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ABSTRACT 
 

 
 
 
 

The rapid development of wireless sensor networks and RFID technologies is transform- 

ing every aspect of human life ranging from personal fitness companions to goods tracking 

in the supply chain industry.  The sensitive nature of the data which these devices handle 

has created the demand for lightweight cryptography  as existing standards of security and 

privacy are impractical for these tiny resource-constrained devices. In addition to the limita- 

tion of computational resources, the challenges for lightweight block cipher design include 

low gate count, power consumption, cycle count, latency, resistance to side-channel attacks 

and support for decryption  with minimal overhead on top of encryption.   Meeting all of 

these additional constraints while maintaining the required level of security is a challenging 

task.  This Master's  thesis focuses on reducing the decryption cost of Substitution Permu- 

tation Network (SPN) lightweight  block ciphers.  We describe techniques to implement  a 

lightweight block cipher in both hardware and software platforms followed by how to incor- 

porate the decryption routine with encryption.  The traditional way to solve this problem is 

either by reducing the inverse implementation  cost of existing components or constructing 

new components  which support inversion with minimal overhead.  Our contribution spans 

over both. First, we find methods to efficiently implement inverse of a Maximum Distance 

Separable (MDS) matrix with minimum additional cost.  On average, our methods enable 

this implementation with 40% lesser xor operations.  Moreover, in the best case, only 12 

additional xor operations are required to support inverse matrix multiplication.   Secondly, 

we define constructions of non-involutive cryptographic components for both confusion and 

diffusion layers which use similar implementation  for its inverse. This helps in further re- 

ducing the implementation  cost for the inverse transform of the cryptographic  primitives. 

In the end, based on these primitives, we propose an SPN structure to support decryption 

routine with minimal overhead. 
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Chapter 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
 

The proliferation  of loT  devices, ranging from personalized  fitness companions  to smart 

home sensors is gradually transforming every aspect of human life in fundamental and di- 

verse ways. Furthermore, the amalgamation  of loT devices with cloud technology and big 

data is bringing together physical, industrial and biological worlds [1]. According to a pre- 

diction by Gartner, there will be 20 billion loT devices connected to the Internet  by year 

2020 [2]. These loT devices are constantly producing huge volumes of data which is shared 

between devices for collaboration and forming ubiquitous systems. These networks of loT 

devices also necessitate central processing for state-of-the-art intelligent services such as 

analytics, mining and prediction.  This requirement is met by integrating loT devices with 

cloud-based  technology  resulting  in a scalable,  robust and highly  available collaboration 

which entails huge potentials and benefits at individual, society as well as global levels. A 

key concern regarding the loT devices is the nature of the data accessed and shared by these 

devices with one another as well as over the cloud infrastructure. This data includes sensitive 

personal or mission critical information for which the most significant factors are privacy and 

security.  Lack of privacy and security diminishes the efficacy as well as utility of the loT 

devices. This, in tum, acts as the primary barrier which needs to be provably surpassed for 

practical utilization ofloT. 

The peculiar cloud-based loT ecosystem compounds the privacy and security requirements. 

A balanced approach is sought that deals with resource-constrained  loT devices at one end 

and performance requirement for large number of simultaneous cloud-connected devices at 

the other. Existing standards of National Institute of Standards and Technology (NIST) for 

encryption (AES [3]) and hash function (SHA-m [4]) can not be efficiently implemented in 

resource-constrained  environments [5]. Therefore, the more suitable options for these tiny 

loT devices are low cost, lightweight cryptographic block and stream ciphers, hash functions 

and Message Authentication Codes(MAC) [6, 7, 8, 9]. 

The paramount requirement in the realm of cloud-based loT scenario is data confidentiality 
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i.e.  ensuring that all data is transferred amongst loT devices and with cloud servers in an 

encrypted manner. The prime candidates for data confidentiality are light weight block and 

stream ciphers.  Block ciphers are a versatile cryptographic primitive which have an upper 

edge over stream  ciphers.   They can act as a stream  cipher by running in counter mode 

and provide authentication as in Galois Counter Mode (GCM) [10].  The high clock cycle 

count for initialization phase of the stream ciphers makes them less suitable for hardware 

implementation in constrained devices where key changes occur frequently [11]. In addition 

to it, the art of designing block ciphers seems to be more understood and well established as 

compared to stream ciphers [12]. 

Over the past decade a number of lightweight  block ciphers have been designed such as 

IDGHT [13], KLEIN [14], LED [15], MIBS [16], SPARX [17], SKINNY  [18].  The two 

block ciphers CLEFIA [19] and PRESENT [12] form part of ISO standard for lightweight 

block ciphers [20].  Mostly the lightweight block ciphers are designed to support compact 

hardware implementation  in terms of gate count and power consumption.  However, FeW 

[21], ITUbee [22], Robin and Fantomas [23] are also suitable for implementation  in soft- 

ware based platforms.  For software implementations,  the goal is to reduce the memory re- 

quirement and increase the throughput. Various designs support additional constraints such 

low latency, masked implementation  and support for both encryption  and decryption  with 

minimal overhead. PRINCE [11] is a low latency block cipher for pervasive computing ap- 

plications.  It supports encryption of data in hardware within one clock cycle with a very 

competitive chip area.  Moreover, the implementation  cost of decryption routine on top of 

encryption is negligible.  The block cipher Zorro [24] is a variant of AES which is easy to 

mask. It makes the implementation  to resist against side channel attacks(SCA).  It is often 

the case that block ciphers are first proposed and then masking schemes are constructed. 

However the designers of PICARO [25] took the reverse approach:  for a proven masking 

scheme [26], design a block cipher according  to masking constraints.   Few designs have 

been proposed which improves upon or combined the ideas of existing lightweight  block 

ciphers like SIMECK [27] combines the best features of two ciphers Simon and Speck [28]. 

I-PRESENT  [29] is an involutive design based on PRESENT [12].  The involution part is 

inspired from block cipher PRINCE [11] and encryption is identical to decryption except 

the round keys are used in reverse order. 
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1.1   Problem Statement 
 

Lightweight  block ciphers  are often designed  and specified for encrypt-only  routine and 

efforts are made to keep the encryption specification as lightweight  as possible.  As these 

ciphers are intended for resource constrained  devices, it is assumed that these lightweight 

primitives will be employed with a block cipher mode of operation which does not neces- 

sitate the presence of block cipher decryption-core  [12].  However it may not be the case 

always. The loT devices may have to be deployed in an already existing network which uses 

mode of operation such CBC that requires implementation  of the decryption routine [30]. 

Feistel structures inherently support decryption using the same encryption circuit by using 

round keys in reverse order [28, 31, 19]. However, these have slow diffusion as only one half 

of the state is processed in each round. This leads to more executions of the round function to 

achieve same level of security as compared to SPN structures [32]. Moreover, output of the 

round function is mixed with unprocessed half of the state by xor operations which may in- 

crease the length of critical datapath [33]. To overcome these limitations of feistel structures, 

few involutive SPN ciphers were proposed which used the same datapath for encryption and 

decryption [34, 35, 32]. But involutive components have large number of fixed points which 

makes them distinguishable from random permutations [36] and vulnerable to Invariant Sub- 

space and Related key Attacks [37, 38]. One the other hand, the block ciphers PRINCE [11] 

and I-PRESENT  [29] support decryption  with minimal overhead by incorporating inverse 

round transformation  in the encryption  path (reflection ciphers) i.e Ek  = F.M.F-1  [36]. 

The decryption is performed by using round keys in reverse order on the same circuit but 

this also increases the implementation cost of encryption routine. The lightest implementa- 

tion of these two ciphers require 2953 and 2796 GE where as encrypt-only implementation 

of PRESENT  needs 1570 GE only [39, 33].  Thus, implementation  cost becomes almost 

equal to as in case of supporting both encryption and decryption by encrypt-only designs. 

1.2   Research Objectives 
 

The research in this thesis aims to achieve the following objectives: 
 

 
• Study of software and hardware implementations of lightweight block ciphers. 

 
 

• Customization of an existing lightweight block cipher to support decryption with min 
 

imum overhead. 
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) 

• Comparative analysis of proposed and existing structure in terms of security and effi- 
 

ciency. 
 
 

1.3 Contributions 
 

The significant contributions of this thesis are summarized as 
 
 

• Detailed analysis of hardware and software implementations of lightweight block ci- 
 

phers and impact of decryption routine implementation on resource consumption. 
 
 

• Construction  of lightweight  MDS matrices and implementation  methods to support 

inverse Matrix multiplication with lesser implementation cost. 

 
• Construction  of lightweight non-involutive 8-bit bijective sBox that supports self in- 

 
version after a linear operation on the output. 

 
 

• Design of d-SPN, an SPN structure to support decryption with minimal overhead 
 
 

1.4 Thesis Outline 
 

Including the current Introduction chapter, this research work is composed of six chapters. 

Outline of the remaining chapters is as follow: 

 
• Chapter 2 provides a detail account on hardware and software implementations  of the 

block ciphers.  Different implementation  techniques are explained for a lightweight 

block cipher LED [15].  In the end, implementation of the decryption routine of the 

block cipher is explained. 

 
• Chapter 3 deals with construction  and implementation of lightweight MDS matrices 

over GF(24 ). It provides methods to implement the inverse matrix multiplication with 

40% lesser xor operations. 
 
 

• Chapter 4 studies the mixColumns  operation of the AES [3] block cipher and pro- 
 

vides lightweight alternatives.  It defines constructions  to make non-involutive MDS 
 

matrices over GF(28 from lightweight MDS matrices over GF(24 ) with reduced im- 
 

plementation cost. Moreover, these constructions support inverse transform with little 

additional implementation cost. 
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• Chapter 5 presents dSPN  which is an SPN  structure that supports decryption  with 

minimal overhead.  The dSPN is constructed from non-involutive components that 

support self inversion after a linear operation is performed on the output. 

 
• Chapter 6 concludes the thesis and highlights the directions for future work. 
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Chapter2 
 
 
 
 

IMPLEMENTING A LIGHTWEIGHT SPN BLOCK CIPHER 
 
 
 
 
 

2.1    Introduction 
 

 
Implementations  of cryptographic  primitives are categorized  into software  and hardware 

based implementations.  The former deals with implementations  in general purpose proces- 

sors and micro-controllers  while the later is intended for dedicated devices such as FPGAs 

and ASICs. In this chapter we provide a comprehensive account on different software and 

hardware  based implementation  techniques.   We explain these implementations  for LED 

[15] block cipher because it is a Substitution Permutation Network (SPN) with architecture 

similar to AES [3].   AES is NIST's  standard for block ciphers  and in fact, the most ex- 

tensively studied design.  Its wide trail design strategy provides concrete security  bounds 

against differential and linear cryptanalysis  [40].  Over the years, many lightweight  block 

ciphers including LED have been designed with a structure similar to AES such as KLEIN 

[14], Midori [32], Mysterion [41], Skinny [18], and Zorro [24]. Therefore, explaining imple- 

mentation techniques for LED helps in covering a large range of lightweight block ciphers 

to which these techniques can be easily extended. In addition to it, LED employs recursive 

MDS matrix in permutation layer which helps in realizing the 4-bit Serial implementation. 

Showing the real essence of serial implementation may have not been possible if some other 

SPN block cipher would have been selected. 

 
2.2    LED Block Cipher 

 
LED is lightweight block cipher which supports 64-bit block length and key lengths of 64 

to 128 bits in multiples of 4. It does not employ any key schedule, rather the user provided 

master key is used as-is where required. Moreover, the round key is mixed into the plaintext 

after every four rounds, called STEP. This helps in realizing compact hardware implemen- 

tation.  Although the non-existence of key-schedule seems dangerous and makes the cipher 

vulnerable to different types of attacks [42, 43], special care has been taken in the design of 

LED to thwart against these e.g. resistance to slide-attacks [15]. 
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are mixed with the first and second column of the state matrix by xor operation. 
 

subCeUs. It updates the sixteen nibbles of the state matrix in each round, using 4-bit sbox 

of the block cipher PRESENT [12]. 

shiftRows. The shiftRows operation performs left cyclic rotation for inumber of positions 

on ith row of the state matrix. 

mixColumns.  Each column of the state matrix is updated by multiplying  it with a 4 x 4 

diffusion matrix M. It is possible to implement this matrix multiplication serially in 4 clock 

cycles by using a 4 x 4 matrix A where 
 

0  1 0   0  4  1 2  2 
 

0   0 1  0 
A= 

 
 
===} 

 

A4= 8   6  5  6  
=M 

0   0   0  1 b e  a 9 
4  1 2  2  2  2  f  b 

 
 

2.3    Software Implementations 
 

The available software based implementation  techniques to implement a block ciphers in- 

clude  lookup-table  based  (LUT),  bit-sliced  and use of Single  Instruction  Multiple  Data 

(SIMD) instructions.  The lookup-table based implementation is done by pre-computing the 

small chunks of data, then selecting and aggregating it at runtime.  The bit-slice technique 

introduced in [44], implements the block cipher without lookup tables. It involves breaking 

down the block cipher into logical bit operations in order to perform N parallel encryptions 

on anN-bit microprocessor  [45].  The use of SIMD instructions for accelerating the AES 

was presented in [46]. Precisely, the vector permute (vperm) instruction set is used to per- 

form parallel table lookups in order to increase the throughput. This technique has later been 

applied to various block ciphers for accelerated implementations and resistance against side 

channel attacks [47, 48, 49, 31]. 
 

2.3.1   4-bit Serial Implementation 
 

The nibbles of the state matrix, key and sbox are stored in three arrays of sixteen bytes. 

The key mixing is performed  by applying  xor operation on corresponding  nibbles of the 

state and key. The subCells operation requires sixteen lookups to update the state by sbox 

values. The subCells and shiftRows operation are performed together by storing values from 

sbox lookup at appropriate positions in the state matrix while keeping in view the shiftRows 
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byte xTimes(byte y) { 
y << 1; 
if ((y & OxlO)  OxlO) 

y ·poly; 
return (y & OxOF) 

 

 
 
byte xxTimes(byte y) 

return xTimes(xTimes(y)); 
 
 

Listing 2.1: xTimes- Multiplying  y by 2 and 4 in GF(24 ). 
 
 
 

operation.  The mixColumns operation employs the serial matrix A instead of MDS matrix 

M because it consists of only 3 distinct elements i.e 1, 2, 4.   This helps in reducing the 

memory cost, but now each column of the state matrix is multiplied 4 times with the serial 

matrix A. Multiplication  with 1 does not require any resources and multiplication  by 2 is 

performed by left shift of one bit position and a conditional xor operation. Listing 2.1 shows 

multiplication of a nibble by 2 and 4 in GF(24 ). 

 

2.3.2   4-bit LUT Implementation 
 

The 4-bit LUT Implementation is similar to 4-bit Serial implementation except it employs 

multiplication  with MDS matrix M in mixColumns  operation.   The state, key and values 

of the sbox are stored in three byte arrays of size sixteen each. The operation addKey and 

addConstants is performed by 16 and 8 xor operations respectively. MDS matrix M consists 

of ten distinct elements  other than 1.   In order to perform multiplication  with these, ten 

arrays of size sixteen are used. Multiplication results of every element in G F (24 )  with the 

ten distinct elements of MDS matrix M are precomputed and stored in these arrays. Thus 4- 

bit LUT implementation requires additionall60 bytes of memory as compared to 4-bit serial 

implementation. Moreover, the effect of sbox is combined with the matrix multiplication by 

computing the multiplication tables for each distinct element m of the MDS matrix as 

 
mulTablemf.i] = m x sbox[j] j : 0---+ 15 

 
 

Combining the effect of sbox into multiplication tables helps in implementing subCells, 

shiftRows and mixColumns  operation together.  This reduces the number of lookup oper- 

ations required to implement one round of the encryption but it requires more memory to 

store the multiplication tables. 
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2.3.3   8-bit LUT Implementation 
 

In this implementation,  the two consecutive nibbles of the state matrix and key are joined 

together to make a byte as 
 

n1sln14 n3ln2 n1lno 
b7 bl bo 

 
no n1  n2 n3  bo bl 

n4 ns  n6 n7 b2  ba 
--+ 

ns  ng nlO nn  b4 bs 
n12 n13   n14 n1s b6 b7 

 
 
 

Then the values of the state matrix and key are stored in two arrays of the size 8 bytes each 

and the key mixing is completed  by 8 xor operations.  The subCells operation employs a 

larger lookup table of size 256 bytes to store sbox values. This larger sbox is computed as 

 
sbox8[b] = sbox[bmsb(4)]1  sbox[bzsb(4)]i b: 0 -+ 255 

 
 

With this byte oriented sbox, the complete state is updated by 8 lookup operations. Similarly, 

the multiplication tables are computed for 8-bit input and output. These larger multiplication 

tables require 2560 bytes of memory which is far more as compared to 4-bit LUT implemen- 

tation. But the number of lookup operation is reduced to half. In previous implementations, 

the shiftRows operation was performed by moving values to the corresponding indices, how- 

ever in this implementation the shiftRows operation is performed as follows 
 
 
 

bo 
 

(b3  4)1(»4) 
bs 

(b7  4)l(b6 »4) 

bl 
(b3 »4) I (b2  4) 

b4 
(b7   4)l(b6 »4) 

 
 
 

2.3.4  16-bit LUT Implementation 
 

The sixteen  nibbles of the state matrix and key are stored in two ushort(16-bit  unsigned 

integer) arrays of length 4 as 
 

 
 

uo 
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u u2 

 
 
 
 
 

The addKey operation uses 4 xor operations to mix key into the state. This particular packing 

of state nibbles into ushort words helps in performing rnixColumns operation with lesser 

operations.  The 16-bit LUT implementation  uses 4 lookup tables (T0 , T1, T2 , T3 )  of 4-bit 

input and 16-bit output. Each lookup table T; takes input of ith 4-bit nibble of 16-bit string 

(U = U31 U2 1 U11 U0)  and outputs multiplication of nibble U; with all four elements of the ith 

column of matrix M. Then 16-bit outputs from all four lookup tables are xored together to 

produce output of the matrix multiplication. 
 

4 1 2 2 Uo U.0' 
s  6 5   6 u1 

M  X  = U' -----+ X 
b e a 9 
2 2 f b Ua 

U1' 

u 
U.3' 

 
To[Uo] = 2.Uolb.Uoi8.Uoi4.Uo 

Ell T1[U1] = 2.Ulle.Uli6.U1ILU1 
Ell T2[U2] = f.U2Ia.U2I5.U2I2.U2 
Ell Ta[Ua] = b.Uai9.Uai6.Uai2.Ua 

U'= U IUIUfiU 
 

With these pre-computed tables, rnixColumns operation is performed by 4lookups and 3 xor 

operations. Moreover, these tables are computed after incorporating lookups from the sbox, 

thus subCells and shiftRows operation are combined with the matrix multiplication. 

Similar to 16-bit lookup table implementation,  it is possible to implement  the encryption 

operation for 32 and 64-bit words.  These implementations  will store the internal state in 

32 and 64-bit  words and will employ lookup  tables with larger output.   Table 2.1 shows 

number of basic operations and memory bytes required to implement LED-64 encryption by 

the above mentioned lookup table methods. 

 
2.3.5   Vector Permute Implementation 

 
 

SlMD engine present in the modem computers allows implementation of one operation on 

multiple data elements in parallel.   Authors in [46] extended the use of SMID  engine to 

bock ciphers. Basically the idea is to use Vector Permute (vperm) instructions to implement 
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64  bit state 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1  1  11111111111111 1   111111111111111111111111111111111111111111111111 
 

 
 
 

Figure 2.3: Packing of 64 input blocks for Bitslice Implementation. 
 
 

extended to implement mixColumns operation. In 4-bit LUT implementation, we performed 

matrix multiplication by performing lookups from precomputed arrays of size sixteen which 

can also be done using pshufb instruction. Similarly shiftRows can be performed by pshufb 

instruction to shuffle the nibbles from old to the new indices. The remaining operations like 

addConstants and round key mixing are performed by xor instruction. 
 

2.3.6   Bitslice Implementation 
 

In bitslice implementation complete block cipher is viewed as a gate circuit. Multiple input 

blocks are split into N-bit chunks and encryption operations are performed on these chunks 

in parallel. It is possible to choose different values for N depending upon the choice of un- 

derlying block cipher. Setting N=l is similar to performing hardware implementation  using 

2-bit input gates.  All the encryption operations are then performed using basic operations 

such as AND, XOR, NOT etc. For N=l,  the 64 input blocks of the plaintext are packed in 

64 words as shown in Figure 2.3. First bit of ith plaintext block is copied to the ith position 
 

in first 64-bit word. Second bit of ith plaint text block is copied to the ith position in second 
 

64-bit word and so on.  Now all the encryption  operations are performed on these 64-bit 

words which result in parallel encryption of 64 input blocks. 

The subCells operation is often performed by a precomputed  lookup table, but in bit-slice 

implementation it is computed by basic operations. Listing 2.2 shows inplace bitslice imple- 

mentation of LED sbox operating on 4 input bits. Similarly, mixColumns operation is per- 
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formed using basic operations. The shiftRows operation is in fact relabeling tbe 64 words. In 

order to perform addConstants and addKey operations, bits of tbe round constants and round 

key are to be packed in bitslice fashion. The bitslice implementation requires more memory 

resources as 64 input blocks are treated simultaneously, but it has a major performance gain 

over otber implementation techniques. 
 
 

b2  XOR(b2,bl);  b3 - XOR(b3,bl);  t - b2;  b2 - AND(b2,b3); 
 

bl  XOR(bl,b2);  t  XOR(t,bO);  b2 - bl;  bl - AND(bl,t); 
 

bl  XOR(bl,b3);  t  XOR(t,bO);  t - Ob(t,b2);  b2 - XOR(b2,b0); 

b2  XOR(b2,bl);  t  XOR(t,b3);  b2 - !b2;  bO  XOR(bO,t); 

b3  b2;  b2 - AND(b2,bl);  b2 - XOR(b2,t);  b2  !b2; 

 
Listing 2.2: Bitslice lnlplementation of Sbox. 

 

 
 

2.4    Hardware Implementation 
 
 

Hardware implementations  are deployed in dedicated hardware devices such as FPGAs and 

ASICs.  The three ways to implement  a block cipher in hardware are serial, round based 

and unfolded implementation.  In all of tbese, tbe encryption operation is written as com- 

binational logic operating on input bits.  In round based implementation,  one round of tbe 

block cipher is implemented  and state signals are passed through it for n number of times 

in n clock cycles.  Contrary to software implementations where byte is tbe smallest unit of 

storage, hardware implementations  have access to individual bits as signal wires.  So it is 

often tbe case tbat while implementing for ASICs, complete round function is expressed by 

basic gates(AND, OR, XOR etc). However, in FPGAs, precomputed arrays are also stored 

in LUTs to shorten tbe lengtb of critical patb. For round based implementation of LED block 

cipher, tbe 64 bit input and key is stored in a state register. The subCells and mixColumns 

operation is performed using basic logic gates. Sixteen parallel instance of subCells are im- 

plemented and complete state is updated in parallel.  Sinlilarly, 4 instance of mixColumns 

operation are implemented, each operating on sixteen state signals corresponding to one col- 

umn of tbe state matrix.  The shiftRows operation is simply rewiring of tbe state signals. 

The entire state is updated by round transformation in one clock cycle.  The control logic 

is implemented  to keep track of number of rounds and after 32 cycles, tbe state holds tbe 

ciphertext. Figure 2.4 shows an overview of round based hardware implementation. 
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2.5    Decryption 
 

By use of CTR and OFB block cipher modes of operation, it is possible to perform decryp- 

tion of a ciphertext without actually implementing the decryption routine of the underlying 

block cipher. However, with block cipher mode of operation such as CBC, it becomes nec- 

essary to implement the decryption routine. The decryption of an SPN cipher is similar to 

encryption except inverse transform of each component is applied in reverse order. Since all 

the operations of LED block cipher are non-involutive, their inverse has to be implemented 

separately.  This requires additional resources which are usually equal to the resources re- 

quired to implement encryption process. Thus support for decryption in CBC like mode of 

operations doubles the implementation cost for such ciphers.  All the implementation  tech- 

niques explained in previous sections are also applicable to the decryption process. However, 

while implementing the decryption by lookup table based implementations, a major question 

arises: "How to combine the inverse of substitution and permutation layer in a single lookup 

table?". In the forward direction(encryption), we computed the lookup tables by combining 

the effect of subCells and mixColurnns operations of one round, but this is not possible for 

the reverse direction (decryption). So two possible alternatives are 

 
• Decryption-1: Implement the inverse of subCells and mixColurnns operations in sep- 

arate lookup tables. This almost doubles the number of lookup operations required to 

implement each round as compared to encryption routine and results in lower through- 

put. 

 
• Decryption-2: Combine the inverse subCells of round; with inverse mixColumns op- 

eration of round;_1•  This way both the operations can be performed in single lookup 

as was done in encryption.  However, now the values of interleaved operations such 

as the inverse of addConstants and addKey need to be recomputed and then added to 

the state.  Moreover, mixColumns  operation from the last round and subCells oper- 

ation from the first round are still to be computed by separate non-combined lookup 

tables.   So the two sets of lookup tables are to be stored.  This almost doubles the 

memory requirement but results in higher throughput as compared to the Decryption 

-1 method. 
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Chapter3 
 
 
 
 

LIGHTWEIGHT MDS MATRICES OVER GF(24 ) 
 
 
 
 
 

3.1    Introduction 
 
 

The main objective of lightweight cryptography is to design cryptographic primitives with 

lesser implementation  cost in terms of chip area and energy consumption  [50].   For the 

block ciphers, this is achieved by constructing lightweight confusion and diffusion layers 

with strong cryptographic properties [51]. Out of these two, the later is employed to spread 

internal dependencies of the plaintext as much as possible [52]. In wide trail SPN designs, 

MDS [3, 15] and almost MDS matrices [53, 32] are preferred to construct a secure cipher 

as compared  to other choices for the diffusion layer [54].  Although  MDS matrices have 

higher implementation  cost than almost MDS matrices, they have optimal branch number 

and exhibit fast diffusion.  This reduces the number of rounds required to achieve desired 

level of security as compared to other diffusion mechanisms [55]. In this chapter, we discuss 

different MDS matrix constructions  over GF(24 ) and provide methods for multiplication 

with MDS matrix M and its inverse (M-1) for minimal overhead. 
 
 
 

3.2    Finite Field 
 
 

The block ciphers often perform arithmetics in some finite field. A finite field with 2n ele- 

ments and irreducible polynomial p(X) of degree n is denoted by GF(2n) /p( X). Two finite 

fields over different irreducible  polynomials  of same degree n are isomorphic  [56].  The 

number of irreducible polynomials Mn of degree n over GF(2) is given by 

Mn(2) -1L""J'J.L(d)2<nI n 
 
 

where Jl(d) is Mobius function [57]. 

din 

 
The elements of GF(2n) can be written in two ways: 1) in polynomial representation as 
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and 2) in bitwise representation as 
 
 

 
 
 

where b;  E GF(2).  This way, a 4-bit string 1001 i.e Ox09 in hexadecimal,  corresponds to 

X3 + 1 in polynomial representation.   Addition of two elements in GF(2n) is performed 

by bitwise xor of coefficients of the polynomial representation  of the elements.  The multi- 

plication of two elements is equal to product of polynomial representation of both elements 

modulo irreducible  polynomial p(X). In this chapter, we use the finite field GF(24 )with 

irreducible polynomial p(X) = X4 +X + 1. For simplicity, we often write this irreducible 
 

polynomial p(X) in hexadecimal notation as Ox13. 
 
 

3.3    Xor Count 
 

Block ciphers often employ MDS matrices defined over a finite field in the diffusion layer. 

These matrices are implemented as fully unrolled circnits in round based hardware imple- 

mentations. Thus in order to reduce the implementation cost of the diffusion layer, an effort 

is made to keep the number of gates required for the implementation  as minimum as pos- 

sible.  It was a common belief that multiplication  with a low hanuning  weight finite field 

element has low hardware implementation cost [58] . Thus most of the block ciphers used 

matrices with simple finite field elements e.g MDS matrix of AES for encryption  routine 

consists of only OxOl, Ox02 and Ox03 [59]. This was due to the case that field multiplica- 

tion of an arbitrary element f3 with Ox02 is simply left rotation by one bit position modulo 
 

irreducible polynomial (see Appendix A) and multiplication with other elements can be de- 

rived from it [40]. For example, field multiplication of an arbitrary element f3 with Ox03 in 

GF(24 )/0x13 is computed as 3 x f3 = (2 x  fJ) tfJ {3. Let binary representation of Ox03 and 

f3 be (0, 0, 1, 1) and (b3, b2, b1o bo),  then 

 
(0, 0, 1, 1)(b3, . b1, bo)   = ( ,b1. bo ffi b3, b3)ffi 

 
(b3, b2, b1, bo) 

 
= (b3 ffi b2, ffi blo 

 
b3 ffi b1 ffi bo, b3 ffi bo) 

 
 

We reference this type of field multiplication implementation as direct multiplication (DM). 
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The implementation cost of the complete matrix multiplication is then determined by two 

costs 1) field multiplication cost of individual elements of the matrix, 2) summation cost: the 

number of xor operations required to add these multiplication results.  Thus the overall xor 

count of the matrix was reduced by using field elements with low hamming weight as sum- 

mation cost was considered inevitable [50]. Moreover, the number of unique field elements 

in the matrix were kept to minimum by reusing these in each row of the matrix so that field 

multiplication results could also be reused.  Further improvement  was made by algorithms 

presented in [60] which reduced the implementation cost by iteratively finding and eliminat- 

ing the common sub-expressions. In 2014, A new method to count the number of xor gates 

required to implement the field multiplication  was proposed in [61]. It calculates the field 

multiplication cost by counting the number of 1's in each row of the multiplication matrix 

minus the number of rows.  This is referred as d-xor in literature.  The field multiplication 

of an arbitrary element with Ox03 as shown in the above example can be represented by a 

matrix multiplication over G F (2) as 
 

 
 
 

1 1 0   0 
0 1  1 0 
1 0 1 1 

 

1 0 0 1 

ba Efl b2 
Ef) b! 

ba Ef)  b1 Efl bo 
ba Efl bo 

 
 
 
 

Thus d-xor cost of field multiplication with Ox03 is 5 i.e 9-4 = 5. The authors also showed 

that field multiplication of higher hamming weight elements can also be implemented with 

lower xor count. Appendix B shows multiplication matrices and bitwise field multiplication 

for each element of the finite field G F (24 ) j 0 x13. Several researchers then used this new 

metric d-xor to estimate and report new matrices with lower xor count [52, 62, 63, 64]. But 
 

the d-xor method provided an overestimation of the xor count and did not take into account 

the reuse of intermediate  results.  In [65], the authors proposed a better metric (s-xor) to 

calculate the field multiplication  cost. The s-xor is the minimum number of xor operations 

required to implement matrix multiplication, where the minimum is taken over all possible 

implementation sequences. For the above matrix multiplication of d-xor, it is clear that term 

b3 Ef) b0 appears in the third and fourth row. Thus, the term b3 Ef) b0 can be computed once 
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and reused again. In hardware, these intermediate results can be easily reused without any 

additional memory elements as these are just labels of wires between the gates [50].  Ap- 

pendix C shows the comparison between number of xor operations required for each type of 

field multiplication implementation. The above mentioned work mostly focused on reducing 

the implementation cost by local optimization of the field multiplication by individual ele- 

ments. These techniques can be extended to globally optimize the matrix multiplication by 

converting matrix over GF(2n) to a binary matrix over GF(2). But these become impracti- 

cal for even smaller size MDS matrices as size of the matrix over G F (2) increases rapidly 
 

e.g a 4 x 4 matrix over GF(24 ) is a 16 x 16 matrix over GF(2).  Moreover, It was shown 

that implementing the binary matrix multiplication with least possible xor count also known 

as finding Shortest Linear straight-line Program (SLP) over GF(2)  [66, 67] is an NP-hard 

problem [68, 66].  So researchers  mainly focused on reducing  the matrix implementation 

cost by optimizing field multiplication of individual elements and then reusing the interme- 

diate results.  However, an efficient solution to similar problem was already known from a 

different line of research i.e combinational logic minimization. In [69], the authors presented 

a new heuristic to efficiently implement binary linear layers with reduced circuit.  The idea 

was to keep a setS of bases which contains all known/ computed signals (binary values). At 

start, the setS contains only input signals. Then a distance vector D is calculated to find how 

many additional xor operations are required to compute the output signals from the bases 

of the set S. A new base is computed by adding two of the existing bases and if this new 

base reduces distance to the output, then it is added to the set S. Thus, the distance to output 

expressions is iteratively reduced by computing and adding new bases. Tie between existing 

and new distance vectors is resolved by Euclidean norm. Appendix D shows complete run 

of the heuristic for the above mentioned example of field multiplication by Ox03. 

We refer this heuristic as SLP heuristic.  It was later improved in [70] to find an optimal 

implementation  for the dense matrix i.e where the number of 1's is more than 50%.  This 

was done by finding an intermediate value which contained most variables and then running 

the original algorithm. Authors in [71] modified the SLP heuristic to find the optimal imple- 

mentation circuit of cryptographic linear layers for a given depth. This reduced the length of 

critical path for latency conscious applications at the expense of additional xor operations. 

Moreover, running time increased as the heuristic needed to traverse more paths to find the 
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optimal solution.  In [50], authors reduced the implementation  cost of already known ma- 
 

trices by using SLP. The authors found implementation  of MDS matrix used in AES with 
 

97 xor operations,  while previously known best implementation  used 103 xor operations 

[72].  In this chapter, we use SLP heuristic to find 4 x 4 lightweight MDS matrices over 

GF(24 )using different MDS matrix constructions. Moreover we define two new methods to 

implement matrix multiplication with inverse of an MDS matrix for minimal overhead. 
 

3.4    MDS Matrices 
 

Definition 1. [52] The branch number of matrix M having order k over a finite field GF(2n) 
 

is basically the minimum number of non-zero components of the input vector v and output 

vector v' = M ·v ranged over all non-zero v E [GF (2n)]k. 
 

BM  = min{W(v) + W(v')}  where  v 'I 0 
 
 

Here W is count of non-zero elements in the input and output vector v and v' respectively. 
 

Definition 2. [73] A Maximum Distance Separable (MDS) matrix with order k is a matrix 

which attains an optimal branch number of k + 1. 

Use of an MDS matrix with high branch number ensures that a small difference in the input 

will propagate a large difference in the output. MDS matrices also have following character- 

istics. 

 
• A square matrix M is an MDS matrix if and only if all square sub-matrices of M are 

non-singular [74]. 
 
 

• The inverse of an MDS matrix is also an MDS matrix [75] 
 
 

• Transpose of an MDS matrix M is also an MDS matrix [40]. 
 
 

• The branch numbers of an MDS matrix M and its inverse M-1 are same [58]. 
 
 

• If a matrix M-1 is obtained after performing permutations on row or columns of an 
 

MDS matrix M, then M-1 is also an MDS matrix [52]. 
 
 

• If M  is an MDS matrix over G F2n,  then c · M  is also MDS matrix for any non-zero 

c E GF2n [75]. 
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a0 
 

a1   a2 aa 
aa 
a2 

a1 

ao a1 

aa ao 
a2   aa 

a2 

a1 

ao 
 

Definition 3.  A self inverse matrix is called involutory matrix i.e its second power is an 

identity matrix 

 
 
 

Involutory MDS matrices are of great interest as the same circuit can be used to implement 

the inverse of the matrix.  However, these involutory matrices have large number of fixed 

points (f(x) = x) which can be used to distinguish it from random permutation [36].  An 

involutory permutation with 2n inputs has 211  + 1 fixed points where as a randomly chosen 

permutation over same space has only one fixed point[76]. If a primitive employs compo- 

nents with a large number of fixed points, then special care must be taken to thwart against 

cryptanalysis attacks like the Invariant Subspace Attack [77, 78, 37]. 

 

3.4.1  Circulant Matrix 
 

A 4 x 4 right circulant matrix M is denoted by elements of its first row as Cir( a0 , a1,a2,a3) 
 

and each subsequent row of the matrix is determined by right rotation of the previous row. 
 
 
 
 
 
 

 
 
 
 
 
 
 

The right circulant  matrices have been used in block ciphers  AES [3], Piccolo  [30] and 

KLEIN [14].  A more generalized form of circulant matrix is cyclic matrix where each 

subsequent  row is some permutation of the first row.  Circulant  MDS matrices generally 

have lower hardware implementation cost as compared to other types of matrices because 

of less number of distinct elements [52]. The probability of finding a circulant MDS matrix 

is much higher than finding a random square MDS matrix [79].  But the use of circulant 

matrices comes with a problem i.e non-existance of Involutory Circulant  MDS (ICMDS) 

matrices. Authors in [80] showed that 4 x 4 ICMDS matrices do not exist. Later on, it was 

proved that ICMDS matrices of any order do not exist [75].  This phenomenon  increases 

the implementation cost if both the matrix and its inverse are to be used in a cryptographic 

primitive.  Here we introduce a new class of cyclic matrix which supports inverse matrix 

multiplication with less overhead. 
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P.(ao a1 a2 aa) 
P,(ao, a1, a2, aa) 
P9 (ao, 
Ph(ao, 

a1, 

al, 

a2, 

a2, 
aa) 
aa) 

 

0 1 0 0 
0 0 1 0 
0 

 

ao 
0 

a1 

0 

a2 

1 
 

aa 
 

Definition. A cyclic matrix Miscalled Circulant Permutation Inverse (CPI) matrix if rows 
 

of its inverse matrix M-1 are some permutations of the first row of the matrix M. 
 
 
 
 
 

CPI(ao,al,a2,aa)-1 = 
 
 
 
 
 
 

Here  P; is ith  permutation  from the list of all available permuations  of a vector with 4 

elements. The two main benefits of CPI matrices are 

 
• The number of fixed points for a CPI matrix are far lesser than those of involutory 

matrix. It is conjectured that a CPI matrix has 2fixed points. 

 
• The inverse of a CPI matrix can be implemented with fewer resources as compared to 

inverse of a non-involutory cyclic matrix as both consists of same distinct elements. 

 
3.4.2  Recursive Matrix 

 
A 4 x 4 serial matrix M is denoted by elements of its last row and is of the form 

 
 
 
 
 

Ser(ao, a1, a2, aa) = 
 
 
 
 
 
 

A recursive MDS matrix M is a matrix which can be derived from ith power of a serial matrix 

for some positive integer i.  This recursive MDS matrix is denoted as Ser(a0 , ab a2 , a3)i. 

The main characteristic of recursive MDS matrices is that they can be implemented in serial 

fashion with lesser implementation cost but more clock cycles. The use of serial matrices in 

cryptographic primitives was first proposed in PHOTON hash function [81] and later used 

in LED block cipher [82]. The inverse of recursive MDS matrix can be computed by raising 

inverse of the underlying serial matrix to the power i. Thus, recursive MDS matrix and its 

inverse can be implemented in serial fashion. The inverse of serial matrix Ser (a 0 , a1, a2 , a3 ) 

is of the form 
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a, 

 
a, 

 

as 1 
ao 

1 
ao 
0 

ao 
0 

ao 

0 
0 1 0 0 
0 0 1 0 

 

 

 
 
 

Ser(ao, a1,a2, aa)- 1 = 
 
 
 
 
 
 

3.4.3   Hadamard Matrix 
 

Given a set of four elements (a0 , a1, a2 , a3 ), a 4 x 4 hadamard matrix His constructed as 

follows 

 
 

ao  a1   a2   aa 
a1   ao  aa    a2 

a2    a3   ao  a1 

 
 
 
 

Hadamard matrices are bisymmetric (H   = HT) and often used in constructing involutory 
 

MDS matrices. If a k x k hadamard matrix H is multiplied by itself, then H 2 = c? · I where 

c = EB:;:- a;. This implies that a hadamard matrix His involutory if summation of its first 

row elements result in 1 [83]. Moreover, a non-involutory hadamard matrix can be converted 
 

to involutory matrix by dividing it with the sum of elements of the first row [62]. 
 
 

3.5    Implementation of the MDS Matrix Multiplication 
 

Consider a right circulant  matrix Cir(a0 , a 1, a2 , a3) is to be multiplied  with input vector 
 

(w, x,y, z). Then the output of this multiplication is computed as 
 
 

ao a1   a2   aa w  aow + a1x + a2y + aaz 
aa ao a1   a2 X 

             y 
z 

aaw + aox + a1y + a2z 
a2w + aax + aoy + a1z 
a1w + a2x + agy + aoz 

 
 
 

In round based implementation, the complete multiplication is implemented in hardware and 

all four outputs are computed in one clock cycle. However, in serial based implementation, 

only the first row of the circulant matrix is implemented and one output is computed in one 
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clock cycle. For example, the first output of the multiplication is computed as 
 
 
 

             w  
X 

y 
z 

 

 
 
 

Now, in order to compute the second output, the input vector is left rotated by one position 
 

( x, y, z,w) and multiplied with first row of the matrix in next clock cycle. 
 
 
 

ao a1 a2 aa x 

y                 aox + a1y + a2z + aaw 

z 
w 

 
 
 

Similarly, the process is repeated two more times to compute the remaining outputs [52]. 

Thus, the complete matrix multiplication is performed in 4 clock cycles by just implementing 

the first row of the circulant matrix. However, partial results from the multiplication in each 

clock cycle are required to be stored separately from the original  input vector.  Because 

orignal input vector is to be repeatedly used as input till the time all 4 outputs have not been 

computed. This approach is also extendable to cyclic, CPI and hadamard matrices. Since all 

the rows of a these matrices are some permutation of the first row, the inverse permutation 

of ith row is applied on the input vector before multiplying it with first row of the cyclic 

matrix. In fact more trade-offs in terms of circuit area and clock cycle are also possible. For 

example, multiplication for two rows of the circulant matrix can be implemented. Then it is 

possible to perform the complete matrix multiplication in 2 clock cycles. Without taking into 

account the cost of memory and control logic, serial implementations of these matrices need 

lesser area but have high latency.  While on the other hand, round based implementations 

require larger resources but compute output in one clock cycle. Table 3.1 shows serial and 

round based implementation cost of lightweight 4 x 4 MDS matrices.  The recursive MDS 

matrix used in LED block cipher requires 51 xor operations where as lightest MDS matrix 

shown at serial3 in Table 3.1 can be implemented by just 44 xor operations. 
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Table 3.1: Serial and Round based Implementation Cost of Involutory and non-Involutory 
MDS Matrices and its Inverse. 

 
#  Type MDSMatrixM CostA  CostM CostA-1  CostM-1 

9218 

1  Cir(9, 2, 1, 8)  8921 16  40  21  53 
1892 
2189 
93D2 

2  Cyc(D, 2, 3, 9) 2D39 18  38  18  40 
D293 
392D 
1989 

3  Ser(l, 9, 8, 9) 9CD5 16  44  16  44 
5226 
6671 
6149 

4  Had(6,1,4,9) 1694  18  38  18  43 
4961 
9416 
149D 

5  CPI(1,4,9,D) 41D9  16  50 
D941 
9D14 
A25C 

6  Had;(A,2,5,C) 2AC5  20  46 
5CA2 
C52A 
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3.6  Support for Inverse Matrix Multiplication 
 

In this section, we propose two methods for implementing  matrix multiplication  with the 

inverse of an MDS matrix for minimal overhead. We explain it with the help of an example. 

Let M be an MDS matrix such that 
 
 
 
 
 

M= &  M-1 = 
 
 
 
 
 
 

Then implementation  cost for matrix multiplication  in GF(24 ) with MDS matrix M and 

M-1 is 45 and 50 xor operations respectively. It implies that use of matrix M in a crypto- 

graphic primitive will need additional 50 xor operations to support inverse matrix multipli- 

cation in decryption routine. Thus total cost to support matrix multiplication  with both M 

and M-1 is 45 + 50= 95 xor operations. Following two methods reduce this overhead. 

3.6.1    Mixed Implementation (MI) 
 

• Create matrix Mm; by combining MDS matrix M and its inverse M-1 as 
 

 
 

Mm;=[ M 
M-1 

 
 

• Create multiplication matrix Map2  over GF(2) by replacing each element of the Mm; 

by its multiplication matrix over GF(2). Appendix E shows Mm; and MaF 2 for matrix 

MandM-1. 

 
• If there exists duplicate target signals in MaF2. keep the first instance and remove 

remaining while keeping a record of all signals that are equal. 

 
• Apply SLP heuristic to compute the remaining target signals. 

 

 
By MI method, total cost for multiplication with M and M-1 reduces to 57 xor operations 

which is just 12 more xor operations than implementation cost of the MDS matrix M where 

as separate implementation  for M-1 requires 50 xor operations.   The output of the SLP 

heuristic report implementation for 32 target signals. The first sixteen targets of the output 
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• 

correspond  to multiplication  of input with matrix M while remaining  targets provide the 

matrix multiplication result for M-1. In this implementation, a large number of intermediate 

signals contribute in computation of the target signals for matrix multiplication with M and 

M-1.  Moreover, the target signals corresponding to M-1 are often used in computing the 

same for multiplication with matrix M. The increased used of intermediate signals helps in 

realizing the whole multiplication with lesser number of xor operations. 

However, by MI method, it is hard to realize a separate implementation  for M with lesser 

operations.  So contrary to separate implementation  of both M and M-1, cost for matrix 

multiplication  with M during encryption is almost equal to the total cost forM and M-1 
 

To deal with this issue, we propose a second method called Derived Implementation  (DI) 
 

which does not increase the cost of matrix multiplication with M. 
 
 

3.6.2    Derived Implementation (DI) 
 

• Make multiplication matrix Map2 over GF(2) by replacing each element of matrix M 
 

by its multiplication matrix over GF(2). 
 
 

• Apply SLP heuristic to compute the target signals for matrix M. 
 
 

• Make multiplication  matrix M0}2  over GF(2) by replacing each element of matrix 

M-1 by its multiplication matrix over GF(2). 
 
 

• If a target signal from M(]}2 is equal to some target signal of MaF2. remove it from 

M0}2 and keep a record of it. 
 
 

• Apply SLP heuristic with bases already computed for Map2   to compute remaining 

target signals for M0}2 • 

 
The DI method reports 45 xor operations for matrix M and 69 xor operations  to support 

multiplication  with M and M-1.  Appendix F provides implementation  details for Matrix 

Multiplication with M and M-1 by MI and DI methods. 

To measure the performance of these methods, we randomly selected 100 matrices of each 

type and computed implementation cost by MI and DI methods. Table 3.2 summarizes the 

results of this experiment.  Both the methods reported lesser implementation  costs than the 

separate implementation  of M and M-1 for all matrix types.  For Hadamard matrices, the 
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E  D D 2 

D  7 6 B 
 

Table 3.2: Comparison of MI and DI methods to support matrix multiplication with inverse 
of an MDS matrix with minimal overhead. 

 

TYPe CostM CostM-1  Total  MI  DI 
 

Hadamard  52.3  53.2  105.5  64.6  76.7 
 

Circulant  53.2  53.6  106.8  79.2  86.8 
Serial  52.5  52.7  105.2  84.7  90.7 

 
 

overhead to support inverse matrix multiplication by MI method is 13 xor operations on 

average.  On the other hand, the serial matrices require more number of xor operations to 

support inverse matrix multiplication. 

Application to LED Block Cipher. The recursive MDS matrix employed in LED block ci- 
 

pher have implementation cost of 51 and 49 xor operations for multiplication with matrix M 

and M-1 respectively. Thus, in order to support multiplication with both M and M- 1, the 

separate implementation cost reaches a sum of 100 xor operations. By MI and DI methods, 

this cost reduces to 79 and 89 xor operations respectively. However, the following recursive 

MDS matrix Mser has implementation cost of 66 and 74 xor operations by MI and DI meth- 

ods respectively. Use of the matrix Mser in mixColumns operation of LED block cipher will 

save 13 xor operations for each instance of the mixColumns operation. 
 
 
 
 
 
 

Mser = 

F D  c  3 
2  B  A  9 
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Chapter4 
 

 
 
 

LIGHTWEIGHT MDS MATRICES OVER GF(28) 
 
 
 
 
 

4.1    Introduction 
 

 
The security of loT  devices created demand for lightweight  cryptography.  This was met 

by either constructing lightweight primitives or reducing the implementation  cost of exist- 

ing standards. In this chapter we deal with construction of lightweight MDS matrices over 

GF(28) which are often employed in byte oriented block ciphers. As a case study we inves- 

tigate MixColumns  operation of AES [3] block cipher and find corresponding  lightweight 

design choices  that support inverse matrix multiplication  with minimal overhead.   More- 

over we define a matrix construction that incorporates inverse shift rows with MixColunms 

operation. 

 
4.2    AES Block Cipher 

 

 
In 1997, NIST announced an initiative to develop new block cipher encryption standard to 

replace DES. The block cipher Rijndael designed by two Belgian cryptographers  Rijmen 

and Daemen was selected as Advanced Encryption Standard (AES) in 2000. It is a 128-bit 

block cipher with key lengths of 128, 192 and 256 bits. The 128-bit plaintext is treated as 

4 x 4 state matrix of 16 bytes.  The block cipher transforms the plaintext into ciphertext 

by performing multiple executions of a round transformation preceded by an initial key 

addition. Each round consists offour operations such as SubBytes, ShiftRows, MixColumns, 

and AddRoundKey. However, the last round omits the MixColumns operation. The number 

of rounds depend upon the key length and these are 10, 12 and 14 for key length of 128, 

192 and 256 respectively.  Separate round keys are generated for each round by ronning a 

key schedule algorithm onto the user supplied master key. The cipher has stood firm against 

rigorous cryptanalysis efforts of researchers spanning over two decades. The biclique attack 

achieves results slightly better than exhaustive search, but its still impractical [84]. Similar to 

cryptanalysis, great efforts were made to code efficient and compact implementations of the 

AES accross different hardware and software platforms. Table 4.1 summarizes the compact 
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Table 4.1: Compact Hardware Implementations of the AES Block Cipher. The letter E and 
D stands for support for Encryption and Decryption respectively. 

 

# Reference Type Area(GE) Cycles 

1 [85] ED 2060 246 
2 [86] E 2400 226 

3 [87] ED 2605 226 

4 [88] ED 3400 1032 
5 [89] ED 4037 336 
6 [90] ED 5400 54 

 

 
 

hardware implementations of the AES block cipher. 
 
 

4.3    The MixColumns Operation 
 
 

The MixColumns operation operates on columns of the state matrix.  Its design criteria 

included dimensions, linearity, diffusion and performance on 8-bit processors [40]. The size 

of the column was set to 4 bytes by keeping in view the performance of loopkup table based 

implementations  on 32-bit architectures. The bytes of a column are considered polynomial 

over GF(28) and multiplied with a fixed polynomial c(x) modulo x4 + 1. The performance 
 

criterion also dictated the selection of coefficients for the polynomial c( x). Coefficients with 

simple values such as 0, 1, 2 and 3 are best suited for this criteria as multiplication with 0 

and 1 involve no processing. It is possible to perform multiplication with 2 efficiently by a 

left shift and a conditional xor. The multiplication  with 3 is performed by multiplying the 

input with 2 and then xor the result with input.  The wide trail design of AES imposed the 

restriction of linearity and high diffusion. Thus simple coefficients were selected in such a 

way that MixColumns operation have optimal branch number of five. The polynomial for 

MixColumns operation is 

 
 

c(x) = 3·x3 + 1·x2 + 1·x+2 
 

It is possible to illustrate the modular multiplication with polynomial c(x) as matrix multi- 

plication. Fignre 4.1 shows the MixColumns operation of the AES block cipher on the state 

matrix. The polynomial c(x) is co-prime with modular polynomial x 4 +1, thus its invertible. 

The inverse of MixColumns operation during decryption is performed by multiplying each 
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8 8 8 8 

8 8 8 8 

8 8 8 8 

8 8 8 8 

 

4 0 4 0 
0 4 0 4 
4 0 4 0 
0 4 0 4 

 

5 0 4 0 
0 5 0 4 
4 0 5 0 
0 4 0 5 
 

these may not be possible in all scenarios. So implementing the decryption routine becomes 

inevitable.  In case of diffusion layer, the problem boils down to efficient implementation 

of InvMixColurnns alongwith the MixColurnns operation. Instead of implementing both the 

matrices M and M-1 separately, authors in [90] proposed to decompose the M-1 matrix 

into simple matrices as follows 
 
 
 
 
 

M-1 =M +  + 
 
 
 
 
 
 

Multiplication of an input operand with element 4 and 8 require 5 and 7 xor gates respec- 

tively. These multiplication results are computed once and then reused for each row of the 

matrix multiplication.   By this decomposition,  the implementation  cost for multiplication 

with both the matrices reduces to 195 xor gates. However, another efficient implementation 

by Paulo Barreto is reported in [87]. It works by factorizing the inverse matrix as 
 
 
 
 
 

M-1 = M . Mfact = M . 
 
 
 
 
 
 

In order to implement the InvMixColurnns operation by factorization method, the input col- 
 

umn A = (ao, a1, a2, ag) is first multiplied by the matrix Mfact· 
 
 
 

bo 5   0   4   0  ao 
b1 0   5   0   4  a1 

- 
b2 4   0   5   0  a2 

bg 0   4   0   5  ag 
 
 
 

This multiplication by matrix Mfact is implemented using 58 xor gates and then the original 

input A or the output B = (bo, b1, b2 , b3)  is fed to the MixColurnns circuit depending upon 

the encryption or decryption routine. The complete process is implemented by 155 xor gates 
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9 3 D 2 
2 D 3 9 
D 2 9 3 
3 9 2 D 

 

) 

) 

[61]. In order to perform the matrix multiplication  B  = M'.A,  each element of the input 
 

vector A = (a0 , a1, a2 , a3) over GF(28 is split in two nibbles consisting of left and right 

half a; = (afllaf). Then MDS matrix Q over GF(24 ) is multiplied with each half of the 

input vector and results are concatenated to form the output vector over GF(28). 

 
A= (ao,a ,a2,aa) = (a&'ila , afllaf, a lla, a iia:) 

(zo, z,z2, za)  = Q · (a&', af, a, a ) 

(z4,z5,z5,z7) = Q · (a ,af,a ,a:) 
 

 
 
 

It was shown in [91] that such a transform is an MDS matrix over GF(28) if Q is an MDS 

matrix over GF(24).    Similarly, involutory MDS matrices over higher finite fields can be 

constructed from involutory MDS matrices over smaller fields [50]. The MDS matrix over 

GF(28) used in MixColumns operation of the AES block cipher requires 97 xor gates. How- 

ever, this cost can be reduced by subfield MDS matrix construction.  Authors in [61] sug- 

gested to use circulant matrix C = circ(l, 1, 4, 9) overGF(24 ) to reduce the implementation 

cost. The MDS matrix C has an implementation cost of 46 xor operations and two instances 

of it will save 5 xor gates for each instance of MixColumns operation as compared to use of 

the original MDS matrix of the AES block cipher. However, the lightest MDS matrix M1w 

over GF(24 ) as shown below requires 38 xor gates only.  The subfield MDS matrix over 
 

GF(28 constructed from M1w  can be implemented with 21 xor gates lesser than the AES 
 

MDSmatrix. 
 
 
 
 
 
 

Mtw = 
 
 
 
 
 
 

The major advantage of subfield construction is that MDS matrices over smaller finite fields 

have lesser implementation  cost.  Moreover, it is possible to serialize the matrix multipli- 

cation by implementing only one instance of the MDS matrix over GF(24 ) and then per- 

forming multiplication  by left half of the input vector in first clock cycle followed by the 
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= 

) 

right half in next.  This way the implementation cost can be reduced to half at the expanse 

of an additional clock cycle. Similarly, subfield construction can be extended to make diffu 

sion matrices over GF(2P) with branch number B by running pfq copies of the matrix over 

smaller finite field GF(2q) with same branch number where p divides q [61]. 
 

4.6    Support for InvMixColumns Operation with minimal overhead 
 

In section 4.5, we explained how subfield construction can be used to make MDS matrices 

over higher finite fields from MDS matrices over smaller finite fields. We used subfield con- 

struction to reduce the implementation cost of MDS matrix multiplication  for the forward 

direction(encryption). In fact, the subfield construction can be easily extended to construct 

MDS matrices which support implementation of its inverse matrix multiplication with min 

imal overhead. 

Definition 2. Given an MDS matrix Q and its inverse Q' with elements q;J, q:,i E GF(2k), 

the inverse-subfield(iSubfield) MDS matrix P is constructed with elements PiJ  E GF(22k) 
 

such that 
 

 
qoi,j 

PiJ  ,;, E ()1'(2'') 
( 

 

 
Contrary to subfield construction, the iSubfield MDS construction uses one instance of each 

i.e Q and its inverse Q' instead of using two instances of the MDS matrix Q. This helps 

in implementing inverse matrix multiplication with minimal overhead. Each element of the 
 

input vector A = (a0 , a1 , a2 , a3 )  over GF(28 
 
is split in two nibbles consisting of left and 

right half a; = (af IIaf). Then MDS matrix Q and its inverse Q' is multiplied with left and 

right half of the input vector respectively and results are concatenated  to form byte output 

vectors over GF(28). 
 
 

 
 

(zo, Z1, z2, z3) = Q · (a, af, af, af) 

(z4, zs, Z6, zr) = Q' · (a, a, a, af) 

 
 
 

In order to perform inverse transformation, a nibble swap operation is performed before and 

after the multiplication with iSubfield MDS matrix P. This nibble swap operation changes 
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the positions of left and right halves of the input vector. Thus the left half values which were 

previously multiplied with MDS matrix Q, now gets multiplied  with Q' and vice-a-verse. 

Since Q and Q' are inverse of each other i.e Q . Q' = 1, swapping the nibbles of input vector 

and then applying the same transformation results in identity. 
 
 

B = (bo,bb ,ba) = Mllb, bfllbf,  b llb, b llbf) 
 

NibbleSwap   (bRIIbL   bRIIbL  bRIIbL  bRIIbL) 
0  0'  1 1'  2  2l  3 3 

 

 
 

(zo,z1, z2, za) = Q ·Q' · (a, af, a, a:) 
 

(zo,zl,z2,za)  = 1· (a ,af,a ,a:) 

(z4,zs,z6,z7) = Q' · Q · (a ,af,a ,a ) 
 
(z4,zs,z6,z7) = 1· (a ,af,a ,a ) 

 

A'= (ao,al,a2,aa) = (zollz4,  z1llzs,  z2llz6, zallz7) 
NibbleSwap   (Z4 IIZo, Zs IIZ1,  Z6 IIZ2,   Z7 IIZ3 ) 

 

 
 
 
 

Similar to involutory matrices, the iSubfield MDS matrix makes use of same set of operations 

for its inverse. However the number of fixed points in iSubfield MDS matrices are far lesser 

than the involutory matrices. In fact, the number of fixed points in an iSubfield MDS matrix 

is equal to the number of fixed points in the underlying  MDS matrices Q and its inverse 

Q'.  Use of iSubfield MDS matrix in MixColumns operation  reduces the implementation 

cost of InvMixColumns operation.  It is possible to implement nibble swap operation with 

relatively lesser cost in both hardware and software.  In hardware, it simply translates to 

rewiring of the signal wires. In software, it requires 2 shift and one OR operation for each 

input byte, making it relatively negligible as compared to the cost of matrix multiplication 

operation. For following choices of MDS matrices Q and Q' over GF(2 4 ), the MixColumns 

and InvMixColumns operations can be implemented with 78 xor gates only. 
 
 
 

9 3 D 2 

2 D  3  9 
Q= 

D  2 9 3 
 

3 9 2 D 

 
 
 
&  Q'= 

D  1  F  8 
 

8 F   1 D 
F  8  D  1 
1 D  8 F 
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bo b4 bs 
 

b12  bo b4 bs 
 

b12 

bl b5 bg b13 ShiftRmns b5 bg b13 bl 

b2 b6 blO b14  blO b14 b2 b6 

ba b7 bn b15  b15 ba b7 bn 
 

 bo b4 bs 
 

b12    bo b4 bs 
 

b12  

SwapRows  b15 ba b7 bn  ShiftRmns  ba b7 bn b15  SwapRows 

  blO b14 b2 b6    b2 b6 blO b14   
  b5 bg b13 bl    bl b5 bg b13   

 

4.7  Incorporating Inverse ShiftRows (InvShiftRows) with MixColumns 
 

The ShiftRows operation of the AES shifts the bytes in ith row for inumber of position to 

the left where 0 i3. 
 
 
 
 
 

state;n = = stateuut 
 
 
 
 
 
 

In order to perform inverse transform of the ShiftRows operation, bytes of the ith row has 

to be right shifted for inumber of positions.  Thus implementing  the InvShiftRows opera- 

tion requires additional resources.  Authors in [87] made an observation that left shift row 

transformation  applied on Oth and 2nd row are self inverse.  Moreover, ShiftRows opera- 

tion on the 1st  and 3rd row are inverse of each other.  Thus swapping the 1st  & 3rd row 

(SwapRows) of the state matrix and then applying the ShiftRows operation infact brings the 

InvShiftRows transformation. 
 
 
 
 
 

stateuut state;n 
 

 
 
 
 
 

Incorporating the InvShiftRows by ShiftRows and SwapRows operation will require use of 

an MDS matrix which support such row swapping. 

Definition 3. A 4 x 4 non-involutory MDS matrix M is called Row Permutation Inverse (RPI) 

Matrix, if it supports inverse transformation  using same circuit when SwapRows operation 

is performed on the output. Let 
 
 
 
 
 
 
 
 
 
 
 

Then 

 
 
 
B=M.A=M. 

ao  bo 
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bo   ao 
bg   

SwapRows al 
 
 
bl 

 
 

 

 a2 
aa 

 

 
2 

 
5 c 

 
A 

A c 5 2 
c A 2 5 
5 2 A c 

 

) 

) 

 
bo 

B' = B  SwapR.ows  bg 
andM.B'=M. =A 

 
bl 

 
 
 

Following RPI matrix Mrp; over GF(24 ) requires 49 xor operations. Using the matrix Mrp; 
 

to construct Subfield matrix over GF(28 will help in implementing  the InvMixColumns 
 

and InvShiftRows operation  by using the implementation  of MixColumns  and ShiftRows 
 

operation respectively. 
 
 
 
 
 

Mrpi = 
 
 
 
 
 
 

Example.   Let P be a Subfield matrix over GF(28 constructed from  Mrp; over GF(24 ), 
 

A = (15, 26, 37, 48) be an input vector over GF(2 8) then 
 
 

B = P. A= P. (15,26,37,48) 
 

= p. (lll5,2ll6,3ll7,4ll8) 
 

=?  Mrp;. (1, 2, 3, 4) = (1, 6, A, 9) 
 

and  =?  Mrpi . (5, 6, 7, 8) = (A, 1, 0, 7) 
 

then  B = (bo,b1,b2,b3) = (1IIA,6II1,AII0,9II7) = (1A,61,A0,97) 
 
 

So for the inverse transformation, apply SwapRows onto the output and then multiply with 
 

Subfield matrix P. 
 
 

B' = B  SwapR.ows    (1A,97,A0,61) = (1IIA,9II7,AII0,6II1) 
 

=?  Mrp; . (1, 9, A, 6) = (1, 4, 3, 2) 
 

=?  Mrp;. (A, 7, 0, 1) = (5, 8, 7, 6) 
 

then  (1ll5,4ll8,3ll7,2ll6)  SwapR.ows    = (1ll5,2ll6,3ll7,4ll8)  =A 
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ChapterS 
 
 
 
 
 

dSPN: A TOY SPN CIPHER TO SUPPORT DECRYPTION WITH 

MINIMAL OVERHEAD 
 
 
 
 
 

5.1    Introduction 
 
 
 

The added advantage SPN networks have over Feistel is that they process complete state in 

one round. This enables them to attain required level of confusion and diffusion with rela- 

tively lesser number of rounds [33]. However, SPN networks need extra resources to support 

inverse transformation. Few designs have solved the issue using involutive components. But 

it is often the case that additional logic and resources are requried to protect against attacks 

posed by large number of fixed points of involutive components  [32].  On the other hand, 

reflection ciphers did it by incorporating inverse transformation  in later half of the encryp- 

tion routine [11, 29]. However, this increases the implementation cost of encryption routine 

and often results in almost double the cost of encrypt-only designs.  In this chapter, we de- 

fine dSPN which is an SPN structure thats supports decryption with minimal overhead. The 

cipher employs non-involutive components which acts as self inverse after some linear op- 

eration on the output. In fact the idea of iSubfield matrix is extended to both confusion and 

diffusion layers to reduce the decryption overhead. 

 
 
 
 

5.2    Specification of dSPN 
 
 
 

The dSPN is a lightweight block cipher with 128-bit plaintext and key length. The ciphertext 

is produced after 10 rounds and each round consists of operations similar to AES [3] and 

LED [15] block cipher i.e addConstants, subCells, shiftRows and mixColumns.  Figure 5.1 

shows the encryption operation of the dSPN block cipher. The 128-bit plaintext block and 

user supplied master key is arranged in a 4 x 4 matrix of 16 bytes as 
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Olrd# 00 00 00 
Olrd# 00 00 00 
Olrd# 00 00 00 
Olrd# 00 00 00 
 

Table 5.1: The 8-bit sBox used in dSPN. 
 

0  1 2  3 4  5 6  7  8 9  A  B  C  D E  F 
ossloruamn mAAM@7Dl% 
1  DB B6 lE  92  E8 AD 45 71  27 FF  3 6A 89  CO 34 SC 
2 EC C7 9D 13  D5  OE 58  SF 66  31  A2  20 74  BA F9 4B 
3Aln %9MM@ OCIDID ffiMW 
4  16 8B D9 El  90  54  OA C2 3C 63 4F  FS BE 78 2D A7 
5 29 SE 36  FO 61  87 CF 8  DD 95  7A E3  AB 42 lC  B4 
6  FD 4  6C 25 33 CB 82  SA 99 DO B8 11  47 AF  E6 7E 
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9  5 ID OOTIC1 1BWM mm 
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addConstants  The addConstants operation mixes the current round number (rd#)  in right 

nibbles of the first column starting from 1 to 10. The matrix representation of addConstants 

operation is as follows 
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Table 5.2: sBox of Piccolo block cipher. 
 

x  0123456789abcdef 

S4 [x] e  4 b 2  3  8  0  9  1  a  7  f 6  c  5 d 
 
 
 

mixColumns. The mixColumns operation uses an iSubfield matrix over GF(28 constructed 
 

from a lightweight matrix M and its inverse. This iSubfield matrix supports inverse after the 

NibbleSwap operation.  This helps in reducing the implementation resources required for 

inverse transformation.  Moreover, the MDS matrix M is chosen such that it is lightweight 

and supports serial implementation from a simple matrix A. 
 
 

1 1 0   0  3  1 5  3 

A=  
0   0  1 0  

==> A4 =  3  2  F 9  
=M 

0   0   9   2  A  3   c  D 
1 0   0   0  1 1 8  2 

 
 
 

The serial matrix A is infact Transpose of a Diagonal-Serial  Invertible (DSI) Matrix which 

were introduced in [58].  The DSI matrices support serial implementation  of MDS matrix 

multiplication  by just 10 xor operations over 4 cycles.  However the lightest MDS matrix 

constructed from a DSI matrix requires 43 xor operations for its round based implementation 

and 46 xor operations for its inverse implementation.  So in order to reduce the implemen- 

tation cost further, I conducted search on Transpose of DSI matrices and found the matrix 

M which requires 41 and 44 xor operations for forward and reverse multiplication.  Thus 

total cost to construct iSubfield matrix from M and M-1 is 85 xor operations.  Moreover, 

implementation  of these two matrices M and M-1 can be serialized using DSfi' matrices 
 

A and A- 1 which require 20 xor operations and 4 clock cycles to perform the mixColurnns 

operation. 
 

addConstants.  The block ciphers often employ a key schedule to generate separate round 

keys for each round of the block cipher. This removes the self similarity between the round 

transformations and helps in protection against slide [42] and related key attacks [92]. Since 

dSPN does not employ a proper key schedule and user supplied master key is used in each 

round, this makes all the round transformations  similar. Thus, in order to remove the self- 

similarity of round transformations, addConstants operation has been employed. Moreover, 



45  

Table 5.3: Number of Active Sboxes in 10 rounds of dSPN. 
 

Round  1  2  3  4  5 6  7  8  9  10 
Active-Sbox  4  5 9  25  29 30  34  50  54  55 
DiffProb 

 
 
 
 
 

to keep the implementation cost minimum, the current round number (rd#) is used as round 

constant and it is only xored with right nibble of the first column. 

 
5.4    Security Analysis 

 
Following subsections presents the security strength of the dSPN block cipher against dif 

 
ferent cryptanalysis attacks. 

 
 

5.4.1   Differential & Linear  Cryptanalysis 
 

The resistance of a bock cipher against linear [93] and differential [94] cryptanalysis is 

determined by number of active sboxes in a linear or differential trail [95].  The maximum 

differential probability (MDP) and linear approximation bias of the sbox 88  used in dSPN 

is 2-4.41  and 2-3 respectively.   Given the linear approximation  bias  E,  the correlation  of 
 

linear characteristic  is computed as (2E) 2  [96].  Thus correlation  potential of the sbox S8 
 

is 2-4 •   In order to mount the differential or linear cryptanalysis  on an n-bit block cipher, 

the attacker requires the differential characteristic and correlation potential to be larger than 

the 2-n [95].  Based on the differential probability and correlation potential of 88, dSPN 

requires 30 differentially and 32 linearly active sboxes to resist against these attacks. From 

extensive cryptanalysis  work on AES and wide trail design strategy, it is known that there 

are atleast 25 differential and linear active sboxes in any four rounds of the AES cipher [15]. 

Table 5.3 shows that there are atleast 34 active sboxes in 7 rounds of the dSPN which raises 

the differential and linear attack complexity to 2- 149·9 and 2-136 respectively. Thus 10 round 

dSPN is secure against differential and linear cryptanalysis. 

 
5.4.2    Boomerang Attack 

 
The boomerang attack and its variants [97, 98, 99] divides the cipher in two halves and then 

treat each half as a separate sub-cipher.  It works by finding boomerang quartet with high 

probability over these two sub-ciphers.  The probability of finding a boomerang quartet is 
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bounded by multiplication of sbox differential probability with sum of the minimum number 

of active sboxes in each sub-cipher [32]. From Table 5.3, any combination of two sub-ciphers 

for 10 rounds of dSPN will have atleast 52 active sboxes (there are atleast 26 active sboxes 

in any 5 round differential trail of dSPN). Thus complexity of the boomerang attack against 

full dSPN increases to 4.41 x 52 = 2 229·3 which is far greater than the brute force. 

5.4.3   Algebraic Attack 
 

The algebraic attacks works by modeling the complete cipher in system of equations.  The 

only non-linear component in dSPN is its sbox 88 which has an algebraic degree of d = 6. 

Table 5.3 shows that any 4 consecutive rounds of dSPN have atleast 25 active sboxes. Thus 

after four rounds the algebraic degree of the whole cipher reaches its maximum as d x 25 = 

150 > n where n is 128 (the block size).  Moreover, any 4-bit sbox 84   can be described 
 

by e = 21 quadratic equations over 8 input and output variables over GF(2) [14].  Since 

there are 32 84 in each round of the dSPN, the complete 10 rounds of the cipher consists of 

32 x 10 x 21 = 6720 quadratic equations in 32 x  10 x 8 = 2560 variables whereas the 10 
 

rounds AES consists of 6400 equations in 2560 variables.  Solving such a large system of 

equations is still an open problem. 

5.4.4   Slide Attack 
 

The slide attack [42] works by exploiting the degree of self similarity in round functions of 

the block cipher. If all the rounds of a block cipher are identical, then slid pair is found by 

sliding one instance of the encryption process against another such that both are one round 

apart [42]. Figure 5.3 illustrates this process. Since addConstants operation mixes round 

dependent constants in sixteen bits of the state in each round, this removes the similarity 

between round functions.   Moreover, the difference from these 16 bits is spread over 32 

bits after the substitution layer and to the complete state after shiftRows and mixColunms 

operation. Thus performing slide attack over few rounds of the dSPN seems impossible. 

5.4.5   Integral Attack 
 

Integral cryptanalysis was introduced with the block cipher SQUARE [79]. It is applicable 

to SPN ciphers with structure similar to SQUARE such as AES, LED and dSPN. It exploits 

particular design structure of these SPN ciphers and works independent of the sbox, finite 

field or key schedule choices. It investigates sum of particular byte values in a set of plain- 
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PT ------% CT 

 
 

    -----CT' 
 
 
 

Figure 5.3: Finding Slid Pair for Slide Attack. 
 
 

text/ cipertext pairs whereas as differential attack work with differences between the pairs. 

The attacker generates a set of 256 plaintext blocks by setting all bytes to same value except 

one. Then sum of all changed bytes will be zero after 3 rounds or four rounds with the mix- 

Columns operation removed. This enable the attcker to recover 4th or 5th round key. Since 

the integral property exists for only small number of rounds, the full round dSPN is secure 

against integral cryptanalysis. 

5.5   Implementation Details 
 

Based on the serial implementations of AES presented in [86, 87], dSPN requires approx- 

imately 425 GE lesser than the similar implementation of AES to support both encryption 

and decryption.  The major portion of the resources (around 1466 GE) for both the ciphers 

is consumed by storage of state and key bits.  Figure 5.4 shows the 8-bit implementation 

architecture of the dSPN. The cost reduction of 425 GE is mainly because of sBox and mix- 

Columns operation of the dSPN. These operations require an area of 253 and 323 GE for 

AES where as for dSPN, the cost is reduced to 64 and 165 GE respectively [87]. In order to 

perform the decryption operation in dSPN, the text and key bytes are loaded after swapping 

the nibbles. This enables the sBox and mixColumns operations circuit to act as invSbox and 

invMixColumns respectively.  The inverse of shiftRows and addConstants is implemented 

by a separate circuit  The complete implementation  requires an area of 2220 GE and 226 

clock cycles to process one block by completing one round of dSPN in 21 cycles. 
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Figure 5.4: The 8-bit architecture of dSPN for Encryption & Decryption. 
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Chapter6 
 
 
 
 

CONCLUSION & FUTURE  WORK 
 
 
 
 
 

The lightweight block ciphers are designed to have reduced implementation  cost and work 

well in resource constrained environments.  But this optimization often leads to design and 

usage of cryptographic components which have higher implementation cost for the inverse 

transform.  Although feistel and few SPN ciphers attempt to solve the issue but they have 

their own limitations such as feistel often has higher number of rounds, involutive SPN ci- 

phers have large number of fixed points and reflection ciphers have higher implementation 

cost for encrypt-only implementation. This thesis dealt with the problem by finding methods 

to reduce the implementation cost for inverse MDS matrix multiplication and designing the 

non-involutive cryptographic components  which have lesser fixed points but use same im- 

plementation for their inverse transform. This helped in reducing the implementation cost of 

two block ciphers LED and AES. In the end an SPN structure made from these components 

is proposed which supports decryption with minimal overhead.  The thesis provided secu- 

rity analysis of the dSPN structure for few cryptanalysis attacks, thus its use without further 

analysis is not recommended. The future work guidelines include 

 
• This thesis did not take into account the problem of implementing inverse of the key- 

schedule with minimal overhead. That is why dSPN used the user supplied key in each 

round. On the other hand, the block ciphers mostly employ a key-schedule to generate 

round keys from the master key to thwart related key attacks and its implementation 

in decryption routine may require handful of resources.  Thus studying different key- 

schedule constructions and improving them to support round key generation in reverse 

order during decryption with minimal overhead is still an open problem. 

 
• The implementations of cryptographic primitives are often prone to side chaunel at- 

tacks and various masking techniques are used to protect against such attacks which 

have a performance overhead. Thus improving the sbox construction proposed in this 

thesis for protection against SCA with little overhead is another way forward. 
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Appendix A 
 

 
 
 

Finite Field Multiplication 
 
 
 
 
 

A nibble(4-bit) can be represented as polynomial with bits as coefficients in GF(2). 
 
 

b3b2b1bo r+  b(x) 
 

b(x) = b3x3 + b2x2 + b1x + bo 
 
 

According  to this, the polynomial representation  of 2 is x and field multiplication  is per- 
 

formed as 
 
 

b.x = ((b3x3 + b2x2 + b1x + b0 ) . x) mod (x4  + x + 1) 
 

= (b3x4 + x3 + b1x2 +box) mod (x4  + x + 1) 
 

= b2x3 + b1x2 + (bo  E9 b3)x + b3 
 
 

The modulo operation is performed if degree of resultant polynomial is greater than 3 which 

is dependent upon the bit b3•  Thus multiplication with 2 is performed by a left shift of one 

bit and conditional xor with x + 1. 
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AppendixB 
 

 
 
 

Multiplication Matrices over GF(2) and Bitwise Field Multiplication 
 
 
 
 
 

Table B.l: Binary Matrices for Finite Field Multiplication over GF(24 ). Cell (4,3) shows 
the Multiplication Matrix for element Ox07. 

 

cell 0 1 2 3 
 
 
0 

0000 
0000 
0000 
0000 

1000 
0100 
0010 
0001 

0100 
0010 
1001 
1000 

1100 
0110 
1 011 
1001 

 
 

4 

0010 
1001 
1100 
0100 

1010 
1 1 01 
111 0 
0101 

0110 
1011 
0101 
1100 

111 0 
1 1 1 1 
0111 
11 01 

 
 

8 

1001 
1100 
0110 
0010 

0001 
1000 
0100 
0011 

1101 
1110 
1111 
1010 

0101 
1010 
11 01 
1 011 

 
 
12 

1 011 
0101 
1010 
0110 

0011 
0001 
1000 
01 1 1 

1111 
0111 
0011 
1110 

0111 
0011 
0001 
1111 
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Table B.2: Bitwise Finite Field Multiplication in GF(24 )/0x13.  A nibble consists of 4-bits 
as bab2b1bo. 

 
Element Bita Bit2 Bit1 Bito 

0 0 0 0 0 
1 ba  bl bo 
2 b2 bl ba  EB bo ba 
3  ba  EB b2  EB b1  ba  EB b1  EB bo  ba  EB bo 
4 bl ba  EB bo ba  EB b2  

5 ba  EB b1 baEB EBbo baEB EBb1 b2  EB bo 
6 b2  EB b1 ba  EB b1  EB bo EB  bo ba  EB 
7 ba  EB b2  EB b1 ba  EB b2  EB b1  EB bo b2  EB b1  EB bo baEB EBbo 
8  ba  EB bo  ba  EB EB b1  bl 

 9 bo ba  b1  EB bo 
 A ba  EB b2  EB bo baEB EBb1 baEB EBb1EBbo ba  EB b1 
 B 

c 
b2  EB bo 

ba  EB b1  EB bo 
ba  EB b1 
b2  EB bo 

baEB EBbo 
ba  EB b1 

ba  EB b1  EB bo 
b2  EB b1 

 D b1  EB bo bo ba b2  EB b1  EB bo 
 E ba  EB b2  EB b1  EB bo b2  EB b1  EB bo b1  EB bo baEB El1b1 
 F b2  EB b1  EB bo b1  EB bo bo ba  EB b2  EB b1  EB bo 
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AppendixC 
 

 
 
 

Field Multiplication Xor Count 
 
 
 
 
 

Table C.1: Number of xor Operations required for each type of Finite Field Multiplication. 
 

Element DM d-Xor s-Xor Element DM d-Xor s-Xor 

0 0 0 0 8 3 3 3 
1 0 0 0 9 7 1 1 
2 1 1 1 A 8 8 4 
3 5 5 4 B 12 6 4 
4 2 2 2 c 9 5 4 
5 6 6 4 D 13 3 2 
6 7 5 5 E 14 8 4 
7 11 9 5 F 18 6 3 
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AppendixD 
 

 
 
 

SLP Heuristic 
 
 
 
 
 

The initial baseS consists of input signals (x3, x2 , x 1, x 0 ) • 

s = {[1 0 0 0], [0 1 0 0], [0 0 1 0], [0 0 0 1]} 

The output signal (Ya, Y2, Y1, Yo) to be computed is 
 
 

11 0 0  Ya 
0110 Y2 
1 0 1 1  Y1 

1 00 1 Yo 
 
 
 

Then the initial distance vector D is simply one less than the hamming weight of each row 

of the output matrix M i.e D  = [1 1 2 1]. The heuristic finds two bases from S such that 

their addition either reduces the distance or leads to a target signal. The addition of first two 

bases x 3 and x2  leads to first target signal i.e y3   = x3 + x 2 •   Thus new distance vector is 
 

D = [0 1 2 1]. Table D.!shows the complete run of the SLP heuristic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table D.1: Example running of Heuristic for finite field multiplication by Ox03. 
 

STEP  New Base  New Distance 
 

Ya = xa +x2 [1 1 0 0] [0 1 2 1] 

Y2 = x2 +x1 [0 1 1 0] [0 0 2 1] 

Yo= xa +xo [1 0 0 1] [0 0 1 0] 

Y1 = x1 +Yo [1 0 1 1] [0 0 0 0] 
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 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1 

0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 
1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 
1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 

0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 

0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 
1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 

0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 

0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 

0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 

0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 

2 C 9 D 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 

D 2 C 9 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0 

9 D 2 C 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 

C 9 D 2 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0 
F 2 C D 0 1 1 1 0 1 0 0 1 0 1 1 0 0 1 1 
D F 2 C 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1 
C D F 2 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 
2 C D F 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 

    0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 

0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 

1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 
0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 

1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 
0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 

1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 
0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 

0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1 

0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 
1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 
1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 

 

AppendixE 
 
 
 

Mixed Implementation Matrix forM and M-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mm;=M[M-1]= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

32x16 
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AppendixF 
 
 
 

Implementation Details for Matrix Multiplication with M and M- 1 
 
 
 
 
 

Table F.1: Matrix Multiplication with MDS matrix M by45xor operations. 
 

STEP  operation STEP  operation STEP  operation 

1 to= X12 + X4 
2  t1 = Xs + Xo 
3 t2 = X15 + Xs 
4  t3 = X2 + t2 
5 Y6 = t1 + t3 
6  ts = X14 + xn 
7  t6 = x1 + ts 
8  Y2=to+t6 
9  ts = x13 + xo 
10 t9 = xw +xr 
11  tw = ts + tg 

 

12 Y14 = Xs + t10 
13 t12 = X12 + Xg 
14 t13 = tl + t12 
15  Y1s = Y2 + t13 

16 t15 = X6 + X3 
17 t16 = X1 + t13 
18 Y1 = t1s + t16 
19  t1B = t12 + t15 
20 Yw = X4 +hs 
21 t2o=to+Y6 
22 Y3 = ts +t2o 
23 t22 = X15 + t1B 
24  Y13 = xn + t22 
25 t24 = X15 + X3 
26 Y1 = tw + t24 
27 t26 = Xs +to 
28 Yn = t10 + t26 
29 t2B = X12 + Y2 
30 t29 = X7 + X3 

31 Ys = t2s + t29 
32 t31 = X2 + t10 
33  Y4 = t16 + t31 
34 t33 = X14 + X2 
35 t34 = Y3 + t22 
36 Yo=  t33 + t34 
37 t36 = X13 + X10 
38 t37 = t16 + Y3 
39 Y12 = t36 + t37 
40 t39 = X14 + tg 
41 t4o = Y1s + Y12 
42 yg = t39 + t40 
43 t42 = X10 + t15 
44 t43 = Yn + Ys 
45 YB = t42 +t43 
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TableF.2: Matrix Multiplication with matrix M-1 by 50 xor operations. 
 

STEP  operation STEP  operation STEP  operation 

1 to= X1a + X4 
2  t1 = X12 + Xg 
3 t2 = Xs +x5 

4  ta = XJ +xo 
5 t4 = xw + ta 

6  t5 = xo +t1 

7  t6 = X2 +t2 
8  Yw = t5 + t6 
9  ts = X14 + X12 
10 tg = X4 +x1 
11  tw =xu+ X7 
12 tu=xG+to 
13  YI4 = t5 + tu 
14 ha  = Xs + tg 
15 t14 = X3 + t1a 
16 t15 = X5 + ts 
17  Y6 = t1a + t15 

18 t17 = X15 + Xo 
19 hs = t6 + t11 
20 Y1 = YI4 + t1s 
21 t2o = t4 + t15 
22 t21 = XJo + t14 
23 Yu = YI4 + t21 
24  t2a = X7 + t14 
25 yg = X15 +t2a 
26 t25 = x12 + tw 
27 t26 = xn + t5 
28 t21 = Y6 + t26 
29 Ya = x2 + t27 

30 t2g = X15 + X7 
31  Y1 = t26 + t2g 
32 ta1 = Xs +to 
33  Y2 = t4 +tal 
34 taa=x1+to 

35 YI5 = t2o + taa 
36 ta5 = X5 + Y1 
37 Y12  = t27 + ta5 
38 ta1 = xa + t2 
39 Y1a  = t25 + ta1 
40 tag= x14 + XJ 
41 t4o = YI5 + tag 
42 Ys=Ya+t4o 
43 t42 = t2a + ta5 
44  Yo= t40 + t42 
45 t44 = XJa + XJO 
46 t45 = Yu + YI5 
47 Y4 = t44 + t45 
48 t47 =xu+ Xa 
49 t4s =to+ t11 
50  Y5 = t41 + t4s 
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Table F.3: Mixed Implementation(MI) for multiplication with matrix M and M- 1by 57 xor 
operations. Target signals Ya1 to Y16 and Y1s to Yo corresponds to multiplication with Matrix 
M and M-1 respectively. 

 
STEP  operation STEP  operation STEP  operation 

1  to= X1a + Xo 
2  t1 = X12 + Xg 

 

3  t2 = Xs +xs 
4  ta = X4 +x1 
5 t4 = X15 + X2 

 

6  ts = x14 +xu 
7  t6 = xw +x7 
8  t7 = x6 +xa 
9  ts=to+t6 
10  Yao = Xs +ts 
11  tw = x12 + t2 
12  tn = xo + t1 
13  t12 = ta + tw 
14  Y6  = X14 + t12 
15  Y1s = Yao + Y6 
16  t1s = x1 + tn 
17  t16 = t7 + t15 
18  Y2a  = Xs + t16 
19  Y4 = Y15 + Y2a 

20  Y16 = t6 + Y4 
21  t2o = Xn + Y6 
22  Y1s = t2 + t2o 
23  t22 =  X4 +to 
24  t23 = X6 + t22 
25  Y14 = t1 + t2a 
26  t25 =  Xo + t4 
27  Y22 = t2 + t2s 
28  Y1 = Y14 + Y22 
29  t2s = tn + t2o 
30  Ya1 = Xs + t2s 
31  Y12 = Y7 + Ya1 
32  Y24 = t4 + Y12 
33  Ya=x2+t2s 
34  Yw = Y1s + Ya 
35  ta4 = X15 + xu 
36  tas =  X7 + ta 
37  Y2 = Yao + tas 
38  ta7 = xa + tas 

39  Y21 = ts + ta7 
40  Y1a  = Y6 + Y21 
41  t4o = t1 + t7 
42  Y29 = t34 + t40 
43  Y26 = X4 + t4o 
44  Yn = Y2 + Y26 
45  Ys = Y14 + Y29 
46  t45 = Y4 + Y12 
47  Y2s = Y1a + t45 
48  Y2o = Ys + t45 
49  Ys = ts + Y2o 
50 Y21=Ya+Ys 
51  Yo=t1+Y2s 
52  Y19 = Yn +Yo 
53  ts2 = Ys +Yo 
54  Y9  = Y24 + ts2 
55 Y11 = Y2 +yg 
56  Y1 = Y16 + ts2 
57  Y25 = Yw + Y1 
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Table F.4: Derived Implementation(DI) for multiplication with matrix M and M- 1 by 69 xor 
operations. Target signals y15 to y 0 and z15 to z0 corresponds to multiplication with Matrix 
M and M-1 respectively. 

 
STEP  operation STEP  operation STEP  operation 

1  to= X12 + X4 

2  t1 = Xs +xo 

3  t2 = X15 + X5 
4  t3 = X2 + t2 
5  Y6 = t1 + t3 
6  t5 = X14 +Xu 
7  t6  = X1 + t5 

 

8  Y2=to+t6 
9  ts = X13 + Xo 

10  t9  = X10 + X7 

11  tw = ts + tg 
 

12  Y14 = Xs + tw 

13  t12 = X12 + Xg 

14  t13 = t1 + t12 
15  Y15 = Y2 + t13 
16  hs = X6 + X3 
17  t16 = X1 + t13 
18  Y1 = t1s + t16 
19  t1s = t12 + t1s 
20  Yw  = X4 + t1s 
21  t2o=to+Y6 
22  Y3=ts+t2o 
23  t22 = X15 + t1s 

24  Y13 = xu + t22 
25  t24 = X15 + X3 
26  Y1 = tw + t24 
27  t26 = X5 +to 
28  Yu = tw + t26 
29  t28 = X12 + Y2 
30  t29 = X7 + X3 
31  Ys = t2s + t29 
32  t31 = x2 + tw 

33  Y4 = t16 + t31 
34  t33 = X14 + X2 
35  t34 = Y3 + t22 
36  Yo= t33 + t34 
37  t36 = X13 + X10 

38  t37 = t16 + Y3 
39  Y12 = t36 + t37 

 

40  t39 = X14 + tg 
41  t4o = Y1s + Y12 
42  yg  = t39 + t40 
43  t42 = xw + t1s 

 

44  t43 = Yn + Ys 

45  Ys = t42 + t43 
46  t45 = X15 + X14 

47  t46  = X13 + Yw 

48  t47 = Xg + Y6 

49  t48 = X15 + X12 
50  zw   = t47 + t4s 
51  Z1 = Y9 + Z10 

52  t51 = Xo + t46 

53  Z14 = X3 + t51 
54  zr  = Y6 + Z14 

55  Z12  = Y15 + Z7 

56  zs  = Y13 + Z14 

57  ts6 = Y4 + zs 

58  Z13 = Y12 + ts6 
59  z6 = Ys + Z13 
60  Z15 = Y14 + Z6 

61  Z4 = Z12 + t56 
62  t61 = X13 + t42 
63  Zn = Y1 + t36 
64  Z2  = Y10 + Zn 
65  Zg=y1+z2 

 

66  zo = t37 + t61 
67  t66  = X15 + t3 
68  Z3 = Y15 + t66 

69  zs=Yn+z3 
 


