

DESIGN OF DECRYPTION ROUTINE WITH MINIMAL

OVERHEAD IN UGHTWEIGHT BLOCK CIPHERS

By

Abdur Rebman Raza Kban

A Cbeaia mbmil!ed to the &.cul!J ofDepartmeat oflllfmmation Securi!J, Military Col'l-
&eof Sipall, Natiooal Ulli.wrai!J of Scienra lllld Teclmology, hlemabad,

PatiSiaiJ,iD partial fnlfillment of tbeftfilliJri\Ji+nh forthe degree of MS iJJ. Information
Security

Sepcemll« 2019

ii

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Abdur Rehman Raza Khan Registration

No. 00000240986, of Military College of Signals has been vetted by undersigned, found

complete in all respect as per NUST Statutes/ Regulations, is free of plagiarism, errors and

mistakes and is accepted as partial, fulfillment for award of MS degree. It is further certified

that necessary amendments as pointed out by GEC members of the scholar have also been

incorporated in the said thesis.

Signature: _

Supervisor: Dr. Mehreen Mzal

Date: _

Signature (HoD): _

Date: _

Signature (Dean/ Principal): _

Date: _

3

DECLARATION

I hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification either at this institution or elsewhere.

4

DEDICATION

This thesis is dedicated to

MY FATHER, GRAND PARENTS, BELOVED TAYA AND KHALA,

MAY ALLAH GRANTS THEM HIGH RANKS IN JANNAT. (Ameen)

5

ACKNOWLEDGMENTS

I am thankful to ALLAH who bestowed me with the strength to accomplish this thesis.

I am in debt to my Mother, who sacrificed her life in up bringing me and my brother.

I am thankful to my Brother and Wife for their love and encouragement.

I am grateful to Dr. Mehreen Mzal and committee members for supervising my thesis work.

In the end, I would like to appreciate all of my friends for their endless support, specially

Salman, Abbas, Khawir and Ikram.

Raza

6

ABSTRACT

The rapid development of wireless sensor networks and RFID technologies is transform-

ing every aspect of human life ranging from personal fitness companions to goods tracking

in the supply chain industry. The sensitive nature of the data which these devices handle

has created the demand for lightweight cryptography as existing standards of security and

privacy are impractical for these tiny resource-constrained devices. In addition to the limita-

tion of computational resources, the challenges for lightweight block cipher design include

low gate count, power consumption, cycle count, latency, resistance to side-channel attacks

and support for decryption with minimal overhead on top of encryption. Meeting all of

these additional constraints while maintaining the required level of security is a challenging

task. This Master's thesis focuses on reducing the decryption cost of Substitution Permu-

tation Network (SPN) lightweight block ciphers. We describe techniques to implement a

lightweight block cipher in both hardware and software platforms followed by how to incor-

porate the decryption routine with encryption. The traditional way to solve this problem is

either by reducing the inverse implementation cost of existing components or constructing

new components which support inversion with minimal overhead. Our contribution spans

over both. First, we find methods to efficiently implement inverse of a Maximum Distance

Separable (MDS) matrix with minimum additional cost. On average, our methods enable

this implementation with 40% lesser xor operations. Moreover, in the best case, only 12

additional xor operations are required to support inverse matrix multiplication. Secondly,

we define constructions of non-involutive cryptographic components for both confusion and

diffusion layers which use similar implementation for its inverse. This helps in further re-

ducing the implementation cost for the inverse transform of the cryptographic primitives.

In the end, based on these primitives, we propose an SPN structure to support decryption

routine with minimal overhead.

vii

TABLE OF CONTENTS

THESIS ACCEPTANCE CERTIFICATE ii

DECLARATION iii

DEDICATION iv

ACKNOWLEDGMENTS v

ABSTRACT vi

LIST OF FIGURES X

LIST OF TABLES xi

ACRONYMS xii

1 INTRODUCTION 1

1.1 Problem Statement 3

1.2 Research Objectives . 3

1.3 Contributions ... 4

1.4 Thesis Outline . . . 4

2 IMPLEMENTING A LIGHTWEIGHT SPN BLOCK CIPHER 6

2.1 Introduction 6

2.2 LED Block Cipher 6

2.3 Software Implementations 8

2.3.1 4-bit Serial Implementation 8

2.3.2 4-bit LUT Implementation 9

2.3.3 8-bit LUT Implementation 10

2.3.4 16-bit LUT Implementation 10

2.3.5 Vector Permute Implementation 11

2.3.6 Bitslice Implementation 13

2.4 Hardware Implementation 14

2.5 Decryption 16

8

)

3 LIGHTWEIGHT MDS MATRICES OVER GF(24
) 17

3.1 Introduction . 17

3.2 Finite Field 17

3.3 XorCount. 18

3.4 MDS Matrices . 21

3.4.1 Circulant Matrix 22

3.4.2 Recursive Matrix 23

3.4.3 Hadamard Matrix . 24

3.5 Implementation of the MDS Matrix Multiplication 24

3.6 Support for Inverse Matrix Multiplication 27

3.6.1 Mixed Implementation (Ml) 27

3.6.2 Derived Implementation (DI) . 28

4 LIGHTWEIGHT MDS MATRICES OVER GF(28 30

4.1 Introduction . 30

4.2 AES Block Cipher 30

4.3 The MixColumns Operation 31

4.4 Implementation of MixColumns and InvMixColurnns Operation 32

4.5 Subfield MDS Matrix . 34

4.6 Support for InvMixColurnns Operation with minimal overhead 36

4.7 Incorporating Inverse ShiftRows (InvShiftRows) with MixColurnns 38

5 dSPN: A TOY SPN CIPHER TO SUPPORT DECRYPTION WITH MINIMAL
OVERHEAD 40

5.1 Introduction . 40

5.2 Specification of dSPN . 40

5.3 Design Rationale 43

5.4 Security Analysis 45

5.4.1 Differential & Linear Cryptanalysis 45

5.4.2 Boomerang Attack 45

5.4.3 Algebraic Attack 46

5.4.4 Slide Attack . 46

5.4.5 Integral Attack 46

5.5 Implementation Details 47

6 CONCLUSION & FUTURE WORK 49

9

BffiLIOGRAPHY 50

A Finite Field Multiplication 57

B Multiplication Matrices over GF(2) and Bitwise Field Multiplication 58

c Field Multiplication Xor Count 60

D SLP Heuristic 61

E Mixed Implementation Matrix forM and M-1 62

F Implementation Details for Matrix Multiplication with M and M-1 63

LIST OF FIGURES

2.1 Encryption Operation of LED Block Cipher. 7

2.2 Vector Permute Instruction pshufb operating on Registers xmmO and xmml. 12

2.3 Packing of 64 input blocks for Bitslice Implementation. 13

2.4 Round based Implementation of a Block Cipher in Hardware. . 15

2.5 Unfolded Implementation of a Block Cipher in Hardware. 15

4.1 MixColumns Operation of the AES Blockcipher. 32

4.2 Implementation of MixColurnns and InvMixColumns operations by Factor- ization

Method. 34

5.1 Encryption Operation of dSPN Block Cipher. 41

5.2 Construction of 8-bit sBox 88 from piccolo sbox. 43

5.3 Finding Slid Pair for Slide Attack. 47

5.4 The 8-bit architecture of dSPN for Encryption & Decryption. 48

X

xi

LIST OF TABLES

2.1 Memory and Number of basic Operations required to implement LED-64

Encryption. 12

3.1 Serial and Round based Implementation Cost of Involutory and non-

Involutory MDS Matrices and its Inverse. 26

3.2 Comparison of MI and DI methods to support matrix multiplication with

inverse of an MDS matrix with minimal overhead. 29

4.1 Compact Hardware Implementations of the AES Block Cipher. The letter E

and D stands for support for Encryption and Decryption respectively. . 31

5.1 The 8-bit sBox used in dSPN.. 42

5.2 sBox of Piccolo block cipher.. 44

5.3 Number of Active Sboxes in 10 rounds of dSPN. 45

B.l Binary Matrices for Finite Field Multiplication over GF(24). Cell (4,3)

shows the Multiplication Matrix for element Ox07. 58

B.2 Bitwise Finite Field Multiplication in GF(24)/0xl3. A nibble consists of

4-bits as b3b2b1bo. . 59

C.l Number of xor Operations required for each type of Finite Field Multiplication. 60

D.1 Example running of Heuristic for finite field multiplication by 0 x 0 3. . 61

F.l Matrix Multiplication with MDS matrix M by 45 xor operations. . . . 63

F.2 Matrix Multiplication with matrix M-1 by 50 xor operations. 64

F.3 Mixed Implementation(MI) for multiplication with matrix M and M-1 by

57 xor operations. Target signals y31 to y16 and y15 to y0 corresponds to

multiplication with Matrix M and M-1respectively. 65

F.4 Derived Implementation(DI) for multiplication with matrix M and M-1 by

69 xor operations. Target signals Y1s to Yo and Z15 to zo corresponds to

multiplication with Matrix M and M-1respectively. 66

xii

ACRONYMS

Advance Enccryption Standard

Application-Specific Integrated Circuit

Ciphertext Feed Back

Circulant Permutation Inverse

Cyclic Block Chain

Derived Implementation

Diagonal-Serial Invertible

Field-Programmable Aate Array

Galois Counter Mode

International Organization for Standardization

Internet of Things

Involutory Circulant Maximum Distance Separable

Light Encryption Device Least

Significant Bits Maximum

Distance Separable Message

Authentication Codes Mixed

Implementation

Most Significant Bits

National Institote of Standards and Technology

Output Feed Back

Row Permutation Inverse

Shortest Linear straight-line Program

Side Channel Attacks

Single Instruction, Multiple Data

Substitution Permutation Network

AES

ASIC

CFB

CPI

CBC

DI

DSI

FPGA

GCM

ISO

loT

ICMDS

LED

LSB

MDS

MAC

MI

MSB

NIST

OFB

RPI

SLP

SCA

SIMD

SPN

1

Chapter 1

INTRODUCTION

The proliferation of loT devices, ranging from personalized fitness companions to smart

home sensors is gradually transforming every aspect of human life in fundamental and di-

verse ways. Furthermore, the amalgamation of loT devices with cloud technology and big

data is bringing together physical, industrial and biological worlds [1]. According to a pre-

diction by Gartner, there will be 20 billion loT devices connected to the Internet by year

2020 [2]. These loT devices are constantly producing huge volumes of data which is shared

between devices for collaboration and forming ubiquitous systems. These networks of loT

devices also necessitate central processing for state-of-the-art intelligent services such as

analytics, mining and prediction. This requirement is met by integrating loT devices with

cloud-based technology resulting in a scalable, robust and highly available collaboration

which entails huge potentials and benefits at individual, society as well as global levels. A

key concern regarding the loT devices is the nature of the data accessed and shared by these

devices with one another as well as over the cloud infrastructure. This data includes sensitive

personal or mission critical information for which the most significant factors are privacy and

security. Lack of privacy and security diminishes the efficacy as well as utility of the loT

devices. This, in tum, acts as the primary barrier which needs to be provably surpassed for

practical utilization ofloT.

The peculiar cloud-based loT ecosystem compounds the privacy and security requirements.

A balanced approach is sought that deals with resource-constrained loT devices at one end

and performance requirement for large number of simultaneous cloud-connected devices at

the other. Existing standards of National Institute of Standards and Technology (NIST) for

encryption (AES [3]) and hash function (SHA-m [4]) can not be efficiently implemented in

resource-constrained environments [5]. Therefore, the more suitable options for these tiny

loT devices are low cost, lightweight cryptographic block and stream ciphers, hash functions

and Message Authentication Codes(MAC) [6, 7, 8, 9].

The paramount requirement in the realm of cloud-based loT scenario is data confidentiality

2

i.e. ensuring that all data is transferred amongst loT devices and with cloud servers in an

encrypted manner. The prime candidates for data confidentiality are light weight block and

stream ciphers. Block ciphers are a versatile cryptographic primitive which have an upper

edge over stream ciphers. They can act as a stream cipher by running in counter mode

and provide authentication as in Galois Counter Mode (GCM) [10]. The high clock cycle

count for initialization phase of the stream ciphers makes them less suitable for hardware

implementation in constrained devices where key changes occur frequently [11]. In addition

to it, the art of designing block ciphers seems to be more understood and well established as

compared to stream ciphers [12].

Over the past decade a number of lightweight block ciphers have been designed such as

IDGHT [13], KLEIN [14], LED [15], MIBS [16], SPARX [17], SKINNY [18]. The two

block ciphers CLEFIA [19] and PRESENT [12] form part of ISO standard for lightweight

block ciphers [20]. Mostly the lightweight block ciphers are designed to support compact

hardware implementation in terms of gate count and power consumption. However, FeW

[21], ITUbee [22], Robin and Fantomas [23] are also suitable for implementation in soft-

ware based platforms. For software implementations, the goal is to reduce the memory re-

quirement and increase the throughput. Various designs support additional constraints such

low latency, masked implementation and support for both encryption and decryption with

minimal overhead. PRINCE [11] is a low latency block cipher for pervasive computing ap-

plications. It supports encryption of data in hardware within one clock cycle with a very

competitive chip area. Moreover, the implementation cost of decryption routine on top of

encryption is negligible. The block cipher Zorro [24] is a variant of AES which is easy to

mask. It makes the implementation to resist against side channel attacks(SCA). It is often

the case that block ciphers are first proposed and then masking schemes are constructed.

However the designers of PICARO [25] took the reverse approach: for a proven masking

scheme [26], design a block cipher according to masking constraints. Few designs have

been proposed which improves upon or combined the ideas of existing lightweight block

ciphers like SIMECK [27] combines the best features of two ciphers Simon and Speck [28].

I-PRESENT [29] is an involutive design based on PRESENT [12]. The involution part is

inspired from block cipher PRINCE [11] and encryption is identical to decryption except

the round keys are used in reverse order.

3

1.1 Problem Statement

Lightweight block ciphers are often designed and specified for encrypt-only routine and

efforts are made to keep the encryption specification as lightweight as possible. As these

ciphers are intended for resource constrained devices, it is assumed that these lightweight

primitives will be employed with a block cipher mode of operation which does not neces-

sitate the presence of block cipher decryption-core [12]. However it may not be the case

always. The loT devices may have to be deployed in an already existing network which uses

mode of operation such CBC that requires implementation of the decryption routine [30].

Feistel structures inherently support decryption using the same encryption circuit by using

round keys in reverse order [28, 31, 19]. However, these have slow diffusion as only one half

of the state is processed in each round. This leads to more executions of the round function to

achieve same level of security as compared to SPN structures [32]. Moreover, output of the

round function is mixed with unprocessed half of the state by xor operations which may in-

crease the length of critical datapath [33]. To overcome these limitations of feistel structures,

few involutive SPN ciphers were proposed which used the same datapath for encryption and

decryption [34, 35, 32]. But involutive components have large number of fixed points which

makes them distinguishable from random permutations [36] and vulnerable to Invariant Sub-

space and Related key Attacks [37, 38]. One the other hand, the block ciphers PRINCE [11]

and I-PRESENT [29] support decryption with minimal overhead by incorporating inverse

round transformation in the encryption path (reflection ciphers) i.e Ek = F.M.F-1 [36].

The decryption is performed by using round keys in reverse order on the same circuit but

this also increases the implementation cost of encryption routine. The lightest implementa-

tion of these two ciphers require 2953 and 2796 GE where as encrypt-only implementation

of PRESENT needs 1570 GE only [39, 33]. Thus, implementation cost becomes almost

equal to as in case of supporting both encryption and decryption by encrypt-only designs.

1.2 Research Objectives

The research in this thesis aims to achieve the following objectives:

• Study of software and hardware implementations of lightweight block ciphers.

• Customization of an existing lightweight block cipher to support decryption with min

imum overhead.

4

)

• Comparative analysis of proposed and existing structure in terms of security and effi-

ciency.

1.3 Contributions

The significant contributions of this thesis are summarized as

• Detailed analysis of hardware and software implementations of lightweight block ci-

phers and impact of decryption routine implementation on resource consumption.

• Construction of lightweight MDS matrices and implementation methods to support

inverse Matrix multiplication with lesser implementation cost.

• Construction of lightweight non-involutive 8-bit bijective sBox that supports self in-

version after a linear operation on the output.

• Design of d-SPN, an SPN structure to support decryption with minimal overhead

1.4 Thesis Outline

Including the current Introduction chapter, this research work is composed of six chapters.

Outline of the remaining chapters is as follow:

• Chapter 2 provides a detail account on hardware and software implementations of the

block ciphers. Different implementation techniques are explained for a lightweight

block cipher LED [15]. In the end, implementation of the decryption routine of the

block cipher is explained.

• Chapter 3 deals with construction and implementation of lightweight MDS matrices

over GF(24). It provides methods to implement the inverse matrix multiplication with

40% lesser xor operations.

• Chapter 4 studies the mixColumns operation of the AES [3] block cipher and pro-

vides lightweight alternatives. It defines constructions to make non-involutive MDS

matrices over GF(28 from lightweight MDS matrices over GF(24) with reduced im-

plementation cost. Moreover, these constructions support inverse transform with little

additional implementation cost.

5

• Chapter 5 presents dSPN which is an SPN structure that supports decryption with

minimal overhead. The dSPN is constructed from non-involutive components that

support self inversion after a linear operation is performed on the output.

• Chapter 6 concludes the thesis and highlights the directions for future work.

6

Chapter2

IMPLEMENTING A LIGHTWEIGHT SPN BLOCK CIPHER

2.1 Introduction

Implementations of cryptographic primitives are categorized into software and hardware

based implementations. The former deals with implementations in general purpose proces-

sors and micro-controllers while the later is intended for dedicated devices such as FPGAs

and ASICs. In this chapter we provide a comprehensive account on different software and

hardware based implementation techniques. We explain these implementations for LED

[15] block cipher because it is a Substitution Permutation Network (SPN) with architecture

similar to AES [3]. AES is NIST's standard for block ciphers and in fact, the most ex-

tensively studied design. Its wide trail design strategy provides concrete security bounds

against differential and linear cryptanalysis [40]. Over the years, many lightweight block

ciphers including LED have been designed with a structure similar to AES such as KLEIN

[14], Midori [32], Mysterion [41], Skinny [18], and Zorro [24]. Therefore, explaining imple-

mentation techniques for LED helps in covering a large range of lightweight block ciphers

to which these techniques can be easily extended. In addition to it, LED employs recursive

MDS matrix in permutation layer which helps in realizing the 4-bit Serial implementation.

Showing the real essence of serial implementation may have not been possible if some other

SPN block cipher would have been selected.

2.2 LED Block Cipher

LED is lightweight block cipher which supports 64-bit block length and key lengths of 64

to 128 bits in multiples of 4. It does not employ any key schedule, rather the user provided

master key is used as-is where required. Moreover, the round key is mixed into the plaintext

after every four rounds, called STEP. This helps in realizing compact hardware implemen-

tation. Although the non-existence of key-schedule seems dangerous and makes the cipher

vulnerable to different types of attacks [42, 43], special care has been taken in the design of

LED to thwart against these e.g. resistance to slide-attacks [15].

Å Å
Å Å
Å Å
Å Å

S S S S
S S S S
S S S S
S S S S

sk0

sk1

sk0

sk1

Plaintext

STEP

STEP

4 x Rounds

addConstants

subCells

shiftRows

mixColumns

3 x Rounds

addConstants

subCells

shiftRows

4 Cells

nibble

STEP

sk0

Ciphertext

mixColumns

8

are mixed with the first and second column of the state matrix by xor operation.

subCeUs. It updates the sixteen nibbles of the state matrix in each round, using 4-bit sbox

of the block cipher PRESENT [12].

shiftRows. The shiftRows operation performs left cyclic rotation for inumber of positions

on ith row of the state matrix.

mixColumns. Each column of the state matrix is updated by multiplying it with a 4 x 4

diffusion matrix M. It is possible to implement this matrix multiplication serially in 4 clock

cycles by using a 4 x 4 matrix A where

0 1 0 0 4 1 2 2

0 0 1 0
A=

===}

A4= 8 6 5 6
=M

0 0 0 1 b e a 9
4 1 2 2 2 2 f b

2.3 Software Implementations

The available software based implementation techniques to implement a block ciphers in-

clude lookup-table based (LUT), bit-sliced and use of Single Instruction Multiple Data

(SIMD) instructions. The lookup-table based implementation is done by pre-computing the

small chunks of data, then selecting and aggregating it at runtime. The bit-slice technique

introduced in [44], implements the block cipher without lookup tables. It involves breaking

down the block cipher into logical bit operations in order to perform N parallel encryptions

on anN-bit microprocessor [45]. The use of SIMD instructions for accelerating the AES

was presented in [46]. Precisely, the vector permute (vperm) instruction set is used to per-

form parallel table lookups in order to increase the throughput. This technique has later been

applied to various block ciphers for accelerated implementations and resistance against side

channel attacks [47, 48, 49, 31].

2.3.1 4-bit Serial Implementation

The nibbles of the state matrix, key and sbox are stored in three arrays of sixteen bytes.

The key mixing is performed by applying xor operation on corresponding nibbles of the

state and key. The subCells operation requires sixteen lookups to update the state by sbox

values. The subCells and shiftRows operation are performed together by storing values from

sbox lookup at appropriate positions in the state matrix while keeping in view the shiftRows

9

byte xTimes(byte y) {
y << 1;
if ((y & OxlO) OxlO)

y ·poly;
return (y & OxOF)

byte xxTimes(byte y)

return xTimes(xTimes(y));

Listing 2.1: xTimes- Multiplying y by 2 and 4 in GF(24).

operation. The mixColumns operation employs the serial matrix A instead of MDS matrix

M because it consists of only 3 distinct elements i.e 1, 2, 4. This helps in reducing the

memory cost, but now each column of the state matrix is multiplied 4 times with the serial

matrix A. Multiplication with 1 does not require any resources and multiplication by 2 is

performed by left shift of one bit position and a conditional xor operation. Listing 2.1 shows

multiplication of a nibble by 2 and 4 in GF(24).

2.3.2 4-bit LUT Implementation

The 4-bit LUT Implementation is similar to 4-bit Serial implementation except it employs

multiplication with MDS matrix M in mixColumns operation. The state, key and values

of the sbox are stored in three byte arrays of size sixteen each. The operation addKey and

addConstants is performed by 16 and 8 xor operations respectively. MDS matrix M consists

of ten distinct elements other than 1. In order to perform multiplication with these, ten

arrays of size sixteen are used. Multiplication results of every element in G F (24) with the

ten distinct elements of MDS matrix M are precomputed and stored in these arrays. Thus 4-

bit LUT implementation requires additionall60 bytes of memory as compared to 4-bit serial

implementation. Moreover, the effect of sbox is combined with the matrix multiplication by

computing the multiplication tables for each distinct element m of the MDS matrix as

mulTablemf.i] = m x sbox[j] j : 0---+ 15

Combining the effect of sbox into multiplication tables helps in implementing subCells,

shiftRows and mixColumns operation together. This reduces the number of lookup oper-

ations required to implement one round of the encryption but it requires more memory to

store the multiplication tables.

10

2.3.3 8-bit LUT Implementation

In this implementation, the two consecutive nibbles of the state matrix and key are joined

together to make a byte as

n1sln14 n3ln2 n1lno
b7 bl bo

no n1 n2 n3 bo bl

n4 ns n6 n7 b2 ba
--+

ns ng nlO nn b4 bs
n12 n13 n14 n1s b6 b7

Then the values of the state matrix and key are stored in two arrays of the size 8 bytes each

and the key mixing is completed by 8 xor operations. The subCells operation employs a

larger lookup table of size 256 bytes to store sbox values. This larger sbox is computed as

sbox8[b] = sbox[bmsb(4)]1 sbox[bzsb(4)]i b: 0 -+ 255

With this byte oriented sbox, the complete state is updated by 8 lookup operations. Similarly,

the multiplication tables are computed for 8-bit input and output. These larger multiplication

tables require 2560 bytes of memory which is far more as compared to 4-bit LUT implemen-

tation. But the number of lookup operation is reduced to half. In previous implementations,

the shiftRows operation was performed by moving values to the corresponding indices, how-

ever in this implementation the shiftRows operation is performed as follows

bo

(b3 4)1(»4)
bs

(b7 4)l(b6 »4)

bl
(b3 »4) I (b2 4)

b4
(b7 4)l(b6 »4)

2.3.4 16-bit LUT Implementation

The sixteen nibbles of the state matrix and key are stored in two ushort(16-bit unsigned

integer) arrays of length 4 as

uo

11

u u2

The addKey operation uses 4 xor operations to mix key into the state. This particular packing

of state nibbles into ushort words helps in performing rnixColumns operation with lesser

operations. The 16-bit LUT implementation uses 4 lookup tables (T0 , T1, T2 , T3) of 4-bit

input and 16-bit output. Each lookup table T; takes input of ith 4-bit nibble of 16-bit string

(U = U31 U2 1 U11 U0) and outputs multiplication of nibble U; with all four elements of the ith

column of matrix M. Then 16-bit outputs from all four lookup tables are xored together to

produce output of the matrix multiplication.

4 1 2 2 Uo U.0'
s 6 5 6 u1

M X = U' -----+ X
b e a 9
2 2 f b Ua

U1'

u
U.3'

To[Uo] = 2.Uolb.Uoi8.Uoi4.Uo

Ell T1[U1] = 2.Ulle.Uli6.U1ILU1
Ell T2[U2] = f.U2Ia.U2I5.U2I2.U2
Ell Ta[Ua] = b.Uai9.Uai6.Uai2.Ua

U'= U IUIUfiU

With these pre-computed tables, rnixColumns operation is performed by 4lookups and 3 xor

operations. Moreover, these tables are computed after incorporating lookups from the sbox,

thus subCells and shiftRows operation are combined with the matrix multiplication.

Similar to 16-bit lookup table implementation, it is possible to implement the encryption

operation for 32 and 64-bit words. These implementations will store the internal state in

32 and 64-bit words and will employ lookup tables with larger output. Table 2.1 shows

number of basic operations and memory bytes required to implement LED-64 encryption by

the above mentioned lookup table methods.

2.3.5 Vector Permute Implementation

SlMD engine present in the modem computers allows implementation of one operation on

multiple data elements in parallel. Authors in [46] extended the use of SMID engine to

bock ciphers. Basically the idea is to use Vector Permute (vperm) instructions to implement

13 12 14 10 255 11 8 7 5 9 4 2 6 0 1 3

C D B F 00 E H L K G L N J P O M

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

xmm0 A B C D E F G H I J K L M N O P

xmm1

xmm0

13

64 bit state

1 1 11111111111111 1 11

Figure 2.3: Packing of 64 input blocks for Bitslice Implementation.

extended to implement mixColumns operation. In 4-bit LUT implementation, we performed

matrix multiplication by performing lookups from precomputed arrays of size sixteen which

can also be done using pshufb instruction. Similarly shiftRows can be performed by pshufb

instruction to shuffle the nibbles from old to the new indices. The remaining operations like

addConstants and round key mixing are performed by xor instruction.

2.3.6 Bitslice Implementation

In bitslice implementation complete block cipher is viewed as a gate circuit. Multiple input

blocks are split into N-bit chunks and encryption operations are performed on these chunks

in parallel. It is possible to choose different values for N depending upon the choice of un-

derlying block cipher. Setting N=l is similar to performing hardware implementation using

2-bit input gates. All the encryption operations are then performed using basic operations

such as AND, XOR, NOT etc. For N=l, the 64 input blocks of the plaintext are packed in

64 words as shown in Figure 2.3. First bit of ith plaintext block is copied to the ith position

in first 64-bit word. Second bit of ith plaint text block is copied to the ith position in second

64-bit word and so on. Now all the encryption operations are performed on these 64-bit

words which result in parallel encryption of 64 input blocks.

The subCells operation is often performed by a precomputed lookup table, but in bit-slice

implementation it is computed by basic operations. Listing 2.2 shows inplace bitslice imple-

mentation of LED sbox operating on 4 input bits. Similarly, mixColumns operation is per-

14

formed using basic operations. The shiftRows operation is in fact relabeling tbe 64 words. In

order to perform addConstants and addKey operations, bits of tbe round constants and round

key are to be packed in bitslice fashion. The bitslice implementation requires more memory

resources as 64 input blocks are treated simultaneously, but it has a major performance gain

over otber implementation techniques.

b2 XOR(b2,bl); b3 - XOR(b3,bl); t - b2; b2 - AND(b2,b3);

bl XOR(bl,b2); t XOR(t,bO); b2 - bl; bl - AND(bl,t);

bl XOR(bl,b3); t XOR(t,bO); t - Ob(t,b2); b2 - XOR(b2,b0);

b2 XOR(b2,bl); t XOR(t,b3); b2 - !b2; bO XOR(bO,t);

b3 b2; b2 - AND(b2,bl); b2 - XOR(b2,t); b2 !b2;

Listing 2.2: Bitslice lnlplementation of Sbox.

2.4 Hardware Implementation

Hardware implementations are deployed in dedicated hardware devices such as FPGAs and

ASICs. The three ways to implement a block cipher in hardware are serial, round based

and unfolded implementation. In all of tbese, tbe encryption operation is written as com-

binational logic operating on input bits. In round based implementation, one round of tbe

block cipher is implemented and state signals are passed through it for n number of times

in n clock cycles. Contrary to software implementations where byte is tbe smallest unit of

storage, hardware implementations have access to individual bits as signal wires. So it is

often tbe case tbat while implementing for ASICs, complete round function is expressed by

basic gates(AND, OR, XOR etc). However, in FPGAs, precomputed arrays are also stored

in LUTs to shorten tbe lengtb of critical patb. For round based implementation of LED block

cipher, tbe 64 bit input and key is stored in a state register. The subCells and mixColumns

operation is performed using basic logic gates. Sixteen parallel instance of subCells are im-

plemented and complete state is updated in parallel. Sinlilarly, 4 instance of mixColumns

operation are implemented, each operating on sixteen state signals corresponding to one col-

umn of tbe state matrix. The shiftRows operation is simply rewiring of tbe state signals.

The entire state is updated by round transformation in one clock cycle. The control logic

is implemented to keep track of number of rounds and after 32 cycles, tbe state holds tbe

ciphertext. Figure 2.4 shows an overview of round based hardware implementation.

KEY

PT

CT

Round

Function control

KEY

PT Round
Function

Round
Function

Round CT
Function

16

2.5 Decryption

By use of CTR and OFB block cipher modes of operation, it is possible to perform decryp-

tion of a ciphertext without actually implementing the decryption routine of the underlying

block cipher. However, with block cipher mode of operation such as CBC, it becomes nec-

essary to implement the decryption routine. The decryption of an SPN cipher is similar to

encryption except inverse transform of each component is applied in reverse order. Since all

the operations of LED block cipher are non-involutive, their inverse has to be implemented

separately. This requires additional resources which are usually equal to the resources re-

quired to implement encryption process. Thus support for decryption in CBC like mode of

operations doubles the implementation cost for such ciphers. All the implementation tech-

niques explained in previous sections are also applicable to the decryption process. However,

while implementing the decryption by lookup table based implementations, a major question

arises: "How to combine the inverse of substitution and permutation layer in a single lookup

table?". In the forward direction(encryption), we computed the lookup tables by combining

the effect of subCells and mixColurnns operations of one round, but this is not possible for

the reverse direction (decryption). So two possible alternatives are

• Decryption-1: Implement the inverse of subCells and mixColurnns operations in sep-

arate lookup tables. This almost doubles the number of lookup operations required to

implement each round as compared to encryption routine and results in lower through-

put.

• Decryption-2: Combine the inverse subCells of round; with inverse mixColumns op-

eration of round;_1• This way both the operations can be performed in single lookup

as was done in encryption. However, now the values of interleaved operations such

as the inverse of addConstants and addKey need to be recomputed and then added to

the state. Moreover, mixColumns operation from the last round and subCells oper-

ation from the first round are still to be computed by separate non-combined lookup

tables. So the two sets of lookup tables are to be stored. This almost doubles the

memory requirement but results in higher throughput as compared to the Decryption

-1 method.

17

Chapter3

LIGHTWEIGHT MDS MATRICES OVER GF(24)

3.1 Introduction

The main objective of lightweight cryptography is to design cryptographic primitives with

lesser implementation cost in terms of chip area and energy consumption [50]. For the

block ciphers, this is achieved by constructing lightweight confusion and diffusion layers

with strong cryptographic properties [51]. Out of these two, the later is employed to spread

internal dependencies of the plaintext as much as possible [52]. In wide trail SPN designs,

MDS [3, 15] and almost MDS matrices [53, 32] are preferred to construct a secure cipher

as compared to other choices for the diffusion layer [54]. Although MDS matrices have

higher implementation cost than almost MDS matrices, they have optimal branch number

and exhibit fast diffusion. This reduces the number of rounds required to achieve desired

level of security as compared to other diffusion mechanisms [55]. In this chapter, we discuss

different MDS matrix constructions over GF(24) and provide methods for multiplication

with MDS matrix M and its inverse (M-1) for minimal overhead.

3.2 Finite Field

The block ciphers often perform arithmetics in some finite field. A finite field with 2n ele-

ments and irreducible polynomial p(X) of degree n is denoted by GF(2n) /p(X). Two finite

fields over different irreducible polynomials of same degree n are isomorphic [56]. The

number of irreducible polynomials Mn of degree n over GF(2) is given by

Mn(2) -1L""J'J.L(d)2<nI n

where Jl(d) is Mobius function [57].

din

The elements of GF(2n) can be written in two ways: 1) in polynomial representation as

18

and 2) in bitwise representation as

where b; E GF(2). This way, a 4-bit string 1001 i.e Ox09 in hexadecimal, corresponds to

X3 + 1 in polynomial representation. Addition of two elements in GF(2n) is performed

by bitwise xor of coefficients of the polynomial representation of the elements. The multi-

plication of two elements is equal to product of polynomial representation of both elements

modulo irreducible polynomial p(X). In this chapter, we use the finite field GF(24)with

irreducible polynomial p(X) = X4 +X + 1. For simplicity, we often write this irreducible

polynomial p(X) in hexadecimal notation as Ox13.

3.3 Xor Count

Block ciphers often employ MDS matrices defined over a finite field in the diffusion layer.

These matrices are implemented as fully unrolled circnits in round based hardware imple-

mentations. Thus in order to reduce the implementation cost of the diffusion layer, an effort

is made to keep the number of gates required for the implementation as minimum as pos-

sible. It was a common belief that multiplication with a low hanuning weight finite field

element has low hardware implementation cost [58] . Thus most of the block ciphers used

matrices with simple finite field elements e.g MDS matrix of AES for encryption routine

consists of only OxOl, Ox02 and Ox03 [59]. This was due to the case that field multiplica-

tion of an arbitrary element f3 with Ox02 is simply left rotation by one bit position modulo

irreducible polynomial (see Appendix A) and multiplication with other elements can be de-

rived from it [40]. For example, field multiplication of an arbitrary element f3 with Ox03 in

GF(24)/0x13 is computed as 3 x f3 = (2 x fJ) tfJ {3. Let binary representation of Ox03 and

f3 be (0, 0, 1, 1) and (b3, b2, b1o bo), then

(0, 0, 1, 1)(b3, . b1, bo) = (,b1. bo ffi b3, b3)ffi

(b3, b2, b1, bo)

= (b3 ffi b2, ffi blo

b3 ffi b1 ffi bo, b3 ffi bo)

We reference this type of field multiplication implementation as direct multiplication (DM).

19

The implementation cost of the complete matrix multiplication is then determined by two

costs 1) field multiplication cost of individual elements of the matrix, 2) summation cost: the

number of xor operations required to add these multiplication results. Thus the overall xor

count of the matrix was reduced by using field elements with low hamming weight as sum-

mation cost was considered inevitable [50]. Moreover, the number of unique field elements

in the matrix were kept to minimum by reusing these in each row of the matrix so that field

multiplication results could also be reused. Further improvement was made by algorithms

presented in [60] which reduced the implementation cost by iteratively finding and eliminat-

ing the common sub-expressions. In 2014, A new method to count the number of xor gates

required to implement the field multiplication was proposed in [61]. It calculates the field

multiplication cost by counting the number of 1's in each row of the multiplication matrix

minus the number of rows. This is referred as d-xor in literature. The field multiplication

of an arbitrary element with Ox03 as shown in the above example can be represented by a

matrix multiplication over G F (2) as

1 1 0 0
0 1 1 0
1 0 1 1

1 0 0 1

ba Efl b2
Ef) b!

ba Ef) b1 Efl bo
ba Efl bo

Thus d-xor cost of field multiplication with Ox03 is 5 i.e 9-4 = 5. The authors also showed

that field multiplication of higher hamming weight elements can also be implemented with

lower xor count. Appendix B shows multiplication matrices and bitwise field multiplication

for each element of the finite field G F (24) j 0 x13. Several researchers then used this new

metric d-xor to estimate and report new matrices with lower xor count [52, 62, 63, 64]. But

the d-xor method provided an overestimation of the xor count and did not take into account

the reuse of intermediate results. In [65], the authors proposed a better metric (s-xor) to

calculate the field multiplication cost. The s-xor is the minimum number of xor operations

required to implement matrix multiplication, where the minimum is taken over all possible

implementation sequences. For the above matrix multiplication of d-xor, it is clear that term

b3 Ef) b0 appears in the third and fourth row. Thus, the term b3 Ef) b0 can be computed once

20

and reused again. In hardware, these intermediate results can be easily reused without any

additional memory elements as these are just labels of wires between the gates [50]. Ap-

pendix C shows the comparison between number of xor operations required for each type of

field multiplication implementation. The above mentioned work mostly focused on reducing

the implementation cost by local optimization of the field multiplication by individual ele-

ments. These techniques can be extended to globally optimize the matrix multiplication by

converting matrix over GF(2n) to a binary matrix over GF(2). But these become impracti-

cal for even smaller size MDS matrices as size of the matrix over G F (2) increases rapidly

e.g a 4 x 4 matrix over GF(24) is a 16 x 16 matrix over GF(2). Moreover, It was shown

that implementing the binary matrix multiplication with least possible xor count also known

as finding Shortest Linear straight-line Program (SLP) over GF(2) [66, 67] is an NP-hard

problem [68, 66]. So researchers mainly focused on reducing the matrix implementation

cost by optimizing field multiplication of individual elements and then reusing the interme-

diate results. However, an efficient solution to similar problem was already known from a

different line of research i.e combinational logic minimization. In [69], the authors presented

a new heuristic to efficiently implement binary linear layers with reduced circuit. The idea

was to keep a setS of bases which contains all known/ computed signals (binary values). At

start, the setS contains only input signals. Then a distance vector D is calculated to find how

many additional xor operations are required to compute the output signals from the bases

of the set S. A new base is computed by adding two of the existing bases and if this new

base reduces distance to the output, then it is added to the set S. Thus, the distance to output

expressions is iteratively reduced by computing and adding new bases. Tie between existing

and new distance vectors is resolved by Euclidean norm. Appendix D shows complete run

of the heuristic for the above mentioned example of field multiplication by Ox03.

We refer this heuristic as SLP heuristic. It was later improved in [70] to find an optimal

implementation for the dense matrix i.e where the number of 1's is more than 50%. This

was done by finding an intermediate value which contained most variables and then running

the original algorithm. Authors in [71] modified the SLP heuristic to find the optimal imple-

mentation circuit of cryptographic linear layers for a given depth. This reduced the length of

critical path for latency conscious applications at the expense of additional xor operations.

Moreover, running time increased as the heuristic needed to traverse more paths to find the

21

optimal solution. In [50], authors reduced the implementation cost of already known ma-

trices by using SLP. The authors found implementation of MDS matrix used in AES with

97 xor operations, while previously known best implementation used 103 xor operations

[72]. In this chapter, we use SLP heuristic to find 4 x 4 lightweight MDS matrices over

GF(24)using different MDS matrix constructions. Moreover we define two new methods to

implement matrix multiplication with inverse of an MDS matrix for minimal overhead.

3.4 MDS Matrices

Definition 1. [52] The branch number of matrix M having order k over a finite field GF(2n)

is basically the minimum number of non-zero components of the input vector v and output

vector v' = M ·v ranged over all non-zero v E [GF (2n)]k.

BM = min{W(v) + W(v')} where v 'I 0

Here W is count of non-zero elements in the input and output vector v and v' respectively.

Definition 2. [73] A Maximum Distance Separable (MDS) matrix with order k is a matrix

which attains an optimal branch number of k + 1.

Use of an MDS matrix with high branch number ensures that a small difference in the input

will propagate a large difference in the output. MDS matrices also have following character-

istics.

• A square matrix M is an MDS matrix if and only if all square sub-matrices of M are

non-singular [74].

• The inverse of an MDS matrix is also an MDS matrix [75]

• Transpose of an MDS matrix M is also an MDS matrix [40].

• The branch numbers of an MDS matrix M and its inverse M-1 are same [58].

• If a matrix M-1 is obtained after performing permutations on row or columns of an

MDS matrix M, then M-1 is also an MDS matrix [52].

• If M is an MDS matrix over G F2n, then c · M is also MDS matrix for any non-zero

c E GF2n [75].

22

a0

a1 a2 aa
aa
a2

a1

ao a1

aa ao
a2 aa

a2

a1

ao

Definition 3. A self inverse matrix is called involutory matrix i.e its second power is an

identity matrix

Involutory MDS matrices are of great interest as the same circuit can be used to implement

the inverse of the matrix. However, these involutory matrices have large number of fixed

points (f(x) = x) which can be used to distinguish it from random permutation [36]. An

involutory permutation with 2n inputs has 211 + 1 fixed points where as a randomly chosen

permutation over same space has only one fixed point[76]. If a primitive employs compo-

nents with a large number of fixed points, then special care must be taken to thwart against

cryptanalysis attacks like the Invariant Subspace Attack [77, 78, 37].

3.4.1 Circulant Matrix

A 4 x 4 right circulant matrix M is denoted by elements of its first row as Cir(a0 , a1,a2,a3)

and each subsequent row of the matrix is determined by right rotation of the previous row.

The right circulant matrices have been used in block ciphers AES [3], Piccolo [30] and

KLEIN [14]. A more generalized form of circulant matrix is cyclic matrix where each

subsequent row is some permutation of the first row. Circulant MDS matrices generally

have lower hardware implementation cost as compared to other types of matrices because

of less number of distinct elements [52]. The probability of finding a circulant MDS matrix

is much higher than finding a random square MDS matrix [79]. But the use of circulant

matrices comes with a problem i.e non-existance of Involutory Circulant MDS (ICMDS)

matrices. Authors in [80] showed that 4 x 4 ICMDS matrices do not exist. Later on, it was

proved that ICMDS matrices of any order do not exist [75]. This phenomenon increases

the implementation cost if both the matrix and its inverse are to be used in a cryptographic

primitive. Here we introduce a new class of cyclic matrix which supports inverse matrix

multiplication with less overhead.

23

P.(ao a1 a2 aa)
P,(ao, a1, a2, aa)
P9 (ao,
Ph(ao,

a1,

al,

a2,

a2,
aa)
aa)

0 1 0 0
0 0 1 0
0

ao
0

a1

0

a2

1

aa

Definition. A cyclic matrix Miscalled Circulant Permutation Inverse (CPI) matrix if rows

of its inverse matrix M-1 are some permutations of the first row of the matrix M.

CPI(ao,al,a2,aa)-1 =

Here P; is ith permutation from the list of all available permuations of a vector with 4

elements. The two main benefits of CPI matrices are

• The number of fixed points for a CPI matrix are far lesser than those of involutory

matrix. It is conjectured that a CPI matrix has 2fixed points.

• The inverse of a CPI matrix can be implemented with fewer resources as compared to

inverse of a non-involutory cyclic matrix as both consists of same distinct elements.

3.4.2 Recursive Matrix

A 4 x 4 serial matrix M is denoted by elements of its last row and is of the form

Ser(ao, a1, a2, aa) =

A recursive MDS matrix M is a matrix which can be derived from ith power of a serial matrix

for some positive integer i. This recursive MDS matrix is denoted as Ser(a0 , ab a2 , a3)i.

The main characteristic of recursive MDS matrices is that they can be implemented in serial

fashion with lesser implementation cost but more clock cycles. The use of serial matrices in

cryptographic primitives was first proposed in PHOTON hash function [81] and later used

in LED block cipher [82]. The inverse of recursive MDS matrix can be computed by raising

inverse of the underlying serial matrix to the power i. Thus, recursive MDS matrix and its

inverse can be implemented in serial fashion. The inverse of serial matrix Ser (a 0 , a1, a2 , a3)

is of the form

24

a,

a,

as 1
ao

1
ao
0

ao
0

ao

0
0 1 0 0
0 0 1 0

Ser(ao, a1,a2, aa)- 1 =

3.4.3 Hadamard Matrix

Given a set of four elements (a0 , a1, a2 , a3), a 4 x 4 hadamard matrix His constructed as

follows

ao a1 a2 aa
a1 ao aa a2

a2 a3 ao a1

Hadamard matrices are bisymmetric (H = HT) and often used in constructing involutory

MDS matrices. If a k x k hadamard matrix H is multiplied by itself, then H 2 = c? · I where

c = EB:;:- a;. This implies that a hadamard matrix His involutory if summation of its first

row elements result in 1 [83]. Moreover, a non-involutory hadamard matrix can be converted

to involutory matrix by dividing it with the sum of elements of the first row [62].

3.5 Implementation of the MDS Matrix Multiplication

Consider a right circulant matrix Cir(a0 , a 1, a2 , a3) is to be multiplied with input vector

(w, x,y, z). Then the output of this multiplication is computed as

ao a1 a2 aa w aow + a1x + a2y + aaz
aa ao a1 a2 X

 y
z

aaw + aox + a1y + a2z
a2w + aax + aoy + a1z
a1w + a2x + agy + aoz

In round based implementation, the complete multiplication is implemented in hardware and

all four outputs are computed in one clock cycle. However, in serial based implementation,

only the first row of the circulant matrix is implemented and one output is computed in one

25

clock cycle. For example, the first output of the multiplication is computed as

 w
X

y
z

Now, in order to compute the second output, the input vector is left rotated by one position

(x, y, z,w) and multiplied with first row of the matrix in next clock cycle.

ao a1 a2 aa x

y aox + a1y + a2z + aaw

z
w

Similarly, the process is repeated two more times to compute the remaining outputs [52].

Thus, the complete matrix multiplication is performed in 4 clock cycles by just implementing

the first row of the circulant matrix. However, partial results from the multiplication in each

clock cycle are required to be stored separately from the original input vector. Because

orignal input vector is to be repeatedly used as input till the time all 4 outputs have not been

computed. This approach is also extendable to cyclic, CPI and hadamard matrices. Since all

the rows of a these matrices are some permutation of the first row, the inverse permutation

of ith row is applied on the input vector before multiplying it with first row of the cyclic

matrix. In fact more trade-offs in terms of circuit area and clock cycle are also possible. For

example, multiplication for two rows of the circulant matrix can be implemented. Then it is

possible to perform the complete matrix multiplication in 2 clock cycles. Without taking into

account the cost of memory and control logic, serial implementations of these matrices need

lesser area but have high latency. While on the other hand, round based implementations

require larger resources but compute output in one clock cycle. Table 3.1 shows serial and

round based implementation cost of lightweight 4 x 4 MDS matrices. The recursive MDS

matrix used in LED block cipher requires 51 xor operations where as lightest MDS matrix

shown at serial3 in Table 3.1 can be implemented by just 44 xor operations.

26

Table 3.1: Serial and Round based Implementation Cost of Involutory and non-Involutory
MDS Matrices and its Inverse.

Type MDSMatrixM CostA CostM CostA-1 CostM-1

9218

1 Cir(9, 2, 1, 8) 8921 16 40 21 53
1892
2189
93D2

2 Cyc(D, 2, 3, 9) 2D39 18 38 18 40
D293
392D
1989

3 Ser(l, 9, 8, 9) 9CD5 16 44 16 44
5226
6671
6149

4 Had(6,1,4,9) 1694 18 38 18 43
4961
9416
149D

5 CPI(1,4,9,D) 41D9 16 50
D941
9D14
A25C

6 Had;(A,2,5,C) 2AC5 20 46
5CA2
C52A

27

2 c

9

D

D 2 c 9
9 D 2 c
c 9 D 2

F

2 c

D
D F 2 c
c D F 2

2 c D F

l

3.6 Support for Inverse Matrix Multiplication

In this section, we propose two methods for implementing matrix multiplication with the

inverse of an MDS matrix for minimal overhead. We explain it with the help of an example.

Let M be an MDS matrix such that

M= & M-1 =

Then implementation cost for matrix multiplication in GF(24) with MDS matrix M and

M-1 is 45 and 50 xor operations respectively. It implies that use of matrix M in a crypto-

graphic primitive will need additional 50 xor operations to support inverse matrix multipli-

cation in decryption routine. Thus total cost to support matrix multiplication with both M

and M-1 is 45 + 50= 95 xor operations. Following two methods reduce this overhead.

3.6.1 Mixed Implementation (MI)

• Create matrix Mm; by combining MDS matrix M and its inverse M-1 as

Mm;=[M
M-1

• Create multiplication matrix Map2 over GF(2) by replacing each element of the Mm;

by its multiplication matrix over GF(2). Appendix E shows Mm; and MaF 2 for matrix

MandM-1.

• If there exists duplicate target signals in MaF2. keep the first instance and remove

remaining while keeping a record of all signals that are equal.

• Apply SLP heuristic to compute the remaining target signals.

By MI method, total cost for multiplication with M and M-1 reduces to 57 xor operations

which is just 12 more xor operations than implementation cost of the MDS matrix M where

as separate implementation for M-1 requires 50 xor operations. The output of the SLP

heuristic report implementation for 32 target signals. The first sixteen targets of the output

28

•

correspond to multiplication of input with matrix M while remaining targets provide the

matrix multiplication result for M-1. In this implementation, a large number of intermediate

signals contribute in computation of the target signals for matrix multiplication with M and

M-1. Moreover, the target signals corresponding to M-1 are often used in computing the

same for multiplication with matrix M. The increased used of intermediate signals helps in

realizing the whole multiplication with lesser number of xor operations.

However, by MI method, it is hard to realize a separate implementation for M with lesser

operations. So contrary to separate implementation of both M and M-1, cost for matrix

multiplication with M during encryption is almost equal to the total cost forM and M-1

To deal with this issue, we propose a second method called Derived Implementation (DI)

which does not increase the cost of matrix multiplication with M.

3.6.2 Derived Implementation (DI)

• Make multiplication matrix Map2 over GF(2) by replacing each element of matrix M

by its multiplication matrix over GF(2).

• Apply SLP heuristic to compute the target signals for matrix M.

• Make multiplication matrix M0}2 over GF(2) by replacing each element of matrix

M-1 by its multiplication matrix over GF(2).

• If a target signal from M(]}2 is equal to some target signal of MaF2. remove it from

M0}2 and keep a record of it.

• Apply SLP heuristic with bases already computed for Map2 to compute remaining

target signals for M0}2 •

The DI method reports 45 xor operations for matrix M and 69 xor operations to support

multiplication with M and M-1. Appendix F provides implementation details for Matrix

Multiplication with M and M-1 by MI and DI methods.

To measure the performance of these methods, we randomly selected 100 matrices of each

type and computed implementation cost by MI and DI methods. Table 3.2 summarizes the

results of this experiment. Both the methods reported lesser implementation costs than the

separate implementation of M and M-1 for all matrix types. For Hadamard matrices, the

29

E D D 2

D 7 6 B

Table 3.2: Comparison of MI and DI methods to support matrix multiplication with inverse
of an MDS matrix with minimal overhead.

TYPe CostM CostM-1 Total MI DI

Hadamard 52.3 53.2 105.5 64.6 76.7

Circulant 53.2 53.6 106.8 79.2 86.8
Serial 52.5 52.7 105.2 84.7 90.7

overhead to support inverse matrix multiplication by MI method is 13 xor operations on

average. On the other hand, the serial matrices require more number of xor operations to

support inverse matrix multiplication.

Application to LED Block Cipher. The recursive MDS matrix employed in LED block ci-

pher have implementation cost of 51 and 49 xor operations for multiplication with matrix M

and M-1 respectively. Thus, in order to support multiplication with both M and M- 1, the

separate implementation cost reaches a sum of 100 xor operations. By MI and DI methods,

this cost reduces to 79 and 89 xor operations respectively. However, the following recursive

MDS matrix Mser has implementation cost of 66 and 74 xor operations by MI and DI meth-

ods respectively. Use of the matrix Mser in mixColumns operation of LED block cipher will

save 13 xor operations for each instance of the mixColumns operation.

Mser =

F D c 3
2 B A 9

30

Chapter4

LIGHTWEIGHT MDS MATRICES OVER GF(28)

4.1 Introduction

The security of loT devices created demand for lightweight cryptography. This was met

by either constructing lightweight primitives or reducing the implementation cost of exist-

ing standards. In this chapter we deal with construction of lightweight MDS matrices over

GF(28) which are often employed in byte oriented block ciphers. As a case study we inves-

tigate MixColumns operation of AES [3] block cipher and find corresponding lightweight

design choices that support inverse matrix multiplication with minimal overhead. More-

over we define a matrix construction that incorporates inverse shift rows with MixColunms

operation.

4.2 AES Block Cipher

In 1997, NIST announced an initiative to develop new block cipher encryption standard to

replace DES. The block cipher Rijndael designed by two Belgian cryptographers Rijmen

and Daemen was selected as Advanced Encryption Standard (AES) in 2000. It is a 128-bit

block cipher with key lengths of 128, 192 and 256 bits. The 128-bit plaintext is treated as

4 x 4 state matrix of 16 bytes. The block cipher transforms the plaintext into ciphertext

by performing multiple executions of a round transformation preceded by an initial key

addition. Each round consists offour operations such as SubBytes, ShiftRows, MixColumns,

and AddRoundKey. However, the last round omits the MixColumns operation. The number

of rounds depend upon the key length and these are 10, 12 and 14 for key length of 128,

192 and 256 respectively. Separate round keys are generated for each round by ronning a

key schedule algorithm onto the user supplied master key. The cipher has stood firm against

rigorous cryptanalysis efforts of researchers spanning over two decades. The biclique attack

achieves results slightly better than exhaustive search, but its still impractical [84]. Similar to

cryptanalysis, great efforts were made to code efficient and compact implementations of the

AES accross different hardware and software platforms. Table 4.1 summarizes the compact

31

Table 4.1: Compact Hardware Implementations of the AES Block Cipher. The letter E and
D stands for support for Encryption and Decryption respectively.

Reference Type Area(GE) Cycles

1 [85] ED 2060 246
2 [86] E 2400 226

3 [87] ED 2605 226

4 [88] ED 3400 1032
5 [89] ED 4037 336
6 [90] ED 5400 54

hardware implementations of the AES block cipher.

4.3 The MixColumns Operation

The MixColumns operation operates on columns of the state matrix. Its design criteria

included dimensions, linearity, diffusion and performance on 8-bit processors [40]. The size

of the column was set to 4 bytes by keeping in view the performance of loopkup table based

implementations on 32-bit architectures. The bytes of a column are considered polynomial

over GF(28) and multiplied with a fixed polynomial c(x) modulo x4 + 1. The performance

criterion also dictated the selection of coefficients for the polynomial c(x). Coefficients with

simple values such as 0, 1, 2 and 3 are best suited for this criteria as multiplication with 0

and 1 involve no processing. It is possible to perform multiplication with 2 efficiently by a

left shift and a conditional xor. The multiplication with 3 is performed by multiplying the

input with 2 and then xor the result with input. The wide trail design of AES imposed the

restriction of linearity and high diffusion. Thus simple coefficients were selected in such a

way that MixColumns operation have optimal branch number of five. The polynomial for

MixColumns operation is

c(x) = 3·x3 + 1·x2 + 1·x+2

It is possible to illustrate the modular multiplication with polynomial c(x) as matrix multi-

plication. Fignre 4.1 shows the MixColumns operation of the AES block cipher on the state

matrix. The polynomial c(x) is co-prime with modular polynomial x 4 +1, thus its invertible.

The inverse of MixColumns operation during decryption is performed by multiplying each

b0 b4 b8

b12

b1

b5

b9

b13

b2

b6

b10

b14

b3

b7

b11

b15

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

X

a0 a4 a8

a12

a1

a5

a9

a13

a2

a6

a10

a14

a3

a7

a11

a15

33

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

4 0 4 0
0 4 0 4
4 0 4 0
0 4 0 4

5 0 4 0
0 5 0 4
4 0 5 0
0 4 0 5

these may not be possible in all scenarios. So implementing the decryption routine becomes

inevitable. In case of diffusion layer, the problem boils down to efficient implementation

of InvMixColurnns alongwith the MixColurnns operation. Instead of implementing both the

matrices M and M-1 separately, authors in [90] proposed to decompose the M-1 matrix

into simple matrices as follows

M-1 =M + +

Multiplication of an input operand with element 4 and 8 require 5 and 7 xor gates respec-

tively. These multiplication results are computed once and then reused for each row of the

matrix multiplication. By this decomposition, the implementation cost for multiplication

with both the matrices reduces to 195 xor gates. However, another efficient implementation

by Paulo Barreto is reported in [87]. It works by factorizing the inverse matrix as

M-1 = M . Mfact = M .

In order to implement the InvMixColurnns operation by factorization method, the input col-

umn A = (ao, a1, a2, ag) is first multiplied by the matrix Mfact·

bo 5 0 4 0 ao
b1 0 5 0 4 a1

-
b2 4 0 5 0 a2

bg 0 4 0 5 ag

This multiplication by matrix Mfact is implemented using 58 xor gates and then the original

input A or the output B = (bo, b1, b2 , b3) is fed to the MixColurnns circuit depending upon

the encryption or decryption routine. The complete process is implemented by 155 xor gates

5 0 4 0
0 5 0 4
4 0 5 0
0 4 0 5

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2
 4x4 4x1

4x4

4x1

35

9 3 D 2
2 D 3 9
D 2 9 3
3 9 2 D

)

)

[61]. In order to perform the matrix multiplication B = M'.A, each element of the input

vector A = (a0 , a1, a2 , a3) over GF(28 is split in two nibbles consisting of left and right

half a; = (afllaf). Then MDS matrix Q over GF(24) is multiplied with each half of the

input vector and results are concatenated to form the output vector over GF(28).

A= (ao,a ,a2,aa) = (a&'ila , afllaf, a lla, a iia:)

(zo, z,z2, za) = Q · (a&', af, a, a)

(z4,z5,z5,z7) = Q · (a ,af,a ,a:)

It was shown in [91] that such a transform is an MDS matrix over GF(28) if Q is an MDS

matrix over GF(24). Similarly, involutory MDS matrices over higher finite fields can be

constructed from involutory MDS matrices over smaller fields [50]. The MDS matrix over

GF(28) used in MixColumns operation of the AES block cipher requires 97 xor gates. How-

ever, this cost can be reduced by subfield MDS matrix construction. Authors in [61] sug-

gested to use circulant matrix C = circ(l, 1, 4, 9) overGF(24) to reduce the implementation

cost. The MDS matrix C has an implementation cost of 46 xor operations and two instances

of it will save 5 xor gates for each instance of MixColumns operation as compared to use of

the original MDS matrix of the AES block cipher. However, the lightest MDS matrix M1w

over GF(24) as shown below requires 38 xor gates only. The subfield MDS matrix over

GF(28 constructed from M1w can be implemented with 21 xor gates lesser than the AES

MDSmatrix.

Mtw =

The major advantage of subfield construction is that MDS matrices over smaller finite fields

have lesser implementation cost. Moreover, it is possible to serialize the matrix multipli-

cation by implementing only one instance of the MDS matrix over GF(24) and then per-

forming multiplication by left half of the input vector in first clock cycle followed by the

36

=

)

right half in next. This way the implementation cost can be reduced to half at the expanse

of an additional clock cycle. Similarly, subfield construction can be extended to make diffu

sion matrices over GF(2P) with branch number B by running pfq copies of the matrix over

smaller finite field GF(2q) with same branch number where p divides q [61].

4.6 Support for InvMixColumns Operation with minimal overhead

In section 4.5, we explained how subfield construction can be used to make MDS matrices

over higher finite fields from MDS matrices over smaller finite fields. We used subfield con-

struction to reduce the implementation cost of MDS matrix multiplication for the forward

direction(encryption). In fact, the subfield construction can be easily extended to construct

MDS matrices which support implementation of its inverse matrix multiplication with min

imal overhead.

Definition 2. Given an MDS matrix Q and its inverse Q' with elements q;J, q:,i E GF(2k),

the inverse-subfield(iSubfield) MDS matrix P is constructed with elements PiJ E GF(22k)

such that

qoi,j

PiJ ,;, E ()1'(2'')
(

Contrary to subfield construction, the iSubfield MDS construction uses one instance of each

i.e Q and its inverse Q' instead of using two instances of the MDS matrix Q. This helps

in implementing inverse matrix multiplication with minimal overhead. Each element of the

input vector A = (a0 , a1 , a2 , a3) over GF(28

is split in two nibbles consisting of left and

right half a; = (af IIaf). Then MDS matrix Q and its inverse Q' is multiplied with left and

right half of the input vector respectively and results are concatenated to form byte output

vectors over GF(28).

(zo, Z1, z2, z3) = Q · (a, af, af, af)

(z4, zs, Z6, zr) = Q' · (a, a, a, af)

In order to perform inverse transformation, a nibble swap operation is performed before and

after the multiplication with iSubfield MDS matrix P. This nibble swap operation changes

37

the positions of left and right halves of the input vector. Thus the left half values which were

previously multiplied with MDS matrix Q, now gets multiplied with Q' and vice-a-verse.

Since Q and Q' are inverse of each other i.e Q . Q' = 1, swapping the nibbles of input vector

and then applying the same transformation results in identity.

B = (bo,bb ,ba) = Mllb, bfllbf, b llb, b llbf)

NibbleSwap (bRIIbL bRIIbL bRIIbL bRIIbL)
0 0' 1 1' 2 2l 3 3

(zo,z1, z2, za) = Q ·Q' · (a, af, a, a:)

(zo,zl,z2,za) = 1· (a ,af,a ,a:)

(z4,zs,z6,z7) = Q' · Q · (a ,af,a ,a)

(z4,zs,z6,z7) = 1· (a ,af,a ,a)

A'= (ao,al,a2,aa) = (zollz4, z1llzs, z2llz6, zallz7)
NibbleSwap (Z4 IIZo, Zs IIZ1, Z6 IIZ2, Z7 IIZ3)

Similar to involutory matrices, the iSubfield MDS matrix makes use of same set of operations

for its inverse. However the number of fixed points in iSubfield MDS matrices are far lesser

than the involutory matrices. In fact, the number of fixed points in an iSubfield MDS matrix

is equal to the number of fixed points in the underlying MDS matrices Q and its inverse

Q'. Use of iSubfield MDS matrix in MixColumns operation reduces the implementation

cost of InvMixColumns operation. It is possible to implement nibble swap operation with

relatively lesser cost in both hardware and software. In hardware, it simply translates to

rewiring of the signal wires. In software, it requires 2 shift and one OR operation for each

input byte, making it relatively negligible as compared to the cost of matrix multiplication

operation. For following choices of MDS matrices Q and Q' over GF(2 4), the MixColumns

and InvMixColumns operations can be implemented with 78 xor gates only.

9 3 D 2

2 D 3 9
Q=

D 2 9 3

3 9 2 D

& Q'=

D 1 F 8

8 F 1 D
F 8 D 1
1 D 8 F

38

bo b4 bs

b12 bo b4 bs

b12

bl b5 bg b13 ShiftRmns b5 bg b13 bl

b2 b6 blO b14 blO b14 b2 b6

ba b7 bn b15 b15 ba b7 bn

 bo b4 bs

b12 bo b4 bs

b12

SwapRows b15 ba b7 bn ShiftRmns ba b7 bn b15 SwapRows

 blO b14 b2 b6 b2 b6 blO b14
 b5 bg b13 bl bl b5 bg b13

4.7 Incorporating Inverse ShiftRows (InvShiftRows) with MixColumns

The ShiftRows operation of the AES shifts the bytes in ith row for inumber of position to

the left where 0 i3.

state;n = = stateuut

In order to perform inverse transform of the ShiftRows operation, bytes of the ith row has

to be right shifted for inumber of positions. Thus implementing the InvShiftRows opera-

tion requires additional resources. Authors in [87] made an observation that left shift row

transformation applied on Oth and 2nd row are self inverse. Moreover, ShiftRows opera-

tion on the 1st and 3rd row are inverse of each other. Thus swapping the 1st & 3rd row

(SwapRows) of the state matrix and then applying the ShiftRows operation infact brings the

InvShiftRows transformation.

stateuut state;n

Incorporating the InvShiftRows by ShiftRows and SwapRows operation will require use of

an MDS matrix which support such row swapping.

Definition 3. A 4 x 4 non-involutory MDS matrix M is called Row Permutation Inverse (RPI)

Matrix, if it supports inverse transformation using same circuit when SwapRows operation

is performed on the output. Let

Then

B=M.A=M.

ao bo

39

bo ao
bg

SwapRows al

bl

 a2
aa

2

5 c

A

A c 5 2
c A 2 5
5 2 A c

)

)

bo

B' = B SwapR.ows bg
andM.B'=M. =A

bl

Following RPI matrix Mrp; over GF(24) requires 49 xor operations. Using the matrix Mrp;

to construct Subfield matrix over GF(28 will help in implementing the InvMixColumns

and InvShiftRows operation by using the implementation of MixColumns and ShiftRows

operation respectively.

Mrpi =

Example. Let P be a Subfield matrix over GF(28 constructed from Mrp; over GF(24),

A = (15, 26, 37, 48) be an input vector over GF(2 8) then

B = P. A= P. (15,26,37,48)

= p. (lll5,2ll6,3ll7,4ll8)

=? Mrp;. (1, 2, 3, 4) = (1, 6, A, 9)

and =? Mrpi . (5, 6, 7, 8) = (A, 1, 0, 7)

then B = (bo,b1,b2,b3) = (1IIA,6II1,AII0,9II7) = (1A,61,A0,97)

So for the inverse transformation, apply SwapRows onto the output and then multiply with

Subfield matrix P.

B' = B SwapR.ows (1A,97,A0,61) = (1IIA,9II7,AII0,6II1)

=? Mrp; . (1, 9, A, 6) = (1, 4, 3, 2)

=? Mrp;. (A, 7, 0, 1) = (5, 8, 7, 6)

then (1ll5,4ll8,3ll7,2ll6) SwapR.ows = (1ll5,2ll6,3ll7,4ll8) =A

40

ChapterS

dSPN: A TOY SPN CIPHER TO SUPPORT DECRYPTION WITH

MINIMAL OVERHEAD

5.1 Introduction

The added advantage SPN networks have over Feistel is that they process complete state in

one round. This enables them to attain required level of confusion and diffusion with rela-

tively lesser number of rounds [33]. However, SPN networks need extra resources to support

inverse transformation. Few designs have solved the issue using involutive components. But

it is often the case that additional logic and resources are requried to protect against attacks

posed by large number of fixed points of involutive components [32]. On the other hand,

reflection ciphers did it by incorporating inverse transformation in later half of the encryp-

tion routine [11, 29]. However, this increases the implementation cost of encryption routine

and often results in almost double the cost of encrypt-only designs. In this chapter, we de-

fine dSPN which is an SPN structure thats supports decryption with minimal overhead. The

cipher employs non-involutive components which acts as self inverse after some linear op-

eration on the output. In fact the idea of iSubfield matrix is extended to both confusion and

diffusion layers to reduce the decryption overhead.

5.2 Specification of dSPN

The dSPN is a lightweight block cipher with 128-bit plaintext and key length. The ciphertext

is produced after 10 rounds and each round consists of operations similar to AES [3] and

LED [15] block cipher i.e addConstants, subCells, shiftRows and mixColumns. Figure 5.1

shows the encryption operation of the dSPN block cipher. The 128-bit plaintext block and

user supplied master key is arranged in a 4 x 4 matrix of 16 bytes as

Å
Å
Å
Å

S S S S
S S S S
S S S S
S S S S

Key

Key

Key

Key

Plaintext

Round1

Round2

One Round

addConstants

subCells

shiftRows

mixColumns

addConstants

subCells

shiftRows

4 Bytes

Round10

Key

Ciphertext

mixColumns

42

Olrd# 00 00 00
Olrd# 00 00 00
Olrd# 00 00 00
Olrd# 00 00 00

Table 5.1: The 8-bit sBox used in dSPN.

0 1 2 3 4 5 6 7 8 9 A B C D E F
ossloruamn mAAM@7Dl%
1 DB B6 lE 92 E8 AD 45 71 27 FF 3 6A 89 CO 34 SC
2 EC C7 9D 13 D5 OE 58 SF 66 31 A2 20 74 BA F9 4B
3Aln %9MM@ OCIDID ffiMW
4 16 8B D9 El 90 54 OA C2 3C 63 4F FS BE 78 2D A7
5 29 SE 36 FO 61 87 CF 8 DD 95 7A E3 AB 42 lC B4
6 FD 4 6C 25 33 CB 82 SA 99 DO B8 11 47 AF E6 7E
7 BO D8 81 79 C6 3F 67 9E 55 OD F4 4C 12 EB A3 2A
8 MO @ o mM 1741
9 5 ID OOTIC1 1BWM mm

A 64 4D F7 3A 2F 76 Bl A5 EE 18 80 D2 OC 53 9B C9
B m M W n OC TI 14 M G 1 m W
C CA ES 7F 84 B7 Fl 26 1D 48 AE 39 SB 93 DC 2 60
D 97 7C E4 DF lA 49 AO B3 FB 22 51 38 CD 85 6E 6
E 52 21 AS OB 4E 15 ED F6 BF 77 9C C4 30 69 SA D3
F OF F3 4A 57 A4 EO 19 2C 72 BB D6 8E 65 3D C8 91

3153 9EF4

3 2 F 9
M=

A 3 C D
1 1 8 2

4 7 F 9

D 4 9 D
E E 2 7

addConstants The addConstants operation mixes the current round number (rd#) in right

nibbles of the first column starting from 1 to 10. The matrix representation of addConstants

operation is as follows

RoundCanstants =

4 S

MSB S4

2 x 2

4 LSB

4

LSB

4 -1
LSB S4

MDSrpi
-1 4

S4

MSB

MSB

S8: 8-bit sBox of dSPN S4: 4-bit sBox of Piccolo

44

)

Table 5.2: sBox of Piccolo block cipher.

x 0123456789abcdef

S4 [x] e 4 b 2 3 8 0 9 1 a 7 f 6 c 5 d

mixColumns. The mixColumns operation uses an iSubfield matrix over GF(28 constructed

from a lightweight matrix M and its inverse. This iSubfield matrix supports inverse after the

NibbleSwap operation. This helps in reducing the implementation resources required for

inverse transformation. Moreover, the MDS matrix M is chosen such that it is lightweight

and supports serial implementation from a simple matrix A.

1 1 0 0 3 1 5 3

A=
0 0 1 0

==> A4 = 3 2 F 9
=M

0 0 9 2 A 3 c D
1 0 0 0 1 1 8 2

The serial matrix A is infact Transpose of a Diagonal-Serial Invertible (DSI) Matrix which

were introduced in [58]. The DSI matrices support serial implementation of MDS matrix

multiplication by just 10 xor operations over 4 cycles. However the lightest MDS matrix

constructed from a DSI matrix requires 43 xor operations for its round based implementation

and 46 xor operations for its inverse implementation. So in order to reduce the implemen-

tation cost further, I conducted search on Transpose of DSI matrices and found the matrix

M which requires 41 and 44 xor operations for forward and reverse multiplication. Thus

total cost to construct iSubfield matrix from M and M-1 is 85 xor operations. Moreover,

implementation of these two matrices M and M-1 can be serialized using DSfi' matrices

A and A- 1 which require 20 xor operations and 4 clock cycles to perform the mixColurnns

operation.

addConstants. The block ciphers often employ a key schedule to generate separate round

keys for each round of the block cipher. This removes the self similarity between the round

transformations and helps in protection against slide [42] and related key attacks [92]. Since

dSPN does not employ a proper key schedule and user supplied master key is used in each

round, this makes all the round transformations similar. Thus, in order to remove the self-

similarity of round transformations, addConstants operation has been employed. Moreover,

45

Table 5.3: Number of Active Sboxes in 10 rounds of dSPN.

Round 1 2 3 4 5 6 7 8 9 10
Active-Sbox 4 5 9 25 29 30 34 50 54 55
DiffProb

to keep the implementation cost minimum, the current round number (rd#) is used as round

constant and it is only xored with right nibble of the first column.

5.4 Security Analysis

Following subsections presents the security strength of the dSPN block cipher against dif

ferent cryptanalysis attacks.

5.4.1 Differential & Linear Cryptanalysis

The resistance of a bock cipher against linear [93] and differential [94] cryptanalysis is

determined by number of active sboxes in a linear or differential trail [95]. The maximum

differential probability (MDP) and linear approximation bias of the sbox 88 used in dSPN

is 2-4.41 and 2-3 respectively. Given the linear approximation bias E, the correlation of

linear characteristic is computed as (2E) 2 [96]. Thus correlation potential of the sbox S8

is 2-4 • In order to mount the differential or linear cryptanalysis on an n-bit block cipher,

the attacker requires the differential characteristic and correlation potential to be larger than

the 2-n [95]. Based on the differential probability and correlation potential of 88, dSPN

requires 30 differentially and 32 linearly active sboxes to resist against these attacks. From

extensive cryptanalysis work on AES and wide trail design strategy, it is known that there

are atleast 25 differential and linear active sboxes in any four rounds of the AES cipher [15].

Table 5.3 shows that there are atleast 34 active sboxes in 7 rounds of the dSPN which raises

the differential and linear attack complexity to 2- 149·9 and 2-136 respectively. Thus 10 round

dSPN is secure against differential and linear cryptanalysis.

5.4.2 Boomerang Attack

The boomerang attack and its variants [97, 98, 99] divides the cipher in two halves and then

treat each half as a separate sub-cipher. It works by finding boomerang quartet with high

probability over these two sub-ciphers. The probability of finding a boomerang quartet is

46

bounded by multiplication of sbox differential probability with sum of the minimum number

of active sboxes in each sub-cipher [32]. From Table 5.3, any combination of two sub-ciphers

for 10 rounds of dSPN will have atleast 52 active sboxes (there are atleast 26 active sboxes

in any 5 round differential trail of dSPN). Thus complexity of the boomerang attack against

full dSPN increases to 4.41 x 52 = 2 229·3 which is far greater than the brute force.

5.4.3 Algebraic Attack

The algebraic attacks works by modeling the complete cipher in system of equations. The

only non-linear component in dSPN is its sbox 88 which has an algebraic degree of d = 6.

Table 5.3 shows that any 4 consecutive rounds of dSPN have atleast 25 active sboxes. Thus

after four rounds the algebraic degree of the whole cipher reaches its maximum as d x 25 =

150 > n where n is 128 (the block size). Moreover, any 4-bit sbox 84 can be described

by e = 21 quadratic equations over 8 input and output variables over GF(2) [14]. Since

there are 32 84 in each round of the dSPN, the complete 10 rounds of the cipher consists of

32 x 10 x 21 = 6720 quadratic equations in 32 x 10 x 8 = 2560 variables whereas the 10

rounds AES consists of 6400 equations in 2560 variables. Solving such a large system of

equations is still an open problem.

5.4.4 Slide Attack

The slide attack [42] works by exploiting the degree of self similarity in round functions of

the block cipher. If all the rounds of a block cipher are identical, then slid pair is found by

sliding one instance of the encryption process against another such that both are one round

apart [42]. Figure 5.3 illustrates this process. Since addConstants operation mixes round

dependent constants in sixteen bits of the state in each round, this removes the similarity

between round functions. Moreover, the difference from these 16 bits is spread over 32

bits after the substitution layer and to the complete state after shiftRows and mixColunms

operation. Thus performing slide attack over few rounds of the dSPN seems impossible.

5.4.5 Integral Attack

Integral cryptanalysis was introduced with the block cipher SQUARE [79]. It is applicable

to SPN ciphers with structure similar to SQUARE such as AES, LED and dSPN. It exploits

particular design structure of these SPN ciphers and works independent of the sbox, finite

field or key schedule choices. It investigates sum of particular byte values in a set of plain-

47

PT ------% CT

 -----CT'

Figure 5.3: Finding Slid Pair for Slide Attack.

text/ cipertext pairs whereas as differential attack work with differences between the pairs.

The attacker generates a set of 256 plaintext blocks by setting all bytes to same value except

one. Then sum of all changed bytes will be zero after 3 rounds or four rounds with the mix-

Columns operation removed. This enable the attcker to recover 4th or 5th round key. Since

the integral property exists for only small number of rounds, the full round dSPN is secure

against integral cryptanalysis.

5.5 Implementation Details

Based on the serial implementations of AES presented in [86, 87], dSPN requires approx-

imately 425 GE lesser than the similar implementation of AES to support both encryption

and decryption. The major portion of the resources (around 1466 GE) for both the ciphers

is consumed by storage of state and key bits. Figure 5.4 shows the 8-bit implementation

architecture of the dSPN. The cost reduction of 425 GE is mainly because of sBox and mix-

Columns operation of the dSPN. These operations require an area of 253 and 323 GE for

AES where as for dSPN, the cost is reduced to 64 and 165 GE respectively [87]. In order to

perform the decryption operation in dSPN, the text and key bytes are loaded after swapping

the nibbles. This enables the sBox and mixColumns operations circuit to act as invSbox and

invMixColumns respectively. The inverse of shiftRows and addConstants is implemented

by a separate circuit The complete implementation requires an area of 2220 GE and 226

clock cycles to process one block by completing one round of dSPN in 21 cycles.

c:

- c:

State, I I I I I I I I I I I I r r---o A I

I I IRoundK

MC , I ""----t=='

._.. ._..

I I I I I I

C/)

E
::::1
0
u
><

>

32 I I I I I I

I I I II I I I I I I I I I r r-- r ..-- " I I

00

c:

C/)

E
::::1
0
u
.?:$

I 32

KEYr> I I

SELE-----. I SELo

TEXTr> I I 1- - - ---+-+ +-----+-++--.......---i Sbox I lnvSbox - --+-++-- H-1-.-...._----...---i
CT

----------------------------------PT

Figure 5.4: The 8-bit architecture of dSPN for Encryption & Decryption.

49

Chapter6

CONCLUSION & FUTURE WORK

The lightweight block ciphers are designed to have reduced implementation cost and work

well in resource constrained environments. But this optimization often leads to design and

usage of cryptographic components which have higher implementation cost for the inverse

transform. Although feistel and few SPN ciphers attempt to solve the issue but they have

their own limitations such as feistel often has higher number of rounds, involutive SPN ci-

phers have large number of fixed points and reflection ciphers have higher implementation

cost for encrypt-only implementation. This thesis dealt with the problem by finding methods

to reduce the implementation cost for inverse MDS matrix multiplication and designing the

non-involutive cryptographic components which have lesser fixed points but use same im-

plementation for their inverse transform. This helped in reducing the implementation cost of

two block ciphers LED and AES. In the end an SPN structure made from these components

is proposed which supports decryption with minimal overhead. The thesis provided secu-

rity analysis of the dSPN structure for few cryptanalysis attacks, thus its use without further

analysis is not recommended. The future work guidelines include

• This thesis did not take into account the problem of implementing inverse of the key-

schedule with minimal overhead. That is why dSPN used the user supplied key in each

round. On the other hand, the block ciphers mostly employ a key-schedule to generate

round keys from the master key to thwart related key attacks and its implementation

in decryption routine may require handful of resources. Thus studying different key-

schedule constructions and improving them to support round key generation in reverse

order during decryption with minimal overhead is still an open problem.

• The implementations of cryptographic primitives are often prone to side chaunel at-

tacks and various masking techniques are used to protect against such attacks which

have a performance overhead. Thus improving the sbox construction proposed in this

thesis for protection against SCA with little overhead is another way forward.

50

BIBLIOGRAPHY

[1] K. Schwab, The fourth industrial revolution. Crown Business, 2017.

[2] M. Hung, "Leading the iot, gartner insights on how to lead in a connected world,"
Gartner Research, pp. 1-29,2017.

[3] J. Daemen and V. Rijmen, ''Aes proposal: Rijndael," 1999.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, "Keccak sponge function fam-

ily main document," Submission to NIST (Round 2), vol. 3, no. 30, 2009.

[5] W. Wu and L. Zhang, "Lblock: a lightweight block cipher," in International Conference
on Applied Cryptography and Network Security. Springer, 2011, pp. 327-344.

[6] C. H. Lim and T. Korkishko, "mcrypton-a lightweight block cipher for security of

low-cost did tags and sensors," in International Workshop on Information Security
Applications. Springer, 2005, pp. 243-258.

[7] C. De Canniere, "Trivium: A stream cipher construction inspired by block cipher de-

sign principles," in International Conference on Information Security. Springer, 2006,
pp. 171-186.

[8] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, "Quark: A lightweight

hash;' in Cryptographic Hardware and Embedded Systems, CHES 2010. Springer
Berlin Heidelberg, 2010, pp. 1-15.

[9] A. Shamir, "Squash-a new mac with provable security properties for highly constrained

devices such as did tags," in International Workshop on Fast Software Encryption.
Springer, 2008, pp. 144--157.

[10] M. J. Dworkin, "Recommendation for block cipher modes of operation: Galois/counter

mode (gem) and gmac," Tech. Rep., 2007.

[11] J. Borghoff, A. Canteaut, T. Giineysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger et al., "Prince-a low-latency block cipher
for pervasive computing applications," in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2012, pp. 208-225.

[12] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw,

Y. Seurin, and C. V!kkelsoe, "Present: An ultra-lightweight block cipher," in Inter
national Workshop on Cryptographic Hardware and Embedded Systems. Springer,
2007, pp. 450-466.

[13] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee,

K. Jeong et al., "Hight: A new block cipher suitable for low-resource device;• in In
ternational Workshop on Cryptographic Hardware and Embedded Systems. Springer,
2006, pp. 46-59.

[14] Z. Gong, S. Nikova, andY. W. Law, "Klein: a new family of lightweight block ciphers,"

in International Workshop on Radio Frequency Identification: Security and Privacy
Issues. Springer, 2011, pp. 1-18.

51

[15] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, "The LED block cipher," in Crypto
graphic Hardware and Embedded Systems- CHES 2011. Springer Berlin Heidelberg,
2011, pp. 326-341.

[16] M. Izadi, B. Sadeghiyan, S. S. Sadeghian, and H. A. Khanooki, "Mibs: a new

lightweight block cipher;' in International Conference on Cryptology and Network Se
curity. Springer, 2009, pp. 334--348.

[17] D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. GroBschiidl, and A. Biryukov, "De-

sign strategies for arx with provable bounds: Sparx and lax," in International Confer
ence on the Theory and Application of Cryptology and Information Security. Springer,
2016, pp. 484--513.

[18] C. Beierle, J. Jean, S. Kolbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,

and S. M. Sirn, "The SKINNY family of block ciphers and its low-latency variant
MANTIS," in Advances in Cryptology- CRYPTO 2016. Springer Berlin Heidelberg,
2016, pp. 123-153.

[19] T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata, ''The 128-bit blockcipher

clefia;' in International Workshop on Fast Software Encryption. Springer, 2007, pp.
181-195.

[20] I. 0. for Standardization, "Information technology - security techniques - lightweight

cryptography- part 2: Block ciphers," ISOREC 29192-2:2012,2012.

[21] M. Kumar, S. K. Pal, and A. Panigrahi, "Few: A lightweight block cipher." IACR
Cryptology ePrint Archive, vol. 2014, p. 326, 2014.

[22] F. Karako, H. Demirci, and A. E. Harmanc1, "Itubee: a software oriented lightweight

block cipher," in International Workshop on Lightweight Cryptography for Security
and Privacy. Springer, 2013, pp. 16-27.

[23] V. Grosso, G. Leurent, F.-X. Standaert, and K. Vanct, "Ls-designs: Bitslice encryption

for efficient masked software implementations," in International Workshop on Fast
Software Encryption. Springer, 2014, pp. 18-37.

[24] B. Gerard, V. Grosso, M. Naya-Plasencia, and F.-X. Standaert, "Block ciphers that are

easier to mask: How far can we go?" in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2013, pp. 383-399.

[25] G. Piret, T. Roche, and C. Carlet, "Picaro-a block cipher allowing efficient higher-

order side-channel resistance," in International Conference on Applied Cryptography
and Network Security. Springer, 2012, pp. 311-328.

[26] M. Rivain and E. Prouff, "Provably secure higher-order masking of aes," in Interna

tional Workshop on Cryptographic Hardware and Embedded Systems. Springer, 2010,
pp. 413-427.

[27] G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong, ''The simeck family of

lightweight block ciphers;' in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2015, pp. 307-329.

52

[28] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J. Smith, and L. Wingers, ''The
simon and speck lightweight block ciphers," in Design Automation Conference (DAC),
2015 52ndACMIEDAC/JEEE. IEEE, 2015, pp. 1--6.

[29] M. R. Z'aba, N. Jamil, M. E. Rusli, M. Z. Jamaludin, and A. A.M. Yasir, "I-presenttm:

An involutive lightweight block cipher," Journal of Information Security, vol. 5, no. 03,
p. 114, 2014.

[30] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai, "Piccolo: an

ultra-lightweight blockcipher;' in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2011, pp. 342-357.

[31] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, "TWINE: A lightweight

block cipher for multiple platforms," in Selected Areas in Cryptography. Springer
Berlin Heidelberg, 2013, pp. 339-354.

[32] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and F. Regaz-

zoni, "Midori: a block cipher for low energy," in International Conference on the The
ory and Application of Cryptology and Information Security. Springer, 2014, pp.
411-436.

[33] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas, "A review of

lightweight block ciphers," Journal of Cryptographic Engineering, vol. 8, no. 2, pp.
141-184, 2018.

[34] J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen, "Nessie proposal: Noekeon,"

in First Open NESSIE Workshop, 2000, pp. 213-230.

[35] F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat, "Iceberg: An
involutional cipher efficient for block encryption in reconfigurable hardware," in Inter
national Workshop on Fast Software Encryption. Springer, 2004, pp. 279-298.

[36] C. Boura, A. Canteaut, L. R. Knudsen, and G. Leander, "Reflection ciphers," Designs,

Codes and Cryptography, vol. 82, no. 1-2, pp. 3-25,2017.

[37] J. Guo, J. Jean, I. Nikolic, K. Qiao, Y. Sasaki, and S.M. Sim, "Invariant subspace attack
against full midori64." IACR Cryptology ePrint Archive, vol. 2015, p. 1189, 2015.

[38] L. R. Knudsen and H. Raddum, "On noekeon, public reports of the nessie project:

Nes/doc/uib/wp3/009," 2001.

[39] L. Batina, A. Das, B. Ege, E. B. Kavun, N. Mentens, C. Paar, I. Verbauwhede, and
T. Yal tm, "Dietary recommendations for lightweight block ciphers: power, energy and
area analysis of recently developed architectures," in International Workshop on Radio
Frequency Identification: Security and Privacy Issues. Springer, 2013, pp. 103-112.

[40] J. Daemen and V. Rijmen, The design of Rijndael: AES-the advanced encryption stan

dard. Springer Science & Business Media, 2013.

[41] A. Journault, F.-X. Standaert, and K. Varici, "Improving the security and efficiency of
block ciphers based on Is-designs," Designs, Codes and Cryptography, vol. 82, no. 1-2,
pp.495-509,2017.

53

[42] A. Biryukov and D. Wagner, "Slide attacks," in International Workshop on Fast Soft
ware Encryption. Springer, 1999, pp. 245-259.

[43] --, ''Advanced slide attacks," in International Conference on the Theory and Appli

cations of Cryptographic Techniques. Springer, 2000, pp. 589-606.

[44] E. Biharn, ''A fast new des implementation in software," in International Workshop on
Fast Software Encryption. Springer, 1997, pp. 260-272.

[45] C. Rebeiro, D. Selvakumar, and A. Devi, "Bitslice implementation of aes," in Interna

tional Conference on Cryptology and Network Security. Springer, 2006, pp. 203-212.

[46] M. Hamburg, "Accelerating aes with vector permute instructions," in Cryptographic
Hardware and Embedded Systems-CHES 2009. Springer, 2009, pp. 18-32.

[47] S. Matsuda and S. Moriai, "Lightweight cryptography for the cloud: exploit the power

of bitslice implementation," in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2012, pp. 408-425.

[48] T. Park, H. Seo, and H. Kim, "Fast implementation of simeck family block ciphers

using avx2," in 20I8 International Conference on Platform Technology and Service
(PlatCon). IEEE, 2018, pp. 1-6.

[49] B. Lac, A. Canteaut, J. J. Fournier, and R. Sirdey, "Thwarting fault attacks against

lightweight cryptography using simd instructions," in Circuits and Systems (ISCAS),
20I8 IEEE International Symposium on. IEEE, 2018, pp. 1-5.

[50] T. Kranz, G. Leander, K. Stoffelen, and F. Wiemer, "Shorter linear straight-line

programs for mds matrices," IACR Transactions on Symmetric Cryptology, vol. 2017,
no. 4, pp. 188-211, Dec. 2017. [Online]. Available: https://tosc.iacr.orglindex.php/
ToSC/article/view/813

[51] S. Li, S. Sun, C. Li, Z. Wei, and L. Hu, "Constructing low-latency involutory mds

matrices with lightweight circuits," IACR Transactions on Symmetric Cryptology, pp.
84-117,2019.

[52] M. Liu and S. M. Sim, "Lightweight MDS generalized circulant matrices," in Fast

Software Encryption. Springer Berlin Heidelberg, 2016, pp. 101-120. [Online].
Available: https://doi.org/10.1007/978-3-662-52993-5_6

[53] R. Avanzi, "The qarrna block cipher family. almost mds matrices over rings with zero

divisors, nearly symmetric even-mansour constructions with non-involutory central
rounds, and search heuristics for low-latency s-boxes," IACR Transactions on Sym
metric Cryptology, pp. 4-44,2017.

[54] A. Mahmoodi Rishakani, M. R. Mirzaee Sharnsabad, S. Dehnavi, M. A. Amiri,

H. Maimani, and N. Bagheri, "Lightweight 4x4 mds matrices for hardware-uriented
cryptographic primitives," The ISC International Journal of Information Security,
vol. 11, no. 1, pp. 35-46, 2019.

[55] A. M. Rishakani, Y. F. Dabanloo, S. M. Dehnavi, M. M. Sharnsabad, and N. Bagheri,

"A note on the construction of lightweight cyclic mds matrices." IJ Network Security,
vol.21,no.2,pp.269-274,2019.

54

[56] S. Sarkar and S. M. Sim, "A deeper understanding of the xor count distribution in the
context of lightweight cryptography," in International Conference on Cryptology in
Africa. Springer, 2016, pp. 167-182.

[57] R. Lidl and H. Niederreiter, Finite fields. Cambridge university press, 1997, vol. 20.

[58] D. Toh, J. Teo, K. Khoo, and S. M. Sim, "Lightweight MDS serial-type matrices
with minimal fixed XOR count," in Progress in Cryptology - AFRICACRYPT
2018. Springer International Publishing, 2018, pp. 51-71. [Online]. Available:
https://doi.org/10.1007/978-3-319-89339-6_4

[59] J. Daemen and V. Rijmen, ''Aes proposal: Rijndael," 1999.

[60] C. Paar, "Optimized arithmetic for reed-solomon encoders," in Proceedings of IEEE

International Symposium on Information Theory. IEEE, 1997, p. 250.

[61] K. Khoo, T. Peyrin, A. Y. Poschmann, and H. Yap, "Foam: searching for hardware-
optimal spn structures and components with a fair comparison," in International Work
shop on Cryptographic Hardware and Embedded Systems. Springer, 2014, pp. 433-
450.

[62] S. M. Sim, K. Khoo, F. Oggier, and T. Peyrin, "Lightweight mds involution matrices,"

in International Workshop on Fast Software Encryption. Springer, 2015, pp. 471-493.

[63] Y. Li and M. Wang, "On the construction of lightweight circulant involutory mds ma-
trices;' in International Conference on Fast Software Encryption. Springer, 2016, pp.
121-139.

[64] S. Sarkar and H. Syed, "Lightweight diffusion layer: Importance of toeplitz matrices,"

IACR Transactions on Symmetric Cryptology, pp. 95-113,2016.

[65] J. Jean, T. Peyrin, S. M. Sim, and J. Tourteaux, "Optimizing implementations of
lightweight building blocks," IACR Transactions on Symmetric Cryptology, pp. 130--
168, 2017.

[66] J. Boyar, P. Matthews, and R. Peralta, "Logic minimization techniques with applica-

tions to cryptology," Journal of Cryptology, vol. 26, no. 2, pp. 280--312,2013.

[67] C. Fuhs and P. Schneider-Kamp, "Synthesizing shortest linear straight-line programs
over gf (2) using sat," in International Conference on Theory and Applications of Sat
isfiability Testing. Springer, 2010, pp. 71-84.

[68] J. Boyar, P. Matthews, and R. Peralta, "On the shortest linear straight-line program for

computing linear forms," in International Symposium on Mathematical Foundations of
Computer Science. Springer, 2008, pp. 168--179.

[69] J. Boyar and R. Peralta, "A new combinational logic minimization technique with ap-

plications to cryptology," in International Symposium on Experimental Algorithms.
Springer, 2010, pp. 178--189.

[70] A. Visconti, C. V. Schiavo, and R. Peralta, "Improved upper bounds for the expected

circuit complexity of dense systems of linear equations over gf (2);' Information Pro
cessing Letters, vol. 137, pp. 1-5, 2018.

55

[71] J. Boyar, R. Peralta et al., "Small low-depth circuits for cryptographic applications,"
Cryptography and Communications, vol. 11, no. 1, pp. 109-127,2019.

[72] J. Jean, A. Moradi, T. Peyrin, and P. Sasdrich, "Bit-sliding: A generic technique for

bit-serial implementations of spn-based primitives," in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp. 687-707.

[73] S. Vaudenay, "On the need for multipermutations: Cryptanalysis of MD4 and

SAFER;' in Fast Software Encryption. Springer Berlin Heidelberg, 1995, pp.
286-297. [Online]. Available: https://doi.org/10.1007/3-540-60590-8_22

[74] H. Mattson, Jr, "The theory of error-correcting codes (fj macwilliams and nja sloane),"

SIAM Review, vol. 22, no. 4, pp. 513-519, 1980.

[75] K. C. Gupta and I. G. Ray, "On constructions of mds matrices from circulant-like
matrices for lightweight cryptography," Tech. Rep. ASU/20I4/l, 2014.

[76] P. Flajolet and R. Sedgewick, Analytic combinatorics. cambridge University press,

2009.

[77] G. Leander, M. A. Abdelraheem, H. AlKhzairni, and E. Zenner, ''A cryptanaly-
sis of printcipher: the invariant subspace attack," in Annual Cryptology Conference.
Springer, 2011, pp. 206-221.

[78] G. Leander, B. Minaud, and S. R!llnjom, ''A generic approach to invariant subspace at-

tacks: Cryptanalysis of robin, iscream and zorro," in Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 2015, pp.
254-283.

[79] J. Daemen, L. Knudsen, and V. Rijmen, ''The block cipher square," in International

Workshop on Fast Software Encryption. Springer, 1997, pp. 149-165.

[80] J. Nakahara Jr and E. Abrahao, ''A new involutory mds matrix for the aes." IJ Network
Security, vol. 9, no. 2, pp. 109-116, 2009.

[81] J. Guo, T. Peyrin, and A. Poschmann, "The photon family of lightweight hash func-

tions," in Annual Cryptology Conference. Springer, 2011, pp. 222-239.

[82] J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw, "The led block cipher," in Inter
national Workshop on Cryptographic Hardware and Embedded Systems. Springer,
2011, pp. 326-341.

[83] K. C. Gupta and I. G. Ray, "On constructions of mds matrices from companion matrices

for lightweight cryptography," in International Coriference on Availability, Reliability,
and Security. Springer, 2013, pp. 29-43.

[84] A. Bogdanov, D. Khovratovich, and C. Rechberger, "Biclique cryptanalysis of the full

aes;• in International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 2011, pp. 344-371.

[85] S. Banik, A. Bogdanov, and F. Regazzoni, ''Atornic-aes v 2.0." IACR Cryptology ePrint

Archive, vol. 2016, p. 1005, 2016.

56

[86] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, "Pushing the limits: a very
compact and a threshold implementation of aes," in Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 2011, pp.
69-88.

[87] S. Banik, A. Bogdanov, and F. Regazzoni, ''Atomic-aes: A compact implementation

of the aes encryption/decryption core," in International Conference in Cryptology in
India. Springer, 2016, pp. 173-190.

[88] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, ''Aes implementation on a grain of

sand," lEE Proceedings-Information Security, vol. 152, no. 1, pp. 13-20, 2005.

[89] S. Mathew, S. Satpathy, V. Suresh, M. Anders, H. Kaul, A. Agarwal, S. Hsu, G. Chen,
and R. Krishnamurthy, "340 mv-1.1 v, 289 gbps/w, 2090-gate nanoaes hardware ac-
celerator with area-optimized encrypt/decrypt gf (2 4) 2 polynomials in 22 nm tri-gate
cmos," IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 1048-1058, 2015.

[90] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, "A compact rijndael hardware ar-

chitecture with s-box optimization," in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2001, pp. 239-254.

[91] J. Choy, H. Yap, K. Khoo, J. Guo, T. Peyrin, A. Poschmann, and C. H. Tan, "Spn-hash:

improving the provable resistance against differential collision attacks," in Interna
tional Conference on Cryptology in Africa. Springer, 2012, pp. 270--286.

[92] A. Biryukov, D. Khovratovich, and I. Nikolic, "Distinguisher and related-key attack on

the full aes-256," in Annual International Cryptology Conference. Springer, 2009, pp.
231-249.

[93] M. Matsui, ''The first experimental cryptanalysis of the data encryption standard," in

Annuallnternational Cryptology Conference. Springer, 1994, pp. 1-11.

[94] E. Biham and A. Shamir, Differential cryptanalysis of the data encryption standard.
Springer Science & Business Media, 2012.

[95] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, "Gift: a small

present," in International Conference on Cryptographic Hardware and Embedded Sys
tems. Springer, 2017, pp. 321-345.

[96] M. Matsui, "New structure of block ciphers with provable security against differen-

tial and linear cryptanalysis," in International Workshop on Fast Software Encryption.
Springer, 1996, pp. 205-218.

[97] D. Wagner, "The boomerang attack," in International Workshop on Fast Software En

cryption. Springer, 1999, pp. 156-170.

[98] J. Kelsey, T. Kohno, and B. Schneier, "Amplified boomerang attacks against reduced-
round mars and serpent," in International Workshop on Fast Software Encryption.
Springer, 2000, pp. 75-93.

[99] E. Biham, 0. Dunkelman, and N. Keller, ''The rectangle attack-rectangling the ser-

pent," in International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2001, pp. 340--357.

57

Appendix A

Finite Field Multiplication

A nibble(4-bit) can be represented as polynomial with bits as coefficients in GF(2).

b3b2b1bo r+ b(x)

b(x) = b3x3 + b2x2 + b1x + bo

According to this, the polynomial representation of 2 is x and field multiplication is per-

formed as

b.x = ((b3x3 + b2x2 + b1x + b0) . x) mod (x4 + x + 1)

= (b3x4 + x3 + b1x2 +box) mod (x4 + x + 1)

= b2x3 + b1x2 + (bo E9 b3)x + b3

The modulo operation is performed if degree of resultant polynomial is greater than 3 which

is dependent upon the bit b3• Thus multiplication with 2 is performed by a left shift of one

bit and conditional xor with x + 1.

58

AppendixB

Multiplication Matrices over GF(2) and Bitwise Field Multiplication

Table B.l: Binary Matrices for Finite Field Multiplication over GF(24). Cell (4,3) shows
the Multiplication Matrix for element Ox07.

cell 0 1 2 3

0

0000
0000
0000
0000

1000
0100
0010
0001

0100
0010
1001
1000

1100
0110
1 011
1001

4

0010
1001
1100
0100

1010
1 1 01
111 0
0101

0110
1011
0101
1100

111 0
1 1 1 1
0111
11 01

8

1001
1100
0110
0010

0001
1000
0100
0011

1101
1110
1111
1010

0101
1010
11 01
1 011

12

1 011
0101
1010
0110

0011
0001
1000
01 1 1

1111
0111
0011
1110

0111
0011
0001
1111

59

Table B.2: Bitwise Finite Field Multiplication in GF(24)/0x13. A nibble consists of 4-bits
as bab2b1bo.

Element Bita Bit2 Bit1 Bito

0 0 0 0 0
1 ba bl bo
2 b2 bl ba EB bo ba
3 ba EB b2 EB b1 ba EB b1 EB bo ba EB bo
4 bl ba EB bo ba EB b2

5 ba EB b1 baEB EBbo baEB EBb1 b2 EB bo
6 b2 EB b1 ba EB b1 EB bo EB bo ba EB
7 ba EB b2 EB b1 ba EB b2 EB b1 EB bo b2 EB b1 EB bo baEB EBbo
8 ba EB bo ba EB EB b1 bl

 9 bo ba b1 EB bo
 A ba EB b2 EB bo baEB EBb1 baEB EBb1EBbo ba EB b1
 B

c
b2 EB bo

ba EB b1 EB bo
ba EB b1
b2 EB bo

baEB EBbo
ba EB b1

ba EB b1 EB bo
b2 EB b1

 D b1 EB bo bo ba b2 EB b1 EB bo
 E ba EB b2 EB b1 EB bo b2 EB b1 EB bo b1 EB bo baEB El1b1
 F b2 EB b1 EB bo b1 EB bo bo ba EB b2 EB b1 EB bo

60

AppendixC

Field Multiplication Xor Count

Table C.1: Number of xor Operations required for each type of Finite Field Multiplication.

Element DM d-Xor s-Xor Element DM d-Xor s-Xor

0 0 0 0 8 3 3 3
1 0 0 0 9 7 1 1
2 1 1 1 A 8 8 4
3 5 5 4 B 12 6 4
4 2 2 2 c 9 5 4
5 6 6 4 D 13 3 2
6 7 5 5 E 14 8 4
7 11 9 5 F 18 6 3

61

AppendixD

SLP Heuristic

The initial baseS consists of input signals (x3, x2 , x 1, x 0) •

s = {[1 0 0 0], [0 1 0 0], [0 0 1 0], [0 0 0 1]}

The output signal (Ya, Y2, Y1, Yo) to be computed is

11 0 0 Ya
0110 Y2
1 0 1 1 Y1

1 00 1 Yo

Then the initial distance vector D is simply one less than the hamming weight of each row

of the output matrix M i.e D = [1 1 2 1]. The heuristic finds two bases from S such that

their addition either reduces the distance or leads to a target signal. The addition of first two

bases x 3 and x2 leads to first target signal i.e y3 = x3 + x 2 • Thus new distance vector is

D = [0 1 2 1]. Table D.!shows the complete run of the SLP heuristic.

Table D.1: Example running of Heuristic for finite field multiplication by Ox03.

STEP New Base New Distance

Ya = xa +x2 [1 1 0 0] [0 1 2 1]

Y2 = x2 +x1 [0 1 1 0] [0 0 2 1]

Yo= xa +xo [1 0 0 1] [0 0 1 0]

Y1 = x1 +Yo [1 0 1 1] [0 0 0 0]

62

 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 1

0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1
1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0
1 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1

0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1

0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0
1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0

0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1

0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1

0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0

0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0

2 C 9 D 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0

D 2 C 9 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1 0

9 D 2 C 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1

C 9 D 2 0 1 1 0 0 0 1 1 0 1 1 1 1 0 0 0
F 2 C D 0 1 1 1 0 1 0 0 1 0 1 1 0 0 1 1
D F 2 C 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0 1
C D F 2 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0
2 C D F 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1

 0 0 1 1 0 1 1 1 0 1 0 0 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1

1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0
0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0

1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0
0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0

1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1
0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0

0 1 0 0 1 0 1 1 0 0 1 1 0 1 1 1

0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1
1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1

AppendixE

Mixed Implementation Matrix forM and M-1

Mm;=M[M-1]=

32x16

63

AppendixF

Implementation Details for Matrix Multiplication with M and M- 1

Table F.1: Matrix Multiplication with MDS matrix M by45xor operations.

STEP operation STEP operation STEP operation

1 to= X12 + X4
2 t1 = Xs + Xo
3 t2 = X15 + Xs
4 t3 = X2 + t2
5 Y6 = t1 + t3
6 ts = X14 + xn
7 t6 = x1 + ts
8 Y2=to+t6
9 ts = x13 + xo
10 t9 = xw +xr
11 tw = ts + tg

12 Y14 = Xs + t10
13 t12 = X12 + Xg
14 t13 = tl + t12
15 Y1s = Y2 + t13

16 t15 = X6 + X3
17 t16 = X1 + t13
18 Y1 = t1s + t16
19 t1B = t12 + t15
20 Yw = X4 +hs
21 t2o=to+Y6
22 Y3 = ts +t2o
23 t22 = X15 + t1B
24 Y13 = xn + t22
25 t24 = X15 + X3
26 Y1 = tw + t24
27 t26 = Xs +to
28 Yn = t10 + t26
29 t2B = X12 + Y2
30 t29 = X7 + X3

31 Ys = t2s + t29
32 t31 = X2 + t10
33 Y4 = t16 + t31
34 t33 = X14 + X2
35 t34 = Y3 + t22
36 Yo= t33 + t34
37 t36 = X13 + X10
38 t37 = t16 + Y3
39 Y12 = t36 + t37
40 t39 = X14 + tg
41 t4o = Y1s + Y12
42 yg = t39 + t40
43 t42 = X10 + t15
44 t43 = Yn + Ys
45 YB = t42 +t43

64

TableF.2: Matrix Multiplication with matrix M-1 by 50 xor operations.

STEP operation STEP operation STEP operation

1 to= X1a + X4
2 t1 = X12 + Xg
3 t2 = Xs +x5

4 ta = XJ +xo
5 t4 = xw + ta

6 t5 = xo +t1

7 t6 = X2 +t2
8 Yw = t5 + t6
9 ts = X14 + X12
10 tg = X4 +x1
11 tw =xu+ X7
12 tu=xG+to
13 YI4 = t5 + tu
14 ha = Xs + tg
15 t14 = X3 + t1a
16 t15 = X5 + ts
17 Y6 = t1a + t15

18 t17 = X15 + Xo
19 hs = t6 + t11
20 Y1 = YI4 + t1s
21 t2o = t4 + t15
22 t21 = XJo + t14
23 Yu = YI4 + t21
24 t2a = X7 + t14
25 yg = X15 +t2a
26 t25 = x12 + tw
27 t26 = xn + t5
28 t21 = Y6 + t26
29 Ya = x2 + t27

30 t2g = X15 + X7
31 Y1 = t26 + t2g
32 ta1 = Xs +to
33 Y2 = t4 +tal
34 taa=x1+to

35 YI5 = t2o + taa
36 ta5 = X5 + Y1
37 Y12 = t27 + ta5
38 ta1 = xa + t2
39 Y1a = t25 + ta1
40 tag= x14 + XJ
41 t4o = YI5 + tag
42 Ys=Ya+t4o
43 t42 = t2a + ta5
44 Yo= t40 + t42
45 t44 = XJa + XJO
46 t45 = Yu + YI5
47 Y4 = t44 + t45
48 t47 =xu+ Xa
49 t4s =to+ t11
50 Y5 = t41 + t4s

65

Table F.3: Mixed Implementation(MI) for multiplication with matrix M and M- 1by 57 xor
operations. Target signals Ya1 to Y16 and Y1s to Yo corresponds to multiplication with Matrix
M and M-1 respectively.

STEP operation STEP operation STEP operation

1 to= X1a + Xo
2 t1 = X12 + Xg

3 t2 = Xs +xs
4 ta = X4 +x1
5 t4 = X15 + X2

6 ts = x14 +xu
7 t6 = xw +x7
8 t7 = x6 +xa
9 ts=to+t6
10 Yao = Xs +ts
11 tw = x12 + t2
12 tn = xo + t1
13 t12 = ta + tw
14 Y6 = X14 + t12
15 Y1s = Yao + Y6
16 t1s = x1 + tn
17 t16 = t7 + t15
18 Y2a = Xs + t16
19 Y4 = Y15 + Y2a

20 Y16 = t6 + Y4
21 t2o = Xn + Y6
22 Y1s = t2 + t2o
23 t22 = X4 +to
24 t23 = X6 + t22
25 Y14 = t1 + t2a
26 t25 = Xo + t4
27 Y22 = t2 + t2s
28 Y1 = Y14 + Y22
29 t2s = tn + t2o
30 Ya1 = Xs + t2s
31 Y12 = Y7 + Ya1
32 Y24 = t4 + Y12
33 Ya=x2+t2s
34 Yw = Y1s + Ya
35 ta4 = X15 + xu
36 tas = X7 + ta
37 Y2 = Yao + tas
38 ta7 = xa + tas

39 Y21 = ts + ta7
40 Y1a = Y6 + Y21
41 t4o = t1 + t7
42 Y29 = t34 + t40
43 Y26 = X4 + t4o
44 Yn = Y2 + Y26
45 Ys = Y14 + Y29
46 t45 = Y4 + Y12
47 Y2s = Y1a + t45
48 Y2o = Ys + t45
49 Ys = ts + Y2o
50 Y21=Ya+Ys
51 Yo=t1+Y2s
52 Y19 = Yn +Yo
53 ts2 = Ys +Yo
54 Y9 = Y24 + ts2
55 Y11 = Y2 +yg
56 Y1 = Y16 + ts2
57 Y25 = Yw + Y1

66

Table F.4: Derived Implementation(DI) for multiplication with matrix M and M- 1 by 69 xor
operations. Target signals y15 to y 0 and z15 to z0 corresponds to multiplication with Matrix
M and M-1 respectively.

STEP operation STEP operation STEP operation

1 to= X12 + X4

2 t1 = Xs +xo

3 t2 = X15 + X5
4 t3 = X2 + t2
5 Y6 = t1 + t3
6 t5 = X14 +Xu
7 t6 = X1 + t5

8 Y2=to+t6
9 ts = X13 + Xo

10 t9 = X10 + X7

11 tw = ts + tg

12 Y14 = Xs + tw

13 t12 = X12 + Xg

14 t13 = t1 + t12
15 Y15 = Y2 + t13
16 hs = X6 + X3
17 t16 = X1 + t13
18 Y1 = t1s + t16
19 t1s = t12 + t1s
20 Yw = X4 + t1s
21 t2o=to+Y6
22 Y3=ts+t2o
23 t22 = X15 + t1s

24 Y13 = xu + t22
25 t24 = X15 + X3
26 Y1 = tw + t24
27 t26 = X5 +to
28 Yu = tw + t26
29 t28 = X12 + Y2
30 t29 = X7 + X3
31 Ys = t2s + t29
32 t31 = x2 + tw

33 Y4 = t16 + t31
34 t33 = X14 + X2
35 t34 = Y3 + t22
36 Yo= t33 + t34
37 t36 = X13 + X10

38 t37 = t16 + Y3
39 Y12 = t36 + t37

40 t39 = X14 + tg
41 t4o = Y1s + Y12
42 yg = t39 + t40
43 t42 = xw + t1s

44 t43 = Yn + Ys

45 Ys = t42 + t43
46 t45 = X15 + X14

47 t46 = X13 + Yw

48 t47 = Xg + Y6

49 t48 = X15 + X12
50 zw = t47 + t4s
51 Z1 = Y9 + Z10

52 t51 = Xo + t46

53 Z14 = X3 + t51
54 zr = Y6 + Z14

55 Z12 = Y15 + Z7

56 zs = Y13 + Z14

57 ts6 = Y4 + zs

58 Z13 = Y12 + ts6
59 z6 = Ys + Z13
60 Z15 = Y14 + Z6

61 Z4 = Z12 + t56
62 t61 = X13 + t42
63 Zn = Y1 + t36
64 Z2 = Y10 + Zn
65 Zg=y1+z2

66 zo = t37 + t61
67 t66 = X15 + t3
68 Z3 = Y15 + t66

69 zs=Yn+z3

