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Abstract

The Internet of Things (IoT) and the Cloud Computing are the two emerging tech-

nologies which have seen a wide-scale adoption. Many IoT applications require cloud

platform support for computing and storage purpose. Hence managing network re-

sources and congestion control in a cloud data center network (DCN) environment have

become a major concern. In a large scale DCN, there are several storage and network

devices interconnected. Achieving high performance in an environment having low la-

tency, high throughput and shallow buffered network devices, poses a great challenge

for network administrators. In such situation many-to-one TCP communication pattern

predominates, which often results in an individual link throughput collapse known as

Incast. In this paper, we present a centralized approach, called as modified dynamic

fair-share buffer policy (M-DyFaShBuP), which operates in a high bursty traffic en-

vironment. The software-defined network (SDN) controller plays an imperative role

from policy designing till policy implementation. An equitable share for each server

is calculated and distributed by the controller among all storage servers. The storage

servers adjust their sending rates, according to the received policy. We incorporate top-

of-rack (TOR) and end-of-row (EOR) designs while handling Incast. M-DyFaShBuP

successfully tackles the Incast scenario and achieves high throughput performance.

Keywords: Cloud Computing, DCN, EOR, fair-share, Incast, IoT, SDN, TCP, TOR
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CHAPTER 1

Introduction

The term Internet of Things (IoT) was coined in 1999 by Kevin Ashton [1]. It aims to

allow everything around us to have a universal connectivity [2]. It is a kind of network

in which various objects, devices, vehicles, buildings, etc. are embedded with sensors,

actuators and software, are connected with internet and sharing data [3]. The Cloud

Computing is a kind of an infrastructure which gives on-demand provision of various

resources such as servers, storage, networks, applications and services among different

users [4]. Many IoT devices sense or collect data and send it to the Cloud for further

processing or storage purpose [5]. In IoT, the data center (DC) is the key infrastructure

for those applications which require massive amount of data storage and data processing

[6].

1.1 Data Center Network

DC provide many distributed services such as: Storage of data in bulk and process-

ing of enormous amount of data. These data centers are required to host a variety of

web applications and to store a massive amount of data [7]. They are now considered

as an important networking infrastructure to run the internet applications and services.

Inside a DC there are large number of storage and computational devices which are in-

terconnected through a special network called as data center network (DCN) [8]. These

networks are usually designed to attain low latency and high throughput with different

1



CHAPTER 1: INTRODUCTION

load conditions [9]. As the DCNs are rapidly growing in size, so as the number of

servers are also increasing exponentially. The number of servers in a Microsoft data

center becomes double after every 14 months because of high demand of processing

and storage [10]. High quality services of DC are directly linked with the design of

DCN. Hence the DCN must be optimized to achieve high efficiency and low cost. It

can be classified into two sub types based on the type of networking equipment used:

DCN with distributed architecture and DCN with centralized architecture.

1.1.1 Data Center Network with Distributed Architecture

The transport protocols running inside switches and routers, and the distributed control

are the key technologies which are responsible for transmitting information in tradi-

tional IP networks. Similarly, traditional DCNs are designed in such a way that the

storage and computational devices are widely spread across thousands of servers in a

distributed way [11]. The switches which are being used in traditional DCN have data

plane and control plane vertically integrated as shown in Figure 1.1. The control plane

make decisions for traffic flow and the data plane forwards the traffic in line with the

decisions made by the control plane.

In these networks each individual network device have its own control plane, due to

which the network operator have to configure each network device separately [12]. The

network functionality resides inside a networking device in case on traditional networks

as shown in Figure 1.2. The distributed control is the reason due to which these net-

works are tiresome to manage and are complicated in configuration. Also traditional

DCNs are unable to support large amount of data [13].

1.1.2 Data Center Network with Centralized Architecture

Software-defined networking (SDN) has given a hope in networking industry, particu-

larly in DCN to solve the traditional DCN challenges [12]. SDN has gained tremendous

success commercially such as Google have deployed software-defined network globally

to interconnect its data centers. SDN has improved the operational efficiency and sig-

2



CHAPTER 1: INTRODUCTION

Figure 1.1: Traditional DCN: Data plane and control plane both resides in switch.

Figure 1.2: Traditional Networking Device: Switch makes the networking decisions.

3
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nificantly reduced the running cost of the company [14]. SDN is prominent due to its

eminent features of separation of data plane and control plane. SDN based DCN have

a logically centralized controller as shown in Figure 1.3 and Figure 1.4 shows that the

network functionality resides inside the SDN Controller [15]. Due to which it pro-

vides global network overview, efficient configuration, better performance and higher

flexibility [8].

Figure 1.3: SDN based DCN: Data plane resides in switch while control plane is part of a

centralized controller.

1.2 Performance Issues in Data Centers

In data centers the links with core switch are heavily utilized and the links with the

edge switches face more losses [16]. The traffic inside data center has some unique

characteristics due to which it faces some performance issues such as Incast, flow com-

4
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Figure 1.4: SDN based Networking Device: Controller makes the networking decisions.

pletion time etc. Our work is focused on finding an appropriate SDN based solution for

avoiding Incast in DC. Incast results in increase in latency which is a very serious issue

for modern data centers. It was observed earlier that an increase of 100ms delay would

results in 1 percent loss in Amazon sales. Also Google losses its 20 percent traffic for

every 500 ms delay while responding a search query [17, 18]. Therefore, an efficient

response time is required from a DCNs in a low latency environment [19, 20].

1.2.1 TCP Incast

DCN as compared to IP Networks have some distinguished features like many to one

communication pattern followed by low latency, shallow buffered switches and multi

rooted tree topology [21, 22]. Transport Control Protocol (TCP) contributes to the

maximum traffic inside a DC and TCP is also considered as a backbone of the mod-

5



CHAPTER 1: INTRODUCTION

ern internet [23]. As per the distinguished features of the DCN, when TCP protocol is

deployed in DCN, it requires to meet some special properties of DCN such as: Rare

packet loss events and fast convergence. However, conventional TCP does not meet

these requirements of the DCN [24]. So, if the conventional TCP is deployed in DCN,

the traffic burst generated in DCs produces enormous amount of congestion on the bot-

tleneck switch. Incast is a phenomena, as shown in Figure 1.5, which arises in DC when

many storage servers send parallel requests to a single receiving server [25]. The small

buffers of the bottleneck switch gets exhaust; hence, causing massive amount of packet

drops and bursty retransmissions.

During Incast when a packet loss event occurs, TCP can face a timeout that can last a

Figure 1.5: TCP Incast scenario: Many servers send data simultaneously to a single re-

ceiver causing switch buffer to overflow.

minimum of 200ms [26]. If any server experiences a timeout event, its response is de-

layed by a minimum of 200ms; meanwhile other servers can complete their responses,

but the client must wait until the delayed response is completed. During this delayed re-

sponse period the client’s link may get idle or the client’s link throughput is drastically

decreased, this phenomena is commonly known as TCP throughput collapse [27, 28], as

6
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shown in Figure 1.6. It can be seen, when the number of servers exceeds 7, the client’s

link throughput is drastically decreased [29]. An overview of Incast can be found in

[30].

Figure 1.6: TCP Throughput Collapse: As the number of servers increase the TCP

throughput drops significantly [28].

1.3 Proposed Solution

Many techniques have been presented to solve the TCP Incast problem, but their target

was either to reduce the TCP retransmission timeout [21], or to manage the switch

buffer occupancy in order to restrict the buffer overflow by utilizing explicit congestion

notification (ECN) and modifying the TCP on both the sender and receiver ends [31].

Also a few of the existing methods are good enough to handle congestion but still they

lag the ability to fully utilize the bottleneck link capacity.

A software-defined networking (SDN) based approach is required which can easily

tackle the Incast. We have proposed a few modifications in dynamic fair-share buffer

7
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policy (DyFaShBuP) [32], and named it as modified dynamic fair-share buffer policy

(M-DyFaShBuP). A broader perspective about working of M-DyFaShBuP is shown

in Figure 1.7. In this figure, different steps are shown which are carried out in our

proposed method. The controller is responsible for making a policy and distributing it

among the storage nodes. In our proposed method, our objective is to provide an SDN

based solution which encompasses;

1. An uncomplicated process to tackle Incast congestion.

2. Elimination of the conventional ECN based detection method.

3. Fair distribution of the policy among all servers.

4. Complete utilization of the bottleneck link capacity.

We have increased the scope DyFaShBuP, by implementing it on both top-of-rack

(TOR) switches and end-of-row (EOR) switches. We have introduced a slight change

in method for dynamically calculating the number of servers. Our experimental results

show that M-DyFaShBuP easily handles the Incast issue and it also fully utilizes the

bottleneck link capacity even if the large number of servers are sending data.

Figure 1.7: General idea about M-DyFaShBup: The process starts as the client request a

file which is stored on multiple storage servers.

8
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1.4 Thesis Organization

Chapter 2 discusses IoT and SDN based cloud data centers. Chapter 3 discusses previ-

ous work regarding Incast. Chapter 4 describes the architecture and proposed method.

Chapter 5 discusses the results and analysis. Chapter 6 concludes the thesis document.
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CHAPTER 2

IoT and SDN Based Cloud Data

Centers

2.1 Internet of Things

The IoT is a kind of a concept that every device on the globe is connected with the inter-

net. The IoT devices have actuators and sensors. These devices collect measurements

by the help of sensors and send them to a relevant IoT application, that is deployed in the

cloud data center. These devices repeatedly collect and forward the data for analysing

and processing on a large scale. This data is need to be stored and utilized intelligently

for actuation and smart monitoring [33]. It is expected that everything around us will

be connected to the internet because of the ongoing trend of ubiquitous cloud comput-

ing [34]. The IoT is transforming the process through which day-to-day tasks are carry

out. Considering the automated home as an example: The electronic devices can be

monitored and controlled remotely by using a smart phone. The IoT is also utilized as

a tool in business environment. It covers variety of applications like transport, utility,

healthcare etc. [35].

The IoT devices generate Big Data [36], which impose a lot of load on the internet in-

frastructure. Hence, most of the organizations go for cloud data centers to decrease the

burden caused by this load. Rather making a computing and a storage infrastructure on

premises, the Cloud Computing allow companies to utilize Virtual Machines (VM). Ta-

10



CHAPTER 2: IOT AND SDN BASED CLOUD DATA CENTERS

Table 2.1: Relationship between IoT and Cloud Computing

Technology Big Data Storage

Space

Computing

Capabilities

Business Ac-

tivities

IoT It generates

Big Data

Small Limited It generates

business

activities

Cloud Com-

puting

It provides the

way to handle

and store Big

Data

Large Virtually

unlimited

It provides the

solution to ex-

pand business

activities

ble 2.1 display the connection between Cloud Computing and IoT. As the total number

of IoT devices and objects are increasing rapidly, so as the amount of data generated

by them is also growing at an unprecedented rate. It is estimated, that by 2025 the total

number of IoT objects will be around 75.44 billion [37–39]. Hence, the dependency of

IoT devices on the cloud is also increasing.

2.2 IoT Architecture

The IoT devices and objects are connected with the internet via an access point while

the IoT applications are deployed in a data center network. Figure 2.1 shows that the

IoT devices are part of access network and the IoT applications are part of a DCN.

In our work, we are considering the DCN where IoT applications are deployed. The

data which is sent by the IoT devices is processed by the IoT applications. The IoT

developers give rent to the cloud solution providers for utilizing the infrastructure on

which the IoT application is deployed.

11
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Figure 2.1: A broader perspective of an IoT architecture: IoT devices are part of the access

network while IoT applications are part of data center network.

2.3 Issues with Traditional Network Devices

The networking devices in a traditional network are preprogrammed with complicated

rules; hence, these rules are difficult to modify in real-time for completing a task. In

addition, these traditional devices are resource-constrained, so they lag the capability

of installing multiple rules for giving an optimal network service [40]. Moreover,

the network administrators also configure protocols manually via low level commands,

by using command line interface (CLI) [41]. Hence, these networks are not able to

adapt policies that are required to fulfil application specific-requirements in real-time

for different IoT applications.

12
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Figure 2.2: An IoT structure based on SDN: IoT applications communicate with the SDN

controller via Northbound API and the SDN controller communicates with the

network switches via Southbound API.

2.4 SDN Based Cloud Data Centers

The SDN paradigm is more appropriate for handling the network cloud because SDN

gives centralized resource management. Consequently, it is more suitable for providing

real-time performance in case of IoT based cloud applications [42]. The Northbound

application programming interface (API) is utilized for connection between the SDN

controller, and the IoT application and Southbound API is utilized for connection be-

tween the network switches and the SDN controller as shown in Figure 2.2 [43].
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Related Work

The problem of Incast Congestion in a data center was initially identified by Nagle et al.

in [29]. Since then the efforts on controlling congestion have gain momentum. These

work can be divided into two categories;

1. Tackling Incast via distributed approach.

2. Tackling Incast via centralized approach.

Figure 3.1 shows a few of the techniques which were utilized earlier for handling the

Incast problem.

3.1 Tackling Incast via Distributed Approach

In this section we will discuss the traditional TCP Incast mitigation techniques for DCN.

These approaches are decentralized.

3.1.1 Fine-grained RTO

In IP networks the default value for the TCP retransmission time out (RTO) is 200msec,

while the round trip time (RTT) for DC is 0.1msec. In case of many to one communi-

cation pattern inside DCN, if any flow faces RTO it will be delayed by 200msec. This

difference of time between RTO and DC RTT causes severe performance degradation

14
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Figure 3.1: Different TCP Incast mitigation methods: Using distributed approach and us-

ing centralized approach.

for TCP inside DCN. Fine-grained TCP RTO is one of the initial techniques which

was proposed by Vasudevan et al. [21] to tackle incast congestion problem in DCNs.

The technique found that by using microsecond-granularity TCP RTO instead of mini-

mum RTO can control Incast. However, the value of fine-grained RTO can effect when

servers try to communicate with clients outside the DCN. Most of systems do not have

such high-resolution timers for measuring such low RTO values.

3.1.2 DCTCP

Alizadeh et al. [31] presented a protocol named as Data Center TCP (DCTCP) which

was designed to operate in a DCN environment. DCTCP algorithm can be dived into

three parts;

• Active Que Management (AQM) scheme is used to notify the senders in case of

buffer over flow. As soon as the queue occupancy inside switch buffer crosses the

15



CHAPTER 3: RELATED WORK

threshold ‘K’ the arriving packets are now marked as Congestion Experienced

(CE).

• The exact sequence of the marked packed (CE) is conveyed to the senders by

sending ACKs.

• The sender reduces the size of congestion window according the status of con-

gestion in the network as perceived by the marked packets.

According to the experimental results, DCTCP could not solve the incast problem when

large number of senders are sending parallel requests.

3.1.3 DT-DCTCP

Chen et al. [44] proposed few modifications in DCTCP. A new marking scheme was

introduced to detect the congestion. Instead of single threshold ‘K’, the DC-DCTCP

uses two thresholds ‘K1’ and ‘K2’ as shown in Figure 3.2. When Queue length in-

side switch buffer increases and crosses threshold ‘K1’ the ECN marking starts ,and

when Queue length inside switch buffer decreases and crosses threshold ‘K2’ the ECN

marking stops. Although the authors of DT-DCTCP found out that by using two thresh-

olds, it makes their proposed protocol more stable; still the problem of Incast with large

number of senders was not resolved.

Figure 3.2: Comparison of threshold level used in DCTCP and DT-DCTCP.
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3.1.4 ICTCP

Wu et al. [45] had proposed an algorithm named as Incast congestion control for TCP

(ICTCP), which was applied on the receiver side. The receiver end does congestion

control because it is able to know the available bandwidth and the throughput of all ex-

isting TCP connections. The receiver end is able to control the sender rate by changing

the receiver window size. The main objective of this method is to decrease the packet

loss instead of recovering after packet loss events. However, this technique has few

weaknesses such as: it is not able to know the status of queue buildup inside switch

buffer which is a very serious issue and also it achieves low throughput in case of less

number of senders.

3.1.5 IDTCP

Wang et al. [46] proposed an algorithm to mitigate Incast is known as Incast Decrease

TCP (IDTCP).This algorithm consist of three parts;

• It constantly monitors the congestion level of link by calculating minimum RTT

and average RTT.

• It dynamically adjust the congestion window (cwnd) as per the congestion level

of bottleneck link.

• It sets the cwnd = 1, if congestion link is fully congested.

However, continuously measuring the congestion level of the link is an exhaustive pro-

cess. It achieves low throughput when number of senders are less.

3.1.6 PAC-TCP

Bai et al. [47] presented a protocol for DCNs known as Proactive Acknowledgement

Control TCP (PAC-TCP) for managing the issue of TCP Incast at the receiver end. The

ACK are not only used for received packets, but they are also used as a trigger for new

sending packets. The algorithm proactively intercept and release the acknowledgement
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packets based on prior calculations. Its working is shown is Figure 3.3. However the

success of algorithm is highly dependent on threshold value of switch; a small variation

in switch threshold would lead to performance degradation.

Figure 3.3: The basic idea of working of PAC-TCP [47].
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3.1.7 FATCP

A switch based method for improving throughput under TCP Incast scenario was pro-

posed by Lee et al. [48]. A slight modification in explicit congestion notification (ECN)

method was introduced. Proposed algorithm can be divided into two parts;

• Target flow is identified.

• Congestion control modification.

Its working is shown is Figure 3.4. The algorithm was limited to target small number

of flows; also hardware modifications were required.

Figure 3.4: The basic idea of working of FATCP [48].
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3.2 Comparison Between Different Decentralized Incast

Mitigation Techniques

Table 3.1 shows various decentralized Incast mitigation techniques along with their

features and limitations.

Table 3.1: TCP Incast Handling Techniques for Decentralized Data Center Networks

Incast Solu-

tions

Approach Features Limitations

Fined-

grained

RTO [21]

Distributed Decreasing RTO to miti-

gate Incast

High precision timers are

required for mitigating In-

cast problem in data cen-

ters, which is a very chal-

lenging task

DCTCP[31] Distributed Sender based congestion

control scheme which uses

ECN for congestion detec-

tion

Scalability issues

DT-

DCTCP[44]

Distributed Sender based Incast mit-

igation method which

uses ECN with a different

packet marking scheme

to increase stability of

DCTCP

Scalability issues

ICTCP[45] Distributed Receiver based Incast mit-

igation by updating ACK

window

Tackling Incast scenario

when the receiver and

senders are not connected

with the same switch is a

major concern
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IDTCP[46] Distributed Dynamically adjust the

congestion window ac-

cording to congestion level

of bottleneck link

Bottleneck link is under-

utilized when concurrent

senders are less and scal-

ability is highly dependent

on buffer size

PAC-

TCP[47]

Distributed Receiver based congestion

control scheme which uses

ECN for congestion detec-

tion

A slight variation in cal-

culated parameters could

lead to performance degra-

dation

FAT-

TCP[48]

Distributed Switch based method for

mitigating Incast

Identifying target flows

when number of flows are

large is a major challenge
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3.3 Tackling Incast via Centralized Approach

In this section we will discuss the existing SDN based TCP Incast mitigation techniques

for DCN.

3.3.1 OpenTCP

Ghobadi et al. [49] has proposed a framework named as OpenTCP. It uses an appli-

cation Oracle which runs on the SDN controller to collect network statistics from the

switch. The congestion control agents (CCA) are installed on the hosts. The Oracle

distributes the policy to the CCA via switch. The policy is defined by the network ad-

ministrator. CCA can choose between different TCP variants as per the defined policy.

A schematic view of the OpenTCP working is shown in Figure 3.5. However, it is only

a framework to tackle Incast, more work is required e.g. designing a proper congestion

control policy. Also it needs extra care while gathering topology information and buffer

statistics, otherwise it may increase the overhead.

Figure 3.5: A schematic view of the OpenTCP working [49].
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3.3.2 OTCP

An SDN based approach named as Omniscient TCP (OTCP) was proposed by Jouet

et al. [50] to mitigate incast. OTCP collects various network parameters e.g. latency,

buffer size and throughput to measure different TCP parameters such as maximum RTO,

minimum RTO, maximum value of congestion window, and initial value of congestion

window. These TCP parameters are tuned to control Incast. However, the calculation of

these parameters causes enough overhead for the controller. Also elephant flows suffer

from queue buildup.

3.3.3 SED

SED a software-defined approach was presented by Lu et al. [51] to solve the Incast

problem in DCN. It divides the flows into two types: deadline and non-deadline flows.

The non-deadline flows are throughput sensitive while the deadline flows are delay

sensitive. Congestion process is detected by the switch as it signals the congestion

to the controller if switch buffer overflows. The non-deadline flows are always given

a sending rate of 1 MSS. Global information flow table (GIF) is maintained by the

controller which is used to keep the record of flow size, flow identification number,

deadline etc. The table is sorted according to the deadline. The basic idea of working

of SED is shown in Figure 3.6. However the goodput of SED decreases sharply as the

number of senders are more than 40. Here we argue that SED also require to store and

process such a comprehensive table (GIF) which causes significant overhead for the

controller, the table maintained by the controller should be precise and less complex in

calculations.

3.3.4 SDTCP

Lu and Zhu [52] proposed SDTCP which aims to achieve high throughput, low latency,

and better burst tolerance. The congestion is detected when the queue built up inside

SDN switch crosses the threshold. Upon detection of the congestion, SDN switch no-

tifies the controller. The controller instructs the switch to modify the ACK window
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Figure 3.6: The basic idea of working of SED [51].

(awnd) in order to curb the congestion. The proposed mechanism in aimed to target

the elephant flows and create room for mice flows. A modified version of SDTCP

was also presented by Lu et al. [53] in which there are three different threshold lev-

els upon which three types of congestion notifications are generated such as low level

congestion notification, medium level congestion notification and high level congestion

notification. SDN controller give instructions to the SDN switch to change the awnd as

per received congestion notification. Experimental results show SDTCP performs bet-

ter than DCTCP but still there is no mechanism to deal with the starvation of elephant

flows.

3.3.5 SIG

Xu et al. [54] presented a scheme, SIG which splits the senders into smaller groups and

then allow each group to transmit data at a time. SIG mechanism is call on by the SDN

controller when many senders want to send requests to a single receiver. However, it

has some scalability issues because it only allow 30 senders to transmit data at a time.
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3.3.6 SICCQ

A centralized approach for mitigating Incast using queue based monitoring (SICCQ)

was presented by Abdelmoniem et al. [55, 56]. The controller keeps track of TCP

SYN/FIN flags and calculate a weighted moving average of the buffer occupancy upon

which it predicts that the congestion will occur. If the queue length exceeds the certain

threshold the controller sends an INCAST ON message to the hypervisor. The hyper-

visor starts rewriting the ACK window to 1 MSS/RTT. When buffer queue occupancy

decreases below 20 percent threshold, an INCAST OFF message is sent by the con-

troller which is intercepted by the hypervisor to stop modifying the ACK window. Thus

senders start regaining there original sending rates. However, continuously measuring

the buffer occupancy and predicting Incast is a cumbersome process for the SDN con-

troller. The INCAST ON and INCAST OFF messages are increasing overhead because

the controller is continuously communicating with the hypervisor, also the hypervisor

based solutions are better in virtualized environment.

3.3.7 DyFaShBuP

Bangash et al. [32] presented a centralized approach named as DyFaShBuP to mitigate

Incast in storage clusters. The SDN controller dynamically calculates the total number

of attached storage servers based on IP or MAC addresses. According to the network

conditions and storage servers the SDN controller makes a policy, distributes it among

all storage nodes via OpenFlow switches. The sender thus adjust their sending rate ac-

cording to the received policy. Our proposed method is also based on DyFaShBuP with

a slight modification in the process for calculating storage nodes.
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3.4 Comparison Between Different Centralized Incast

Mitigation Techniques

Table 3.2 shows various centralized Incast mitigation techniques along with their fea-

tures and limitations.

Table 3.2: TCP Incast Handling Techniques for Centralized Data Center Networks

Incast Solu-

tions

Approach Features Limitations

Open

TCP[49]

Centralized An automated framework

for tuning TCP which can

choose between different

TCP variants as per the de-

fined policy

Computation Overhead

OTCP[50] Centralized Mitigate Incast by tuning

various TCP parameters

Unable to solve Incast

problem with large flows

SED[51] Centralized Mitigating Incast by sort-

ing a GIF table on basis of

flow deadline

Computation Overhead

SDTCP

[52], [53]

Centralized Controller uses ECN en-

abled switch for detect-

ing congestion and updat-

ing ACK window

Scalability Issues

SIG[54] Centralized Controller limits the num-

ber of senders by divid-

ing all senders into smaller

group and allowing one

group at a time

Scalability Issues
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SICCQ

[55], [56]

Centralized Controller predicts conges-

tion and signals the hyper-

visor for updating the ACK

window

Computational Complex-

ity

DyFaShBuP

[32]

Centralized SDN Controller formulates

and distributes the policy

to the sending servers for

adjusting their sending rate

No details about, how IP

or MAC address is used for

calculating number of stor-

age nodes
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Architecture and Proposed Method

We proposed a technique, modified dynamic fair-share buffer policy (M-DyFaShBuP)

for mitigating Incast. It not only resolves the TCP throughput collapse problem, but also

it completely utilizes the bottleneck link capacity. Our aim is to design an algorithm for

the SDN controller, which simplify the calculation on controller. The SDN controller is

the main entity in our proposed method, which makes and distributes the policy to the

servers.

Figure 4.1: A normal process of communication in data centers: Storage servers send

data, in the form of flows, simultaneously to the client server; SDN controller

install flow rules in switch.

A normal method of communication inside a cluster based storage system is shown in
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Figure 4.1: The storage servers transmit their portion of data to the client server via

flows and the controller installs flow rules in the switch. These flows combine to pro-

duce the application data [57]. We implemented our proposed technique by utilizing

the programmable nature of SDN controller, which can operate in many-to-one com-

munication scenario.

4.1 Design Rationale

In contemporary data centers, TOR design and EOR design are mostly used. In TOR

design, all the servers in a single rack are connected with a switch that is mounted on top

of rack. In EOR design the servers in an entire row, which include all racks are directly

connected to a switch placed at the corner of each row [58]. Many of the methods used

earlier for controlling Incast have only considered TOR design. In our approach, we

considered both TOR and EOR designs.

Figure 4.2: TOR approach for data centers: Server to switch link is 1 Gbps and switch to

switch link is 10/40 Gbps.
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Figure 4.2 depicts the TOR design, where all servers in a rack are connected to a switch

with 1/10 Gbps link and all switches are interconnected with a 10/40 Gbps link. While

Figure 4.3 depicts the EOR design, where servers in an entire row are connected to

single switch with 10 Gbps link and all switches are interconnected with a 10/40 Gbps.

Figure 4.3: EOR approach for data centers: Server to switch link is 10 Gbps and switch

to switch link is 10/40 Gbps.

4.1.1 Role of SDN Controller

The controller plays an important role in our design while mitigating Incast. It dynam-

ically counts the total servers involved with the help of TCP SYN/FIN counters. The

separate flow counters are maintained by the SDN controller for each server. As per

the total number of servers in active state, the SDN controller calculates a fair-share for

each server. Observing the network statistics and the number of servers in active state,

the controller devise a policy and distribute it among all servers as shown in Figure 4.4.
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Figure 4.4: SDN Controller is responsible for implementing and distributing the policy

among all storage servers.

4.1.2 SDN Switch

In our proposed method, the switch has the minimum role to play while tackling Incast.

We eliminated the conventional ECN mechanism, which was used earlier for congestion

detection. It not only decreases the cost, but it also reduces the burden on SDN switch.

We programmed the switch with a simple Copy-to-Controller rule for SYN/FIN pack-

ets [59]. The switches will send a copy of SYN/FIN packet towards controller. We

considered a TOR switch having 48 ports and 1 GB Ethernet interface for each port and

an EOR switch with 128 ports and 10 GB Ethernet interface for each port. Our design

enable expansion; hence, in future the network can be upgraded from 1/10 GE to 10/40

GE.
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4.1.3 Storage Servers

We have incorporated most commonly used Rack servers in our design. 48 servers are

placed in a single rack. We have established a 1 GB Ethernet link for each server when

they are connected with a TOR switch and a 10 GB Ethernet link for each server when

they are connected with an EOR switch. These servers are installed with a software

agent. The agent updates the window size of servers according to the policy it receives

from the controller.

4.1.4 Bandwidth Delay Product

The bandwidth delay product (BDP) decides the total amount of data that can be sent

on a link in a given time period. In data centers the value of RTT is 1 ms. This is

the main reason due to which, links are not able to support large amount of data when

multiple servers are sending data to a single receiver. During Incast scenario, when

Figure 4.5: Receiver BDP limits the rate of sending servers to avoid Incast.
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the aggregate BDP of multiple sending servers’ link becomes more than the BDP of

the receiver’s links; the receiver’s link becomes a bottleneck. Figure 4.5 shows that for

avoiding Incast, we have to control the sending rate of servers to a limit, where they

never exceeds the BDP of a single receiver’s link. This is the main reason, we have

utilized BDP in our method for calculating the equitable share for each server.

4.2 M-DyFaShBuP

According to the design rationale discussed above we formulated M-DyFaShBuP. We

have revised the process by which the number of servers were calculated in [32]. We

presented an algorithm that can dynamically calculate the number of servers using a

separate SYN/FIN counter for each server. The controller maintain these counters and

it only requires to store an integer which is used to represent the total number of flows

generated per server. Earlier in [51], per flow statistics such as min RTT, max RTT

etc. were required by controller for handling congestion. This not only increased the

overhead but it also increased the computational complexity for the controller. In our

proposed algorithm we only require TCP SYN/FIN packets which are flow initiation

and flow termination packets. These packets are used by the controller for implementa-

tion of policy. The proposed algorithm is shown below and the parameters used in this

algorithm are described in the Table 4.1.

The algorithm starts as the client server requests a file from multiple servers as shown

in Figure 4.6 and the SDN controller installs the Copy SYN/FIN rule in the switch

as shown in Figure 4.7. The file request is sent to all the servers on which the file is

distributed.

The mechanism of M-DyFaShBuP algorithm is divided into following steps;

• Switch will forward all TCP SYN/FIN packets to the SDN controller.

• If the received packet has a SYN bit flag ON, then the controller will increment

the flow counter by 1.

• If the received packet has a FIN bit flag ON, then it will decrement the flow
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Algorithm 1: Algorithm for SDN Controller
Input: P

Output: Fs

1 Install Copy SYN/FIN Rule in SDN Switch Function (P):

2 if SY N − flag(P ) then

3 Cs = Cs + 1 ;

4 end

5 if FIN − flag(P ) then

6 Cs = Cs - 1 ;

7 end

8 return Cs

9 End Function

10 Function (Cs):

11 NA = Number of Active Cs Counters ;

12 return NA

13 End Function

14 Function (NA):

15 BDP = Cp * RTT;

16 Fs = ( BDP)/ NA ;

17 if NA − changes; then

18 Update Fs ;

19 Distribute Fs to Attached Servers ;

20 end

21 return Fs

22 End Function
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Table 4.1: Table of parameters for M-DyFaShBuP Algorithm

Parameters Description

N Total number of Source Servers

Cs Set of Storage Servers Counter = [CS1, CS2,..,CSN]

P Packet (SYN or FIN)

NA Total number of Active Counters

Cp Bottleneck Link Capacity

RTT Common Round Trip Time

Fs Fair-share for each Server

BDP Bandwidth Delay Product

counter by 1.

• All servers will have a separate TCP SYN/FIN counter, that is maintained by the

SDN controller.

• The controller will count the total number of counters which are in active state

(NA).

• Now, the controller will calculate fair-share by using the following formula;

BDP = Cp * RTT;

Fs = BDP/ NA;

• It will distribute the fair-share to all servers.

• The controller will update the fair-share, whenever the number of active counter

changes.

M-DyFaShBup is a controller based technique for tackling Incast. The controller plays

the principal role from policy making till policy implementation. Figure 4.8 shows a

schematic view of M-DyFaShBuP architecture. The figure explains the entire process

of M-DyFaShBuP. It shows that the multiple storage servers send their portion of data

in the form of flows, while responding to a client’s request. The TCP SYN/FIN packets
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Figure 4.6: Client server requests a file from multiple servers.

Figure 4.7: SDN controller installs the Copy SYN/FIN rule in the switch.
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are forwarded to the controller. The SDN controller has maintained a separate flow

counter for each server. An equitable share for each server is calculated by counting the

number of counters which are active. SDN controller makes and distributes the policy

to all storage servers. The servers modify their sending rates as per the policy they

received by the controller.

Figure 4.8: Schematic diagram of M-DyFaShBup architecture: The controller formulates

and distributes the policy to all storage servers.
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4.3 Avoiding Incast for IoT Applications via M-DyFaShBuP

The instances are hosted on the data center infrastructure [60], that can be a same physi-

cal machine, or on different machines in same rack, or on different machines in different

racks. The tenants buy VMs on rent for deploying their IoT Applications. Because of

large amount of data influx, efficient data communication is required among the ma-

chines in a data center. Hence, it is important that the protocols used for data commu-

nication are chosen carefully, otherwise it could result in increased latency or reduced

throughput.

The process for managing the traffic in a data center have a significant impact on the

performance of IoT services. The TCP Incast results in increase latency, that can affect

many business activities. Moreover, under Incast scenario the data centers are not able

to handle large number of IoT applications. Hence such a situation can impact the rev-

enue of business organizations. Therefore, we proposed M-DyFaShBuP for avoiding

Incast in cloud data centers and for supporting large number of IoT applications as de-

picted in Figure 4.9. An efficient cloud solution can give rise to the revenue of business

organizations. M-DyFaShBuP provides high throughput for supporting multiple IoT

services.
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Figure 4.9: IoT and cloud data centers: During Incast, less number of IoT applications

are supported while avoiding Incast via M-DyFaShBuP increases the number

of IoT applications.
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Experimental Results and Analysis

We used MATLAB simulation environment for calculating our results. We have in-

cluded TOR and EOR designs in our experimental setups. The scenarios which we

have created in our experimental setups, considered a client server requesting a file dis-

tributed across multiple servers. In our results, we have shown a comparison between

the numbers of servers and bottleneck link throughput, as the increase in number of

servers plays an important role in causing Incast. .

5.1 Experimental Setup for TOR Design

Figure 5.1 shows the experimental setup for TOR design. All the servers in a rack are

connected to a single TOR switch, placed on top of rack with a 1 Gbps link and all

switches are networked via a 10 Gbps link. Table 5.1 shows various parameters that are

used in experimental setup for TOR design. We have developed two types of scenarios

while calculating the results;

• An intra-rack scenario: Client server requests an ebook.

• An inter-rack scenario: Client server requests a documentary.

Most of the earlier work on Incast have only considered an intra-rack scenario. We have

also considered an inter-rack scenario which is more realistic and it has increased the

scope on this work.
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Table 5.1: Table of parameters used in TOR Simulation

Parameters Value

Number of Servers (intra-rack) 30 (can increase)

Number of Servers (inter-rack) 60 (can increase)

Number of Controllers 1

Number of Switches Multiple

Bottleneck link Capacity 1 Gbps

Switch to Switch Bandwidth 10 Gbps

Buffer Capacity 150 KB

RTT (intra-rack) 0.6 ms

RTT (inter-rack) 0.8 ms

Figure 5.1: Experimental Setup for TOR design incorporating different scenarios.
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5.2 Experimental Results for TOR Design

5.2.1 An Intra-Rack Scenario: Client Server Requests an Ebook

Suppose a client requests an ebook that is stored across 30 server. In this scenario the

client and the storage servers are present in a same rack. let the RTT for this scenario be

0.6 ms. All servers including client are connected to same TOR switch with a 1 Gbps

link. The client’s link BDP = 0.6ms * 1 Gbps, which is equal to 75 KB. It is equally

divided among all 30 servers and a single server gets a 2.5 KB fair-share, if all 30 servers

are sending data. Figure 5.2 shows that the bottleneck link capacity is fully utilized even

if the number of sending servers are changing. The client server successfully receives

the requested file from multiple storage servers without having any link degradation.

Figure 5.2: Throughput versus numbers of servers when a client requests an ebook in an

intra-rack arrangement.
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5.2.2 An Inter-Rack Scenario: Client Server Requests a Documen-

tary

In this scenario we supposed a client requesting a documentary that is stored across 60

server. The client server and the storage servers are present in different racks. let the

RTT for this scenario be 0.8 ms. All servers including client are connected to a TOR

switch placed on different racks with a 1 Gbps link. The client’s link BDP = 0.8ms *

1 Gbps, which is equal to 100 KB. It is equally divided among all 60 servers and each

server gets a 1.66 KB fair-share, if all 60 servers are transmitting data. Again Figure 5.3

shows a similar behaviour such as the bottleneck link capacity is fully utilized even if the

number of sending servers are increasing. Again the client server successfully receives

the requested file from multiple storage servers without having any link degradation.

Figure 5.3: Throughput versus numbers of servers when a client requests a documentary

in an inter-rack arrangement.
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5.2.3 Analysis

In TOR design, we considered two scenarios in which a client is requesting an ebook

and a documentary that is stored across multiple servers in an intra-rack and an inter-

rack arrangements respectively. It can be observed, when a client requests an ebook,

the minimum value of fair-share for a single server is 2.5 KB, which means enough

window size is available that can be divided further to increase the number of servers.

The maximum value of fair-share is equal to 75 KB which is actually same as the client’s

link BDP. It is still less than the switch buffer capacity. It means that the client’s link is

the bottleneck. Likewise, in other scenario, when a client requests a documentary that

is distributed on 60 servers, the minimum value of fair-share is 1.66 KB, again it shows

that number of servers can increase. The maximum fair-share is 100 KB that is again

less than switch buffer capacity; hence ensuring that switch buffer is not the bottleneck.

Figure 5.4 shows the comparison between both scenarios. In this figure, the distribution

of BDP is shown via a 3D diagram.

Figure 5.4: Fair-share vs number of servers: Comparison of BDP between different sce-

narios used in TOR setup.
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5.3 Experimental Setup for EOR Design

Figure 5.5 shows the experimental setup for EOR design. All the servers in an entire

row including all racks are connected to a single EOR switch, placed at the end of each

row with a 10 Gbps link and all switches are networked together via a 10/40 Gbps link.

Table 5.2 shows various parameters that are used in experimental setup for EOR design.

Again we have developed two types of scenarios while calculating the results;

• An intra-row scenario: Client server requests an annual report.

• An inter-row scenario: Client server requests a movie.

Figure 5.5: Experimental Setup for EOR design incorporating different scenarios.
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Table 5.2: Table of parameters used in EOR Simulation

Parameters Value

Number of Servers (intra-row) 100 (can increase)

Number of Servers (inter-row) 150 (can increase)

Number of Controllers 1

Number of Switches Multiple

Bottleneck link Capacity 10 Gbps

Switch to Switch Bandwidth 10/40 Gbps

Buffer Capacity 2 MB

RTT (intra-row) 1 ms

RTT (inter-row) 1.2 ms

5.4 Experimental Results for EOR Design

5.4.1 An Intra-Row Scenario: Client Server Requests an Annual

Report.

Similarly, we supposed a client requesting an annual report that is stored across 100

server. In this scenario the client and the storage servers are present in the same row but

might be in different racks. let the RTT for this scenario be 1 ms. All servers including

client are connected to same EOR switch with a 10 Gbps link. The client’s link BDP =

1 ms * 10 Gbps, which is equal to 1.25 MB. It is equally divided among all 100 servers

and a single server gets a 12.5 KB fair-share, if all 100 servers are sending data. Again

it can be observed from Figure 5.6 that the bottleneck link capacity is fully utilized even

if the number of sending servers are changing. The client server successfully receives

the requested file from multiple storage servers without causing Incast.
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Figure 5.6: Throughput versus numbers of servers when a client requests an annual report

in an intra-row arrangement.

5.4.2 An Inter-Row Scenario: Client Server Requests a Movie

In this scenario we supposed a client is requesting a movie that is stored across 150

server. The servers and client are connected to different EOR switches with a 10 Gbps

link. let the RTT for this scenario be 1.2 ms. The client’s link BDP = 1.2 ms * 10

Gbps, which is equal to 1.5 MB. It is equally divided among all 150 servers and each

server gets a 10 KB fair-share, if all 150 servers are transmitting data. Again Figure

5.7 shows a similar behaviour such as the bottleneck link capacity is fully utilized even

if the number of sending servers are increasing. Again the client server successfully

receives the requested file from multiple storage servers without causing Incast.

5.4.3 Analysis

Similarly, in EOR design, we considered two scenarios in which a client is requesting

an annual report and a movie that is stored across multiple servers in an intra-row and
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Figure 5.7: Throughput versus numbers of servers when a client requests a movie in an

inter-row arrangement.

an inter-row arrangements respectively. It can be observed, when a client requests an

annual report, the minimum value of fair-share for a single server is 12.5 KB, which

means enough window size is available that can be divided further to increase the num-

ber of servers. The maximum value of fair-share is equal to 1.25 MB which is actually

same as the client’s link BDP. It is still less than the switch buffer capacity. It means that

the client’s link is the bottleneck. Likewise, in other scenario, when a client requests

a movie that is distributed on 150 servers, the minimum value of fair-share is 10 KB,

again it shows that number of servers can increase. The maximum fair-share is 1.5 MB

that is again less than switch buffer capacity; hence ensuring that switch buffer is not

the bottleneck. Figure 5.8 shows the comparison between both scenarios. In this figure,

the distribution of BDP is shown via a 3D diagram.
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Figure 5.8: Fair-share vs number of servers: Comparison of BDP between different sce-

narios used in EOR setup.

5.5 Discussion and Future Prospects

M-DyFaShBuP provides fair allocation of buffer capacity for each server. The whole

process of M-DyFaShBuP, starting from designing a policy till distributing it among

all servers, must be fast enough, else the client’s link could not be fully utilized and

client would get a lower throughput. The TCP SYN/FIN counter based calculation of

the policy makes this process rapid enough to achieve high throughput for the client’s

link. Table 5.3 show a comprehensive comparison of M-DyFaShBuP with DCTCP [31]

and SDTCP [52].

We found that as the number of servers are increased, the congestion window size is

also decreased. A problem arises in case of mice flows is that the number of ACK

packets are also increased which is a serious problem. In future, we will try to cater

this issue. Also we will try to develop a more complex situation considering multiple

clients; moderately a many-to-many communication scenario and we will also try to

incorporate multiple bottleneck points. Also more research work is required for secure

integration of Cloud Computing and IoT.
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Table 5.3: Comparison of M-DyFaShBuP with DCTCP and SDTCP

Technique Approach Scalability Design Congestion

Signal

(Use of

ECN)

Switch De-

pendency

Bandwidth

Utilization

(Bottleneck

Link)

DCTCP

[31]

Distributed Limited TOR Yes Highly

depen-

dent upon

threshold

set inside

switch

buffer

Underutilized

SDTCP

[52]

Centralized Limited TOR Yes Continuously

measure

queue

length in-

side switch

buffer

Underutilized

M-

DyFaShBuP

Centralized Unlimited TOR

and

EOR

No Forward

a copy

of TCP

SYN/FIN

packets to

controller

Fully Uti-

lized
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CHAPTER 6

Conclusion

In this thesis document, we have proposed M-DyFaShBuP, a centralized controller-

based method for tackling the Incast in data centers. The SDN controller continually

monitors the arrival of TCP SYN/FIN packets and formulates a fair-share policy and

distributes it among all servers. We have eliminated an extra step required for moni-

toring the congestion level on the switch. Moreover, M-DyFaShBuP does not require a

switch or a receiver for modifying the TCP ACK window field. We have handled the

Incast issue for both TOR and EOR designs. Our results verify that M-DyFaShBuP pro-

vides full utilization of client’s link capacity. It provides high throughput for supporting

multiple IoT applications.
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