

MOBILE AGENT ORIENTED ONTOLOGY

BASED POLICIES FOR HONEY-BEE

TEAMWORK ARCHITECTURE

By

Sarmad Sadik
2003-NUST-PhD-IT-45

A thesis submitted for the partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

to

School of Electrical Engineering and Computer Science

National University of Sciences and Technology

Pakistan

2010

 ii

It is certified that the contents and form of thesis entitled “Mobile Agent Oriented

Ontology Based Policies for Honey Bee Teamwork Architecture”

submitted by Sarmad Sadik, have been found satisfactory for the requirement of the

degree.

Advisor: ___________________________

(Prof Dr. Arshad Ali)

Co-Advisor: __________________________________

(Dr. H. Farooq Ahmad)

Committee Member 1: __________________________

(Prof Dr. Muhammad Akbar)

Committee Member 2: __________________________

(Dr. S.M. Hassan Zaidi)

Committee Member 3: __________________________

(Dr. Hiroki Suguri)

 iii

CERTIFICATE OF ORIGNALITY

I hereby declare that the research thesis titled “Mobile Agent Oriented Ontology

Based Policies for Honey Bee Teamwork Architecture” is my own work. It contains no

materials previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at School of

Electrical Engineering and Computer Science (SEECS) or any other education institute,

except where due acknowledgment, is made in the thesis. Any contribution made to the

research by others, with whom I have worked at School of Electrical Engineering and

Computer Science (SEECS) or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except to the extent that assistance from others in the project’s design and

conception or in style, presentation and linguistic is acknowledged. I also verified the

originality of contents through plagiarism software.

Name: _USarmad Sadik

 Signature: _____________

 iv

In the name of Almighty Allah

the Most Beneficent and the Most Merciful

Dedicated to One and Only Allah Almighty

 v

ACKNOWLEDGEMENTS

 I humbly acknowledge my beloved God for all the blessing showered upon me. I

profoundly acknowledge my adviser Dr. Arshad Ali and co-adviser Dr. H. Farooq Ahmad

for their academic and moral support during the entire period. I am also grateful to my

committee members Dr. Muhammad Akbar, Dr S.M. Hassan Zaidi, Dr. Hiroki Suguri for

their guidance and assistance throughout the PhD phase.

 I am also thankful to external reviewers including Dr Coskun Bayrak (USA), Dr

Flavio Oquendo (France) and Dr Liaqat Ali for taking out their valuable time and

reviewing the thesis. Lastly I am thankful to my family and friends for their boundless

support.

Sarmad Sadik

 vi

ABSTRACT

With exponential growth in applications complexity, software agents’ domain is

making a remarkable progress. Complex and distributed applications need a group of

software agents to perform the intended tasks, instead of standalone isolated agents. In

software agents’ domain, limited work has been done in case of teamwork among mobile

agents. Mobile agents which have the capability to roam around on various machines

need special communication and coordination strategies as well as goal sharing and task

accomplishment mechanisms. In this thesis, a teamwork strategy is proposed to enhance

the task execution performance as well as mechanism to efficiently address the

communication and coordination issues among group of mobile agents. The proposed

technique is developed by conceptualizing the Honey-Bee teamwork strategy and named

after it as “Honey-Bee teamwork architecture”. In association with it, the goal oriented

ontology based policies concept is proposed for improving the mobility mechanisms of

mobile agents. It also addresses the aspects of goal definition, task creation and execution

on distributed machines by mobile agents. This goal oriented approach reinforces the

teamwork architecture as well as its goal and task division characteristics. The ontology

based policy technique facilitates in convenient assignment of goals and associated tasks

setup information for mobile agents which were earlier difficult to create and execute as

desired especially in dynamic environments. The proposed strategy is evaluated using

combination of teamwork strategies on single and multiple machines scenarios. The

proposed honey-bee technique was found more efficient in the distributed infrastructure

especially for higher number of member agents in a team. It shows linear behavior as

compared to exponential increase in task accomplishment time in case of conventional

strategy. The combination of simplified task execution as well as reduced size of mobile

agent requires less time in performing the desired functionality. Additionally, the

earthquake management system (EMS) is proposed and discussed as proof of concept

application. It highlights the usage of software agents in disaster management and

expresses its teamwork capabilities to handle complex application scenarios. This leads to

conception of major application domain and test bed where software agents may execute

 vii

in combination of various teamwork fashions. The major structure and behavior of

proposed application is expressed and analyzed using Pi Calculus and Pi ADL formal

techniques.

 viii

UTable of Contents

ULIST OF FIGURESU ...x

ULIST OF TABLESU ... xi

ULIST OF ABBREVIATIONSU .. xii

UIntroductionU ...1

U1.1 MotivationU ...1

U1.2 Problem StatementU ..3

U1.3 Research Hypothesis and QuestionsU ..4

U1.4 Research MethodologyU ..6

U1.5 Thesis OutlineU ..8

ULiterature ReviewU ..10

U2.1 IntroductionU ...10

U2.2 Mobile AgentsU ...10

U2.3 Teamwork among AgentsU ...13

U2.4 Semantic PoliciesU ..16

U2.4.1 Ontology based Policies ApproachU ..18

U2.5 Formal Modeling and SpecificationU ..22

U2.6 Agents in Disaster Management SystemsU ...23

U2.7 SummaryU ...25

UTeamwork in Mobile AgentsU ..27

U3.1 IntroductionU ...27

U3.2 Honey Bee and Mobile AgentsU ...27

U3.3 Teamwork ArchitectureU ...29

U3.3.1 Team Leader StrategyU ..31

U3.3.2 Non Team-Leader StrategyU ..34

U3.4 Teamwork in Earthquake Management System (EMS)U ..36

USemantic PoliciesU ...38

U4.1 IntroductionU ...38

U4.2 Role of PoliciesU ...38

U4.3 Goal Oriented PoliciesU ...39

U4.4 Ontology-Policy ArchitectureU ...43

U4.5 SummaryU ...45

URole of Agents in EMSU ..47

U5.1 IntroductionU ...47

U5.2 EMS ApplicationU ...47

U5.3 Formalizing System ArchitectureU ..49

U5.4 Operation ActivityU ...50

U5.5 SummaryU ...52

UImplementationU ..53

U6.1 Proof of Concept Application – EMSU ...53

U6.2 ImplementationU ..55

U6.3. Formal Model using Pi-CalculusU ..58

U6.3.1 Pi-Calculus NotationU ..58

U6.3.2 Agents DescriptionU ...60

 ix

U6.4 Major ActivitiesU ...64

U6.5 Pi-ADL SpecificationU ..66

U6.5.1 EMS Specification in Pi-ADLU ..67

U6.6 SummaryU ...73

UEvaluationU ..75

U7.1 Teamwork EvaluationU ...75

U7.2 Ontology based Policies EvaluationU ..79

U7.3 Evaluation of Formal SpecificationsU ...86

U7.4 SummaryU ...87

UDiscussionU ...89

U8.1 Analysis of Teamwork ResultsU ..89

U8.2 Review of Semantic policies approachU ...90

U8.3 Revisiting the EMS ApplicationU ..91

U8.4 SummaryU ...92

UConclusionU ..93

U9.1 Future WorkU ..95

UPUBLICATIONSU ...96

UREFERENCESU ..98

UAPPENDIX – AU ...110

 x

LIST OF FIGURES

FIGURE CAPTION PAGE

UFigure 1.1 Action Research with Iterative ApproachU ..5

UFigure 1.2 Research MethodologyU ..7

UFigure 3.2 Classification of Teamwork ModelU ...28

UFigure 3.2 Interactions among Agents in Team Leader ApproachU30

UFigure 3.3 Team Leader StrategyU ..32

UFigure 3.4 Interactions among Agents in Non Team Leader ApproachU34

UFigure 3.5 Non-Team Leader StrategyU ..35

UFigure 3.6 Interactions between Central and Field StationsU ..37

UFigure 4.1 Policy ClassificationU ..38

UFigure 4.2 Policy StructureU ..39

UFigure 4.3 Generic PolicyU ..40

UFigure 4.4 Generic ArchitectureU ..41

UFigure 4.5 Policy Sharing MechanismU ..42

UFigure 5.1 EMS Overall DesignU ..48

UFigure 5.2 EMS ArchitectureU ..50

UFigure 5.3 Agents in EMS and Communication ChannelsU ...51

UFigure 6.1 Information Searching and Retrieval in EMSU ..53

UFigure 6.2 Policy Example in Prototype ApplicationU ..55

UFigure 6.3 Verifying Pi-ADL SpecificationsU ..71

UFigure 6.4 Execution of Pi-ADL SpecificationsU ...71

UFigure 7.1 TL vs Non TL ApproachesU ..75

UFigure 7.2 Team Leader Approach – Single vs Multiple MachinesU..................................76

UFigure 7.3 Non Team Leader Approach – Single vs Multiple MachinesU77

UFigure 7.4 Comparison of Existing Technologies for Code Movement over NetworkU80

UFigure 7.5 Comparison of Policy based Operations vs Generic Mobility StrategyU80

UFigure 7.6 Comparison of Applying RestrictionsU ...85

 xi

LIST OF TABLES

TABLE CAPTION PAGE

UTable 6.1. Syntax of Pi-CalculusU ... 59

UTable 7.1 - Analysis of Generic and Policy based Operations Mobility MechanismsU 84

 xii

LIST OF ABBREVIATIONS

MA Mobile Agent

MAS Multi Agent System

FIPA Foundation for Intelligent Physical Agents

KAoS Knowledgeable Agent-oriented System

JADE Java Agent Development Environment

OWL Web Ontology Language

ORL OWL Rule language

RDF Resource Description Framework

EMS Earthquake Management System

ANSS Advanced National Seismic System

HLA High Level Architecture

ADL Architecture Description Language

TL Team Leader

NTL Non Team Leader

W3C World Wide Web Consortium

SQL Structured Query Language

SAGE Scalable fault tolerant Agent Grooming Environment

ACL Agent Communication Language

URI Uniform Resource Identifier

ADS Autonomous Decentralized Systems

ISA Information Service Agent

 xiii

FSA Field Service Agent

PSA Personalized Service Agent

ESA Emergency Service Agent

PA Personal Assistant

ABC Another Bisimiliarity Checker

MWB Mobility Work Bench

Chapter-1

INTRODUCTION

1.1 Motivation

The last decade has seen an exponential growth in computing and the use of Internet. The

rapidly evolving network and computer technology, coupled with the expansion of

services and information available, is moving towards a new era of mobile and ubiquitous

computing. The devices are no longer isolated; rather they are distributed in nature. In the

upcoming era, new paradigms are required for building distributed systems and

applications, with autonomy and social ability, like software agents.

A software agent can be defined as a program or an independent module which works or

executes in order to accomplish the goals assigned by its creator or user. Software agents

need a supporting platform on which the agents can be created, managed and executed.

This underlying middleware or platform is defined as Multi-Agent System.

The mobile agent technology is playing a key role in driving research activities in agent

related research community. It possesses the capability to revolutionize the methodology

in which distributed applications are designed and deployed [1]. The mobility feature

highlights the flexible behavior [2] in multi agent systems, in which various interactive

components as well as protocols are involved in order to address heterogeneous

 2

functionalities. The fundamental properties of mobile agents are capability to move

across various hosts and autonomous operations at remote hosts.

Major research is being undertaken in domain of teamwork among software agents,

highlighting various coordination and collaboration strategies. However, very limited

work is being done for teamwork among mobile agents. Mobile agents are special types

of software agents which demand extra capabilities and features in traditional design of

communication and coordination as well as goal sharing and task accomplishment.

The ontology based policy technique is a strong candidate strategy to address major

issues in teamwork among mobile agents. The term “Policy” is defined as per current

environment or relevant context [3]. Policy is a rule based expression or statement which

is linked to constituent conditions and actions [4]. Policy based systems have been

actively used in domains of management and security related functions.

Ontology can be described as meta-data or domain concepts and its relationships. The

ontologies are used for sharing of domain knowledge and expressing data in specified

schema. Ontologies [5] can also be defined as formal specifications of domain knowledge.

It is a constituent part of building semantics infrastructure in multi agent systems and

semantic web. Ontologies provide support for interoperation and definition of domain

data in multi-agent systems. Ontology based systems facilitate in runtime reconfiguration

and information sharing among software agents in distributed architecture. Additionally,

 3

it simplifies the policy engineering problems [6] like authoring, conflict resolution and

deployment.

Ontology based policy techniques can improve the task execution efficiency of mobile

agents by providing a flexible approach for creation and execution of tasks. It adds

reusability, customizability and flexibility. This technique can help to incorporate

teamwork support in multi-agent systems by reducing the middleware support as

teamwork will be the need of future especially for complex applications in the future

arena.

1.2 Problem Statement

Mobile agent is a new paradigm for building distributed systems. The existing

approaches are more oriented towards building inherent mobility mechanism in multi

agent systems as compared to enhancing the individual characteristics of mobile agents.

Additionally, there is no consensus on a conceptual framework for building mobility

characteristics in multi-agent systems. As the applications are becoming more complex

and distributed, mobile agents require more efficient teamwork mechanisms. More

autonomous coordination and cooperation is required in order to execute the assigned

tasks. These circumstances introduce new issues such as knowledge sharing, expression

of domain data and tasks execution mechanisms in the distributed environment. There is

a need to enhance the mobile agent basic structure and fundamental capabilities like

intelligence, autonomy, proactive and social behavior [7] in addition to its inherent

mobility potential.

 4

Furthermore, there is no clear understanding of the new abstractions offered by this

paradigm. Achieving mobility in software agents is a complex process which requires

developer’s extensive role in defining when and where to move which components under

varying operating conditions. Additionally, there is a need to analyse possible techniques

to carry preferences and goals by agents during mobility operations. Also there is a need

to explore the possibility of making groups of agents with varying combination of core

properties like mobility, rationality, behaviours etc. in order to find out the ways of

achieving goals in collaboration with each other. In collaboration architecture, agents

need to share with each other their specializations, knowledge, goals and dynamic

parameters. The problems are: change in environment, change in goals to-be-achieved

and their priorities. Also the approach needs to be formalized in order to enhance the

modelling and reliability aspects.

1.3 Research Hypothesis and Questions

The aim of this research is to explore the limitations in domain of teamwork among

mobile agents and highlight its potential capabilities through employing ontology based

policy strategy. The hypothesis is stated as follows,

“Goal oriented ontology based policies technique can address the major issues of task

definition and execution in dynamic teamwork architecture of mobile agents.”

The following research questions originate from the hypothesis statement, which have

been explored and addressed in this

• What are the limitations in execution

mobile agent applications?

• Which teamwork strategy is more efficient among mobile agents when they are

distributed on multiple machines?

• How interactions among

architecture especially in scenario of distributed infrastructure?

• Why mobile agent applications are tightly constrained with multi agent system?

• How can an ontology based policies approach address the limitations and improve

the overall architecture?

5

The following research questions originate from the hypothesis statement, which have

been explored and addressed in this thesis.

What are the limitations in execution as well as coordination and cooperation o

mobile agent applications?

Which teamwork strategy is more efficient among mobile agents when they are

distributed on multiple machines?

How interactions among mobile agents influence the performance of teamwork

architecture especially in scenario of distributed infrastructure?

Why mobile agent applications are tightly constrained with multi agent system?

How can an ontology based policies approach address the limitations and improve

the overall architecture?

Figure 1.1 Action Research with Iterative Approach

The following research questions originate from the hypothesis statement, which have

as well as coordination and cooperation of

Which teamwork strategy is more efficient among mobile agents when they are

agents influence the performance of teamwork

Why mobile agent applications are tightly constrained with multi agent system?

How can an ontology based policies approach address the limitations and improve

with Iterative Approach

 6

1.4 Research Methodology

The methodology revolves around paradigm of action research in order to investigate the

above mentioned research questions. As per action research methodology, the work is

planned, designed and developed, evaluated and re-visited. The flow of activities is

described in figure 1.1 and figure 1.2 which classifies the research work in five phases.

• In first phase, research domain and problem statement is analyzed in context of

research questions. In addition, background study and state of the art literature

review is done to familiarize with latest trends and techniques in research domain.

• In second phase, an efficient teamwork architecture has been proposed in the

domain of multi-agent systems, which is based on honey-bee teamwork strategy

especially for mobile agents. Two major teamwork paradigms are considered. In

first case, the primary goal is shared through team leader approach while in

second case members are assigned the goal and they perform their respective

tasks in coordination and collaboration with each other. The evaluation is made

for both paradigms when the teams are distributed on multiple machines and

overhead of inter-machine communication is analyzed.

• In third phase, another contribution is proposal of ontology based goal oriented

policies technique where policies are made of various tasks and conditions in a

tree like structure. Each primary goal is divided to sub-goals which are associated

 7

with respective sub-tasks. These are joined together in policies form where a

particular goal triggers the associated list of conditions and actions. These policies

are represented in ontologies form using OWL [8] which is standardized by W3C.

It provides higher flexibility as compared to tightly constrained traditional

Figure 1.2 Research Methodology

Phase 1

Research Problem Analysis and Literature Review

Start

Phase 2

Teamwork Architecture Design

Phase 3

Design for Goal Oriented Ontology based Policies

Technique

Phase 4

EMS Application Design and Modeling

Phase 5

Conclusion of Research Activities and Future work

 8

approaches. These ontology based policies are published and accessed as well as

manipulated by mobile agents using URI through Protégé [9] and Jena [10] APIs.

• In fourth phase, the proposed work is discussed and analyzed by designing a

novel application in domain of disaster management systems called as Earthquake

Management System (EMS). This application is based on concept of utilizing the

autonomous and intelligent nature of software agents in order to fulfill the

demand of quick response activities from start of earthquake to other relief efforts.

The major modules are used as the proof of concept application for teamwork and

ontology based goal oriented policies research work. The proposed application is

modeled using formal method techniques of Pi-Calculus [11-14] and Pi-ADL [15-

16, 93] in order to analyze the specifications and working behavior.

• In last phase, research activities are concluded by discussing the research outcome

and highlighting the future directions.

1.5 Thesis Outline

The thesis highlights the honey-bee teamwork architecture as well as ontology based

policy framework for mobile agents in multi-agent systems. The literature review is

presented in chapter 2 where a review of teamwork efforts is highlighted along with their

limitations in context of mobile agents. Also, various generic policy based techniques are

discussed and later relevant ontology based work is highlighted.

 9

In chapter 3, an efficient teamwork strategy is proposed after discussing two major

paradigms of team leader and non-team leader approaches. The Honey-Bee teamwork

strategy is discussed and mapped with mobile agent operations. Chapter 4 describes the

ontology based policy architecture where goal oriented task based policies concept is

proposed. The classification of policies as well as its role in mobile agent operations is

presented and later its representation in ontologies form is discussed.

Chapter 5 presents the formal approach towards design, modeling and analysis of agent

based disaster management systems. An Earthquake Management System (EMS) is

proposed which is composed of software agents. Additionally, the roles of agents along

with major activities are analyzed using formal methods. In Chapter 6, the

implementation of proof of concept application is discussed along with modeling and

specification of earthquake management system in pi-calculus and pi-ADL.

In Chapter 7, the evaluation is presented firstly about the teamwork strategies and then by

using the ontology based policies approach. The evaluation is highlighted in context of

agents’ execution on multiple machines and inter-machine communication aspect. Also

the formal verification work is described in later part of the chapter.

Chapter 8 provides the discussion and critique about the results obtained as well as the

overall analysis of proposed work in context of research domain. Conclusion and Future

work is highlighted in Chapter 9.

 10

Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the background related to research problem and state of the art is

highlighted. It starts with introduction about mobile agents and its brief history. Then

review of teamwork is presented, followed by the policy definition and background in

related work context. The ontology based approach is presented by highlighting the major

work in this domain. Lastly formal approaches are reviewed which are applicable in the

proposed domain.

2.2 Mobile Agents

As compared to existing techniques for information exchange, mobile agents exhibits to

be better technology especially in e-commerce domain, distributed data searching and

retrieval, and parallel processing etc. In distributed hosts environment such as varying

operating system, data models and network parameters, a mobile agent needs to learn and

adapt according to target host requirements [17]. The mobility property highlights the

requirement of flexibility in multi agent systems [18] for addressing various

interoperability issues. A new set of system components and interaction protocols are

required to match the evolving service related requirements. Researchers have focused on

 11

the factors behind limited performance of mobile agents such as its tightly constrained

structure with underlying system and highlighted comparative migration approaches in

[19].

FIPA initially provided specifications for Agent mobility [23], however it was not

adopted widely and no further work was accomplished. The specifications provide

guideline framework for providing mobility in FIPA agent systems. The document

highlights various features and mobility protocols for proposed mobile agents, however a

lot of work needs to be designed and implemented on agent systems part. The document

also describes possible agent states as a result of specific actions as well as brief

description about concepts related to agent migration, cloning and invocation.

Researchers have highlighted the analysis of weak and strong mobility [24] and also

compared the two approaches at system and application level. Mobile agent technique

has been described as one of the promising technologies for distributed applications in

heterogeneous environments. In addition, various aspects of Java for mobility support

have been highlighted. An example of information retrieval is highlighted where mobile

agent visits web servers for finding interested pages. It also explains the example

application scenarios of mobile agents in electronic commerce, network management and

load balancing domains. A comparison of three programming languages for developing

mobile systems is highlighted in [20]. A unifying framework is discussed [21] where the

proposed approach attempts to simplify the mobile agent development and addressing

 12

interoperability issues. Also, the problem of agent migration among incompatible

platforms is highlighted in [22].

In [25], the importance of mobile agents is highlighted and their interoperability issues

are discussed especially when they are designed by different vendors. The researchers

have provided mechanism to support runtime interoperability of mobile agent systems.

They have considered the application which is most motivating for this research domain

i.e. peace keeping and disaster response systems. In such situations, there is a need to

form joint coalition of organizations with their specific information sets to achieve joint

objectives. Also, it is emphasized to adopt API translation mechanism among agent

systems to support mobile agent execution.

Ara agent platform supports execution of mobile agents in a secure way [26]. It

introduces the concept of virtual places and common security policy for mobile agents

developed in various languages and executed over identical core system. It presents

comprehensive security strategies for issues related to mobile agents. However, tradeoff

needs to be realized between security and flexibility as well as performance. Other efforts

in this regard include mobile object workbench [27] which provide location transparent

migration services for mobile agents.

There are other related attempts, made for making applications mobile [28] as teleporting

system where the objective is to move the system interfaces between the machines. Also

mobile agents find their application in various scenarios of network management [29],

 13

telecare and teleassistance [30]. Researchers have also exploited the use of mobile agents

on lightweight devices like PDAs [31] and discussed their properties especially from

security point of view.

2.3 Teamwork among Agents

There is very limited work in domain of teamwork among mobile agents; however most

of research revolves around teamwork issues among generic software agents. There is a

requirement of generating team or joint action strategies by software agents having

individual expertise or specialization like rationality or mobility etc.

The merger of software based agents’ technology with teamwork domain highlights a

critical direction in this particular research domain. The software agents, which are

collaborating with each other in a teamwork fashion, will be part of future applications.

Such agents will work to search, collect and analyze information, which leads to planning

of goals and related task oriented activities. [32].

A Hybrid strategy has been presented in [33] for highlighting teamwork in software

agents. Additionally, the existing techniques which are employed in multi agent systems

have been discussed. The work highlights the need for cross cutting research involving

proven concepts in various techniques. They have applied their approach on disaster

rescue simulation project for verification. The major research issue is how to build teams

and enable them to communicate, coordinate and adapt in complex and dynamic

environments. The work also describes the infrastructure and algorithms as well as

 14

application domains for teamwork operations. Similarly, the task allocation strategies in

teams are discussed in [34].

In [35], a software agent based system is exhibited in order to analyze and design the

composition of Humans and Agents team. This teamwork exemplifies roles of joint

operations by mobile robots and human users in future mission critical space missions.

The work provides integration of Brahms and KAoS agent frameworks to model and

simulate work scenarios in space in the context of human-agent teamwork. The work

emphasizes that design of agents should be problem-driven, activity centered and context

bound. Brahms is an agent based tool developed by NASA Ames for modeling and

simulating real work situations in space. KAoS agent services are used to express

teamwork models, mobility and resource controls for space operations. In this case, the

models are represented in the form of policies. These policies are used to specify the

limitations and capabilities of agents where they can control their autonomy depending

upon the location and knowledge awareness. The policy based teamwork model defines

the team and its collaboration activities. Also, a model of human-agent teamwork is

highlighted in [36].

Various design patterns have been discussed in [37] to generate a variety of teamwork

strategies. However, it lacks the definition and description of any specialized system

architecture for coordination of static and mobile agents. The work primarily emphasizes

the building of application in form of teams of agents with certain specific

communication strategies among them. These properties are based on mathematical

 15

concepts and classified into seven major types called as inverse, compensation,

commutative, idempotence independence, monotonic and multi monotonic. They have

also discussed three example scenarios (where the proposed design pattern could be

considered) which are information searching, mobile shopping and information filtering

in wireless environments.

Teamwork capabilities have been discussed in [38] with reference to software agent

based framework. In this particular case, the proposed system shows the specification of

goals, tasks and related activities explicitly. This framework highlights the selection of

decisions in an explicit form to address the issues of communication and coordination

overheads. The framework also emphasizes about monitoring of team performance by

using team operators. The focus is to develop integrated teamwork capabilities in order to

achieve flexibility and reusability instead of pre-planned and domain specific strategies

which are due to limitations in existing frameworks.

There is a unified framework proposed [39] for teamwork operations in order to address

the problems of heterogeneous and distributed entities as well as uncertain and dynamic

environments. They have also analyzed the computational complexities of development

under various problem domain classes. Also, the strategies have been proposed in [40]

for designing and analyzing teamwork models in which the model of building blocks is

used to highlight the collaboration among group of software agents. The work primarily

contributes towards techniques and tools for strategy analysis and performance modeling.

 16

2.4 Semantic Policies

Policy terminology takes its meaning according to relevant context. According to

Wikipedia [41], “a policy is a plan of action to guide decisions and actions. The term may

apply to government, private sector organizations, groups, and individuals. The policy

process includes the identification of different alternatives, such as programs or priorities,

and choosing among them on the basis of the impact. Policies could be understood as

political, management, financial, and administrative mechanisms arranged to reach

explicit goals.” Policy is rule based declarative statement. It is usually represented in the

form of event condition and action form where an event is triggered by state or execution

changes.

Mobile code programming is a difficult task since its inception. Major techniques include

remote evaluation, code on demand and mobile agent. The major work in domain of

policy based systems was proposed in [4, 43]. In this case, policy based system is used to

detach application level code from mobility related programming by using event driven

architecture. The traditional approaches of embedding strategies in code make it more

complex and enhance coupling. Policy based approach is being incorporated, which acts

at higher levels of abstraction and separates mobility from application functionality. In

this case, event driven models have been employed such that in case of any event

occurrence, the underlying system executes the associated actions. The limitations of

such systems include use of complex middleware and not suitable enough for web related

ubiquitous as well as light weight services.

 17

In [44], a policy based context aware service is presented for next generation networks

where policies are used to represent context as well as services in networks. The service

is enhanced by using mobile agents approach. Policies have been used to act as a guide in

order to control and regulate the networks and distributed systems. Policies are acting as

high level declarative language and help administrators to configure network related

devices by making changes at system level policies. Additionally, mobile agents have

been used to travel between machines running Grasshopper agent platform for service

delivery as well as results collection through secure channels.

A variety of reconfigurable techniques have been employed in mobility related

applications for mobile service, [45] however no specific adaptive policies have been

defined for dynamic reconfiguration. Policy based framework has also been used [46] for

designing applications in ubiquitous environment in which a policy package has been

used to describe rules, roles and set of contents. Similarly, Policies have been used [47]

for management of Mobile Adhoc Networks in which policies are deployed for

specifying the desired behavior at high level of the system.

A role based infrastructure has been proposed [48] where role is defined as behavior or

set of capabilities expected from the agent that plays such roles. There is a policy and

mechanism level introduced in architecture that controls the environment and provides

mechanism among agents as well as between agents and resources. In [49], an approach

is provided for building a mobile service in which the fundamental building blocks are

 18

highlighted however no particular solution is presented for information sharing among

mobile agents and its task execution capability.

However, the major research in the field of mobile agents and policy based models is

taking place in the domain of security in which researchers are working to define security

policies for multi agent systems that support mobile agents [50, 51]. Also policy research

forum is doing considerable work in this domain [52].

Although most multi-agent systems existing today like Jade [53], Aglets [54], Concordia

[55] etc. support agent mobility, but policy based framework is not available in mobile

agents operations for enhancing their flexibility and task handling capability. A

performance analysis among multi-agent systems and evaluation is highlighted in [56-

58].

The proposed work in this thesis differs from the above mentioned approaches as we

have implemented goal oriented policy based rules which are set of pre-conditions,

actions and post conditions and it is integrated with multi agent system for supporting

task execution of mobile agents. It’s a generic support for all mobile agents created on

that particular agent platform.

2.4.1 Ontology based Policies Approach

The ontology based approach is syntactically and semantically richer than common

approaches for databases [5]. The information described by ontology consists of semi-

 19

structured natural language texts and not tabular information. If it is to be used for

information sharing and exchange, ontology must be a shared and consensual

terminology. Various types of ontologies are classified as Domain Ontology, Common

sense ontology, Meta data ontology, Representational ontology and Task ontology.

The ontology based policy approach has been used in pervasive and ubiquitous

computing [59]. The prime goal is to achieve the seamless roaming of mobile devices and

users in dynamic environment. In such approach, the devices can access services and data

with identical access rights and behavioral preferences in various zones. A framework

has been highlighted in which ontology based semantics is employed for expressing

authorization related policies.

In [60], active policy based network management system is described where this policy

based technique could be used to adapt as active node framework. They have used policy

based management protocol to exchange policy information between policy server and its

clients. The work also uses the Web Ontology Language (OWL) in order to enhance the

semantic expressiveness and maintenance. Policy based approach provides more

customized and flexible management solution which helps in configuring network

elements dynamically. It also provides various arguments for assigning preference to

OWL rather than other related technologies.

In [61] a framework has been discussed for applying semantic policy structure to robotic

systems. The semantic policies have been considered in order to verify actions and

 20

conflicts as well as presenting automated recovery in extreme situations. KAoS and OWL

have been used to create policies for controlling robotic systems. The policy domain is

elaborated and classified into authorization and obligation policies. The work describes

expressiveness, external nature, transparency and flexibility as the benefits of using

policies. . They have further defined each of these properties in detail.

In [62], a dynamic policy based technique has been discussed to manage data exchange

by incorporating mechanisms of semantic filtering and in-stream message transformation.

Such approaches are based on policies infrastructure and facilitate in safeguarding

transmission of critical information by software agents.

Policy based architecture has been discussed for service delivery in [63]. The policies

have been modeled using formal techniques and the advantages of simple policy engine

implementation are discussed. This approach facilitates in specification of policies for

various domains in single declarative language.

The rule based policy infrastructure has been presented to specify adaptive service

behavior as well as semantic representation of operational state [64]. Policy based

management system is proposed where resources can be provided to devices which offer

semantically annotated services. An approach is provided to combine semantic web

services with management information semantics and policy rules to define adaptive

behavior.

 21

Researchers have proposed ontology based model for agents especially in pervasive

environments [65]. The ontologies are proposed in OWL which describes the agent

execution context and its composing elements. They have presented component based

generic and adaptive architecture which facilitate modularity, reusability and extensibility

of agents.

Researchers have specified the service constraints as policies [66] which are represented

as combination of ontology and rules as metadata and schema. A concept of OWL Rule

language (ORL) has been proposed in order to specify semantic web service constraints

for peer to peer systems. Ontologies have been used to describe agent execution context

and its functional components.

In the domain of autonomic computing, there are approaches specified [67] to address

problems of semantic interoperability. It uses ontological reasoning for self-management

systems. The autonomous system requires dynamic policies mapped with objectives for

adapting elements which are addressed by modeling resources as composable services by

using service-oriented approach. This strategy of ontology based semantics facilitates in

heterogeneity and reasoning framework for policy refinement.

A constraint logic based policy specification language has been proposed [68]. It

provides access to specified parts of ontologies while other contents are restricted. The

major objective was safe sharing of ontologies through a policy based framework. Their

 22

work is primarily based on RDF technology. The work comprehensively describes the

example scenarios which come under defense related applications.

Autonomic computing is an upcoming domain where semantic based policy work is

gaining wide attention [69]. Researchers have identified that ontology based solution

efficiently addresses the problems of heterogeneity in task requirements, resources and

services. They have presented service oriented model for policy engineering as well as

dynamic semantic queries. The policy engineering process has been used for proposing

ontology based semantic models in order to provide policy resolution and interactions.

2.5 Formal Modeling and Specification

Pi-calculus and Pi-ADL provide major support for modeling and specification of

concurrent and distributed applications [11-14, 93]. The formal methods technique

facilitates in eliminating inconsistencies, errors in information flow as well as redundant

information. Archware toolkit [15] is a European funded project which provides support

for verifying and validating formal specifications. The recent advance in this domain is

development of pi-ADL.NET compiler [91] for executing and verifying pi-ADL formal

specifications in Windows operating system environment.

Researchers have worked on applying calculus for mobile agents [79] in earlier age of

this technology but the work was more focused on migration mechanism specification. A

formal approach was also exhibited in mapping design and implementation especially in

 23

context of agents in [80] but no effective mobility strategies have been discussed or

analyzed using formal approaches.

Another Bisimiliarity Checker (ABC) [89] and Mobility Work Bench(MWB) [90] are pi

calculus based tools which have been widely used by researchers in order to verify the

syntax as well as analyze the semantics of the proposed system. However, these tools

have very limited functionality and provides little expressive power for representation of

formal specifications and verification .

A pattern language has been introduced for multi agent systems [92] where a form of pi-

ADL is used to model and specify architecture especially in dynamic and self adaptive

systems. However, there is no specific modeling or formal specification issues have been

discussed in relation to mobile agents and its particular requirements of goals and task

division characteristics.

Pi-ADL is more suitable for modeling and specifying mobile agents because such type of

software agents represents mobility and dynamic characteristics. These requirements and

characteristics can be addressed in view of mobile and dynamic architecture as

highlighted in [93].

2.6 Agents in Disaster Management Systems

 24

The disaster management systems domain is selected in order to build the prototype

application due to its diverse and dynamic nature. Therefore, the formal design of agent

based systems is highlighted especially related to disaster management domain in the

teamwork context. The concept of software agents has been widely employed for

highlighting the model of teamwork [33] in disaster management systems. The examples

have been provided in domains of fire fighting and rescue related emergency situations.

The Advanced National Seismic System (ANSS) [70] is a giant stride towards monitoring

of earthquake activity specially focused in United States. The work involves increasing

number of base stations and communication networks for information monitoring and

analysis. The major objective is to acquire information for earthquake related events and

its impact analysis on buildings using the latest methods and techniques.

An open source tool named as SAHANA [71] has been developed with a focus on

rehabilitation and aid assistance after disastrous events and natural calamities. It is a web

based tool which addresses the problems of coordination especially in the cases of

missing aid, managing people and volunteers. This system employs manual usage and

autonomous features of the system are limited. Other approaches in the domain of agent

based disaster management systems include emergency team formation for relief and

evacuation as expressed in [72-74]. Also the multi-agent system based planning and

communication has been used in [75, 76] for addressing relief operations.

 25

Crisis Information Management system [77] as well as HLA based Multi-Agent System

approaches have been used for emergency relief management and operations [78].

However, such techniques do not support proactive response mechanisms for

environment variation. More importantly, one thing common with these works is that

they are most effective in post earthquake operations and management.

2.7 Summary

In this chapter, an overview of mobile agent paradigm, teamwork strategies among agents

as well as ontology based policies is presented. Although, there is very limited work done

in teamwork among mobile agents domain, the major strategies of generic teamwork

approaches in literature including the hybrid techniques, human agent teamwork model

and other unified framework techniques for addressing problems of heterogeneity in

teamwork planning and execution were discussed.

The policy based approaches using condition-action rules were presented in various

scenarios including pervasive environments, security domain and other network and

distributed systems. The ontology based policies concept was highlighted by presenting

major approaches in literature for achieving flexible and open architecture solutions. The

usage of Web Ontology Language (OWL) was discussed for dynamic and semantic

expressiveness. Additionally, the importance of agent based disaster management

systems was highlighted in emergency environments keeping in view the teamwork

aspects in order to use this domain in prototype application.

 26

In next chapters, the teamwork approaches have been described where team leader and

non team leader approaches are discussed. These approaches have been designed and

analysed in context of goal definition, task creation and execution. Also, the distribution

of operations strategy is highlighted for evaluating the performance of agents in specific

teams. In addition, policy based architecture is mapped to relevant ontological solution

and presented this architecture for mobile agents in multi-agent system frameworks. Also,

Pi Calculus and Pi ADL are used to describe behaviour of teamwork among software

agents in order to express its autonomous characteristics in earthquake disaster

management. In this particular case, intelligent autonomous software agents are deployed

to handle various features including monitoring of seismic activity, information sharing

and collaboration as well as data management during earthquake as well as in post

management relief activities. The agent based system will also support coordination and

timely triggering of emergency services faster than its counterpart human personnel.

Additionally, the system takes advantage from the autonomous, proactive and adaptive

nature of software agents for efficient performance in dynamic circumstances.

 27

Chapter 3

TEAMWORK IN MOBILE AGENTS

3.1 Introduction

With the increase in complexity of applications and its distributed nature, the need of

efficient and effective teamwork among software agents is becoming more critical.

Teamwork among software agents can be accomplished using various combinations of

team member patterns. However, mobile agents require special teamwork operation

strategy due to its mobility and specific task oriented nature.

A teamwork strategy has been proposed and analyzed in context of mobile agents, where

a group of software agents is tasked to perform a joint operation. The proposed technique

matches with the Honey Bee teamwork pattern in real life analogies, so it is named as

Honey Bee teamwork architecture. Two possible scenarios for teamwork have been used

to explain the proposed architecture for teamwork among software agents.

3.2 Honey Bee and Mobile Agents

There are a number of similarities exist between working strategy of honey bees and

mobile agents when they are performing their tasks in a group. The resemblance has been

highlighted between working strategy of honey bees and mobile agents. It forms the basis

of design for proposed teamwork architecture.

 28

In the scenario of honey bees network, the queen bee leads the hive and manages as well

as coordinates the major operations. All other bees provide various kinds of services to

the queen. In mobile agents’ domain, team leader approach is proposed which manages,

shares goal and plans as well as coordinates and monitors the operations of member

agents. The team leader divides the top goal and plans the sub-goals for members and

manages their operations and performance by information sharing, coordination and

collaboration.

Honey bees roam around from flower to flower for fulfilling their major goal i.e.

extracting nectar for making honey, which is later stored in the hive. Honey bees extract

the nectar from many flowers as they fly. Bees retain it, return and release it at their hive

at the designated cell. Similarly, mobile agents may visit various machines in order to

fulfill their assigned tasks like searching for specific information. They extract the

Same Goal, Non

Collaborating Members

Teamwork

Same Goal, Collaborating

Members

Non Team Leader Approach

Team Leader Approach

Figure 3.2 Classification of Teamwork Model

 29

required data and process accordingly. Mobile agents may keep the extracted information

or manipulate at destination machine and deliver result after returning to their parent

machines or hosts.

In case, the queen bee is dead, there exists a well defined process for finding and making

a new queen. A special food is fed to a particular bee; this process brings up the new

queen. The queen adopts the role of new leader of the hive. In the context of software

agents, fault tolerance mechanisms have been introduced for generating new team leader

in case of malfunctioning. A promotion algorithm has been used in which the member

agent is elevated as team leader depending on its seniority of time scale.

3.3 Teamwork Architecture

The general teamwork architecture is classified as shown in Figure 3.1. The teamwork

architecture may be divided into two main categories. Firstly team of members, which are

working for the same prime goal but there is no direct collaboration and communication

between them. In such type of teamwork, members are not aware about their peer or

neighboring members. The only thing identical among them is their prime goal which is

being pursued by each member.

Other category in teamwork shows working of member agents to fulfill primary goal

under identical plan. Such members coordinate and communicate with each other as per

requirement of goals and operations strategy. This strategy is also sub-divided in two

 30

more categories. The first sub-category consists of team leader approach where a specific

member is designated as leader and it is responsible for goal and plan division to its team

members. In this approach, all information is shared through team leader among member

agents of team. The second sub category is Non-team leader approach in which all

members of team have direct communication with each other at peer to peer level without

specifying a specific member as team leader.

The specialized team leader approach has been proposed for mobile agents as inferred

from honey bee working strategy. A comparison of both approaches is discussed in later

part of the section along with rational for assigning priority to team leader approach over

non team leader strategy.

The major terms are defined as following,

Goal for team members – g

Task to be performed – tk

Team leader agent - Tl

Team member agents - Tm

Figure 3.2 Interactions among Agents in Team Leader Approach

Team Leader

Member 2

Member 1

Member 3

Member n

 31

Communication factor in team leader approach - CfTL

Communication factor in non-team leader approach – CfNTL

3.3.1 Team Leader Strategy

In the Team Leader scenario, there is one dedicated agent which is leader of the team and

its responsibility is to allocate the goal or plan as well as tasks operation strategy to each

member in the team as per specification. In this approach, collaboration among member

agents occurs in a hierarchical fashion. It transpires that collaboration among member

agents of specific team is taking place by way of team leader. Such technique allows

convenient sharing and integration of critical information among members of team in

mobile agents’ scenario. In this particular strategy, team leader agent shares the goal and

tasks related information to its member agents in a tree like hierarchical structure as

highlighted in Figure 3.2. The communication in this particular technique can be

represented as 2n for n>1, where n is the number of member agents in a specified team.

The elaborated flow of activities in this algorithm of teamwork is described in Figure 3.3.

At the start of application, user or owner of agent specifies the number of agents to be

created in a team. After specification of team structure and primary goal, system creates

the team leader and member agents. Team leader adds the members into its team and sets

the communication pattern. The team leader divides the primary goal and its associated

tasks into sub-goals as well as sub-tasks depending upon the specific number of member

agents in the team. Team leader assigns these sub-goals and sub-tasks to members and

execution is started. In this approach, all communication takes place through team leader

 32

agent which is coordinating and sharing all concerned information with members. As

Start

System creates Tl and Tm

Tl adds Tm in team

Tl divides goals and tasks as

per Tm (n)

Tl assigns sub-goals and sub-

tasks to Tm

Task execution by Tm

Update results to Tl

Tasks

completed

Tl synchronize information

with all Tm

Stop

No

Yes

Figure 3.3 Team Leader Strategy

 33

soon as the main goal is achieved and specified tasks are accomplished, team leader

shares and synchronizes information with members and operation is concluded.

In domain of disaster management systems, the resource/target hunt scenario is used for

proof of concept in this particular case as it is widely used example in the domain of

teamwork. It is one of the major scenarios where robots teamwork strategies and their

communication and coordination patterns are analyzed [81] by renowned research

groups.

In our first example of target/resource hunt application scenario, the team leader agent

and member agents are created by the system. Team leader agent assigns the prime goal

data and area under consideration to each member agent for searching the required target

location. In case of two agents in a team, the area under search is divided into two parts

and allocated to team member agents. In case of four, eight or sixteen members in the

specified team, the allotted area is further divided into respective parts and each member

agent is assigned its area of search. The team leader agent adds the member agents in its

team at the start of activity and later tracks member’s progress as well as path of

locations. When the target/resource is discovered, the team leader agent informs all

member agents in its team and the search operation is concluded.

A particular job n execution in team leader scenario can be represented in tuple form as

{ Tl, Tm, gn, tkn, CfTL}.

The communication factor comparison is highlighted in evaluation section for further

analysis and discussion about its effects on generic teamwork strategy.

 34

3.3.2 Non Team-Leader Strategy

In Non Team Leader scenario, there is no team leader who divides the plan or set of

actions for each member agent. The general plan or primary goal is shared by members at

peer to peer level. The members work themselves according to main goal and plan in

direct collaboration and coordination with each other.

In the Non Team Leader strategy, each agent in the team forms direct communication

link with each other. In terms of implementation perspective, each member has two

streams of communication; one is input and other output. The communication among

agents in non team leader approach is much higher as compared with the team leader

approach as shown in Figure 3.4, especially for team of two, three and four agents.

The flow of activities is also highlighted in Figure 3.5. In non-team leader approach, the

system creates the team members at startup of application. Team members share the goals

and tasks information with each other and synchronize their status. Members start

Member 1

Member 2

Member 3

Member n

Figure 3.4 Interactions among Agents in Non Team Leader

Approach

 35

execution on defined tasks while sharing its progress and current situation with peer

members. As soon as the primary goal is achieved, information is synchronized and

operation is stopped.

Considering the proof of concept application of target hunt, the members are

collaborating and sharing information with each other while searching the area for

Figure 3.5 Non-Team Leader Strategy

Start

System creates Tm

Tm shares goals and tasks

Task execution by Tm

Tasks

completed

Tm terminate

Stop

No

Yes

 36

target/resource. They start searching the area on their paths and at the same time

communicating with each other about their current location. If two members come face to

face with each other or come across in same path which is already traversed by other

agent, they change their direction and move towards the un-explored paths. When one of

the agents finds the target, all member agents are informed and search operation is

stopped.

As the number of agents increases in a team, the communication also increases

respectively. The communication relationship in this case can be represented as n(n-1),

where n is the number of member agents in the specified team.

A particular job n execution in non-team leader scenario can be expressed in tuple form

as

{ Tm, gn, tkn, CfNTL}

3.4 Teamwork in Earthquake Management System (EMS)

Teamwork approaches have been expressed in multiple disaster management systems

with focus on teams of rescuers in fire or explosion related disasters. We have used the

example of earthquake management system to highlight the potential capabilities of

software agents from start of emergency activities like sending alerts to monitor and

manage the relief operations. This particular example is also discussed in upcoming

chapters of thesis, highlighting the role of ontology based policies and formal modeling

perspectives.

 37

In EMS scenario as shown in fig 3.6, the main station and field stations are signifying the

team leader strategy. As highlighted in the earlier example of team leader approach, the

major information flow among member field stations is occurring through main station in

order to minimize the communication overhead. In case of malfunctioning of the main

station agent, one of the field stations is selected as leader station using the promotion

policy. It is then used for information sharing, monitoring and management of tasks.

This EMS architecture design also forms one of the contributions and is discussed under

major scenarios of proposed work. The major design features of Earthquake Management

System are discussed in chapter 5 while the related implementation part is highlighted in

chapter 6 under context of ontology based policies.

Main Station
 Database

Team Leader

Agent

Interface/Web

Field Station

Member Agent

Interface/Web

Field Station

Member Agent

Interface/Web

Figure 3.6 Interactions between Central and

Field Stations

 Database Database

 38

Chapter 4

SEMANTIC POLICIES

4.1 Introduction

In this chapter, a detailed description of system architecture regarding ontology based

policies work is described. The research involves three major components. Firstly, the

structure of policies is highlighted with its domain characteristics and classification.

Afterwards, the role of ontologies and its vital association with policies is mentioned. The

domain of disaster management systems with emphasis on earthquake management

systems has been used as proof of concept application.

4.2 Role of Policies

Policy structure is classified as shown in figure 4.1 into three major types. Obligation

policies cover all the security related and permission oriented policies in which majority

of research is related to traditional policies concept. Management policies work is related

Obligation Policies
Management

Policies Goal oriented Policies

Figure 4.1 Policy Classification

Policies

 39

to system management issues for example if there is missing code or program to open

and execute a file, then it can be loaded from specific repository. However, the policies

have much more potential and scope than they are currently being considered and used.

In this thesis, the need for goal oriented policies has been highlighted. Such policies

comprise of individual tasks and contribute towards a particular goal. These are later

represented in ontologies form and its role has been highlighted, especially in mobile

agents scenario.

4.3 Goal Oriented Policies

Goal oriented concept is gaining recognition in requirements engineering [42] where this

approach is used for various phases including requirements elicitation, negotiation,

specification and validation. The major issues are how goals can be represented and used

under dynamic context. However, in this particular research work, the ontology based

Figure 4.2 Policy Structure

A D C B

Policy Repository

Goal 1 Goal 2 Goal 3

Pre-Move Tasks Move Post-Move Tasks

 40

goal oriented policies technique is used to address the issues of dynamic sharing of

information and improvement of task execution mechanisms. Policies consist of tasks

which need to be executed before movement of mobile agents, during movement and

after movement at destination machine referred to as pre-move, move and post-move

tasks. These actions or tasks are arranged in logical order and each set is attached with

related sub-goal which is ultimately associated with primary goal and contributes towards

its accomplishment. The users or developers of the system can define and associate these

tasks with each goal while setting the policy structure of the desired domain application

in multi agent system context. A general policy based structure is shown in Figure 4.2. A

policy repository contains a number of goals and each goal is attached with sub-goals

which are related to set of tasks, i.e. Pre move, Move, and Post move tasks of mobile

agents. Pre-move and Post-move tasks consist of individual sub-tasks. In Figure 4.3,

general policy template is shown where A, B, C, D are the individual tasks. Once defined

and developed, the individual tasks may be later reused and customized according to

required domain functionality.

Figure 4.3 Generic Policy

On Goal: X

Pre-move tasks: A, B

Sub-tasks: A1, A2, B1, B2

Move

Post-move tasks: C, D

Sub-tasks: C1, C2, D1, D2

Where A, B, C, D are individual tasks

 41

The user on whose behalf a mobile agent is destined to execute, specifies its goal

dynamically at run time. Firstly, the system matches the goal given by user with the goals

which are mentioned explicitly in the policy repository. If a goal, which is mentioned by

user matches with already defined goal in the repository, the associated sub-goals and

tasks are loaded autonomously. Each pre-move task needs to be executed before

movement of mobile agent from source to other destination machines. Each sub-task is

picked one by one and its definition is loaded from list of tasks class. This particular class

includes the implementation aspects of each task. After all the pre-move tasks are

executed, the control is passed to move task, which executes the migration of mobile

Figure 4.4 Generic Architecture

Destination Machine
MAS

Source Machine MAS

Ontology
Resource

Policy Structure

Database

GUI

Operations Code Definitions

I

n

t

e

r

f

a

c

e

Destination Machine MAS

Policy
Structure

Ontology
Resource

Database

GUI

Operations Code Definitions

I

n

t

e

r

f

a

c

e

User

Migration

Source Machine MAS

Policy Structure

agent on selected destination machine while t

Then control goes to post

tasks contain those tasks which need to be executed after the movement of

on the destination machine.

In the second case where

existing resource, the user is asked to

actions by defining its associated seque

user can enter its new goal and customize its sets of sub

42

on selected destination machine while taking IP address of target as the key input

Then control goes to post-move list and checks any sub-tasks to be executed. Post

tasks contain those tasks which need to be executed after the movement of

machine.

where the goal entered by a user is a new goal, which is not defined in

existing resource, the user is asked to elaborate its structure in terms of sub

its associated sequence of tasks for execution in various phases

user can enter its new goal and customize its sets of sub-tasks particular to domain

Figure 4.5 Policy sharing mechanism

aking IP address of target as the key input.

tasks to be executed. Post-move

tasks contain those tasks which need to be executed after the movement of mobile agent

the goal entered by a user is a new goal, which is not defined in

elaborate its structure in terms of sub-goals and

in various phases. The

tasks particular to domain

 43

functionality and add it to the goals repository. This defined goal could be later reused to

save user time and efforts in defining the same job repeatedly.

4.4 Ontology-Policy Architecture

The ontology based policies are distributed and shared on multiple machines. In case a

mobile agent has to carry its entire task-related information and sets of conditions and

actions with it, it would increase its size and affect its performance and execution. With

the advantage of sharing and distributing such policies resource structure, the mobile

agent can invoke its associated tasks definition at run time even after migrating to its

target machines according to its specified goal. The proposed architecture which includes

policy sharing and interaction mechanism for mobile agents is shown in Figure 4.4 and

Figure 4.5. At start of itinerary on source machine, a mobile agent retrieves the required

set of information relevant to its assigned goal from policy resource and executes the

associated tasks. After moving to destination machine, it invokes the remaining set of

tasks and the required information, which are part of that particular assigned goal activity

but need to be run on destination machine after migration.

Web Ontology Language (OWL) is selected in this particular case because it is a standard

approach adopted by W3C [8]. In comparison to FIPA ontology [83] approach, OWL

structure provides more efficiency and flexibility. Also, it is more suitable in proposed

work scenario of mobile agents.

 44

In the ontology based policy architecture, the notion of goals is signified as class in OWL

terminology. Similarly the pre-move, move, and post-move tasks are also expressed as

OWL classes. The subtasks or specific values in goals and tasks category have been

expressed as OWL individuals in the particular classes. The implementation procedure or

related coding part of each individual task is mapped and expressed to an independent

java file. The links or associations in a particular policy structure are expressed as

properties in OWL terminology. The prime benefit of employing OWL in this case is

publishing of proposed ontology structure online on the web. In scenario of distributed

deployment of multi-agent system on various machines, mobile agents can interact and

retrieve the required information more conveniently. Additionally, this architecture

allows persistent storage of information as compared to orthodox techniques of saving

dynamic run-time information in hard-coded form or databases. In this architecture, the

system policies are expressed in ontology form and software agents extract the goal and

task structure for execution of related activities in the designated style.

In ontology based working scenario, when a goal is entered by user at source machine,

the system verifies the goal as already existing or newly set by user. It extracts the pre-

move sub-tasks from ontology resource which are implemented in form of goal oriented

policy structure. The system loads the code implementation details of individual tasks

and executes it. After executing all the pre-move tasks, the mobile agent migrates to

target host with assigned goal information. If the destination host possesses same prime

goal specifications, mobile agent invokes the associated post-tasks from local ontology

repository. The execution of such tasks is initiated after loading code from associated

 45

implementation class files. It executes the list of tasks which are associated with

particular assigned goal. In case of new or unknown goal, the destination host upgrades

the local ontology repository after synchronizing with source machine and executes the

relevant code.

This framework is more focused for goal oriented task related policies; however it could

also be used for obligation and management policies domain, like in order to control the

movement and interaction pattern of mobile agents. The administrator of multi-agent

system can use such policies structure to control and restrict the movement of mobile

agents to specific locations. The administrator can either block certain locations for

mobile agents to migrate, or create a mechanism to block the execution of specific

activities at source or destination machines.

The OWL ontology is accessed by mobile agents by providing URI and creating

the respective Owl model through Jena APIs as mentioned in following sample

statements.

String uri = "http://localhost/policyontology.owl";

 OWLModel owlModel = ProtegeOWL.createJenaOWLModelFromURI(uri);

4.5 Summary

In this chapter, the classification of policies as well as proposed architecture of ontology

based policy work is presented. The structural hierarchy has been shown along with

concept of goal oriented policies approach to handle complexity of distributed

 46

applications. Additionally the detailed architecture of tasks division and hierarchy as per

specific primary goal is discussed to highlight the potential of enriching mobile agents’

capability through simplification of its goal and tasks structure. Also, ontologies have

been used to represent the policy structure consisting of individual goals and tasks. This

adds further flexibility during runtime operations of mobile agents in dynamic online and

distributed environment.

 47

Chapter 5

4B

ROLE OF AGENTS IN EMS

5.1 Introduction

In this chapter, the design and analysis of Earthquake Management System application is

highlighted using formal approach, which is proof of concept application in the proposed

research work. This section particularly describes the use of novel way of applying

specific formal techniques in designing software agent based systems and contribute

towards main research work especially in Autonomous Decentralized Systems (ADS)

[85, 86] context of autonomous coordination and collaboration.

5.2 EMS Application

In the proposed EMS application as shown in figure 5.1, the field workers are linked to

respective field stations which in turn connect them to main station for information

sharing and synchronizing. The utilization of software agents’ approach is more

appropriate in distributed and dynamic environment. In case of less or no coverage area,

software agents which are executing on PDAs can assimilate and disseminate required

data autonomously as soon as the connection is restored. The information can also be

synchronized with other member stations through the main station.

 48

The generated data is communicated among software agents residing on PDAs or base

stations autonomously through direct communication channels. The information about

disaster or record of causalities may be communicated for general use by publishing it

online on web pages. The software agents autonomously retrieve and disperse the

necessary data efficiently in coordination and collaboration with critical entities. The

existing systems in disaster management domain are installed in widespread locations for

monitoring and evaluating the scale of disastrous event. The incorporation of autonomous

agents’ paradigm is anticipated to be more suitable and appropriate technology for this

particular domain.

Figure 5.1 EMS Overall Design

Fire Department

Field Station

Seismograph

PDA

Mobile

Emergency Services

Police

Ambulance

Main Station

Field Station

Field Station

Internet

 49

5.3 Formalizing System Architecture

The EMS architecture is formally proposed and analyzed which autonomously support

various features of typical disaster handling systems. It facilitates in generating alerts,

information delivery to respective relief agencies and communication among various

entities in the event of earthquake as discussed in Chapter 4.

In emergency situations, the slow response of human operators causes delay in

communication and coordination. The use of agents is proposed for effective and

efficient performance. Considering an example, if the reading from a seismograph goes

above some predefined benchmark value, the agent associated with it triggers the

emergency services by sending the alarm messages to other software agents, which are

deployed in various services related departments. These software agents also share

information and coordinate activities among various departments. It shares the essential

information among integrated systems as well as makes it available for persistent storage

and update in database.

In case of request of some particular information, software agents perform the tasks of

human operators in delivering necessary data and service support relevant to earthquake

related activities. The specialized agents retrieve the required information by querying the

associated databases and update the outcome to desired recipients. This approach

exemplifies to be efficient strategy of distributed data searching and retrieval.

 50

5.4 Operation Activity

In the proposed software agents based EMS architecture, the following key agents have

been considered as shown in figure 5.2 in order to carry out various operations.

Information Service Agent, Field Service Agent, Personalized Service Agent, Emergency

Service Agent, Personal Assistant (PA) and database representing agent entity.

The Field Service Agent (FSA) plays a critical role in monitoring of seismic waves scale

and delivering the updated data to the Information Service Agent (ISA). It also issues

alerts in case current seismic value crosses the specified benchmark value as obtained

from seismograph. The Information Service Agent analyses the received data and

Sensor n

User 1

User 2

User n

Sensor 1

Sensor 2

Personal

 Assistant 2

Personal

 Assistant n

 User
 Profiles

 Personalized Service

Agent

Database

Relief
Org 3

Field Service
Agent 1

Information
 Service Agent

 Field Service

Agent 2

 Field Service
Agent n

Emergency

Service Agent

 Relief
 Org 2

 Relief
 Org 1

Personal

 Assistant 1

Figure 5.2 EMS Architecture

 51

invokes the next strategy to handle the event. If severe earthquake activity is confirmed,

the alerts are sent to Emergency Service Agent for further actions.

The Emergency Service Agent coordinates and collaborates with emergency response

and relief organizations like police, fire stations and ambulances. As per information and

orders received from Information Service Agent, necessary instructions are passed to

such relief services. There are special kinds of seismic waves which are generated at the

start of earthquake activity as well as during its peak time. These waves are identified as

“P and S waves” [87] by the geologists. The field service agents (FSA) can detect

generation of such waves and issue alarm messages as early warnings for evacuation.

 Emergency

 Service

 Agent
 (ESA)

 Personalized

 Service Agent
 (PSA)

 Personal

 Assistant
 (PA)

Police

Services

(Org)

Health

Services
(Org)

Fire

Services

(Org)

Information Service

Agent
(ISA)

 Field Service

 Agent (FSA)

Database

Send1(report)

Supply(info1)

Query(db)

Update(db)

Send(dt)

Alert(info)

Inform(alert)

Request(info)

Send2(alert)

Instruct1(alert)

Instruct1(action)

Instruct1(action)

Get(info)

Instruct(action)

Send(report)

Send(report) Send(report) Direct(serv)

Direct(serv)
Direct(serv)

Figure 5.3 Agents in EMS and Communication

Channels

 52

The bold links in figure 5.3 shows the direct communication channels among the various

system agents. The dotted links in the above mentioned figure highlights the

communication through the transitional agents. The emergency response agencies

including fire, ambulance and police organizations are communicated by Emergency

Service Agent (ESA). The operation tasks are assigned by Emergency Service Agent

(ESA) according to predefined plan. The results and feedback are shared with

Information Service Agent (ISA) for upgrading of data and strategy in the database. The

detailed formal specification and verification of EMS application is presented in chapter

6.

5.5 Summary

In this chapter, the detailed description of earthquake management system (EMS) is

discussed. The overall working scenario is shown highlighting the need and importance

of agent based systems usage in such disaster management domain. The division of tasks

according to structure of software agents has been made to balance the independent

working of each agent in its respective domain. Lastly, the detailed channel and

information flow among agents has been highlighted.

 53

Chapter 6

IMPLEMENTATION

6.1 Proof of Concept Application – EMS

The design of Earthquake Management System (EMS) is based on software agents for

monitoring and management of activities from start of earthquake to relief work. In

chapter 5, the overall design of earthquake management system (EMS) was expressed in

detail.

Pre-search

Machine 2 Machine 1

Source

Machine

Data: Dead

Persons

Data: Injured

Persons

Mobile Agent

Figure 6.1 Information Searching and Retrieval in EMS

 54

An example scenario is discussed in the following part as one of the component of the

proposed Earthquake Management System (EMS). A proof of concept application has

been designed and developed in which an agent searches, moves and extracts the required

data about a specified person. The mobile agent moves to connected machines as per

assigned goals and tasks. This application exemplifies the scenario of data searching and

extraction in distributed architecture through ontology based goal oriented technique.

The mobile agent related operation is highlighted as proof of concept scenario. The data

about injured and dead persons is placed separately on two machines as shown in Figure

6.1. In the proposed scenario, an agent executes a pre-search task as a starting activity.

This task represents an operation under pre-move activity at the source host. The mobile

agent checks the current information of the specified person and determines its status

either injured or dead in the recent earthquake activity. The mobile agent migrates to the

associated destination host for further query execution. The target host possesses the

detailed information of causalities including the name of individuals, ID number and

resident city data.

The multi-agent system generates the mobile agent. The users or owners of the agents

enter the primary goal “Search” in the current example. The system will check the

associated tasks with the specified goal and extracts the required sequence of

tasks/operations to execute. In this particular case, the pre-move activity is “pre-search”

operation in which agent firstly searches local source machine to extract data about

 55

specific person whether injured or dead. According to existing information, the

concerned agent migrates to the target host. The mobile agent identifies the required table

and executes the SQL query for information retrieval. Mobile agent explores the related

database and retrieves the assigned goal related information.

6.2 Implementation

The proof of concept application is implemented using SAGE [82, 84] multi-agent

system. The ontologies have been implemented in OWL using Protégé [9]. Afterwards,

Protégé as well as Jena [10] APIs are used to interact and extract the specified ontology

structure by mobile agents.

 The policy-setup is invoked after booting the multi-agent system and before creation of

mobile agents. In this mechanism, the tasks/operations are implemented individually

using java language and saved in the application code specific file. These tasks are later

picked one by one for placing in the policy structure. Similarly, these tasks/operations are

On: Earthquake

Tasks: Alarm, Identify, Data_Update*, Query*

On Goal: Data_Update

Pre-Task: Get_Info, Identify_Machine

Move

Post-Task:Update_Data

On Goal: Query

Pre-Task: Pre-search

Move

Post-Task:Opsearch

*represents the tasks need to be executed by mobile agents

Figure 6.2 Policy Example in Prototype Application

 56

picked in the defined order and executed by calling its defined code from the source code

specific file.

Figure 6.2 highlights the layout of tasks and sub-tasks as well as its relationship and

structure of execution flow in case of earthquake activity. The primary tasks or operations

in the proposed scenario include the following major activities.

(1) Alarm – This process issues the alerts and alarm messages for the concerned

emergency response services like fire department, ambulance and police agencies.

(2) Identify – This activity traces out the related seismograph in the specific area and

field station from where seismic activity is originating.

(3) Data_Update* – In this process, the agents update the upcoming data from earthquake

hit area among attached field stations and departments.

(4) Query* - In this activity, the agents make queries and extracts the data from related

field stations or services.

The last two activities have been considered as major tasks as it involves the use of

mobile agents for performing the desired actions. The “Data_Update” task includes the

activities of receiving the input data, identifying and migrating to the associated target

host for addition or update of data in the pre-defined structure. The specified agent moves

to the destination host and executes the sub-task in the specified order.

In the “Query” task, the user assigns the prime goal as “Search” to mobile agent in GUI.

This goal is matched with the pre-defined goal definitions in policy repository. If it

 57

matches the pre-specified goal, the user is notified of loading pre-defined tasks structure

and implementation details. In the Pre-move task category, there exists one sub-task

defined as “Pre-Search” in the current example. While executing the “Pre-Search”

activity, mobile agent executes the search operation at source host for retrieving the

necessary information before moving to next destination machine.

On completion of all the Pre-move tasks, the system picks the Move task. In, the “move”

activity, a request is generated to multi-agent system for migration of mobile agent to

next destination machine. The multi-agent system takes the destination host data

primarily the destination IP address and the mobile agent moves to the target host. In the

Post-move category, “OpSearch” operation is mentioned in the current example. The

OpSearch operation includes the activities of executing the search operation at target host

by making queries as per required parameters. The mobile agent retrieves the data and

sends the results to the parent host.

In the example scenario of EMS, the mobile agent executes “Pre-Search” operation at

source host and finds out the recent information status of particular person as “dead”. The

agent picks the attached target host information on which the detailed record of dead

persons is kept in form of database. The mobile agent migrates to the specific target host.

On reaching the destination machine, the mobile agent executes the “Opsearch” task. The

agent executes the search operation by interacting with the database deployed locally. It

retrieves the specified person’s data including his ID and resident city information.

 58

Afterwards, the agent returns the results to the source machine. Such combination of

individual sub-tasks which are present in tasks hierarchy fulfills its sub-goals and

ultimately contribute towards the key goal of application.

6.3. Formal Model using Pi-Calculus

6.3.1 Pi-Calculus Notation

Pi-calculus is a mathematically defined formal method technique which is employed to

model the processes and information flow. Pi-calculus supports the representation of

parallel execution of processes as well as its communication channels [11-14]. The

syntax or notation comprises of primarily prefixes for formal modeling of information

channels and processes.

In the Pi-calculus terminology, a Process is an independent thread of control or execution

entity. Additionally, a channel represents the connection between the two processes for

information exchange [14]. The communication takes place by sending and receiving

messages over the inter-connected channels. An overview of the pi-calculus syntax is

mentioned below, where Table 6.1 highlights the basic syntax for two example processes

expressed as P and Q. Further detailed information about Pi-Calculus is available in

various resources [11-14].

 59

Table 6.1. Syntax of Pi-Calculus

Process Representation Explanation

Empty 0 The process where no action takes

place.

Parallel P|Q Two processes P and Q running in

parallel with each other.

Output 'a x P〈 〉 ⋅ A process which sends message x

over a channel “a” and behaves as

process P` afterward.

Input A process which waits on channel “a”

to receive a value bound to variable x

and behaves as process P` afterward.

Non-

deterministic

choice

P + Q The process where either process P or

Q executes.

Repetition !P Infinite number of process P running

in parallel.

Match [x = y]P A process which behaves as P

provided x and y are the same.

Otherwise nothing happens.

Restriction (vx)P A process which behaves as P where x

is a local channel and used only for

communication among processes

() 'a x P⋅

 60

within the scope of P.

Silent

Action

 Nothing observable happens, i.e.,

action without interaction with

environment.

6.3.2 Agents Description

The roles of above mentioned agents are described in this section by highlighting the

major functions and responsibilities.

As referred in figure 5.2, the agents and their interactions are modeled in the system. The

roles of various agents are described in this section by highlighting the major functions

and responsibilities.

6.3.2.1 Field Service Agent

The field service agent (FSA) monitors the seismic waves which originate from a specific

area in connection with locally attached seismograph. The field service agent issues the

alerts and alarm messages to information service agent if the scale measure crosses a pre-

defined benchmark. The Field Service Agent uses the communication channels of “Send”

and “Alert” to send information from seismograph to Information Service Agent for

necessary action. Information Service Agent receives the information and interacts with

database using update and supply channels.

τ

 61

6.3.2.2 Information Service Agent

The Information Service Agent (ISA) shares the information from the Field Service

Agents (FSA) with the appropriate working agent as well as system database. The

information service agent distinguishes the earthquake hit area and communicates the

related data to Emergency Service Agent (ESA) accordingly.

The channels of communication between the Information Service Agent and the database

processes are Update(db), Query(db) and Supply(info1). The Information Service Agent

can send data from other agents like the Emergency Service Agent and Personalized

Service Agent to the database through the “Update” communication channel using name

db. Information Service Agent can also issue query to database for necessary information,

for instance, post-earthquake reports along the “Query” communication channel. The

feedbacks of queries and strategies to be adopted in response to current event are sent

from database to the Information Service Agent through the “Supply” communication

channel.

FSA def

1

(! | ()

() ())

Send d t A lert in fo F S A Send m

A lert n U pda te m Supp ly in fo IS A

′〈 〉 ⋅ 〈 〉 ⋅ ⋅

′⋅ 〈 〉 ⋅ ⋅

 62

6.3.3.3 Emergency Service Agent

The emergency service agent (ESA) shares the data received from information service

agent with emergency response services. It collaborates among the major operations of

services like ambulance, fire and police departments. The emergency service agent also

coordinates with personalized service agents by issuing alerts as well as assigning task

related instructions.

6.3.4.4 Personalized Service Agent

ISA def

((| () ()

) (| ()

) () |

().) (| ()

) (

Send dt Alert info FSA Send m Alert n

Update db Inform alert PSA Inform x

Query db Supply info Instruct action ISA

Instruct y ESA Send report ESA Send m

Update db ISA Inst

′〈 〉 ⋅ 〈 〉 ⋅ ⋅

′⋅ 〈 〉 + 〈 〉 ⋅

′⋅ 〈 〉 ⋅ ⋅ 〈 〉 ⋅

′ ′+ 〈 〉 ⋅

′⋅ 〈 〉 ⋅ + |
1

)

ruct instruct ESA

Instruct x PSA

′〈 〉 ⋅

′〈 〉 ⋅

ESA def

(() | 1
1

| () '

(' | ())

Instruct y PSA Instruct action Direct serv

ESA Direct z Org

Send report Org Send x Send report ESA

′⋅ 〈 〉 ⋅ 〈 〉 ⋅

′ ⋅

′+ 〈 〉 ⋅ ⋅ 〈 〉 ⋅

 63

The personalized service agent (PSA) configures and transforms the tasks to respective

personal assistants. Such configuration includes assignment of goals and tasks, mode of

communication as well as individual preferences. The data from personal assistants is

merged appropriately by PSA and communicated to Information Service Agent for

further action. If personal assistants issue any alert or alarm message, PSA forwards the

necessary data ISA on “inform” channel or ESA on “instruct” channel for necessary

action.

6.3.5.5 Personal Assistant

The personal assistant (PA) acts as representative agents for human task force. The

information from PSA is communicated to personal assistants for human related

operations. In case of any field observation, the data is shared with ISA through PSA for

update to all attached system agents and update in database. The personal assistant agents

can be deployed on PDAs, mobile phones and other handheld computational devices in

pervasive environment.

PSA def

()

()

1
1

1 1 2

| ()

| ()

Send alert PA send x inform alert PSA

Instruct action ESA Instruct x Instruct action PSA

′ ′〈 〉 ⋅ ⋅ 〈 〉 ⋅

′ ′+ 〈 〉 ⋅ ⋅ 〈 〉 ⋅

 64

6.3.6.6 Database

The Database (DB) consists of data and information about the earthquake related events

as well as operations strategy in the form of goals and tasks. The DB also stores the

newly generated data and up to date information which is sent by the ISA. DB agent

updates the existing record if the data is received on “Update” channel. If ISA sends a

query for retrieval of data on “Query” channel, the DB agent executes the query and

extracts the required data from underlying records. It sends back the results to ISA on the

“Supply” channel back to Information Service Agent.

6.4 Major Activities

Various scenarios are modeled in formal notations and expressed in following sub-

sections.

DB def

()

()1

| () 0

| ()

Update db ISA Update x

Query db ISA Query y Supply info DB

′〈 〉 ⋅ ⋅

′ ′〈 〉 ⋅ ⋅ 〈 〉 ⋅

+

���������	

�������. ���′���������	���. ��′� �

PA def

�����	

�������. ��′|����	���. ���′)

 65

6.4.1 Earthquake Detection

In the activity of earthquake detection, the FSA informs about the scale readings to ISA

and generates alerts and alarm messages. Alternatively, PA can also communicate any

field observation data through the PSA for further action.

6.4.2 Emergency Service Initiation

The ISA shares the up-to-date data with attached system agents. It communicates the

instructions to ESA for onward sharing with emergency response organizations.

6.4.5 Service Agencies Directives

EDetection def

()

1

)

(| ()

()

(

)

Send dt Alert info FSA

Inform alert PSA Inform x Query db

Supply info SAI

′〈 〉 ⋅ 〈 〉 ⋅

′〈 〉 ⋅ ⋅ 〈 〉 ⋅

′

+

⋅

 def

() | (()

(
1 1

| ()
1 1

|)
1

EServiceInitiation

Instruct action ISA Instruct x

Instruct action ESA Instruct instruct

ESA Instruct instruct Instruct x

PSA ISA Instruct x PSAτ
→

′〈 〉 ⋅ ⋅

′〈 〉 ⋅ ≡ 〈 〉 ⋅

′ ⋅ 〈 〉 ⋅

′ ′〈 〉 ⋅

 66

In this activity, the Emergency Service Agent issues the tasks or orders to emergency

response services on “direct” channel for necessary operation.

6.4.6 Database Update

In this activity, the data which is received from Emergency Service Agent or Field

Service Agent is updated in database through “Update” communication channel.

6.5 Pi-ADL Specification

Pi-ADL is defined as Architecture Description Language. [16, 88, 93] It is a formal

method technique which has its foundation in Pi-calculus and supports the modeling of

system behavior in parallel execution environment. The major focus of PI-ADL is

expressing the system architecture in a formal way for reasoning and verification. Pi-

ADL is more advanced and enriched in formal syntax and notations as compared to Pi-

calculus. The models and specification expressed in Pi-ADL are closer towards

ServAgencyDir def | ()Direct serv ESA Direct z Agency′ ′〈 〉 ⋅ ⋅

������

��������. ���′���������. �����

��!�. ���′�

������

����. "��′|�������. �����

���. ���′�

 DBUpdate def

 67

execution. The formal system specification is considered as hyper code. It is converted to

intermediate language in Pi-ADL.NET tool or “ProcessBase” language in the Archware

framework [15]. Using the Pi-ADL enabled tools; these formal specifications can be

executed for validation and verification of the system architecture as well as information

flow.

Pi-ADL facilitates in formal modeling of system structure and behavior by expressing the

processes, internal and external interactions through the connecting information channels.

The executable processes are expressed as “behavior” and “abstraction”. The inter-

connecting information channels are specified through “via” keyword. The data input and

output from/to processes, is expressed through “send” and “receive” formal syntax

respectively.

The term “abstract implementation” is used for Pi-ADL specifications because the formal

specifications can be executed with the help of tools for checking inconsistency,

redundant information or any loop holes in system modeling. In the current proof of

concept application, Pi-ADL.NET tool has been used for executing the formal

specifications for validation and verification. The syntax errors during compile time as

well as in the execution phase facilitates in identifying the system analysis and design

discrepancies.

6.5.1 EMS Specification in Pi-ADL

 68

The major activities in agent based EMS system have been specified using Pi-ADL

formal notation and mentioned in following sub-sections.

6.5.1.1 Flow of Information Analysis

The combined system specification which shows flow of information to various modules

which is represented in Pi-ADL specifications and executable in Pi-ADL.NET tool is

mentioned as follows,

FS_IS names behaviour

{

x : Connection[Integer];

a : Integer;

b : String;

via out send "\n Now in FSA module \n";

via out send "\n Taking reading from Seismograph \n";

via in receive a;

if(a>6.5) do

{

via out send "\n This earthquake is above benchmark, triggering alarm services \n";

//via x send a;

}

else do

{

via out send "\nThis earthquake is within normal range\n";

 69

}

via isa send a where {x renames yy};

}

value isa is abstraction (avalue : Integer)

{

//x : Connection [Integer];

yy: Connection [Integer];

direct : Connection [String];

service_requested : String;

via out send "\n Now in ISA module \n";

via out send "\n Received following value from FSA \n";

via out send avalue;

service_requested = "Activate Ambulance_Fire_Police";

if (avalue>6.5) do

{

via out send "\n Activating Emergency services...\n";

via out send "\n Sending service request from ISA to ESA module \n";

//via direct send "Police, Ambulance, Fire";

via esa send service_requested where {direct renames esadir};

 }

else do

{

 70

via out send "\n Earthquake within normal range, Emergency services are not

activated \n";

}

 }

value esa is abstraction (service : String)

{

esadir : Connection[String];

y : Connection [any];

serviceag: Connection [any];

tup : tuple[String, String];

via out send "\n Now in ESA module \n";

via out send "\n Received following request from ISA module \n\n";

via out send service;

tup=tuple ("Ambulance_Fire_Police", "Urgent response needed");

//via serviceag send tup; //Sending signals to hardware equipment

via out send "\n\n Emergency services activated \n\n";

}

Figure 6.3 shows the verification process of pi-adl specifications, which are error free and

converted to intermediate language for architecture description as well as execution. It

can also be used with other third generation languages for further detailed

implementation.

 71

Fig 6.4 shows the execution result of the above mentioned specification. It highlights the

flow of information through various modules of proposed application architecture.

Figure 6.3 Verifying Pi-ADL Specifications

Figure 6.4 Execution of Pi-ADL Specifications

 72

6.5.1.2 Accessing Database Information

The storing and retrieving of database information as represented according to Pi-ADL

specification and verified to be syntax error free through Pi-ADL.NET tool is as follows,

ISA_DB names behavior.

{

update : Connection [view[Id:Integer, Person_Name:String, Status:String, City:String,

Hospital:String]];

querydb : Connection [any];

Query : Connection [view [Id: Integer, Person_Name: String, Status: String, City:String,

Hospital:String]];

vi : view [Id: Integer, Person_Name: String, Status: String, City:String, Hospital:String];

que: any;

//loc : location [any];

choose

{

compose

{

via Query receive vi;

and

via update send vi;

//via loc send vi;

 73

}

or

via querydb receive que;

} }

6.6 Summary

This chapter discusses the prototype implementation of goal oriented task based policies

concept for mobile agents. The role of task based policies is highlighted which are made

of various conditions and actions and associated with particular goals. The main goals

contain hierarchy of sub-goals which are linked with sub-tasks. These policies structure is

represented in ontologies using OWL. Mobile agents moving on various machines can

access URI and extract as well as execute various commands and actions through protégé

and Jena APIs in context of assigned goals.

Additionally, the formal representation of proposed EMS application is discussed using

Pi-Calculus and Pi-ADL techniques. This application domain has been proposed as major

candidate for highlighting the effectiveness and efficiency of agent based systems which

can be expressed in detail using formal notations. In this case, software agents have been

used for observing, tracing and administering the operations during the earthquake event

from initial detection of seismic waves to emergency relief operations. The formal

notations help to produce and analyze un-ambiguous and non-redundant flow of activities

in context of overall architecture based on software agents.

 74

 75

Chapter 7

EVALUATION

7.1 Teamwork Evaluation

In the first prototype application of target/resource hunt example, teamwork approaches

have been analyzed by taking measurements of their goal or task accomplishment time.

The job of software agents is to find a specific resource in a grid area, mentioned in a two

dimensional map. Agents are coordinating with each other using two schemes of

teamwork as discussed in chapter 3.

The results obtained are shown in Figure 7.1. In Team Leader strategy, all agent members

of team are executing in parallel threads. As the number of agents increases in a team and

area of operation is divided more and more, there is some overhead of parallel execution

of agents which are running on single machine.

Te a m Le a de r vs Non Te a m Le a de r

0

200000

400000

600000

800000

1000000

0 2 4 6 8 10

No of Age nts

T
im

e
 (

m
il
li
s
e
c
o

n
d

s
)

TL Non TL

Figure 7.1 TL vs Non TL Approaches

 76

Non-Team Leader strategy highlights two overheads while execution. First overhead is

the parallel execution of member agents in which there is no division of plan or area

under search. The second overhead is the large amount of interactions during the

coordination and collaboration among member agents during execution in order to fulfill

the primary goal and allocated tasks.

Team Leader approach facilitates in implementation perspective due to its efficient

communication capability. Also, this technique supports effective sharing and

dissemination of assigned goals as well as associated task related information. This

strategy exhibits better results especially in the scenarios of higher number of member

agents.

The Team Leader and Non Team Leader approaches have also been analyzed on multiple

machines as highlighted in Figures 7.2 and 7.3 respectively. Three machines were used

for this experiment on which member agents were executing while in team leader

approach the leader agent was running on fourth machine. Software agents were

T e a m L e a d e r A p p r o a c h

0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

0 5 1 0 1 5 2 0

N o o f A g e n t s

T
im

e
 (

m
il
li
s
e
c
o

n
d

s
)

S in g le M a c h in e M u lt ip le M a c h in e s

Figure 7.2 Team Leader Approach – Single vs Multiple

Machines

 77

deployed on these machines. The agents were executing on the Sage [82] multi agent

system. The member agents were communicating and coordinating with each other by

inter-machine messages through HTTP protocol. Figure 6 highlights the comparison of

Team Leader strategy where agent interactions were evaluated on single as well as

multiple machines. The evaluation performed on single machine highlights less time

taken in task accomplishment in the beginning of execution. However, as the number of

member agents is raised, the overhead of parallel execution starts appearing. This places

more load on the system and overall performance of system begins to decline.

In case of member agents’ execution on multiple machines, the task achievement time

keeps low in the start of application. As the number of agents begins to increase on the

specific machine, there is moderate increase in the time taken to achieve specified goal.

However, the overall performance still shows better results as compared to single

machine results.

N o n T e a m L e a d e r A p p ro a c h

0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

0 2 4 6 8 1 0

No o f A g e n t s

T
im

e
 (

m
il
li
s
e

c
o

n
d

s
)

S in g le Ma c h in e Mu ltip le Ma c h in e s

Figure 7.3 Non Team Leader Approach – Single vs Multiple

Machines

 78

The results of Non Team Leader strategy is shown in Figure 7.3. The key difference

between single machine and multiple machines results is more vivid in the scenario of

Non Team Leader approach. It is due to the overheads of communication and

coordination among number of agents. The communication is intra-machine when agents

are executing on one machine. However, when the agents are distributed and deployed on

multiple machines, the coordination and collaboration among them becomes as inter-

machine communication. This form of communication enhances the overhead to large

extent. With the increase in number of agents in a specific team, and they perform their

operations collaborating and coordinating with each other on distributed machines, the

more overhead appears and makes significant performance loss. The following equation

may be inferred from the above mentioned results.

CfTL < CfNTL

It is concluded that the Team Leader strategy proves to be more efficient and effective

than using Non Team Leader strategy in teamwork among higher number of agents. The

results are more evident when the team member agents are deployed in distributed

fashion and there is major overhead of communication and coordination due to limited

infrastructure and/or available bandwidth in system networks.

A tree like hierarchal structure exhibiting team leader strategy among software agents

may be designed for more complex and distributed environments. The team leader at

each level may be assigned sub-goals and sub-tasks depending on its position in the

 79

hierarchy. The sub-goals achieved by member agents and respective team leaders will

lead to accomplishment of prime goal at the top of hierarchy.

7.2 Ontology based Policies Evaluation

The proposed approach has been evaluated in context of proof of concept application

acting as a module in the earthquake management system. The outcome is analyzed

against conventional approaches which are deployed in analogous circumstances. The

existing techniques include web based communication, ACL messages in multi-agent

system as well as basic mobile agent strategy for querying, retrieving and updating data

on remote hosts.

One of the techniques for information retrieval and data update at remote hosts is usage

of HTTP protocol in the communication messages. Websites are accessed through web

browsers, which support html format. Although it is most widely used technique but it

has specific limitations. For example, the users need to browse through number of web

pages in order to access certain category of information. Additionally, in case of addition

of repetitive data, one may require reloading or refreshing the web page for data entry

repeatedly. The prime issue is making data query for information searching and retrieval.

The user might be receiving only the static data from target host due to fixed parameters

usage in the queries. It limits the user capability to interact with the database in a flexible

and efficient way. Users need to interact with the database by generating customized

queries in a limited way. In the proposed example scenario, the web pages were created

 80

related to earthquake management system data where users query and receive injured or

dead persons data for evaluation.

Figure 7.4 Comparison of Existing Technologies

for Code Movement over Network

No of Queries vs Code over network

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35

No of Queries

C
o
d
e
 S

iz
e
 (
K

B
)

Web ACL Messages MA OP-MA

Figure 7.5 Comparison of Policy based

Operations vs Generic Mobility Strategy

Task Based vs Generic Mobility Approaches

1000

1200

1400

1600

1800

2000

2200

0 20 40 60

Method Calls

T
im

e
 (

m
il
li
s
e
c
o

n
d

s
)

Task Based Generic

 81

In multi-agent system domain, agents also coordinate with each other through Agent

Communication Language (ACL) messages. In current application scenario, when

software agents try to make communication with remote database for information

exchange using ACL messages, the performance declines due to overhead of heavy

network data exchange. Additionally, the ACL message structure is complex and requires

user’s intervention on both sender and receiver sides in order to represent queries in

dynamic environment.

The basic mobile agent strategy is more efficient than html based web pages and ACL

messages in multi-agent systems. Mobile agents can carry and process the code itself on

the target host for accessing and retrieving required information. The SQL based queries

may be run repetitively with combination of various user-defined parameters.

Additionally, the data may be controlled more effectively like accessing or updating the

records of a specific table or other sources. However, the creation and definition of

various mobile agent related tasks requires more knowledge and capability for novice

users as compared to exploring other alternative techniques. It is due to the tightly

constrained structure of application and complexity of integrating mobile agent code with

the primary application. This drawback can be addressed by employing the ontology

based policy approach.

The policy based mobility technique usage by employing task oriented policies, provides

a solution to express tightly constrained statements in form of policies. Policies

 82

comprising pre-defined goals and associated tasks may be altered without affecting other

application code statements in order to avoid a ripple effect. However, the creation of the

policies and its associated structure of goals and tasks in specified order appear to be

complicated activity. In order to address such limitations, ontology based technique is

used to represent policy structure of the mobile agent. The ontologies which are designed

and developed in OWL offer more flexibility and less execution overhead. The mobile

agent can interact with the specified ontology on multiple hosts by using URI of the

published ontology. The agent retrieves the specific goal oriented task based policy

structure and executes the related operation for accomplishment of primary goal. The

expression of tasks structure in OWL ontology provides a more flexible solution as

compared to other conventional techniques where policy statements are mentioned in

hard coded or tabular form.

Figure 7.4 shows the evaluation of above mentioned traditional and newly proposed

techniques. In this case, the number of data queries to be executed, is compared with

amount of information/data exchanged over the network between the two hosts. SAGE

multi agent system was deployed on both machines for execution and communication

support of individual agents. The primary goal is to query about person’s name at remote

host and retrieve the related information including its current status, ID number and

resident city data. In case of html based communication, web pages were created and

connected through web browser. In context of Agent Communication Language (ACL)

approach, ACL messages were sent and received through multi-agent system support.

Similarly, mobile agent was created on the agent system. It migrated to the target host

 83

carrying the code for query execution with itself. The mobile agent processed the code on

destination machine and returned the results to source machine. Additionally, mobile

agent with ontology based policy structure was also executed with specified goal and

results were retrieved.

The results highlights that the ontology based policy technique which is used in context

of mobile agent, generates less amount of data to be sent over the network for

accomplishment of primary goal. In web pages case, the change in requirements at client

side requires similar update on server side. In the ACL scenario, if the message is altered

for addressing new requirements, the receiver also needs to be upgraded. However,

mobile agent carries the code with itself and requires only the execution support at the

target host.

The evaluation of proposed architecture is also highlighted using two mobility techniques

defined as Generic mobility approach and policy based approach as shown in Figure 7.5.

The generic mobility approach shows the strategy of moving all code and state of mobile

agent in one process/step to destination host. The policy based migration technique

highlights the approach of classifying the code as per tasks hierarchy. The approach

allows transferring of only particular code and state which is required for execution at

destination machine. If the associated tasks structure is already available at target host

with implementation specifications, the reusability benefits are gained. In such case, the

related task data along with necessary parameters are transferred and local resources are

exploited as much as possible. Additionally, the user can customize the target host

 84

activities by creating necessary processes at destination host and provides its interfaces to

guest mobile agent. In this way, mobile agent executes the local tasks at arrival with its

own source host defined parameters and interacts with the target host locally in a flexible

way. In prototype application, the mobile agent migrates only with necessary parameter

required for searching the database instead of moving the whole code to target host.

The two mobility approaches can be analyzed qualitatively as presented in Table 7.1. It

shows the analysis of mobility mechanisms in case of generic as well as ontology based

policy mobility techniques. Considering the code reusability parameter, generic mobility

Table 7.1 - Analysis of Generic and Policy based

Operations Mobility Mechanisms

Attributes
Generic

Mobility

Ontology-Policy

Mobility

Code

Reusability
No Yes

Limited

Bandwidth

usage

Yes Yes

System

resources

usage

Moderate Moderate

User

Flexibility
Moderate High

Adaptability Low Moderate

 85

exhibits a limited approach. The mobile agent program defined for a particular

functionality needs to be re-programmed completely for other task or job. In case of

ontology based policy mobility, once the major goal and structure is defined in ontology

form, the tasks structure and goal hierarchy can be reused. In case of new circumstances,

the specific task can be altered or upgraded without changing the whole structure of

application. Both generic and ontology-policy mobility uses limited bandwidth as

compared to conventional client server distributed paradigms because these mobility

techniques uses mobile agent technique for performing various distributed operations.

Also, both techniques use system resources to a moderate level because the software

agents are running on an underlying multi-agent system. However, the advantages of

using agents based approach covers this mild limitation.

In generic mobility case, a user needs extensive knowledge and expertise to program a

mobile agent application and develop various conditions in hard coded form like where to

move which components under specific events and conditions. However, more user

Figure 7.6 Comparison of Applying

Restrictions

Activity Restrictions on Source and

Destination

0

500

1000

1500

2000

1 5 10
No of Activities

T
im

e

(m
il
li
s

e
c

o
n

d
s

)

Source Destination

 86

flexibility is achieved in case of ontology-policy mobility technique because the major

basic building blocks are already defined for particular scenarios and user needs only to

invoke the primary goal with related parameters. In case a new scenario is needed, user

can pick and assemble individual tasks and operations under a primary goal in specific

order and application can be executed in a flexible way. There is low adaptability in case

of generic mobility technique because when mobile agent moves to destination machine,

it cannot change its behavior or execution strategy as per new changes or format at

destination host. In case of ontology-policy mobility technique, various operations can be

defined at target host and its interfaces are provided to mobile agent on it arrival for tasks

execution in dynamic environment.

The proposed policy based strategy could also be used for regulating the task execution

and movement pattern of mobile agents. Users or developers can employ various

conditions in order to block certain activities which are restricted to be run at destination

or preventing the migration of mobile agent to certain IP addresses. A comparison of two

scenarios is highlighted in figure 7.6 which shows time taken to block certain activities

while applying restrictions on task related information of mobile agents at source

machine as compared to blocking of activities at destination machine.

7.3 Evaluation of Formal Specifications

The proposed earthquake management system has been modeled and specified using Pi-

calculus and Pi-ADL formal techniques. These approaches facilitates in elaborated

modeling, specification, analysis, design and abstract implementation for verifying the

 87

system reliability and elimination of inconsistencies. Although, formal logic based

approaches like propositional and predicate logic, description logic, Z Notation support

the expression of system structure however, there are major deficiencies while modeling

the behavior of systems. These limitations are further visible when there is a need to

formally express parallel and concurrent processes. Additionally, these logic based

notations possess limited capability to specify communications channels for information

flow as well as new process state after execution of specific command. Pi-ADL is more

advanced and enriched in syntax and formal notations then conventionally used logic

based approaches. Pi-ADL also provides support to represent messages in form of tuple,

view, union, variant and quote. The database is represented by location while collection

of data can be expressed by way of set, bag and sequence statements.

Pi-ADL.NET tool was used for executing and validating the formal specifications as

mentioned in chapter 6. The formal modeling approach facilitates in eliminating the

redundant information as well as specification errors and inconsistencies. This process

enhances the overall reliability of the proposed modeled system. Similarly, the structure

and behavior as well as information flow can be traced and analyzed for each specific

agent.

7.4 Summary

In this chapter, the evaluation work is presented in three stages. Firstly, the evaluation of

two major teamwork architectures including team leader and non-team leader approaches

 88

has been highlighted. The comparison highlights the rising difference in execution

performance when there is higher number of agents having significant communication

among them while residing on distributed machines. Team leader strategy proves to be

more efficient and effective teamwork technique than traditionally used non team leader

approach in group of mobile agents.

Also, the evaluation of ontology based policies approach is highlighted comparing it with

current existing techniques. As per conclusion from results, the proposed approach

simplifies the goal based task execution as well as generates less amount of code which is

required to be sent over network for specific task and consequently provides more

efficient solution. Lastly, the execution and validation approach for formal specifications

is discussed as compared to existing logic techniques as well as validation tool usage.

 89

Chapter 8

DISCUSSION

 In this chapter, a review and analysis of evaluation and results is presented as well

as its significance is highlighted in context of future applications.

8.1 Analysis of Teamwork Results

In chapter 3, the major classification of teamwork architecture was presented in addition

to highlighting the two main techniques. As the complexity and diversity of applications

will increase, teamwork among mobile agents will be a major characteristic in future

applications. It is difficult to incorporate all desired functionality in single agent;

therefore a group of agents coordinating with each other and sharing the main goal proves

to be much efficient and effective solution.

In this particular work, the teams of software agents which were executing on agent

platform on distributed machines were assigned a primary goal. The architecture of two

teams was designed in a way that teams firstly share goals with each other and then

contribute towards a joint primary goal. However the sharing of information and

particular task division was achieved through team leader and non-team leader

approaches.

 90

According to results achieved, it was determined that team leader approach is much

efficient than the non-team leader approach especially when agents are assigned the tasks,

which are required to be executed on distributed and multiple machines. This difference

is wider as the number of agents in a team increase with high number of communication

and interaction among them. In non-team leader approach, the tasks of primary goal

division and allocation of sub-goals and sub tasks to team members as well as their

coordination and information sharing during tasks execution makes significant overhead

on the overall performance of particular team and task accomplishment time. However,

team leader approach where goal and task information is shared in a hierarchy fashion

proves to be a much efficient and effective technique.

8.2 Review of Semantic policies approach

The ontology based policies approach reinforces the teamwork architecture goal and task

division characteristics. As chapter 3 discusses the efficiency of team leader technique,

chapter 4 describes the ontology based policies technique for goal and task division as

well as execution for generic applications. The goals were described in the form of

policies consisting of conditions and actions, which were represented in ontology form

for online accessibility and usage. Similarly the tasks were divided in a hierarchy form

and linked with the goals.

This ontology based policy technique helped in convenient assignment of goals and

associated tasks setup information for mobile agents which were earlier difficult to setup

 91

and execute as desired especially in dynamic environments. Additionally, as per results

obtained, the proposed technique helps in reducing size of the mobile agents leading to

less amount of code and data movement over network. The combination of simple task

execution as well as reduced size leads to less amount of time consumption in performing

desired functionality leading towards an efficient solution. The expression of tasks

structure in ontological form and publishing it online provides more flexibility and

dynamic accessibility to mobile agents, which move from machines to machines over

internet and interact locally through online available tasks and goal structure. For future

applications, this paradigm will lead to development of simple setup of e-commerce or

related online websites which can host and interact with mobile agents effectively in an

efficient way.

8.3 Revisiting the EMS Application

The role of agents is highlighted in earthquake management system in chapter 5. The

objective is to propose the use of software agents in disaster management domain and

express their capabilities to handle complex application scenarios. An example of

information retrieval by mobile agents in EMS domain is highlighted in combination with

description of complete application structure and behavior along with the role of agents.

This leads to opening of major application domain where software agents execute in a

teamwork fashion highlighting capability of executing goal related operations in dynamic

environments. In order to describe the major structure and behavior of proposed

application, Pi-Calculus and Pi-ADL formal techniques have been used.

 92

8.4 Summary

This chapter discusses the research outcomes of the proposed research work as presented

in previous chapters. It reflects the need for using teamwork architecture solution in

mobile agents and critical importance of various parameters like communication in

distributed infrastructure as well as ontology based policies solution for flexibility and

efficiency. Additionally, the behavior of proposed architecture including its goal and

tasks setup as well as execution strategies has been discussed. Lastly, it highlights the

role of agents in proposed application for further usage and experimentation.

 93

Chapter 9

CONCLUSIONS

 In this thesis, an efficient teamwork strategy has been presented for group of

mobile agents in addition to ontology based goal oriented policy techniques. This

teamwork approach or joint operations strategy by group of mobile agents is designed to

tackle the growing complexity of application domain where individual and isolated

stationary or mobile agents are not able to accomplish their desired tasks effectively.

Although, there is significant work going on in the domain of teamwork for agents but

very limited work is focused especially on team of mobile agents. The proposed

teamwork strategy has been conceptualized from observation of working pattern of

Honey-Bees and so it was named after it as Honey-Bee teamwork architecture. The

classification was highlighted based on goal sharing and interaction pattern among

software agents. The two major approaches including team leader and non-team leader

strategies were analyzed and evaluated using prototype application.

Also, goal oriented ontology based policies architecture is proposed in context of FIPA

compliant multi-agent systems especially for mobile agents. This strategy was proposed

in order to address the issues of efficiently creating and executing various tasks which are

associated with goals in a hierarchical structure ultimately fulfilling the primary goal of

application. The ontologies were developed using OWL as it is standardized approach

and it is convenient to create and use through supporting tools like Protégé and Jena APIs.

 94

The mobile agents could access the policy structure represented in ontologies by

providing the URI of published ontology on distributed machines. This provides more

flexible approach than traditional hard-coded policy statements. The proposed approach

was analyzed in the context of earthquake management system (EMS) as proof of

concept application.

Lastly, the earthquake management system (EMS) has been designed and analyzed using

formal approaches including Pi-Calculus and Pi-ADL. The formal technique helped in

modeling and specification of the agent based earthquake management system (EMS) by

enhancing the reliability and flexibility of the proposed system. The formal approaches

supported in explicitly defining the information flow and reducing the redundant

information for effectively coordinating various processes and exhibiting reliable

application behavior. This strategy also contributes towards the proposed research work.

The research questions which were mentioned in chapter 1 related to teamwork are

answered in subsequent chapters where the limitations of mobile agents teamwork

architecture are highlighted along with two distinct types of teamwork strategies. Also,

the quantitative analysis shows the efficient technique in scenarios of single and multiple

machines transpiring inherent concept of communication overheads. Additionally, other

questions were addressed in recent chapters by discussing the proposed work of ontology

based policies in mobile agents, where the limited capability of mobile agents’ task

execution was discussed. The policy based approach was highlighted in this domain

along with its limitations. Furthermore, in order to address the deficiencies, the proposed

 95

solution of ontology based policy architecture is argued. Lastly, the role of agents is

presented to mention the structure and behavior of proposed EMS application in context

of disaster management systems which is expected to be the upcoming application

domain for analyzing future teamwork concepts.

9.1 Future Work

As the applications are becoming more complex, complicated and distributed in nature

day by day, there is a need to focus on the newly emerging aspects of coordination and

collaboration among software agents including highly flexible and reliable mechanisms

for information and assimilation and dissemination strategies. Also, there is a need to

improve the mobile agent capability in order to overcome the interoperability constraints

and access widely distributed resources effectively over the web.

Additionally, there is a necessity to focus on team building issues of software agents in

general and mobile agents in particular where a balance of varying rationalities, expertise

or specializations could improve the working capability of team to a great extent for the

desired mission. The immediate future plan is to integrate the proposed proof of concept

application with web-based system in order to facilitate mobile agent operations on web

related services and provide a platform for convenient accessibility and usage.

 96

PUBLICATIONS

Journal Papers/Book Chapters

� Sarmad Sadik, Mukaila Alade Rahman, Arshad Ali, H Farooq Ahmad, Hiroki Suguri,

“Modeling High Assurance Agent Based Earthquake Management System using

Formal Techniques”, Journal of Supercomputing, Springer. Volume 52, Number 2 /

May, 2010, pp 97-118.

� Sarmad Sadik, Arshad Ali, H. Farooq Ahmad, Hiroki Suguri, “Honey Bee Teamwork

Architecture in Multi-Agent Systems” Extended Paper in CSCW in Design, published

by Springer in LNCS 4402, 2006.

Conference Papers

� Sarmad Sadik, Mukaila Rahman, Arshad Ali, H. Farooq Ahmad, Hiroki Suguri, “A

Formal Approach for Design of Agent Based Earthquake Management System (EMS)”

The Ninth ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD 2008), Thailand.

� Sarmad Sadik, Arshad Ali, H Farooq Ahmad, Hiroki Suguri, “Policy based Ontology

Framework for Mobile Agents”, 6th IEEE International Conference on Computer and

Information Science (ICIS 2007), July 11-13, Australia.

 97

� Sarmad Sadik, Maruf Pasha, Arshad Ali, H Farooq Ahmad, Hiroki Suguri, “Policy

Based Migration of Mobile Agents in Disaster Management Systems”, IEEE

International Conference on Emerging Technologies, Nov 13-14, Pakistan.

� Sarmad Sadik, Arshad Ali, H Farooq Ahmad, Hiroki Suguri, “Using Honey Bee

Teamwork Strategy in Software Agents”, 10th International Conference on CSCW in

Design May 3-5, 2006 Nanjing, China

� Sarmad Sadik, Arshad Ali, H Farooq Ahmad, Hiroki Suguri, “Policy Based Approach

to Enhance Task Execution Performance of Mobile Agents”, The 2006 International

Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA'06), June 26-29, 2006, USA.

 98

REFERENCES

1. A. Fuggetta, G. Picco, and G. Vigna, “Understanding Code Mobility”, IEEE

Trans. Software Engineering, May 1998.

2. Paolo Bellavista, Antonio Corrad, Cesare Stefanelli, “Mobile Agent Middleware

for Mobile Computing”, IEEE Computer, March 2001

3. Matthew Johnson, Jeffery Bradshaw, Paul Feltovich, Renia Jeffers, Hyuckchul

Jung, Andrzej Uszok, “A Semantically Rich Policy Based Approach to Robot

Control”, International Conference on Informatics in Control, Automation and

Robotics, France, 2006.

4. Rebecca Montanari, Emil Lupu and Cesare Stefanelli, “Policy-Based Dynamic

Reconfiguration of Mobile-Code Applications”, IEEE Computer, July 2004.

5. D. Fensel, “Ontologies: Silver Bullet for Knowledge Management and Electronic

Commerce”, 2nd edition. Springer-Verlag, Berlin, 2003.

6. David Lewis, John Keeney, Declan O’ Sullivan, “Policy-based Management for

Resource-Specific Semantic Services”, Proceedings of the 1st Annual Workshop

on Distributed Autonomous Network Management Systems, Ireland,2006.

7. Michael Wooldridge, An Introduction to Multi-agent Systems, John Wiley &

Sons Press, 2002.

8. W3C,Online: http://www.w3.org/ 2007

9. Protégé, Online: Hhttp://protege.stanford.edu/H 2007

10. Jena, Online: http://jena.sourceforge.net/ 2007

 99

11. R. Milner: A Calculus of Communicating Systems. LNCS 92, Springer Verlag,

1980.

12. R Milner, Communicating and Mobile Systems: the Pi-Calculus, Cambridge

University Press, 1999.

13. Parrow J. An Introduction to the Pi-Calculus, Handbook of Process Algebra. -

Elsevier, 2001.

14. J.M. Wing,: FAQ on Pi-Calculus, December 2002 Online:

http://www.cs.cmu.edu/~wing/publications/Wing02a.pdf

15. ArchWare: Architecting Evolvable Software. European RTDProject Online:

Hwww.architecture-ware.orgH. 2007

16. Balasubramaniam, D, Morrison, R, Kirby, GNC, Mickan, K, Norcross, S.

ArchWare ADL Release 1 User Reference Manual. ArchWare Project IST-2001-

32360 Report D4.3. 2004

17. Brazier, F.M.T., Overeinder, B.J., Steen, M. van and Wijngaards, N.J.E.,

“HGenerative Migration of AgentsH”, Proceedings of the AISB'02 Symposium on

Adaptive Agents and Multi-Agent Systems, 2002.

18. Paolo Bellavista, Antonio Corrad, Cesare Stefanelli, “Mobile Agent Middleware

for Mobile Computing”, IEEE Computer, March 2001.

19. HPeter BraunH, Steffen Kern, Ingo Mueller, HRyszard KowalczykH “Attacking the

Migration Bottleneck of Mobile Agents” Fourth International Joint Conference

on Autonomous Agents and Multi-Agent Systems. Utrecht, Netherlands, 2005

 100

20. Zara Field, P. W. Trinder, Andr´e Rauber Du Bois, “A Comparative Evaluation of

Three Mobile Languages” Proceedings of the 3rd international conference on

Mobile technology, applications & systems, Thailand, 2006.

21. Tudor Marian1, Bogdan Dumitriu, Mihaela Dinsoreanu, Ioan Salomie, "A

Framework of Reusable Structures for Mobile Agent Development" Proceedings

of IEEE International Conference on Intelligent Engineering Systems (INES2004),

Cluj-Napoca, Romania, 2004.

22. Pauli Misikangas, Kimmo Raatikainen, "Agent Migration between Incompatible

Agent Platforms", 20th IEEE International Conference on Distributed Computing

Systems, Taiwan, 2000.

23. FIPA Agent Management Support for Mobility Specification,

http://www.fipa.org/specs/fipa00087/index.html 2001

24. Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, “Weak and Strong

Mobility in Mobile Agent Applications”, Proceedings of the 2nd International

Conference and Exhibition on The Practical Application of Java, PA JAVA 2000,

Manchester (UK), April 2000

25. Arne Grimstrup, Robert Gray, David Kotz, Maggie Breedy, Marco Carvalho,

Thomas Cowin, Daria Chac´on, Joyce Barton, Chris Garrett, and Martin Hofmann,

“Toward Interoperability of Mobile-Agent Systems”, 6
th

 IEEE International

Conference on Mobile Agents, Spain 2002.

26. Holger Peine and Torsten Stolpmann, “The Architecture of the Ara Platform for

Mobile Agents”, Lecture Notes In Computer Science; Vol. 1219, Springer 1997.

 101

27. Michael Bursell, Richard Hayton, Douglas Donaldson, Andrew Herbert, "A

Mobile Object Workbench", Proceedings of the Second International Workshop

on Mobile Agents, Germany 1998.

28. Frazer Bennett, Tristan Richardson, Andy Harter, “Teleporting - Making

Applications Mobile”, Proceedings of 1994 Workshop on Mobile Computing

Systems and Applications, USA

29. Li Tang, Bernard Pagurek, “A Comparative Evaluation of Mobile Agent

Performance for Network Management” Proceedings of the 9th IEEE

International Conference on Engineering of Computer-Based Systems, Sweden

2002.

30. L. M. Camarinha-Matos, João Rosas, Ana-Inês Oliveira, "A Mobile Agents

Platform for Telecare and Teleassistance" Proceedings of the 1st International

Workshop on Tele-Care and Collaborative Virtual Communities in Elderly Care,

TELECARE 2004, In conjunction with ICEIS 200, Portugal.

31. Takuya Iizuka, Angel Lau, Tatsuya Suda, "A Design of local resource access

control for mobile agent in PDA", Proceedings of the Asian-Pacific Conference

on Communications, Japan 2001.

32. Milind Tambe, Wei-Min Shen, Maja Mataric, David V. Pynadath, Dani Goldberg,

Pragnesh Jay Modi, Zhun Qiu, Behnam Salemi. “Teamwork in Cyberspace:

Using TEAMCORE to Make Agents Team-Ready” Proceedings of the AAAI ,

USA 1999.

33. M. Tambe, E.Bowring, H.Jung, G.Kaminka, R. Maheswaran, J. Marecki,

P.J.Modi, R.Nair, S.Okamoto, J.P.Pearce, P.Paruchuri, D.Pynadath, P.Scerri,

 102

N.Scerri, N.Schurr, P.Varakantham. “Conflicts in teamwork: Hybrids to the

rescue.” In Proceedings of the Fourth International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS), Netherlands, 2005.

34. Paul Scerri, Alessandro Farinelli, Steven Okamoto, Milind Tambe, "Allocating

Tasks in Extreme Teams", In Proceedings of the Fourth International Joint

Conference on Autonomous Agents and Multi-agent Systems (AAMAS)

Netherlands, 2005.

35. Maarten Sierhuis, Jeffrey M. Bradshaw, Alessandro Acquisti, Ron van Hoof,

Renia Jeffers, Andrzej Uszok. “Human-Agent Teamwork and Adjustable

Autonomy in Practice.” In Proceeding of the 7th International Symposium on

Artificial Intelligence, Robotics and Automation in Space, Japan, 2003

36. Paul Scerri, Katia Sycara, Milind Tambe, "Adjustable Autonomy in the Context

of Coordination", In AIAA 3rd Unmanned Unlimited Technical Conference,

Workshop and Exhibit, USA 2004.

37. Seng W. Loke. “The A-Team Design Pattern: Useful Properties for Using Teams

of Mobile Agents.” In Proceedings of International Conference on Intelligent

Agents, Web Technology and Internet Commerce (IAWTIC), Vienna, Austria,

February 2003.

38. Milind Tambe. “Agent Architectures for Flexible, Practical Teamwork.” National

Conference on Artificial Intelligence, Rhode Island, 1997.

39. David V. Pynadath and Milind Tambe. “Team Coordination among Distributed

Agents: Analyzing Key Teamwork Theories and Models”. In Proceedings of the

 103

AAAI Spring Symposium on Intelligent Distributed and Embedded Systems, USA,

2002.

40. Hyuckchul Jung, Milind Tambe. “Performance Models for Large Scale

Multiagent Systems: Using Distributed POMDP Building Blocks.” In

Proceedings of the second International Joint conference on Agents and

Multiagent Systems (AAMAS), Australia, 2003.

41. Wikipedia Online: http://en.wikipedia.org/wiki/Policy 2007

42. Evangelia Kavakli, Pericles Loucopoulos, “Goal Driven Requirements

Engineering: Evaluation of Current Methods”, 8th CAiSE/IFIP8.1 International

Workshop on Evaluation of Modeling Methods in Systems Analysis and Design,

Austria, 2003.

43. Rebecca Montanari, Gianluca Tonti, Cesare Stefanelli, "A Policy-based Mobile

Agent Infrastructure", Proceedings of the Symposium on Applications and the

Internet (SAINT’03) USA 2003.

44. Kun Yang and Alex Galis, “Policy-driven Mobile Agents for Context-aware

Service in Next Generation Networks” HLecture Notes in Computer ScienceH,

Volume 2881, Springer 2003.

45. Radu Litiu, Amgad Zeitoun, “Infrastructure Support for Mobile Collaboration”,

Proceedings of the 37th Hawaii International Conference on System Sciences,

USA, 2004.

46. Ken’ichi Takahashi, Satoshi Amamiya, Tadashige Iwao, “An Agentbased

Framework for Ubiquitous Systems”, Challenges in Open Agent Systems '03

Workshop, Melbourne, Australia, 2003.

 104

47. Ritu Chadha, Yuu-Heng Cheng, Jason Chiang, Gary Levin, Shih-Wei Li,

Alexander Poylisher, “Policy-Based Mobile Ad Hoc Network Management For

DRAMA” , MILCOM 2004 USA.

48. Giacomo Cabri “Role based Infrastructure for Agents” , The 8th IEEE Workshop

on Future Trends of Distributed Computing Systems (FTDCS 2001), Bologna,

Italy, 2001.

49. Bernd Mrohs, Christian Rack, Stephan Steglich, “Basic Building Blocks for

Mobile Service Provisioning” The 7th International Symposium on Autonomous

Decentralized Systems (ISADS 2005), China, 2005.

50. Asnat Dadon-Elichai, “RDS: Remote Distributed Scheme for Protecting Mobile

Agents”, The third International Joint Conference on Autonomous Agents and

Multi Agent Systems (AAMAS), USA, 2004.

51. J Ametller, S. Robles, J.A.Ortega-Ruiz, “Self-Protected Mobile Agents”, The

third International Joint Conference on Autonomous Agents and Multi Agent

Systems (AAMAS), USA, 2004.

52. Policy research forum, http://www.policy-workshop.org/ 2007

53. Jade, http://jade.tilab.com/ 2007

54. Aglets, http://www.trl.ibm.com/aglets/ 2007

55. David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, Mike Young, Bill Peet,

"Concordia: An Infrastructure for Collaborating Mobile Agents", Proceedings of

the First International Workshop on Mobile Agents, Germany 1997.

 105

56. Kresimir Jurasovic, Gordan Jezic, Mario Kusek, "A Performance Analysis of

Multi-Agent Systems", International Transactions on Systems Science and

Applications, volume 1, number 4, 2006.

57. L.Ismail and D.Hagimond, “A Performance Evaluation of the Mobile Agent

Paradigm. In OOPSLA’99,” Proceedings of the ACM Conference on Object-

Oriented Programming, Systems, Languages, and Applications, USA 1999.

58. Larry Korba, Ronggong Song, "A Reputation Evaluation Framework for Mobile

Agents", Proceedings of the 5th International Workshop on Mobile Agents for

Telecommunications Applications, Morocco 2003.

59. Sven van der Meer, Declan O Sullivan, David Lewis, Nazim Agoulmine,

“Ontology Based Policy Mobility for Pervasive Computing”, 9th IFIP/IEEE

International Symposium on Integrated Network Management, France, 2005.

60. Maroun Chamoun, Rima Kilany, Ahmed Serhrouchni, “A Semantic Active

Policy-based Management Architecture”, Proceedings IEEE Workshop on IP

Operations and Management, 2004.

61. Matthew Johnson, Jeffery Bradshaw, Paul Feltovich, Renia Jeffers, Hyuckchul

Jung, Andrzej Uszok, “A Semantically Rich Policy Based Approach to Robot

Control”, International Conference on Informatics in Control, Automation and

Robotics, France, 2006.

62. Niranjan Suri, Jeffrey Bradshaw, Mark Burstein, Andrzej Uszok, Brett Benyo,

Maggie Breedy, Marco Carvalho, David Diller, Paul Groth, Renia Jeffers, Matt

Johnson, Shri Kulkarni, James Lott, “Toward DAML-based Policy Enforcement

 106

for Semantic Data Transformation and Filtering in Multi-agent Systems”,

Autonomous Agents and Multi Agent Systems (AAMAS), Australia, 2003.

63. Stephan Grimm, Steffen Lamparter, Andreas Abecker, Sudhir Agarwal, Andreas

Eberhart, “Ontology based Specification of Web Service Policies”, Proceedings

of Semantic Web Services and Dynamic Networks, Germany 2004.

64. David Lewis, John Keeney, Declan O’ Sullivan, “Policy-based Management for

Resource-Specific Semantic Services”, Proceedings of the 1st Annual Workshop

on Distributed Autonomous Network Management Systems, Ireland,2006.

65. Nejla Amara-Hachmi, “An Ontology-based Model for Mobile Agents Adaptation

in Pervasive Environments”, Proceedings of the 4th ACS/IEEE International

Conference on Computer Systems and Applications, UAE, 2006.

66. YuhJong Hu, “Combining Ontology and Rules as Service Constraint Policy for

P2P Systems” WWW 2005, May 10-14, Japan.

67. John Keeney, Kevin Carey, David Lewis, Declan O’Sullivan, Vincent Wade,

“Ontology-based Semantics for Composable Autonomic Elements”, Proceedings

of the Workshop of AI in Autonomic Communications at the Nineteenth

International Joint Conference on Artificial Intelligence, Edinburgh, Scotland

July 2005.

68. Saket Kaushik, Duminda Wijesekera, Paul Ammann, “Policy-Based

Dissemination of Partial Web-Ontologies” Proceedings of the 2005 workshop on

Secure web services, USA, 2005.

 107

69. David Lewis, Kevin Feeney, Kevin Carey, Thanassis Tiropanis, Simon

Courtenage, “Semantic-based Policy Engineering for Autonomic Systems”, WAC

2004, Germany.

70. Advanced National Seismic System. Online: Hwww.anss.orgH 2006

71. Sahana – IBM Sahana. Online: Hhttp://www.sahana.lk/H 2006

72. Peña-Mora, F and Mathias, C. “AVSAR: A collaboration system for disaster

search and rescue operations using autonomous vehicles.” itaec: 2004.

73. Ajay K. Rathi and Rajendra S. Solanki. “Simulation of traffic Flow during

Emergency Evacuations: A Microcomputer –based Modeling System.”

Proceedings of the 1993 Winter Simulation Conference, USA.

74. Bartel Van de Walle and Murray Turoff. “Emergency Response Information

Systems: Emerging ZTrends and Technologies.” Communications of the ACM.

March 2007/Vol. 50, No. 3.

75. Lucian Vlad Lita, Jamieson Schulte and Sebastian Thrun. “A ultiAgent System

for Agent Coordination in Uncertain Environments” Proceedings of the fifth

international conference on Autonomous agents. Montreal, Quebec, Canada.

Pages: 21 – 22, 2001.

76. Wei Chen and Keith S. Decker “Managing Multi-Agent Coordination, Planning,

and Scheduling.” AAMAS'04, July 19-23, 2004, New York, New York, USA.

77. KAshcroft, J., D.J. Daniels, and S.V. Hart. 2002. “Crisis Information

Management Software (CIMS) Feature Comparison Report.” NIJ Special Report

197065, U.S. Department of Justice, National Institute of Justice, Washington,

DC. Online. Available: Hhttp://www.ncjrs.gov/pdffiles1/nij/197065.pdfH.

 108

78. Frank Fiedrich. “An HLA-Based Multi-Agent System for Optimized Resource

Allocation after Strong Earthquakes.” Proceedings of the 2006 Winter Simulation

Conference, USA.

79. Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, Didier

Rémy, “A Calculus of Mobile Agents”, Lecture Notes In Computer Science; Vol.

1119, published by Springer.

80. Haiping Xu, "A Model-Based Approach for Development of Multi-Agent

Software Systems" PhD Thesis, University of Illinois at Chicago, 2003.

81. Treasure Hunt Project for Human-Robot Teamwork by Carnegie Mellon

University – Online: http://www.cs.cmu.edu/~treasurehunt/index.html 2008

82. Scalable fault tolerant Agent Grooming Environment (SAGE) Demo, In the

Fourth International Joint Conference on Autonomous Agents and Multi agent

Systems (AAMAS) Utrecht, Netherlands, 2005.

83. FIPA Ontology Service Specification,

http://www.fipa.org/specs/fipa00086/XC00086C.html 2005

84. Arshad Ali, H. Farooq Ahmad, Zaheer Abbas Khan, Abdul Ghafoor, Mujahid and

Hiroki Suguri, “SAGE: Next Generation Multi-Agent System”, in Proceedings of

the International Conference on Parallel and Distributed Processing Techniques

and Applications, USA 2004.

85. Kinji Mori, “Autonomous Decentralized Systems for Service Assurance and Its

Application”, LNCS 4526, 2007.

 109

86. Kinji Mori, “Trend of Autonomous Decentralized Systems”, Proceedings of 10th

IEEE International Workshop on Future Trends of Distributed Computing

Systems (FTDCS), China 2004.

87. Geology Labs Online –

http://www.sciencecourseware.org/VirtualEarthquake/VQuakeExecute.html 2005

88. Dharini Balasubramaniam, Ron Morrison, Kath Mickan, Graham Kirby, Brian

Warboys, Ian Robertson, Bob Snowdon, R Mark Greenwood, Wykeen Seet,

“Support for Feedback and Change in Self-adaptive Systems”, Proceedings of the

1st ACM SIGSOFT workshop on Self-managed systems, USA 2004.

89. Another Bisimilarity Checker (ABC) Online:

http://lamp.epfl.ch/~sbriais/abc/abc_ug.pdf 2007

90. Mobility Workbench Online: http://www.it.uu.se/research/group/mobility/mwb

2007

91. Zawar Qayyum, Flavio Oquendo, “The Pi-ADL.NET project: An Inclusive

Approach to ADL Compiler Design”, WSEAS Transactions on Computers, May

2008.

92. Danny Weyns, “A Pattern Language for Multi-Agent Systems”, IEEE/IFIP

Conference on Software Architecture & European Conference on Software

Architecture (WICSA/ECSA 2009), UK September 2009.

93. Flavio Oquendo, “π-ADL: An Architecture Description Language based on the

Higher-Order Typed π-Calculus for Specifying Dynamic and Mobile Software

Architectures”, ACM Software Engineering Notes, May 2004.

 110

APPENDIX – A

A.1: The generic policy structure containing the goals, pre-conditions and post conditions

infrastructure is described as follows,

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns="http://www.myontologypolicyontology.owl#"

 xml:base="http://www.myontologypolicyontology.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="DoActions">

 <owl:disjointWith>

 <owl:Class rdf:ID="Preconditions"/>

 </owl:disjointWith>

 <owl:disjointWith>

 <owl:Class rdf:ID="PostConditions"/>

 </owl:disjointWith>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Goals"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:about="#PostConditions">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Goals"/>

 </rdfs:subClassOf>

 <owl:disjointWith>

 <owl:Class rdf:about="#Preconditions"/>

 </owl:disjointWith>

 <owl:disjointWith rdf:resource="#DoActions"/>

 </owl:Class>

 <owl:Class rdf:about="#Goals">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasPostcond"/>

 </owl:onProperty>

 <owl:someValuesFrom rdf:resource="#PostConditions"/>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 111

 <owl:someValuesFrom rdf:resource="#DoActions"/>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasAction"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:someValuesFrom>

 <owl:Class rdf:about="#Preconditions"/>

 </owl:someValuesFrom>

 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasPrecond"/>

 </owl:onProperty>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf

rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

 </owl:Class>

 <owl:Class rdf:about="#Preconditions">

 <rdfs:subClassOf rdf:resource="#Goals"/>

 <owl:disjointWith rdf:resource="#DoActions"/>

 <owl:disjointWith rdf:resource="#PostConditions"/>

 </owl:Class>

 <owl:ObjectProperty rdf:about="#hasPrecond">

 <rdfs:domain rdf:resource="#Goals"/>

 <rdfs:range rdf:resource="#Preconditions"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasPostcond">

 <rdfs:domain rdf:resource="#Goals"/>

 <rdfs:range rdf:resource="#PostConditions"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasAction">

 <rdfs:range rdf:resource="#DoActions"/>

 <rdfs:domain rdf:resource="#Goals"/>

 </owl:ObjectProperty>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <PostConditions rdf:ID="Opsearch"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <Goals rdf:ID="Search"/>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <Preconditions rdf:ID="Presearch"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <Preconditions rdf:ID="Macconnected"/>

 <owl:AllDifferent>

 112

 <owl:distinctMembers rdf:parseType="Collection">

 <Goals rdf:about="#Search"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <Preconditions rdf:about="#Presearch"/>

 <Preconditions rdf:about="#Macconnected"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <DoActions rdf:ID="Move"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

</rdf:RDF>

 113

A.2: The prototype policy example which as expressed in figure 6.2, is shown in

ontology form as follows,

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY p1 "http://www.owl-ontologies.com/assert.owl#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.owl-ontologies.com/Ontology1257926648.owl#"

 xml:base="http://www.owl-ontologies.com/Ontology1257926648.owl"

 xmlns:p1="http://www.owl-ontologies.com/assert.owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#">

 <owl:Ontology rdf:about=""/>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <rdf:Description rdf:about="#Alarm"/>

 <rdf:Description rdf:about="#Identify"/>

 <rdf:Description rdf:about="#Data_Update"/>

 <rdf:Description rdf:about="#Query"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <rdf:Description rdf:about="#Earthquake"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <rdf:Description rdf:about="#Get_Info"/>

 <rdf:Description rdf:about="#Identify_Machine"/>

 <rdf:Description rdf:about="#Pre-search"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <rdf:Description rdf:about="#Update_Data"/>

 <rdf:Description rdf:about="#Opsearch"/>

 </owl:distinctMembers>

 </owl:AllDifferent>

 <Tasks rdf:ID="Alarm"/>

 114

 <Tasks rdf:ID="Data_Update">

 <hasPremove rdf:resource="#Identify_Machine"/>

 <hasPremove rdf:resource="#Get_Info"/>

 <hasPostmove rdf:resource="#Update_Data"/>

 </Tasks>

 <Goals rdf:ID="Earthquake"/>

 <PreTasks rdf:ID="Get_Info"/>

 <owl:Class rdf:ID="Goals"/>

 <owl:ObjectProperty rdf:ID="hasPostmove">

 <rdfs:domain rdf:resource="#Tasks"/>

 <rdfs:range rdf:resource="#PostTasks"/>

 <owl:inverseOf rdf:resource="#isPostmoveOf"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasPremove">

 <rdfs:domain rdf:resource="#Tasks"/>

 <rdfs:range rdf:resource="#PreTasks"/>

 <owl:inverseOf rdf:resource="#isPremoveOf"/>

 </owl:ObjectProperty>

 <Tasks rdf:ID="Identify"/>

 <PreTasks rdf:ID="Identify_Machine"/>

 <owl:ObjectProperty rdf:ID="isPostmoveOf">

 <rdfs:domain rdf:resource="#PostTasks"/>

 <rdfs:range rdf:resource="#Tasks"/>

 <owl:inverseOf rdf:resource="#hasPostmove"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isPremoveOf">

 <rdfs:domain rdf:resource="#PreTasks"/>

 <rdfs:range rdf:resource="#Tasks"/>

 <owl:inverseOf rdf:resource="#hasPremove"/>

 </owl:ObjectProperty>

 <PostTasks rdf:ID="Opsearch"/>

 <owl:Class rdf:ID="PostTasks">

 <rdfs:subClassOf rdf:resource="#Tasks"/>

 <owl:disjointWith rdf:resource="#PreTasks"/>

 </owl:Class>

 <PreTasks rdf:ID="Pre-search"/>

 <owl:Class rdf:ID="PreTasks">

 <rdfs:subClassOf rdf:resource="#Tasks"/>

 <owl:disjointWith rdf:resource="#PostTasks"/>

 </owl:Class>

 <Tasks rdf:ID="Query">

 <hasPremove rdf:resource="#Pre-search"/>

 <hasPostmove rdf:resource="#Update_Data"/>

 </Tasks>

 <owl:Class rdf:ID="Tasks">

 <rdfs:subClassOf rdf:resource="#Goals"/>

 </owl:Class>

 <PostTasks rdf:ID="Update_Data">

 <isPostmoveOf rdf:resource="#Query"/>

 115

 <isPostmoveOf rdf:resource="#Data_Update"/>

 </PostTasks>

</rdf:RDF>

