upon its initial condition. A

 small displaced pendulum would not repeat its swing and will come to rest hence

 fixed-point attractor, while a largely displaced pendulum will follow closed curve

 attractor. 

  

Torus Attractor.  It is a system which change in detailed characteristic over time

 but does not change its form. Such a system has trajectory which will produce a

 path looking like the doughnut shape of a torus Fig 2.3. 

 

Fig. 2.3 Torus Attractor [1] 

 It is seen in certain electrical oscillators. The paths taken by fixed- point, closed

 curve and torus attractors are not sensitive to initial conditions.  

 

https://www.google.com/imgres?imgurl=x-raw-image:///651abed99973252c5be6efab719d642347f71eec212d8b0d36627203bf2098f6&imgrefurl=http://www.uobabylon.edu.iq/eprints/paper_1_24607_154.pdf&docid=ov451OFO_p6F-M&tbnid=LCVzmdm-GmWdZM:&vet=10ahUKEwjNsMvZyt3fAhXAVBUIHXbZBJMQMwhjKBwwHA..i&w=1191&h=416&bih=651&biw=1366&q=torus%20attractor&ved=0ahUKEwjNsMvZyt3fAhXAVBUIHXbZBJMQMwhjKBwwHA&iact=mrc&uact=8
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Strange Attractors. These attractors are sensitive to initial conditions and known  

as chaotic attractors. These follow the butterfly path as shown in Fig. 2.4 

 

Fig. 2.4 Strange Attractor [1] 

 Why chaotic systems lose their predictability with time, one needs to study 

attractors to answer this question. Because a predictable system will not have

 randomness property and will lose its effect in cryptography. 

2.3 Chaos in Cryptography 

Sensitive dependence or sensitive to initial conditions property in chaotic systems is very 

important for cryptography. If initial conditions for the encryption of data is changed by a 

small value, the resulted encryption would result into totally a different data. Pseudo 

random numbers have always been an interest for cryptographic algorithm developers 

since they provide unique keys and be regenerated at both ends (encryption and 

decryption). However, it has also been a research topic to produce PRNG proving to be 

computationally secure with maximum period.  

 2.3.1 Logistic Map  

 In 1998 M.S. Baptista used ergodic property of low – dimensional and simple

 logistic map to encrypt a message [2].  

   Xn+1 = b Xn (1- Xn)                                                        (1) 

 Where Xn ∈ [0,1], for a control parameter b which set to be 3.78 which gives

 maximum points without repetition. But later in 2008 [3] the writer proved

 inadequacy for use of logistics map for cryptographic applications due to reason

 that logistic map is unimodal. Figure 2.5 show the unimodal behavior for the

 iterative function of logistics map. When x = 0.5 the function reaches to its

 maximum value and it is monotonically increasing and decreasing for x<0.5 and

https://www.google.com/imgres?imgurl=http://www.jaist.ac.jp/~g-kampis/Lecture_Two/butterfly.jpg&imgrefurl=http://www.jaist.ac.jp/~g-kampis/Lecture_Two/Chaotic_Itinerancies.html&docid=GP8jbXq-AMlA5M&tbnid=AErLd0AxbbbnuM:&vet=10ahUKEwjNsMvZyt3fAhXAVBUIHXbZBJMQMwhbKBQwFA..i&w=395&h=339&bih=651&biw=1366&q=torus%20attractor&ved=0ahUKEwjNsMvZyt3fAhXAVBUIHXbZBJMQMwhbKBQwFA&iact=mrc&uact=8
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 x> 0.5 respectively. Their study in [3] showed that; (a) there exists a periodic

 window in bifurcation diagram of logistic map and effecting the key space. (b) if

 the probability density function distribution of logistic map is analyzed then it is

 revealed that it’s not uniform and resulting into very slow encryption speed. (c)

 chaotic orbit of logistic map is very important to hide encrypted text (ciphertext)

 so that one cannot get plaintext or secret key. But in logistic map the extreme

 value for function is at x = 0.5 (λ/4). It is possible to get chaotic orbit with known

 plaintext attack and then by using the function one can get control parameters.

 Even if the ciphertext is resulted by best random process, with enough large

 samples of ciphertext one can guess value of λ by using maximum value in

 ciphertext. (d) critical points of logistic map are independent of control

 parameters. Known plaintext attack can be launched for reconstruction of

 symbolic sequences associated with secret value of λ. (e) chosen plaintext attack

 can be launched by using return map hence revealing the value of λ, since return

 map is dependent upon control parameters in logistic map. (f) statistical

 complexity of the logistic map is almost bijective of the control parameters which

 can be exploited by the cryptanalysis.  

 

Fig.2.5 Iterative function for logistic map [3] 
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Chapter 3 
 

Chaotic Maps for Random Number Generators 

3.1 Introduction 

This chapter includes survey of chaotic maps. Existing randomness testing criterion are 

also discussed  prior to give survey since these chaotic maps are used for random number 

generation and tested against these testing criteria. 

 

3.2 Randomness Testing Criteria 

After 2000 researchers worked to create pseudorandom number using pseudo chaos. 

However, people were already working to develop some theoretical, empirical and 

statistical testing standards and programs to check the randomness of the PRNGs. Earlier 

researchers used Menezes et al basic tests of randomness developed in 1997, having tests 

like auto – correlation, frequency, run, poker and serial. A threshold value was selected 

for comparison of each test result, it is one sided test. FIPS 140-1 also recommended 

some batteries of tests which includes run, long run, monobit and poker. FIPS 140 – 1 is 

two-sided test where statistics of a test are required to lie within interval. Later, many 

other tests were also introduced and currently most renown randomness test are: 

1. Diehard Test 

2. ENT Test 

3. TestU01 

4. NIST standard SP800-22 

 3.2.1 Diehard Test 

It is a statistical test developed by George Marsaglia in 1995, which contains 

following test to check the randomness quality: 

1. Birthday Spacing. the test is based on birthday paradox, performed on 

PRNGs by choosing random points on large intervals. 

2. Overlapping Permutation. A sequence of five consecutive PRNs is chosen 

for analysis, one million random integers of length 32 bits should have 120 

states. these 120 states should occur with qual probability. 
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3. Ranks of Matrices. also known as Chi square test, which is performed on 31 

x 31 matrix formed by 31 leftmost bits of 31 integers belong to random 

numbers, and rank is determined. Chi square test is performed to determine 

the counts of ranks 31, 30, 29 and less than or equal to 28. the same test is 

performed for 32 x 32 matrix and 6 x 8 matrix as well. 

4. Monkey Test. it is based upon infinite monkey theorem, performed on a 

stream of bits to count the overlapping words.  

5. Count the 1s. Number of 1s are counted in each of either successive or 

selected bytes. this count is converted into letters and then how many five 

letter words occurred is determined. 

6. Parking Lot Test. in 100 x 100 square a unit circle is randomly parked. a 

successful parking is that in which parking circle does not overlap already 

parked circle. these parked circles should follow normal distribution at least 

after 12,000 tries. 

7. Minimum Distance Test. 8000 points are randomly placed in a 10000×10000 

square, then minimum distance in between the pairs is determined. there 

should be exponential distribution with a mean when square of this distance is 

plotted. 

8. Random Spheres Test. a cube having 1000 edges is chosen and randomly 

4000 points are picked from it. a sphere having radius equal to minimum 

distance from another point is centered on each point. The smallest sphere's 

volume should be exponentially distributed. 

9. The Squeeze Test. it is 100000 times repeated test in which 2³¹ is multiplied 

by random floats on (0,1) till the time it appears 1 and these number of floats 

required to reach to 1 should follow a certain distribution. 

10. Overlapping Sums Test. a long sequence of random floats on (0,1) is 

generated and consecutive 100 floats are added up. this sum should be 

normally distributed with some variance and mean. 

11. Runs Test. A long sequence of random floats on (0,1) is counted for 

ascending and descending runs which should follow a certain distribution. 

12. The Craps Test. 200000 games of craps are played, and number of wins 

number of throws as well are counted. 
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p-value is returned by most of these tests of DIEHARD. these p-values should be 

uniform on [0,1] provided input file with random bits. if p-value is near to 0 or 1 

then bit stream fails randomness test. since these tests are good in numbers hence 

one will get p< 0.025 and p>0.975. these values mean RNG failed tests but since 

DIEHARD would produce so many p values and hundreds of these values would 

not affect randomness of RNGs. 

 

3.2.2 ENT Test 

ENT performs six tests on input file containing bit streams and produces 

following outputs: 

1. Entropy = 7.980627 bits per character. 

2. Optimum compression would reduce the size of this 51768 characters file by 

0 percent. 

3. Chi square distribution for 51768 samples is 1542.26, and randomly would 

exceed this value less than 0.01 percent of the times. 

4. Arithmetic mean value of data bytes is 125.93 (127.5 = random). 

5. Monte Carlo value for Pi is 3.169834647 (error 0.90 percent). 

6. Serial correlation coefficient is 0.004249 (totally uncorrelated = 0.0). 

 3.2.3 TestU01 

 It is ANSIC C library which performs number of batteries of tests including small

 crush (10 tests), Crush (96 tests0 and Big Crush (160 Tests). On a computer with

 an AMD Athlon 64 processor running at 2.4 GHz, timings for these tests are 14

 seconds, 1 hour, and 5.5 hours respectively. TestU01 takes 32 bits input, hence for

 64 bits RNG the test required to be performed in two halves for upper and lower 

bits. 

 

 3.2.4 NIST SP 800-22 

 It is a statistical package which performs 15 tests as following to check the

 randomness: 

1. The Frequency or Monobit Test  

2. Frequency Test within a Block  
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3. The Runs Test 

4. Tests for the Longest-Run-of-Ones in a Block 

5. The Binary Matrix Rank Test 

6. The Discrete Fourier Transform (Spectral) Test 

7. The Non-overlapping Template Matching Test 

8. The Overlapping Template Matching Test 

9. Maurer's "Universal Statistical" Test 

10. The Linear Complexity Test 

11. The Serial Test 

12. The Approximate Entropy Test 

13. The Cumulative Sums (Cusums) Test 

14. The Random Excursions Test, and 

15. The Random Excursions Variant Test. 

All these tests return p- value, if the p – value <0.01 then it is concluded that sequence is 

non -random otherwise random. 

 

3.3 Overview 

In 2001 Anger Fog gave concept of Chaotic Random Number Generators with Random 

Cycle Lengths [4]. Some researchers proved PRNGs as to be good on basis of hidden 

structure, but if the structure is not tested with all possibilities and flexibility an adversary 

can have then it is hard to claim that the random number generator is mathematically 

interactable. Hence Anger Fog emphasized two main properties for PRNGs which 

required to be tested as randomness and cycle. For checking the both he suggested the 

self-test code as RANROT generator which has four different types. Type A rotates bits 

after addition, type B rotates bits before addition, in type B3 more than two terms are 

included and whereas there is another type W part of bitstreams are rotated separately. In 

this research paper he introduced chaotic behavior as desired quality of good random 

numbers. Bifurcation is the most distinct characteristic of the chaotic systems which 

shows divergence of trajectories with very little difference in starting points. And to 

measure bifurcation the Lyapunov exponent λ is used.  Although Anger Fog did not use 
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any chaotic mapping in this generator but just used chaotic behavior as testing parameter 

for his RANDROT generator. 

 

 3.3.1 Henon Map  

 In 2009 Madhekar Suneel used 2D logistics Map instead of 1D as suggested by 

 Lorenz to create pseudorandom numbers which is known as Chaotic Henon Map 

 [5]. Two-dimensional state equations were given by Henon in 1976, these 

 equations represent discrete-time nonlinear dynamical system and expressed as 

 (2). 

Xk+1 = −α X2
k + yk + 1                                                        (2) 

        yk+1 = β Xk 

 

 Figure 3.1 shows the plane diagram of above equations where α = 1.4 and β = 0.3 

 representing henon attractor as form of strange attractor. States of this mapping is 

 represented in {0,1} to get pseudorandom binary sequence, bx and by two binary 

 bits are obtained as following: 

  1       if  x > τx 

 bx =      

           0         if  x ≤ τx 

         

        1       if  y > τy 

 by =  

         0         if  y ≤ τy 

 

 Where τx and τy are thresholds for state variables x and y and chosen as median of 

 large number of consecutive values of x and y respectively such that likelihood of  

 x > τx is equal to likelihood of x ≤ τx for x and same condition applies for y. 

 Hence two-bit streams are obtained from these as bx and by. Then every Pth bit of 

 these two streams is picked to form new bitstreams as Bx and By.  
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Fig. 3.1 Strange attractor of Henon [5] 

 Randomness of henon map was tested using Menezes et al’s basic tests of 

 randomness, FIPS 140-1 and NIST standard. Results of frequency, serial,  poker, 

 runs and auto-correlation were successfully passed when tested against Menezes 

 Test. 

 

 The researcher also carried out FIPS 140-1 tests which required 20,000 bits with 

 sequences. five sequences S1 to S5 were generated and passed all tests. 

 

 The author also testes the resulted sequence with NIST standard by generating     

 2 x 108 bits and suit consider it as 200 sequences of 1 x 106 bits each. Threshold

 for tests was 0.968893 and all tests were within this threshold except variant test. 

 The sequences which even passed Menezes and FIPS 140- 1 tests  failed NIST 

 suite tests. For NIST tests choice of parameters to generate bit sequence require 

 attention. such as choosing a large T (about 1000) gives successful results  for 

NIST suite. Resulted pseudorandom bit stream claimed to have good statistical 

 properties when P is large (between 75 to 5000).  

 

 Key space size is another aspect which is always looked when analyzing any of 

 the PRNG. For henon map values α , β , X0 , y0 and sampling value P together 
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 make the key and key space size for 32 bits and 64 bits sequence the writer found 

 it 97 and 217 respectively. 

 

 3.3.2 Chebyshev Polynomial and Tinkerbell Map  

 In [6] Borislav Stoyanov combined Chebyshev Polynomial and Tinkerbell Map (a 

 type of chaotic map) to generate pseudorandom numbers.  

Tn(x) = 2xTn-1(x) – Tn-2(x) Chebyshev Polynomial 

    

   ym+1 = y2
m – z2

m + aym + bzm 

   zm+1 = 2ymzm + cym + dzm Tinkerbell Map 

 

 Where a = 0.9, b = - 0.6013, c = 2.0 and d = 0.50. 

  

 Initial values of x0 and k of Chebyshev equation and x0 and y0 of Tinkerbell Map 

 are determined with bit stream length L. Both Chebyshev and Tinkerbell are 

 iterated L1 and L2 times respectively, two decimal fractions for xn and ym are 

 obtained to get bitstreams Si and Sj by taking mod 2. Both Si and Sj are XORed 

to get single bit Sk and this process before XORing is repeated till the time L bit 

stream is obtained with initial conditions; 

 

  x0 = - 0.16029381194009314, k = 2.89, y0 = -0.645622309652631,  

 z0 = - 0.742799703451115, L1 = 100, and L2 = 200. 

  

 Analysis of the proposed scheme was done by using NIST, DIEHARD and ENT 

 tests. For NIST test 1000000 bits consisting of 1000 sequences were generated 

 and all results for these bits were passed and p-value for entropy was 0.446556. 

 

 

 3.3.3 Quantum Logistic Map 

 In 2014 Akhshani et al generated PRNs using quantum logistic map which was 

 presented by Goggin et al in 1940 [7]. Many researchers worked on introduction 

 of noise into quantum systems including dissipation. to study the effects of 
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 correlation more precisely the quantum correlation on a dissipative system, 

 Goggin et al started with Hamiltonian of kicked quantum system (related to 

 kicked rotors which are prototype models for quantum chaos) coupled to a bath. 

 The system is defined by following equations. 

   xn+1 = r(xn - |xn|2) - ryn 

yn+1 = -yne -2β + e -β r[(2 - xn - xn*)yn - xn zn* - xn* zn ] 

   zn+1 = -zne -2β + e -β r[2(1 - xn*)zn - 2xn yn - xn ] 

 where x = <a> (where (a) is annihilation operator), the effects of quantum 

 correction were introduced by a = <a> + δa where δa is quantum fluctuation by 

 <a>. y = < δa† δa> and z = < δa δa> where a† is boson creation. the β is 

 dissipation parameter and x * and z* are complex conjugates of x and z. Range of 

r is between 0 – 4 and β selected from 6 - ∞. 

 

 To check the degree of non-periodicity Akhshani et al use scale index as it is 

 known that for highly non – periodic signal this index will be closer to 1. And 

observed that when r = 3.99 and β ≥ 6 the scale index becomes max almost = 0.7 

and with these parameters the state is highly  non – periodic and can be used to 

generate pseudorandom numbers using quantum chaotic map. While scale index 

for Henon map was 0.51. 

 

 For quantum map Akhshani et al used different randomness testing suites 

 including NIST, DIEHARD, ENT and TestU01. As entropy represents the 

 amount of randomness in the sequence and for quantum map its p-value is 

 0.350485. 

 

 To determine the key space of quantum map, bifurcation diagram is used with 

 parameters as: 

 x = 0.62352345, y = 0.0152345, z = 0.0352345, r = 3.99 and β = 10 

 For robust keys the filled region of bifurcation diagram after 4th periodic window 

 is best suited as it does not contain periodic windows as shown if Fig. 3.2 and key 

 space is 2236 which is  secure against brute force attack. 
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Fig 3.2. Bifurcation diagram for quantum map [7] 

 

 The authors also proved that their proposed algorithm is highly resistive to 

 differential attack and ideal value for SAD is 2/3 (0.6667) and resulted value is 

1/3 (0.33334) and highly resistive to differential attack. 

 

 As far as analysis of speed of algorithm is concerned the mean speed proved to 

 be 837.05 Mbits/sec on Intel Core i5 – 2467 M CPU at 1.6 GHz  with 4GB 

 running on Microsoft windows 8 professional using Microsoft C++ ultimate 

 compiler. Proposed algorithm is fast as number of multiplications in 

 algorithm per byte are 5 and cycles required for each random number generated 

 are 180. 

 

 3.3.4 Chaotic Map using Linear Feedback Register 

 In [8] Ana Cristina DASCALESCU et al. proposed a new discrete chaotic 

 dynamical system to generate PRNG using linear feedback register to address the 

 issues like predictability and choice of improper or limited range of control 

 parameters. Defined Chaotic model was as following: 

xn+1 = h (f(xn)) 

f(x) = arcos (sin(rx) + r2cos(rx)) / 1 + r2 

 To investigate the dynamic behavior of proposed  chaotic system, Lyapunov 

exponent, fractal structure and bifurcation diagram was used. Lyapunov exponent 

for the proposed scheme, indicating is positive exponent in the map starting from 

r ≥ 5.5, hence showing chaotic behavior. 

  

 While doing the analysis of proposed scheme before doing randomness test, they 

 discussed the key space and claimed as 22144 ≈ 2.56 x 10645 . The key consists of 

 33 real numbers as initial value and 32 control parameters, and an unsigned 
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 integer. Some statistical tests showed that mean value appeared to be 127.4688 

 (almost equal to ideal value of 128), and high values of standard deviation 

 (73.9037) and variance (5461.8) shows wide spread of bytes over the complete 

 range {0, 1,.., 255}. Entropy is also ideal (7.9998), while the skewness               

 (-0.0000961) close to zero shows symmetric distribution of values over the mean. 

 Excess Kurtosis is used to determine the peak behavior, in this map the negative 

 value ( -1.2003) shows flatter peak around the mean.  

 

 For randomness NIST suite  was used and entropy was measured as 0.863690.

 Proposed algorithm was implemented in C language and run on windows 8.1 

 using Intel core i3 @2.53 GHz CPU speed with 4 GB RAM and speed was 29.12 

 MB/sec which is very low as compared to quantum map as discussed previously. 

 

 3.3.5 Billiard Map 

 Khalid Sharif et al proposed a new type of PRNG using billiard map which is also 

 a form of chaotic systems [9]. Billiard map is also known as Sinai Billiard as 

 developed by Sinai in 1970. In billiards where a particle moves with constant 

 velocity and hits the border of billiard, reflected particle has same reflected angle 

 as incident angle according to law. These angles and positions of particle are used 

 by the authors as random variables to generate a new PRNG. They took two 

 particles moving in Sinai Billiard and calculated their angles as I0,1 and I0,2. 

 

 These (I0,1 and I0,2 ) are used to generate output bit of PRNG as Si = Ii,1 ⊕ Ii,2

 and S output of PRNG is concatenation of all sub bits ( S1,S2, …..).

 According to researchers to calculate initial angles or conditions 128 bits are 

 required which are taken from password Pw through a pointer, hence 128 bits are 

 enough to define Key Space to guard against the exhaustive search attack. They 

 also calculated Hamming distance of key and turned out to be 0.5 which is ideal 

 and shows small change in initial condition will have greater effect overall. 

 For Randomness they used NIST standard and all results were successful with 

 entropy 0.851383. 
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3.4 PRNGs other than Chaotic Maps 

There are several other PRNGs which are either based on any cryptographic primitive or 

has other design structures not based upon chaotic maps. Although there are different 

chaotic maps other than discussed in section 3.3 which are used for PRNGs or with same 

chaotic map implementation method is improvised to generate maximum sequence in less 

time with randomness properties, like in [38] researchers utilized S-Box with logistic 

map to increase the entropy (0.74287) and 15852 bits per second as max speed. 

Xoroshiro 128+ is latest proposed PRNG and considered to be the speediest PRNG with 

low memory (128 bits). 

 

Type of 
Generator 

Year of 
Publish 

Underlying Hard 
Problem 

Period Key Bits n Speed 

Xoroshiro 128+ 2016 Improvised Xorshift 2n  -1 128 1.2 nanosec / 
64 bit number 

Xorshift 2003 Linear feedback Shift 
Register 

2n  - 1 64 & 128 1 billion 
numbers in 32 
secs 

Well 
equidistributed 
Long – period 
Linear (WELL)  

2006 Linear recurrences 
mod 2 

2n  - 1 512,607, 
800, 
1024……44
497 

109 numbers 
in 35.8 secs 
for 512 

RC4 1987 RSA 2n  - 1 40  - 2048 7 cycles per 
byte 

Park – Miller 
Random number 
generator 

1988 
2009(chan) 

Linear congruential 
generator 

2n  - 1 31  

Multiply – with 
– carry 

1991 Arithmetic Mod 260 to 
22000000 

15 – 512  

Mersenne 
Twister 

1997 Linear Feedback 
Shift register 32 bits 

219937−1 19937 4.7 ms for 
5×107 random 
32-bit integers 

Yarrow 2012 Hash Function and 
Triple DES 

 160 bits  

Blum Blum 
Shub 

1992 Prime Factorisation  92 bits  

ISAAC 1993 Steam Cipher  2466  
Lagged 
Fibonacci 
generators 

2009 LCG (Fibonacci 
Sequence) 

(2k - 
1)*2M-3 

2 2300000 

  

Table 3.1 Different Pseudorandom Generators other than Chaos Based 
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3.5 Conclusion 

A lot of work has been done in Chaotic Pseudorandom Number Generation and different 

maps are suggested by the researcher for PRNG. Researchers have also used latest tools 

to identify the robustness and security of the proposed schemes. As entropy gives the 

uncertainty of outcome and for randomness this should be high. Although Billiard map 

and chaotic map using Linear feedback shift register give high entropy rates as compared 

to Quantum map and Chebyshev map but, earlier are continuous chaotic maps which are 

efficient but not secure against algebraic attacks as compared to discrete chaotic maps. As 

compared to PRNGs designed other than chaotic maps are having long period and 

efficient bit generation rate, however if chaotic maps are also based on same design like 

in section 3.3.4 chaotic map is proposed using linear feedback shift register with high 

entropy rate and having key space 22144 generating 29 Mbits/sec then effective length of 

sequences can be generated in efficient manner. 
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Chapter 4 
 

Framework for Analysis of Chaotic Maps 

4.1 Introduction  

Over the period researchers worked for finding the best tests for analysis of 

pseudorandom numbers, generated through different algorithms. Some of these were 

discussed in the previous chapter and NIST standard SP800-22 has been developed for 

checking the randomness with 15 different tests. However, as far as chaotic random 

number generators are concerned before testing the randomness of the numbers 

generated, it is more important to find the perfect initial conditions from where a chaotic 

map enters the chaotic region.  

In this chapter we will see what properties or tests define the chaotic region and how they 

are determined. Although these tests never been included in any testing standard, but the 

proposed chaotic random number generators have been using these tests to verify the 

initial conditions to increase the efficiency of the functions. Analysis includes Lyapunov 

Exponent, bifurcation diagram and phase diagrams. 

 

4.2 Chaotic Region Determination [11] 

 4.2.1 Lyapunov Exponent   

 A logistic map exhibits aperiodic orbit, but when this map enters chaotic region 

 that is required to be determined. A chaotic map is always sensitive to initial 

 conditions and dependence to initial condition is defined by Lyapunov exponent 

 as LE shows three properties i.e; stable, periodic and chaotic. Sensitive 

 dependence is quantified by defining the Lyapunov exponent for a chaotic map, 

 hence it can be said that LE is quantitative measure of chaos in a system. Let’s 

 consider a one-dimensional chaotic equation with initial condition x0 and having 

 nearby point as x0 + δ0. δn be the separation after n iterations. if | δn | = | δ0 | e
nλ

 then λ is called Lyapunov exponent. λ will be positive for chaotic maps and 

 and negative for fixed points and cycles. It can also be defined as following: 

                                               N 

λ(x0) = Lim N → ∞ (1/N ∑ ln | f ‘ (xn) | 

                                            n = 1 
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 Like in the feedback shift register chaotic mapping the Lyapunov exponent is 

 plotted as shown in Fig. 4.1, where it can be seen when r≥ 5.5 it enters chaotic 

 region. 

 

Fig. 4.1 Lyapunov Exponent [8] 

 4.2.2 Bifurcation Diagram 

 As we see LE gives us quantitative measure of chaos while the bifurcation 

 diagram is qualitative measure or analysis of chaotic systems, since qualitative 

 changes in dynamics is known as bifurcation. Chaotic systems are sensitive to 

 initial conditions, so the initial conditions or parameters bring changes to the 

 system and known as bifurcation points.  

  

Saddle – Node Bifurcation. This is the fundamental type of bifurcation, which 

 deals with the creation and destruction of fixed points. With the change in 

 parameters two fixed points (stable and unstable) move towards each other and 

 mutually annihilate after collision. Let’s consider as system with following 

 equation:  

 It generates three different graphs depending upon the value of r (positive, 

 negative or zero), as shown in Fig 4.2. 
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Fig 4.2 Saddle Node Bifurcation [11] 

 when r < 0 and approaches 0 from below the two fixed points move towards each 

 other (Fig 4.2a) and when r = 0 then two points coalesce each other and becomes 

 half stable fixed point at x’ = 0 (Fig 4.2b). When r>0 the fixed point vanishes and 

 there are no fixed points now, so bifurcation occurred at r = 0. 

 

 Transcritical Bifurcation. There are some systems in which fixed points should 

 exist and never vanished for all values of parameter or initial conditions, such as 

 Logistic equation. The stability of fixed points may vary with change in 

 parameters. transcritical bifurcation is known as standard method for such 

 stability changes. Normal form of transcritical bifurcation is given by equation: 

     

 It is like a logistic equation allowing x and r to be positive and negative both, 

 giving plot as Fig 4.3 depending upon the value of r. 

 

Fig 4.3 Transcritical Bifurcation [11] 
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 It can be seen in the Fig 4.3 above that for all values of r there exists fixed point at 

 x’ = 0. There is unstable fixed point when r<0 at x’ = r and when value of r 

 increases the unstable point moves towards origin when r = 0. when r>0 the origin 

 becomes unstable and the point at x’ = r becomes stable. This phenomenon is also 

 known as exchange of stabilities. 

 

 So, with these two forms we can conclude that in saddle node point the fixed 

 point is destroyed while in transcritical bifurcation the point never disappears 

 after bifurcation, but switches stabilities. There is also another form of bifurcation 

 known as pitchfork bifurcation used for physical problems having symmetry. This 

 bifurcation is for one dimensional system when we shift to 2D then saddle- node 

 point bifurcation exhibits a ghost after annihilation which effects afterwards also. 

 Fig 4.4 describes same behavior for the equation: 

     
 

      

 

Fig. 4.4 Pitchfork Bifurcation [11] 

 Bifurcation diagram for the simple Lorenz Equation is given by Fig 4.5. 

 

Fig. 4.5 Bifurcation Diagram [11] 
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 From Fig 4.5 qualitative measures are achieved showing best values for parameter 

 r. It is also visible that there exist periodic windows in the plot for r > r∞. At r = 

 3.8284 the third periodic window starts, which is the basically saddle node 

 bifurcation and known as tangent bifurcation and fixed points are annihilated but 

 still presence of ghost is there. But as we move down to chaotic region the hills 

 and valleys move down and up ad curve is pulled away from diagonal. So, 

 through bifurcation diagram we find quality of chaotic region. 

 

4.3 Improvised Chaotic Map to Enhance Properties 

We have seen analysis of Chaotic maps both quantitatively and qualitatively, but still 

there is choice of algorithm which enhances the properties of these maps. Such map was 

discussed by Machicao and Bruno in [10] and named as k – logistic map. Let’s consider a 

logistic map with equation  , where  and t 

is discrete time step. Fig.3.6 shows the time evolution of k - logistic map having t = 100 

iterations with orbits from k0 to k4 . Lyapunov exponent shows three stability behaviors as 

chaotic, periodic and stable.  

 

In Fig. 4.6(a)   , Fig. 4.6(b)  and Fig. 4.6(c)   

 

Figure 4.6. Time-evolution of two orbits with close initial conditions x0 = 0.4587525281 

(solid line) and x’0 = 0.4587525282 (dotted line) [10] 
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They defined a length of decimals to be picked for algorithm as L and further defined a k 

value for the decimal values to be left after decimal point and to make the length as equal 

to L rest of the sequence is padded with 0. So k0 means no figure will be left after 

decimal point and k4 means value after decimal point will be picked after three figures; if 

x = 0.457525281 then it is also equal to k0 but having L = 6 means it will be 0.457525 

where as k4 will be 0.525281 for L = 6. So, making algorithm flexible and having choice 

of value as moving from k0 to k4 it can be seen from figure 4a that number of iterations 

are reduced where two different values diverge from 31 to 17.  

 Upon further analysis it revealed with bifurcation diagram Fig 4.7. that zigzag 

behavior almost vanished at k4 and patterns are more filled as ‘k’ increases. 

 

Fig 4.7. Bifurcation Diagram and Zig Zap plot for k – logistic map [10] 

 

Lyapunov exponent for same also shows that chaotic region value for k1, k2, k3 and k4 

are well above k0. Fig 4.8. 
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Fig 4.8. Lyapunov Exponent plot for k – logistic map [10] 

4.4 Conclusion 

After defining the framework to analyze the chaotic maps quantitatively and qualitatively 

chaos can be defined as “ a long term aperiodic behavior”, because there are trajectories 

which do not settle to a fixed point, periodic orbit, or bits as t→ ∞, and it is also 

“deterministic”, because the system does not have any random or noisy inputs or 

parameters, and “sensitive to initial conditions”, since nearby trajectories diverge 

exponentially very fast having positive LE. It also gives choice of algorithm for 

implementation giving major advantage over other PRNGs having one fixed algorithm 

with defined period. 
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Chapter 5 
 

Cryptographic Properties of Chaotic Maps 

5.1 Introduction  

Although Chaotic based cryptography gives advantage of ergodicity, sensitive to initial 

conditions and choice of algorithms too, but as per Kirchhoff’s principle the security of 

any algorithm is basically the key and it does not depend on the hidden schemes or 

algorithms. These maps are iterative and give property of rounds as in symmetric 

encryption but result in slow speed. Hence for analysis of cryptographic properties of 

these chaotic maps these two features; i.e. speed and key space, must be determined. In 

chapter 2 many chaotic maps are discussed with their speed and key space and chapter 3 

describes the framework for analysis of these maps and variation in implementation one 

can have by varying the decimal places. In this chapter the focus will be to analyze the 

cryptographic properties (speed and key space) of chaotic maps using same framework 

and methods discussed in earlier chapters to generate a random sequence using chaotic 

maps. 

5.2 Speed of Chaotic Maps 

Chaotic maps are iterative functions to generate desired sequence having randomness. 

These iterations make the algorithm slow, especially when using floating point numbers. 

Arithmetic operations on floating point has always been time consuming and expensive 

as a 64-bit processor uses 6 times more clocks as compared to same operation on integers 

[12]. IEEE 754 defines arithmetic formats, interchange formats, rounding rules, 

operations and exception handling for processors and was revised in July 2019 as IEEE 

754-2019 [13]. According to these rules number representation cannot be infinite and 

there are rules for rounding off the decimal points. Since chaotic maps are sensitive to 

initial condition hence small change in number representation and rounding off rules 

makes huge change in results. In [14] Pisarchik et al showed when mean squared error 

computed on two different processors, using logistic map as in Fig 5.1. After 30 iterations 

there is nothing common in both calculations. Any message longer than 30 bits which is 

very less in practical will not be decrypted at other end. However, if at all the processors 

produce same sequence then different software implementation would result into 

different floating-point number representation. Hence to implement chaotic crypto 
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systems identical implementation engines are required at both ends, which reduces 

flexibility of implementation.  

 

 

Fig 5.1 Mean Squared Error between two 32 - bit different processors [14] 

 

5.3 Key Space 

For n – bit crypto scheme we can have 2n  keys with period 2n – 1. But as we have seen 

earlier chaotic maps exhibits periodic windows, due to which this formula is not 

applicable to it. For calculating the key space of chaotic maps, formula being used is 

known as Shannon seminal formula and defined as: 

Dks = log2 (Nv – 1.5 Npw) 

Where Nv are the number of points within in chaotic region and Npw are points in periodic 

windows which is multiplied by security factor 1.5. In [14] the researcher calculated key 

space of logistic map while varying the decimal points of value of x by number of digits 

5, 6, 7, and 8, using chaotic region between 3.57 – 4 and key space came out to be 15, 18, 

21 and 25 bits respectively.  

But on analysis of logistic map, it shows that there exist periodic windows in between 

3.57 and 4. It can be analyzed if both Lyapunov and Bifurcation diagrams are mapped 

together as in Fig 5.2. There are three periodic windows and largest one with negative 

Lyapunov exponent is in between 3.83 and 3.85. 
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Fig. 5.2 Lyapunov and Bifurcation Diagrams of Logistic Map 

 

Although Fig. 5.2 does not give exact values for periodic windows but gives idea of 

starting and ending region. In order to find the exact values, there is method of coweb 

plotting for one dimensional map. A coweb plot showing inward spiral means stable 

fixed point (Fig. 5.3) for r = 1.5 since abs (2 - r) <1 , while an outward one shows 

unstable fixed point.  
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Fig. 5.3 Stable Fixed Point 

First period doubling starts at r = 3 and can be seen in Fig. 5.4(a) with rectangle. While a 

chaotic orbit shows filled out area, having infinite number of non-repeating values as 

depicted in Fig 5.4 (b). 

 

Fig. 5.4a. Period 2 at r = 3 
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Fig. 5.4b. Chaotic Region for Logistic Map at r = 3.6 

After r = 3.57 the periodic window starts at 3.83 as shown in Fig. 5.5(a) and next chaotic 

region starts at 3.85 Fig. 5.5(b). 

 

Fig. 5.5a. r = 3.83 
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Fig. 5.5b. r = 3.85 

Key space for the region (r = 3.57 – 3.83) is calculated using the MATLAB code, by not 

only varying the decimal points of x but also the control parameter r using Intel 1.61 GHz 

64 – bit processor for chaotic region as 3.57 – 3.83. Results are in Table 5.1. 

 

The results show that after reducing value of r (3.57 – 3.83) there is hardly any difference 

in number of bits between the values of given in [14] and Table 5.1. Reason for this is 

that in [14] the effective value of r is (3.57 – 3.97) as it is calculated to 1 decimal point of 

r and software calculates it till 3.97. However, with increase in number of decimal points 

whether in x or in r the key space increases. But with increase in number of decimal 

points of r the effective utilization of whole region is also increased, resulting in 

increased key space. But at the same time the calculation time increases with increase in 

number of decimal points. However at r = 4 maximum points are achieved in logistic 

equation hence if we calculate number points with 5 decimal places of x and 1 decimal 

place of r between region 3.9 – 4 then 12042 points are generated giving 13.55 bits key 

length and with 2 decimal places of r it comes out to be 16.38 bits hardly making 1 bit 

difference for the same number of decimal points as calculated in Table 5.1. 
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Table 5.1 – Key Space Calculation of Logistic Map By varying decimal places of x and r 

 

On further analysis of LE diagram with increasing decimal points of r it is very much 

obvious that the periodic behavior increases with increase in decimal points of r. Like the 

highly chaotic region of logistic map is considered from 3.9 – 4. If the two decimal places 

are taken for r then LE diagram appears as in Fig 5.6 with all positive LE values. 

 

Fig. 5.6 LE Diagram for r = 3.9 to 4 with difference of two decimal places 

 

x(decimal points) r(decimal point) Total Points generated Key Bits Time taken 
(secs) 

5 1(3.77) 30001 14.87 0.55 
6 1(3.77) 269921 18.04 0.656 

7 1(3.77) 2259900 21.11 2.555 

8 1(3.77) 30000001 24 34.646 

5 2(3.83) 252031 17.94 0.8 

6 2(3.83) 2603731 21.31 3.154 

7 2(3.83) 25064462 24.57 22.106 

8 2(3.83) 260388999 27.95 1023 

5 3(3.83) 2437674 21.21 2.819 

6 3(3.83) 24291544 24.5 21.098 

7 3(3.83) 247908143 27.8 1284.394 
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On increasing the decimal places from 2 to 3 there exists 2 periodic windows giving 

negative LE values as shown in Fig 5.7. 

 

Fig. 5.7 LE Diagram for r = 3.9 to 4 with difference of three decimal places 

With increase in decimal places of r the periodic windows increase as for four decimal 

places the number of negative values of LE increases to 10 (Fig 5.8). Hence it can be 

deduced that increase in decimal places increases number of points but at same time there 

are periodic behaviors which can be observed by LE diagram. So, for control parameter 

‘r’ of logistic map the effective value to be varied is up to two decimal places. 

 

Fig. 5.8 LE Diagram for r = 3.9 to 4 with difference of three decimal places 
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If whole chaotic region is required to be used for logistic map, then ‘r’ to be varied with 1 

decimal point then LE for whole region remains positive as shown in Fig 5.9 

 

Fig 5.9 For complete chaotic region with r = 3.57 – 4 with 1 decimal place 

 

Another interesting and secured implementation of chaotic map is to use transient value 

of initial point (x0) instead of chosen initial value with desired number of iterations. For 

example, with initial condition x0 = 0.5 after 500 iterations before generating the desired 

sequence the value of x0 becomes 0.7630 when r ranges between 3.9 – 4, and after 100 

iterations 0.3236 also changing the key length. After 1000 iterations transient value 

becomes 0.0701 with a greater number of points (85658 to 85901) for r varying 2 decimal 

places from 3.9 – 4. So, if at all initial value of x is known to adversary the right sequence 

cannot be generated till the time number of iterations are unknown and securely 

communicated between encrypting and decrypting party. So, with same initial condition 

for different sessions the key can be generated with hidden number of iterations for each 

session. 

 

5.4 Analysis 

Results given in section 5.3 show that key space can be defined for the chaotic region 

based upon number of variables, the number of control parameters and the number of 

values it can take. So, for a complete chaotic region of logistic map from 3.9 – 4 there 
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will be 100 places where different points of x can be calculated. As there is one variable 

and one control parameter the key space for this region would be 102 x 102 (i.e; 10000), 

taking log2(10000) comes out to be 13.28 bits. For any cryptographic primitive if chaotic 

maps are used, for initial key agreement the initial values of variables are transmitted in 

plaintext, hence it will further reduce the key space as in discussed case it would be 100 

resulting into 6.64 bits only. For brute force attack the space becomes narrow and easier 

for exhaustive search. However, for 1 decimal place of control parameter whole region 

produces positive LE hence key size will be 10x10 (6.64 bits).  

 

The orbit length can be determined by using formula [39] 2ᵋL 
where ℇ is distance 

between two neighboring points and ℇ ≥ 2n for integers and ℇ = 2-n(x) for real numbers 

[40].  and L is the word size (the precision). Cycle n of any chaotic map is given by n ≤ 

2
L 

, however if transient value for initial condition is used then and transient length is l 

then cycle will be l + n.   

Experimented results for logistic map with different initial conditions and different values 

of control parameter ‘r’, generated points with different precision level are tabulated as 

Table 5.2 for 10,000 iterations. From calculated orbit lengths no, specific formula can be 

applied for calculating the orbit cycle of any chaotic map. orbit length of any chaotic map 

depends upon the its construction and structure of function, control parameters and initial 

conditions with precision level. However, it is fact that with increase in decimal point 

correction the key space increases as shown in Table. 5.1.   

Initial 
Value of 

x 

Value of 
r 

Precision 
(decimal 

place) 

Number 
of points 

Orbit 
Length 

Precision 
(decimal 

place) 

Number 
of 

points 

Orbit 
Length 

0.1 3.57 1 10,000 Unknown 2 10,000 Unknown 

0.2 3.57 1 10,000 Unknown 2 10,000 Unknown 

0.3 3.57 1 8 8 2 10,000 Unknown 

0.4 3.57 1 2 2 2 10,000 Unknown 

0.5 3.57 1 4 4 2 32 32 

0.6 3.57 1 10 10 2 10,000 Unknown 

0.7 3.57 1 1 1 2 10,000 Unknown 

0.8 3.57 1 2 2 2 12 12 

0.9 3.57 1 4 4 2 22 22 

0.1 3.57 3 10,000 Unknown 4 10,000 Unknown 

0.2 3.57 3 10,000 Unknown 4 10,000 Unknown 

0.3 3.57 3 10,000 Unknown 4 10,000 Unknown 
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0.4 3.57 3 10,000 Unknown 4 10,000 Unknown 

0.5 3.57 3 224 224 4 5536 5536 

0.6 3.57 3 10,000 Unknown 4 10,000 Unknown 

0.7 3.57 3 10,000 Unknown 4 10,000 Unknown 

0.8 3.57 3 10,000 Unknown 4 10,000 Unknown 

0.9 3.57 3 10,000 Unknown 4 10,000 Unknown 

        

0.1 3.67 1 10,000 Unknown 2 10,000 Unknown 

0.2 3.67 1 6 6 2 10,000 Unknown 

0.3 3.67 1 6 6 2 26 26 

0.4 3.67 1 2 2 2 18 18 

0.5 3.67 1 18 18 2 38 38 

0.6 3.67 1 14 14 2 16 16 

0.7 3.67 1 1 1 2 100 100 

0.8 3.67 1 2 2 2 28 28 

0.9 3.67 1 2 2 2 4 4 

0.1 3.67 3 10,000 Unknown 4 10,000 Unknown 

0.2 3.67 3 10,000 Unknown 4 10,000 Unknown 

0.3 3.67 3 52 52 4 2960 2960 

0.4 3.67 3 132 132 4 2600 2600 

0.5 3.67 3 162 162 4 6988 5536 

0.6 3.67 3 357 357 4 4412 4412 

0.7 3.67 3 126 126 4 4156 4156 

0.8 3.67 3 478 478 4 2384 2384 

0.9 3.67 3 22 22 4 322 322 

        

0.1 3.78 1 2 2 2 10,000 Unknown 

0.2 3.78 1 8 8 2 2 2 

0.3 3.78 1 4 4 2 8 8 

0.4 3.78 1 2 2 2 35 35 

0.5 3.78 1 2 2 2 28 28 

0.6 3.78 1 4 4 2 54 54 

0.7 3.78 1 1 1 2 24 24 

0.8 3.78 1 4 4 2 160 160 

0.9 3.78 1 2 2 2 7 7 

0.1 3.78 3 10,000 Unknown 4 10,000 Unknown 

0.2 3.78 3 278 278 4 539 539 

0.3 3.78 3 570 570 4 8224 8224 

0.4 3.78 3 1566 1566 4 4374 4374 

0.5 3.78 3 605 605 4 7399 7399 

0.6 3.78 3 54 54 4 769 769 

0.7 3.78 3 823 823 4 823 823 

0.8 3.78 3 357 357 4 1665 1665 

0.9 3.78 3 92 92 4 1511 1511 

        

0.1 3.97 1 7 7 2 11 11 

0.2 3.97 1 3 3 2 103 103 
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0.3 3.97 1 5 5 2 13 13 

0.4 3.97 1 6 6 2 15 15 

0.5 3.97 1 4 4 2 108 108 

0.6 3.97 1 3 3 2 50 50 

0.7 3.97 1 6 6 2 241 241 

0.8 3.97 1 4 4 2 22 22 

0.9 3.97 1 2 2 2 13 13 

0.1 3.97 3 587 587 4 588 588 

0.2 3.97 3 445 445 4 550 550 

0.3 3.97 3 775 775 4 1175 1175 

0.4 3.97 3 753 753 4 1261 1261 

0.5 3.97 3 268 268 4 4470 4470 

0.6 3.97 3 50 50 4 1700 1700 

0.7 3.97 3 358 358 4 6685 6685 

0.8 3.97 3 599 599 4 10,000 Unknown 

0.9 3.97 3 662 662 4 5840 5840 

Table 5.2 Different Cycles for Logistic Maps 

Other aspect which effects entropy and ultimately randomness of bit sequence is 

algorithm for generating bits stream from generated real numbers. For calculating bits 

stream two methods are applied for generating 10,000 random numbers with initial 

condition of x = 0.1 with precision upto 5 decimal places for chaotic region of logistic 

map (3.57 – 4) with step of 0.1. Total outputs generated are 421,028 and first 10,000 

numbers were picked for random number generation. 

 

Method1. The output value is compared with a threshold value set to 0.5. 

if  xn+1 > 0.5  then output bit is 1 

if  xn+1 < 0.5  then output bit is 0 

The output stream was stored in .txt file and approx. entropy calculated using NIST suite 

for randomness tester by taking block size ‘8’ recommended by NIST tool (log2n) where 

n is length of bits stream (10,000). Calculated Approx. Entropy for this method is 0.1141 

and total time for calculation of generated sequence including bit conversion is 0.504 

secs. 

 

Method2. The output value is converted to integer for first decimal place and then by 

taking mod 2 the bit decided either to be 0 or 1 . 

Entropy for this method is 0.0604 and total time for calculation of generated sequence 

including bit conversion is 479 secs ≈ 8 mins. 
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From results of both methods it is obvious that selection of algorithm for generating bit 

stream also has effect on speed and randomness, so balance in between should be 

maintained for effective randomness and robustness.  

 

There are many advantages of chaos-based cryptography and certain limitations too 

which are discussed as under: 

5.4.1 Advantages of Chaos-Based Cryptography 

Chaos based cryptography has many advantages over traditional cryptography, 

which are discussed in this section as per given analysis. 

 

There are many types of chaotic functions with different key space. The 

developers can use these functions for different cryptographic purposes as per 

key space available. These purposes could be generation of nonce (using chaotic 

maps with small key space), creation of cryptographic keys with chaotic maps 

having more than 128 bits key space.  

 

Another advantage which these maps provide is choice of algorithm which can 

be used for creation of random numbers based upon the selection of decimal 

points for initial conditions of variables and criteria for bit generation. As many 

image encryption schemes use number of pixels as modulus value to convert the 

decimal points into integers and then the binary representation of these integers 

is XORed with images to encrypt the image. In symmetric encryption the easiest 

way to generate sequence from these decimal values is to compare current 

number with previous number and decide bit value as 1 or 0 based upon greater 

or smaller. There are certain algorithms which use a threshold value to generate 

the bit sequence also. Improvised chaotic map discussed in section 4.3 is one of 

the examples for choice of algorithm and discussed methods in analysis part are 

two examples how entropy changes with change in algorithm. 

 

The chaotic maps mostly used are Iterative in nature. In block ciphers different 

number of rounds are used for key scheduling. Hence, if these maps used in 
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symmetric encryption can provide characteristics of rounds for key scheduling 

being iterative in nature. 

 

Ergodicity is main property of chaotic maps, which means for any input the 

output has same distribution, this is same as confusion in cryptographic 

schemes. 

 

Chaotic maps also exhibit property of diffusion as they are sensitive to initial 

conditions and minor change in initial values results in different outputs. Section 

4.3 Fig 4.6(a) shows the same results for two different values of x, as x0 = 

0.4587525281 and x’0 = 0.4587525282. 

 

Pseudorandom generator’s security lies with its secure initial conditions. In 

chaotic maps it is achieved through generating transient value through different 

number of iterations, if at all attacker gets the initial value at receiver or 

transmitter end, however she cannot generate the right sequence till the time she 

can get that transient value. This transient value also increases the entropy of the 

pseudorandom number generator. 

 

Different chaotic maps can also be grouped together for high dimensional maps 

to increase the key space. Like 1D logistic map can be grouped with 2D henon 

map to define a new chaotic system using properties of both maps to generate 

3D map with increased key space. 

 

Chaotic maps are deterministic not probabilistic, this property also required in 

encryption systems, so that encryption and decryption can be done at both ends. 

 

5.4.2 Limitations of Chaos-Based Cryptography 

Although chaos – based cryptography has many advantages but there are certain 

limitations which do not suit practical implementation of these schemes. 
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Since these maps are iterative in nature hence very slow in computing the 

desired sequence. As seen in Table 5.1 with the increase in key length the time 

taken for calculation increases. Another reason for slow calculation is arithmetic 

operation over floating points, which increases number of clocks per operation 

as compared to integers.  

 

As discussed in section 5.2 different types of processors generate different 

sequence for same input. Hence any cryptographic application of chaotic maps 

will produce wrong results at either end (Sender or Receiver).  

 

Due to floating point arithmetic hardware implementation is also not suited 

because it requires huge resources and latency. 

 

Discretization of values to a certain precision level decreases the behavior of 

dynamic systems. Chaotic maps are chaotic in nature and for calculations on 

computers they must be discretized to carry out with further calculations. 

 

Another issue with chaotic maps is low key space. Although these maps exhibit 

aperiodic behavior but contain periodic orbits. To remain in chaotic region and 

one should not recognize the repeating pattern of attractor, well- experimented 

and analyzed values of control parameters are required to be selected. Hence 

control parameters define the region for chaos, and these control parameters 

alongwith variables define the key space. But with the reduction of periodic 

windows and correct selection of control parameters (with positive LE) key 

space reduces. When these schemes are tested under scenario with adversary 

then initial conditions of variable will also required to be excluded from key 

space if no transition algorithm mutually agreed upon between sender and 

receiver. 

 

Increase in complexity of algorithm for bit generation increases the time taken 

for calculation. As conversion of real numbers to integers and then further 

conversion into bits stream require additional cycles to produce output.  
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5.5 Design Criterion for Chaos – Based Cryptography 

After analyzing the cryptographic properties of chaotic maps and comparing some 

PRNGs some design criterion for chaos – based cryptography can be deduced. 

 

Chaotic – Maps are not Cryptographic Primitive. Chaotic maps do not provide any 

cryptographic scheme building criteria. These can be used as PRNGs having good 

randomness properties. These PRNGs can further be utilized as nonce or key creation for 

different cryptographic primitives. 

 

Real implementation should not degrade Chaotic properties. When chaotic maps are 

practically implemented then they lose their properties like aperiodic behavior against 

non - appropriate control parameters and initial conditions. Hence proper selection of 

discretization method tested against all worst scenario should be done before 

implementation. 

 

Balance between Security and Speed. Chaotic functions are not only iterative but also 

involve arithmetic calculations of floating-point numbers. Hence while designing the 

chaotic schemes balances between currently available resources and security should be 

analyzed. Although increase in decimal points increases the key space but at same time 

become inefficient by consuming too much power and memory resources. 

 

Key Space should be defined for a Specific Chaotic Implementation. Analysis part 

shows key space for effective chaotic region is reduced when optimization techniques are 

applied and does not produce that much of key length as defined for whole region for any 

proposed chaotic map. For current cryptography the security lies in public algorithm with 

computationally infeasible key space. With unknown key space it is never assumed that 

the cryptographic scheme is secure and there are always chances that adversary with 

higher resources can exploit the scheme. Hence while proposing any chaotic scheme 

effective key space should be defined against all parameters. 
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Correct Selection of values of Control Parameters and Initial Conditions. Before 

suggesting any chaos-based scheme all values of control parameters and initial conditions 

(précised values) should be checked for defining the effective key space. Maximum 

effective key space to be defined for the region which gives positive LE. 

 

Attacks Resistant. Suggested schemes should test again all types of attacks from easier 

to difficult level. Even attacks with low complexity succeed although the scheme proved 

to be secure against very difficult and heavy attacks. Since chaotic maps do not define 

any primitive of cryptography and always implemented with some underlying primitive, 

hence all attacks against that primitives should also be analyzed in proposed schemes. 

Initial values of any scheme based on chaotic maps needed to be sent in clear in first 

transmission, so while doing analysis of attacks those parameters should not be included 

in defining the security like key space etc. However, the key size should always be 

resistant to brute-force attack. 

 

Proposed Scheme to be Checked against All types of Processor. As discussed earlier, 

different processors produce different sequence with same initial conditions which 

hinders the implementation of chaos-based schemes. Hence proposed schemes should be 

tested on all types of processors so that both ends are at same level of satisfaction. It also 

necessary to define the specifications of machine against which the proposed scheme was 

tested for given outputs. 
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Chapter 6 
 

Chaos – Based PKC in Post Quantum Era 

6.1 Introduction 

Post Quantum Era demands more secured primitives to be adopted in public key 

cryptography. After giving an overview of chaos-based PKC and developments in 

quantum computing, applicability of chaos-based cryptography will be analyzed in this 

chapter. 

 

6.2 overview 

Classical PKC is currently based upon Discrete Logarithm Problem (DLP) developed by 

Whitefield Diffie and Martin Hellman [15] as first key agreement protocol. However, 

they failed to provide mutual authentication between parties and later may protocols were 

developed to achieve authentication. Most known algorithm based upon DH is ElGamal 

[16]. Another algorithm based upon factorizing problem was introduced as RSA [17] and 

considered as difficult as DH to compute. After two years of DH in 1978 Merkle also 

proposed a PKC and known as Merkle’s puzzle [18]. Contrary to currently in use PKC 

which is based on difficulties in the number theory and both keys (public and private) are 

predefined before starting communication, the Merkle’s method depends on the protocol 

itself and both keys are defined by the transmitter at random. 

 

Kocarev and Tasev [19] proposed a PKC scheme based on Chebyshev chaotic maps 

whose underlying crypto primitive was DH, but Bergamo et al. [20] proved insecurity of 

same as the Chebyshev equivalent trigonometric function is cosine and contains all 

points, hence adversary can recover plaintext from encrypted message without knowing 

the secret key.  

 

Cocks [21] technique to encrypt message using variation of iterative function (IF) to get 

ID Based encryption proved to be inefficient due to bit by bit encryption, resulting into 

longer ciphertexts. Waters [22] and Boneh and Boyen [23] provided secure Identity based 

encryption without random oracle model. Lee and Liao [24] converted PKC using DL 

into IBC technique. Xiao et al. [25] key agreement protocol was countered by Han in 
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2008 [26] presented two attacks that enables an adversary to prevent the user and the 

server from establishing a shared key. Furthermore, in 2010, Wang and Zhao [27] 

proposed a modified chaos-based protocol which can be modified as illegal message as 

researched by Yoon and Jeon [28]. 

 

In 2009, Tseng et al. [29] gave the first key agreement protocol with user anonymity 

since earlier suggested protocols were not providing user anonymity. Niu and Wang [30] 

proved that it does not provide user anonymity, perfect forward secrecy, and security 

against an insider attacker, then proposed a new key agreement protocol. Soon, Yoon 

[31] proved that Niu-Wang's protocol is vulnerable to Denial of Service (DoS) attack and 

is fraught with computational problems.  

 

Tseng and Jou [32] suggested a key agreement protocol based on chaotic maps, which 

allows users to interact with the server anonymously. From year 2012 Mesharm et al [33] 

proposed many ID based schemes, and in 2018 modified his work which used Chebyshev 

chaotic map- based ID – based cryptographic model using subtree and fuzzy-entity [34]. 

They proved that this model is secure under the IND-sST-CCA in the random oracle 

model and computational cost is very low. 

 

In 2016 David Arroyo et al [35] did cryptanalysis of classical chaos – based cryptography 

having some quantum features proposed by Vidal et al, 2012 [36]. The proposed 

cryptosystem by Vidal et al was not efficient and key space reduces with optimization 

techniques and can be recovered by MITM.  With reduction of key space, the brute force 

attack is possible with high speed computers. Hence once again the proposed scheme not 

secured against classical attacks. 

 

These were two main underlying schemes for PKC based upon chaotic maps. If at all any 

scheme is secured against the classical attacks in current computation power the main 

problem with chaos based crypto system is low key space. This disadvantage exposes the 

schemes against quantum computers where brute force is enhanced by Grover’s 

algorithm and even symmetric encryptions with small keys are not secured. 
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All proposed schemes inherit the properties of either DH or factorizing problem and 

limitations of chaos - based cryptography as low speed and limited key space.  According 

to Kirchhoff’s principle security always invested in key and not in the hidden algorithm 

or protocol. currently threat of quantum computers and development of Shor’s algorithm 

endangered most of the crypto schemes and specially the PKC. It is anticipated by most 

of the researchers that within eight years Shor’s algorithm will be implemented at a 

relevant scale with the help of quantum computers. Hence, emerging technologies 

demand quantum resilient algorithms which can ensure privacy of sensitive data.  

 

6.3 Quantum Computers and Cryptography 

The two properties of quantum computing (superposition and entanglement) increased 

computation power and parallelism. To break any type of crypto scheme two types of 

attacks are used; i.e. reverse engineering and brute-force. Reverse engineering can only 

be done by exploiting the algorithm to find loop hole or trapdoor, while brute-force is 

extensive searching with all possibilities, a n – bit key crypto scheme can have n/2 

operations to search a key on classical computer. So as far as symmetric encryption is 

considered it might not be affected by the quantum computers with longer keys. 

However, so far AES – 128 and AES – 256 are considered to have security of 64 bits and 

128 bits as quantum security respectively. So, with the increase in key length the security 

level can be increased. 

 

As far as PKC is concerned which is based upon factorizing problem, DLP and ECDSA 

are not considered secure with the development of Shor’s and Grover’s algorithms. It is 

assumed that with the increased computation power of quantum computers the PKC will 

vanish, since these are based on computation problems which are infeasible with current 

supercomputers. There is need to find other strong crypto primitives to build PKC instead 

of factorization and DLP based algorithms.  

 

In 2016 NIST give call for post quantum PKC and In November 2017, 82 candidate 

submitted algorithms, 69 were considered and accepted with minimum acceptance 

criteria as First Round candidates. On January 30, 2019 NIST published a report for 

Second Round 26 candidates [37].  
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None of selected scheme is chaos – based, however, the primitives of these schemes are 

as under and none of these are also based upon factorization and DLP [38]: 

1. Lattice-based Cryptography: It does matrices multiplication and based upon 

hardness of lattice problems and known as Short Vector Problem (SVP). 

2. Multivariate-based Cryptography: The security of this public key scheme relies on 

the difficulty of solving systems of multivariate polynomials over finite fields. 

However, it is difficult to develop an encryption scheme based on multivariate 

equations. It can be used both for encryption and digital signatures. 

3. Hash – Based Signatures: As it is considered as one-way function and assumed to 

be secured against quantum computation. However, random numbers generated 

for hash calculation can be chaotic maps based. 

4. Code-based Cryptography: Code-based cryptography refers to cryptosystems that 

make use of error correcting codes. The algorithms are based on the difficulty of 

decoding linear codes and are considered robust to quantum attacks when the key 

sizes are increased by the factor of 4. 
 

6.4 Conclusion 

Quantum computers threats to cryptographic primitives is a concern in current era, since 

starting from highly secret official data of any country, business transaction, banking 

requirements and ending at the user’s personal privacy and anonymity will be affected. 

Specially the high risk to PKC which is considered as core scheme for key sharing and 

agreement will no more be secured. Although chaotic maps provide good source of 

randomness and show aperiodic behavior which is desired property under classical 

cryptography, but its limitation of key space is big hurdle in its implementation. Key 

space of chaotic maps depends upon the number of parameters and the number of 

decimal places selected for key generation. With increase in number of parameters / axis 

and decimal places might increase key space but most of the chaotic maps used 

continuous maps which can also be defined by equivalent trigonometric function. 

Discrete time chaotic maps also face problem of key reduction when optimization 

techniques applied. NIST is working on post quantum cryptography since use of quantum 

channel for key transportation might not be practical for a layman using small devices 

with limited resources. 
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Chapter 7 
 

Conclusion 

Chaos theory was a new dimension introduced in field of cryptography two decades 

earlier with practical implementation in symmetric / asymmetric cryptography, random 

number generation, hash calculation and image / video encryption. Although Logistic 

equation was never considered secured for implementation in cryptography due to 

unimodal behavior, but later researchers worked on different types of chaotic maps 

starting from 1D maps to multidimensional maps. They exploited the basic properties of 

chaotic maps (ergodicity and sensitive to initial condition) to ensure security and 

increased number of control parameters and dimensions to increase key space. 

Unfortunately, the effective key space of these maps is short in length and these maps 

being iterative in nature have slow speed for generating the desired sequence. 

 

For PRNGs these maps were used, and results were tested against different random 

number testing techniques. However, these random number testing techniques do not 

provide effective region or values for control parameters for which Lyapunov exponent 

and Bifurcation diagram are used. These methods effectively recognize the safe and 

effective region for any chaotic map under which control parameters can be varied. Low 

key space which is resulted due to presence of periodic windows, is a big disadvantage of 

chaotic maps, However, chaotic maps with enough key space like quantum chaotic map 

having key space of 236 bits is considered safe under current computation resources. 

 

With the start of quantum computation era chaos-based cryptography used in symmetric 

encryption will be considered secure with key space equal or greater than 256, but chaos-

based public key cryptography will also be under threat since underlying hard problem 

used in such schemes is DLP and ECDSA, which are insecure against quantum 

computation. However, with quantum computation issue of slow speed of these maps will 

reduce for computation of key and might also increase the key space as current computers 

do not allow discretization beyond defined value. Increase in key space can give an edge 

to beat the brute – force attack. 
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Whether classical computation or quantum computation successful encrypted data 

transfer means receiver has got the correct message and decrypted successfully. But in 

chaos-based cryptography arithmetic operation on floating point numbers have the 

limitation of generating different sequences on two different types of encrypting and 

decrypting engines. In quantum computers, leading quantum processor developers are 

IBM and Intel. Since IBM does not follow the IEEE-754 standard for arithmetic 

operations and decimal point numbers representation hence, two different processors like 

IBM and Intel would produce totally different number sequence same type of software 

implementation. This limitation restricts researchers and developers to use chaos-based 

cryptography as future cryptographic primitive. As future trend different post quantum 

cryptographic schemes specially, hashed based cryptography can use chaotic maps for 

key generation, provided key space is enough to beat Grover’s algorithm with collision 

finding iterations 3√ (N). 
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