Auditing Advanced Android Anti-Malware
Tools against Sophisticated Evasion
Technigues

A thesis submitted to the faculty of Information Security,
Military College of Signals, National University of Sciences and Technology, Islamabad,
Pakistan, in partial fulfillment of the requirements for the degree of MS in

Information Security

January, 2020

CERTIFICATE

Certified that final copy of MS/MPhil thesis written by MS NS Samrah
Registration No. 00000206357, of Military College of Signals _has been vetted by

undersigned, found complete in all respect as per NUST Statutes/Regulations, is free
of plagiarism, errors and mistakes and is accepted as partial, fulfilment for award of
MS/MPhil degree. It is further certified that necessary amendments as pointed out by

GEC members of the student have been also incorporated in the said thesis.

Signature:
Name of Supervisor Assoc Prof Dr. Haider Abbas
Date:

Signature (HoD):
Date:

Signature (Dean/Principal):
Date:

DECLARATION

| hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

DEDICATION

“In the name of Allah, the most Beneficent, the most Merciful"

| dedicate this thesis to my mother, sister, and teachers who supported me each step of the

way.

ACKNOWLEDGMENTS

All praises to Allah for the strengths and His blessing in completing this thesis.

I would like to convey my gratitude to my supervisor, Dr. Haider Abbas, and my co-supervisor
Asst. Prof. Waleed Bin Shahid for their supervision and constant support. Their invaluable
help of constructive comments and suggestions throughout the experimental and thesis works
are major contributions for the success of this research. Also, | would thank my committee
members; Dr. Syed Amer Ahsan Gillani and Asst. Prof. Mian Muhammad Waseem Igbal for

their support and knowledge regarding this topic.

Last, but not the least, I am highly thankful to my parents. They have always stood by my
dreams and aspirations and have been a great source of inspiration for me. 1 would like to thank

them for all their care, love and support through my times of stress and excitement.

ABSTRACT

Mobile malware threats have become a real concern. Malware authors are coming up with
smarter ways to build applications that can easily compromise confidentiality, integrity and
availability of the user’s data and perform other illicit activities like identity theft, financial
gains, cyber terrorism etc. The aim of this research work is to audit known antimalware
solutions for their efficacy against sophisticated malware evasion techniques. Evaluation of
the state-of-the-art commercial mobile anti-malware products for Android is necessary to test
how resistant they are against various evasion techniques (even with known malware). Such
an evaluation is important for not only measuring the available defense against mobile malware
threats but also proposing effective, next-generation solutions. This research work highlights
and compares, in detail, various sophisticated techniques employed by the hackers to evade
malware detection, along with pros and cons of each technique. It also presents comparison of
existing anti-malware tools and their efficacy against the discussed evasion techniques. Finally,
using sophisticated anti-malware evasion technique developed for Android Operating System
(OS) that uses exhaustive obfuscation to deceive static and dynamic detection respectively to

audit known anti-malware solutions and making them more resilient and powerful.

vi

Table of Contents

(08 = o I 1 O AN I USRSt ii
(] O I AN N I 1]\ RS iii
DEDICATION ..ottt ettt st sttt bt e s sb e e s be e s bt e s bee s beesabeesbeesabeesbaesabaesnsaesnbaeenseesnses iv
ACKNOWLEDGMENTSttt sttt ettt sit et ste e saee e s ateesbeeesabeesabeesabaesateesasaesaseesabeesaseens v
AB ST RACT <.ttt sttt bt e s bt e s bt e s bt e s b et e bt e e be e e bt e e b et e ht e e bee e abbe e bt e e sabeenateenabeenteees Vi
ST OF FIQUIES ..e.vitieteeiieiete ettt ettt ettt et e st et e e s beetesbe et e esaessessesbeteseeasaeseassessessenseseeeteaseessensassensessens xii
T) =L o] 13O RRR xiii
CRAPTEE L.ttt ettt b e st b e e bt b s bt e bt e b st he b e bt bt b e bt b e e bt et be et b et ne e 1
Ao [Tox £ o] o [OOSR 1
1.1 BACKGIOUNG ...ttt st ene s 1
111 ANAroid Threat LanaSCape........ccveieevierieeeeiieeeitesteeee e steesre e eaesteereestesseesesreesnensens 1
1.1.1.1 Third Party APPlICALIONS.........cceecieiiieeeieeete ettt 2

1.1.1.2 Android Malware STatiStICS.......cveruererieriieierieseeeesieseceie e e e se e eaenees 2

1.1.2 Android Malware Evasion TEChNIQUES........c.ccvriririrerieieieeeereseseseeeeeeeeeea 3

1.2 Motivation and Problem Statement............cooeverierieirininereseseeee e 4
1.3 ProjeCt DESCIIPLION.ccueeii ettt ettt sttt st e s te et e s e e b e st e e aa e tesbeeasesteesnensens 5
1.3.1 ODJECLIVE ..ttt ettt e st et e s beeae e beste e s e s besaaebesreenaenes 5
1.3.2 AAPPIOACH ...ttt 5
133 ACAAEIMIC ODJECTIVES ...ttt st nae s 5
1.34 SCOPE OF thE PrOJECT ...ttt st eas 6
1.35 Areas of Application/AGVANTAGESc.ccveieriiiieieteeeecte ettt st 6

1.4 TheSiS OrganiZatiOncceceecierieierieieeteste et se et e stesee et e e et ste s e etesseesaessesseensessesssensens 7

LG T 1 = TSRS 8
ANAroid FUNAAMENTAISc.oiieee ettt ettt bbbt bt et e e et saesbe s bt eaeeneens 8
2.1 ANdroid SyStem AIChITECIUIE.......cceeieiteeeee ettt et be st e be e e 8
2.2 Android Application TAXONOMYccccceeeererreeriereeeeseestesseseessesseeeessesseessessesssessesssensens 10
2.2.1 Major Application COMPONENES........ccvreerierieieriereerte et ste e re e sresee e e 10
2.2.1.1 AndroidManifeSt. XMl [2] c.ccveoveeieieceeeeeeeeeee e e 10
2.2.1.2 INTENES [2] cerereiteeieee ettt ettt ettt ettt et sra et e s beennents 11
2.2.1.3 ACHVITIES [2] 1oeeeieeieeeieeee ettt ettt ettt st a e st e e e sneeeenees 11
2.2.1.4 Broadcast RECEIVEIS [2] ..cvevvirieieriiriieiesieseesieseestesteeeestesreesse s e eae e ssaeseesseeneses 11
2.2.1.5 SEIVICES [2] c.vvevveiteeiesieeeeeie st ete st et e ettt e s et e s re et e s te e s e e stesreesbesteesaensesrseneesneensenes 11
2.2.1.6 CONENE PrOVIEIS [2] .eeveeeeeieriieierie sttt ettt et st eas 12

2.3 SECUNILY IMOEI [1] .-eeeeeeeeieeieeeee ettt ettt st sttt st saeeeeseeeneenee s 12

vii

231 Application SANADOXING [1]eeveerererierieieieeeerereeee e 12
2.3.2 PErMISSIONS [L]..cneiteeeieieieeient sttt 13
2.3.3 TP C [L] ettt 13
2.3.4 Code Signing and Platform Keys [L] ...c.ccovceevereieeiesieeeesieseeeeste e ve e 13
2.35 Security Enhanced Linux (SELINUX) [L]..c.eeererenineneiieeeeneseseseeseeeeeeeie e 13
2.3.6 SYSIEM UPUALES......eeeeeeiieieeteetest ettt 13
2.3.7 AT LT I =T To 1 TR 14
2.3.8 File System PermiSSion [2] ...c.cceeeeviereeiesieeeetisreeeese et re e reere st sre e e 14
2.3.9 ROOLING OF DEVICES [2]...vveviiveeieitieeeeitestete sttt sttt s sre e 14
2.3.10 Device AdMINISTIAtION ...c..eveuieiriirierierieietetee ettt 14
2.3.11 File SYStem ENCIYPIION.....ciiiiirieriertesteteteteee sttt 14
2.4 SecUrity VUINEraDIlItIEScceeveciieeeiece ettt et s ae e e anenne 14
2.4.1 Elevation of Privilege (EOP) [17]...ccvoeeoeiieeeieeeeeeeeeste ettt 15
2.4.2 Remote Code EXecution (RCE) [17] ccveeveveieeiecieeeeie ettt 15
2.4.3 Denial of Service (D0S) [L7] .cccveerererieieieeeereniese ettt 16
244 Information Disclosure (ID)[23]ccveoveeeerinererieeieeee e 16

L0 g =T o] (=] g T O OO OO OSSOSO OO USOURPR 17
Malware, DeteCtion and ANAIYSIS.........ccviiiecierieeie ettt e e e tesaeseesreesseesseeseesssessaesseesens 17
3.1 MODIIE MAIWAIES ..ottt eae s 17
3.1.1 THOJANS .eeetieteete ettt et ettt et et e et e st e st e et e s teebe e besteesbesbeeasestesbeenbesteere e beereentesaeensetes 17
3.1.2 BACKUOOIS ...ttt 17
3.1.3 RABNSOMWEIE........ooviiiiiiiieieit et s e e 17
3.14 BOINELS ... 18
3.15 RS0} L= TSP RPRRRTRRRN 18
3.2 Malware Propagation TEChNIGUES........ceecveiieeeeitieteetesteeeeste st ete e eee e s e e stesreeaesteeanennens 18
3.2.1 REPACKAGINGcutieveereitieeecie ettt ettt sttt et et e st e ste e besbeess e beeasetesbeensesbaeseeabesseensenns 18
3.2.2 Drive DY DOWNIOAd...........coiieieiecieceesecteeree ettt s 18
3.3 Malware Detection TECHNIQUESccviveeeierieeieiieeetesteeee e seete et e e sreesaesreesnennens 19
3.3.1 SEALIC ANAIYSIS ...veeieeiieieieceees ettt et ae st e raenbe s 19
3.3.1.1 Signature-based DEteCIONccccerieierienieiee et 19
3.3.1.2 Permission-based DEeteCtioN..........ccevveeeieirinineriesceeeeeee e 19
3.3.1.3 API-hased DELECLIONcc.ceriiirieiirieinieiricieee ettt 20
3.3.1.4 Interaction-based DEteCtionccoccereirieiniiininieieeceetee e 20

viii

3.3.1.5 Dataflow-Dased DEECIION.......ccceeeeeeeeeeee ettt e e e et e e e e e e e e eeeeeeeesesesereaeees 20

3.3.2 DYNAMIC @NAIYSIS ..ottt 20
3.3.2.1 Anomaly-based DEeteCliON.......cccveviiiieieieeeee e e e 21
3.3.22 Emulation-based DEeECHIONc..cvveuirieirieirieieieet ettt 21

3.3.3 MACNINE LEAIMING ..c.veuviteiieiieieeieeieseret ettt 21

(O g -1 o) =] g TSRS 22
Malware EVASiON TECANIGUES........c.ccuveieirieiiineeirieteestet sttt ss et b e st s sne e bene e 22
41 Common EVasion TECANIGUEScecererieieieieiniceieste sttt 22

411 ODTFUSCALION [L2] ...ttt st 22

412 COdE REUSE [L2] ...ttt ettt 22

4.1.3 Steganography [L3]eceeoeeeeecececee ettt ne 22

4.1.4 Cryptography [L3]...cceceececeeece ettt et st ta et b ae b e ere et 22

415 RESIGNEA [42] ...ttt 23

4.1.6 Sring ENCryption [46]oovevviriiieieieeeeeiee et 23

4.1.7 API Reflection [42], [46] ...veoveeeeeee ettt st e 23

4.1.8 Resource ModifiCation [46]ccecveieeeeriiiieie ettt s 23

4.1.9 NOP INSEITION [42]...vetieeieieeteetece ettt sttt st e e et s be e st e eaeebesre e e 23

4110 PACKING [LL]eetiieieieiieieeteetest sttt ettt ettt ene 24

4111 Disassembling and Reassembling [49]cccoeririninienenieeeereeeeeeeeei 24

4.1.12 Changing Package Name [46]........cceeieieieiieiesieceeie ettt 24

4.2 LITErature REVIEW......cuiiiiiiieieicietcete ettt 24
(O 0 T-T o) =] g SRR 29
Proposed Framework for Auditing Android AMTs Using Malware Evasion Techniques...................... 29

5.1 Components of the Auditing FrameWOrK...........ccccoveiiiieiieieneee ettt 30

511 EVASION MOGE ... 30

5.1.1.1 ODbfuscation MOAUIE...........ccooueirieiniiiee e 31
5.1.1.1.1 APIOBFUSCAEION.....cuiiiiiiieiiciiteeeeee s 32
5.1.1.1.2 String and Variable ENCryption...........ccccoeeeeieiieeeieceeeececeee e 32
5.1.1.1.3 Package, Class and Method Obfuscation (PCM).......ccccccevrrreeverreeenreceennne, 32
5.1.1.1.4 Java APl REFIECHIONoouiiiiiiiiecce s 33
5.1.1.1.5 ResSource ODTUSCALIONccceueirieiirreiiieiiieeeeee ettt 33

5.1.1.2 ANgeCryption MOGUIEecveiieeieiieieteee et 33

5.1.1.3 Phases of Evasion MOGElcocoeiiiiiiininieeece e 36
5.1.1.3.1 Individual Evasion Module Implementation.............ccccecceriveeneneenenenceenn 36

5.1.1.3.2 Multiple Evasion Modules Implementation............cccceeveeeeerinenencncneeeeenne. 37

512 AUITING MOEL ... 37
5.1.2.1 Steps for AUAItING AMT S ..cueiiceeeceeetee et e s 37

L0 g =T o] (=] T OO OO SO SO SO OOOOEOSO OO PO SOTRPTSOU PP 39
EXPEIIMENT. ...ttt ettt b et b et b et b et et h bt e bbb e bt s bt e bttt e st bt e st bt neean 39
6.1 ENVIrONMENTAl SELUD......eioviieieieieetete sttt ettt st ra et st e s be e e s reennennens 39
6.2 MAIWAIE DAASELcoveuiiiiiciiieictc ettt 40
6.3 MaAIWAIE DELECIONSc.vevieeieieieeieeteet ettt ettt eaeas 44
6.3.1 WIATUSTOEAL ...ttt 44
6.3.1.1 VirusTotal Sandbox INtegration...........ccecevererierienieieiieieeeescree e 45
6.3.1.1.1 VirusTotal Droidy[73]ccoveeieieeeieceeeeste ettt 45

6.3.1.1.2 TenCent HABO ..ot 45

6.3.1.1.3 VirusTotal ANArobOXcceoieieirininiresereeeee s 45

L0 T] - USSR 47
IMPIEMENTALION RESUILS ...ttt e e s e e s e e s reesaeeseenseesseessessaensaenseensens 47
7.1 Uploading Malware Variants t0 VirusTotal..........cceceeerirenerenieieineseneseeeeeeeeeens 47
7.11 RAW MAIWATE ...ttt 47
7.12 Individual Evasion Module Implementation..............cceoeeeinenineneneneeeeeeeee 48
7.1.2.1 String ENCIyPtion (SE)...ccveiiiieieiceeese ettt sttt s 48
7.1.2.2 Variable ENCryption (VE)ooioieiiieeececeeeeeeeste ettt st 49
7.1.2.3 Java APl RefleCtion (JAR).....cecieriiiieese ettt 50
7.1.2.4 AP OBFUSCALIONSoveiiieiiieieieiee et 51
7.1.2.4.1 Random Perturbation (RP).........coeiiiieiiiieiece sttt 51

7.1.2.4.2 One-by-One Perturbation (OOP)cccoveiieieciceeeceeeee et 52

7.1.2.4.3 Change Package Name (PN)......cccooiiieiiiieiecesteeie ettt s 53

7.1.2.4.4 Change File Name (FN) ...ccocoiiieeeieieereeeerie et 54

7.1.2.4.5 RemoVe all PErMISSIONScccccivieiiriiiniiirieiieineeee s 55

7.1.2.4.6 Insert Benign Permissions (IBP)........ccccevievieiineeceneceese ettt 56

7.1.25 Package, Class and Method Obfuscations (PCM)ccceeveeeereeveeneeeesiesieenee 57
7.1.25.1 Change Package Name (PN_PCM)cccooiiiiriiieereeiere e 57

7.1.2.5.2 Insert NUIl BYteS (INB)......cooiiuieieiceeereeee ettt 58

7.1.2.5.3 Insert Benign Class (IBC)ccveveriiieiericeeeseee ettt 59

7.1.2.6 Resource ObfusCations (RO)cceveeriererieiieeeeese et 60
7.1.2.7 ANQECrYPLION (ANGE)......ooiiieiee ettt et 61

7.13 Multiple Evasion Module Implementationcocooevereririnininenereeeeeeeee 62

7.1.3.1 String Encryption (SE) + Java APl Reflection (JAR).......cocevivineneneieieieine 63
7.1.3.2 String Encryption (SE) + Java API Reflection (JAR) + Change Package Name
(PN_PCIM) <ttt ettt b ettt 64
7.1.3.3 String Encryption (SE) + Java API Reflection (JAR) + Change Package Name
(PN_PCM) + Insert NUll BYteS (INB)ccceeviiiiieieseeeeteeeeteseeeete st 64
7.1.3.4 String Encryption (SE) + Java API Reflection (JAR) + Change Package Name
(PN_PCM) + Insert Null Bytes (INB) + Resource Obfuscation (RO).........cccecvevevverveennenne. 65

7.1.3.5 String Encryption (SE) + Java API Reflection (JAR) + Change Package Name
(PN_PCM) + Insert Null Bytes (INB) + Resource Obfuscation (RO) + Angecryption

(ANGE) 66

7.1.3.6 Java API Reflection (JAR) + String Encryption (SE) + Variable Encryption (VE)
+ Resource ObfusCation (RO).....cc.ooieiiiieieieceete ettt st a e b e nas 66

7.1.3.7 Java API Reflection (JAR) + String Encryption (SE) + Variable Encryption (VE)
+ Resource Obfuscation (RO) + Angecryption(ANGE).......c.cccoevveviveeciceeececeeeseeee, 67
% o o To] 111 [] o SRRSO 68
L0 T] g TSP 70
Auditing Android Antimalware TOOIS (AMTS)ecieiie ettt re e re e sa e e e saeenneas 70
8.1 OBSEIVALIONSeeieeeeiesiieeeeteeieete st e e ete st e e te et et e ste et e ste et essesseessesseessansesssensesseensessennsensens 70
8.2 MBetrics fOr AUAITING AMTS ...ttt 70
8.3 Evasion of Malware SAMPIES..........ooeriririirieieieeeeseseseeee ettt 71
8.3.1 Individual Evasion Module Implementation..........ccccceoeeceieeeeciesecieceeeeeceeee e, 71
8.3.2 Multiple Evasion Module Implementationccccoeevevieiiecieve e 76
8.4 Lo EAATo [N LN AV ISP 80
8.5 Comparison With Other TEChNIQUEScecverieieiicieere et ae e 84
(O 0T T 1 g RSP SSSTRP 88
CoNCIUSION AN FULUFE WOTK ..ottt sttt s st bt et ettt e b sbesbeeaeeneenens 88
0.1 CONCIUSION .ttt sttt et b e b bt et e e s et esenaeas 88
0.2 FULUIE WOTK ...ttt sttt ettt be bbbt e st eneene s 89
BIDIIOGIAPRNY ...ttt bbb bbbt bbbt b et h bt ens 91

xi

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Malware .
Figure 28:
Malware .
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:

List of Figures

Percentage of applications being exploited from November 2017 to October 2018......... 2
Percentage Increase in malware variants (2016-2017)......cccccveeeveeeeveneeveeneeeeseeseeeeene 3
Basic Approach for Auditing Android AMTS........ccivieieviieeeceeeee e 5
ANAroid SOFIWAIE STACKcoiriiriiriirieieieieeeee ettt ebe e 9
Proposed Framework for Auditing ANdroid AMTSecveviieeecececeeeeeee e 30
Layout of PNG and modified APK ..ottt 36
Detection Ratio for Individual Evasion Module Implementationccccceeeeveeeenen. 42
Detection Ratio for Multiple Evasion Module Implementation............ccccccevevvevnenennene 44
VirusTotal Result for Raw Dendroid MalWarecccooveiereniecenecceeeeeee e 48
VirusTotal Result for SE Implemented Dendroid Malware...........ccccocevevenieieeeennenne. 49
VirusTotal Result for VE Implemented Dendroid Malwareccocoeevevvevieeeennenne. 50
VirusTotal Result for JAR Implemented Dendroid Malwareccccocevevvevieenennenne. 51
VirusTotal Result for RP Implemented Dendroid Malware...........ccccocovevevvenieeeennenne. 52
VirusTotal Result for OOP Implemented Dendroid Malware...........c.ccocevevevieieennenne. 53
VirusTotal Result for PN_API Implemented Malware...........cccccvevenenenenenenieenene. 54
VirusTotal Result for FN Implemented Dendroid Malwarec..cocovevenverieeeennenne. 55
VirusTotal Result for RAP Implemented Dendroid Malware...........c.ccocevevevieeeennenne. 56
VirusTotal Result for IBP Implemented Dendroid Malwarecccoeeeeveevevieireennenne. 57
VirusTotal Result for PN_PCM Implemented Dendroid Malware...........c..ccccvvvveenenee. 58
VirusTotal Result for INB Implemented Dendroid Malware............ccccceveeeevienieennenne. 59
VirusTotal Result for IBC Implemented Dendroid Malware............ccccceeeeeevienieennenne. 60
VirusTotal Result for RO Implemented Dendroid Malware..........c.cccoeeveviveevienieennenne. 61
VirusTotal Result for ANGE Implemented Dendroid Malwareccccceevevievveennenee. 62
VirusTotal Result for SE + JAR Implemented Dendroid Malware..............cccvevuennee. 63
VirusTotal Result for SE + JAR + PN_PCM Implemented Dendroid Malware........... 64
VirusTotal Result for SE + JAR + PN_PCM + INB Implemented Dendroid Malware 65
VirusTotal Result for SE + JAR + PN_PCM + INB + RO Implemented Dendroid
... 65
VirusTotal Result for SE + JAR + PN_PCM + INB + ANGE Implemented Dendroid
... 66
VirusTotal Result for JAR + SE + VE + RO Implemented Dendroid Malware 67
VirusTotal Result for JAR + SE + VE + RO + ANGE Implemented Dendroid Malware
... 68
Layers of Evasion Techniques Employed to the Malicious Application 69
Detection Ratio Against Individual Evasion Implementation............ccccoceveverieerennene 72
No. of AMTs evaded by Individual Evasion Implementation............c.cccceeevereeerennene 72
Detection Ratio against Multiple Evasion Implementation..........cccccoceveverieneeneeeenne. 77
No. of AMTs Evaded Against Multiple Evasion Modules Implementation 78
No. of Evasions and Detections made by each AMTcceoviieieviieece e 84
Detection Ratio against Different Evasion TeChNiqQUES........cccocvevvevereeceneeiere e 85

Xii

file:///C:/Users/Samrah%20Mirza/AppData/Roaming/Microsoft/Word/5%20%20-%20Spiral%20Write%20Up%20format%20Samrah%20Mirza%20MIS16.doc%23_Toc26974218
file:///C:/Users/Samrah%20Mirza/AppData/Roaming/Microsoft/Word/5%20%20-%20Spiral%20Write%20Up%20format%20Samrah%20Mirza%20MIS16.doc%23_Toc26974219

List of Tables

Table 1: Percentage of Devices Running Newest Version of Operating System (OS)..........ccccveuee. 3
Table 2: CVE Android Security Bulletin, Year 2019ccccce i i 15
Table 3: Summary of Malware Evasion Techniques on Android...........cccoevvvvneneneneneneieiees 26
Table 4: Software and Hardware REQUIFEMENTSccveiiiieiie et st 39
Table 5: List of Individual Evasion COMPONENLSc.coeiviieieiicie et 40
Table 6: List of Multiple Evasion COMPONENEScoviiiiiiiiiiire e 42
Table 7: Detection ratio and no. of AMTs evaded against individual evasion components.......... 71
Table 8: Single Evasion Techniques Detected By AMTScvciiiiiii i 73
Table 9: Detection Ratio and No. of AMTs Evaded against Multiple Evasion Techniques........... 76
Table 10: Multiple Evasion Techniques Detected DY AMTS........ccoviireieinienineneseseeeeee e 78
Table 11: Signatures, No. of Detections and Evasions made by each AMTS.......cccccveveivevievnennn, 81
Table 12: Comparison of Different Evasion TeChNIQUES...........ccccveieiiveiiiiieiiec e 85

xiii

Chapter 1

Introduction

1.1 Background

Mobile devices have grown into an essential part of day-to-day life. They offer a lot of handy
utilities such as the facility to read and write e-mails, surf the Internet, show adjoining amenities,
video conferencing, and voice recognition, to name but a few. The rise in the spread and use of
mobile phones has played a pivotal role in unveiling this consummate paradigm shift in the way
humans communicate globally. Since users’ digital life resides on these smart phones, the
criticality and sensitivity of that data ultimately becomes dependent on the Operating System
these phones run on. Android [1], owned by Google, is among the most popular and the most
widely used platforms [2] deployed on smartphones with more than 2 billion active devices [3].
In several circumstances, the usage of word Android is quite precise. Though refers to a
humanoid robot, Android has garnered meanings beyond that in the last decade. A company, a
development community, an open source project are all the terms related to Android more than
just an operating system. In a nutshell, an all-inclusive ecosystem equals a standard mobile
operating system which we call Android [2].

1.1.1 Android Threat Landscape

The vast usage of Android, along with its open source nature [2] has made it a lucrative option
for developers with malicious intent to write and spread malicious code. Consequently, this
malicious code is then used to compromise the confidentiality, integrity and availability of user
data. In various regards, mobile devices offer pronounced security and confidentiality disquiets
to users than conventional PCs [4]. Such as, numerous sensors integrated within the Android
device could leak extremely sensitive and significant information from user’s location,
movements, and other physical conducts, to audio and video recordings, and capturing pictures.
Besides, users progressively enclose certification credentials into their gadgets, and employing
on-platform micropayment machineries such as Near Field Communication (NFC) [5].

1.1.1.1 Third Party Applications
One chief cause of confidentiality and security glitches is the capacity to feature third-party

applications, not only from open markets available online but also by other channels. Two
prototypes of smart devices based on user’s access to these markets [6] exist at present. In the
open-market prototype, applications are installed from online unofficial sources, whereas the
supposedly walled-garden market model confines the market from which users can install
applications such as Google Play Store for Android. Many market operators perform a review
procedure over uploaded apps, which apparently also encompasses some practice of security
analysis to identify whether the app contains malicious program. A noteworthy section of users
count on other sources to have access for free apps that cost money in authorized markets. Access
to such informal and/or illegal markets have paved ways for the malware to have easy access to
mobile devices and perform their malicious intent. This is particularly true for the well-known
apps altered (repackaged) and updated with malicious code imbedded in them [7]. Figure 1
illustrates a list of applications being exploited along with the attack percentage for these

applications in the specified period. Android OS stands third in this list [8].

Percentage of applications being
exploited from 2017-2018

2.51_0.67

4.43

= Microsoft Office = Browser = Android = Java = Adobe Flash = PDF

Figure 1: Percentage of applications being exploited from
November 2017 to October 2018

1.1.1.2 Android Malware Statistics

According to Symantec Internet Security Threat report (ISTR) [9], number of new mobile
malware variants grew by 54 percent in 2017 and the mobile malware families grew by 12

2

percent as compared to 2016. An average of 23,795 malicious mobile applications are estimated
to be blocked on mobile devices each day [10].

Increase in new malware variants

70 64
60 54
o 50
]
8 a0
5 Windows
O 30
Q Mac
e 20]
Android
10 75

1
Operating System (0S)

Figure 2: Percentage Increase in malware variants (2016-2017)

Moreover, Android rolls its Operating System (OS) upgradation on yearly basis to enhance user
experience, security, optimization and device performance. This upgrade is specific to Mobile
device vendor, phone model and users’ geographic location. Hence, many Android smartphones
keep on running the older OS versions. ISTR reports [9] that only 20 percent Android devices
are running the newest version as compared to iOS devices where approximately 77.3 percent
devices are running the latest version as illustrated in Table 1. This alarming situation, thereby,

makes it easier for attackers to compromise devices using the older Android versions.

Table 1: Percentage of Devices Running Newest Version of Operating System (OS)

OS Version |Android iOS
Newest Major[20% 77.3%
Newest Minor2.3% 26.5%

1.1.2 Android Malware Evasion Techniques
Malware authors deploy several evasion techniques in order to avoid detection by the

antivirus programs and other security solutions and in this campaign, new stock of malware
variants emerge that are evasive in nature. These devious malwares tend to stay hidden while

successfully carrying out their desired illicit action. Some existing malware evasion
3

techniques include: packing [11], obfuscation [12], steganography [13], code reuse attacks
[12] etc. Therefore, studying these canny antivirus evasion and bypassing techniques is of

utmost significance.

1.2 Motivation and Problem Statement

Malware nowadays have become more advanced, malign and difficult to catch. Malware
analysis and detection have appear to be in a competing position, where malware authors aim
to hide their malicious intent from security analysts. In this campaign, new stock of malwares
emerge which can be defined as evasive malware. Malware authors deploy several evasion
techniques in order to avoid detection by Antivirus Programs and other security solutions.
Some existing malware evasion techniques include packing, obfuscation, fragmentation,
code reuse attacks, application specific violations, protocol violations, traffic insertion at
Intrusion Detection System (IDS) and denial of service. Studying how malwares are evading
and bypassing security solutions is of utmost significance these days. Every evasion
technique has certain limitations and malware analysts are coming up with new detection

mechanisms to detect evasion and impede the efforts of malware authors.

In order to evaluate the efficacy of the current state-of-the-art AMTSs, we need to develop
sophisticated evasive malware in order to audit these AMTs. This will address flaws in the
detection mechanisms of these tools and hence improve their detection capability. Also, no
standard method/framework, to evaluate the detection competence of these AMTS, exists and
existing malware repositories such as Genome [14] and Drebin [15] lack new malware
variants. Absence of automation for updating malware repositories is yet another reason for
creating new malware variants using a system that will automatically update the malware

repository.

This research is focused on auditing Android antimalware solutions against static analysis
using a hybrid evasion technique. The technique is amalgamate of various obfuscation
modules implemented in an iterative manner. The technique effectively evades static analysis

in iterative steps.

1.3 Project Description

1.3.1 Objective

The aim for malware authors is to evade detection from security analysts. Being security
analysts, we need to stay ahead of malware authors and thus thwart their motives. Hence by
understanding and developing offensive security methods, we can develop enhanced security
mechanism for malware detection and thus evade the malware evasion which can pose

serious threats by staying undetected and executing their malicious intent.

The main objectives of thesis are: -

e To conduct a critical analysis of existing evasion techniques for Android malware
and evaluation of android anti-malware tools against existing evasion techniques.
e To generate new, advanced and hybrid evasion technique for the class of Android

malwares with an aim to audit the new advanced anti-malware tools.

1.3.2 Approach

Detection
Ratio Results
Calculation

Auditing
Module

Malicious Obfuscation
App Module

Angecryption
Module

Figure 3: Basic Approach for Auditing Android AMTs

1.3.3 Academic Objectives
We constantly need to update ourselves regarding new and persistent threats from adversary.

When we are well acquainted with new incoming evasive malware threats, we can develop

better detection mechanisms, more transparent ones and stay better guarded against such

adversarial motives.

1.3.4 Scope of the Project
The focus of the thesis will be to conduct a critical analysis of existing Android malware

evasion techniques and anti-malware tools capabilities against these evasive malwares. A
technique comprising of new, advanced and hybrid Android malware evasion will be
developed. The evasive malware will be deployed on Android devices with advanced anti-
malware tools installed followed by an evaluation procedure. This will, thus, conform the anti-

malware tool’s efficiency against advanced anti-detection techniques.

1.3.5 Areas of Application/Advantages

This era is of cyber warfare, one constantly needs to be updated about new threats and their
countermeasures. When we know evolving offensive security paradigms, we can develop
better defensive mechanisms. Areas of application could be commercial, military and
defense.

This will aid in hardening the system security, devising enhanced security mechanism against
new class of evasive malwares by determining the possible ways for making malwares as

evasive as possible and to innovate/upgrade the existing security mechanisms.

1.4

Thesis Organization

The thesis is structured as follows:

Chapter 2 focusses on Android fundamentals with a focus on Android system
architecture, Android application taxonomy and Android security structure and
security vulnerabilities.

Chapter 3 outlines different kinds of malware and malware detection techniques for
mobile devices.

Chapter 4 describes in details several malware evasion techniques employed for
Android malwares and summarizes the literature review in regard of malware evasion
techniques and auditing of the Android Antimalware Tools (AMTS).

Chapter 5 explains the proposed framework for auditing Android (AMTS) using
sophisticated evasion technique.

Chapter 6 lists down the prerequisites for the implementation of the proposed
framework, software and hardware requirements, malware dataset used, and AMTs
employed.

Chapter 7 pronounces the details of practical implementation of the proposed evasion
framework.

Chapter 8 details the auditing results on several AMTs and their detection efficacy.
Also comparison with other works is also presented.

Chapter 9 concludes the work and presents future directions for strengthening

Android Antimalware engines.

Chapter 2

Android Fundamentals

2.1 Android System Architecture
The term “Java on Linux” coined for Android system architecture is a bit of a loose term to

explain the complexity and architecture of the platform. Android's foundation is the Linux
kernel. Several add-ons and variations were performed to Linux kernel resulting in certain
security implications. Android’s architecture consists of five main layers of components,
namely framework, applications, user-space native code, the Dalvik Virtual Machine (Dalvik
VM), and the Linux kernel. Fig. 4 illustrates the basic Android Architecture [11]. Linux
Kernel resides at the base of the software stack and includes drivers for audio, IPC, Wi-Fi
and USB, memory and process management, network stack etc. Hardware Abstraction Layer
(HAL) lies on top of Linux kernel and acts as an abstraction layer between hardware and
software. The succeeding level of the structure comprises the libraries, a set of directives for
handling different types of data. These native libraries include a set of C/C++ libraries
comprising of the core libraries such as the System C library, media libraries, and
LibWebCore (for a Web browser engine). For instance, the media framework library handles
media entities like pictures, video, and audio. A set of core Java libraries constitutes the
Android Runtime [16].

Exhausting the Java programming, Android applications are developed. The Application
Framework necessary for and accessible to the Android developers includes modules that
accomplish the device’s rudimentary jobs like telephone, navigation and resource allocation.

The Application stack aids user’s interaction with the device.

Android applications let developers have access to device’s underlying hardware such as
Bluetooth, camera, sensors etc. to encompass and improve a device’s function without
modifying the lower levels. In sequence, developers facilitate themselves using the Android

Framework which provides a rich source of API having right to use all of the innumerable

services an Android device offers. In short, Android Framework acts a glue between the
Dalvik VM and apps.

APPLICATIONS

ANDROID
FRAMEWORK

ANDROID RUNTIME

DALVIK VM AUDIO MANAGER LIBC
CORE LIBRARIES MEDIA FRAMEWORK WEBKIT
OPENGL/ES SQLITE

HARDWARE BLUETOOTH SENSORS v
ABSTRACTION CAMERA GRAPHICS DRM
LAYER (HAL) AUDIO MEDIA

LINUX DRIVERS (BINDER (IPC), AUDIO
KERNEL DISPLAY, USB, WIFI, KEYPAD, SHARED
MEMORY) POWER MANAGEMENT

Figure 4: Android Software Stack

For instance, it includes allowing developers to perform trivial tasks such as passing
messages between application counterparts, handling elements constituting user interface
(UI) and having access to shared data stores. Java forms the basis for both the Android
Framework and Android applications and these run within Dalvik VM.

Dalvik VM has been designed to make available a resourceful abstraction layer to the core
OS. It is used to interpret Dalvik Executable (DEX) using a registered-based VM. In
sequence, Dalvik VM rests on the utilities which are provision of several supporting native

code libraries.

System services such as networking services and libraries such as OpenSSL, Webkit etc. are
the constituents of user-space native code. Few services and libraries have functions to
communicate with kernel-level drivers and services while some other aid inherent tasks for

managed code. Wi-Fi, camera access and network device access etc. are the add-ons

facilitated by the drivers at Kernel-level. Among these kernel-level drivers, Binder driver

responsible for implementing inter-process communication is most important.

2.2 Android Application Taxonomy
Mobile applications can be classified as user-installed and pre-installed [2].

e Applications such as Google, Google Play Store and applications installed by mobile
carrier such as email, clock, camera, gallery, dialer, contacts etc. come in the category
of preinstalled applications as these are already present on the phone even before a
user buys it. These applications’ packages are located in the /system/app directory
and most of these have elevated privileges and cannot be uninstalled by the normal

uninstall option.

e Second category is of user-installed applications or third party applications. This
class includes applications installed by the user themselves either through an official
app market such as Google Play Store for Android OS and App Store for IPhone or
through some unofficial source. Such apps reside along with updates for the pre-

installed app, in the /data/app directory.

Moreover, public key cryptography is used for signing the Android applications. For signing
the pre-installed applications, a special platform key is used which provides these
applications with system user privileges. On the other hand, third applications’ signing is

performed with developers’ key. This signing of apps inhibits unapproved updates to the
apps.

2.2.1 Major Application Components
Android applications are composed of several components. In this portion, we mention few

important among them such as AndroidManifest, activities, services, broadcast receivers,

intents and content providers.

2.2.1.1 AndroidManifest.xml [2]
An AndroiManifest.xml file is a requisite for all Android applications. This file gives a

handful insight into the application such as all necessary permissions declared, package name

10

unique for each application and its version, services, activities, information about
instrumentation, shared User ID (UID), Ul info etc. Moreover, the info on external libraries
bundled with and consumed by the application and install location favored is also listed in
this file.

2.2.1.2 Intents [2]
Intents, a significant fragment of inter-app communication, encompasses info about tasks

that are required to be executed, target constituents on which to take action and added flags
or further auxiliary info substantial for the recipient. Trivial tasks from installing and
uninstalling applications, to notifications about incoming SMS messages, from launching a

browser to tapping a link, everything include intents being distributed round a system.

2.2.1.3 Activities [2]
A screen with a user interface is called an activity which is a fundamental component of an

Android application with a GUI. Applications may comprise of a number of activities and
are put on show in a particular order with each activity with an autonomous launch control,

even by a different app if permitted.

2.2.1.4 Broadcast Receivers [2]
A component sensitive to system-wide events, called broadcasts and responds to them is a

broadcast receiver. Broadcasts can be initiated by either the system such as announcing
changes in network connectivity, or by a user application such as announcing completion of

an ongoing background data update.

2.2.1.5 Services [2]
An element of an Android application without any user interface, executing in the

background is a service. Time consuming actions such as a file downloading, playing music
without halting the user interactions are usually executed by services. Services, dissimilar to
system services which are part of the OS and constantly executing, application services can
be initiated and halted when required. These can also offer some functionality to other apps
and declare remote interface using AIDL.

11

2.2.1.6 Content Providers [2]
Provision of an interface to app data is the responsibility of content providers. These content

providers are either held at some database or stored in files. Employing IPC, content
providers can be accessed for sharing app’s data with other apps. Controlled accession to an
app’s data is also a provision of content providers, a utility that ensures the sharing of only a

subset of app’s data.

2.3 Security Model [1]
Android security model is based on that of Linux kernel. Provision of isolated user resources

is a feature of Linux security which ensures without explicitly granting permission, one
user’s resources cannot be accessed by others. Moreover, each process executes with a

unique user (UID) and group ID (GID) of the initiator who started the process.

In order to get an insight on the working of AMTSs, essential components of the Android
Security Model are briefly described in this subsection. The Android Security model is based
on application sandboxing. Android achieves application sandboxing by means of Linux
User IDs (UIDs) [16]. Every application that runs on Android is assigned a set of attributes
such as unique UID, application runtime and application framework. These attributes help
the application execute within Dalvik VM [16] which acts as sandbox and isolates the
application from other applications. Sandboxed applications communicate with each other
and the system according to the Android’s Permission Model which uses intent filters to
control the permissions explicitly declared in AndroidManifest.xml file or set-group-1D
(SUID and SGID)[16] bits are set on the corresponding executable file. Some of the security

features of Android are discussed below:

2.3.1 Application Sandboxing [1]
A unique User ID (UID) is automatically assigned to each application at install time under

which the application executes in a dedicated process. This provides application isolation at
the process level. Moreover, under this UID an exclusive data directory with the permission
to read and writes to is assigned to each application which provides application sandboxing
at the file level. Despite the execution environment being native or virtual, application

sandboxing is implemented on all applications.

12

2.3.2 Permissions [1]
Due to application sandboxing in Android, each application have access to their specific files

and other resources residing on the device. This limits the application’s functionality, hence,
to provide applications with more resourceful functions, surplus, controlled access rights are
provided. We call these access rights permissions, which control access to hardware devices
such as sensors, services such as internet connection, data, or other OS related services. By
enlisting permissions in their AndroidManifest.xml file, applications define their set of
requested permissions. Android versions running higher than API Level 22, no prior

permissions are required at install time, rather permissions are requested at runtime [17].

2.3.3 IPC[1]
IPC refers to inter-process communication which is implemented using a set of user space

libraries and kernel-level drivers. Forging of the User ID (UID) and Process ID (PID) is
inhibited by the Binder kernel driver. This Binder driver also provides several services which

provide dynamic access control to several sensitive APIs exposed by IPC.

2.3.4 Code Signing and Platform Keys [1]
All Android applications inclusive of system apps are required to be signed by their

developer. Due to their dependence on Java and JAR package formats [18], Android
applications are signed using signing method based on JAR signing. Using the same origin
policy, Android employs the APK signature to ensure updates for an app are from the same

author to avoid forging or updates from malicious sources.

2.3.5 Security Enhanced Linux (SELinux) [1]
Implemented as Mandatory Access Control (MAC) for Linux, an altered SELinux version

from Security Enhancement for Android (SEANndroid) project [19] is integrated in Android.
This modified version of SELinux provides features specific to Android such as isolation of

core system daemons and definition of distinct access policies for each security domain.

2.3.6 System Updates
Updates to the Android devices can be performed in two ways: either over-the-air (OTA) or

via establishing connection with a PC through Android Debug Bridge (ADB) or some other

application provided by the vendor and pushing updates to the device. Components such as

13

bootloader, baseband firmware and several other counterparts may also need updating in
addition to system services. This is done using recovery mode which employs an exclusive,

nominal OS with root access to device’s hardware components.

2.3.7 Verified Boot [1]
Provision of verified boot in Android version 6.0 and later is ensured via the device-mapper-

verity (dm-verity) [20] which is a kernel-level feature. Authenticity and integrity of each
upcoming stage before its execution is a feature of verified boot. A strict enforcement of
verified boot in Android 7.0 and later ensures the failure of a comprised device’s boot. This

ensures the integrity of the booting device.

2.3.8 File System Permission [2]
This feature ensures that files generated and owned by one application can’t be read or altered

by some other application until that application assigns permission to have access to its file

system by other applications.

2.3.9 Rooting of Devices [2]
Certain applications and kernel execute with the exclusive permissions in Android. These

root permissions can provide an application with the right to alter OS, kernel or other Android

applications and can have access to otherwise inaccessible resources.

2.3.10 Device Administration
Device Administration utilities at the system level are a feature of Android 2.2 and later

versions.

2.3.11 File System Encryption
Starting from Android 3.3, encryption of user files at the kernel level is provided. From

Android 5.0, full disk encryption employing single key is performed, which either could be
the password for user’s device or generated from it. However in Android 7.0 and later
versions, distinct and unique keys are employed for encrypting different files which ensures
better security compared to single key encryption method.

2.4 Security Vulnerabilities

14

Android has outnumbered Windows platform in terms of its popularity and usage. Owing to
the huge amount of user’s data, its sensitive and critical nature, a greater threat to its security
and privacy exists. In order to fulfill the malicious intent, security vulnerabilities found in the
Android Platform are exploited leading to user data theft, encrypt devices, remote code

execution etc.

A common identifier for defining the vulnerability, known as Common Vulnerability
Exposure (CVE) ID are used by all the vulnerability databases [22]. A Common
Vulnerability Scoring System (CVSS) is assigned to determine the impact level of the
vulnerability. The vulnerability impact level may be categorized as Critical, High, Moderate,
Low and No Security Impact (NSI). The monthly Android Security Bulletin maintains
database of evolving Android based vulnerabilities and respective security remediation. The

vulnerabilities have been divided into four main categories [16].

Table 1 below lists some of the severe security vulnerabilities, recently found in
Android’s ‘Framework.

Table 2: CVE Android Security Bulletin, Year 2019

Month CVE References Type
July 2019 CVE-2019-2104 A-131356202 RCE
June 2019 CVE-2019-2090 A-128599183 EOP
Apr 2019 CVE-2019-2026 A-120866126 RCE
Mar 2019 CVE-2019-2004 A-115739809 ID

2.4.1 Elevation of Privilege (EoP) [17]
Attacker gains access to protected services/ resources by exploiting vulnerabilities in OS or

applications. An exclusive access to a service or a resource usually inaccessible or secured
from conventional applications. The malignant application thus bypasses the permissions

and gains access to otherwise unavailable and critical data of the users and the system.

2.4.2 Remote Code Execution (RCE) [17]
It allows an attacker to remotely execute commands or code of his choice on the target device.

15

2.4.3 Denial of Service (DoS) [17]
Attacker exploits OS/ application to make authorized resources/ services unavailable to

legitimate users.

2.4.4 Information Disclosure (1D)[23]
Attacker gains valuable information regarding system or user thereby causing privacy

issues and information leakage.

16

Chapter 3

Malware, Detection and Analysis

3.1 Mobile Malwares
Mobile malwares include Trojans, Backdoors, Ransomware, Botnets and Spyware. Nearly

one-third fraction of smart phones has a moderate to an excessive risk of data theft.
Moreover, the percentage of Android devices infected with malware is nearly double relative

to 10S devices. Some of the most important mobile malwares are listed below:

3.1.1 Trojans
A software that executes malicious acts in the background though it appears benign on the

surface is called a Trojan [24]. Trojans hack a system by putting the security of the system
at stake. Examples include FakeNetflix [25], an Android Trojan responsible for pocketing
users’ Netflix account credentials and KeyRaider[26], an iOS Trojan used for stealing Apple

IDs and passwords.

3.1.2 Backdoors
Backdoors takes advantage of root privileges to bypass antiviruses. One popular Android

backdoor is Rage against the cage (RATC) which completely hijacks the device and performs
exploits [27]. After gaining full control of the device and root access to system’s resources,
malware can perform tasks capable of even installing applications in the backend not leaving
any detectable traces of its action. Similar to RATC, Xagent[28] is an 10S Trojan capable of

opening backdoors on iOS devices and information theft from these [29].

3.1.3 Ransomware
Users are inhibited from accessing their data by encrypting this data or by locking the device

using ransomwares and can only access this data upon paying a ransom. FakeDefender.B
[30] is a ransomware, disguised as Avast antivirus, that locks the user’s device till ransom is

payed. Similarly an iOS ransomware appeared in 2017 that feats on a bug found in Safari

pop-ups [31].

17

3.1.4 Botnets
Using a compromised devices, this malware helps attacker hijack the device and then further

infect other devices. Web robots, a term used for an affected device, infect all the devices in

a network and form a botnet. One such example of Android botnet is Genimi [32].

3.1.5 Spyware
As the name refers, spyware is a software used for spying. While executing at the backend

without being noticed, it gathers valuable information while also granting remote access in
some scenarios. From listing keystrokes, stealing credentials, to collecting browsing history
and intercepting communication, a spyware can collect valuable information and send to the
attacker. Examples include Nickspy [33], GPSSpy [34] which are spywares for Android
whereas Passrobber[29] is an i0OS spyware.

3.2 Malware Propagation Techniques
To abate malware attacks, we need to be well-equipped with the knowledge of their

propagation mechanism. According to [35], malware propagation can be categorized into

techniques listed below:

3.2.1 Repackaging
By disassembling and then repackaging widely used Android applications while embedding

malignant sections into these, and then dispersing these repackaged malware variants as
updates to the original app both in the official application hub and less guarded open markets,
one can easily propagate malwares. Using tools like apktool, dex2jar and some open-source
RATS, one can easily distribute their malware and users often buy this idea assuming updates
to the already installed application. According to TrendMicro, more than 70% of the top 50

free apps uploaded to Google Play are repackaged versions [36].

3.2.2 Drive by Download
Inadvertent download of a malware at the backend when a user browses a website embedded

with malignant script is referred as drive by download. When user pays visit to such a
website, the embedded script downloads the malware onto the victim’s machine and then
further performs exploits. One such example of malware for Android platform is
Android/NotCompatible [37].

18

3.3 Malware Detection Techniques
Several malware detection techniques exists for detecting Android malwares. We can sort

them into two basic kinds i.e. static and dynamic, however, one more techniques adds to this
list which is machine learning [38]. In certain cases, a hybrid analysis comprising of both
static and dynamic detection techniques is employed which often yields better results. We

discuss some of these in this section.

3.3.1 Static Analysis
Static analysis relies on the source code and signatures of the malware under detection

without actually executing the malware application. Static analysis is more scalable and has
better code coverage than dynamic analysis. Techniques such as obfuscation and dynamic
code loading can easily beat static analysis. Some static analysis techniques employed in
static analysis include signature-based, permission-based, API-based, Interaction-based and

Dataflow-based detection which are discussed below:

3.3.1.1 Signature-based Detection
Signatures of an Android application are extracted and then compared with the signatures of

known malware. Usually a hash/checksum is computed of the malware under analysis and
compared with the hashes of known malware. These hashes are stored in a signature
repository. This signature repository needs to be constantly updated to include the signatures
of new malware on a day-to-day basis. Otherwise, the database will become obsolete and
new malware variants can easily bypass this detection technique. Obfuscated malwares and

dynamic code loading can evade this method of detection.

3.3.1.2 Permission-based Detection
AndroidManifest.xml file contains all the permissions required by an Android application.

In permission-based static analysis, an application is categorized as benign or malicious
based on the set of permissions it defines in its AndroidManifest.xml file [39]. The type and
number of permissions an application requests gives an insight into the application’s
functionality and various methods are used to perform this kind of detection. But it has
certain limitations such as it overlooks the source code and working of the benign app and

only relies on permission. It might be the case that a malware app uses the same permissions

19

as that of benign app. In such a case, no red flag will be raised. Also, this method might give

false positive about a benign app classifying it as malicious just based on the permissions.

3.3.1.3 API-based Detection
In this technique, analysis is based on APIs being used in the Android application. APIs are

Application Programming Interface available in Android SDK. Android provides these APIs
to allow developers to interact with the underlying hardware and use them in their
applications in a variety of different ways. AMTSs scan the code for any malicious APIs and
trigger an alarm based on these APIs. These API calls give a good basic insight about the
intent of an Android application. However, in case of polymorphic code, this detection

method fails to give any useful information about the Android application.

3.3.1.4 Interaction-based Detection
In interaction-based static analysis, AMTs make a decision about an Android application

depending upon the type of interaction between API calls. If certain suspicious interaction is
observed between different components of the application under analysis, AMTs would mark
the application as suspicious. If for example, an application first intercepts SMS and then
sends it to a network, then by simply by looking at this interaction, AMTs can make a guess

that the app has a malicious intent.

3.3.1.5 Dataflow-based Detection
Dataflow-based detection technique looks at the sources and sinks of dataflow within an

application. If, within an Android application, dataflow occurs between suspicious sources
and sinks, AMTs will get triggered. For example, if an Android application has a source
defined for getting the device ID and a sink defined that sends this device ID to some remote
network, then AMT would assume a suspicious dataflow here.

3.3.2 Dynamic analysis
This technique requires the execution of Android application either in real or emulated

environment. Tracking the flow of sensitive information or collecting the execution traces
and based on this information, the app is marked malicious or benign. Dynamic analysis
compensates the static analysis failure when faced with obfuscated, encrypted and

dynamically loaded code. However, dynamic analysis has less code coverage and is less

20

scalable. Dynamic analysis can be classified as anomaly-based and emulation-based

techniques.

3.3.2.1 Anomaly-based Detection
Upon the execution of application under analysis in a sandboxed environment, logs of the

generated system calls are sent to a remote examination server. Here application’s behavior
is inferred based on the logged system calls. Presence of anomalous behavior marks the
application as malicious. This technique along with other detection techniques is used in

dynamic analysis to classify the file as benign or malignant.

3.3.2.2 Emulation-based Detection
Emulation-based detection systems are designed in such a way that the antimalware program

examining the file is not on the same system used for the execution of the malware. An
agentless system is designed so that the malware may not detect the presence of the
antimalware tool. In conventional systems, both the malware and antimalware run in the
same virtual machine which may inhibit the malware from depicting its true nature after
detecting the presence of the detection tool. Yan et al. [40] presented an agentless emulated
detection system where malware runs on the virtual machine and antimalware tool runs

analysis from outside of the virtual machine.

3.3.3 Machine Learning
Using features extracted from known malwares, similar Android malwares are identified. It

has two phases: the training phase and testing phase. In training phase, specific features from
known malwares are extracted. Based on these extracted features, new similar Android

malwares are classified into benign or malicious ones.

21

Chapter 4

Malware Evasion Techniques

In order to avoid detection by AMTS, next generation malwares tend to be evasive. Malware
analysis and detection is a cat and mouse game where if malware analysts are always faced
with new breed of existing malwares. These new malware can be termed as evasive malware
which are more intelligent, environment aware and adaptive to execution environment.
Evasion techniques can thwart the precision of malware analysis tools. Such evasion
techniques include obfuscation using packing, anti-debugging tricks etc., resigning,
disassembling and reassembling, data encoding, call indirections, code reordering, junk code
insertion, string encryption, API reflection, resource modification, NOP insertion, code

reuse, steganography and concatenation.

4.1 Common Evasion Techniques
Some of the common evasion techniques used by Android malware authors are listed below.

4.1.1 Obfuscation [12]
It deceives simple methods of string-matching used in signature-based detection by

concealing the attack payload of malware.

4.1.2 Code Reuse [12]
This exploit legitimate system requests being used by local running legitimate, benign

processes as well.

4.1.3 Steganography [13]
It refers to hiding the data in another medium like image, without incurring noticeable

changes. Steganography involves converting the image into RGB mode, converting data to
be hidden into binary format and then replacing the RGB data with the payload data in any
one plain. LSB [41] is one widely used technique of steganography.

4.1.4 Cryptography [13]
It makes the code unreadable by applying encryption algorithms such as polymorphic XOR

etc. The encrypted piece of code is decrypted at runtime. The only resource available to

22

AMTs for analysis is the decryption routine which we can further obfuscate to achieve better

results.

415 Resigned [42]
This technique involves decompiling an apk file and recompiling it using apktool[43],

jarsigner[44] and zipalign[45]. Once recompiled, android application is signed with a custom
key since developer keys are not available. This technique does not alter the apk file itself
but only its hash by resigning the apk with new certificate and hence altering its signature.

4.1.6 String Encryption [46]
It refers to encrypting all the strings using different encryption keys. Encrypt string using

xor-string encryptor different for each string. In each Android application, a string.xml file
exist which contains list of the strings used in the application. This method encrypts those
string names to random/dummy values, hence rendering AMTs unable to detect the

malicious application based on string names.

4.1.7 API Reflection [42], [46]
API reflection refers to analysis and modification of Java APIs at runtime. Using Java

reflection API, static method calls are transformed into reflection calls hence hiding the API
calls. Every method call is transformed into a call to that method via reflection. Hence static

analysis becomes useless on such method.

4.1.8 Resource Modification [46]
This technique involves modifying resource related files. Modifying images in the resources

section of the apk file and resource related xml files’ data modification hence transforming

the identification markers for AMTSs rendering them useless against such transformations.

4.1.9 NOP Insertion [42]
A no-operation instruction (NOP) is inserted at random into the source code to change both

the hash/signatures and delay the execution time.

23

4.1.10 Packing [11]
It encrypts malicious DEX file using an Executable and Linkable Format (ELF) [47] binary

that only gets decrypted in the memory at runtime and executed using DexClassLoader[48].

This changes the structure and flow of the APK file.

4.1.11 Disassembling and Reassembling [49]
We can disassemble and reassemble the compiled Dalvik bytecode found in the classes.dex

file. Components like classes, method and strings etc in a dex file can be arranged in a number
of different ways. As a result, each such combination yields a different compiled version of
one application. This thwarts the analysis based on signatures of whole classes.dex and also

the signatures that look upon the arrangement of components in the classes.dex file.

4.1.12 Changing Package Name [46]
The package name which acts as identification mark for a given Android application is

defined in the AndroidManifestxml file. In this technique, we simply change this

identification marker to some other name.

4.2 Literature Review
This section reviews the evasion techniques with respect to their (i) pros and cons, (ii) evasion

tools employed and (iii) detection mechanisms to thwart these evasive techniques.

Mystique [50] is a malware generation framework that uses gene crossover and mutation
techniques to generate evasive malwares. Mystique-S, a variant of Mystique, is focused on
malware specific to financial charge, phishing and extortion cases [51]. It gathers client’s
data, delivers the malware at run time and can be evaluated on real devices rather than virtual

emulators.

Using genetic operators on existing malware, Sen, Aydogan and Aysan. [52] developed an
effective attack with evasion capability that challenges effectiveness of most successful
security solutions. Sen et al. also provides a Genetic Programming (GP) based malware
detection system incorporating static features of Android applications, which proves very
effective against known attacks. However, this technique can only run the malware for

limited time period and if run for a long time can trigger analysis of the malicious code.

24

Rastogi, Chen and Jiang [53] developed DroidChameleon[54] that applies various
transformation techniques on malware samples and audits ten popular mobile AMTs being
vulnerable to these transformations. However, such evasion is not very effective owing to

signature-based detection paradigm.

Zheng, Lee and Lui [55] developed ADAM that employs obfuscation and repackaging
techniques like repacking, assembling/disassembling, string encoding, code reordering, junk
code insertion, and renaming identifiers, but ignores sophisticated ones such as payload and

native code encryption, array data encoding, reflection and bytecode encryption.

Preda and Maggi [56] proposed an Automatic Android Malware Obfuscator (AAMO) to
obfuscate exhaustive datasets of Android malware using both existing and new obfuscation
techniques. It uses 1,260 malware applications from Genome repository, 6 state-of-the-art
AMTs and 17 obfuscation techniques simple and advanced control-flow based

modifications, resource renaming and encryption.

Badhani and Muttoo [57] developed eight different evasion techniques to hide malware
inside an image of a wrapper Android application using obfuscation, concatenation,
steganography, cryptography and their combinations. 402 malware samples developed as a
result of the above-mentioned techniques and installed on the real Android devices were then

tested against 10 AMTSs from Google Play Store.

Chua and Balachandran [58] presented a detailed framework with obfuscation techniques
like switch function, method overloading, try-catch function and opaque predicate. The new
malware variants retained their malicious operation, thereby indicating that AMTs listed on
VirusTotal[59] do not build resilience against obfuscation techniques but only update their

signature database to counter malware variants.

RealDroid [60] highlighted a broad range of techniques to evade dynamic analysis in
virtualized environments. A set of repackaged malwares with developed heuristics
incorporation almost evaded all malware analysis services deceiving numerous analysis tools
such as DroidBox[61], DroidScope[62], TaintDroid[63] and online services namely
Andrubis[64], SandDroid[65] and TraceDroid[66].

25

A comprehensive analysis of top 30 AVD (Android Virus Detectors) is conducted in [67].
Vulnerabilities related to AVD malware scan (malScan) are exploited by proposed evasion
techniques based on Fast Fourier Transform (FFT) [68] and signal steganography. It works
by identifying the scanning period followed by subsequent malicious actions.

A mechanism to evade Android automated runtime analysis is proposed by Diao, W. et. al.
[69] using close monitoring of the interaction patterns and events triggered on target device
as it differentiates between a human user and an analysis environment. It gives an insight on
the efficacy of current dynamic analysis platforms, and could be used in integration with

Android malware to monitor the system events before the execution of actual malware.

Albertini and Aprville in [70] demonstrated how one can hide malicious apps inside images
using a combination of steganography and cryptography. Using Angecryption, it possible to
embed imperceptible, valid and executable bytecode in a benign looking app, and
successfully evades static analysis such as disassembly. The wrapping app is installed on the
target device, malicious app encrypted into a valid PNG image placed in the assets section
of the wrapping app, is decrypted into the payload app and installed at runtime. However, it

works only on Android 4.4.2 and not on any later versions.

AVPass[46], another tool developed to automatically bypass Android malware detection
systems, offers several obfuscation techniques. It also infers detection features of AV engines
and using imitation mode, prevents the code leakage. Imitation mode refers to where query
to AV engines is performed in such a way that the actual application sample under analysis
is never sent to the AV engine, rather a similar code with selected features is uploaded.
AVPass provides an insight into the detection architecture of Android AMTSs. Its limitation

is that it only bypasses static analysis.
Existing research work has been summarized in Table 3.

Table 3: Summary of Malware Evasion Techniques on Android
Malware Type Evasion Technique(s) Pros Cons
Privacy leaker Obfuscation (control-Maximizes no. of attackOnly audits

dynamic

based, data-based, both) behaviours, = minimizesanalysis based AMTs

detection

26

Dynamically assembledMystique-S- a service-Mystique-S developedDynamic Analysis Tools

and loaded malware oriented tool malware that are(DATs) can detect
undetectable in case ofdynamically loaded
offline detection malicious code
Malicious AndroidGenetic ~ ProgrammingMost successful AMTs,Application limited to
application (apks) (GP) can be evaded via GP’sfew malwares, ignores
attack patterns. dynamically loaded code
Root exploit, informationRepacking, Canevade almost all anti-Only ~ thwart static
exfiltration, SMS Trojan,disassembling malware tools analysis, and not dynamic
dynamic code loading reassembling, renaming analysis, Ignores code-
identifier, package name, level transformations.

call indirections, data
encoding/ reordering,
junk code insertion,
payload/ byte code

encryption, and

composite

transformations.
Credentials stealer,Repackaging, Can evade Anti-malwarelLess comprehensive
adware, spyware obfuscation tools with little effort ~ transformations, lacks

composite obfuscation.

Genome Malware datasetObfuscation (AndroidUses sophisticated/Only evades scan-time
(AAMO) specific, simple/automated obfuscationstatic analysis

advanced control-flow,techniques to evade top

resource renaming/AMTs (Avast, Norton), is

encryption) open source and

reproducible.
Spyware, ransomware,Code reordering basedDecreased detection rateEvades signature- based

banking Trojan obfuscation techniques-by 50%, employs updateddetection only and uses
Method overloading,malware samples thatcode reordering
switch or try-catchretains its maliciousobfuscation technique
functions, opaqueoperation only.
predicate
Data extortion, rootRealDroid - Static,AMTs failed to inferAnalysis services lacking
exploits, bot activity anddynamic and hypervisormalicious behavior ofsupport for native
SMS Trojan level heuristics disguise new malwares. Also, noexecution couldn’t be

tool detected VM evasionevaded.
Genome malware dataset Fast Fourier Transform,Exploits malware scanLack of new malware
signal steganography-and engine update’s null-dataset used for evasion

based evasion protection window and is
effective
Malicious Android AngeCryption- Makes it possible toWorks only on Android
Applications encrypting apk to validembed undetectable,4.4.2 and not on latest
PNG and embedding intovalid and runnable Android versions
a benign lookingbytecode in a benign
wrapping apk looking apk, successfully

27

evades static analysis
such as disassembly

Malicious AndroidAVPass- automaticallyBypasses AMTs andBypasses only

Applications bypasses AMTs usinggives a good insightanalysis and

static

certain

both obfuscation andabout the detection rulesfeatures such as inferring

inferring detection rulesof AMTs using inferringAV features
for AMTs. and imitation mode. work.
Obfuscation modules

include string and

variable encryption, API

reflection, Resource

modification etc.

The aforementioned evasion techniques were successful in bypassing most reputed security
solutions, and deceived dynamic runtime detection by analyzing sandbox environment.
Mystique and Mystique-S provided reasonable evasion in case of offline detection and
addressed privacy leakage and dynamically assembled and loaded malware. However,
Mystique audited only one Dynamic Analysis Tool (DAT) and is less effective. Mystique-S
too failed to evade when dynamically loaded malware were subjected to DATSs. GP based
evasion tool claimed to evade most successful AMTS, however, it lacks dynamically loaded

code features.

Among the evasion approaches discussed, DroidChameleon, ADAM, AAMO and the
system proposed by Badhani and Muttoo are used to test the efficacy of the current AMTs
being used for detection of Android malware. Trivial obfuscation techniques developed by
DroidChameleon successfully thwart static analysis but fail when DATSs are employed for
detection. ADAM and RealDroid proposed both evasion and detection frameworks.
RealDroid fails to detect VM evasion. ADAM provides reasonable evasion by repackaging
and obfuscation but lacks composite obfuscation techniques. AAMO provides exhaustive

obfuscation techniques and is flexible in terms of its application but fails to evade DATS.

28

doesn’t

Chapter 5

Proposed Framework for Auditing Android AMTs Using
Malware Evasion Techniques

To audit the detection efficacy of known antimalware tools against simple yet sophisticated
evasion techniques, a simple, resilient and light weight methodology has been proposed in
this chapter and illustrated in Fig. 1. It is based on application obfuscation and dynamic code
loading.

The proposed methodology will bypass static analysis in a series of steps owing to the fact
that layers of obfuscation will change the application’s signatures/hash to a level where it
won’t be detected by most AMTs. The proposed method consists of three basic evasion
modules followed by an auditing module. The three evasion modules are (i). Repacking
Module, (ii). Obfuscation Module, and (iii). AngeCryption Module. These modules will be
further described in the next section. This technique is simple and lightweight, yet resilient
in achieving good evasion results and shedding light on the detection capability of well-
known AMTs. The evasion module when implemented alone do not yield better results.
However, when taken together, the evasion modules decrease detection efficacy iteratively
at each step and the final outcome has an evasion capability to an extent that is incredible.
The auditing module simply uploads the resultant application to VirusTotal, an online

repository of numerous AMTSs. The Fig. shows the framework for evading AMTS.

29

Obfuscation Module AngeCryption Module Auditing Module

Change Insert Null Appended
Package Bytes to Payload
Name v APK
Payload APK
Resource VirusThtal
irusTota
Java API related XML CRC32+IHDR ‘i'l‘s:::l';\?:
Reflection “f,:'ej;'mage +IDAT+IEND
odification
Dummy Result
Bytes
Malicious) Obfuscated i
Android String Android PNG image EOCD Detection
Application Encryption Application Ratio
Calculation

Figure 5: Proposed Framework for Auditing Android AMTs

Before delving deeper into the working of the proposed framework, we first describe its
individual components in order to provide a comprehensive and thorough understanding of

the framework.

5.1 Components of the Auditing Framework
Described below are the basic components the proposed framework.

5.1.1 Evasion Model
Two evasion modules are used in this framework. These evasion modules are selected on the

basis of the simplicity of their implementation, degree of evasion achieved and their
interoperability. ‘Interoperability’, here, refers to the fact that the evasion modules when
implemented together in a certain sequence operate successfully and the resultant application
does not lose its malicious intent and is working properly on the real Android device.
Moreover, these evasion modules are developed by using some existing projects on GitHub
and extracting components that function properly on latest Android versions. For example,
the first module, AVPass, consists of three components. Only its first component, the
obfuscation module works fine. The other components such as inference module, doesn’t
operate properly at all. Hence, we have taken only the first component for this project. In
case of the second module, AngeCryption, its complete project works only on older Android
version 4.4.2 and doesn’t operate on later Android versions, since the bug it exploits was
fixed in later Android versions. However, if we do not implement the entire project as it is,

30

rather restrict its implementation before the final step, we can make it work on later Android
versions. These modules are described in detail in the next subsections. These evasion

modules achieve almost 60% evasion.

The proposed framework is implemented as two phase evasion model. In the first, phase,
each evasion module is implemented individually on each Android malware sample resulting
into a new malware sample. In second phase, two modules are implemented in a specific
manner on the same malware applications yielding a new malware sample. This second

phase yields the best results.

5.1.1.1 Obfuscation Module
The obfuscation module used in this framework transforms any Android malware into a form

that bypasses AMTs. The module’s name is AVPass[46]. The module performs apk
obfuscation with more than 10 modules. It applies a layer of obfuscation onto the malware
so that it evades maximum AVs. According to [46], most of the AVs were bypassed with
3.42/58 (5.8%). 5 strong, 3 normal and 2 weak impact features of AVs were discovered.
Also, about 30% bypassing rule combinations are discovered. AVPass has three phases in
which it claims to achieve 100% evasion. Under these three phases, AVPass aims to avoid
APIl-based, dataflow-based, interaction-based and signature-based detection. The three

phases are as follows:

i. In first phase, individual features of Android binary are obfuscated employing
techniques such as string encryption, API reflection, resource modification etc. We
can apply these obfuscations in a number of different ways suiting our needs. We can

apply them as individual obfuscations or can apply some or all in a specific sequence.

ii. Inthis phase, features and detection rules of AVs are inferred based on the results of
phase 1. The AMTs which detected the malware application in the first phase, its

detection features and rules are then inferred and stored.

iii. In the last phase, malicious Android applications are obfuscated in such a way that it
evades maximum AMTSs. This obfuscation uses the features and rules inferred in the

second phase. Based on these inferred rules, obfuscation aiming to remove, hide or

31

transform the malware apk in such a way that the AMTSs is fully bypassed. This
feature tends to reduce the number of obfuscation features being applied based on

features inferred, applying only those obfuscation necessary to evade analysis.

We limit AVPass implementation only to the first step as the second step doesn’t function
properly after several trials two steps and since third step is dependent on the second, hence
we are forced to use only the first step. Also, we alter the implementation method of AVPass
as depicted in [46] in a fashion so as to achieve much sound results even better than with less
complexity. We combine the results of this first step with our second module and achieve
almost 100% evasion. Moreover, our technique is less complex and is flexible enough to be
operable on all Android versions.

We now list the obfuscation components used in AVPass and how we tailored them to our

needs to achieve maximum evasion.

51.1.1.1 API obfuscation
This obfuscation component provides a list obfuscation utilities for obfuscating APIs and is

for evading API-based detection. The utilities provided by this component are injecting
random perturbations, injecting APl between two existing APIs, listing APIs, injection of
API between specific points, modifying package and file name, removing all permissions
and inserting benign permissions. In order to break API-based detection, we can either inject
dummy APIs or modify all family/package names. The number of APIs to be injected
depends upon the size of the malware, the bigger the malware, the more number of APIs
need to be injected and vice versa.

51.1.1.2 String and Variable Encryption
Variables in an application are encrypted using simple caesar cipher while strings are

encrypted using xor-string encryptor which is different for each string. This is done by
inserting massive number of getStr() functions. This kind of obfuscation breaks Signature-
based detection. This method encrypts those string names to random/dummy values, hence

rendering AMTs unable to detect the malicious application based on string names.

51.1.1.3 Package, Class and Method Obfuscation (PCM)

32

This obfuscator obfuscates package and class/methods present in an Android application. It
changes package name, class/method name in such a way that it no longer serves as a
signature for detection. It also modifies AndroidManifest.xml files modifying the main
package name (package="com.a.b.c”’), modifying components name such as activity and
services etc. In case of class name, it first checks whether a particular class name exists,
modifies line classes (L class) except for real class names. Also it encrypts the references to
class names if found in the xml files. Moreover, it scans all xml files found in res section of
Android application and change all class references to encrypted form. PCM also has a
file/directory name changer which modifies file name which is actually the file name
provided internal definitions and its references are modified and changes directory name

also.

51.1.14 Java API Reflection
In this obfuscation component, reflection is performed for each file by generating a set of

wrapper functions. The wrapper function contains the actual payload/malicious function.
These set of wrapper functions can be either stored in an original smali file, in a separate file
in the same directory or in any one specific wrapper file. We can generate these wrappers
either for each API call or for a set of same API calls in each file/package/method etc. This

techniques uses the Java API for reflection.

51115 Resource Obfuscation
Resource obfuscation modifies the contents of ‘res’ directory. It modifies images/swf, data

in resource related xml files, nullifies payloads (.so, .jar, .zip, &c) and removes “unknown”
directory. It performs some of the same functions as don PCM component such as modifying
class names, modifying class name references in xml files. It modifies images in the res
section by changing images’ hex values. This is done by either modifying pixels or adding
one byte. It also alters the string, id and drawable in XML files. The nullify payload function

renders the application useless, hence is not recommended.

5.1.1.2 Angecryption Module
Angecryption [70] is the second module after AVPass that we use in our proposed solution.

It works on the idea of encrypting any given input into any JPG or PNG image. Its details
have already been discussed in the section of chapter .However, we give its technical details

33

here. AngeCryption does not exactly encrypts the input file into the image rather it transforms
it into something that looks identical to the image file[Ange].For the sake of understanding,

we precisely define the PNG image format here. A PNG file consists of the following parts:

- File Header: An 8-byte fixed PNG signature which reads ‘0x89 PNG 0x0d Ox1a Oxa’.
This signature helps in the identification of PNG file as a valid PNG file.

- Garbage Chunk: A chunk is comprised of chunk length (4 bytes), chunk id (4 bytes),
chunk data and CRC32 of chunk data and id. The data residing here is usually ignored

by image reading tools.

- Header Chunk: It is mandated by PNG specifications that a header chunk initiate a

PNG image.
- Data Chunk: The actual image data blocks reside in this section.
- End Chunk: This is the end of file marker and terminated the PNG.

AngeCryption uses AES as the encryption method where a single AES block equals 16 bytes.
To generate the output as desired by AngeCryption, a suitable IV is first selected. The first
cipher block C1 needs to be equal to the PNG file header (8 bytes) + chunk length (4 bytes)
+ chunk id (4 bytes). This, coincidentally, equals 16 bytes fitting perfectly an AES block.
Now, the plain text is input from the payload application. IV is selected in such a way that it
equals AESkA-1 (Ci) +Pi. 1V, here, is selected in such a way that it yields the first cipher
block desired whereas in real encryption, 1V is random. After the appropriate selection of 1V,
a modified apk is generated. Modified here refers the payload apk with appended data at the
end. The data appended at the end is constituted of decrypted CRC32 checksum + payload
image file blocks +end chunk. The reason for appending this data is to generate original data
when encrypted data is decrypted i.e. AESk (AESk-1(Pi))=Pi. The important feature of
AngeCryption is that it is independent of the encryption method employed and the kind of
payload format used i.e. we can use either PNG, JPG image or a PDF or FLV file. Moreover,

AngeCryption ensures that selecting an appropriate 1V, we can generate desired cipher block,

34

source format can tolerate some appended data and header+chunk declaration data of the

source format fits in the block size.

In order for the AngeCryption tool to convert an input file into a target image, we need to
modify the input file in such a way that its content remains intact. The parameters given to

this tool include

input file which needs to be encrypted into a target image,

- target image that is what the input file needs to look like,

- modified input which is a modified version of the input file manipulated to be
handled by the angecrypt tool, as the input file in its raw form cannot be encrypted to

a target image

- Key which is used for encryption,

Encryption algorithm. Angecryption supports AES128-CBC and 3DES-EDE2-CBC

The output from the tool is a modified input file and a generated Python script containing the
required IV. We halt this process until we get the modified input file and do not encrypt this
to the target image for reason that this final image product does not work on latest Android
versions. This conversion of payload apk to a modified apk is illustrated in the Fig. 6. The

modified apk is our end product out of the evasion model.

The complete angecryption tool then embeds the resultant target image into a wrapping apk
in the assets section. One can be flexible in this implementation method. This wrapping apk
reads the asset, opens the PNG, decrypt it using the cipher used for encryption, write it to the

SD card and installs the apk onto the target device.

35

AES encrypt

File Header Payload APK
Chunk IHDR
Garbage chunk AES-1
Chunk CRC32 (CRC32+IHDR+IDAT+IEND)

Chunk(s) IDAT containing
Anakin Skywalker

Dummy bytes

so that size multiple of 16
Chunk IEND

AES (Dummy)

Ignored

EOCD
AES (EOCD)

Figure 6: Layout of PNG and modified APK
We tailor its implementation to our needs since as mentioned earlier that its complete

implementation only works on Android 4.4.2 and fails on later Android versions. We only
use the modified apk as illustrated in the figure above. The output of AVPass module is
angecrypted and later used for auditing the AMTs. We skip the final encryption to a valid
PNG and embedding into a wrapping apk part. Our outcome is an undetectable, valid and

runnable apk on the latest Android versions.

5.1.1.3 Phases of Evasion Model
We divide our evasion model implementation into two phases. First phase refers to

implementation of individual implementation of the evasion module and submodules, the
second phase refers to the implementation of all the two modules and submodules in a

customized sequence so as to give the best results.

51.1.3.1 Individual Evasion Module Implementation
In this phase, each module and submodule is implemented individually and the outcome is

used for auditing the AMTs. Obfuscation module AVPass is first implemented as a whole
and later its distinct submodules are implemented individually. Also, Angecryption is also
implemented individually. The detection results of each are recorded and compared.

36

51132 Multiple Evasion Modules Implementation
In this phase, we use the evasion modules and submodules in a customized sequence on the

malware sample. The customized sequence developed is based on the best evasion achieved
.. the sequence or pattern that gives the best results. The resultant sequence yields the final
version of the proposed framework as depicted in the Figure.

5.1.2 Auditing Model
After applying the proposed evasion model upon the sample Android malwares, we audit the

detection efficacy of the some top notch AMTSs. For the said purpose, we use a repository of
known AMTSs. VirusTotal [58] is one said repository where we can upload our malware
sample and determine the extent of its malicious intent. VirusTotal uses static analysis
approaches as mentioned earlier to classify a given sample. In our approach, we upload the
malware sample obtained at each step to the VirusTotal and look for the number of AMTSs
that detect it as malicious or benign. With each step of our implementation, we observe that

the number of AMTSs that detect the malware sample decreases.

5.1.2.1 Steps for Auditing AMTSs
The Auditing steps are listed below:

i. First of all, we upload the malware sample to VirusTotal in its raw form i.e. without
any evasion implementation and in its purest form as it exists. We note down the
results of the AV engines that detect the malware. We calculate the detection
percentage by dividing the number of engines that detected the malware to the total

number of engines used i.e.

Detection Ratio= (no. of AMTs that detected the malware sample/Total number of AMTs
used by VirusTotal)*100

ii. We now apply the evasion technique proposed. The output of the evasion model at
each interval is uploaded to VirusTotal.

iii. After confirm upload step, VirusTotal shares the sample with various AMTSs engines,
within seconds we get the number of AV engines that detected the malware sample.
We again calculate the detection ratio using the formula mentioned above.

37

iv. We compare the results of detection ratio obtained for each step of evasion applied

and note down the AMTSs that detected the malware and those that are bypassed.

v. We also look for signatures used for detection at each step and the type of detection

method evaded.

vi. This process is repeated for approximately 1200 malware samples, 200 raw malware
samples and around 1000 malware samples obtained as a result of the evasion

application.

vii. We determine the best evasion combination and hence the malware samples which
bypass most AMTSs. Also, we determine the most resilient AMTSs against our evasion

technique.
viii. At the end, findings regarding AMTSs are presented.

These steps are repeated for each evasion module. Using this method helps us analyze the
robustness and detection efficacy of AMTs. The AMT should give ideal results irrespective

of any kind of evasion applied.

However, as we will notice that application of evasion modules alters the detection efficacy
of these AMTSs. Malicious files are being classified as benign files after the application of
sufficient and appropriate evasion techniques. Certain evasion components and their

combination are better detected while others are better evaded.

38

Experiment

Chapter 6

This chapter outlines all the prerequisites including both hardware and software

requirements, malware dataset and antimalware engines being audited.

6.1 Environmental Setup
We now list the pre-requisites for the implementation of this proposed framework. We use

Kali Linux installed as a guest Operating System on VMWare Workstation. VMware

Workstation is installed on Windows10 as Host Operating System. Each malicious

application undergoes decompilation for the implementation of obfuscation module. Hence,

we use apktool. Apktool for its proper functioning needs JAVA Virtual Machine, so JAVA

is also a prerequisite for the project. Also, both AVPass and Angecryption are written in

Python, hence, Python is also a prerequisite for this project. We use Kali Linux for this

project because Java, apktool and Python come preinstalled on it, we only need to take care

of the correct version of these software. The Android device used for real time testing is

Huawei LUA with Android version 5.0.2. The table below lists down the correct version of

these software we used for our experiment.

Table 4: Software and Hardware Requirements

Sr. No. [Software Version
1. Windows 10 Windows 10 Pro
2. \VMware Workstation Pro v12.0.1.3160714
3. |Kali Linux kali-linux-2.0-amd64
4. Java 1.8.0_45
5. |Apktool 2.3.0

39

6. [Python 2.7.9

7. Android 5.1

6.2 Malware Dataset
In order to audit AMTSs, we use around 200 Android malware samples collected for GitHub

repository [71], a large open collection of Android malware samples collected from various
sources and mailing lists. We first applied the evasion model on one Android sample to select
the best set of evasion components and later those evasion components are applied on 200

Android malware samples to check the consistency of our results.

We used dendroid malware as our sample file and applied the evasion components. Dendroid
is a malware development kit that is used for automating and developing Android malwares
[72]. Dendroid is a Remote Access Trojan (RAT) which allows malware authors to develop
malwares with features such as intercept SMS message, video recording and audio input,
running an application and dialing a phone number. Also, traits such as anti-emulation to
help the malware stay hidden from Bouncer, Google Play Store’s security system for
blacklist malicious apps from being uploaded to the Play Store. We applied the framework
in two phases as mentioned earlier. In first phase, we implement individual evasion modules
and submodules, check the detection ratio by uploading the malware to the AMTS repository.

Also, we select best individual components and use them in the second phase.

Table 5: List of Individual Evasion Components
Sr. No. [Evasion Component

1. String Encryption (SE)

2. Variable Encryption (VE)

3. Random Perturbation (RP)

40

4. One-by-One Perturbation (OOP)

5. Change Package Name (PN_API)

6. Change File Name (FN)

7. Remove All Permissions (RAP)

8. Insert Benign Permissions (IBP)

0. Change Package Name (PN_PCM)

10. Insert Null Bytes (INB) from PCM

11. Insert Benign Class (IBC) from
PCM

12. Resource Obfuscations (RO)

13. |Angecryption (ANGE)

41

Detection Ratio for Dendroid Malware

60
50

40

3

2

1
0

Evasion Technique(s)

o

Detection Ratio
o

o

Figure 7: Detection Ratio for Individual Evasion Module Implementation

In second phase, using the best evasion components from first phase, we implement multiple
evasion components in a customized sequence so as to arrive at a sequence which gives the
best evasion results and increases detection complexity for AMTs. We can see that we
achieve 0% detection for String Encryption (SE) + Java APl Reflection (JAR) + Change
Package Name(PN) from PCM module +Insert Null Bytes (INB) from PCM + Resource-
Level Obfuscation (RO) + Angecryption (ANGE).

Table 6: List of Multiple Evasion Components
Sr. No. [Evasion Component(s)

1. String Encryption (SE) +Java APl Reflection
(JAR)
2. String Encryption (SE) +Java APl Reflection

(JAR) + Change Package Name (PN_PCM)

42

String Encryption (SE) +Java APl Reflection
(JAR) + Change Package Name (PN_PCM)
from PCM + Insert Null Bytes (INB)

String Encryption (SE) +Java APl Reflection
(JAR) + Change Package Name (PN_PCM)
from PCM + Insert Null Bytes (INB) +
Resource Obfuscation (RO)

String Encryption (SE) +Java APl Reflection
(JAR) + Change Package Name (PN_PCM)
from PCM + Insert Null Bytes (INB) +
Resource Obfuscation (RO) +Angecryption
(ANGE)

AVPass: Java APl Reflection (JAR) + String
Encryption (SE) + Variable Encryption (VE) +
Resource Obfuscation (RO)

Java API Reflection (JAR) + String Encryption
(SE) + Variable Encryption (VE) + Resource-
level Obfuscation (RO) + Angecryption
(ANGE)

43

Detection Ratio for Dendroid Malware

60
50
40

30

20
10 I
: I . i

None (Raw) SE+JAR SE+JAR+ SE+JAR+ SE+JAR+ SE+JAR+ AVPass AVPass +
PN PN+INB PN+INB+ PN+INB+ ANGE
RO RO + ANGE

Detection Ratio

Evasion Technique(s)

Figure 8: Detection Ratio for Multiple Evasion Module Implementation

After selecting best evasion component implementation sequence, we apply it over 200
malware samples. As a result, we obtain more than 1, 000 new malware variants. We see a

consistency in our results with that of obtained for dendroid malware.

6.3 Malware Detectors
Instead of depending on a single malware detector for drawing results about the detection

efficacy of AMTSs and the evasion capability of the proposed framework, we use a handful
of malware detectors because each malware detector uses different technique for detection
of malwares. Relying on a single AMT would either result in excellent detection or very poor
detection. Hence, to avoid this shortcoming, we use first a single malware file with the
implementation of evasion components to check the detection capability of several AMTs
simultaneously. Also, instead of uploading the file manually to different AMTs, we use
VirusTotal.

6.3.1 VirusTotal
VirusTotal which not only provides more than 60 AMT engines for the analysis of files,

URLs, IP addresses, domains or file hashes, but also gives basic details about the file

uploaded.

44

6.3.1.1 VirusTotal Sandbox Integration
Using its integration with three Android sandboxes namely:

6.3.1.1.1 VirusTotal Droidy[73]
It characterizes actions that Android applications perform when installed and opened on

Android devices. These sandboxes extract information such as

- SMS related activities

- Network communications including http requests and DNS Resolutions

- File System Actions including files opened, files written and files deleted

- Process and Service Actions including Services started and Processes Tree

- Synchronization Mechanisms and Signals including signals hooked

- Permissions checked, Registered Receivers, Java Reflection calls

- SQLite Database usage

Crypto-related Activity

6.3.1.1.2 Tencent HABO
Tencent's setup comprises analysis environments not only for Windows, but also for Linux

and Android. It can thoroughly analyze malware samples from both static information and
dynamic behaviors perspective, trigger and capture behaviors of the samples in the sandbox,
and output the results in various formats. It was the first Linux-base ELF files’ behavioral
characterization engine and among the first sandbox to be integrated with VirusTotal under
the multisandbox project [74].

6.3.1.1.3 VirusTotal Androbox
VirusTotal Androbox is one of the sandboxes integrated to VirusTotal under the

multisandbox project. It shows some behavioral information regarding the malware apk

45

under analysis. Androbox shows network communications such as http requests and file

system actions such as files opened, deleted etc. performed by the apk.

46

Chapter 7

Implementation Results

The malware app used for testing is Dendroid capable of hiding from the Android emulators,
and a sophisticated remote administration tool. At each interval, the application was installed
on real Android device to check that it retains its malicious intent and installs successfully.

The application did not crash at any moment.

7.1 Uploading Malware Variants to VirusTotal

7.1.1 Raw Malware

We first upload Dendroid to VirusTotal and check the results. It has a detection rate of 32/60
according to VirusTotal as illustrated in Fig. 9. The detection ratio is ((32/60)*100) = 53.3%.
It must be noted that higher the detection ratio, the more AMTs detect the malware as
malicious and lesser the degree of evasion achieved. The aim is to achieve as less the
detection ratio possible and based on that determine the flaws present in AMTs. All the
known antimalware solutions particularly Avast, AVG, Kaspersky, Symantec and McAfee

etc. are able to detect it as malicious file.

2 099a57328de9335c524144514e225d50731c808145221affdd654d8b4dad5atd|
32) (1) 32 engines detected this file
099a57328de9335c524f445142225d50731c808145221affdd684d8b4dad5ald 92075 KB 2019-09-27 03:01:25 UTC
‘ dendroid apk
< android apk checks-gps
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY °
AegisLab (1) Trojan Android1S Gensric Clo AhnLab-V3 oid-Trojan/Dendroid da565
Alibaba (D) Backdoor Android/Dingwe.caf13288 Avast
Avast-Mobile (D Android:Dendroid-D [Trj] AVG
Avira (no cloud) (D) ANDROID/Dingwe.SPY.Gen CAT-QuickHeal
ClamAV _', AndrMalware Agent-1534052 Comodo _‘, Malware@s#x1k6eagmded|
Cyren oid A.genlEldorado DriVeb _‘, Android.Backdoor. 262 origin
ESET-NOD32 iDingwe A F-Secure (1) Malware ANDROID/Dingwe E.Gen

47

Z 099a57328de9335c5241445142225d50731c808145221affdds84d8bddad5at1d|

Fortinet Ge Ikarus u Trojan.AndroidQS. Dingwe
KTAntiVirus (D) Trojan { 0001140e1) KTGW (D) Trojan { 0001140e1)
Kaspersky (1) HEUR:Backdoor AndroidOS Dingwe.a MAX () Malware (ai Score=99)
McAfee _', Artemis|DBO1FI6D5EGE McAfee-GW-Edition _, Artemis!Trejan

Microsoft (1) Trojan:Win32/Bitrep A NANQ-Antivirus (1) Trojan Android.Dingwe.dpalmk
Qihoo-360 O] Sophos AV

Symantec \j, Symantec Mobile Insight \7 pyware: MobileSpy

Tencent \j, Backdoor Android Dingwe a Trustlook ral
ZoneAlarm by Chack Paint (1) HEUR:Backdoor AndroidOS Dingwe.a Zoner () Trojan Android.Gen.1761005
Ad-Aware () Undetected AlYac () Undetected

Antiy-AVL () Undetected Arcabit () Undetected

Baidu () Undetected BitDefender () Undetected

Bkav () Undetected CcMC () Undetected

Figure 9: VirusTotal Result for Raw Dendroid Malware

7.1.2 Individual Evasion Module Implementation

In second step, we start applying the evasion techniques on the malware samples and upload
the malware variants to VirusTotal. We first make the malware go through the first phase
evasion i.e. application of individual evasion modules and submodules. AVPass and
Angecryption are applied individually in this phase. The malware sample goes through the
obfuscation of submodules of AVPass and then, Angecryption as mentioned earlier. We
apply all the submodules individually.

7.1.2.1 String Encryption (SE)
The Dendroid malware undergoes string encryption. The number of AMTSs that detect the

new malware variant drops to half. The detection ratio comes out to be 27%. Thus applying
only string encryption drops the detection rate to almost half. This obfuscation component

evades API-based and signature-based detection.

48

E e9fd8719019e2afed 7ab625ct1090b0D006MD482Cb5989bC999e772971d0ch 11

16
N

@ 16 engines detected this file

parentalcontrol_str.apk

android

Community

Score

DETECTION DETAILS

AhnLab-V3

Avast-Mobile

Avira (no cloud)

Driveb

F-Secure

lkarus

Kaspersky

RELATIONS

COMMUNITY

(1) Android-Trojan/Dendroid.da565
(D) Android:Dingwe-G [Trj]

@ ANDRQID/Obfus ME 3 Gen
(D) Android.Dendroid.1.origin

(1) BackdoorAndroid/Dendroid A
() BackdoorAndroid0S Dendroid

(1) HEUR:Backdoor AndroidOS Dingwe a

Z £97d8719019e2afe4 7Tabs25ci 090600006 m482ch5989bCI99e 77297 1d0ch 11|

Kaspersky

Symantec Mobile Insight

Ad-Aware

Alibaba

Antiy-AVL

Baidu

BitDefenderTheta

ClamAV

Comoda

Emsisoft

F-Prot .

GData

KrAntiVirus

(1) HEUR:Backdoor Android0S Dingwe.a

(1) Trejan:Dendoroid

) Undetected

") Undetected

() Undetected
() Undetected
() Undetected
\»:/; Undetected
\»:/; Undetected
\»:/; Undetected
\»:/; Undetected

\»E; Undetected

‘\»E,‘ Undetected

e9fdB87f90f9e2afe47ah625cf1090b0b006fb482cb5989bc999e772971d0ch11

Avast

AVG

CAT-QuickHeal

ESET-NOD32

Fortinet

KTGW

Sophos AV

Sophos AV

ZoneAlarm by Check Point

AegisLab

ALYac

Arcabit

BitDefender

Bkav

CMC

Cyren

eScan

FireEye

Jiangmin

Kingsoft

O
L

MB 2019-11-04 10:33:54 UTC

ize a moment ago

@ Andreid:Dingwe-G [Trj]

(1) Android:Dingwe-G [Tri]

@ Andreid Dingwe A

@ AVariant Of Android/Dingwe.J
(D) Android/Obfus NSitr

(D) Trojan (0001140e1)

(D) AndriDendroid-A

O
jo

(D) AndrDendroid-A
(1) HEUR:Backdoor.Android0S.Dingwe.a
) Undstected

() Undetected

-\EQ- Undstected

() Undetected

() Undetected

-\E/- Undetected

-\E/- Undetected

-\E/- Undetected

() Undetected

() Undetected

() Undetected

Figure 10: VirusTotal Result for SE Implemented Dendroid Malware

7.1.2.2 Variable Encryption (VE)
Encrypting variables results into a detection ratio of 35% which is almost 18% decrease in

detection rate. Variable encryption also evades signature-based static analysis.

49

E 3b7d7b2fa392b45eb972aa3808353d0e8aba11fdetabsae16r9db16261fc8507 Q

@ 20 engines detected this file

3b7d7b2fa392b45ebSf2aa3808353d0eBabal1fdebab5ae16f9db16261c8507 9272 KB 2019-11-04 10:37:41UTC
parentalcontrol_var.apk Size 2 minutes ago
android apk

Community
Score

DETECTION DETAILS RELATIONS COMMUNITY

AhnLab-V3 @ Android-Trojan/Dendreid.dab65 Avast @ Android:Dendroid-C [Trj)
Avast-Mobile @ Android:Dendroid-D [Trj] AVG @ Android:Dendroid-C [Trj)
Avira (no cloud) @ ANDROID/Dingwe SPY.Gen CAT-QuickHeal @ Android.Dingwe A
Cyren @ Andreid05/Dendroid A.gen!Eldorade Driveb @ Android.Dendroid. 1.origin
ESET-NOD32 @ AVariant Of Android/Dingwe A F-Secure (_‘) are ANDROID/Dingwe E.Gen
Fortinet @ Android/Generic. Z 2E64E5lr KTGW (_‘) Trojan { 0001140e1)
1 Kaspersky @ HEUR:Backdeor Android0S Dingwe a NANO-Antivirus @ Trojan Andreid Dingwe. dpalmk
z 3b7d7b2fa392b45eb912aa3808353d0esaba11Tde6ab5ae16/9db162617c8507 Q

Qihoo-360 () Trojan Android Gen Sophos AV (D) AndrFakelnstv

Symantec Mabile Insight @ Spyware:MobileSpy Tencent @ Backdoor Android Dingwe a

Trustlook (1) Android Malware General (score:9) ZoneAlarm by Check Point (1) HEUR Backdoor AndroidOS Dingwe a

Ad-Aware () Undetected AegisLab (%) Undetected

Alibaba (%) Undetected AlYac () Undetacted

Arcabit () Undetected Baidu () Undetected

BitDefender &) Undetected BitDefenderTheta (%) Undetected

ClamAv (%) Undetected CMC () Undetacted

Comodo (¥) Undetected Emsisoft () Undetected

eScan &) Undetected F-Prot (%) Undetected

FireEye () Undetected GData () Undetected

Jiangmin () Undetected K7AntiVirus () Undetected

Kingsoft &) Undetected Malwarebytes (%) Undetected

Figure 11: VirusTotal Result for VE Implemented Dendroid Malware

7.1.2.3 Java API Reflection (JAR)
Applying Java API reflection yields a detection ratio of 31%. 18 AMTs out of 58 are able to

detect the malware as malicious. It evades API-based and interaction-based detection.

50

Z 9482cdalf67r2ad3ea767clcadb18730a2e9a750e5975ee7294032efb3c624C

Community

Score

DETECTION

AhnLab-V3

Avast-Mobile

Avira (no cloud)

Cyren

F-Secure

lkarus

Kaspersky

DETAILS

Q/ 18 engines detected this file

9482cdalf67if2ad3eal67cfca9b18730a2e9a75des978ee7294032efb3cb24c

parentalcontrol_refl apk

android apk

RELATIONS

o

(D) Backdoor:Android/Dendroid.A
(D) Trojan AndroidOS Dingwe

oy

Q
1.08 MB 2019-11-04 11:12:42 UTC
COMMUNITY
\IJ, Android-Trojan/Dendroid.dab65 Avast) Android Dendroid-C [Trj]
Android:Dendroid-D [Trj] AVG) Android:Dendroid-C [Trj]
ANDRQID/Dingwe.SPY. Gen CAT-QuickHeal Android.Dingwe.A
(1) Android0S/Dendroid A genlEldorado ESET-NOD32 (D Avariant Of Android/Dingwe E
Fortinet Android/Obfus AHMr
KTGW -’L") Trojan { 0001140e1)
(1) HEURBackdoor Android0S Dingwe a Qihoo-360 \'J, Trojan_Android Gen
Q

Z 9482cda0fe7if2addear67cicadb18730a2e9a75de5978ee7294032efh3c624c

Sophos AV

Tencent

Ad-Aware

Alibaba

Antiy-AVL

Baidu

BitDefenderTheta

ClamAV

Comodo

Emsisoft

F-Prot

GData

K7 AntiVirus

(D) AndrFakelnstV

¢, Backdoor.Android Dingwe.a
(%) Undetected
(%) Undetected
(%) Undetected
(%) Undetected
) Undetected
) Undetected
() Undetected
() Undetected
(&) Undetected
(&) Undetected

(&) Undetected

Symantec Mobile Insight

ZoneAlarm by Check Point

AegisLab

AlYac

Arcabit

BitDefender

Bkav

CMC

DriVeb

eScan

FireEye

Jiangmin

Kingsoft

re:MobileSpy
!) HEUR:Backdoor.AndroidOS.Dingwe.a

() Undetected

(¥) Undetected
(%) Undetected
(%) Undetected
() Undetected
() Undetected
(%) Undetected
(%) Undetected

(%) Undstacted

() Undstected

(%) Undstected

Figure 12: VirusTotal Result for JAR Implemented Dendroid Malware

7.1.2.4 API Obfuscations

7.1.2.4.1 Random Perturbation (RP)
Random perturbations are performed i.e. APIs are inserted at random. Employing random

API obfuscation helps bypassing 13 AMTs out of 32 AMTSs that detect raw malware. A

detection ratio of 32.2% is achieved. It helps evade API-based static analysis technique.

51

Z 350d2ddfc8be1571754a991211475858e704caabc476b21d9e2634a00bC6d448

@ 15 engines detected this file

parentalcontrol_api_random.apk

android apk checks-gps: reflection telephony
Gommunity
Score
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY
AhnLab-V3 (D) Android-Trojan/Dendroid.7442e
Avast-Mobile @ Android:Dendroid-D [Trj]
CAT-QuickHeal (D) Android Dingwe. A
Dreb (1) Android.Dendroid.1.origin
F-Secure Q) IMalware ANDROID/Dingwe E.Gen
lkarus @ Trojan.Andreid0S Dingwe
Kaspersky Q) HEUR:Backdcor.AndroidOS Dingwe.a

350d2ddfcBbe157f754a9912ff4 7585827 04caabcd 76b21d922634a50be6d446

Avast

AVG

Cyren

ESET-NOD32

Fortinet

KTGWwW

NANQ-Antivirus

92737 KB 2018-11-07 12:03:10 UTC

Si go

(D) Android:Dendroid-C [Trj]

@ Andreid Dendroid-C [Trj]

(1) Android0S/Dendroid A genlEldorado
(D) AVariant Of Android/Dingwe.A

@ Android/Generic.Z 2EG4ES!r

(1) Trojan [0001140e1)

@ Trojan.Android.Dingwe.dpalmk

Z 350d2ddfc8be1571754a99121475858e704caabc476b2109e2634a50bc6d448

Qihoo-360 (D Trojan.Android.Gen
Symantec Mobile Insight @ Spyware:MobileSpy
ZoneAlarm by Check Point (_‘) HEUR:Backdoor.Andreid0S Dingwe.a
AegisLab) Undetected

AlYac) Undetected
Arcabit () Undetected
BitDefender i»_’) Undetected

Bkav i»:’) Undetected

cMmc) Undetected
Emsisoft () Undetected

F-Prot () Undetected

GData () Undetected
K7AntiVirus) Undetected

Sophos AV

Tencent

Ad-Aware

Alibaba

Antiy-AVL

Baidu

BitDefenderTheta

ClamAV

Comodo

eScan

FireEye

Jiangmin

Kingsoft

@ AndriFakelnst-Y
(D) Backdoor.Android.Dingwe.a

)

) Undetected

P
(<)

(%) Undetected
(%) Undetected
() Undetected
:, Undetected
-»:,- Undetected
-\»:’,- Undetected
() Undetected
() Undetected
() Undetected

() Undetected

Figure 13: VirusTotal Result for RP Implemented Dendroid Malware

7.1.2.4.2 One-by-One Perturbation (OOP)

APIs are inserted between two existing APIs. The detection ratio for this obfuscation

component is 32.2%.

52

Z b9a2aaladed1e58175136fdb5393cid5bf2h7a36211ebed5409866494e8c8cs| Q,

@ 19 engines detected this file

b9a2aa1a%e81e58115136fdb5393cfd5bi2b7a362f1ebed54d9866494e8c9ch 948.91 KB 2019-11-07 11:53:41 UTC
parentalcontrol_api_onebyone apk Size minute ago
android apk
Community
Score
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY
AhnLab-V3 @ Android-Trojan/Dendroid. 7442e Avast (_') Android:Dendroid-C [Trj]
Avast-Mobile @ Android:Dendroid-D [Trj] AVG (_') Android:Dendroid-C [Trj]
Avira (no cloud) @ ANDROID/Dingwe. SPY.Gen CAT-QuickHeal (_') Android Fakelnst.CB
Cyren (_‘) Android05/Dendroid A genlEldorado DriVeb @ Android Dandroid 1.origin
ESET-NOD32 (_‘) AVariant Of Android/Dingwe A F-Secure @ Malware ANDROID/Dingwe E Gen
Fortinet (_‘) Android/Obfus KOltr lkarus @ Trojan AndreidOS Dingwe
KTGW (_‘) Trojan { 0001140e1) NANOQ-Antivirus [_') Trojan.Andreid Dingwe.dpalmk

Z b9a2aaladed1e58115136idb53M3cid5bi2bTa362 1ebed54d9866494e8c9cs|

Qihoo-360 (_') Trojan Android. Gen Sophos AV (_') AndriFakelnst-V
Symantec Mobile Insight @ Spyware:MobileSpy Tencent @ Backdoor.Android Dingwe.a
ZoneAlarm by Check Point @ HEUR:Backdeor.AndroidOS Dingwe.a Ad-Aware @:’) Undetected
AegisLab () Undetected Alibaba () Undetected
AlYac () Undetected Antiy-AVL () Undetected
Arcabit () Undetected Baidu () Undetected
BitDefender () Undetected BitDefenderTheta () Undetected
Bkav () Undetected ClamAV () Undetected
CMC () Undetected Comodo () Undetected
Emsisoft (Ej Undetected eScan (Ej Undetected
F-Prot () Undetected FireEye () Undetected
GData @:’: Undetected Jiangmin @:’: Undetected
KTAntiVirus () Undetected Kingsoft () Undetected

Figure 14: VirusTotal Result for OOP Implemented Dendroid Malware

7.1.2.4.3 Change Package Name (PN)
Changing package name brings about evasion of around 11 AMTSs. The detection ratio is

around 35%. It partially evades signature-based and API-based detection.

53

E c0147ba%4651d8891734e78ead1d3550070b840775259122944a0847004C2931

parentalcontrol_api_package apk

android apk

Community
Score

@ 21 engines detected this file

c0147ba%4651d8691734e78ead1d355007b84b7752591a2944a08470b4c293ff

30.58 KB 2019-11-07 11:56:42 UTC
1 minute ago

w @

™
®

DETECTION DETAILS RELATIONS COMMUNITY
AhnLab-V3 @ Android-Trojan/Dendroid.da565 Avast (_') Android:Dendroid-C [Trj]
Avast-Mabile @ Andreid:Dendroid-0 [Trj] AVG (_') Android:Dendroid-C [Trj]
Avira (no cloud) @ ANDROID/Dingwe SPY.Gen CAT-QuickHeal (_l) Android Dingwe A
Cyren @ Android0S/Dendroid A.gen!Eldorado Driveb (_') Android.Dendroid.1.origin
ESET-NOD32 (D) AVariant Of Android/Dingwe. A F-Secure (D) Malware. ANDROID/Dingwe.
Fortinet @ AndroidiGeneric. Z 2E64E5H1r lkarus @ Trojan Android(S Dingwe
KTGW (1) Trojan { 00547dd31) Kaspersky (T) HEUR:Backdoor AndroidO3 Dingwe.a
Z c0147ba94651d8891734e78ead1d355007b84b7752591a2944a08470b4c2931 Q
NANO-Antivirus @ Trojan Andreid Dingwe dpalmk Qihoo-360 @ Trojan Android Gen
Sophos AV @ AndriFakelnst-V Symantec Mobile Insight (_‘) Spyware:MobileSpy
Tencent (1) Backdoor.Android.Dingwe.a Trustlook (1) Android.Malware. General (score:9)
ZoneAlarm by Check Paint @ HEUR:Backdeor Android0S.Dingwe.a Ad-Aware (»:’) Undetected
AegisLab () Undetected Alibaba &) Undetected
AlYac (%) Undetected Antiy-AVL (Z) Undetected
Arcabit () Undetected Baidu () Undetected
BitDefender () Undetected BitDefenderTheta () Undetected
ClamAV () Undetected cMC &) Undetected
Comodo () Undetected Emsisoft () Undetected
eScan () Undetected F-Prot () Undetected
FireEye () Undetected GData () Undetected
Jiangmin (%) Undetected K7AntiVirus (Z) Undetected
[vio_n V- T . . T .

Figure 15: VirusTotal Result for PN_API Implemented Malware

7.1.2.4.4 Change File Name (

FN)

Changing file name yields 32.2% detection ratio and evades almost 13 AMTSs. It also partially

evades signature-based static ana

lysis.

54

Z cf70bdcabcd29d9daa00a2242dad19d05c581310c994307 214857 76704152101 Q,

(_l) 19 engines detected this file

cf70bdcabc429d9daal0a2242dad19d05c58131cc9943072f485776f0 418210 928 82 KB 2019-11-07 11:51:42 UTC

ize a moment ago

parentalcontrol_api_file apk

android apk

Community
Score

DETECTION DETAILS RELATIONS COMMUNITY

AhnlLab-V3

Andreid:Dendroid-C [Trj]

Android-Trojan/Dendreid d476 Avast

Avast-Mobile Android Dendroid-D [Trj] AVG Android:Dendroid-C [Trj]

Avira (no cloud) ANDROID/Dingwe.SPY.Gen CAT-QuickHeal Andreid Dingwe A

Cyren ") Android0S/Dendroid. A gen!Eldorado DriVeb (1) Android.Dendroid. 1.origin
ESET-NOD32 \ Variant Of Android/Dingwe.A F-Secure Iware ANDROID/Dingwe.E.Gen
Fortinet (1) Android/Generic. Z 2E64E5!r lkarus (D) Trejan.Android0S.Dingwe
1 KTGW Q/ Trojan { 0054fdd31) Kaspersky _‘/ HEUR:Backdoor Android0S Dingwe a
Z cf70b4cabca29d9daa00a2242dad19d05c58131cc39430721485776M 4782101 Q
KiGwW Q, Trojan (00541dd31 } Kaspersky Q, HEUR:Backdoor.Andreid0S.Dingwe.a
NANO-Antivirus _‘/ Trojan Android Dingwe dpalmk Qihoo-360 _‘/ Trojan Android Gen
Symantec Mobile Insight _‘, re:MobileSpy Tencent _‘, Backdoor.Android. Dingwe.a
ZoneAlarm by Check Point (1) HEUR:Backdoor.Android0S.Dingwe.a Ad-Aware () Undetected
AegisLab () Undetected Alibaba () Undetected
AlYac Undetected Arcabit) Undetected
Baidu Undetected BitDefender) Undetected
BitDefendarTheta (“) Undetected Bkav (¥) Undetected
ClamAV Undetected CMC) Undetected
Comodeo Undetected Emsisoft) Undetected
eScan () Undetected F-Prot (¥) Undetected
FireEye Undetected GData) Undetected
Jiangmin Undetected K7AntiVirus) Undetected

Figure 16: VirusTotal Result for FN Implemented Dendroid Malware
7.1.2.45 Remove all Permissions
Removing all permissions evades only 7 AMTSs and the detection ratio is 42%, much closer
to that of raw malware. Though it tends to evade permission-based static analysis, yet as
mentioned earlier, this evasion renders the malware useless. Hence, we tend to avoid this

obfuscation technique.

55

p3

7.1.2.4.6

6222d339ca1at5b767c46176ebic6el197644015da0d76c29c193cb41807 4610

(_I) 25 engines detected this file

6222d339calaf5b767c46176ebfcbef197644015dald76c29c193cb4180745f
parentalcontrol_api_permissions.apk

android apk

926.76 KB 2019-11-07 12:00:27 UTC

Community

Score
DETECTION DETAILS RELATIONS COMMUNITY

AegisLab (_‘) Trojan.Andreid0S Dingwe.Clc AhnLab-V3 (_‘) Android-Trojan/Dendroid.da565
Avast @ Andreid: Dendroid-C [Trj] Avast-Mobile @ Android:Dendroid-D [Trj]
AVG @ Android:Dendroid-C [Tr] Awira (no cloud) @ ANDROID/Dingwe. SPY.Gen
CAT-QuickHeal (1) Android Dingwe A Cyren (1) Android0S/Dendroid.A genlEldorada
DriWeb (1) Android Dendroid 1.origin ESET-NOD32 (D) AVariant Of Android/Dingwe A
F-Secure (D) Malware ANDROID/Dingwe.E.Gen Fortinet (D) Android/Generic.Z. 2E64E5lr
lkarus @ Trojan AndroidOS Dingwe K7TGW (_‘) Trojan { 0049721)

6222d339ca1afbb767c46176ebic6eM97644015da0d76c29¢193ch4180748M Q
Kaspersky @ HEUR:Backdoor.AndroidOS.Dingwe.a MaxSecure (_') Android Dingwe.a
McAfee @ ArtemislAEESTSTB5D59 Microsoft @ Trojan'Win32/Tiggrelplock
NANO-Antivirus @ Trojan Android Dingwe.dpalmk Qihoo-360 (_') Trojan Android Gen

Sophos AV (D AndriFakelnst-V

Tencent @ Backdoor Android Dingwe a
Zoner (D) Trojan.Android.Gen.5100259
Alibaba () Undetected

Arcabit () Undetected

BitDefender () Undetected

Bkav () Undetected

CMC () Undetected

Emsisoft () Undetected

F-Prot () Undetected

Symantec Mobile Insight

ZoneAlarm by Check Point

Ad-Aware

AlYac

Baidu

BitDefenderTheta

ClamAV

Comodo

eScan

FireEye

@ Spyware:MobileSpy

@ HEUR: Backdoor Android 03 Dingwe a
(©) Undetected

(¥} Undelected

() Undetected

(%) Undetected

(“) Undetected

() Undetected

(%) Undetected

() Undetected

Figure 17: VirusTotal Result for RAP Implemented Dendroid Malware

Insert Benign Permissions (IBP)

Inserting benign permissions produce same results as that of removing all permissions.

However, it does not renders the apk non-functional. This technique also evades around 7

AMTSs with 42% detection ratio and tends to evade permission-based static analysis.

56

2 d578ec142ff0c7bibb063b5bae708a2aa9c9712073M5be T75eeTafab7e89082 kS

@ 25 engines detected this file

d578ec142ff0cTbibb063bsbae708a2aad9c97 1207 3fbbbe7T5eeTafabTed9082 §27.7KB 2018-11-07 11:48:45 UTC

parentalcontrol_api_benignpermissions.apk

android apk

Community
Seore

DETECTION DETAILS RELATIONS COMMUNITY
AegisLab d/ Trojan.AndroidOS Dingwe Cle AhnlLab-V3 _', Andreid-Trojan/Dendroid.da565
Avast _l/ Android:Dendroid-C [Tr]] Avast-Mobile _IJ Android Dendroid-D [Trj]
AVG \J/ Android:Dendroid-C [Trj] Avira (no cloud) _',, ANDROID/Dingwe. SPY.Gen
CAT-QuickHeal _'J Android.Dingwe. A Cyren _',, Andreid0S/Dendroid.A.gen!Eldorado
DriWeb _'J Android.Dendroid. 1.origin ESET-NOD32 Variant Of Android/Dingwe A
F-Secure vare. ANDROID/Dingwe E.Gen Fortinet (D) Android/Generic.Z 2E64E5Hr
lkarus _l/ Trojan AndroidOS Dingwe K7GW _IJ Trojan { 00497f2f1)

z d578ec142ff0c7bibb063b5baeT08a2aadcd7 1207 3M5beT 75 Tafab7e89082)] Q

Kaspersky _l/ HEUR:Backdoor Android0S Dingwe a McAfes ¢/ ArtemislAEESTSTB5059
Microsoft (D) Trojan:Win32Tiggrelplock NANO-Antivirus (D) Trojan.Android.Dingwe.dpalmk
Qihoo-360 ¢, Trojan.Android. Gen Sophos AV Andr/Fakelnst-V
Symantec Mobile Insight Q/ Spyware: MobileSpy Tencent _'/ Backdoor.Android Dingwe.a
Trustlook _I, Android Malware General (score:9) ZoneAlarm by Check Point _I, HEUR:Backdoor Android0S Dingwe a
Zoner (D) Trojan Android Gen 5100259 Ad-Aware) Undetected
Alibaba () Undetected AlYac () Undetected
Antiy-AVL () Undetected Arcabit () Undetected
Baidu (%) Undetected BitDefender (%) Undetected
BitDefenderTheta (+) Undetected Bkav () Undetected
ClamAV Undetected CcMmC Undetected
Comodo () Undetected Emsisoft () Undetected
aScan (%) Undetected F-Prot (%) Undetected

Figure 18: VirusTotal Result for IBP Implemented Dendroid Malware

7.1.2.5 Package, Class and Method Obfuscations (PCM)
PCM evasion offers 3 types of evasion capability as illustrated below:

7.1.2.5.1 Change Package Name (PN_PCM)
Altering package name evades significant number of AMTSs. It evades around 15 AMTSs

generating a detection ratio of 28.8%, approximately half of what is achieved for raw
Dendroid. It must be noted that a similar subcomponent exists in AP1 obfuscation component

57

which evades only 11 AMTs compared to 15 of this subcomponent. Hence, the package

obfuscation subcomponent of API obfuscation must be replaced with that of PCM to achieve

better results.

E 2a841114772a561a256051892211e99cee97d6ae7da0bEbe668C1a22808840430)|

2a84f114772a61ae56b51892211e99ceed7dbae7dalbbbetb8c1a2aa0884d43b

@ 17 engines detected this file

parentalcontrol_package.apk

android
Community
Score
DETECTION DETAILS
AhnlLab-V3

Avast-Mobile

CAT-QuickHeal

Driveb

Fortinet

KTGW

NANO-Antivirus

E 2aB847114772a612856051892211e99cee97d6ae7da0b6beb68C1a2ae0884d4 30|

NANO-Antivirus

Symantec Mobile Insight

ZoneAlarm by Check Point

AegisLab

AlYac

Awira (no cloud)

BitDefender

Bkav

CmC

Emsisoft

F-Prot

FireEye

Jiangmin

RELATIONS

COMMUNITY

(D) Android-Trojan/Hidap 8beda
(D) Android:Dendroid-D [Trj]

(D) Android.Dingwe.A

(1) Android.Dendroid. 1 origin
(D) AndroidiGeneric.Z 2E64E5Hr
@ Trojan { 0052cb361 }

(_') Trojan Andreid Dingwe dpalmk

(_') Trojan_Android Dingwe. dpalmk
(1) Spyware:MobileSpy

Q) HEUR:Backdoor AndroidOS Dingwe a

") Undetected

()

<)
)

) Undetected

() Undetected
() Undetected
“) Undetected
() Undetected
() Undetected
() Undetected
\-Z/) Undetected

() Undetected

Avast

AVG

Cyren

ESET-NOD32

lkarus

Kaspersky

Qihoo-360

Qihoo-360

Tencent

Ad-Aware

Alibaba

Arcabit

Baidu

BitDefenderTheta

ClamAV

Comodo

eScan

F-Secure

GData

K7AntiVirus

o)
jo.

929.9 KB 2019-11-05 12:04:20 UTC

Size a moment ago

(D) Android:Dendroid-C [Trj]

(D) Android:Dendroid-C [Trj]

(D) Android0S/Dendroid.A gen!Eldorado
(D) AVariant Of Android/Dingwe. A

@ Trojan-AndroidOS Dingwe

(D) HEUR:Backdoor Android0S Dingwe.a

@ Trojan Andreid Gen

@ Trojan Android Gen
(1) Backdoor.Android Dingwe.a
() Undstected

Ej Undetected

~) Undetected

~) Undetected

({j Undetected

~) Undetected

() Undetected

() Undetected
Undetected

\-ij Undetected

~) Undetected

Figure 19: VirusTotal Result for PN_PCM Implemented Dendroid Malware

7.1.25.2

Insert Null Bytes (INB)

58

This subcomponent inserts null bytes between smali instructions. It evades around 14 AMTS

and the detection ratio is approximately 31.5%. This evasion helps defeat signature-based

detection.

Z 63a97addc12daa30M53dib8cd346ech00785953c94d54d63ad694272¢c30ccs

Community

Score

DETECTION

AhnlLab-V3

Avast-Mobile

CAT-QuickHeal

DrWeb

F-Secure

lkarus

Kaspersky

@ 18 engines detected this file

63a97addc12daa30f153dffb8cd346ech00785953c94d54d63ad694272c30ech

parentalcontrol_insbyte.api

android apk

DETAILS RELATIONS COMMUNITY

(D Android-Trojan/Dendroid. da565
(_‘) Android:Dendroid-D [Trj]
@ Android.Dingwe. A

(1) Android.Dendroid.1.origin

@ Trojan.Andreid0 5. Dingwe

941.77 KB 2019-11-05 12:06:28 UTC
Size a moment ago

Z 63a97addc12daas30f 530fb8cd346ech00785953c84d54d63ad694272¢30cC5

Kaspersky

Sophos AV

Tencent

Ad-Aware

Alibaba

Arcabit

BitDefender

Bkav

CMC

Emsisoft

F-Prot

GData

K7AntiVirus

Avast @ Android:-Dendroid-C [Trj]
AVG @ Android:Dendreid-C [Trj]
Cyren @ AndroidOS/Dendreid.A.gen!Eldorado
ESET-NOD32 () AVariant Of AndroidiDingwe A
(O Malware ANDROID/Dingwe.E.Gen Fortinet (D Android/Generic.Z.77D30D!r
KTGW @ Trojan (000114021)
(_‘) HEUR:Backdoor Android0S Dingwe.a Qihoo-360 @ Trojan Android Gen
Q
Qihoo-360 @ Trojan Andreid.Gen

(_') HEUR:Backdoor Android0S Dingwe a
(_') Andr/Fakelnst-V
(_') Backdoor Android Dingwe a

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

Symantec Mobile Insight

ZoneAlarm by Check Point

AegisLab

AlYac

Baidu

BitDefenderTheta

ClamAV

Comodo

eScan

FireEye

Jiangmin

Kingsoft

@ Spyware-MobileSpy
@ HEUR:Backdoor Android0S Dingwe a

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

() Undetected

Figure 20: VirusTotal Result for INB Implemented Dendroid Malware

7.1.25.3 Insert Benign Class (IBC)

59

This method inserts benign classes into the source code to defeat the signature-based
detection. It evades only 8 AMTSs and detection ratio is also quite high. A 40.6% detection
ratio indicates the ineffectiveness of this method.

Z 01D7CChb27ecyd2omdr4402833C37a83927d0124229887428ab78442081978a58 Q
24) Q/ 24 engines detected this file
- 01b7cch27ecTd251di4402833c37a83927d0f242298874e8ab7844e561978a58 927 31 KB 2019-11-05 12:10:58 UTC

parentalcontrol_class apk

android apk

DETECTION DETAILS RELATIONS COMMUNITY
AegisLab () Trojan Android0S Dingwe Clc AhnlLab-\/3 (1) Android-Trojan/Dendroid.da565
Avast ‘_‘;‘ Andreid:Dendroid-C [Trj] Avast-Mobile {_'} Android:Dendroid-D [Trj]
AVG (@) Android Dendroid-C [Trj] Avira (no cloud) (1) ANDROID/Dingwe SPY.Gen

CAT-QuickHeal Cyren dOS/Dendroid A genlEldorado
Driveb ._‘; ndroid. 1.erigin ESET-NOD32
F-Secure & Malware ANDROID/Dingwe E.Gen Fortinet 5ltr

1 Ikarus (1) Trojan.AndroidOS Dingwe KTGW (1) Trojan (0001140e1)

Z 01b7ccb27ec7d25di4402833c37a83927d01242298874e8ab 7844258178258

Ikarus () Trojan.Android0S.Dingwe KTGW () Trojan (0001140e1)
Kaspersky (1) HEUR:Backdoor AndroidOS Dingwe.a MaxSecure (1) Android Dingwe a
McAfee (D) ArtemislAEES797B5D59 NANO-Antivirus (1) Trojan Android Dingwe dpalmk
Qihoo-360 () Trojan.Android.Gen Sophos AV (@ AndriFakelnst-V
Symantec Mobile Insight _‘, Spyware:MobileSpy Tencent _‘, Backdoor.Android.Dingwe.a
ZaneAlarm by Check Point (1) HEUR:Backdoor Android0S. Dingwe.a Zoner () Trojan.Android.Gen.5100259
Ad-Aware () Undstected Alibaba () Undetected
AlYac (%) Undstected Arcabit () Undetected
Baidu (%) Undetected BitDefender (&) Undetected
BitDefenderTheta (%) Undetected Bkav (&) Undetected
ClamAV) Undetected CMC @ Undetected
Comodo () Undstected Emsisoft () Undetected
eScan (%) Undetected F-Prot (&) Undetected

Figure 21: VirusTotal Result for IBC Implemented Dendroid Malware

7.1.2.6 Resource Obfuscations (RO)
Using resource-level obfuscations such as image modifications, xml related class references
and payload nullification yield a detection ratio of 40.6% evading only 8 AMTSs. These

figures show that this method when implemented on its own is not much effective, however,

60

when implemented in conjunction with other techniques, the results are beyond effective as

we will prove later.

Z cd324c16525670db210752bac2ef984e6dbf373740dd3b521277924cfa78M9e8|

@ 24 engines detected this file

cd324c16525670db210752bac2ef98426dbf373f40dd3b521277924cfa76i9e8

parentalcontrol_res.apk

android

Community
Score

DETECTION DETAILS

AegisLab
Avast

AVG
CAT-QuickHeal
Driveb
F-Secure

Establishing secure connection...

RELATIONS COMMUNITY

(1) Trojan.AndroidOS.Dingwe.Cle
(D) Android:Dendroid-C [Tri]

(D) Android:Dendroid-C [Trj]

(1) Android.Dingwe.A

@ Android Dendroid. 1.origin

AhnLab-V3

Avast-Mobile

Avira {no cloud)

927.28 KB 2019-11-05 11:52:04 UTC
S 6 minu

(1) Android-Trojan/Dendroid.da565
(D) Android:Dendroid-D [Tri]

C_‘) ANDROID/Dingwe.SPY.Gen

Z cd324c16525670db210752bac2ef984e6dbf37 3f40dd3b521277924cfa78f9es|

lkarus

Kaspersky

McAfee

Qihoo-360

Symantec Mobile Insight

ZoneAlarm by Check Paint

Ad-Aware

AlYac

Baidu

BitDefenderTheta

ClamAV

Comodo

eScan

Cyren (_‘) Android0S/Dendroid. A.gen!Eldorado
ESET-NOD32 (D) AVariant Of Android/Dingwe.A
@ Malware ANDROID/Dingwe E.Gen Fortinet C_‘) Android/Generic.Z 2EB4E5IT
lingwe KW @ Trojan { 000114021)
(1) Trojan Android0S Dingwe K7GW (1) Trojan { 0001140e1)
MaxSecure (D) Android Dingwe.a

(1) HEUR:Backdoor.AndroidOS Dingwe.a
@ ArtemislAEES7S7B5059

(1) Trojan Android.Gen

@ Spyware:MobileSpy

@ HEUR:Backdoor AndroidOS Dingwe. a
¥) Undetected

:-Zf, Undetected

) Undetected

() Undetected

() Undetected

-\;- Undetected

:-Zf, Undetected

NANO-Antivirus

Sophos AV

Tencent

Zoner

Alibaba

Arcabit

BitDefender

Bkav

CMC

Emsisoft

F-Prot

(_') Trojan Android. Dingwe dpalmk

(D) AndrFakelnst-V

(D) Backdoor.Android Dingwe.a
(D) Trojan Android Gen 5100259
() Undetected

() Undetected

) Undetected

() Undetected

() Undetectad

() Undetected

() Undetected

Figure 22: VirusTotal Result for RO Implemented Dendroid Malware

7.1.2.7 Angecryption (ANGE)
Employing angecryption helps evade 9 AMTs out of 32 which initially detected the raw

dendroid malware. A detection ratio of approximately 40% is seen which proves that the

61

technique isn’t much effective when implemented alone. However, when tagged along with

other evasion techniques, the results are astonishing.

Z d1cd346¢35f80b8I8b2d1458b0236cbde129dc1d6010035a7b0eadb448b7615 Q
23) L\/‘ 23 engines detected this file
d1cd346c35f8db818b2df488b0f236cbde129dc1d6010035a7b0eadbd48b7615 128 MB 2018-11-16 13:26:01 UTC

20cd2_pc_ange apk

android

DETECTION DETAILS COMMUNITY

AhnLab-V3 Avast Dendroid-C [Trj]
Avast-Mobile AVG Jendroid-C [Tr]
CAT-QuickHeal O Cyren (D) Android0S/Dendroid.A genlEldorade
ESE ngie.A F-Secure () Malware ANDROID/Dingwe.E.Gen
Fortinet 2EG4ESlr lkarus
KTGW (D) Trojan (0054fdd31 Kaspersky (1) HEUR Backdoor AndroidOS Dingwe a
1 MaxSecure () Android Dingwe a McAfee (1) AntemisI1B4627F899ED
E d1cd346C35180b88b2d1488b0236cbde129dc 1d6010035a7b0eadb448b7615| Q
McAfee-GW-Edition (D) Artemis/Trojan Microsoft (D) Trojan:Script/Casur.Alcl
NANO-Antivirus \j: Trojan.Android. Dingwe. dpalmk Qihoo-360 ‘j, Trojan.Andro
Sophos AV (@ AndrFakelnst-V Symantec (D) Android Dendoroid
Symantac Mobile Insight (D Spyware:MobileSpy ZoneAlarm by Check Point (1) HEUR Backdoor AndroidOS Dingwe a
Zoner (D) Trojan Android Gen.1761005 Ad-Aware () Undetected
AegisLab () Undetected Alibaba (%) Undetected
AlYac (%) Undetected Arcabit () Undetecied
Baidu (%) Undetected BitDefender (%) Undetected
BitDefenderThata (“) Undetected Bkav () Undetected
ClamAv ©) Undetected cMC (@) Undetected
Comodo (“) Undetected Driveb () Undetecied
Emsisoft (%) Undetected eScan (¥) Undetected
F-Prot (%) Undetected FireEye (%) Undetected

Figure 23: VirusTotal Result for ANGE Implemented Dendroid Malware
7.1.3 Multiple Evasion Module Implementation
In this phase, two or more evasion techniques are implemented together to achieve better
evasion. We use a customized sequence to achieve better results as combining multiple
methods evades more than one type of detection technique. Certain subcomponents are not
used since they do not give good results even when used in conjunction with other such as

variable encryption and all API-obfuscations as they just increase the overhead and do not

62

improve results. We start with string encryption and keep on adding layers of other

obfuscation techniques.

7.1.3.1 String Encryption (SE) + Java API Reflection (JAR)

We first apply string encryption on dendroid malware and then apply java API reflection.

We now see that only 14 AMTs engines detect this file as malicious. A detection ratio of

23.7% is achieved. This evades signature-based, API-based and dataflow-based detection

systems. We can see that this dual evasion module implementation improves evasion results.

Z 117fafbb6c5dc01437 37075027 10475196d318fa7341835C976a7 210db01 38|

1 4 ‘ Q‘/ 14 engines detected this file

1f7fafbb6c5dc014373f70f802710475196d318fa734i838¢976a72f0db013e8

parentalcontrol_str_refl.apk

android apk
Soore
DETECTION DETAILS RELATIONS COMMUNITY
AhnlLab-V3 (1) Android-Trojan/Dendroid.da565 Avast
Avast-Mobile ‘_‘/‘ Andreid-Dingwe-G [Trj AVG
CAT-QuickHeal O] oid.Fakelnst GEN2070 ESET-NOD32
FVSe (D Backdoor.Android/Dendroid A Fortinet
Ikarus _‘/ Backdoor AndroidOS Dendroid KIGW
Kaspersky Q/ HEUR:Backdoor Android0S Dingwe a Sophos AV
Symantec Mobile Insight ‘_‘/‘ Trojan-Dendoroid ZoneAlarm by Check Point

E 1f7fatbec5dc01437370180e710475196d3187a7341636c976a72f0db0 1328

Symantec Mobile Insight Q/- Trojan Dendoroid ZoneAlarm by Check Point
Ad-Aware () Undetected AegisLab
Alibaba @) Undetected ALYac

Arcabit (“) Undetected Baidu
BitDefender () Undetected BitDefenderTheta
Bkav () Undetected ClamAv

cMC () Undetected Comodo

Cyren (¥) Undetected DrWeb
Emsisoft () Undetected &Scan

F-Prot (¥) Undetected FireEye

GData (“) Undetected Jiangmin
K7AntiVirus () Undetected Kingsoft
Malwarebytes () Undetected MAX

158 MB 2019-11-17 17:11:49 UTC

() Trojan { 000114061)

(1) AndriDendroid-A

2

(1) HEUR:Backdeor.Android0S Dingwe.a

Q
@' HEUR:Backdoor Android035 Dingwe a
() Undetected
(¥) Undetected
(“) Undetected
'\ Undetected
() Undetected
() Undetected
(¥) Undetected
() Undetected
(¥) Undetected
(“) Undetected
() Undetected

() Undetected

Figure 24: VirusTotal Result for SE + JAR Implemented Dendroid Malware

63

7.1.3.2 String Encryption (SE) + Java API Reflection (JAR) + Change Package
Name (PN_PCM)

This trio of evasion method works in the sequence of the mention of its name. The result
from previous dual implementation is simply put to change of package name obfuscation
from PCM component. The results improve from 14 AMTSs detecting to 7 AMTSs detecting
the Dendroid variant. The detection ratio also lowers to 11.8% from 23.7%. Thus we see that
we are getting better evasion with each layer of its implementation. Using this combination,
we still bypass signature-based, API-based and dataflow-based detection but with improved

results.

Z bc50ci04139881Cf32ch732202d0843a93edc8d2e6854719ab9e795b28CT 2462

7 (1) 7engines detected this file
bc50cf0413988fcf32cb732202dd843a93edc8d2e6854719ab9e795b28cT24e2 1.6 MB 2019-11-05 13:26:39 UTC
parentalcontrol_str_refl_package. apk
android apk
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY
AhnLab-V3 (D Android-Trojan/Hidap.8be9a Avira (no cloud)
CAT-QuickHeal ESET-NOD32
F-Secure 15. GEN1.Gen Fortinet (1) Android/Obfus AHlr
K7GW (D) Trojan (0052cha6 Ad-Aware (%) Undetected
AegisLab () Undetected Alibaba (¥) Undetected
AlYac) Undetected Arcabit (*) Undetected
Avast () Undetected Avast-Mobile (¥) Undetected

Figure 25: VirusTotal Result for SE + JAR + PN_PCM Implemented Dendroid Malware

7.1.3.3 String Encryption (SE) + Java API Reflection (JAR) + Change Package
Name (PN_PCM) + Insert Null Bytes (INB)

The output apk of the previous trio is simply put to the bytecode obfuscation where nullbytes
are inserted between smali instructions and resultant apk is uploaded to VirusTotal. We see
that now only 5 AMTs detect Dendroid. Rest 27 are evaded and detection ratio is only 8%.
Using only four obfuscation subcomponents, the degree of evasion achieved is much better
than that of the standard AVPass implementation of five obfuscation subcomponents. For
the standard AVPass implementation, the detection ratio was 23.7% whereas for this

customized implementation, the detection ratio is only 8%.

64

Z 309e8155f074d1187b1ade123313eed92ff5dabe104840517a65c50180f6a7 Q

-_—
5 @ 5 engines detected this file
309e81551b074d1187b1ade123313eed92ff5dabe104840517a65¢50180f6a7 1.65MB 2019-11-05 13:34:52 UTC
parentalcontrol_str_refl_package_insbyte apk
android apk
DETECTION DETAILS RELATIONS COMMUNITY
AhnLab-V3 (1) Android-Trojan/Hidap.8be9a CAT-QuickHeal (D) Android Obfus. GEN28536
ESET-NOD32 (D) AVariant Of Android/Obfus AH Fortinet (D Android/Obfus. NSkhr
KTGW (D) Trojan (D054fdd31 Ad-Aware (%) Undetected
AegisLab () Undetected Alibaba (“) Undetected
AlYac () Undetected Antiy-AVL () Undetected
Arcabit) Undetected Avast @) Undetected
Avast-Mobile () Undetected AVG () Undetected
Figure 26: VirusTotal Result for SE + JAR + PN_PCM + INB Implemented Dendroid

Malware

7.1.3.4 String Encryption (SE) + Java API Reflection (JAR) + Change Package
Name (PN_PCM) + Insert Null Bytes (INB) + Resource Obfuscation (RO)

We add just one module to the previous list to get better results. We reduce the number of
AMTSs to 2 from 32. Applying resource obfuscation gives the detection ratio of 3.4%. Only

two AMTs named Ikarus and Microsoft detect the apk as malicious.

z 51568dc6e6fc086272e553ce51782d30d87ec3bbedcsfc0a51b823d6c838b443 Q,
-
2 (1) 2engines detected this file
51568dcbebfc086272e553ce5T82d30d8Tec3bbedc5ic0a51b823d6c838b443 178 MB 2019-11-19 10:56:29 UTC

pc_sir_refl_package_insbyte_res.apk

android apk

DETECTION DETAILS COMMUNITY
Ikarus (D) Trojan.Andreid0S. Obfus Microsoft (D) Trejan:Win32iZpevdo.B
Ad-Aware (¥) Undetected AegisLab () Undetected
AhnLab-V3 (%) Undetected Alibaba (%) Undetected
AlYac (¥) Undetected Antiy-AVL () Undetected
Arcabit (%) Undetected Avast (%) Undetected
Avast-Mobile (¥) Undetected AVG () Undetected
Avira (no cloud) (%) Undetected Baidu (%) Undetected
oo I s
Figure 27: VirusTotal Result for SE + JAR + PN_PCM + INB + RO Implemented Dendroid

Malware

65

7.1.3.5 String Encryption (SE) + Java API Reflection (JAR) + Change Package
Name (PN_PCM) + Insert Null Bytes (INB) + Resource Obfuscation (RO) +
Angecryption (ANGE)

The resultant apk of the last step is put into the angecryption module and the outcome is an
angecrypted apk. The new apk is now string encrypted, API reflected, package name altered,
nullbytes inserted and angecrypted. After the application of all these subcomponents, we
achieve 100% detection ratio. No AMT is able to detect the apk as malicious.

2 a36b71cb0ec?3157cdacbB3661e7d2f946ab4i494d77ec3d3b65112e74d18132

@ () No engines detected this file
a36b71cb0ec73157cdacht3661e7d2f946abaf494d7 Tec3d3b651f2e74d 18132 178 MB 2019-11-05 15:28:51 UTC

pc_str_refl_package_ins_res_ange.apk

android

DETECTION DETAILS COMMUNITY
Ad-Aware () Undetected AegisLab () Undetected
AhnLab-V3 () Undetected Alibaba (+) Undetected
AlYac () Undetected Antiy-AVL () Undetected
Arcabit () Undetected Avast (¥} Undetected
Avast-Mobile (¥) Undetected AVG (+) Undetected
Avira (no cloud) () Undetected Baidu () Undetected
BitDefender () Undetected BitDefenderTheta () Undetected

Figure 28: VirusTotal Result for SE + JAR + PN_PCM + INB + ANGE Implemented
Dendroid Malware

7.1.3.6 Java API Reflection (JAR) + String Encryption (SE) + Variable Encryption
(VE) + Resource Obfuscation (RO)

AVPass when implemented in a manner as suggested by its developers yields results as
depicted in the figure below. It evades around 16 AMTs among those which detects the
dendroid apk as malicious. Hence a detection ratio of 23.7% is achieved. Using the
customized sequence of our framework, we achieve far better results achieved than this
particular method as we will prove later. AVPass first performs API reflection followed by

string and variable encryption and finally modifying image and resource related xml files.

66

E 6705b71339558Cc4470b43027ac6611086c78a5dchad 18af2c0act 86e3das?| Q

1 4 ‘ \1/ 14 engines detected this file

6705b7339558cc4470b43027ac661fb1086cT8a5dchad 18af2c0ac136e3dad2 152 MB 2019-11-05 15:50:14 UTC
parentalcontrol_obfus.apk

android apk

DETECTION DETAILS COMMUNITY

AhnLab-V3) Android-Trojan/Dendroid.dab65 Avast _‘/ Android:Dingwe-G [Trj]

Avast-Mobile (1) Android:Dingwe-G [Trj] AVG (D) Android:Dingwe-G [Trj]

Avira (no cloud) ANDROID/Obfuscated FFSG.G1.Gen CAT-QuickHeal _‘/ Android. Obfus A

ESET-NOD32 _‘/ AVariant Of Android/Obfus AG F-Secure _‘/ Backdoor:Android/Dendroid A

Fortinet (D) Android/Obfus. NSlr lkarus (D) Backdoor. Android0S Dendroid

KTGW _‘j Trojan (0001140e1) Kaspersky Q/ HEUR:Backdeor AndroidOS Dingwe a

_Connecting.. ZoneAlarm by Check Point (1) HEUR:Backdoor Android0S Dingwe a

Z 6705D71339558CC4470b43027ac661101086C7 8a5dchad 18ar2c0ac 86e3das2| Q

KIGwW \‘J, Trojan (0001140e1) Kaspersky Q,, HEUR:Backdoor Android0S.Dingwe.a

Sophos AV _‘, Andr/Dendreid-A ZoneAlarm by Check Peint _‘, HEUR:Backdoor Android0S . Dingwe a

Ad-Aware (&) Undstected AegisLab (@ Undetected

Alibaba (+) Undetected AlYac @) Undetected

Arcabit () Undetected Baidu () Undetected

BitDefender () Undetected BitDefenderThata () Undetected

Bkav () Undetected ClamAV () Undetected

CMC (/) Undetected Comado (“) Undetected

Cyren (+) Undetected Driveb) Undetected

Emsisoft () Undetected eScan (¥) Undetected

F-Prot () Undetected FireEye () Undetected

GData () Undetected Jiangmin () Undetected

K7AntiVirus () Undetected Kingsoft () Undetected

Figure 29: VirusTotal Result for JAR + SE + VE + RO Implemented Dendroid Malware

7.1.3.7 Java API Reflection (JAR) + String Encryption (SE) + Variable Encryption
(VE) + Resource Obfuscation (RO) + Angecryption(ANGE)

Applying the standard AVPass obfuscation followed by angecryption helps evade 27 AMTSs.
The detection ratio is 8.6%. We can see that our customized implementation gives better
results than the standard AVPass coupled with Angecryption implementation. We achieve

100% evasion ratio and 0% detection ratio using the customized implementation. This output

67

apk from AVPass+Angecryption implementation is detected by Avast, AVG, Ikarus,
Kaspersky and ZoneAlarm by CheckPoint.

E 8d29121faa69883ae6b15982ebcd07edfda50c64b5971b6cT 7826882401268

-_y,
5 (1) 5 engines detected this file
8d2912ffaab9683ae6bfo98f2ebcd0Tedfdab0c64b597 1b6c7 786882401268 164 MB 2019-11-05 16:00:01 UTC
pc_av_ange.apk
android apk
DETECTION DETAILS COMMUNITY
Avast O a AVG
Ikarus _', acl Kaspersky _‘, E
ZoneAlarm by Check Point _', HEUR:Backdoor.AndroidOS.Dingwe.a Ad-Aware () Undetected
AegisLab () Undetected AhnLab-V3 () Undstected
Alibaba () Undetected AlYac () Undetected
Arcabit () Undetected Avast-Mobile () Undstected
Avira (no cloud) (+) Undetected Baidu () Undstected

Figure 30: VirusTotal Result for JAR + SE + VE + RO + ANGE Implemented Dendroid
Malware

7.2 Conclusion
We see that our solution [SE+JAR+PN_PCM+INB+RO+ANGE] gives best results among

all the implementation sequences. Hence, our final output is an Android application with
layers of obfuscation applied to it as demonstrated in the fig. 30 which almost camouflage
the application to such an extent that no AMT is able to detect it and it appears benign, yet
its malicious intent remains intact. We apply this on 200 malware samples and get
approximately consistent results. Hence, we mark [SE+JAR+PN_PCM+INB+RO+ANGE]
as our final evasion mechanism, however, we are flexible in implementing any evasion
technique of our choice depending on the degree of evasion we want. So, our technique is

not only resilient and robust but is also flexible.

68

Angecryption (ANGE)

.

Resource Obfuscation (RO)

y

Insert Null Bytes (INB)

» Change Package Name
(PN_PC™)

Figure 31: Layers of Evasion Techniques Employed to the Malicious Application

69

Chapter 8
Auditing Android Antimalware Tools (AMTS)

We applied the evasion modules as mentioned earlier iteratively, selecting best evasion
components and the sequence of their application based on the detection complexity and

evasion ease. In this section, we present our findings and observations.

8.1 Observations
When a file is uploaded to VirusTotal repository, using more than 60 AMTSs, it performs a

scan. The uploaded file is first hashed and stored in the database for caching purpose so as
to reduce duplicate efforts and minimize the scan time. Hence, whenever a file is uploaded
to VirusTotal, its hash is first looked upon in the database, upon finding a match, the results
already present are displayed for that file. In case of a new file, the file’s hash is calculated
first, updates its hash repository, then the file sent to the AMT engines associated with
VirusTotal and the returned results from these AMTs are displayed. If we only search for the
new file by pasting its hash, then VirusTotal is unable to analyze the file as this new hash
doesn’t exists in its database. Moreover, VirusTotal is much more than AMTs aggregation.
It has three Android sandboxes integrated with it apart from those for Windows such as
Cuckoo for portable executables. Using Tencent HABO, Droidy and Androbox sandboxes
help perform behavioral investigation of Android applications and give a meaningful insight
into the working and intent of application.

8.2 Metrics for Auditing AMTs
The metrics used for auditing AMTSs is the detection ratio obtained for each evasion

technique. The higher the detection ratio, the more resilient the AMTSs, the less affective the
evasion technique and vice versa. The highest detection ratio is obtained for raw malware.
Application of evasion techniques should lower the detection ratio and increase the number
of AMTs evaded. In case of Dendroid, we set the threshold of no. of AMTSs to be evaded to
32 since raw Dendroid is detected by 32 AMTs. The goal is to evade these 32 AMTs and

detection ratio to be 0%.

70

8.3 Evasion of Malware Samples
The results of evasion implementation are selectively shown here in the categories as already

described.

8.3.1 Individual Evasion Module Implementation
In this phase, individual evasion modules are implemented. As we can see both from the

table and the figure, the drop in the detection ratio for single evasion module is not
significant. The minimum value of detection ratio achieved is 27% for String Encryption
(SE) which evades around 16 AMTs. The most easily detectable evasion techniques are those
from API obfuscation, these are Remove All Permissions (RAP) and Insert Benign
Permissions (IBP). The detection ratio for these two components is 42% and no. of AMTSs
evaded is 7 out of 32. For single evasion module’s implementation, the no. of AMTs under
consideration are 32 which is the no. of AMTSs that detect the raw dendroid malware. The

average detection ratio is 35.07% which is not very low compared that of raw malware.

Table 7: Detection ratio and no. of AMTs evaded against individual evasion components

Evasion |None [SE [VE JAR|API Obfuscation PCM RO |IANGE
Technique [(Raw)

RP |OOPPN_APIFN [RAP|IBP PN_PCMINB IBC
Detection [53.3 27 35 [31 [32.2]32.235 32.2/42 |42 [28.8 31.5140.640.640
Ratio (%)
No. of - (16 |12 14 13 (13 |11 13 (7 (7 (15 14 8 8 P9
AMTS
evaded out]
of 32

71

Detection Ratio Against Individual Evasion
Module Implementation

__60
X 50
2 40
e
& 30 i
c
§ 20
s 10
g 0
O\ N N 4 N\ A\ o o N N N o
= Q@S < N {;00 ,500 ,O(\ QY? QY? .\0(\ ‘\0(\ (.'@ & & ,‘000 N
B U Y N & F ¢ & & 98 IR
S R IR I I I S O A G S
< M) ??\ S Q) AP \\Q (\Q Q,% \\%* o P W
K RN N k&S e
RN N cd ¥ & L F
L@] N Q7R & & &
< & & 53 3
<« \(\‘1 & Q:_)O
&
Evasion Technique(s)
Figure 32: Detection Ratio against Individual Evasion Implementation
No. of AMTs evaded against Individual Evasion
Components
18
™
D16
3]
w 14
>
O 12
©
3 10
(]
5 8
2 6
2.
[T
o 2
S o
= F & & LD & S » :
*QQ \\Q‘o \("0 (,'z"Q A’o N e\?‘ "—f’\o ~‘—§"\o Q(J Q(J Q(/ ’Z}QO *Q\‘
(ORI} e O & & & e & L8
NS S ¢ ¥ NP & S & P & &
) e D S 9 e e R \3 AR P o
L0 Y Q g QYo e N & N
SO A S Nl PN S S
Q@ v P P ,bC* & X ¢
Q,(Q Q}_ Q \(\(_)Q, O,Q}\. (JQ,
<& \({’ NS (,)0
@

Evasion Technique(s)

Figure 33: No. of AMTSs evaded by Individual Evasion Implementation

72

Moreover, the sandboxes Droidy, Androbox and Tencent HABO integrated with VirusTotal
only execute the malware in two cases, first when we perform random API perturbation and
second, when one-by-one perturbation is performed. All the rest malware variants do not
give off any behavioral information. The average no. of AMTs evaded is 11.42. The AMTs
that do not detect any of the malware variants include Alibaba, ClamAV, Comodo,
K7Antivirus, MAX and Symantec whereas the AMTSs that stand out best and detect all the
malware variants include AhnLab-V3, Avast, Avast-Mobile, AVG, CAT-QuickHeal, ESET-
NOD32, Fortinet, K7TGW and Symantec Mobile Insight. Table displays the AMTs detection
capability against single evasion component’s implementation. Table displays the average
detection ratio and the no. of AMTs evaded against each evasion technique. This is also

depicted pictorially in figures 32 and 33 respectively.

Table 8: Single Evasion Techniques Detected by AMTs

Mobile

Sr. JAMT |[Evasion Techniques Detected
No. [name
that SE VE JAR |API Obfuscation PCM RO |ANGE
detected
RP |OOPPN_AFN |RAP |IBP |PN_P |[INB (IBC
raw
Pl CM
malware
1. |AegisLajx |x X [x |x X x v v x x v v x
b
2. |AhnLab-v v v v v v v v v v v v v v
V3
3. A||baba X X X X X X X X X X X X X X
4. |Avast |V v v v v v v v v v v v v v
5. |Avast- |V v v v v v v v v v v v v v

73

AVG

Avira

CAT-
QuickHe

al

ClamA
\Y

10.

Comodo

11.

Cyren

X

12.

DrWeb

v

13.

ESET-
NOD32

v

14.

F-Secure

v

15.

Fortinet

v

16.

Ikarus

17.

K7Antiv

irus

18.

K7GW

v

19.

Kaspers

Ky

74

20.

MAX

21.

MaxSec

ure

X

22.

McAfee

23.

McAfee-
GW-
Edition

24.

Microso
ft

X

25.

NANO-
Antiviru

S

26.

Qihoo-
360

27.

Sophos
AV

28.

Symante
C

29.

Symante
c Mobile
Insight

v

30.

Tencent

75

31. Trustloo |% v X v X v X X v x x x x
k
32. [ZoneAlalv’ v v X v Vv v v v v v v v
rm by
CheckPo
int
33. [Zoner |x x x x x x x v v x x x x
8.3.2 Multiple Evasion Module Implementation
Since single evasion component were not much fruitful, hence we selected some of the best
evasion components and applied them in a customized sequence. The results of the
customized sequence were much better than the single components. Also, after several trials,
best sequence was developed. According to [46], in order to bypass the AMTS, one needs to
first apply API obfuscations followed by PCM and application of string encryption, API
obfuscations, and package name better helps in detection. However, when this is
implemented practically, results are not as expected. Following our implementation sequence
yields best results as we have proved. Also, when we implement the AVPass in the sequence
as demonstrated in the [46], only 18 AMTs are evaded out of 32. However, with our specific
implementation of AVPass and Angecryption, we are able to evade all the 32 AMTs. We
achieve 0% detection ratio evading all the 32 AMTSs. The average detection ratio is 11.31%
and the average number of AMTs evaded is 25.2.
Table 9: Detection Ratio and No. of AMTs Evaded against Multiple Evasion Techniques
Evasion None SE+JAR [SE+JAR+P SE+JAR+P [SE+JAR+P [SE+JAR+P JAR+SE+VJAR+SE+
Technique |(Raw) N PCM N PCM+l N_PCM+l N_PCM+l E+RO VE+RO+A
NB NB+RO |NB+RO+A NGE
NGE

76

Detection 53.3 [23.7 11.8 8 3.4 0 23.7 8.6
Ratio (%)
No. of AMTS 18 25 27 30 32 18 27

evaded out off

32

60

Detection Ratio Against Multiple Evasion Modules
Implementation

2
S a0
[
S 30
-
(6]
2 20
[J]
0 10
0
N
@e
Q
(4
&

& N O eév
N & v
Q S o
& N &
(8 Q X
O X Q
< & =
S Na X
& S
(o X
3
Na
&«

Evasion Technique(s)

Figure 34: Detection Ratio against Multiple Evasion Implementation

77

No. of AMTs evaded against Multiple Evasion Components

35

30

2

(6]

2

o

1

(6]

1

No. of AMTs evaded out of 32
o

o <
oS S
& &
Q))%O
&
&
x\?‘

Evasion Technique(s)

Figure 35: No. of AMTs Evaded Against Multiple Evasion Modules Implementation

No AMT in this case detects all the malware variants generated as a result of multiple evasion

components. The least no. of detections is by Microsoft and Symantec Mobile which is only

1, followed by Sophos, Avast and Avira which are able to detect only 2 malware variants.

Moreover. The maximum number of detections made by these AMTSs is 4 compared to 25 of

the previous phase.

Table 10: Multiple Evasion Techniques Detected by AMTs

Sr. JAMT namelEvasion Technique
No.
SE+JARSE + JARSE + JAR +SE + JAR + SE + JAR +JAR + SE +HJAR + SE|
+ PN PCM +PN_PCM +PN PCM +VE+RO [VE H+H
PN_PCMINB INB + RO INB + RO + RO H
ANGE ANGE
1. |AhnLab- v v x x v x
V3

78

Avast

Avast-
Mobile

AVG

Avira

X

CAT-
QuickHeal

DrWeb

ESET-
NOD32

v

F-Secure

10.

Fortinet

v

11.

Ikarus

12.

K7GW

v

13.

Kaspersky

v

14.

Microsoft

15.

Sophos AV

v

16.

Symantec
Mobile
Insight

79

17.

ZoneAlarm|v’ X X X X 4 4

by
CheckPoint

Only one evasion combination triggers behavioral investigation which is String Encryption
(SE) + Java API Reflection (JAR) +Change Package Name (PN_PCM). Rest all
combinations yield no behavioral information hence, running those malware variants within
sandbox generates no valuable information. Thus this proves that increasing the number of
evasion components, we can easily reduce the detection ratio to a minimal value. We also
need to be careful about the sequence in which the evasion components are applied. Applying
all the evasion components yield no better results and also renders the application no-
functional. Hence, both the evasion components and their correct sequence is necessary
factor in order to achieve the best results.

8.4 Individual AMTs
We now look at the performance of Individual AMTs. The maximum number of detections

made by any AMT was 18 out of 21 times it was tested and the AMTSs that earn this detection
rating are AhnLab-V3, CAT-QuickHeal, ESET-NOD32, Fortinet and K7GW. These are
evaded only 3 times standing resilient against the malware variants most of the time. Their

performance remain consistent in both the phase of evasion implementation.

On the other hand, AMTs that could not detect any single malware variant are Alibaba,
ClamAV, Comodo, K7Antivirus, MAX and Symantec. These AMTs fail to detect any
obfuscated malware variant raising suspicion about their detection capability. These perform

better only against un-obfuscated malware.

Moreover, AMTSs that performed best in the first phase of evasion implementation and falter
in the second phase include Avast, Avast-Mobile, AVG and Symantec Maobile Insight.

Multiple evasion implementations abated their performance vehemently.

80

Ikarus and Microsoft are the only two AMTSs that detect the malware at the second last step
just before it fully evades all the AMTs. Their behavior is not consistent even Microsoft
overall performs poorly in both the first and second phase but detects an obfuscated malware
not even detectable by the best declared AMTs as mentioned earlier.

As we apply evasion techniques onto the dendroid malware, AMTs’ detection signature also
change. For instance, in case of AhnLab-V3, the detection signature change from Android-
Trojan/Dendroid.da565 to Android-Trojan/Hidap.8be9a, for CAT-QuickHeal, signature
change from Android.Dingwe.A to Android.Obfus.GEN28536 and for Ikarus,
Trojan.AndroidOS.Dingwe to Trojan.AndroidOS.Obfus.

Table 11: Signatures, No. of Detections and Evasions made by each AMTSs

AMT name thatSignatures No. ofiNo. of times

detected raw| Detections Evaded by

malware malware
\variants

AegisLab Trojan.AndroidOS.Generic.Clc 4 17

AhnLab-V3 /Android-Trojan/Dendroid.da565 18 3

Alibaba 0 21

Backdoor:Android/Dingwe.caf18e88

Avast /Android:Dendroid-C [Trj] 17 4
Avast-Mobile |Android:Dendroid-D [Trj] 16 5
AVG Android:Dendroid-C [Trj] 17 4
Avira 15 6

ANDROID/Dingwe.SPY.Gen

CAT-QuickHeal |Android.Dingwe.A 18 3

81

ClamAV Andr.Malware.Agent-1534052 0 21
Comodo Malware@#x1k6eagmdedl| 0 21
Cyren AndroidOS/Dendroid.A.gen!Eldorado (13 3
DrWeb /Android.Backdoor.262.origin 12 ¢
ESET-NOD32 |A Variant Of Android/Dingwe.A 18 3
F-Secure Malware. ANDROID/Dingwe.E.Gen (16 9)
Fortinet /Android/Generic.Z.2E64E5!tr 18 3
Ikarus Trojan.AndroidOS.Dingwe 16 9)
K7Antivirus Trojan (0001140el) 0 21
K7GW Trojan (0001140e1) 18 3
Kaspersky HEUR:Backdoor.AndroidOS.Dingwe.a15 6
MAX Malware (ai Score=99) 0 21
MaxSecure 4 17
McAfee Artemis!DB01F96D5EG6 S) 16
McAfee-GW- |Artemis!Trojan 1 20
Edition

Microsoft Trojan:Win32/Bitrep.A 4 17
NANO-Antivirus [Trojan.Android.Dingwe.dpalmk 12 ¢

82

Qihoo-360 Trojan.Android.Gen 13 3
Sophos AV Andr/Fakelnst-V 14 7
Symantec Trojan.Gen.2 0 21
Symantec Mobile[Spyware:MobileSpy 15 6
Insight

Tencent Backdoor.Android.Dingwe.a 12 ¢
Trustlook Android.Malware.General (score:9) @4 17
ZoneAlarm by 16 9)
CheckPoint HEUR:Backdoor.AndroidOS.Dingwe.a|

Zoner Trojan.Android.Gen.1761005 3 18

83

N
(6]

N
o

=
(€]

=
o

No. of Evasions and Detections

0 " II || ||| II II |II| II || || || ||| II
+ = w + (8] L= —
L8 B2YL TZo58NLE333TZ5L3EE3ZILLEEBE @
J17w@ S8Zz35 $£TC o002 E5E0VSTESsIEMTERLOET <
v o 9 zo<z I E 5= OS5 CsSsRyp2o0x<E2835%YNvwcg o4 o
TwR2 < ~ EOTO o tEx2 o Vo T 22 00w® cHELT N

oo § = S o 8 a W o — 8 X o n P Py I TR

U =< T =0 8 z 9N 0 c @ R=SwLeco g — S5O

< + S - O o < T) <£2>0F 0

< a g w ~ ~ EEIOOU’: = =

< o it A ~ 2 o 009w 2 (@]

< < w) P >

O O < = o]

= =2 Q £

< Q =

o)

s c o

© <<

£ e

A o

N

AMTs
H No. of Detections B No. of times Evaded by malware variants

Figure 36: No. of Evasions and Detections made by each AMT

8.5 Comparison with other Techniques
We now compare our solution with some other opensource evasion techniques such as

AAMO, Repacking, Angecryption, standard AVPass implementation and prove that our
solution yeilds best results and better reflects the detecion efficacy of AMTs. We now present
results only for the 17 best AMTs that we shortlisted in multiple evasion module
implementation phase and compare the detection capability against the above listed evasion
techniques. Here x represents that the AMT could not detect the malware variant and v
represents that it was detected by the AMT. Our solution evaded all the AMTs whereas other
evasion techniques were detected most of the time. AAMO was able to evade only 4 AMTSs
among the given list, Repacking 2 AMTSs, Angecryption only 1 AMT and standard AVPass
3 AMTs. DrWeb could not detect any of the malware variants hence its detection efficacy is
worst followed by Microsoft. On the other hand, our solution was able to evade all the AMTs
defeating both static analysis and fails to give any behavioral information to the sandboxes
integrated with VirusTotal. Droidy, Tencent HABO and Androbox could not extract any

84

information about the behavior of malware. Hence both static and dynamic analysis are

bypassed.

DETECTION RATIO AGAINST DIFFERENT EVASION
TECHNIQUES

60

50

40

DETECTION RATIO

Raw (None)

Figure 37: Detection Ratio against Different Evasion Techniques

AAMO

Repacking

53.3
35.5
32.7
30
23.7
20
10
0

AVPass

EVASION TECHNIQUE(S)

40

Angecryption

0

Our Solution

The detection ratio for AAMO is 32.7% whereas that for Repacking is 35.5% which are quite

high values for the detection ratio. For AVPass and Angecryption, the detection ratio are, as

already mentioned, 23.7% and 40% respectively whereas our solution produces 0% detection

ratio which is the desired amount when evading AMTSs.

Table 12: Comparison of Different Evasion Techniques

Sr. [Security Applications |Evasion Technique(s) Detected
No.
AAMO Repacking |Angecryp- |AVPass Our Solution
tion
1. |AhnLab-V3 v v v v x

85

Avast

Avast-Mobile

AVG

Avira

CAT-QuickHeal

DrWeb

ESET-NOD32

F-Secure

10.

Fortinet

11.

Ikarus

86

12. K7GW v

13. |[Kaspersky v

14. |Microsoft x

15. [Sophos AV v

16. [Symantec Mobile Insight [V

17. |[ZoneAlarm by’
CheckPoint

87

Chapter 9

Conclusion and Future Work

No antimalware solution detects the evasive malicious application and could not process the
obfuscated malware. Hence this raises questions about the detection efficacy of these
antimalware solutions which rely on conventional detection techniques as mentioned earlier
and depicts a huge gap in the Android Antimalware domain. For developing a robust and
resilient malware detector for Android, there is a need to first identify shortcomings and flaws

in the current detection systems and overcoming those flaws in the new AMTSs.

There is a need to adopt a hybrid policy comprising of both static and dynamic analysis
techniques and integrating modules to scan not only code and runtime analysis but also
conduct a deep scan dissecting every section of the application under observation.
Antimalware engines must be able to first detect the presence of obfuscated malware and

detect all of its possible variants.

9.1 Conclusion
With mobile device’s inadequate processing capacity, standalone AMTs for Android must

be resilient enough to detect both known and variants of known malware based on signatures.
Using different evasion techniques, the effectiveness of malware detectors was put under test
and in most cases malware detectors performed below par the expectations.

Selecting both appropriate evasion modules and their apposite sequence is very critical in
evading maximum number of AMTs. We divided our evasion implementation task into
phases, first testing single components then testing combination of several components and
after selection of the correct components and their implementation sequence, we audit the
several state-of-the-art AMTs. We found that some evasion modules when implemented as
a single evasion components better bypass the AMTs as compared to others such as String
Encryption (SE) component and Changing Package Name (PN_PCM) component evading
more than 15 AMTSs while some others perform poorly such as some components of API

obfuscation and resource-level obfuscations evading as low as 7 AMTs out of 32. On the

88

other hand, implementing these evasion components in a certain sequence iteratively yields
better results compared to some other sequences as we demonstrated in the previous chapter.
Changing package name (PN_PCM) was one of the evasion component which in conjunction
with SE and JAR greatly reduced the number of detections from 14 to 7. Hence, more the
number of evasion components used, the lower is the number of detectors that detect the

malware.

We inferred that AMTs detect chiefly by signature matching. Some instances of interaction-
based and dataflow-based detection was found when behavioral investigation was performed
on malware samples where we noticed network communication, http requests, files written
and deleted by the application, services started by the malware etc. However, this behavioral
investigation was only performed in 3 cases out of 21 evasion techniques implemented. In
other cases, no behavioral information was presented by VirusTotal rather only basic details

such as permissions, application’s format information etc. was available.

9.2 Future Work
It must be noted that the evasion techniques used in the proposed solution were based on

obfuscation and encryption. Hence, in order for AMTs to detect such malware variants, there
should be some mechanism to de-obfuscate, and decrypt the contents of such Android
malwares. If employing de-obfuscation and decryption in detecting malware variants turns
out successful, we can develop de-obfuscation and decryption algorithms and integrate in
AMTs. As mentioned earlier, the evasion achieved is greater when we use certain evasion
component thus proving that AMTs put more focus on certain aspects of the Android
applications and much less on others. Hence Android Antimalware engines must take into

account this factor in their detection algorithm.

Most of the Antimalware engines do not reveal any significant information about their
detection mechanism. If we have access to AMTs source code and working, we can integrate

defense mechanism against such obfuscation techniques within these AMTs.

With this evasion mechanism in place, we can try different malware datasets and dynamic
analysis tools, infer new detection features if these tools detect these evasion techniques. We

can aggregate these detection features into repository of hybrid malware features collected

89

both from static and dynamic analysis. Based on this repository, we can develop malware
detectors that use low processing power, handy for the devices such as Android and use the
features present on the hybrid malware features repository. This will help them perform
dynamic analysis in addition to static analysis and dissect the malware variants to the core to

find any hidden intent of the applications.

One other factor that needs to be considered is that AMTS for Android don’t have root access
whereas on Windows, AVs have privileged access due to which their performance is
exclusive and topnotch. Some malware variants reveal their malicious intent only when given
root access. If AMTs don’t have root access, they cannot detect such malware variants as
such malware use the lack of this feature into their advantage and do not reveal their
malicious intent, hence marked benign by the anti-malware engines. This factor hinders the
detection capability of Antimalware engines for Android. AMTs on Android platform must

have privileged access so that they can provide better defense against malicious applications.

90

Bibliography

[1] N. Elenkov, Android security internals. San Francisco, CA: No Starch Press, 2015.
[2] Android Hacker’s Handbook by Joshua J. Drake, Pau Oliva Fora, Zach Lanier, Collin
Mulliner, Stephen A. Ridley, Georg Wicherski, Published by John Wiley & Sons, Inc.

10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com

[3] 2019 [Online]. Available: https://www.malwarebytes.com/android-antivirus/.
[Accessed: 08- Mar- 2019]

[4] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence in
smartphone security and privacy,” in Symp. on Usable Privacy and Security.

Washington: Advancing Science, Serving Society, March 2012

[5] J. Fenske, “Biometrics in new era of mobile access control,” Biometric Technology

Today, vol. 2012, no. 9, pp. 9-11, 2012,

[6] N. Husted, H. Sa"idi, and A. Gehani, “Smartphone security limitations: conflicting
traditions,” in Proc. 2011 Workshop on Governance of Technology, Information, and

Policies, ser. GTIP *11. New York, NY, USA: ACM, 2011, pp. 5-12

[7] Suarez-Tangil, Guillermo & Tapiador, Juan & Peris-Lopez, Pedro & Ribagorda,
Arturo. (2013). Evolution, Detection and Analysis of Malware for Smart Devices. IEEE
Communications Surveys & Tutorials. 16. 10.1109/SURV.2013.101613.00077.

[8] "KSB_statistics_2018_eng_final.pdf", Go.kaspersky.com, 2019. [Online]. Available:
https://go.kaspersky.com/rs/802-1JN-240/images/KSB_statistics_2018 eng_final.pdf.
[Accessed: 09- Mar- 2019]

[9] Symantec.com, 2019. [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/eports/istr-23-2018-en.pdf.
[10] Mcafee.com, 2019. [Online]. Available: https://www.mcafee.com/enterprise/en-
us/assets/reports/rp-quarterly-threats-dec-2018.pdf. [Accessed: 09- Mar- 2019]

[11] "Android malware detection evasion and resilience techniques: some examples | So
Long, and Thanks for All the Fish", So Long, and Thanks for All the Fish, 2019.
[Online]. Awvailable: https://www.andreafortuna.org/technology/android/android-

malware-detection-evasion-and-resilience-techniques-some-examples/.

91

http://www.wiley.com/
https://www.andreafortuna.org/technology/android/android-malwa
https://www.andreafortuna.org/technology/android/android-malwa

[12] J. Marpaung, M. Sain and H. Lee, "Survey on malware evasion techniques: State
of the art and challenges”, in 2012 14th International Conference on Advanced
Communication Technology (ICACT), PyeongChang, South Korea, 2012.

[13] S. Badhani and S. Muttoo, "Evading android anti-malware by hiding malicious
application inside images”, International Journal of System Assurance Engineering and
Management, vol. 9, no. 2, pp. 482-493, 2017.

[14] "Android Malware Genome Project”, Malgenomeproject.org, 2019. [Online].
Available: http://www.malgenomeproject.org/.

[15] D. Arp, "The Drebin Dataset”, Sec.cs.tu-bs.de, 2019. [Online]. Available:
https://www.sec.cs.tu-bs.de/~danarp/drebin/.

[16] "Android Open Source Project”, Android Open Source Project, 2019. [Online].
Available: https://source.android.com/security. [Accessed: 10- July- 2019]

[17] Umasankar, "Analysis of latest vulnerabilities in android,” 2017 International
Conference on Advances in Computing, Communications and Informatics (ICACCI),
Udupi, 2017, pp. 1236-1241. doi: 10.1109/ICACCI.2017.8126011

[18] Oracle, JAR File Specification,

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html

[19] SELinux Project, SE for Android, http://selinuxproject.org/page/SEAndroid Linux
kernel source tree, dm-verity,
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linuxgit/tree/Documentation/device-
mapper/verity.txt

[20] "Android Security Bulletins | Android Open Source Project”, Android Open
Source Project, 2019. [Online]. Available: https://
source.android.com/security/bulletin. [Accessed: 10- Mar- 2019]

[21] “Information Disclosure”, Docs.microsoft.com, 2019. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/framework/
wcf/feature-details/information-disclosure. [Accessed:10-Mar- 19]

[22] Android Vulnerability NVD Results:
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=b
asic&results_type=overview&search_type=all&query=android

92

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://selinuxproject.org/page/SEAndroid

[23] “Android and Security - Official Google Mobile Blog.” [Online].
Available:https://www.blog.google/topics/safety-security/shielding-you-potential ly-
harmful-applications/ html.

[24] “Android and Security - Official Google Mobile Blog.” [Online]. Available:
https://www.blog.google/topics/safety-security/shielding-you-potentially-harmful-
applications/ html.

[25] R. Raveendranath, V. Rajamani, A. J. Babu, and S. K. Datta, “Android malware
attacks and countermeasures: Current and future directions,” 2014 Int. Conf. Control.
Instrumentation, Co “the apple threat landscape”Symantec, [online]. Available:

[26] http://www.symantec.com/content/en/us/enterprise/media/security_response/whit
epapers/applethreat-landscape.pdf. mmun. Comput. Technol., pp. 137-143, 2014.
[27] “root exploits.” [Online]. Available:

http://www.selinuxproject.org/~jmorris/Iss2011_slides/caseforseandroid. pdf.

[28] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets,” Proc. 19th
Annu. Netw. Distrib. Syst. Secur. Symp., no. 2, pp. 5-8, 2012

[29] New Threats and Countermeasures in Digital Crime and Cyber Terrorism. 1GI
Global, 2015.

[30] “Android.Fakedefender.B | Symantec.” [Online]. Available:
https://www.symantec.com/security_response/writeup.jsp?docid=2013- 091013-
3953-99.

[31]] Ransomware scammers exploited Safari bug to extort porn-viewing iOS users".
Available at : https://arstechnica.com/information technology/2017/03/ransomware -
scammers-exploited-safaribug-to-extort-porn-viewing-ios-users/.

[32] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and
Evolution,” 2012 IEEE Symp. Secur. Priv., no. 4, pp. 95-109, 2012.

[33] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and
Evolution,” 2012 IEEE Symp. Secur. Priv., no. 4, pp. 95-109, 2012.

[34] C. aCastillo, “Android Malware Past , Present , and Future,” McAfee White Pap.
Mob. Secur. Work. Gr., pp. 1-28, 2011

93

[35] Amro, Belal. (2017). Malware Detection Techniques for Mobile Devices.
nternational Journal of Mobile Network Communications & Telematics. 7.
10.5121/ijmnct.2017.7601.

[36] “A Look at Repackaged Apps and their Effect on the Mobile Threat Landscape.”
[Online]. Available: http://blog.trendmicro.com/trendlabs- security-intelligence/a-
look-into-repackaged-apps-and-its-rolein-the- mobile-threat-landscape/.

[37] “NotCompatible Android Trojan: What You Need to Know | PCWorld.” [Online].
Available:
http://www.pcworld.com/article/254918/notcompatible_android_trojan_what_you_ne

ed_to_know.html.

[38] G. Nellaivadivelu, "Black Box Analysis of Android Malware Detectors,” San Jose
State University, San Jose, 2017.

[39] R. Sato, D. Chiba, and S. Goto, ‘‘Detecting android malware by analyzing manifest
files,”” Proceedings of the Asia-Pacific Advanced Network, vol. 36, no. 23-31, p. 17,
2013

[40] L.-K. Yan and H. Yin, ‘‘Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis.”” in USENIX security
symposium, 2012, pp. 569—584

[41] [51] [Cybrary. (2019). Hide Secret Message Inside an Image Using LSB-
Steganography - Cybrary. [online] Available at: https://www.cybrary.it/Op3n/hide-
secret-message-inside-image-using-Isb-steganography/ [Accessed 11 Mar. 2019].

[42] M. Preda and F. Maggi, "Testing android malware detectors against code
obfuscation: a systematization of knowledge and unified methodology”, Journal of
Computer Virology and Hacking Techniques, vol. 13, no. 3, pp. 209-232, 2016.

[43] "Apktool - A tool for reverse engineering 3rd party, closed, binary Android apps.",

Ibotpeaches.github.io, 2019. [Online]. Available:
https://ibotpeaches.github.io/Apktool/. [Accessed: 10- Mar- 2019]
[44] "http://www.oracle.com/," [Online]. Available:

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html.
[Accessed 29 November 2019]. [1]

94

http://www.pcworld.com/article/254918/notcompatible_android_trojan_what_you_need_to_know.html
http://www.pcworld.com/article/254918/notcompatible_android_trojan_what_you_need_to_know.html

[45] “https://developer.android.com/," [Online]. Available:
https://developer.android.com/studio/command-line/zipalign. [Accessed 29 November
2019].

[46] C.J.M.W.Y.a T.K.JinhoJung, "AVPASS: Automatically Bypassing Android
Malware Detection System," Mandalay Bay/ Las Vegas, 2017.

[47] “http://www.skyfree.org/," [Online]. Available:
http://lwww.skyfree.org/linux/references/ELF_Format.pdf. [Accessed 29 November
2019].

[48] "https://developer.android.com/," [Online]. Available:
https://developer.android.com/reference/dalvik/system/DexClassLoader. [Accessed
29 November 2019].

[49] Y. C. X. J. Vaibhav Rastogi, "Evaluating Android Anti-malware against
Transformation Attacks,” Northwestern University, North Carolina State University,
North Carolina, 2013.

[50] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang and T. Chen,
"Mystique: Evolving Android Malware for Auditing Anti-Malware Tools", 2019.

[51] Y. Xue, G. Meng, Y. Liu, T. Tan, H. Chen, J. Sun and J. Zhang, "Auditing Anti-
Malware Tools by Evolving Android Malware and Dynamic Loading Technique”,
IEEE Transactions on Information Forensics and Security, vol. 12, no. 7, pp. 1529-
1544, 2017.

[52] S. Sen, E. Aydogan and A. Aysan, "Coevolution of Mobile Malware and Anti-
Malware", IEEE Transactions on Information Forensics and Security, vol. 13, no. 10,
pp. 2563-2574, 2018.

[53] V.Rastogi, Y. Chenand X. Jiang, "Catch Me If You Can: Evaluating Android Anti-
Malware Against Transformation Attacks", IEEE Transactions on Information
Forensics and Security, vol. 9, no. 1, pp. 99-108, 2014.

[54] V.Rastogi, Y. Chen and X. Jiang, "DroidChameleon”, Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and communications security - ASIA
CCS '13, 2013.

95

[55] M. Zheng, P. Lee and J. Lui, "ADAM: Automatic and Extensible Platform to Stress
Test Android Anti-virus Systems", Detection of Intrusions, Malware and Vulnerability
Assessment, pp. 82-101, 2013.

[56] S. Badhani and S. Muttoo, "Evading android anti-malware by hiding malicious
application inside images”, International Journal of System Assurance Engineering and
Management, vol. 9, no. 2, pp. 482-493, 2017.

[57] M. Chuaand V. Balachandran, "Effectiveness of Android Obfuscation on Evading
Anti-malware", Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy - CODASPY '18, 2018.

[58] Virustotal.com. (2019). VirusTotal. [online] Available at:
https://www.virustotal.com/ [Accessed 11 Aug. 2019].

[59] L. Liu, Y. Gu, Q. Li and P. Su, "RealDroid: Large-Scale Evasive Malware
Detection on "Real Devices™, 2017 26th International Conference on Computer
Communication and Networks (ICCCN).

[60] H.Huang, K. Chen, C. Ren, P. Liu, S. Zhu and D. Wu, "Towards Discovering and
Understanding Unexpected Hazards in Tailoring Antivirus Software for Android",
Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security - ASIA CCS '15, 2015.

[61] Droidbox, “An android application sandbox for dynamic analysis,”
https://code.google.com/p/droidbox/, 2011.

[62] L.K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis,” in Proceedings of the 21st
USENIX Conference on Security Symposium, Berkeley, CA, USA, 2012, pp. 29-29.

[63] W. Enck, P. Gilbert, and a. et, “Taintdroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in Proceedings of the 9th USENIX
Conference on OSDI, Berkeley, CA, USA, 2010, pp. 393-407

[64] Andrubis, “A tool for analyzing unknown android applications,”
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzingunknown-
androidapplications-2/, June 2012.

[65] Sanddroid, “an apk analysis sandbox,” http://sanddroid.xjtu.edu.cn/.

96

[66] Owasp.org. (2019). [online] Available at: https://www.
owasp.org/images/7/7c/TraceDroid.pdf [Accessed 11 Mar. 2019].

[67] H.Huang, K. Chen, C. Ren, P. Liu, S. Zhu and D. Wu, "Towards Discovering and
Understanding Unexpected Hazards in Tailoring Antivirus Software for Android",
Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security - ASIA CCS '15, 2015.

[68] Mathworld.wolfram.com. (2019). Fast Fourier Transform -- from Wolfram
MathWorld. [online] Available at: http://mathworld.
wolfram.com/FastFourierTransform.html [Accessed 11 Mar. 2019].

[69] Diao, W., Liu, X., Li, Z. and Zhang, K. (2019). Evading Android Runtime Analysis
Through Detecting Programmed Interactions.

[70] A. A. Axelle Aprville, "Hide Android Applications in Images,” 2014 in Paper
presented at BlackHat Europe, Amsterdam, NH.

[71] “https://github.com/,” [Online]. Available: https://github.com/ashishb/android-
malware. [Accessed September 2019].

[72] "https://www.f-secure.com/,” [Online]. Awvailable: https://www.f-secure.com/v-
descs/backdoor_android_dendroid_a.shtml. [Accessed September 2019].

[73] “https://blog.virustotal.com/," [Online]. Available:
https://blog.virustotal.com/2018/04/meet-virustotal-droidy-our-new-android.html.
[Accessed September 2019].

[74] “https://blog.virustotal.com/," [Online]. Available:

https://blog.virustotal.com/2017/11/malware-analysis-sandbox-aggregation.html.

97

