
i

Auditing Advanced Android Anti-Malware

Tools against Sophisticated Evasion

Techniques

 by

Samrah

A thesis submitted to the faculty of Information Security,

Military College of Signals, National University of Sciences and Technology, Islamabad,

Pakistan, in partial fulfillment of the requirements for the degree of MS in

Information Security

January, 2020

ii

CERTIFICATE

 Certified that final copy of MS/MPhil thesis written by MS NS Samrah,

Registration No. 00000206357, of Military College of Signals has been vetted by

undersigned, found complete in all respect as per NUST Statutes/Regulations, is free

of plagiarism, errors and mistakes and is accepted as partial, fulfillment for award of

MS/MPhil degree. It is further certified that necessary amendments as pointed out by

GEC members of the student have been also incorporated in the said thesis.

 Signature: _______________________________

Name of Supervisor Assoc Prof Dr. Haider Abbas
Date: ___________________________________

Signature (HoD): __________________________
Date: ___________________________________

Signature (Dean/Principal): __________________
Date: ____________________________________

iii

DECLARATION

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

iv

DEDICATION

“In the name of Allah, the most Beneficent, the most Merciful"

I dedicate this thesis to my mother, sister, and teachers who supported me each step of the

way.

v

ACKNOWLEDGMENTS

All praises to Allah for the strengths and His blessing in completing this thesis.

I would like to convey my gratitude to my supervisor, Dr. Haider Abbas, and my co-supervisor

Asst. Prof. Waleed Bin Shahid for their supervision and constant support. Their invaluable

help of constructive comments and suggestions throughout the experimental and thesis works

are major contributions for the success of this research. Also, I would thank my committee

members; Dr. Syed Amer Ahsan Gillani and Asst. Prof. Mian Muhammad Waseem Iqbal for

their support and knowledge regarding this topic.

Last, but not the least, I am highly thankful to my parents. They have always stood by my

dreams and aspirations and have been a great source of inspiration for me. I would like to thank

them for all their care, love and support through my times of stress and excitement.

vi

ABSTRACT

Mobile malware threats have become a real concern. Malware authors are coming up with

smarter ways to build applications that can easily compromise confidentiality, integrity and

availability of the user’s data and perform other illicit activities like identity theft, financial

gains, cyber terrorism etc. The aim of this research work is to audit known antimalware

solutions for their efficacy against sophisticated malware evasion techniques. Evaluation of

the state-of-the-art commercial mobile anti-malware products for Android is necessary to test

how resistant they are against various evasion techniques (even with known malware). Such

an evaluation is important for not only measuring the available defense against mobile malware

threats but also proposing effective, next-generation solutions. This research work highlights

and compares, in detail, various sophisticated techniques employed by the hackers to evade

malware detection, along with pros and cons of each technique. It also presents comparison of

existing anti-malware tools and their efficacy against the discussed evasion techniques. Finally,

using sophisticated anti-malware evasion technique developed for Android Operating System

(OS) that uses exhaustive obfuscation to deceive static and dynamic detection respectively to

audit known anti-malware solutions and making them more resilient and powerful.

vii

Table of Contents

CERTIFICATE .. ii
DECLARATION ... iii
DEDICATION ... iv
ACKNOWLEDGMENTS .. v
ABSTRACT ... vi
List of Figures ..xii
List of Tables... xiii
Chapter 1 ... 1
Introduction .. 1

1.1 Background ... 1

1.1.1 Android Threat Landscape .. 1

1.1.1.1 Third Party Applications ... 2

1.1.1.2 Android Malware Statistics ... 2

1.1.2 Android Malware Evasion Techniques ... 3

1.2 Motivation and Problem Statement... 4

1.3 Project Description .. 5

1.3.1 Objective ... 5

1.3.2 Approach ... 5

1.3.3 Academic Objectives .. 5

1.3.4 Scope of the Project .. 6

1.3.5 Areas of Application/Advantages ... 6

1.4 Thesis Organization .. 7

Chapter 2 ... 8
Android Fundamentals .. 8

2.1 Android System Architecture.. 8

2.2 Android Application Taxonomy ... 10

2.2.1 Major Application Components .. 10

2.2.1.1 AndroidManifest.xml [2] .. 10

2.2.1.2 Intents [2] .. 11

2.2.1.3 Activities [2] ... 11

2.2.1.4 Broadcast Receivers [2] .. 11

2.2.1.5 Services [2] ... 11

2.2.1.6 Content Providers [2] .. 12

2.3 Security Model [1] .. 12

viii

2.3.1 Application Sandboxing [1] .. 12

2.3.2 Permissions [1] .. 13

2.3.3 IPC [1] ... 13

2.3.4 Code Signing and Platform Keys [1] .. 13

2.3.5 Security Enhanced Linux (SELinux) [1]... 13

2.3.6 System Updates ... 13

2.3.7 Verified Boot [1] ... 14

2.3.8 File System Permission [2] ... 14

2.3.9 Rooting of Devices [2] .. 14

2.3.10 Device Administration .. 14

2.3.11 File System Encryption ... 14

2.4 Security Vulnerabilities .. 14

2.4.1 Elevation of Privilege (EoP) [17] .. 15

2.4.2 Remote Code Execution (RCE) [17] .. 15

2.4.3 Denial of Service (DoS) [17] .. 16

2.4.4 Information Disclosure (ID)[23] ... 16

Chapter 3 ... 17
Malware, Detection and Analysis .. 17

3.1 Mobile Malwares .. 17

3.1.1 Trojans .. 17

3.1.2 Backdoors ... 17

3.1.3 Ransomware .. 17

3.1.4 Botnets .. 18

3.1.5 Spyware... 18

3.2 Malware Propagation Techniques ... 18

3.2.1 Repackaging .. 18

3.2.2 Drive by Download ... 18

3.3 Malware Detection Techniques .. 19

3.3.1 Static Analysis .. 19

3.3.1.1 Signature-based Detection .. 19

3.3.1.2 Permission-based Detection .. 19

3.3.1.3 API-based Detection ... 20

3.3.1.4 Interaction-based Detection .. 20

ix

3.3.1.5 Dataflow-based Detection ... 20

3.3.2 Dynamic analysis .. 20

3.3.2.1 Anomaly-based Detection ... 21

3.3.2.2 Emulation-based Detection ... 21

3.3.3 Machine Learning ... 21

Chapter 4 ... 22
Malware Evasion Techniques .. 22

4.1 Common Evasion Techniques .. 22

4.1.1 Obfuscation [12] ... 22

4.1.2 Code Reuse [12] .. 22

4.1.3 Steganography [13] ... 22

4.1.4 Cryptography [13] ... 22

4.1.5 Resigned [42] .. 23

4.1.6 String Encryption [46] .. 23

4.1.7 API Reflection [42], [46] .. 23

4.1.8 Resource Modification [46] .. 23

4.1.9 NOP Insertion [42] .. 23

4.1.10 Packing [11] .. 24

4.1.11 Disassembling and Reassembling [49] ... 24

4.1.12 Changing Package Name [46] ... 24

4.2 Literature Review .. 24

Chapter 5 ... 29
Proposed Framework for Auditing Android AMTs Using Malware Evasion Techniques 29

5.1 Components of the Auditing Framework .. 30

5.1.1 Evasion Model .. 30

5.1.1.1 Obfuscation Module .. 31

5.1.1.1.1 API obfuscation... 32

5.1.1.1.2 String and Variable Encryption ... 32

5.1.1.1.3 Package, Class and Method Obfuscation (PCM) .. 32

5.1.1.1.4 Java API Reflection .. 33

5.1.1.1.5 Resource Obfuscation ... 33

5.1.1.2 Angecryption Module ... 33

5.1.1.3 Phases of Evasion Model .. 36

5.1.1.3.1 Individual Evasion Module Implementation ... 36

x

5.1.1.3.2 Multiple Evasion Modules Implementation .. 37

5.1.2 Auditing Model ... 37

5.1.2.1 Steps for Auditing AMTs .. 37

Chapter 6 ... 39
Experiment .. 39

6.1 Environmental Setup ... 39

6.2 Malware Dataset ... 40

6.3 Malware Detectors .. 44

6.3.1 VirusTotal ... 44

6.3.1.1 VirusTotal Sandbox Integration .. 45

6.3.1.1.1 VirusTotal Droidy[73] .. 45

6.3.1.1.2 Tencent HABO ... 45

6.3.1.1.3 VirusTotal Androbox .. 45

Chapter 7 ... 47
Implementation Results ... 47

7.1 Uploading Malware Variants to VirusTotal .. 47

7.1.1 Raw Malware .. 47

7.1.2 Individual Evasion Module Implementation ... 48

7.1.2.1 String Encryption (SE) .. 48

7.1.2.2 Variable Encryption (VE) ... 49

7.1.2.3 Java API Reflection (JAR) .. 50

7.1.2.4 API Obfuscations .. 51

7.1.2.4.1 Random Perturbation (RP) .. 51

7.1.2.4.2 One-by-One Perturbation (OOP) .. 52

7.1.2.4.3 Change Package Name (PN) ... 53

7.1.2.4.4 Change File Name (FN) .. 54

7.1.2.4.5 Remove all Permissions .. 55

7.1.2.4.6 Insert Benign Permissions (IBP) ... 56

7.1.2.5 Package, Class and Method Obfuscations (PCM) .. 57

7.1.2.5.1 Change Package Name (PN_PCM) .. 57

7.1.2.5.2 Insert Null Bytes (INB) ... 58

7.1.2.5.3 Insert Benign Class (IBC) ... 59

7.1.2.6 Resource Obfuscations (RO) .. 60

7.1.2.7 Angecryption (ANGE) .. 61

xi

7.1.3 Multiple Evasion Module Implementation ... 62

7.1.3.1 String Encryption (SE) + Java API Reflection (JAR) ... 63

7.1.3.2 String Encryption (SE) + Java API Reflection (JAR) + Change Package Name

(PN_PCM) .. 64

7.1.3.3 String Encryption (SE) + Java API Reflection (JAR) + Change Package Name

(PN_PCM) + Insert Null Bytes (INB) .. 64

7.1.3.4 String Encryption (SE) + Java API Reflection (JAR) + Change Package Name

(PN_PCM) + Insert Null Bytes (INB) + Resource Obfuscation (RO).................................. 65

7.1.3.5 String Encryption (SE) + Java API Reflection (JAR) + Change Package Name

(PN_PCM) + Insert Null Bytes (INB) + Resource Obfuscation (RO) + Angecryption

(ANGE) 66

7.1.3.6 Java API Reflection (JAR) + String Encryption (SE) + Variable Encryption (VE)

+ Resource Obfuscation (RO) ... 66

7.1.3.7 Java API Reflection (JAR) + String Encryption (SE) + Variable Encryption (VE)

+ Resource Obfuscation (RO) + Angecryption(ANGE) ... 67

7.2 Conclusion .. 68

Chapter 8 ... 70
Auditing Android Antimalware Tools (AMTs) ... 70

8.1 Observations ... 70

8.2 Metrics for Auditing AMTs .. 70

8.3 Evasion of Malware Samples .. 71

8.3.1 Individual Evasion Module Implementation ... 71

8.3.2 Multiple Evasion Module Implementation ... 76

8.4 Individual AMTs ... 80

8.5 Comparison with other Techniques .. 84

Chapter 9 ... 88
Conclusion and Future Work .. 88

9.1 Conclusion .. 88

9.2 Future Work .. 89

Bibliography ... 91

xii

List of Figures

Figure 1: Percentage of applications being exploited from November 2017 to October 2018 2
Figure 2: Percentage Increase in malware variants (2016-2017) .. 3
Figure 3: Basic Approach for Auditing Android AMTs ... 5
Figure 4: Android Software Stack .. 9
Figure 5: Proposed Framework for Auditing Android AMTs .. 30
Figure 6: Layout of PNG and modified APK ... 36
Figure 7: Detection Ratio for Individual Evasion Module Implementation 42
Figure 8: Detection Ratio for Multiple Evasion Module Implementation 44
Figure 9: VirusTotal Result for Raw Dendroid Malware ... 48
Figure 10: VirusTotal Result for SE Implemented Dendroid Malware .. 49
Figure 11: VirusTotal Result for VE Implemented Dendroid Malware ... 50
Figure 12: VirusTotal Result for JAR Implemented Dendroid Malware 51
Figure 13: VirusTotal Result for RP Implemented Dendroid Malware .. 52
Figure 14: VirusTotal Result for OOP Implemented Dendroid Malware 53
Figure 15: VirusTotal Result for PN_API Implemented Malware ... 54
Figure 16: VirusTotal Result for FN Implemented Dendroid Malware ... 55
Figure 17: VirusTotal Result for RAP Implemented Dendroid Malware 56
Figure 18: VirusTotal Result for IBP Implemented Dendroid Malware .. 57
Figure 19: VirusTotal Result for PN_PCM Implemented Dendroid Malware 58
Figure 20: VirusTotal Result for INB Implemented Dendroid Malware .. 59
Figure 21: VirusTotal Result for IBC Implemented Dendroid Malware .. 60
Figure 22: VirusTotal Result for RO Implemented Dendroid Malware ... 61
Figure 23: VirusTotal Result for ANGE Implemented Dendroid Malware 62
Figure 24: VirusTotal Result for SE + JAR Implemented Dendroid Malware 63
Figure 25: VirusTotal Result for SE + JAR + PN_PCM Implemented Dendroid Malware 64
Figure 26: VirusTotal Result for SE + JAR + PN_PCM + INB Implemented Dendroid Malware 65
Figure 27: VirusTotal Result for SE + JAR + PN_PCM + INB + RO Implemented Dendroid

Malware .. 65
Figure 28: VirusTotal Result for SE + JAR + PN_PCM + INB + ANGE Implemented Dendroid

Malware .. 66
Figure 29: VirusTotal Result for JAR + SE + VE + RO Implemented Dendroid Malware 67
Figure 30: VirusTotal Result for JAR + SE + VE + RO + ANGE Implemented Dendroid Malware

 .. 68
Figure 31: Layers of Evasion Techniques Employed to the Malicious Application 69
Figure 32: Detection Ratio Against Individual Evasion Implementation 72
Figure 33: No. of AMTs evaded by Individual Evasion Implementation 72
Figure 34: Detection Ratio against Multiple Evasion Implementation ... 77
Figure 35: No. of AMTs Evaded Against Multiple Evasion Modules Implementation 78
Figure 36: No. of Evasions and Detections made by each AMT .. 84
Figure 37: Detection Ratio against Different Evasion Techniques ... 85

file:///C:/Users/Samrah%20Mirza/AppData/Roaming/Microsoft/Word/5%20%20-%20Spiral%20Write%20Up%20format%20Samrah%20Mirza%20MIS16.doc%23_Toc26974218
file:///C:/Users/Samrah%20Mirza/AppData/Roaming/Microsoft/Word/5%20%20-%20Spiral%20Write%20Up%20format%20Samrah%20Mirza%20MIS16.doc%23_Toc26974219

xiii

List of Tables

Table 1: Percentage of Devices Running Newest Version of Operating System (OS)..................... 3

Table 2: CVE Android Security Bulletin, Year 2019 ... 15

Table 3: Summary of Malware Evasion Techniques on Android ... 26

Table 4: Software and Hardware Requirements ... 39

Table 5: List of Individual Evasion Components ... 40

Table 6: List of Multiple Evasion Components .. 42

Table 7: Detection ratio and no. of AMTs evaded against individual evasion components 71

Table 8: Single Evasion Techniques Detected by AMTs ... 73

Table 9: Detection Ratio and No. of AMTs Evaded against Multiple Evasion Techniques 76

Table 10: Multiple Evasion Techniques Detected by AMTs .. 78

Table 11: Signatures, No. of Detections and Evasions made by each AMTs 81

Table 12: Comparison of Different Evasion Techniques .. 85

1

Chapter 1

Introduction

1.1 Background

Mobile devices have grown into an essential part of day-to-day life. They offer a lot of handy

utilities such as the facility to read and write e-mails, surf the Internet, show adjoining amenities,

video conferencing, and voice recognition, to name but a few. The rise in the spread and use of

mobile phones has played a pivotal role in unveiling this consummate paradigm shift in the way

humans communicate globally. Since users’ digital life resides on these smart phones, the

criticality and sensitivity of that data ultimately becomes dependent on the Operating System

these phones run on. Android [1], owned by Google, is among the most popular and the most

widely used platforms [2] deployed on smartphones with more than 2 billion active devices [3].

In several circumstances, the usage of word Android is quite precise. Though refers to a

humanoid robot, Android has garnered meanings beyond that in the last decade. A company, a

development community, an open source project are all the terms related to Android more than

just an operating system. In a nutshell, an all-inclusive ecosystem equals a standard mobile

operating system which we call Android [2].

1.1.1 Android Threat Landscape

The vast usage of Android, along with its open source nature [2] has made it a lucrative option

for developers with malicious intent to write and spread malicious code. Consequently, this

malicious code is then used to compromise the confidentiality, integrity and availability of user

data. In various regards, mobile devices offer pronounced security and confidentiality disquiets

to users than conventional PCs [4]. Such as, numerous sensors integrated within the Android

device could leak extremely sensitive and significant information from user’s location,

movements, and other physical conducts, to audio and video recordings, and capturing pictures.

Besides, users progressively enclose certification credentials into their gadgets, and employing

on-platform micropayment machineries such as Near Field Communication (NFC) [5].

2

1.1.1.1 Third Party Applications

One chief cause of confidentiality and security glitches is the capacity to feature third-party

applications, not only from open markets available online but also by other channels. Two

prototypes of smart devices based on user’s access to these markets [6] exist at present. In the

open-market prototype, applications are installed from online unofficial sources, whereas the

supposedly walled-garden market model confines the market from which users can install

applications such as Google Play Store for Android. Many market operators perform a review

procedure over uploaded apps, which apparently also encompasses some practice of security

analysis to identify whether the app contains malicious program. A noteworthy section of users

count on other sources to have access for free apps that cost money in authorized markets. Access

to such informal and/or illegal markets have paved ways for the malware to have easy access to

mobile devices and perform their malicious intent. This is particularly true for the well-known

apps altered (repackaged) and updated with malicious code imbedded in them [7]. Figure 1

illustrates a list of applications being exploited along with the attack percentage for these

applications in the specified period. Android OS stands third in this list [8].

1.1.1.2 Android Malware Statistics

According to Symantec Internet Security Threat report (ISTR) [9], number of new mobile

malware variants grew by 54 percent in 2017 and the mobile malware families grew by 12

Figure 1: Percentage of applications being exploited from

November 2017 to October 2018

3

percent as compared to 2016. An average of 23,795 malicious mobile applications are estimated

to be blocked on mobile devices each day [10].

Moreover, Android rolls its Operating System (OS) upgradation on yearly basis to enhance user

experience, security, optimization and device performance. This upgrade is specific to Mobile

device vendor, phone model and users’ geographic location. Hence, many Android smartphones

keep on running the older OS versions. ISTR reports [9] that only 20 percent Android devices

are running the newest version as compared to iOS devices where approximately 77.3 percent

devices are running the latest version as illustrated in Table 1. This alarming situation, thereby,

makes it easier for attackers to compromise devices using the older Android versions.

Table 1: Percentage of Devices Running Newest Version of Operating System (OS)

OS Version Android iOS

Newest Major 20% 77.3%

Newest Minor 2.3% 26.5%

1.1.2 Android Malware Evasion Techniques

Malware authors deploy several evasion techniques in order to avoid detection by the

antivirus programs and other security solutions and in this campaign, new stock of malware

variants emerge that are evasive in nature. These devious malwares tend to stay hidden while

successfully carrying out their desired illicit action. Some existing malware evasion

Figure 2: Percentage Increase in malware variants (2016-2017)

4

techniques include: packing [11], obfuscation [12], steganography [13], code reuse attacks

[12] etc. Therefore, studying these canny antivirus evasion and bypassing techniques is of

utmost significance.

1.2 Motivation and Problem Statement

Malware nowadays have become more advanced, malign and difficult to catch. Malware

analysis and detection have appear to be in a competing position, where malware authors aim

to hide their malicious intent from security analysts. In this campaign, new stock of malwares

emerge which can be defined as evasive malware. Malware authors deploy several evasion

techniques in order to avoid detection by Antivirus Programs and other security solutions.

Some existing malware evasion techniques include packing, obfuscation, fragmentation,

code reuse attacks, application specific violations, protocol violations, traffic insertion at

Intrusion Detection System (IDS) and denial of service. Studying how malwares are evading

and bypassing security solutions is of utmost significance these days. Every evasion

technique has certain limitations and malware analysts are coming up with new detection

mechanisms to detect evasion and impede the efforts of malware authors.

In order to evaluate the efficacy of the current state-of-the-art AMTs, we need to develop

sophisticated evasive malware in order to audit these AMTs. This will address flaws in the

detection mechanisms of these tools and hence improve their detection capability. Also, no

standard method/framework, to evaluate the detection competence of these AMTs, exists and

existing malware repositories such as Genome [14] and Drebin [15] lack new malware

variants. Absence of automation for updating malware repositories is yet another reason for

creating new malware variants using a system that will automatically update the malware

repository.

This research is focused on auditing Android antimalware solutions against static analysis

using a hybrid evasion technique. The technique is amalgamate of various obfuscation

modules implemented in an iterative manner. The technique effectively evades static analysis

in iterative steps.

5

1.3 Project Description

1.3.1 Objective

The aim for malware authors is to evade detection from security analysts. Being security

analysts, we need to stay ahead of malware authors and thus thwart their motives. Hence by

understanding and developing offensive security methods, we can develop enhanced security

mechanism for malware detection and thus evade the malware evasion which can pose

serious threats by staying undetected and executing their malicious intent.

The main objectives of thesis are: -

 To conduct a critical analysis of existing evasion techniques for Android malware

and evaluation of android anti-malware tools against existing evasion techniques.

 To generate new, advanced and hybrid evasion technique for the class of Android

malwares with an aim to audit the new advanced anti-malware tools.

1.3.2 Approach

Figure 3: Basic Approach for Auditing Android AMTs

1.3.3 Academic Objectives

We constantly need to update ourselves regarding new and persistent threats from adversary.

When we are well acquainted with new incoming evasive malware threats, we can develop

6

better detection mechanisms, more transparent ones and stay better guarded against such

adversarial motives.

1.3.4 Scope of the Project

The focus of the thesis will be to conduct a critical analysis of existing Android malware

evasion techniques and anti-malware tools capabilities against these evasive malwares. A

technique comprising of new, advanced and hybrid Android malware evasion will be

developed. The evasive malware will be deployed on Android devices with advanced anti-

malware tools installed followed by an evaluation procedure. This will, thus, conform the anti-

malware tool’s efficiency against advanced anti-detection techniques.

1.3.5 Areas of Application/Advantages

This era is of cyber warfare, one constantly needs to be updated about new threats and their

countermeasures. When we know evolving offensive security paradigms, we can develop

better defensive mechanisms. Areas of application could be commercial, military and

defense.

This will aid in hardening the system security, devising enhanced security mechanism against

new class of evasive malwares by determining the possible ways for making malwares as

evasive as possible and to innovate/upgrade the existing security mechanisms.

7

1.4 Thesis Organization

The thesis is structured as follows:

• Chapter 2 focusses on Android fundamentals with a focus on Android system

architecture, Android application taxonomy and Android security structure and

security vulnerabilities.

• Chapter 3 outlines different kinds of malware and malware detection techniques for

mobile devices.

• Chapter 4 describes in details several malware evasion techniques employed for

Android malwares and summarizes the literature review in regard of malware evasion

techniques and auditing of the Android Antimalware Tools (AMTs).

• Chapter 5 explains the proposed framework for auditing Android (AMTs) using

sophisticated evasion technique.

• Chapter 6 lists down the prerequisites for the implementation of the proposed

framework, software and hardware requirements, malware dataset used, and AMTs

employed.

• Chapter 7 pronounces the details of practical implementation of the proposed evasion

framework.

• Chapter 8 details the auditing results on several AMTs and their detection efficacy.

Also comparison with other works is also presented.

• Chapter 9 concludes the work and presents future directions for strengthening

Android Antimalware engines.

8

Chapter 2

Android Fundamentals

2.1 Android System Architecture

The term “Java on Linux” coined for Android system architecture is a bit of a loose term to

explain the complexity and architecture of the platform. Android's foundation is the Linux

kernel. Several add-ons and variations were performed to Linux kernel resulting in certain

security implications. Android’s architecture consists of five main layers of components,

namely framework, applications, user-space native code, the Dalvik Virtual Machine (Dalvik

VM), and the Linux kernel. Fig. 4 illustrates the basic Android Architecture [11]. Linux

Kernel resides at the base of the software stack and includes drivers for audio, IPC, Wi-Fi

and USB, memory and process management, network stack etc. Hardware Abstraction Layer

(HAL) lies on top of Linux kernel and acts as an abstraction layer between hardware and

software. The succeeding level of the structure comprises the libraries, a set of directives for

handling different types of data. These native libraries include a set of C/C++ libraries

comprising of the core libraries such as the System C library, media libraries, and

LibWebCore (for a Web browser engine). For instance, the media framework library handles

media entities like pictures, video, and audio. A set of core Java libraries constitutes the

Android Runtime [16].

Exhausting the Java programming, Android applications are developed. The Application

Framework necessary for and accessible to the Android developers includes modules that

accomplish the device’s rudimentary jobs like telephone, navigation and resource allocation.

The Application stack aids user’s interaction with the device.

Android applications let developers have access to device’s underlying hardware such as

Bluetooth, camera, sensors etc. to encompass and improve a device’s function without

modifying the lower levels. In sequence, developers facilitate themselves using the Android

Framework which provides a rich source of API having right to use all of the innumerable

9

services an Android device offers. In short, Android Framework acts a glue between the

Dalvik VM and apps.

Figure 4: Android Software Stack

For instance, it includes allowing developers to perform trivial tasks such as passing

messages between application counterparts, handling elements constituting user interface

(UI) and having access to shared data stores. Java forms the basis for both the Android

Framework and Android applications and these run within Dalvik VM.

Dalvik VM has been designed to make available a resourceful abstraction layer to the core

OS. It is used to interpret Dalvik Executable (DEX) using a registered-based VM. In

sequence, Dalvik VM rests on the utilities which are provision of several supporting native

code libraries.

System services such as networking services and libraries such as OpenSSL, Webkit etc. are

the constituents of user-space native code. Few services and libraries have functions to

communicate with kernel-level drivers and services while some other aid inherent tasks for

managed code. Wi-Fi, camera access and network device access etc. are the add-ons

10

facilitated by the drivers at Kernel-level. Among these kernel-level drivers, Binder driver

responsible for implementing inter-process communication is most important.

2.2 Android Application Taxonomy

Mobile applications can be classified as user-installed and pre-installed [2].

 Applications such as Google, Google Play Store and applications installed by mobile

carrier such as email, clock, camera, gallery, dialer, contacts etc. come in the category

of preinstalled applications as these are already present on the phone even before a

user buys it. These applications’ packages are located in the /system/app directory

and most of these have elevated privileges and cannot be uninstalled by the normal

uninstall option.

 Second category is of user-installed applications or third party applications. This

class includes applications installed by the user themselves either through an official

app market such as Google Play Store for Android OS and App Store for IPhone or

through some unofficial source. Such apps reside along with updates for the pre-

installed app, in the /data/app directory.

Moreover, public key cryptography is used for signing the Android applications. For signing

the pre-installed applications, a special platform key is used which provides these

applications with system user privileges. On the other hand, third applications’ signing is

performed with developers’ key. This signing of apps inhibits unapproved updates to the

apps.

2.2.1 Major Application Components

Android applications are composed of several components. In this portion, we mention few

important among them such as AndroidManifest, activities, services, broadcast receivers,

intents and content providers.

2.2.1.1 AndroidManifest.xml [2]

An AndroiManifest.xml file is a requisite for all Android applications. This file gives a

handful insight into the application such as all necessary permissions declared, package name

11

unique for each application and its version, services, activities, information about

instrumentation, shared User ID (UID), UI info etc. Moreover, the info on external libraries

bundled with and consumed by the application and install location favored is also listed in

this file.

2.2.1.2 Intents [2]

Intents, a significant fragment of inter-app communication, encompasses info about tasks

that are required to be executed, target constituents on which to take action and added flags

or further auxiliary info substantial for the recipient. Trivial tasks from installing and

uninstalling applications, to notifications about incoming SMS messages, from launching a

browser to tapping a link, everything include intents being distributed round a system.

2.2.1.3 Activities [2]

A screen with a user interface is called an activity which is a fundamental component of an

Android application with a GUI. Applications may comprise of a number of activities and

are put on show in a particular order with each activity with an autonomous launch control,

even by a different app if permitted.

2.2.1.4 Broadcast Receivers [2]

A component sensitive to system-wide events, called broadcasts and responds to them is a

broadcast receiver. Broadcasts can be initiated by either the system such as announcing

changes in network connectivity, or by a user application such as announcing completion of

an ongoing background data update.

2.2.1.5 Services [2]

An element of an Android application without any user interface, executing in the

background is a service. Time consuming actions such as a file downloading, playing music

without halting the user interactions are usually executed by services. Services, dissimilar to

system services which are part of the OS and constantly executing, application services can

be initiated and halted when required. These can also offer some functionality to other apps

and declare remote interface using AIDL.

12

2.2.1.6 Content Providers [2]

Provision of an interface to app data is the responsibility of content providers. These content

providers are either held at some database or stored in files. Employing IPC, content

providers can be accessed for sharing app’s data with other apps. Controlled accession to an

app’s data is also a provision of content providers, a utility that ensures the sharing of only a

subset of app’s data.

2.3 Security Model [1]

Android security model is based on that of Linux kernel. Provision of isolated user resources

is a feature of Linux security which ensures without explicitly granting permission, one

user’s resources cannot be accessed by others. Moreover, each process executes with a

unique user (UID) and group ID (GID) of the initiator who started the process.

In order to get an insight on the working of AMTs, essential components of the Android

Security Model are briefly described in this subsection. The Android Security model is based

on application sandboxing. Android achieves application sandboxing by means of Linux

User IDs (UIDs) [16]. Every application that runs on Android is assigned a set of attributes

such as unique UID, application runtime and application framework. These attributes help

the application execute within Dalvik VM [16] which acts as sandbox and isolates the

application from other applications. Sandboxed applications communicate with each other

and the system according to the Android’s Permission Model which uses intent filters to

control the permissions explicitly declared in AndroidManifest.xml file or set-group-ID

(SUID and SGID)[16] bits are set on the corresponding executable file. Some of the security

features of Android are discussed below:

2.3.1 Application Sandboxing [1]

A unique User ID (UID) is automatically assigned to each application at install time under

which the application executes in a dedicated process. This provides application isolation at

the process level. Moreover, under this UID an exclusive data directory with the permission

to read and writes to is assigned to each application which provides application sandboxing

at the file level. Despite the execution environment being native or virtual, application

sandboxing is implemented on all applications.

13

2.3.2 Permissions [1]

Due to application sandboxing in Android, each application have access to their specific files

and other resources residing on the device. This limits the application’s functionality, hence,

to provide applications with more resourceful functions, surplus, controlled access rights are

provided. We call these access rights permissions, which control access to hardware devices

such as sensors, services such as internet connection, data, or other OS related services. By

enlisting permissions in their AndroidManifest.xml file, applications define their set of

requested permissions. Android versions running higher than API Level 22, no prior

permissions are required at install time, rather permissions are requested at runtime [17].

2.3.3 IPC [1]

IPC refers to inter-process communication which is implemented using a set of user space

libraries and kernel-level drivers. Forging of the User ID (UID) and Process ID (PID) is

inhibited by the Binder kernel driver. This Binder driver also provides several services which

provide dynamic access control to several sensitive APIs exposed by IPC.

2.3.4 Code Signing and Platform Keys [1]

All Android applications inclusive of system apps are required to be signed by their

developer. Due to their dependence on Java and JAR package formats [18], Android

applications are signed using signing method based on JAR signing. Using the same origin

policy, Android employs the APK signature to ensure updates for an app are from the same

author to avoid forging or updates from malicious sources.

2.3.5 Security Enhanced Linux (SELinux) [1]

Implemented as Mandatory Access Control (MAC) for Linux, an altered SELinux version

from Security Enhancement for Android (SEAndroid) project [19] is integrated in Android.

This modified version of SELinux provides features specific to Android such as isolation of

core system daemons and definition of distinct access policies for each security domain.

2.3.6 System Updates

Updates to the Android devices can be performed in two ways: either over-the-air (OTA) or

via establishing connection with a PC through Android Debug Bridge (ADB) or some other

application provided by the vendor and pushing updates to the device. Components such as

14

bootloader, baseband firmware and several other counterparts may also need updating in

addition to system services. This is done using recovery mode which employs an exclusive,

nominal OS with root access to device’s hardware components.

2.3.7 Verified Boot [1]

Provision of verified boot in Android version 6.0 and later is ensured via the device-mapper-

verity (dm-verity) [20] which is a kernel-level feature. Authenticity and integrity of each

upcoming stage before its execution is a feature of verified boot. A strict enforcement of

verified boot in Android 7.0 and later ensures the failure of a comprised device’s boot. This

ensures the integrity of the booting device.

2.3.8 File System Permission [2]

This feature ensures that files generated and owned by one application can’t be read or altered

by some other application until that application assigns permission to have access to its file

system by other applications.

2.3.9 Rooting of Devices [2]

Certain applications and kernel execute with the exclusive permissions in Android. These

root permissions can provide an application with the right to alter OS, kernel or other Android

applications and can have access to otherwise inaccessible resources.

2.3.10 Device Administration

Device Administration utilities at the system level are a feature of Android 2.2 and later

versions.

2.3.11 File System Encryption

Starting from Android 3.3, encryption of user files at the kernel level is provided. From

Android 5.0, full disk encryption employing single key is performed, which either could be

the password for user’s device or generated from it. However in Android 7.0 and later

versions, distinct and unique keys are employed for encrypting different files which ensures

better security compared to single key encryption method.

2.4 Security Vulnerabilities

15

Android has outnumbered Windows platform in terms of its popularity and usage. Owing to

the huge amount of user’s data, its sensitive and critical nature, a greater threat to its security

and privacy exists. In order to fulfill the malicious intent, security vulnerabilities found in the

Android Platform are exploited leading to user data theft, encrypt devices, remote code

execution etc.

A common identifier for defining the vulnerability, known as Common Vulnerability

Exposure (CVE) ID are used by all the vulnerability databases [22]. A Common

Vulnerability Scoring System (CVSS) is assigned to determine the impact level of the

vulnerability. The vulnerability impact level may be categorized as Critical, High, Moderate,

Low and No Security Impact (NSI). The monthly Android Security Bulletin maintains

database of evolving Android based vulnerabilities and respective security remediation. The

vulnerabilities have been divided into four main categories [16].

Table 1 below lists some of the severe security vulnerabilities, recently found in

Android’s ‘Framework.

Table 2: CVE Android Security Bulletin, Year 2019

Month CVE References Type

July 2019 CVE-2019-2104 A-131356202 RCE

June 2019 CVE-2019-2090 A-128599183 EOP

Apr 2019 CVE-2019-2026 A-120866126 RCE

Mar 2019 CVE-2019-2004 A-115739809 ID

2.4.1 Elevation of Privilege (EoP) [17]

Attacker gains access to protected services/ resources by exploiting vulnerabilities in OS or

applications. An exclusive access to a service or a resource usually inaccessible or secured

from conventional applications. The malignant application thus bypasses the permissions

and gains access to otherwise unavailable and critical data of the users and the system.

2.4.2 Remote Code Execution (RCE) [17]

It allows an attacker to remotely execute commands or code of his choice on the target device.

16

2.4.3 Denial of Service (DoS) [17]

Attacker exploits OS/ application to make authorized resources/ services unavailable to

legitimate users.

2.4.4 Information Disclosure (ID)[23]

Attacker gains valuable information regarding system or user thereby causing privacy

issues and information leakage.

17

Chapter 3

Malware, Detection and Analysis

3.1 Mobile Malwares

Mobile malwares include Trojans, Backdoors, Ransomware, Botnets and Spyware. Nearly

one-third fraction of smart phones has a moderate to an excessive risk of data theft.

Moreover, the percentage of Android devices infected with malware is nearly double relative

to iOS devices. Some of the most important mobile malwares are listed below:

3.1.1 Trojans

A software that executes malicious acts in the background though it appears benign on the

surface is called a Trojan [24]. Trojans hack a system by putting the security of the system

at stake. Examples include FakeNetflix [25], an Android Trojan responsible for pocketing

users’ Netflix account credentials and KeyRaider[26], an iOS Trojan used for stealing Apple

IDs and passwords.

3.1.2 Backdoors

Backdoors takes advantage of root privileges to bypass antiviruses. One popular Android

backdoor is Rage against the cage (RATC) which completely hijacks the device and performs

exploits [27]. After gaining full control of the device and root access to system’s resources,

malware can perform tasks capable of even installing applications in the backend not leaving

any detectable traces of its action. Similar to RATC, Xagent[28] is an iOS Trojan capable of

opening backdoors on iOS devices and information theft from these [29].

3.1.3 Ransomware

Users are inhibited from accessing their data by encrypting this data or by locking the device

using ransomwares and can only access this data upon paying a ransom. FakeDefender.B

[30] is a ransomware, disguised as Avast antivirus, that locks the user’s device till ransom is

payed. Similarly an iOS ransomware appeared in 2017 that feats on a bug found in Safari

pop-ups [31].

18

3.1.4 Botnets

Using a compromised devices, this malware helps attacker hijack the device and then further

infect other devices. Web robots, a term used for an affected device, infect all the devices in

a network and form a botnet. One such example of Android botnet is Genimi [32].

3.1.5 Spyware

As the name refers, spyware is a software used for spying. While executing at the backend

without being noticed, it gathers valuable information while also granting remote access in

some scenarios. From listing keystrokes, stealing credentials, to collecting browsing history

and intercepting communication, a spyware can collect valuable information and send to the

attacker. Examples include Nickspy [33], GPSSpy [34] which are spywares for Android

whereas Passrobber[29] is an iOS spyware.

3.2 Malware Propagation Techniques

To abate malware attacks, we need to be well-equipped with the knowledge of their

propagation mechanism. According to [35], malware propagation can be categorized into

techniques listed below:

3.2.1 Repackaging

By disassembling and then repackaging widely used Android applications while embedding

malignant sections into these, and then dispersing these repackaged malware variants as

updates to the original app both in the official application hub and less guarded open markets,

one can easily propagate malwares. Using tools like apktool, dex2jar and some open-source

RATs, one can easily distribute their malware and users often buy this idea assuming updates

to the already installed application. According to TrendMicro, more than 70% of the top 50

free apps uploaded to Google Play are repackaged versions [36].

3.2.2 Drive by Download

Inadvertent download of a malware at the backend when a user browses a website embedded

with malignant script is referred as drive by download. When user pays visit to such a

website, the embedded script downloads the malware onto the victim’s machine and then

further performs exploits. One such example of malware for Android platform is

Android/NotCompatible [37].

19

3.3 Malware Detection Techniques

Several malware detection techniques exists for detecting Android malwares. We can sort

them into two basic kinds i.e. static and dynamic, however, one more techniques adds to this

list which is machine learning [38]. In certain cases, a hybrid analysis comprising of both

static and dynamic detection techniques is employed which often yields better results. We

discuss some of these in this section.

3.3.1 Static Analysis

Static analysis relies on the source code and signatures of the malware under detection

without actually executing the malware application. Static analysis is more scalable and has

better code coverage than dynamic analysis. Techniques such as obfuscation and dynamic

code loading can easily beat static analysis. Some static analysis techniques employed in

static analysis include signature-based, permission-based, API-based, Interaction-based and

Dataflow-based detection which are discussed below:

3.3.1.1 Signature-based Detection

Signatures of an Android application are extracted and then compared with the signatures of

known malware. Usually a hash/checksum is computed of the malware under analysis and

compared with the hashes of known malware. These hashes are stored in a signature

repository. This signature repository needs to be constantly updated to include the signatures

of new malware on a day-to-day basis. Otherwise, the database will become obsolete and

new malware variants can easily bypass this detection technique. Obfuscated malwares and

dynamic code loading can evade this method of detection.

3.3.1.2 Permission-based Detection

AndroidManifest.xml file contains all the permissions required by an Android application.

In permission-based static analysis, an application is categorized as benign or malicious

based on the set of permissions it defines in its AndroidManifest.xml file [39]. The type and

number of permissions an application requests gives an insight into the application’s

functionality and various methods are used to perform this kind of detection. But it has

certain limitations such as it overlooks the source code and working of the benign app and

only relies on permission. It might be the case that a malware app uses the same permissions

20

as that of benign app. In such a case, no red flag will be raised. Also, this method might give

false positive about a benign app classifying it as malicious just based on the permissions.

3.3.1.3 API-based Detection

In this technique, analysis is based on APIs being used in the Android application. APIs are

Application Programming Interface available in Android SDK. Android provides these APIs

to allow developers to interact with the underlying hardware and use them in their

applications in a variety of different ways. AMTs scan the code for any malicious APIs and

trigger an alarm based on these APIs. These API calls give a good basic insight about the

intent of an Android application. However, in case of polymorphic code, this detection

method fails to give any useful information about the Android application.

3.3.1.4 Interaction-based Detection

In interaction-based static analysis, AMTs make a decision about an Android application

depending upon the type of interaction between API calls. If certain suspicious interaction is

observed between different components of the application under analysis, AMTs would mark

the application as suspicious. If for example, an application first intercepts SMS and then

sends it to a network, then by simply by looking at this interaction, AMTs can make a guess

that the app has a malicious intent.

3.3.1.5 Dataflow-based Detection

Dataflow-based detection technique looks at the sources and sinks of dataflow within an

application. If, within an Android application, dataflow occurs between suspicious sources

and sinks, AMTs will get triggered. For example, if an Android application has a source

defined for getting the device ID and a sink defined that sends this device ID to some remote

network, then AMT would assume a suspicious dataflow here.

3.3.2 Dynamic analysis

This technique requires the execution of Android application either in real or emulated

environment. Tracking the flow of sensitive information or collecting the execution traces

and based on this information, the app is marked malicious or benign. Dynamic analysis

compensates the static analysis failure when faced with obfuscated, encrypted and

dynamically loaded code. However, dynamic analysis has less code coverage and is less

21

scalable. Dynamic analysis can be classified as anomaly-based and emulation-based

techniques.

3.3.2.1 Anomaly-based Detection

Upon the execution of application under analysis in a sandboxed environment, logs of the

generated system calls are sent to a remote examination server. Here application’s behavior

is inferred based on the logged system calls. Presence of anomalous behavior marks the

application as malicious. This technique along with other detection techniques is used in

dynamic analysis to classify the file as benign or malignant.

3.3.2.2 Emulation-based Detection

Emulation-based detection systems are designed in such a way that the antimalware program

examining the file is not on the same system used for the execution of the malware. An

agentless system is designed so that the malware may not detect the presence of the

antimalware tool. In conventional systems, both the malware and antimalware run in the

same virtual machine which may inhibit the malware from depicting its true nature after

detecting the presence of the detection tool. Yan et al. [40] presented an agentless emulated

detection system where malware runs on the virtual machine and antimalware tool runs

analysis from outside of the virtual machine.

3.3.3 Machine Learning

Using features extracted from known malwares, similar Android malwares are identified. It

has two phases: the training phase and testing phase. In training phase, specific features from

known malwares are extracted. Based on these extracted features, new similar Android

malwares are classified into benign or malicious ones.

22

Chapter 4

Malware Evasion Techniques

In order to avoid detection by AMTs, next generation malwares tend to be evasive. Malware

analysis and detection is a cat and mouse game where if malware analysts are always faced

with new breed of existing malwares. These new malware can be termed as evasive malware

which are more intelligent, environment aware and adaptive to execution environment.

Evasion techniques can thwart the precision of malware analysis tools. Such evasion

techniques include obfuscation using packing, anti-debugging tricks etc., resigning,

disassembling and reassembling, data encoding, call indirections, code reordering, junk code

insertion, string encryption, API reflection, resource modification, NOP insertion, code

reuse, steganography and concatenation.

4.1 Common Evasion Techniques

Some of the common evasion techniques used by Android malware authors are listed below.

4.1.1 Obfuscation [12]

It deceives simple methods of string-matching used in signature-based detection by

concealing the attack payload of malware.

4.1.2 Code Reuse [12]

This exploit legitimate system requests being used by local running legitimate, benign

processes as well.

4.1.3 Steganography [13]

It refers to hiding the data in another medium like image, without incurring noticeable

changes. Steganography involves converting the image into RGB mode, converting data to

be hidden into binary format and then replacing the RGB data with the payload data in any

one plain. LSB [41] is one widely used technique of steganography.

4.1.4 Cryptography [13]

It makes the code unreadable by applying encryption algorithms such as polymorphic XOR

etc. The encrypted piece of code is decrypted at runtime. The only resource available to

23

AMTs for analysis is the decryption routine which we can further obfuscate to achieve better

results.

4.1.5 Resigned [42]

This technique involves decompiling an apk file and recompiling it using apktool[43],

jarsigner[44] and zipalign[45]. Once recompiled, android application is signed with a custom

key since developer keys are not available. This technique does not alter the apk file itself

but only its hash by resigning the apk with new certificate and hence altering its signature.

4.1.6 String Encryption [46]

It refers to encrypting all the strings using different encryption keys. Encrypt string using

xor-string encryptor different for each string. In each Android application, a string.xml file

exist which contains list of the strings used in the application. This method encrypts those

string names to random/dummy values, hence rendering AMTs unable to detect the

malicious application based on string names.

4.1.7 API Reflection [42], [46]

API reflection refers to analysis and modification of Java APIs at runtime. Using Java

reflection API, static method calls are transformed into reflection calls hence hiding the API

calls. Every method call is transformed into a call to that method via reflection. Hence static

analysis becomes useless on such method.

4.1.8 Resource Modification [46]

This technique involves modifying resource related files. Modifying images in the resources

section of the apk file and resource related xml files’ data modification hence transforming

the identification markers for AMTs rendering them useless against such transformations.

4.1.9 NOP Insertion [42]

A no-operation instruction (NOP) is inserted at random into the source code to change both

the hash/signatures and delay the execution time.

24

4.1.10 Packing [11]

It encrypts malicious DEX file using an Executable and Linkable Format (ELF) [47] binary

that only gets decrypted in the memory at runtime and executed using DexClassLoader[48].

This changes the structure and flow of the APK file.

4.1.11 Disassembling and Reassembling [49]

We can disassemble and reassemble the compiled Dalvik bytecode found in the classes.dex

file. Components like classes, method and strings etc in a dex file can be arranged in a number

of different ways. As a result, each such combination yields a different compiled version of

one application. This thwarts the analysis based on signatures of whole classes.dex and also

the signatures that look upon the arrangement of components in the classes.dex file.

4.1.12 Changing Package Name [46]

The package name which acts as identification mark for a given Android application is

defined in the AndroidManifest.xml file. In this technique, we simply change this

identification marker to some other name.

4.2 Literature Review

This section reviews the evasion techniques with respect to their (i) pros and cons, (ii) evasion

tools employed and (iii) detection mechanisms to thwart these evasive techniques.

Mystique [50] is a malware generation framework that uses gene crossover and mutation

techniques to generate evasive malwares. Mystique-S, a variant of Mystique, is focused on

malware specific to financial charge, phishing and extortion cases [51]. It gathers client’s

data, delivers the malware at run time and can be evaluated on real devices rather than virtual

emulators.

Using genetic operators on existing malware, Sen, Aydogan and Aysan. [52] developed an

effective attack with evasion capability that challenges effectiveness of most successful

security solutions. Sen et al. also provides a Genetic Programming (GP) based malware

detection system incorporating static features of Android applications, which proves very

effective against known attacks. However, this technique can only run the malware for

limited time period and if run for a long time can trigger analysis of the malicious code.

25

Rastogi, Chen and Jiang [53] developed DroidChameleon[54] that applies various

transformation techniques on malware samples and audits ten popular mobile AMTs being

vulnerable to these transformations. However, such evasion is not very effective owing to

signature-based detection paradigm.

Zheng, Lee and Lui [55] developed ADAM that employs obfuscation and repackaging

techniques like repacking, assembling/disassembling, string encoding, code reordering, junk

code insertion, and renaming identifiers, but ignores sophisticated ones such as payload and

native code encryption, array data encoding, reflection and bytecode encryption.

Preda and Maggi [56] proposed an Automatic Android Malware Obfuscator (AAMO) to

obfuscate exhaustive datasets of Android malware using both existing and new obfuscation

techniques. It uses 1,260 malware applications from Genome repository, 6 state-of-the-art

AMTs and 17 obfuscation techniques simple and advanced control-flow based

modifications, resource renaming and encryption.

Badhani and Muttoo [57] developed eight different evasion techniques to hide malware

inside an image of a wrapper Android application using obfuscation, concatenation,

steganography, cryptography and their combinations. 402 malware samples developed as a

result of the above-mentioned techniques and installed on the real Android devices were then

tested against 10 AMTs from Google Play Store.

Chua and Balachandran [58] presented a detailed framework with obfuscation techniques

like switch function, method overloading, try-catch function and opaque predicate. The new

malware variants retained their malicious operation, thereby indicating that AMTs listed on

VirusTotal[59] do not build resilience against obfuscation techniques but only update their

signature database to counter malware variants.

RealDroid [60] highlighted a broad range of techniques to evade dynamic analysis in

virtualized environments. A set of repackaged malwares with developed heuristics

incorporation almost evaded all malware analysis services deceiving numerous analysis tools

such as DroidBox[61], DroidScope[62], TaintDroid[63] and online services namely

Andrubis[64], SandDroid[65] and TraceDroid[66].

26

A comprehensive analysis of top 30 AVD (Android Virus Detectors) is conducted in [67].

Vulnerabilities related to AVD malware scan (malScan) are exploited by proposed evasion

techniques based on Fast Fourier Transform (FFT) [68] and signal steganography. It works

by identifying the scanning period followed by subsequent malicious actions.

A mechanism to evade Android automated runtime analysis is proposed by Diao, W. et. al.

[69] using close monitoring of the interaction patterns and events triggered on target device

as it differentiates between a human user and an analysis environment. It gives an insight on

the efficacy of current dynamic analysis platforms, and could be used in integration with

Android malware to monitor the system events before the execution of actual malware.

Albertini and Aprville in [70] demonstrated how one can hide malicious apps inside images

using a combination of steganography and cryptography. Using Angecryption, it possible to

embed imperceptible, valid and executable bytecode in a benign looking app, and

successfully evades static analysis such as disassembly. The wrapping app is installed on the

target device, malicious app encrypted into a valid PNG image placed in the assets section

of the wrapping app, is decrypted into the payload app and installed at runtime. However, it

works only on Android 4.4.2 and not on any later versions.

AVPass[46], another tool developed to automatically bypass Android malware detection

systems, offers several obfuscation techniques. It also infers detection features of AV engines

and using imitation mode, prevents the code leakage. Imitation mode refers to where query

to AV engines is performed in such a way that the actual application sample under analysis

is never sent to the AV engine, rather a similar code with selected features is uploaded.

AVPass provides an insight into the detection architecture of Android AMTs. Its limitation

is that it only bypasses static analysis.

Existing research work has been summarized in Table 3.

Table 3: Summary of Malware Evasion Techniques on Android

Malware Type Evasion Technique(s) Pros Cons

Privacy leaker Obfuscation (control-

based, data-based, both)

Maximizes no. of attack

behaviours, minimizes

detection

Only audits dynamic

analysis based AMTs

27

Dynamically assembled

and loaded malware

Mystique-S- a service-

oriented tool

Mystique-S developed

malware that are

undetectable in case of

offline detection

Dynamic Analysis Tools

(DATs) can detect

dynamically loaded

malicious code

Malicious Android

application (apks)

Genetic Programming

(GP)

Most successful AMTs,

can be evaded via GP’s

attack patterns.

Application limited to

few malwares, ignores

dynamically loaded code

Root exploit, information

exfiltration, SMS Trojan,

dynamic code loading

Repacking,

disassembling

reassembling, renaming

identifier, package name,

call indirections, data

encoding/ reordering,

junk code insertion,

payload/ byte code

encryption, and

composite

transformations.

Can evade almost all anti-

malware tools

Only thwart static

analysis, and not dynamic

analysis, Ignores code-

level transformations.

Credentials stealer,

adware, spyware

Repackaging,

obfuscation

Can evade Anti-malware

tools with little effort

Less comprehensive

transformations, lacks

composite obfuscation.

Genome Malware dataset

(AAMO)

Obfuscation (Android

specific, simple/

advanced control-flow,

resource renaming/

encryption)

Uses sophisticated/

automated obfuscation

techniques to evade top

AMTs (Avast, Norton), is

open source and

reproducible.

Only evades scan-time

static analysis

Spyware, ransomware,

banking Trojan

Code reordering based

obfuscation techniques-

Method overloading,

switch or try-catch

functions, opaque

predicate

Decreased detection rate

by 50%, employs updated

malware samples that

retains its malicious

operation

Evades signature- based

detection only and uses

code reordering

obfuscation technique

only.

Data extortion, root

exploits, bot activity and

SMS Trojan

RealDroid - Static,

dynamic and hypervisor

level heuristics disguise

AMTs failed to infer

malicious behavior of

new malwares. Also, no

tool detected VM evasion

Analysis services lacking

support for native

execution couldn’t be

evaded.

Genome malware dataset Fast Fourier Transform,

signal steganography-

based evasion

Exploits malware scan

and engine update’s null-

protection window and is

effective

Lack of new malware

dataset used for evasion

Malicious Android

Applications

AngeCryption-

encrypting apk to valid

PNG and embedding into

a benign looking

wrapping apk

Makes it possible to

embed undetectable,

valid and runnable

bytecode in a benign

looking apk, successfully

Works only on Android

4.4.2 and not on latest

Android versions

28

evades static analysis

such as disassembly

Malicious Android

Applications

AVPass- automatically

bypasses AMTs using

both obfuscation and

inferring detection rules

for AMTs.

Obfuscation modules

include string and

variable encryption, API

reflection, Resource

modification etc.

Bypasses AMTs and

gives a good insight

about the detection rules

of AMTs using inferring

and imitation mode.

Bypasses only static

analysis and certain

features such as inferring

AV features doesn’t

work.

The aforementioned evasion techniques were successful in bypassing most reputed security

solutions, and deceived dynamic runtime detection by analyzing sandbox environment.

Mystique and Mystique-S provided reasonable evasion in case of offline detection and

addressed privacy leakage and dynamically assembled and loaded malware. However,

Mystique audited only one Dynamic Analysis Tool (DAT) and is less effective. Mystique-S

too failed to evade when dynamically loaded malware were subjected to DATs. GP based

evasion tool claimed to evade most successful AMTs, however, it lacks dynamically loaded

code features.

Among the evasion approaches discussed, DroidChameleon, ADAM, AAMO and the

system proposed by Badhani and Muttoo are used to test the efficacy of the current AMTs

being used for detection of Android malware. Trivial obfuscation techniques developed by

DroidChameleon successfully thwart static analysis but fail when DATs are employed for

detection. ADAM and RealDroid proposed both evasion and detection frameworks.

RealDroid fails to detect VM evasion. ADAM provides reasonable evasion by repackaging

and obfuscation but lacks composite obfuscation techniques. AAMO provides exhaustive

obfuscation techniques and is flexible in terms of its application but fails to evade DATs.

29

Chapter 5

Proposed Framework for Auditing Android AMTs Using

Malware Evasion Techniques

To audit the detection efficacy of known antimalware tools against simple yet sophisticated

evasion techniques, a simple, resilient and light weight methodology has been proposed in

this chapter and illustrated in Fig. 1. It is based on application obfuscation and dynamic code

loading.

The proposed methodology will bypass static analysis in a series of steps owing to the fact

that layers of obfuscation will change the application’s signatures/hash to a level where it

won’t be detected by most AMTs. The proposed method consists of three basic evasion

modules followed by an auditing module. The three evasion modules are (i). Repacking

Module, (ii). Obfuscation Module, and (iii). AngeCryption Module. These modules will be

further described in the next section. This technique is simple and lightweight, yet resilient

in achieving good evasion results and shedding light on the detection capability of well-

known AMTs. The evasion module when implemented alone do not yield better results.

However, when taken together, the evasion modules decrease detection efficacy iteratively

at each step and the final outcome has an evasion capability to an extent that is incredible.

The auditing module simply uploads the resultant application to VirusTotal, an online

repository of numerous AMTs. The Fig. shows the framework for evading AMTs.

30

Figure 5: Proposed Framework for Auditing Android AMTs

Before delving deeper into the working of the proposed framework, we first describe its

individual components in order to provide a comprehensive and thorough understanding of

the framework.

5.1 Components of the Auditing Framework

Described below are the basic components the proposed framework.

5.1.1 Evasion Model

Two evasion modules are used in this framework. These evasion modules are selected on the

basis of the simplicity of their implementation, degree of evasion achieved and their

interoperability. ‘Interoperability’, here, refers to the fact that the evasion modules when

implemented together in a certain sequence operate successfully and the resultant application

does not lose its malicious intent and is working properly on the real Android device.

Moreover, these evasion modules are developed by using some existing projects on GitHub

and extracting components that function properly on latest Android versions. For example,

the first module, AVPass, consists of three components. Only its first component, the

obfuscation module works fine. The other components such as inference module, doesn’t

operate properly at all. Hence, we have taken only the first component for this project. In

case of the second module, AngeCryption, its complete project works only on older Android

version 4.4.2 and doesn’t operate on later Android versions, since the bug it exploits was

fixed in later Android versions. However, if we do not implement the entire project as it is,

31

rather restrict its implementation before the final step, we can make it work on later Android

versions. These modules are described in detail in the next subsections. These evasion

modules achieve almost 60% evasion.

The proposed framework is implemented as two phase evasion model. In the first, phase,

each evasion module is implemented individually on each Android malware sample resulting

into a new malware sample. In second phase, two modules are implemented in a specific

manner on the same malware applications yielding a new malware sample. This second

phase yields the best results.

5.1.1.1 Obfuscation Module

The obfuscation module used in this framework transforms any Android malware into a form

that bypasses AMTs. The module’s name is AVPass[46]. The module performs apk

obfuscation with more than 10 modules. It applies a layer of obfuscation onto the malware

so that it evades maximum AVs. According to [46], most of the AVs were bypassed with

3.42/58 (5.8%). 5 strong, 3 normal and 2 weak impact features of AVs were discovered.

Also, about 30% bypassing rule combinations are discovered. AVPass has three phases in

which it claims to achieve 100% evasion. Under these three phases, AVPass aims to avoid

API-based, dataflow-based, interaction-based and signature-based detection. The three

phases are as follows:

i. In first phase, individual features of Android binary are obfuscated employing

techniques such as string encryption, API reflection, resource modification etc. We

can apply these obfuscations in a number of different ways suiting our needs. We can

apply them as individual obfuscations or can apply some or all in a specific sequence.

ii. In this phase, features and detection rules of AVs are inferred based on the results of

phase 1. The AMTs which detected the malware application in the first phase, its

detection features and rules are then inferred and stored.

iii. In the last phase, malicious Android applications are obfuscated in such a way that it

evades maximum AMTs. This obfuscation uses the features and rules inferred in the

second phase. Based on these inferred rules, obfuscation aiming to remove, hide or

32

transform the malware apk in such a way that the AMTs is fully bypassed. This

feature tends to reduce the number of obfuscation features being applied based on

features inferred, applying only those obfuscation necessary to evade analysis.

We limit AVPass implementation only to the first step as the second step doesn’t function

properly after several trials two steps and since third step is dependent on the second, hence

we are forced to use only the first step. Also, we alter the implementation method of AVPass

as depicted in [46] in a fashion so as to achieve much sound results even better than with less

complexity. We combine the results of this first step with our second module and achieve

almost 100% evasion. Moreover, our technique is less complex and is flexible enough to be

operable on all Android versions.

We now list the obfuscation components used in AVPass and how we tailored them to our

needs to achieve maximum evasion.

5.1.1.1.1 API obfuscation

This obfuscation component provides a list obfuscation utilities for obfuscating APIs and is

for evading API-based detection. The utilities provided by this component are injecting

random perturbations, injecting API between two existing APIs, listing APIs, injection of

API between specific points, modifying package and file name, removing all permissions

and inserting benign permissions. In order to break API-based detection, we can either inject

dummy APIs or modify all family/package names. The number of APIs to be injected

depends upon the size of the malware, the bigger the malware, the more number of APIs

need to be injected and vice versa.

5.1.1.1.2 String and Variable Encryption

Variables in an application are encrypted using simple caesar cipher while strings are

encrypted using xor-string encryptor which is different for each string. This is done by

inserting massive number of getStr() functions. This kind of obfuscation breaks Signature-

based detection. This method encrypts those string names to random/dummy values, hence

rendering AMTs unable to detect the malicious application based on string names.

5.1.1.1.3 Package, Class and Method Obfuscation (PCM)

33

This obfuscator obfuscates package and class/methods present in an Android application. It

changes package name, class/method name in such a way that it no longer serves as a

signature for detection. It also modifies AndroidManifest.xml files modifying the main

package name (package=”com.a.b.c”), modifying components name such as activity and

services etc. In case of class name, it first checks whether a particular class name exists,

modifies line classes (L class) except for real class names. Also it encrypts the references to

class names if found in the xml files. Moreover, it scans all xml files found in res section of

Android application and change all class references to encrypted form. PCM also has a

file/directory name changer which modifies file name which is actually the file name

provided internal definitions and its references are modified and changes directory name

also.

5.1.1.1.4 Java API Reflection

In this obfuscation component, reflection is performed for each file by generating a set of

wrapper functions. The wrapper function contains the actual payload/malicious function.

These set of wrapper functions can be either stored in an original smali file, in a separate file

in the same directory or in any one specific wrapper file. We can generate these wrappers

either for each API call or for a set of same API calls in each file/package/method etc. This

techniques uses the Java API for reflection.

5.1.1.1.5 Resource Obfuscation

Resource obfuscation modifies the contents of ‘res’ directory. It modifies images/swf, data

in resource related xml files, nullifies payloads (.so, .jar, .zip, &c) and removes “unknown”

directory. It performs some of the same functions as don PCM component such as modifying

class names, modifying class name references in xml files. It modifies images in the res

section by changing images’ hex values. This is done by either modifying pixels or adding

one byte. It also alters the string, id and drawable in XML files. The nullify payload function

renders the application useless, hence is not recommended.

5.1.1.2 Angecryption Module

Angecryption [70] is the second module after AVPass that we use in our proposed solution.

It works on the idea of encrypting any given input into any JPG or PNG image. Its details

have already been discussed in the section of chapter .However, we give its technical details

34

here. AngeCryption does not exactly encrypts the input file into the image rather it transforms

it into something that looks identical to the image file[Ange].For the sake of understanding,

we precisely define the PNG image format here. A PNG file consists of the following parts:

- File Header: An 8-byte fixed PNG signature which reads ‘0x89 PNG 0x0d 0x1a 0xa’.

This signature helps in the identification of PNG file as a valid PNG file.

- Garbage Chunk: A chunk is comprised of chunk length (4 bytes), chunk id (4 bytes),

chunk data and CRC32 of chunk data and id. The data residing here is usually ignored

by image reading tools.

- Header Chunk: It is mandated by PNG specifications that a header chunk initiate a

PNG image.

- Data Chunk: The actual image data blocks reside in this section.

- End Chunk: This is the end of file marker and terminated the PNG.

AngeCryption uses AES as the encryption method where a single AES block equals 16 bytes.

To generate the output as desired by AngeCryption, a suitable IV is first selected. The first

cipher block C1 needs to be equal to the PNG file header (8 bytes) + chunk length (4 bytes)

+ chunk id (4 bytes). This, coincidentally, equals 16 bytes fitting perfectly an AES block.

Now, the plain text is input from the payload application. IV is selected in such a way that it

equals AESk˄-1 (Ci) +Pi. IV, here, is selected in such a way that it yields the first cipher

block desired whereas in real encryption, IV is random. After the appropriate selection of IV,

a modified apk is generated. Modified here refers the payload apk with appended data at the

end. The data appended at the end is constituted of decrypted CRC32 checksum + payload

image file blocks +end chunk. The reason for appending this data is to generate original data

when encrypted data is decrypted i.e. AESk (AESk-1(Pi))=Pi. The important feature of

AngeCryption is that it is independent of the encryption method employed and the kind of

payload format used i.e. we can use either PNG, JPG image or a PDF or FLV file. Moreover,

AngeCryption ensures that selecting an appropriate IV, we can generate desired cipher block,

35

source format can tolerate some appended data and header+chunk declaration data of the

source format fits in the block size.

In order for the AngeCryption tool to convert an input file into a target image, we need to

modify the input file in such a way that its content remains intact. The parameters given to

this tool include

- input file which needs to be encrypted into a target image,

- target image that is what the input file needs to look like,

- modified input which is a modified version of the input file manipulated to be

handled by the angecrypt tool, as the input file in its raw form cannot be encrypted to

a target image

- Key which is used for encryption,

- Encryption algorithm. Angecryption supports AES128-CBC and 3DES-EDE2-CBC

The output from the tool is a modified input file and a generated Python script containing the

required IV. We halt this process until we get the modified input file and do not encrypt this

to the target image for reason that this final image product does not work on latest Android

versions. This conversion of payload apk to a modified apk is illustrated in the Fig. 6. The

modified apk is our end product out of the evasion model.

The complete angecryption tool then embeds the resultant target image into a wrapping apk

in the assets section. One can be flexible in this implementation method. This wrapping apk

reads the asset, opens the PNG, decrypt it using the cipher used for encryption, write it to the

SD card and installs the apk onto the target device.

36

Figure 6: Layout of PNG and modified APK

We tailor its implementation to our needs since as mentioned earlier that its complete

implementation only works on Android 4.4.2 and fails on later Android versions. We only

use the modified apk as illustrated in the figure above. The output of AVPass module is

angecrypted and later used for auditing the AMTs. We skip the final encryption to a valid

PNG and embedding into a wrapping apk part. Our outcome is an undetectable, valid and

runnable apk on the latest Android versions.

5.1.1.3 Phases of Evasion Model

We divide our evasion model implementation into two phases. First phase refers to

implementation of individual implementation of the evasion module and submodules, the

second phase refers to the implementation of all the two modules and submodules in a

customized sequence so as to give the best results.

5.1.1.3.1 Individual Evasion Module Implementation

In this phase, each module and submodule is implemented individually and the outcome is

used for auditing the AMTs. Obfuscation module AVPass is first implemented as a whole

and later its distinct submodules are implemented individually. Also, Angecryption is also

implemented individually. The detection results of each are recorded and compared.

37

5.1.1.3.2 Multiple Evasion Modules Implementation

In this phase, we use the evasion modules and submodules in a customized sequence on the

malware sample. The customized sequence developed is based on the best evasion achieved

i.e. the sequence or pattern that gives the best results. The resultant sequence yields the final

version of the proposed framework as depicted in the Figure.

5.1.2 Auditing Model

After applying the proposed evasion model upon the sample Android malwares, we audit the

detection efficacy of the some top notch AMTs. For the said purpose, we use a repository of

known AMTs. VirusTotal [58] is one said repository where we can upload our malware

sample and determine the extent of its malicious intent. VirusTotal uses static analysis

approaches as mentioned earlier to classify a given sample. In our approach, we upload the

malware sample obtained at each step to the VirusTotal and look for the number of AMTs

that detect it as malicious or benign. With each step of our implementation, we observe that

the number of AMTs that detect the malware sample decreases.

5.1.2.1 Steps for Auditing AMTs

The Auditing steps are listed below:

i. First of all, we upload the malware sample to VirusTotal in its raw form i.e. without

any evasion implementation and in its purest form as it exists. We note down the

results of the AV engines that detect the malware. We calculate the detection

percentage by dividing the number of engines that detected the malware to the total

number of engines used i.e.

Detection Ratio= (no. of AMTs that detected the malware sample/Total number of AMTs

used by VirusTotal)*100

ii. We now apply the evasion technique proposed. The output of the evasion model at

each interval is uploaded to VirusTotal.

iii. After confirm upload step, VirusTotal shares the sample with various AMTs engines,

within seconds we get the number of AV engines that detected the malware sample.

We again calculate the detection ratio using the formula mentioned above.

38

iv. We compare the results of detection ratio obtained for each step of evasion applied

and note down the AMTs that detected the malware and those that are bypassed.

v. We also look for signatures used for detection at each step and the type of detection

method evaded.

vi. This process is repeated for approximately 1200 malware samples, 200 raw malware

samples and around 1000 malware samples obtained as a result of the evasion

application.

vii. We determine the best evasion combination and hence the malware samples which

bypass most AMTs. Also, we determine the most resilient AMTs against our evasion

technique.

viii. At the end, findings regarding AMTs are presented.

These steps are repeated for each evasion module. Using this method helps us analyze the

robustness and detection efficacy of AMTs. The AMT should give ideal results irrespective

of any kind of evasion applied.

However, as we will notice that application of evasion modules alters the detection efficacy

of these AMTs. Malicious files are being classified as benign files after the application of

sufficient and appropriate evasion techniques. Certain evasion components and their

combination are better detected while others are better evaded.

39

Chapter 6

Experiment

This chapter outlines all the prerequisites including both hardware and software

requirements, malware dataset and antimalware engines being audited.

6.1 Environmental Setup

We now list the pre-requisites for the implementation of this proposed framework. We use

Kali Linux installed as a guest Operating System on VMWare Workstation. VMware

Workstation is installed on Windows10 as Host Operating System. Each malicious

application undergoes decompilation for the implementation of obfuscation module. Hence,

we use apktool. Apktool for its proper functioning needs JAVA Virtual Machine, so JAVA

is also a prerequisite for the project. Also, both AVPass and Angecryption are written in

Python, hence, Python is also a prerequisite for this project. We use Kali Linux for this

project because Java, apktool and Python come preinstalled on it, we only need to take care

of the correct version of these software. The Android device used for real time testing is

Huawei LUA with Android version 5.0.2. The table below lists down the correct version of

these software we used for our experiment.

Table 4: Software and Hardware Requirements

Sr. No. Software Version

1. Windows 10 Windows 10 Pro

2. VMware Workstation Pro v12.0.1.3160714

3. Kali Linux kali-linux-2.0-amd64

4. Java 1.8.0_45

5. Apktool 2.3.0

40

6. Python 2.7.9

7. Android 5.1

6.2 Malware Dataset

In order to audit AMTs, we use around 200 Android malware samples collected for GitHub

repository [71], a large open collection of Android malware samples collected from various

sources and mailing lists. We first applied the evasion model on one Android sample to select

the best set of evasion components and later those evasion components are applied on 200

Android malware samples to check the consistency of our results.

We used dendroid malware as our sample file and applied the evasion components. Dendroid

is a malware development kit that is used for automating and developing Android malwares

[72]. Dendroid is a Remote Access Trojan (RAT) which allows malware authors to develop

malwares with features such as intercept SMS message, video recording and audio input,

running an application and dialing a phone number. Also, traits such as anti-emulation to

help the malware stay hidden from Bouncer, Google Play Store’s security system for

blacklist malicious apps from being uploaded to the Play Store. We applied the framework

in two phases as mentioned earlier. In first phase, we implement individual evasion modules

and submodules, check the detection ratio by uploading the malware to the AMTs repository.

Also, we select best individual components and use them in the second phase.

Table 5: List of Individual Evasion Components

Sr. No. Evasion Component

1. String Encryption (SE)

2. Variable Encryption (VE)

3. Random Perturbation (RP)

41

4. One-by-One Perturbation (OOP)

5. Change Package Name (PN_API)

6. Change File Name (FN)

7. Remove All Permissions (RAP)

8. Insert Benign Permissions (IBP)

9. Change Package Name (PN_PCM)

10. Insert Null Bytes (INB) from PCM

11. Insert Benign Class (IBC) from

PCM

12. Resource Obfuscations (RO)

13. Angecryption (ANGE)

42

Figure 7: Detection Ratio for Individual Evasion Module Implementation

In second phase, using the best evasion components from first phase, we implement multiple

evasion components in a customized sequence so as to arrive at a sequence which gives the

best evasion results and increases detection complexity for AMTs. We can see that we

achieve 0% detection for String Encryption (SE) + Java API Reflection (JAR) + Change

Package Name(PN) from PCM module +Insert Null Bytes (INB) from PCM + Resource-

Level Obfuscation (RO) + Angecryption (ANGE).

Table 6: List of Multiple Evasion Components

Sr. No. Evasion Component(s)

1. String Encryption (SE) +Java API Reflection

(JAR)

2. String Encryption (SE) +Java API Reflection

(JAR) + Change Package Name (PN_PCM)

0

10

20

30

40

50

60

D
et

ec
ti

o
n

 R
at

io

Evasion Technique(s)

Detection Ratio for Dendroid Malware

43

3. String Encryption (SE) +Java API Reflection

(JAR) + Change Package Name (PN_PCM)

from PCM + Insert Null Bytes (INB)

4. String Encryption (SE) +Java API Reflection

(JAR) + Change Package Name (PN_PCM)

from PCM + Insert Null Bytes (INB) +

Resource Obfuscation (RO)

5. String Encryption (SE) +Java API Reflection

(JAR) + Change Package Name (PN_PCM)

from PCM + Insert Null Bytes (INB) +

Resource Obfuscation (RO) +Angecryption

(ANGE)

6. AVPass: Java API Reflection (JAR) + String

Encryption (SE) + Variable Encryption (VE) +

Resource Obfuscation (RO)

7. Java API Reflection (JAR) + String Encryption

(SE) + Variable Encryption (VE) + Resource-

level Obfuscation (RO) + Angecryption

(ANGE)

44

Figure 8: Detection Ratio for Multiple Evasion Module Implementation

After selecting best evasion component implementation sequence, we apply it over 200

malware samples. As a result, we obtain more than 1, 000 new malware variants. We see a

consistency in our results with that of obtained for dendroid malware.

6.3 Malware Detectors

Instead of depending on a single malware detector for drawing results about the detection

efficacy of AMTs and the evasion capability of the proposed framework, we use a handful

of malware detectors because each malware detector uses different technique for detection

of malwares. Relying on a single AMT would either result in excellent detection or very poor

detection. Hence, to avoid this shortcoming, we use first a single malware file with the

implementation of evasion components to check the detection capability of several AMTs

simultaneously. Also, instead of uploading the file manually to different AMTs, we use

VirusTotal.

6.3.1 VirusTotal

VirusTotal which not only provides more than 60 AMT engines for the analysis of files,

URLs, IP addresses, domains or file hashes, but also gives basic details about the file

uploaded.

0

10

20

30

40

50

60

None (Raw) SE + JAR SE + JAR +
PN

SE + JAR +
PN + INB

SE + JAR +
PN + INB +

RO

SE + JAR +
PN + INB +
RO + ANGE

AVPass AVPass +
ANGE

D
et

ec
ti

o
n

 R
at

io

Evasion Technique(s)

Detection Ratio for Dendroid Malware

45

6.3.1.1 VirusTotal Sandbox Integration

Using its integration with three Android sandboxes namely:

6.3.1.1.1 VirusTotal Droidy[73]

It characterizes actions that Android applications perform when installed and opened on

Android devices. These sandboxes extract information such as

- SMS related activities

- Network communications including http requests and DNS Resolutions

- File System Actions including files opened, files written and files deleted

- Process and Service Actions including Services started and Processes Tree

- Synchronization Mechanisms and Signals including signals hooked

- Permissions checked, Registered Receivers, Java Reflection calls

- SQLite Database usage

- Crypto-related Activity

6.3.1.1.2 Tencent HABO

Tencent's setup comprises analysis environments not only for Windows, but also for Linux

and Android. It can thoroughly analyze malware samples from both static information and

dynamic behaviors perspective, trigger and capture behaviors of the samples in the sandbox,

and output the results in various formats. It was the first Linux-base ELF files’ behavioral

characterization engine and among the first sandbox to be integrated with VirusTotal under

the multisandbox project [74].

6.3.1.1.3 VirusTotal Androbox

VirusTotal Androbox is one of the sandboxes integrated to VirusTotal under the

multisandbox project. It shows some behavioral information regarding the malware apk

46

under analysis. Androbox shows network communications such as http requests and file

system actions such as files opened, deleted etc. performed by the apk.

47

Chapter 7

Implementation Results

The malware app used for testing is Dendroid capable of hiding from the Android emulators,

and a sophisticated remote administration tool. At each interval, the application was installed

on real Android device to check that it retains its malicious intent and installs successfully.

The application did not crash at any moment.

7.1 Uploading Malware Variants to VirusTotal

7.1.1 Raw Malware

We first upload Dendroid to VirusTotal and check the results. It has a detection rate of 32/60

according to VirusTotal as illustrated in Fig. 9. The detection ratio is ((32/60)*100) = 53.3%.

It must be noted that higher the detection ratio, the more AMTs detect the malware as

malicious and lesser the degree of evasion achieved. The aim is to achieve as less the

detection ratio possible and based on that determine the flaws present in AMTs. All the

known antimalware solutions particularly Avast, AVG, Kaspersky, Symantec and McAfee

etc. are able to detect it as malicious file.

48

Figure 9: VirusTotal Result for Raw Dendroid Malware

7.1.2 Individual Evasion Module Implementation

In second step, we start applying the evasion techniques on the malware samples and upload

the malware variants to VirusTotal. We first make the malware go through the first phase

evasion i.e. application of individual evasion modules and submodules. AVPass and

Angecryption are applied individually in this phase. The malware sample goes through the

obfuscation of submodules of AVPass and then, Angecryption as mentioned earlier. We

apply all the submodules individually.

7.1.2.1 String Encryption (SE)

The Dendroid malware undergoes string encryption. The number of AMTs that detect the

new malware variant drops to half. The detection ratio comes out to be 27%. Thus applying

only string encryption drops the detection rate to almost half. This obfuscation component

evades API-based and signature-based detection.

49

Figure 10: VirusTotal Result for SE Implemented Dendroid Malware

7.1.2.2 Variable Encryption (VE)

Encrypting variables results into a detection ratio of 35% which is almost 18% decrease in

detection rate. Variable encryption also evades signature-based static analysis.

50

Figure 11: VirusTotal Result for VE Implemented Dendroid Malware

7.1.2.3 Java API Reflection (JAR)

Applying Java API reflection yields a detection ratio of 31%. 18 AMTs out of 58 are able to

detect the malware as malicious. It evades API-based and interaction-based detection.

51

Figure 12: VirusTotal Result for JAR Implemented Dendroid Malware

7.1.2.4 API Obfuscations

7.1.2.4.1 Random Perturbation (RP)

Random perturbations are performed i.e. APIs are inserted at random. Employing random

API obfuscation helps bypassing 13 AMTs out of 32 AMTs that detect raw malware. A

detection ratio of 32.2% is achieved. It helps evade API-based static analysis technique.

52

Figure 13: VirusTotal Result for RP Implemented Dendroid Malware

7.1.2.4.2 One-by-One Perturbation (OOP)

APIs are inserted between two existing APIs. The detection ratio for this obfuscation

component is 32.2%.

53

Figure 14: VirusTotal Result for OOP Implemented Dendroid Malware

7.1.2.4.3 Change Package Name (PN)

Changing package name brings about evasion of around 11 AMTs. The detection ratio is

around 35%. It partially evades signature-based and API-based detection.

54

Figure 15: VirusTotal Result for PN_API Implemented Malware

7.1.2.4.4 Change File Name (FN)

Changing file name yields 32.2% detection ratio and evades almost 13 AMTs. It also partially

evades signature-based static analysis.

55

Figure 16: VirusTotal Result for FN Implemented Dendroid Malware

7.1.2.4.5 Remove all Permissions

Removing all permissions evades only 7 AMTs and the detection ratio is 42%, much closer

to that of raw malware. Though it tends to evade permission-based static analysis, yet as

mentioned earlier, this evasion renders the malware useless. Hence, we tend to avoid this

obfuscation technique.

56

Figure 17: VirusTotal Result for RAP Implemented Dendroid Malware

7.1.2.4.6 Insert Benign Permissions (IBP)

Inserting benign permissions produce same results as that of removing all permissions.

However, it does not renders the apk non-functional. This technique also evades around 7

AMTs with 42% detection ratio and tends to evade permission-based static analysis.

57

Figure 18: VirusTotal Result for IBP Implemented Dendroid Malware

7.1.2.5 Package, Class and Method Obfuscations (PCM)

PCM evasion offers 3 types of evasion capability as illustrated below:

7.1.2.5.1 Change Package Name (PN_PCM)

Altering package name evades significant number of AMTs. It evades around 15 AMTs

generating a detection ratio of 28.8%, approximately half of what is achieved for raw

Dendroid. It must be noted that a similar subcomponent exists in API obfuscation component

58

which evades only 11 AMTs compared to 15 of this subcomponent. Hence, the package

obfuscation subcomponent of API obfuscation must be replaced with that of PCM to achieve

better results.

Figure 19: VirusTotal Result for PN_PCM Implemented Dendroid Malware

7.1.2.5.2 Insert Null Bytes (INB)

59

This subcomponent inserts null bytes between smali instructions. It evades around 14 AMTS

and the detection ratio is approximately 31.5%. This evasion helps defeat signature-based

detection.

Figure 20: VirusTotal Result for INB Implemented Dendroid Malware

7.1.2.5.3 Insert Benign Class (IBC)

60

This method inserts benign classes into the source code to defeat the signature-based

detection. It evades only 8 AMTs and detection ratio is also quite high. A 40.6% detection

ratio indicates the ineffectiveness of this method.

Figure 21: VirusTotal Result for IBC Implemented Dendroid Malware

7.1.2.6 Resource Obfuscations (RO)

Using resource-level obfuscations such as image modifications, xml related class references

and payload nullification yield a detection ratio of 40.6% evading only 8 AMTs. These

figures show that this method when implemented on its own is not much effective, however,

61

when implemented in conjunction with other techniques, the results are beyond effective as

we will prove later.

Figure 22: VirusTotal Result for RO Implemented Dendroid Malware

7.1.2.7 Angecryption (ANGE)

Employing angecryption helps evade 9 AMTs out of 32 which initially detected the raw

dendroid malware. A detection ratio of approximately 40% is seen which proves that the

62

technique isn’t much effective when implemented alone. However, when tagged along with

other evasion techniques, the results are astonishing.

Figure 23: VirusTotal Result for ANGE Implemented Dendroid Malware

7.1.3 Multiple Evasion Module Implementation

In this phase, two or more evasion techniques are implemented together to achieve better

evasion. We use a customized sequence to achieve better results as combining multiple

methods evades more than one type of detection technique. Certain subcomponents are not

used since they do not give good results even when used in conjunction with other such as

variable encryption and all API-obfuscations as they just increase the overhead and do not

63

improve results. We start with string encryption and keep on adding layers of other

obfuscation techniques.

7.1.3.1 String Encryption (SE) + Java API Reflection (JAR)

We first apply string encryption on dendroid malware and then apply java API reflection.

We now see that only 14 AMTs engines detect this file as malicious. A detection ratio of

23.7% is achieved. This evades signature-based, API-based and dataflow-based detection

systems. We can see that this dual evasion module implementation improves evasion results.

Figure 24: VirusTotal Result for SE + JAR Implemented Dendroid Malware

64

7.1.3.2 String Encryption (SE) + Java API Reflection (JAR) + Change Package

Name (PN_PCM)

This trio of evasion method works in the sequence of the mention of its name. The result

from previous dual implementation is simply put to change of package name obfuscation

from PCM component. The results improve from 14 AMTs detecting to 7 AMTs detecting

the Dendroid variant. The detection ratio also lowers to 11.8% from 23.7%. Thus we see that

we are getting better evasion with each layer of its implementation. Using this combination,

we still bypass signature-based, API-based and dataflow-based detection but with improved

results.

Figure 25: VirusTotal Result for SE + JAR + PN_PCM Implemented Dendroid Malware

7.1.3.3 String Encryption (SE) + Java API Reflection (JAR) + Change Package

Name (PN_PCM) + Insert Null Bytes (INB)

The output apk of the previous trio is simply put to the bytecode obfuscation where nullbytes

are inserted between smali instructions and resultant apk is uploaded to VirusTotal. We see

that now only 5 AMTs detect Dendroid. Rest 27 are evaded and detection ratio is only 8%.

Using only four obfuscation subcomponents, the degree of evasion achieved is much better

than that of the standard AVPass implementation of five obfuscation subcomponents. For

the standard AVPass implementation, the detection ratio was 23.7% whereas for this

customized implementation, the detection ratio is only 8%.

65

Figure 26: VirusTotal Result for SE + JAR + PN_PCM + INB Implemented Dendroid

Malware

7.1.3.4 String Encryption (SE) + Java API Reflection (JAR) + Change Package

Name (PN_PCM) + Insert Null Bytes (INB) + Resource Obfuscation (RO)

We add just one module to the previous list to get better results. We reduce the number of

AMTs to 2 from 32. Applying resource obfuscation gives the detection ratio of 3.4%. Only

two AMTs named Ikarus and Microsoft detect the apk as malicious.

Figure 27: VirusTotal Result for SE + JAR + PN_PCM + INB + RO Implemented Dendroid

Malware

66

7.1.3.5 String Encryption (SE) + Java API Reflection (JAR) + Change Package

Name (PN_PCM) + Insert Null Bytes (INB) + Resource Obfuscation (RO) +

Angecryption (ANGE)

The resultant apk of the last step is put into the angecryption module and the outcome is an

angecrypted apk. The new apk is now string encrypted, API reflected, package name altered,

nullbytes inserted and angecrypted. After the application of all these subcomponents, we

achieve 100% detection ratio. No AMT is able to detect the apk as malicious.

Figure 28: VirusTotal Result for SE + JAR + PN_PCM + INB + ANGE Implemented

Dendroid Malware

7.1.3.6 Java API Reflection (JAR) + String Encryption (SE) + Variable Encryption

(VE) + Resource Obfuscation (RO)

AVPass when implemented in a manner as suggested by its developers yields results as

depicted in the figure below. It evades around 16 AMTs among those which detects the

dendroid apk as malicious. Hence a detection ratio of 23.7% is achieved. Using the

customized sequence of our framework, we achieve far better results achieved than this

particular method as we will prove later. AVPass first performs API reflection followed by

string and variable encryption and finally modifying image and resource related xml files.

67

Figure 29: VirusTotal Result for JAR + SE + VE + RO Implemented Dendroid Malware

7.1.3.7 Java API Reflection (JAR) + String Encryption (SE) + Variable Encryption

(VE) + Resource Obfuscation (RO) + Angecryption(ANGE)

Applying the standard AVPass obfuscation followed by angecryption helps evade 27 AMTs.

The detection ratio is 8.6%. We can see that our customized implementation gives better

results than the standard AVPass coupled with Angecryption implementation. We achieve

100% evasion ratio and 0% detection ratio using the customized implementation. This output

68

apk from AVPass+Angecryption implementation is detected by Avast, AVG, Ikarus,

Kaspersky and ZoneAlarm by CheckPoint.

Figure 30: VirusTotal Result for JAR + SE + VE + RO + ANGE Implemented Dendroid

Malware

7.2 Conclusion

We see that our solution [SE+JAR+PN_PCM+INB+RO+ANGE] gives best results among

all the implementation sequences. Hence, our final output is an Android application with

layers of obfuscation applied to it as demonstrated in the fig. 30 which almost camouflage

the application to such an extent that no AMT is able to detect it and it appears benign, yet

its malicious intent remains intact. We apply this on 200 malware samples and get

approximately consistent results. Hence, we mark [SE+JAR+PN_PCM+INB+RO+ANGE]

as our final evasion mechanism, however, we are flexible in implementing any evasion

technique of our choice depending on the degree of evasion we want. So, our technique is

not only resilient and robust but is also flexible.

69

Figure 31: Layers of Evasion Techniques Employed to the Malicious Application

70

Chapter 8

Auditing Android Antimalware Tools (AMTs)

We applied the evasion modules as mentioned earlier iteratively, selecting best evasion

components and the sequence of their application based on the detection complexity and

evasion ease. In this section, we present our findings and observations.

8.1 Observations

When a file is uploaded to VirusTotal repository, using more than 60 AMTs, it performs a

scan. The uploaded file is first hashed and stored in the database for caching purpose so as

to reduce duplicate efforts and minimize the scan time. Hence, whenever a file is uploaded

to VirusTotal, its hash is first looked upon in the database, upon finding a match, the results

already present are displayed for that file. In case of a new file, the file’s hash is calculated

first, updates its hash repository, then the file sent to the AMT engines associated with

VirusTotal and the returned results from these AMTs are displayed. If we only search for the

new file by pasting its hash, then VirusTotal is unable to analyze the file as this new hash

doesn’t exists in its database. Moreover, VirusTotal is much more than AMTs aggregation.

It has three Android sandboxes integrated with it apart from those for Windows such as

Cuckoo for portable executables. Using Tencent HABO, Droidy and Androbox sandboxes

help perform behavioral investigation of Android applications and give a meaningful insight

into the working and intent of application.

8.2 Metrics for Auditing AMTs

The metrics used for auditing AMTs is the detection ratio obtained for each evasion

technique. The higher the detection ratio, the more resilient the AMTs, the less affective the

evasion technique and vice versa. The highest detection ratio is obtained for raw malware.

Application of evasion techniques should lower the detection ratio and increase the number

of AMTs evaded. In case of Dendroid, we set the threshold of no. of AMTs to be evaded to

32 since raw Dendroid is detected by 32 AMTs. The goal is to evade these 32 AMTs and

detection ratio to be 0%.

71

8.3 Evasion of Malware Samples

The results of evasion implementation are selectively shown here in the categories as already

described.

8.3.1 Individual Evasion Module Implementation

In this phase, individual evasion modules are implemented. As we can see both from the

table and the figure, the drop in the detection ratio for single evasion module is not

significant. The minimum value of detection ratio achieved is 27% for String Encryption

(SE) which evades around 16 AMTs. The most easily detectable evasion techniques are those

from API obfuscation, these are Remove All Permissions (RAP) and Insert Benign

Permissions (IBP). The detection ratio for these two components is 42% and no. of AMTs

evaded is 7 out of 32. For single evasion module’s implementation, the no. of AMTs under

consideration are 32 which is the no. of AMTs that detect the raw dendroid malware. The

average detection ratio is 35.07% which is not very low compared that of raw malware.

Table 7: Detection ratio and no. of AMTs evaded against individual evasion components

Evasion

Technique

None

(Raw)

SE VE JAR API Obfuscation PCM RO ANGE

RP OOP PN_API FN RAP IBP PN_PCM INB IBC

Detection

Ratio (%)

53.3 27 35 31 32.2 32.2 35 32.2 42 42 28.8 31.5 40.6 40.6 40

No. of

AMTs

evaded out

of 32

- 16 12 14 13 13 11 13 7 7 15 14 8 8 9

72

Figure 32: Detection Ratio against Individual Evasion Implementation

Figure 33: No. of AMTs evaded by Individual Evasion Implementation

0

10

20

30

40

50

60
D

et
ec

ti
o

n
 R

at
io

 (
%

)

Evasion Technique(s)

Detection Ratio Against Individual Evasion
Module Implementation

0

2

4

6

8

10

12

14

16

18

N
o

. o
f

A
M

Ts
 e

va
d

e
d

 o
u

t
o

f
3

2

Evasion Technique(s)

No. of AMTs evaded against Individual Evasion
Components

73

Moreover, the sandboxes Droidy, Androbox and Tencent HABO integrated with VirusTotal

only execute the malware in two cases, first when we perform random API perturbation and

second, when one-by-one perturbation is performed. All the rest malware variants do not

give off any behavioral information. The average no. of AMTs evaded is 11.42. The AMTs

that do not detect any of the malware variants include Alibaba, ClamAV, Comodo,

K7Antivirus, MAX and Symantec whereas the AMTs that stand out best and detect all the

malware variants include AhnLab-V3, Avast, Avast-Mobile, AVG, CAT-QuickHeal, ESET-

NOD32, Fortinet, K7GW and Symantec Mobile Insight. Table displays the AMTs detection

capability against single evasion component’s implementation. Table displays the average

detection ratio and the no. of AMTs evaded against each evasion technique. This is also

depicted pictorially in figures 32 and 33 respectively.

Table 8: Single Evasion Techniques Detected by AMTs

Sr.

No.

AMT

name

that

detected

raw

malware

Evasion Techniques Detected

SE VE JAR API Obfuscation PCM RO ANGE

RP OOP PN_A

PI

FN RAP IBP PN_P

CM

INB IBC

1. AegisLa

b

2. AhnLab-

V3

3. Alibaba

4. Avast

5. Avast-

Mobile

74

6. AVG

7. Avira

8. CAT-

QuickHe

al

9. ClamA

V

10. Comodo

11. Cyren

12. DrWeb

13. ESET-

NOD32

14. F-Secure

15. Fortinet

16. Ikarus

17. K7Antiv

irus

18. K7GW

19. Kaspers

ky

75

20. MAX

21. MaxSec

ure

22. McAfee

23. McAfee-

GW-

Edition

24. Microso

ft

25. NANO-

Antiviru

s

26. Qihoo-

360

27. Sophos

AV

28. Symante

c

29. Symante

c Mobile

Insight

30. Tencent

76

31. Trustloo

k

32. ZoneAla

rm by

CheckPo

int

33. Zoner

8.3.2 Multiple Evasion Module Implementation

Since single evasion component were not much fruitful, hence we selected some of the best

evasion components and applied them in a customized sequence. The results of the

customized sequence were much better than the single components. Also, after several trials,

best sequence was developed. According to [46], in order to bypass the AMTs, one needs to

first apply API obfuscations followed by PCM and application of string encryption, API

obfuscations, and package name better helps in detection. However, when this is

implemented practically, results are not as expected. Following our implementation sequence

yields best results as we have proved. Also, when we implement the AVPass in the sequence

as demonstrated in the [46], only 18 AMTs are evaded out of 32. However, with our specific

implementation of AVPass and Angecryption, we are able to evade all the 32 AMTs. We

achieve 0% detection ratio evading all the 32 AMTs. The average detection ratio is 11.31%

and the average number of AMTs evaded is 25.2.

Table 9: Detection Ratio and No. of AMTs Evaded against Multiple Evasion Techniques

Evasion

Technique

None

(Raw)

SE+JAR SE+JAR+P

N_PCM

SE+JAR+P

N_PCM+I

NB

SE+JAR+P

N_PCM+I

NB+RO

SE+JAR+P

N_PCM+I

NB+RO+A

NGE

JAR+SE+V

E+RO

JAR+SE+

VE+RO+A

NGE

77

Detection

Ratio (%)

53.3 23.7 11.8 8 3.4 0 23.7 8.6

No. of AMTs

evaded out of

32

 18 25 27 30 32 18 27

Figure 34: Detection Ratio against Multiple Evasion Implementation

0

10

20

30

40

50

60

D
et

ec
ti

o
n

 R
at

io

Evasion Technique(s)

Detection Ratio Against Multiple Evasion Modules
Implementation

78

Figure 35: No. of AMTs Evaded Against Multiple Evasion Modules Implementation

No AMT in this case detects all the malware variants generated as a result of multiple evasion

components. The least no. of detections is by Microsoft and Symantec Mobile which is only

1, followed by Sophos, Avast and Avira which are able to detect only 2 malware variants.

Moreover. The maximum number of detections made by these AMTs is 4 compared to 25 of

the previous phase.

Table 10: Multiple Evasion Techniques Detected by AMTs

Sr.

No.

AMT name Evasion Technique

SE+JAR SE + JAR

+

PN_PCM

SE + JAR +

PN_PCM +

INB

SE + JAR +

PN_PCM +

INB + RO

 SE + JAR +

PN_PCM +

INB + RO +

ANGE

JAR + SE +

VE + RO

JAR + SE

+ VE +

RO +

ANGE

1. AhnLab-

V3

0

5

10

15

20

25

30

35

N
o

. o
f

A
M

Ts
 e

va
d

ed
 o

u
t

o
f

3
2

Evasion Technique(s)

No. of AMTs evaded against Multiple Evasion Components

79

2. Avast

3. Avast-

Mobile

4. AVG

5. Avira

6. CAT-

QuickHeal

7. DrWeb

8. ESET-

NOD32

9. F-Secure

10. Fortinet

11. Ikarus

12. K7GW

13. Kaspersky

14. Microsoft

15. Sophos AV

16. Symantec

Mobile

Insight

80

17. ZoneAlarm

by

CheckPoint

Only one evasion combination triggers behavioral investigation which is String Encryption

(SE) + Java API Reflection (JAR) +Change Package Name (PN_PCM). Rest all

combinations yield no behavioral information hence, running those malware variants within

sandbox generates no valuable information. Thus this proves that increasing the number of

evasion components, we can easily reduce the detection ratio to a minimal value. We also

need to be careful about the sequence in which the evasion components are applied. Applying

all the evasion components yield no better results and also renders the application no-

functional. Hence, both the evasion components and their correct sequence is necessary

factor in order to achieve the best results.

8.4 Individual AMTs

We now look at the performance of Individual AMTs. The maximum number of detections

made by any AMT was 18 out of 21 times it was tested and the AMTs that earn this detection

rating are AhnLab-V3, CAT-QuickHeal, ESET-NOD32, Fortinet and K7GW. These are

evaded only 3 times standing resilient against the malware variants most of the time. Their

performance remain consistent in both the phase of evasion implementation.

On the other hand, AMTs that could not detect any single malware variant are Alibaba,

ClamAV, Comodo, K7Antivirus, MAX and Symantec. These AMTs fail to detect any

obfuscated malware variant raising suspicion about their detection capability. These perform

better only against un-obfuscated malware.

Moreover, AMTs that performed best in the first phase of evasion implementation and falter

in the second phase include Avast, Avast-Mobile, AVG and Symantec Mobile Insight.

Multiple evasion implementations abated their performance vehemently.

81

Ikarus and Microsoft are the only two AMTs that detect the malware at the second last step

just before it fully evades all the AMTs. Their behavior is not consistent even Microsoft

overall performs poorly in both the first and second phase but detects an obfuscated malware

not even detectable by the best declared AMTs as mentioned earlier.

As we apply evasion techniques onto the dendroid malware, AMTs’ detection signature also

change. For instance, in case of AhnLab-V3, the detection signature change from Android-

Trojan/Dendroid.da565 to Android-Trojan/Hidap.8be9a, for CAT-QuickHeal, signature

change from Android.Dingwe.A to Android.Obfus.GEN28536 and for Ikarus,

Trojan.AndroidOS.Dingwe to Trojan.AndroidOS.Obfus.

Table 11: Signatures, No. of Detections and Evasions made by each AMTs

AMT name that

detected raw

malware

Signatures No. of

Detections

No. of times

Evaded by

malware

variants

AegisLab Trojan.AndroidOS.Generic.C!c 4 17

AhnLab-V3 Android-Trojan/Dendroid.da565 18 3

Alibaba

Backdoor:Android/Dingwe.caf18e88

0 21

Avast Android:Dendroid-C [Trj] 17 4

Avast-Mobile Android:Dendroid-D [Trj] 16 5

AVG Android:Dendroid-C [Trj] 17 4

Avira

ANDROID/Dingwe.SPY.Gen

15 6

CAT-QuickHeal Android.Dingwe.A 18 3

82

ClamAV Andr.Malware.Agent-1534052 0 21

Comodo Malware@#x1k6eaqmdedl 0 21

Cyren AndroidOS/Dendroid.A.gen!Eldorado 13 8

DrWeb Android.Backdoor.262.origin 12 9

ESET-NOD32 A Variant Of Android/Dingwe.A 18 3

F-Secure Malware.ANDROID/Dingwe.E.Gen 16 5

Fortinet Android/Generic.Z.2E64E5!tr 18 3

Ikarus Trojan.AndroidOS.Dingwe 16 5

K7Antivirus Trojan (0001140e1) 0 21

K7GW Trojan (0001140e1) 18 3

Kaspersky HEUR:Backdoor.AndroidOS.Dingwe.a 15 6

MAX Malware (ai Score=99) 0 21

MaxSecure 4 17

McAfee Artemis!DB01F96D5E66 5 16

McAfee-GW-

Edition

Artemis!Trojan 1 20

Microsoft Trojan:Win32/Bitrep.A 4 17

NANO-Antivirus Trojan.Android.Dingwe.dpalmk 12 9

83

Qihoo-360 Trojan.Android.Gen 13 8

Sophos AV Andr/FakeInst-V 14 7

Symantec Trojan.Gen.2 0 21

Symantec Mobile

Insight

Spyware:MobileSpy 15 6

Tencent Backdoor.Android.Dingwe.a 12 9

Trustlook Android.Malware.General (score:9) 4 17

ZoneAlarm by

CheckPoint

HEUR:Backdoor.AndroidOS.Dingwe.a

16 5

Zoner Trojan.Android.Gen.1761005 3 18

84

Figure 36: No. of Evasions and Detections made by each AMT

8.5 Comparison with other Techniques

We now compare our solution with some other opensource evasion techniques such as

AAMO, Repacking, Angecryption, standard AVPass implementation and prove that our

solution yeilds best results and better reflects the detecion efficacy of AMTs. We now present

results only for the 17 best AMTs that we shortlisted in multiple evasion module

implementation phase and compare the detection capability against the above listed evasion

techniques. Here represents that the AMT could not detect the malware variant and

represents that it was detected by the AMT. Our solution evaded all the AMTs whereas other

evasion techniques were detected most of the time. AAMO was able to evade only 4 AMTs

among the given list, Repacking 2 AMTs, Angecryption only 1 AMT and standard AVPass

3 AMTs. DrWeb could not detect any of the malware variants hence its detection efficacy is

worst followed by Microsoft. On the other hand, our solution was able to evade all the AMTs

defeating both static analysis and fails to give any behavioral information to the sandboxes

integrated with VirusTotal. Droidy, Tencent HABO and Androbox could not extract any

0

5

10

15

20

25

A
e

gi
sL

ab
A

h
n

La
b

-V
3

A
lib

ab
a

A
va

st
A

va
st

-M
o

b
ile

A
V

G
A

vi
ra

C
A

T-
Q

u
ic

kH
ea

l
C

la
m

A
V

C
o

m
o

d
o

C
yr

en
D

rW
eb

ES
ET

-N
O

D
3

2
F-

Se
cu

re
Fo

rt
in

et
Ik

ar
u

s
K

7
A

n
ti

vi
ru

s
K

7
G

W
K

as
p

er
sk

y
M

A
X

M
ax

Se
cu

re
M

cA
fe

e
M

cA
fe

e
-G

W
-E

d
it

io
n

M
ic

ro
so

ft
N

A
N

O
-A

n
ti

vi
ru

s
Q

ih
o

o
-3

6
0

So
p

h
o

s
A

V
Sy

m
an

te
c

Sy
m

an
te

c
M

o
b

ile
 In

si
gh

t
Te

n
ce

n
t

Tr
u

st
lo

o
k

Zo
n

eA
la

rm
 b

y
C

h
ec

kP
o

in
t

Zo
n

er

N
o

. o
f

Ev
as

io
n

s
an

d
 D

et
ec

ti
o

n
s

AMTs

No. of Detections No. of times Evaded by malware variants

85

information about the behavior of malware. Hence both static and dynamic analysis are

bypassed.

Figure 37: Detection Ratio against Different Evasion Techniques

The detection ratio for AAMO is 32.7% whereas that for Repacking is 35.5% which are quite

high values for the detection ratio. For AVPass and Angecryption, the detection ratio are, as

already mentioned, 23.7% and 40% respectively whereas our solution produces 0% detection

ratio which is the desired amount when evading AMTs.

Table 12: Comparison of Different Evasion Techniques

Sr.

No.

Security Applications Evasion Technique(s) Detected

AAMO Repacking Angecryp-

tion

AVPass Our Solution

1. AhnLab-V3

53.3

32.7
35.5

23.7

40

0
0

10

20

30

40

50

60

Raw (None) AAMO Repacking AVPass Angecryption Our Solution

D
ET

EC
TI

O
N

 R
A

TI
O

EVASION TECHNIQUE(S)

DETECTION RATIO AGAINST DIFFERENT EVASION

TECHNIQUES

86

2. Avast

3. Avast-Mobile

4. AVG

5. Avira

6. CAT-QuickHeal

7. DrWeb

8. ESET-NOD32

9. F-Secure

10. Fortinet

11. Ikarus

87

12. K7GW

13. Kaspersky

14. Microsoft

15. Sophos AV

16. Symantec Mobile Insight

17. ZoneAlarm by

CheckPoint

88

Chapter 9

Conclusion and Future Work

No antimalware solution detects the evasive malicious application and could not process the

obfuscated malware. Hence this raises questions about the detection efficacy of these

antimalware solutions which rely on conventional detection techniques as mentioned earlier

and depicts a huge gap in the Android Antimalware domain. For developing a robust and

resilient malware detector for Android, there is a need to first identify shortcomings and flaws

in the current detection systems and overcoming those flaws in the new AMTs.

There is a need to adopt a hybrid policy comprising of both static and dynamic analysis

techniques and integrating modules to scan not only code and runtime analysis but also

conduct a deep scan dissecting every section of the application under observation.

Antimalware engines must be able to first detect the presence of obfuscated malware and

detect all of its possible variants.

9.1 Conclusion

With mobile device’s inadequate processing capacity, standalone AMTs for Android must

be resilient enough to detect both known and variants of known malware based on signatures.

Using different evasion techniques, the effectiveness of malware detectors was put under test

and in most cases malware detectors performed below par the expectations.

Selecting both appropriate evasion modules and their apposite sequence is very critical in

evading maximum number of AMTs. We divided our evasion implementation task into

phases, first testing single components then testing combination of several components and

after selection of the correct components and their implementation sequence, we audit the

several state-of-the-art AMTs. We found that some evasion modules when implemented as

a single evasion components better bypass the AMTs as compared to others such as String

Encryption (SE) component and Changing Package Name (PN_PCM) component evading

more than 15 AMTs while some others perform poorly such as some components of API

obfuscation and resource-level obfuscations evading as low as 7 AMTs out of 32. On the

89

other hand, implementing these evasion components in a certain sequence iteratively yields

better results compared to some other sequences as we demonstrated in the previous chapter.

Changing package name (PN_PCM) was one of the evasion component which in conjunction

with SE and JAR greatly reduced the number of detections from 14 to 7. Hence, more the

number of evasion components used, the lower is the number of detectors that detect the

malware.

We inferred that AMTs detect chiefly by signature matching. Some instances of interaction-

based and dataflow-based detection was found when behavioral investigation was performed

on malware samples where we noticed network communication, http requests, files written

and deleted by the application, services started by the malware etc. However, this behavioral

investigation was only performed in 3 cases out of 21 evasion techniques implemented. In

other cases, no behavioral information was presented by VirusTotal rather only basic details

such as permissions, application’s format information etc. was available.

9.2 Future Work

It must be noted that the evasion techniques used in the proposed solution were based on

obfuscation and encryption. Hence, in order for AMTs to detect such malware variants, there

should be some mechanism to de-obfuscate, and decrypt the contents of such Android

malwares. If employing de-obfuscation and decryption in detecting malware variants turns

out successful, we can develop de-obfuscation and decryption algorithms and integrate in

AMTs. As mentioned earlier, the evasion achieved is greater when we use certain evasion

component thus proving that AMTs put more focus on certain aspects of the Android

applications and much less on others. Hence Android Antimalware engines must take into

account this factor in their detection algorithm.

Most of the Antimalware engines do not reveal any significant information about their

detection mechanism. If we have access to AMTs source code and working, we can integrate

defense mechanism against such obfuscation techniques within these AMTs.

With this evasion mechanism in place, we can try different malware datasets and dynamic

analysis tools, infer new detection features if these tools detect these evasion techniques. We

can aggregate these detection features into repository of hybrid malware features collected

90

both from static and dynamic analysis. Based on this repository, we can develop malware

detectors that use low processing power, handy for the devices such as Android and use the

features present on the hybrid malware features repository. This will help them perform

dynamic analysis in addition to static analysis and dissect the malware variants to the core to

find any hidden intent of the applications.

One other factor that needs to be considered is that AMTs for Android don’t have root access

whereas on Windows, AVs have privileged access due to which their performance is

exclusive and topnotch. Some malware variants reveal their malicious intent only when given

root access. If AMTs don’t have root access, they cannot detect such malware variants as

such malware use the lack of this feature into their advantage and do not reveal their

malicious intent, hence marked benign by the anti-malware engines. This factor hinders the

detection capability of Antimalware engines for Android. AMTs on Android platform must

have privileged access so that they can provide better defense against malicious applications.

91

Bibliography

[1] N. Elenkov, Android security internals. San Francisco, CA: No Starch Press, 2015.

[2] Android Hacker’s Handbook by Joshua J. Drake, Pau Oliva Fora, Zach Lanier, Collin

Mulliner, Stephen A. Ridley, Georg Wicherski, Published by John Wiley & Sons, Inc.

10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com

[3] 2019 [Online]. Available: https://www.malwarebytes.com/android-antivirus/.

[Accessed: 08- Mar- 2019]

[4] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence in

smartphone security and privacy,” in Symp. on Usable Privacy and Security.

Washington: Advancing Science, Serving Society, March 2012

[5] J. Fenske, “Biometrics in new era of mobile access control,” Biometric Technology

Today, vol. 2012, no. 9, pp. 9–11, 2012.

[6] N. Husted, H. Sa¨ıdi, and A. Gehani, “Smartphone security limitations: conflicting

traditions,” in Proc. 2011 Workshop on Governance of Technology, Information, and

Policies, ser. GTIP ’11. New York, NY, USA: ACM, 2011, pp. 5–12

[7] Suarez-Tangil, Guillermo & Tapiador, Juan & Peris-Lopez, Pedro & Ribagorda,

Arturo. (2013). Evolution, Detection and Analysis of Malware for Smart Devices. IEEE

Communications Surveys & Tutorials. 16. 10.1109/SURV.2013.101613.00077.

[8] "KSB_statistics_2018_eng_final.pdf", Go.kaspersky.com, 2019. [Online]. Available:

https://go.kaspersky.com/rs/802-IJN-240/images/KSB_statistics_2018_eng_final.pdf.

[Accessed: 09- Mar- 2019]

[9] Symantec.com, 2019. [Online]. Available:

https://www.symantec.com/content/dam/symantec/docs/eports/istr-23-2018-en.pdf.

[10] Mcafee.com, 2019. [Online]. Available: https://www.mcafee.com/enterprise/en-

us/assets/reports/rp-quarterly-threats-dec-2018.pdf. [Accessed: 09- Mar- 2019]

[11] "Android malware detection evasion and resilience techniques: some examples | So

Long, and Thanks for All the Fish", So Long, and Thanks for All the Fish, 2019.

[Online]. Available: https://www.andreafortuna.org/technology/android/android-

malware-detection-evasion-and-resilience-techniques-some-examples/.

http://www.wiley.com/
https://www.andreafortuna.org/technology/android/android-malwa
https://www.andreafortuna.org/technology/android/android-malwa

92

[12] J. Marpaung, M. Sain and H. Lee, "Survey on malware evasion techniques: State

of the art and challenges", in 2012 14th International Conference on Advanced

Communication Technology (ICACT), PyeongChang, South Korea, 2012.

[13] S. Badhani and S. Muttoo, "Evading android anti-malware by hiding malicious

application inside images", International Journal of System Assurance Engineering and

Management, vol. 9, no. 2, pp. 482-493, 2017.

[14] "Android Malware Genome Project", Malgenomeproject.org, 2019. [Online].

Available: http://www.malgenomeproject.org/.

[15] D. Arp, "The Drebin Dataset", Sec.cs.tu-bs.de, 2019. [Online]. Available:

https://www.sec.cs.tu-bs.de/~danarp/drebin/.

[16] "Android Open Source Project", Android Open Source Project, 2019. [Online].

Available: https://source.android.com/security. [Accessed: 10- July- 2019]

[17] Umasankar, "Analysis of latest vulnerabilities in android," 2017 International

Conference on Advances in Computing, Communications and Informatics (ICACCI),

Udupi, 2017, pp. 1236-1241. doi: 10.1109/ICACCI.2017.8126011

[18] Oracle, JAR File Specification,

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html

[19] SELinux Project, SE for Android, http://selinuxproject.org/page/SEAndroid Linux

kernel source tree, dm-verity,

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linuxgit/tree/Documentation/device-

mapper/verity.txt

[20] "Android Security Bulletins | Android Open Source Project", Android Open

Source Project, 2019. [Online]. Available: https://

source.android.com/security/bulletin. [Accessed: 10- Mar- 2019]

[21] "Information Disclosure", Docs.microsoft.com, 2019. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/framework/

wcf/feature-details/information-disclosure. [Accessed:10-Mar- 19]

[22] Android Vulnerability NVD Results:

https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=b

asic&results_type=overview&search_type=all&query=android

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://selinuxproject.org/page/SEAndroid

93

[23] “Android and Security - Official Google Mobile Blog.” [Online].

Available:https://www.blog.google/topics/safety-security/shielding-you-potentially-

harmful-applications/ html.

[24] “Android and Security - Official Google Mobile Blog.” [Online]. Available:

https://www.blog.google/topics/safety-security/shielding-you-potentially-harmful-

applications/ html.

[25] R. Raveendranath, V. Rajamani, A. J. Babu, and S. K. Datta, “Android malware

attacks and countermeasures: Current and future directions,” 2014 Int. Conf. Control.

Instrumentation, Co “the apple threat landscape”Symantec, [online]. Available:

[26] http://www.symantec.com/content/en/us/enterprise/media/security_response/whit

epapers/applethreat-landscape.pdf. mmun. Comput. Technol., pp. 137–143, 2014.

[27] “root exploits.” [Online]. Available:

http://www.selinuxproject.org/~jmorris/lss2011_slides/caseforseandroid. pdf.

[28] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, You, Get Off of My Market:

Detecting Malicious Apps in Official and Alternative Android Markets,” Proc. 19th

Annu. Netw. Distrib. Syst. Secur. Symp., no. 2, pp. 5–8, 2012

[29] New Threats and Countermeasures in Digital Crime and Cyber Terrorism. IGI

Global, 2015.

[30] “Android.Fakedefender.B | Symantec.” [Online]. Available:

https://www.symantec.com/security_response/writeup.jsp?docid=2013- 091013-

3953-99.

[31] Ransomware scammers exploited Safari bug to extort porn-viewing iOS users".

Available at : https://arstechnica.com/information technology/2017/03/ransomware -

scammers-exploited-safaribug-to-extort-porn-viewing-ios-users/.

[32] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and

Evolution,” 2012 IEEE Symp. Secur. Priv., no. 4, pp. 95–109, 2012.

[33] Y. Zhou and X. Jiang, “Dissecting Android Malware: Characterization and

Evolution,” 2012 IEEE Symp. Secur. Priv., no. 4, pp. 95–109, 2012.

[34] C. a Castillo, “Android Malware Past , Present , and Future,” McAfee White Pap.

Mob. Secur. Work. Gr., pp. 1–28, 2011

94

[35] Amro, Belal. (2017). Malware Detection Techniques for Mobile Devices.

nternational Journal of Mobile Network Communications & Telematics. 7.

10.5121/ijmnct.2017.7601.

[36] “A Look at Repackaged Apps and their Effect on the Mobile Threat Landscape.”

[Online]. Available: http://blog.trendmicro.com/trendlabs- security-intelligence/a-

look-into-repackaged-apps-and-its-rolein-the- mobile-threat-landscape/.

[37] “NotCompatible Android Trojan: What You Need to Know | PCWorld.” [Online].

Available:

http://www.pcworld.com/article/254918/notcompatible_android_trojan_what_you_ne

ed_to_know.html.

[38] G. Nellaivadivelu, "Black Box Analysis of Android Malware Detectors," San Jose

State University, San Jose, 2017.

[39] R. Sato, D. Chiba, and S. Goto, ‘‘Detecting android malware by analyzing manifest

files,’’ Proceedings of the Asia-Pacific Advanced Network, vol. 36, no. 23-31, p. 17,

2013

[40] L.-K. Yan and H. Yin, ‘‘Droidscope: Seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis.’’ in USENIX security

symposium, 2012, pp. 569—584

[41] [51] [Cybrary. (2019). Hide Secret Message Inside an Image Using LSB-

Steganography - Cybrary. [online] Available at: https://www.cybrary.it/0p3n/hide-

secret-message-inside-image-using-lsb-steganography/ [Accessed 11 Mar. 2019].

[42] M. Preda and F. Maggi, "Testing android malware detectors against code

obfuscation: a systematization of knowledge and unified methodology", Journal of

Computer Virology and Hacking Techniques, vol. 13, no. 3, pp. 209-232, 2016.

[43] "Apktool - A tool for reverse engineering 3rd party, closed, binary Android apps.",

Ibotpeaches.github.io, 2019. [Online]. Available:

https://ibotpeaches.github.io/Apktool/. [Accessed: 10- Mar- 2019]

[44] "http://www.oracle.com/," [Online]. Available:

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html.

[Accessed 29 November 2019]. [1]

http://www.pcworld.com/article/254918/notcompatible_android_trojan_what_you_need_to_know.html
http://www.pcworld.com/article/254918/notcompatible_android_trojan_what_you_need_to_know.html

95

[45] "https://developer.android.com/," [Online]. Available:

https://developer.android.com/studio/command-line/zipalign. [Accessed 29 November

2019].

[46] C. J. M. W. Y. a. T. K. Jinho Jung, "AVPASS: Automatically Bypassing Android

Malware Detection System," Mandalay Bay/ Las Vegas, 2017.

[47] "http://www.skyfree.org/," [Online]. Available:

http://www.skyfree.org/linux/references/ELF_Format.pdf. [Accessed 29 November

2019].

[48] "https://developer.android.com/," [Online]. Available:

https://developer.android.com/reference/dalvik/system/DexClassLoader. [Accessed

29 November 2019].

[49] Y. C. X. J. Vaibhav Rastogi, "Evaluating Android Anti-malware against

Transformation Attacks," Northwestern University, North Carolina State University,

North Carolina, 2013.

[50] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang and T. Chen,

"Mystique: Evolving Android Malware for Auditing Anti-Malware Tools", 2019.

[51] Y. Xue, G. Meng, Y. Liu, T. Tan, H. Chen, J. Sun and J. Zhang, "Auditing Anti-

Malware Tools by Evolving Android Malware and Dynamic Loading Technique",

IEEE Transactions on Information Forensics and Security, vol. 12, no. 7, pp. 1529-

1544, 2017.

[52] S. Sen, E. Aydogan and A. Aysan, "Coevolution of Mobile Malware and Anti-

Malware", IEEE Transactions on Information Forensics and Security, vol. 13, no. 10,

pp. 2563-2574, 2018.

[53] V. Rastogi, Y. Chen and X. Jiang, "Catch Me If You Can: Evaluating Android Anti-

Malware Against Transformation Attacks", IEEE Transactions on Information

Forensics and Security, vol. 9, no. 1, pp. 99-108, 2014.

[54] V. Rastogi, Y. Chen and X. Jiang, "DroidChameleon", Proceedings of the 8th ACM

SIGSAC symposium on Information, computer and communications security - ASIA

CCS '13, 2013.

96

[55] M. Zheng, P. Lee and J. Lui, "ADAM: Automatic and Extensible Platform to Stress

Test Android Anti-virus Systems", Detection of Intrusions, Malware and Vulnerability

Assessment, pp. 82-101, 2013.

[56] S. Badhani and S. Muttoo, "Evading android anti-malware by hiding malicious

application inside images", International Journal of System Assurance Engineering and

Management, vol. 9, no. 2, pp. 482-493, 2017.

[57] M. Chua and V. Balachandran, "Effectiveness of Android Obfuscation on Evading

Anti-malware", Proceedings of the Eighth ACM Conference on Data and Application

Security and Privacy - CODASPY '18, 2018.

[58] Virustotal.com. (2019). VirusTotal. [online] Available at:

https://www.virustotal.com/ [Accessed 11 Aug. 2019].

[59] L. Liu, Y. Gu, Q. Li and P. Su, "RealDroid: Large-Scale Evasive Malware

Detection on "Real Devices"", 2017 26th International Conference on Computer

Communication and Networks (ICCCN).

[60] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu and D. Wu, "Towards Discovering and

Understanding Unexpected Hazards in Tailoring Antivirus Software for Android",

Proceedings of the 10th ACM Symposium on Information, Computer and

Communications Security - ASIA CCS '15, 2015.

[61] Droidbox, “An android application sandbox for dynamic analysis,”

https://code.google.com/p/droidbox/, 2011.

[62] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis,” in Proceedings of the 21st

USENIX Conference on Security Symposium, Berkeley, CA, USA, 2012, pp. 29–29.

[63] W. Enck, P. Gilbert, and a. et, “Taintdroid: An information-flow tracking system

for realtime privacy monitoring on smartphones,” in Proceedings of the 9th USENIX

Conference on OSDI, Berkeley, CA, USA, 2010, pp. 393–407

[64] Andrubis, “A tool for analyzing unknown android applications,”

http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzingunknown-

androidapplications-2/, June 2012.

[65] Sanddroid, “an apk analysis sandbox,” http://sanddroid.xjtu.edu.cn/.

97

[66] Owasp.org. (2019). [online] Available at: https://www.

owasp.org/images/7/7c/TraceDroid.pdf [Accessed 11 Mar. 2019].

[67] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu and D. Wu, "Towards Discovering and

Understanding Unexpected Hazards in Tailoring Antivirus Software for Android",

Proceedings of the 10th ACM Symposium on Information, Computer and

Communications Security - ASIA CCS '15, 2015.

[68] Mathworld.wolfram.com. (2019). Fast Fourier Transform -- from Wolfram

MathWorld. [online] Available at: http://mathworld.

wolfram.com/FastFourierTransform.html [Accessed 11 Mar. 2019].

[69] Diao, W., Liu, X., Li, Z. and Zhang, K. (2019). Evading Android Runtime Analysis

Through Detecting Programmed Interactions.

[70] A. A. Axelle Aprville, "Hide Android Applications in Images," 2014 in Paper

presented at BlackHat Europe, Amsterdam, NH.

[71] "https://github.com/," [Online]. Available: https://github.com/ashishb/android-

malware. [Accessed September 2019].

[72] "https://www.f-secure.com/," [Online]. Available: https://www.f-secure.com/v-

descs/backdoor_android_dendroid_a.shtml. [Accessed September 2019].

[73] "https://blog.virustotal.com/," [Online]. Available:

https://blog.virustotal.com/2018/04/meet-virustotal-droidy-our-new-android.html.

[Accessed September 2019].

[74] "https://blog.virustotal.com/," [Online]. Available:

https://blog.virustotal.com/2017/11/malware-analysis-sandbox-aggregation.html.

