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ABSTRACT 

Wavelet based statistical image denoising is vital preprocessing technique in real 

world imaging. The existing techniques are based on time-frequency domain where 

the wavelet coefficients need to be independent or jointly Gaussian. In denoising 

arena there is a need to exploit the temporal dependencies of wavelet coefficients 

with non-Gaussian nature.  

Here we present a denoising strategy based on Hidden Markov Model (HMM) based 

on Multiresolution Analysis in the framework of Expectation-Maximization 

algorithm. Proposed algorithm applies denoising technique independently on each 

frame of the video. It models Non-Gaussian statistics of each wavelet coefficient 

and captures the statistical dependencies between coefficients. 

 Denoised frames are restored inversely by processing the wavelet coefficients. 

Significant results are visualized through objective as well as subjective analysis. 
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CHAPTER 1 

INTRODUCTION 

Video denoising is based on time-frequency data of a video signal. Image denoising is 

accomplished by various methods: Time-domain, Frequency-domain, and Time-

Frequency combination. Spatial domain methods do not account for the temporal 

correlation between frames [1-3]. From an image Spatial noise is being successfully 

removed by Spatial filters resulting in achievement of high gain failed in restoring the 

edges particularly in less noisy areas [4]. Time domain technique considered inter-frame 

correlation and performed well for motionless videos. [5]. 

Temporal filters failed to remove the noise and produced fewer blocking artifacts, 

causing blurring. On the other hand, in case of motioned videos, a temporal filter was 

not able to give good results in noise removing and delivered fewer blocking artifacts 

and caused blurring. Hence improved denoising algorithm is need of time, in order to 

improve the performance of image processing [6,7,8]. 

C.P. Loizou [10] recommended linear local statistics filter DsFlsmv, followed by 

nonlinear geometric filter DsFgf4d, and linear homogeneous mask area filter 

DsFlsminsc. The proposed method, improved class separation between the 

asymptomatic and symptomatic classes. However, due to average filtering, sharp 

features and noisy boundaries were left unfiltered. 

Methods in image denoising is primarily centered around wavelet transform. A 

denoising technique based on Double Density Dual Tree Complex Wavelet Transform 

(DDDT-CWT),[11] YCbCr and YUV space was implemented as multi-directional 

wavelet transform, where the edges and structural contents were restored. However, 

degradation in performance was seen significantly in real time scenarios. 

Previously [13] used ‘BKMMSEL’ and ‘BKMAPL’ functions on local BKF density, 

for noise free modelling of 3D discrete complex wavelet coefficients in each sub-band. 

The tested video sequences were corrupted with different types of noises i.e. AWGN, 



 

Poisson, non-stationary and speckle noise.  Noise reduction was enhanced with 

increased computational expense. 

Sugandha Agarwal made a  comparison [15] on the productivity of wavelet based 

thresholding techniques with presence of speckle noise for different wavelet families 

i.e. Haar, Morlet, Symlet, Daubechies in de-noising medical imaging resonance of brain 

was proposed. It was found that wavelet transform was proficiently more better in 

analyzing images at various resolutions but the edges were not restored and caused 

blurring. 

A HMT model with 2D- DWT (Discrete Wavelet Transform) was implemented using 

HMT model in context with Expectation-Maximization algorithm [16] independently 

on each video frame. Thus, bringing about fast execution with less computational time, 

while the improvement needs to be accomplished for enhanced video denoising. 

Michele Claus recommended ViDeNN [17] approach was adopted for Video 

Denoising. Thereby, combining two systems. Implementing first Single Frame Spatial 

Denoising.Then Temporal Denoising with a window of three frames, in a single feed-

forward procedure. However, the limitations of this method was additional 

computational power. 

1.1 Research already carried out  

Medical videos i.e. ultrasound, radiology and capsule endoscopy etc are subject to noise 

attenuation. To address this, despeckling filters were used on ultrasound videos of 

common carotid artery (CCA). Filters were based on nonlinear filtering (DsFkuwahara), 

hybrid median filtering (DsFhmedian), linear filtering (DsFlsmv) and speckle reducing 

anisotropic diffusion (DsFsrad) filtering [12]. Resulting in better visual quality and 

improved performance in real time. 

A new denoising method for medical images e.g. Ultrasound, X-ray and MRI images, 

was based on Daubechies Complex Wavelet Transform [9]. SDW14 wavelet 

significantly removed the noise and preserved the details i.e. the local shifts and 

orientations were preserved with high computational time.  



 

Denoising in CT images was done by another technique, with edge conservation in 

tetrolet domain (Haar-type wavelet change) [14]. In this a locally adaptive shrinkage 

rule was applied on high frequency tetrolet coefficients to lessen noise more viably 

while preserving the edges and geometrical structures .However, the update procedure 

was slow for large objects. 

1.2 Thesis Statement 

Here we present a spatial-temporal filtering framework that considerably removes 

speckle noise from images and videos.  

The proposed strategy manages non-Gaussian behavior of wavelet coefficients that are 

frequently experienced practically and gives proficient outcomes for despeckling of 

images too. The results displayed that the proposed strategy not only removed noise but 

retained almost all structural information of every frame. 

1.3 Objective 

Primary objective of the thesis was to develop a wavelet based examination  of  2D 

signals using HMM. The proposed model captured the non-Gaussian statistics of each  

wavelet coefficient and exploited inter scale dependences between them. The secondary 

objective was to apply expectation maximization algorithm in context with probabilistic 

graphical models to accomplish signals compression mainly for denoising. 

1.4 Methodology  

The methodology used is mentioned below 

• Primary step was development of wavelet domainmodel forgetting initial 

properties for wavelet transforms. This scheme was further diversified using 

probabilistic graphical models toexecute second wavelet transform. 

• Secondary step was the generation of an algorithm to carryout de-noising on two 

dimensional video sequences. 

 



 

1.5 Advantages   

Increased efficiency and reduced computational complexity proved to be useful in many 

perspectives, i.e. 

• De-noising of signals 

• In signals classification  

• In Detecting signals 

• Estimating signals 

• Compression of signals 

1.6 Areas of Application   

This technique has following applications in;  

• Image Processing for imaging systems, computers and digital cameras. 

• Processing Speech Signals for interpreting and processing words spoken. 

• Representing electrical signals as sound in Audio Signal Processing . 

• Wireless Communications i.e. demodulation, Control Systems equalization. 

• Feature Extraction like speech recognition and image understanding. 

• In Compression techniques on Videos compression ,Image compression and 

Audio compression. 

1.7 Thesis Outline  

This thesis contains following chapters   

Chapter 1:  

Gives introduction , problem statement, and thesis objective.  

Chapter 2:   

Consists of preliminary introduction on Wavelet Transform with basic perception of 

tactics used for processing statistical signals.   

Chapter 3: 

Explains in detail the probabilistic models .   

Chapter 4:   

Discusses the Gaussian Models and their different types. 



 

Chapter 5: 

This is about the Hidden Markov model framework. 

Chapter 6:   

 Image Statistical Models for Time-Frequency domain that helps in signal denoising   

.   

Chapter 7:   

Presents different results and simulation. 

Chapter 8:  

Contains Conclusion  with future work . 

 

 

 

  



 

CHAPTER 2 

Wavelet Transform Analysis 

Since 1950’s the Fourier transform was the backbone of transform-based image 

processing but it was much easier to transmit, compress and analyze the two 

dimensional signals by wavelet transform. Wavelets are one of the most generalized 

way to analyze and represent multi resolution images. The wavelet transform methods 

were mathematically developed in 1980s. These methods can decompose signals of 

finite energy in spatial domain into a set of  to analyze them spatial domain.  

Wavelet transform is based on wavelets (small waves) as opposed to Fourier transform 

whose basis functions are sinusoids. Fourier transform that only provide the frequency 

information of signals. Information based on  time and frequency of a signal obtained 

through wavelet transform,  has better local capacity of the time and frequency.  

2.1. Continuous Wavelet Transform(CWT) 

CWT is like  STFT(Short Term Fourier Transform ).In both, the signal gets multiply by 

the function. Unlike STFT,  Fourier transform of windowed signal is not taken and 

variable size window is used for each spectral component. The CWT presents finer 

time-frequency localization by making time-frequency presentation of  signal. 

The CWT of signal z(t) is: 

                       

And 

                          

 



 

Where * denotes complex conjugate of ψτ,s(t) and z(t) is the signalto be examined, τ 

is translation factor and s is scaling factor .ψτ,s(t)is mother wavelet and is the 

transforming function. 

Inverse CWT can be applied to get reconstructed signal . 

                          

where Mψ
2  is a constant called admissibility constant that depends on wavelet used.  

Morlet wavelet, Mexican hat wavelet and Paul wavelet are some examples of CWT. 

Wavelets determined in series in CWT, for reconstruction of a signal that has highly 

redundant information. Comparison of CWT with DWT shows that  DWT has reduced 

computational complexity while giving appropriate information of actual analyzed 

signal. 

2.2 Discrete Wavelet Transform (DWT) 

In DWT, wavelets are sampled discretely. The main advantage over Fourier transform 

lies in the temporal resolution  i.e. capturing time- frequency data. The wavelets gets 

generated from "mother" wavelet using offsets with dilation parameters in correlation 

with the two parameters , 

                                

Where the expansion coefficients are given by 

                        

and the condition wavelets obey is given as 

                                                      
 



 

Here Ψ is mother wavelet, x is dilation parameter and y is offset parameter. 

 

 

2.2.1 Multiresolution analysis 

Multiresolution analysis provides a hierarchical framework for image manipulation and 

analyzation. Multiresolution involves two-dimensional analysis and decomposition of 

image data. It was basically designed to work  where low frequency elements are more 

persistent. High frequency elements exist for short durations within a signal. Wavelet 

analysis is an example of multiresolution analysis. 

The signalX[n] is passed via sequence of filters. Go is  low pass filter andHo is high pass 

filter, n is an integer. For each level, the high pass filters provide detailed information 

of input signal X[n]; shown by d[n], whereas  low pass filter  manages scaling function 

that gives estimation of the signal a[n]. 

The filtering process performs the down sampling and continues until the desired level 

is achieved. The number of levels are determined by the length of signal.  

 

Reconstruction is accompanied through the upsampling by first passing sampled signal 

through high pass filters than low pass filters .Then adding simultaneously to get the 

original or reconstructed signal. G1 and H1as synthesis filters. 



 

 

2.2.2 Perfect Reconstruction Conditions 

To achieve better remodeling construction ,we need synthesis and analysis of filters for 

satisfaction of  some conditions. Go(z)is low pass analysis filters and G1(z) as low pass 

synthesis filters. Ho(z) and H1(z)are high pass analysis and synthesis filters 

respectively. Following conditions must be fulfilled for  complete reconstruction. 

                                    

The accuracy of perfect reconstruction can be checked through different parameters like 

Peak Signal to Noise Ratio . In some applications there is no need for reconstruction 

likely in pattern recognition . However, these applications are not applicable in above 

mentioned conditions. 

2.3 Wavelet Families 

Wavelet basis functions often behaves as parent wavelet  .The  key of having efficiency 

in wavelet transform is dependent upon choosing right type of mother wavelet. A 

significant amount of contribution has been put forth by Daubechies, in this work 

Daubechies 8 wavelet has been used to perform DWT. 



 

 

 

 

 

 

 

  



 

CHAPTER 3 

Probabilistic Graphical Model 

Probabilistic graphical models are used to combine probabilities and independence 

constraints of complex real world scenarios into a compact graphical representation. 

This provides a unifying framework of building large-scale commonly proposed 

multivariate statistical models (Kalman filters, hidden Markov models) . Graph Theory 

has inherent capability to represent dependence and independences of the variables. 

Graphs representation is very flexible in a way that it doesn’t require to have all the 

knowledge 0f world for building of a model. One can start his model with his perception 

of knowledge it has. When one gathers more knowledge it can be incrementally added 

to the model (Add/Update nodes, edges) the same way and model in turns give 

improved results based on new information. 

As PGMs are standard mathematical structure that not only allows to encode probability 

distribution and  provides a very clear interface for query modelling of prediction 

queries. 

From an abstract point of view, in a graphical model, the joint distribution Pθ is 

expressed by means of an underlying graph. The nodes and edges in this graph shows 

random variables and probabilistic relationships between variables. The idea is to 

present a complex distribution involving a random variables of large number as a 

product of local functions, where every variable depends only on related variables of a 

small number, according to the specific independence assumptions that have been done. 



 

                          

 

3.1 Types   

Probabilistic graphical models uses a graph generally based for encoding complete 

distribution over a multidimensional arena. Normally known as  compact representation 

of independencies incorporated in specific underlying distribution. Graphical models 

covers the facts associated with factorization and independences. The known difference 

lies in way the gets encoded with factorization within distribution. 

Whenever we need to perform conditional dependencies modeling Directed graphs are 

appropriate. On other side , undirected models are suitable for data modeling in which 

conditional dependencies doesn’t exist. 

3.1.2 Directed and Undirected Models 

Bayesian models come under class of Directed graphs and Markov models are example 

of undirected graphs. Each of them, models the data set with conditional dependencies 

between variables. The congruity rest in the element that, how  two of them coax 

between conditional independence between variables. Two examples are given below. 



 

             

3.1.3 Representing Multivariate Distribution 

Probabilistic Graphical Models provides more intuitive tools for dealing with 

multivariate probabilistic models. Such models are defined by variables joint 

probability P (W1,W2, … ,Wn). 

Probabilistic Graphical Model is to represent such joint probabilities in terms of 

conditional probabilities. It can be rewritten as: 

 

The above equation assumes no preliminary independency information on data. In case 

of complete independency of models random variables,  joint probability is defined as 

 

3.1.4 Markov Networks 

Markov Networks comes under the umbrella of Undirected Graphs .The nodes in a 

Markov network graph corresponds to  variables. The edges shows some direct probabilistic 

interaction between the neighboring variables. A Markov network is thus a graphical way of 

showing joint probability distribution of random variables. 



 

Lets assume that there are two events that causes the grass to be wet: one can be 

sprinkler and second is raining. Also, suppose that whenever it is, the sprinkler is usually 

not turned on. 

       

We can see that this graph is fully connected from one node to another. 

3.1.5 Conditional Independence for Markov network 

Node yi is independent (conditionally) of all other nodes present in network given its 

Markov Blanket that is set of all the neighbors of yi. 

 3.1.6 Bayesian Networks 

Bayes Network represents a probability distribution through DAG (directed acyclic 

graph). This graph shows conditional dependency. Each of the node shows  a unique 

random variable to which it connects. For example, scenario shown in Fig 3.4WetGrass 

has an edge coming from rain, which means that it has factor a P(WetGrass|Rain) . For 

this factor there are specified probability values that leads towards  next Wet Grass node 

in  conditional probability table. 



 

                    

  



 

CHAPTER 4 

Gaussian distribution 

Gaussian distribution also known as Normal distribution i.e. bell shaped continuous 

symmetric curve having unity variance with a center at zero. This distribution finds its 

usefulness because of central limit theorem. 

Central Limit Theorem 

During sample distribution, standardized sample mean approaches the standard normal 

distribution as the sample size keeps on increasing n→∞. 

                                  

Where Zn denotes standardized sample mean and 𝜙 is standard normal distribution. 

4.1 Univariate case 

In case of single variable Y follows normal distribution variance σ2 and  mean μ its pdf  

will be 

                       

                  



 

Where, 

              

4.2.Bivariate case 

Extending towards higher  K-dimensional variable Y, covariance matrix Σ and mean μ. 

The joint p.d.f. of (Y,Z)  is 

 

where −∞ < y< ∞, −∞ < z < ∞. Then Y and Z are the bivariate normal distributions and 

𝜌is the correlation between them. 

The joint generating function for Y and Z is 

               

4.2.1.Case 1 marginal pdf’s of Y and Z; 

The moment generating function of X can be given by 
 

                                                                  

 

Similarly, the moment generating function of Y can be given by 

                            
 

Thus, Y and Z are both marginally normal distributed, 

i.e.,Y~N(μY, σY
2) and Z~N(μZ, σZ

2) 
 



 

Y’s pdf  is 

                            
Pdf of Z is 

 

                             
                                              

 

 

4.2.2.Case 2 Y and Z are considered independent if ρ =0. (Here ρ is the correlation coefficient) 

If𝜌=0 , then 

                     

 

Assuming  Y and Z to be independent, so 

 

Therefore, 𝜌 = 0 

4.2.3.Case 3 Distribution of(Y + Z). 

           

Recall that (𝑡1, 𝑡2) = 𝐸[𝑒t1Y+t2Z], therefore we can obtain 𝑀Y+Z(𝑡)by 𝑡1 = 𝑡2 = 𝑡 in 𝑀(𝑡1, 𝑡2) , 

 i.e. 

            



 

 
 

4.2.4.Case 4 Conditional pdf of f(y|z), andf(z|y) 

Conditional distribution of Y given Z=z is 

 

Similarly, we have the conditional distribution of Z given Y=y is  

 

Therefore,      

                        

               

 

4.3 Multivariate case 

The multivariate Gaussian distribution for a vector z having D-dimensions is defined as: 

    

Where μ is mean vector, Σ is a covariance matrix , defined as 

                                        

                                                            

 

    |Σ| denotes the determinant ofΣ and E[. ]is mean value of random variable. 



 

 

 For  n=2 (recall bivariate normal case) , we have 

 

      

Joint density of Z1 and Z2, will be  

      

 

Example: Plotting bivariate pdf of Z = [
Z1
Z2
] , mean μ = [

0
0
]  and covariance  ∑ =[

1 0
0 1

] 

 
 
 

                                                  

4.4.Properties of Multivariate Normal Distribution 



 

• If ZP×1~ NP(μ, Σ) then Zj is N(μj, σ
2
j) for all Zj, j = 1,2, … , p. 

• If Zp×1~ Np (μ, Σ) then subset of Zp×1 i. e Zq×1 is Np(μ, Σ). 

• If Zp×1~ Np(μ, Σ) then linear combinations of Zj, j = 1,2, … , p is univariate normal. 

• If Zp×1~ Np (μ, Σ) then q linear combination of Zj, j = 1,2, … , p is multivariate normal. 

• If Xp×1~ Np (μ, Σ) then q linear combination of Xj, j = 1,2, … , p is multivariate normal. 

4.5.Gaussian Mixture Model (GMM) 

Gaussian Mixture Model is a type of probabilistic model that under takes the information 

(number of Gaussians) belonging to a mixture distribution . Each Gaussian ‘k’ in the mixture 

has following parameters: 

• A  center defined by μ (mean). 

• Width defined by Σ(a covariance).  

• Gaussian function (big or small) defined by π (mixing probability).Illustrating 

these parameters graphically , with three Gaussian functions (K=3): 

                       

The probabilities i.e. mixing coefficients, must meet the following condition: 

                                               

The Gaussian density function is 



 

 

 

here x shows data points and D represents number of dimensions of every data point. 

Considering a dataset consisting of N = 1000  with D = 3, and x is 1000 × 3 matrix,  μ  is a 1 × 

3 vector, and Σ represents a 3 × 3 matrix. We also have found it beneficial to take the logarithm 

of equation(): 

 

 
 

Differentiating, equation() w.r.t to the covariance and mean ,equating it to the zero, this will 

enable us to find these optimal parameter values. The resulting solution, will correlate  with 

Maximum Likelihood Estimates (MLE). As we are dealing with many Gaussians instead of one, 

things gets a little complicated, then there comes a time to find whole mixture parameters.  

 4.5.1.Initial derivations 

First, from k Gaussian, the probability of  xn(data point ), is shown below 

                                  

Here, z is a latent variable and it takes  two possible values only  i.e. first is x that comes from 

Gaussian k, and zero otherwise[22]. Knowing the  probability of occurrence of variable z will 

be helpful in determining the Gaussian mixture parameters. However, when we state the 

following: 

                    

So the overall probability of observation of  a point coming out from Gaussian k, is basically 

equal to the mixing coefficients for that  Gaussian, i.e. the bigger the Gaussian, then higher 

probability expectation. Now, suppose z contains all possible latent variables z1………zk. 

                  



 

Here each z occurs independently of others. Therefore: 

           

On seeing that  the probability of  observing our data given that it came from Gaussian k, turns 

out to be that it is actually the Gaussian function. We can state:  

                     

Our initial aim was to determine the probability of z given our observation x, Bayes rule, will 

help us to determine this probability. From the product rule of probabilities, we have; 

         

So we will firstly need p(xn), not p(xn, z).We will be using Marginalization property to get rid 

of  z. Hence by summing up the terms on z, we get 

           

This equation 4.31 defines a Gaussian Mixture Model , and it mainly depends on all parameters 

that were previously mentioned. The maximum likelihood for  the model needs to be determined 

to determine these optimal values. The likelihood can be found as joint  

probability of all observationsxn    

                        

 Again taking log on each side of the equation (4.32 ) 



 

                      
Maximizing this function turns out to be more complex problem because of summation over k 

inside logarithm [23]. 

By setting the log likelihood derivatives to zero, we will not get a closed form solution. Hence 

we will use another technique which is known as Expectation Maximization EM. 

4.5.2.Expectation Maximization Algorithm 

Expectation maximization method  is used for maximum likelihood solutions for latent 

variables model. 

From 3.13, we have 

                      

 

By taking derivative of above Equation (4.34) w.r.t mean μk and equate it to zero. We have, 

                                   

By simplifying  we get, 

 

and 



 

                                                 

                                                      

This gives the value of mean  

                                                    

By fixing the derivative ln p(X|μ, Σ, π) w.r.tΣk=0.By following  same line of reasoning, we 

obtain the result, 

                                   

At the end, maximizingln p(X|μ, Σ, π) with respect to πkthat is a mixing coefficient and taking 

into account constraint 3.12, which requires mixing co-efficient to some to 1.It can be 

accomplished by a Lagrange multiplier and maximizing the following quantity and equate it to 

zero 

 

          

By simplifying, 



 

       

Multiplying both sides by πkwe obtain: 

       

Which gives 

        

Hence, 

                                              

4.5.2.1.EM algorithm for GMM 

Given a GMM, our goal is to maximize the likelihood function with respect to the parameters 

comprising mixing coefficients, means and covariances of components . 

Step-1 

Initializing the mean μj, covariance Σj and mixing coefficient πj. Then evaluating the initial 

values of the log likelihood where j = 1,2,3, … , k.  

Step-2 

Evaluating responsibilities using current parameter values for E-step. 

           

where Yk(x) is latent variable for kth Gaussian.  

Step-3 



 

Re-calculating the parameters by using current obtained values for M-step 

   

                                        

 

Step-4 

Evaluating the Log-likelihood, 

                                         

We have to find out that if these parameters truly represent data points. If this does not 

happen, go back to step-2, which will help to converge to better solution. 

 

 

 

 

  



 

CHAPTER 5 

Hidden Markov Model 

Baum and Petrie introduced HMMs in 1960[25].HMMs are the statistical stochastic model 

sequence. They can be used in the analysis of speech synthesis ,cryptoanalysis,reinforcement 

learning, temporal pattern recognition, gesture recognition, and  part-of-speech tagging. 

 In HMM, states cannot be observed  directly but they can get  identified through vector 

series observation. Since 1980s, HMM has been successfully incorporated in  speech 

recognition, mobile communication and image processing   techniques. The basic principle 

followed in HMM is that the events observed  have no direct affinity with  states. Thus, links 

find their connection to the states by the probability distribution. 

Markov Chain classifies stochastic processes and state transitions, narrating the 

statistical congruity between observed values and  the  states. From the stance of observers, 

only the observed point can be perceived but the states may not.  

Therefore, a Hidden Markov Model  is a  stochastic procedure that identifies the 

presence of states with their characteristics. HMM is  divided into two sections . One , has 

found application in Markov Chain.Secondly, runs the necessary algorithms to describe HMM 

for problem solving in computer sciences. 

5.1. Markov Chain 

A Markov Chain is described by a set of  state space variables S = {s1, s2, …… . , sN} with  

probability Pr(Si(t)) at any time t, with state i i.e.si1, si2, … , sik….   Dynamics of Markov Model 

are specified by transition probabilityaij and initial probability πi = P(Si).This means that 

probability of present state at time t  is Sj given that it is currently present in state Si at state (t-

1) for (Si, Sj) ∈ S . This leads to Markovanian assumption aij (transition probability) is 

applied whenever state Si is being visited by previous independent states to reach  Si.This is a 

Markov Chain property statement  

                 

                                              

https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Gesture_recognition
https://en.wikipedia.org/wiki/Part-of-speech_tagging


 

In general aij(t −  1, t) is dependent on time difference i.e. if the chain is time homogeneous , 

resulting in stationary transition probability , such that aij(t −  1, t) → aij with aij ≥ 0 and 

∑ aij = 1.
N
n=1     

InNs × Ns, where homogeneous chain elements are embedded , state transition probability 

matrix A = [aij]; i, j = 1… . . Ns. Fig 4.1. 

                                  

                                  

5.2 Hidden  Markov Model 

In Markov Chains, transition states are directly noticeable to observer. However, in HMM, 

desired state is invisible only output dependent state is available for stochastic modelling. 

Hidden Markov Model  is described as a stochastic measurement of Markov Chain or as GMM 

variable changing with time. 

 

5.2.1. From observable to hidden state 

HMMs provide great help when there is need of modeling a process in which we do not have 

direct knowledge about the present state of system. The only direct knowledge that we have 

about the process to model is the set of observations it generates while we don’t have direct 

access to the internal structure of process. It is easier to build a model that gives good 

approximation of process, when we have specific knowledge of the domain, but, in many cases 

this problem doesn’t have easy solution and it can be task-dependent.   

 

5.2.2 HMM Parameters 

In Markov Model, output symbols and states are equal. Hence, the observation is comparable 

with the state. In Hidden Markov Model we have no information of  current state . Following 

equation gives us possible  tag sequence. 



 

                                                

Where tn
1  and wn

1denotes speech tag sequence with sequence of words from 1,2, … , n 

respectively.  Bayes rule is usedfor transforming the equation (5.2)  into other probabilities set 

.  

                                  

 

 

5.3 Example 

For any non-trivial task whenever we are asked to do a task, we find that information that we 

have to work with is very much partial. In such cases we have to deal with uncertain 

information. Let’s suppose that we have three urns and each of them contain Red, Green, 

Yellow and Blue balls as shown in fig. 

A person is picking ball from these urns and it gives us a pattern of drawing a ball from these 

urns as YRGBYYBB.                   



 

We need to find out the sequence of urns from which he had drawn the balls. Hence, for this 

sequence of colors of balls, we have to produce urns sequence or state sequence that is given 

as, 

 

                                                    

 

We have information of probability of transition from one urn to any other urn. Suppose we 

drew a ball out of urn 1 and  again he drew a ball out from urn 1 is 0.1. Table (5.2)consists of 

probabilities of specific color balls in urn. As we got the information about the number of balls 

with given color probabilities . These two things are known  and by using these, we can 

compute the probable state sequence  which is hiddens. We are given 

 

Observation Sequence= YRGBYYBB 

                   

  

               

                  

           

 

 



 

                                                

 

                                              

                                            

 



 

The data is aggregated as  

                                         

 

 

The above table shows the pattern of drawing balls as RRGGBRGR with observations 

H1, H2, … , H8 and set of states D1, D2, … , D8. From the given table we can see that we need to 

find out most probable state sequence that is hidden to us. Hence we need to maximize P(D | 

H) 

                                                                     

 

 

So this paves way to the efficient calculation because  Markov presumption takes highest 

probability tree leaves. Applying Markov Chain on P(D | H) gives 

                      

These terms of probability are difficult to solve because of other clumsy items  needs to be 

fixed. Bayes’ theorem plus Markov assumption serves this purpose. 

 



 

5.4 Hidden Markov Model Essential Features  

▪ Naïve Bayes + Markov Assumption  

Bayes theorem plus Markov assumption is a powerful kit for solutions of  problem 

in machine learning. Incorporating the theorem, the observation sequence with state 

transition probabilities will be discussed below. 

 

▪ State Transitions Probability 

Preceding P(S) is used in the way 

 

                               

 

      According to Markov assumption, (k=1) 

 

                     

 

▪ Observation Sequence Probability 

Next probability item P (H | D) turns to be: 

 

                  

                  Assuming the drawn ball is based on urn chosen 

 

                

By applying Bayes’ theorem we have, 

                                    

 

Here the denominator p(H) is ignored because it is independent of S so it can be eliminated 

from consideration. Hence by putting values in 4.6 we have 

 



 

                            

 

All these terms are then grouped together according to the equation (5.14) 

                           

The diagram shown below shows set of observations with corresponding states. 

                                 

5.5 Hidden Markov Model Properties  

These  Markov process properties provides base for HMM. 

▪ Limited Horizon        

                It says preceding t states, and a state i is independent of prior 0 to t − k + 1  states.  

After k states comes before  tth state, everything can be neglected. Hence, this is window 

property . Procedure is acknowledged to be k Markov process. 

                  

▪ Time Invariance 

             Dependency of one state on  prior state is done by entire sequence of Marko 

process. Referring to conditional probability below is position invariant i.e. not 

transitioned from point to point in a sequence. 

 



 

 

  

5.6. Probability Laws 

There are two essential probability laws. 

 

▪ Chain Rule 

Chain rule breaks complete sequence into set with terms 

 

         

 

 

▪ Marginalization 

              

 

Where (B1, B2, B3… Bn)has all possible values 

 

5.7. Problems in HMM 

In this section we deal with basic problems related to HMMs with theirsolutions through 

efficient algorithms. 

 

5.7.1. Evaluation Problem 

Assuming the model  given  is represented byθ = (A, B, π) and observation sequences are 

represented by O, we need to calculate probability for a output sequence produced by model θ.  

 

5.7.2. Decoding Problem 

For a given  θ = (A, B, π) with observation sequence H, we would  find most probable sequence 

of Hidden states that led to generation of the given set of observations. In other words, we need 

to stimulate the hidden parts contained in  Hidden Markov Model. 

 

5.7.3. Learning Problem 

Given a set of output sequences that is set of visible states H and set of hidden states D, we 

have to find out the set of transition probabilities aijand bj(Hk).  



 

 

5.8. Problem 1: Forward & Backward Probability Algorithm 

5.8.1. Forward Probability Algorithm 

F(k, i) forward probability is the probability of being in state Di with 

observations D0, D1, D, … , Dk. M being sequence length 

                                                       

 

The observed sequence probability is P(H0, H1, H2, … , Hm) is sidelined to obtain below 

equation  

                        

Hence, forward probability is; 

                                   

 

To  get 𝐹 (𝑚, 𝑝), we see to sequence (H0, H1, H2, … , Hk). We have the observations and states 

as seen in below figure. Starting with D0 proceeding to any state with transition stateDp  →  Dq 

on Hksymbol. 

 

 

So, the forward probability  

 

                                  

 



 

Marginalizing, 

 

                             

 

By chain rule, 

 

 

                          

                                            

                                  

 

Complexity in forward probability lies  basically in length of observed sequence is |D| 

multiplied by length of states |H|. The expression for calculating(𝑘, 𝑞)is; 

                                                  

 

 

 

5.8.1.1. Forward Algorithm Boundary Conditions 

 

Boundary condition is 



 

                                                   

where Pqis the initial probability present in state Dqthat is  Dp → Dq.  It is not easy to calculate 

it in time proportionality w.r.t observation sequence length. Therefore, it is considered as time 

linear computation. 

 

5.8.2. Backward Probability Algorithm 

 

B (k, i) backward probability  is described for seeking symbols Hk, Hk+1, Hk+2, … , Hmwith 

given state Di.M is the sequence length 

                                       

Observed sequence probability  is P(H0, H1, … , Hm) is marginalized to get following N  states. 

This is single backward probability with 0 as argument 

                                       

                                          

                                                        

Backward probability is computed similarly as forward probability. Again referring  back to 

diagram; the state transition is Dp → Dq over symbolHk.Backward probability is expressed as 

 

 

 



 

         

For any of the observed sequence with corresponding state sequence, notion  kth placed at any 

point in the stream, enables us to calculate forward probability of a point with backward 

probability from that point towards observation sequence ending point. 

 

5.8.2.1. Backward Algorithm Boundary Conditions 

              The (k+1)term keeps increasing until observation sequence ends. So we designate 

boundary condition for the algorithm.   

Mentioning last symbol in entire observation sequence,  system is going to be in final state. 

Thus ,transitioning Dm to Dfinalwith  output asHm ,it will set boundary condition for the 

backward algorithm (Dm
Hm
→ Dfinal) . So from last symbol we obtainedB(k, p).Dfinalis a Hidden 

Markov Model states. 

 

5.8.3 Problem 2: Viterbi Algorithm 

Decoding problem in HMM, seeks to search the optimal sequence state related to given 

observation sequence H with a given parameter λ , it can be solved using Viterbi algorithm. 

           The Viterbi algorithm finds the appropriate order of hidden states i.e. Viterbi path. This 

will give us observed events sequence, especially in structure of HMM and Markov data 



 

source. It is used in keyword spotting ,speech recognition, computational linguistics, 

bioinformatics and speech synthesis,. 

Considering the above HMM example, there are three urns with a need to find state 

order sequence with specific observation sequence. State sequence is found by Viterbi 

algorithm, which gets explained with another example mentioned below. 

Considering finite state mechanism with𝑆1and 𝑆2(states) and  𝑎1and 𝑎2(symbols) with transition 

states shown in figure below. 

 

                     
 
 

The transition probability  from 𝑆1 to 𝑆2 with 𝑎1 at  output is  0.4. Probability of 

being  in state 𝑆1 giving 𝑎1 at  output is 0.1 and so on. Our goal is to find best possible state 

sequence path for given observation sequence. 

 
Observation Sequence = 𝑎1𝑎2𝑎1𝑎2𝑎1𝑎2 

Problem = 𝑆∗= argmax𝑆𝑃(𝑎1− 𝑎2− 𝑎1− 𝑎2) 



 

 
 

                                          Fig 5.7: Tree Diagram for Viterbi algorithm  

Consider two possible states 𝑆1, 𝑆2 in s tar.  Each state has further two states. Transition 

probability of every state is multiplied with preceding state, to get current state probability and 

so on. Computed probabilities gets entered in  Viterbi tree. This will continue in the direction 

of highest probability. Remaining states gets cancelled. After completion, highest probability 

nodes gets tracked backwardly from the end towards the top. The path found is 𝑆2𝑆2𝑆1𝑆2𝑆1𝑆2𝑆1. 

 

5.8.3.1. Viterbi Algorithm Steps: 

 

              Given: 

 



 

 

To Find: 

The most likely state sequenceE1, E2, … , ETis producedwith  given output sequence. 

The Data Structure for this algorithm is interpreted as; 

Data Structure 

 

▪ An N*T array called SEQSCORE for maintaining winner sequence                                                       

(N= number of states, T= Output sequence) 

▪ Another N*T array called BACKPTR for recovering path. 

 

Step of Viterbi algorithm : 

▪ Initialization 

▪ Iteration 

▪ Sequence Identification 

I. Initialization: 

 

 

 

Step 1 shows that D1 is the starting state and in step 2 we have that there is no state before this. 

In step 3 we defined that we make probability value 0 in all other states except D1. 

 

II. Iteration 

 



 

 

In first step we go of our observation sequence symbol by symbol. T is the observation 

sequence length for every symbol on the observation sequence. In second step we do iteration 

over the number of states so this is to record the state in which sequence is ending. In third step 

we have to make sure that we only advance k states at particular level, we do not advance any 

state whose probability value is less than the winner sequence probability value ending in 

particular state. 

Fourth step shows the multiplication of accumulated sequence probability by the transition 

probability. Last step is a way of keeping the pointer to be able to recover the state sequence. 

 

III. Sequence Identification 

 

  

 

It shows the state sequence which has found to be the highest probability state sequence. 

 

5.8.4 Problem 3: Baum- Welch (Forward-Backward Algorithm) 

  This algorithm is applied on training Hidden Markov Model. Thus making an inference that 

kth hidden variable with (k − 1)th given is independent of preceding  hidden variables. This 

shows present observed variable is conditioned upon on present hidden state and is independent 

from other. Baum–Welch algorithm assimilates EM-algorithm for HMMs maximum likelihood 

estimates . Considering the following example Baum Welch algorithm having (i) two states, o 

and q(ii)c and d are symbols. 

String = cddcccdddccc 

Output Sequence = o
c
→ q

d
→ o

d
→ o

c
→ q

c
→ o

c
→ q

d
→ o

d
→ o

d
→ o

c
→ q

c
→ o

c
→ q 



 

                                          

Through table (5.4) , we are able to estimate transition probabilities. Assuming o

c
→ q  transition arises 6 times in output sequence. Total transition numbers from q being 

initiating state 10(o → q = 6 + o → o = 4). 

Hence,  

                                             

Likewise, 

                                                

Defined as ; 

                     

 

 

The above equation shows that transition from Di to Dj with xkis equal to count fromDi to Dj 

with output xk divided by total number of counts with Di as source. Where e (Di
xk
→Dj)can 

be obtained by the following equation; 

 



 

                           

 

The above equation shows that this scheme of picking the valid counts. Considering a singular 

state sequence for  sequence of observations. We get multiple sequence states on an observation 

sequence, then we weigh number of arrivals by state sequence  probability with observation 

sequence P(S0,n+1|W0,n).For this we have to interplay between the two equations given above 

4.18 and 4.19. Initially we will assume some transition probabilities and then the count is 

obtained from these probability values. We can also obtain the value ofP(S0,n+1|W0,n) from 

transition probabilities which is nothing but Viterbi algorithm. Now from the count we obtain 

new transition probabilities and from the new probability value we obtain the new count. 

Eventually after sometime the algorithm terminates when we see that there is no appreciable 

change in the probability values. This algorithm is called Expectation Maximization because 

we expect a value for the count and then maximizing observation probability sequence through 

this.  

 

5.8.3.1   Baum-Welch Illustration 

 

               Baum Welch comprehends probability values on arcs but not on HMM formation. 

Illustrating  with the following example that consists of (i) two symbols a and b(ii) two states 

q and r. 

Initially we have assumed the transition probabilities and then calculate count from these 

transition probabilities. Again from this count we will calculate new transition probabilities. 

This procedure is shown in the table shown below:  

 

String: ababb 



 

 

 

5.8.4.2.   Baum Welch Algorithm Computational Complexity  

              Computational part of Baum Welch Algorithm. 

 

 

 

 

 

  



 

CHAPTER 6 

STATISTICAL VIDEO MODELLING 

 

The basic idea for statistical denoising is to explain the adaptation properties in an expansion 

of a function into a series of localized basis function. Wavelets finds its usefulness in broad 

range of applications such as signal and image processing , data compression , numerical 

analysis and non-parametric statistical estimation 

6.1 2D- DWT 

Wavelet transform for  a video frame deals with its decomposition into a number of detail or 

wavelet coefficients {ψLH, ψHL, ψHH} and one scaling coefficient ϕLL, forming orthonormal 

basis  L2(R2). 

M×  M image z(t) with  given J-scale DWT gets decomposed  

                          

Where 

                                       

And 

                        



 

Wavelets have been utilized in numerous restorative imaging applications. Here  2D-DWT has 

been used. Image here is decomposed into three level coefficients i.e. LL- subband (low 

frequency) and several high frequency sub-bands by 2D-DWT. LL-subband contains the most 

data in concentrated of highest level known as approximated DWT. 

 

 
 
   

6.2 Hidden Markov Model for Video Denoising 

 

When the models are constructed statistically, HMM complex dependencies with captures 

Non-Gaussian statistics due to the wavelet coefficients, persistence and clustering properties. 

Here HMM model used Quad tree structure. Wavelet coefficients are linked with a state 

variable i.e. every wavelet coefficient was described by q(m-dimensional state probability) and 

σ (m-dimensional standard deviation vector). 

 

                                                              
 

A multidimensional Gaussian Mixture Model is referred as HMT. Wavelet coefficients are 

randomly modeled by HMT, with probability density function as a mixture of zero mean 

Gaussian distribution hidden state for the classification of large and small coefficients.  

 

Where pdf of C 

                                                       
 

pQ(n) is pmf, and Q is a hidden state random variable. Conditional pmf  fc|Q(c|Q = n) is given 

by following equation 



 

                                             
 

Where μnand σnare the mean and variance respectively. 

 

HMT used probabilistic tree model to display Markovian dependencies among hidden states to 

capture inter-scale and intra-scale dependencies present in wavelet coefficients. For    

decomposition of wavelets into u scale and v sub-band.  HMT model has following parameters: 

Standard Deviation= σu,v , Gaussian mean = μu,v 
Pmf for the root node Qi = psi(n) 
Probability matrix for state transition of v sub − band from scale u − 1 to scale u  = Au,v 

The following shows state transition matrix as parent → children state to state connection 

between  hidden states: 

 

                                               
  

where pu,v
y→y

or pu,v
z→z represents wavelet probability to be large or small given the parent is large 

or small. All these variables are coefficients  grouped in θ. 

 

                        
 

Every wavelet here, has different transition state probability. Variances of which leads toward 

higher complexity in HMT model. It can be reduced by tying within scale method [19]. 

 

                                    

  



 

CHAPTER 7 

Simulation Results 

This chapter consists proposed denoising frame work tested through HMT denoising technique 

with 2D-DWT and 2D-GMM. Maximum likelihood of the data set is found through EM 

algorithm. Our proposed strategy used the adequacy of DWT and their sub-band hierarchical 

relationship. 

7.1DENOISING TECHNIQUE 

HMT model was used to locate a parameter set θq.A two state GMM was utilized to start the 

HMT model. At that point, to get θq, the inter-scale dependencies were caught by the Markov-

tree and EM-algorithm. 

Increase in the signal [20] variance is based on added noise while the other parameters are left 

unchanged. Noisy observation θq was extracted and then noise variance was subtracted from 

it: 

 

                                              
 

 

Where v, u and m represent v sub-band, u scale, n state, mth coefficient and  

 

                                                       
 

7.2Model Training via EM Algorithm 

EM algorithm is used for model training. The Expectation Maximization algorithm given 

below, describes the statistical model for hidden state Q and variable C 

 

                                          
Conditional pmf of state Q and its maximization is given as 

 

                                         
 

After determining θqand state probability via HMT 

  We got    q = E[q|q’, θq] 

 Bayes Estimator can be used to obtain clean coefficients. 



 

                         
 

7.3 Inverse Wavelet Transform (IDWT) 

In end, IDWT was used to obtain clean coefficients to achieve reconstructed  frames of video 

being tested. 

Fig. 7.1 shows proposed implemented technique. 

Algorithm for proposed denoising method is summarized as follows: 

 

             

7.4 Denoising Algorithm 

Adding noise AWGN in each frame of the video sequence 

Then applying Daubechies-8 DWT. 

Obtaining DWT coefficients. 

Estimating GMM parameters. 

Training of Hidden Markov Tree model with EM algorithm in connection with tying within 

scale method. 

Applying IDWT to get reconstructed frames 

 

7.5 Simulation Results 

Medical videos were tested  i.e. Endoscopy, Ultrasound , Mammogram and CT Scan. Each 

frame of the sequence was degraded artificially with speckle noise with noise variances 

i.e.10,20,30. The sequences were tested in grayscale, RGB and proposed  algorithm color  

space. Comparison was performed in terms of PSNR(Table.1). 

 



 

 
Table 7.1 PSNR and SSIM values of Denoised Sequences 

 

Video 

Sequences 

 

σn 

 

Grey scale 

  

RGB 

 

 

Proposed algorithm 

 

PSNR SSIM PSNR SSIM PSNR SSIM  

 

Endoscopy 10 21.1167 0.881694 21.1131 0.904999 21.5982 0.884287 

20 15.1980 0.822676 15.2762 0.894293 15.5062 0.828196 

30 11.6759 0.855640 11.7776 0.909898 11.9761 0.761609 

CT Scan 10 21.3809 0.866745 21.3847 0.866680 21.5603 0.852319 

20 13.9769 0.846671 13.9789 0.867870 15.4741 0.854179 

30 11.5437 0.826184 11.4503 0.859014 11.9199 0.837778 

Mammogram 10 20.0024 0.836505 21.3705 0.867967 21.6039 0.856158 

20 13.9792 0.830533 15.1374 0.876485 15.5392 0.846681 

30 10.4566 0.831411 11.5517 0.853997 11.9808 0.813299 

Ultrasound 10 21.1587 0.845638 21.2203 0.905396 21.4992 0.883864 

20 13.9793 0.877209 15.3598 0.885453 15.5102 0.864535 

30 11.6582 0.848289 11.8212 0.903502 11.9896 0.830726 

 

 

  



 

 

 
                                                                                                (a) 

 
                                                                                                 (b) 

 
                                                                                                 (c) 

 
                                                                                                 (d) 

Figure 4. GRAPHICAL COMPARISON OF PSNR OF VARIOUS TECHNIQUES 
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CHAPTER 8 

Conclusion 

Wavelet-based color video denoising was discussed in this thesis was based on HMT 

model with EM algorithm for the despeckling of video frames scale videos and colored 

videos in YCbCr color space based on 2D-DWT and 2D-GMM. The primary properties 

of the compression , wavelet transform locality and multi-resolution paved way for new 

approaches towards statistical signal processing. 

To accommodate Non-Gaussian nature of wavelet coefficients, Mixture 

densities have been incorporated and statistical dependencies between coefficients were 

captured by using probabilistic graphs/Tree.HMT model was trained by EM algorithm 

on wavelet coefficients to catch the statistical dependencies present in  them.  

Results revealed that proposed denoising method transcends the pre-existing 

techniques in comparison with gray and RGB scale. both in terms of quantitative and 

qualitative analysis. This scheme showed improvement in reducing noise , preservation 

of edges with enhanced visual quality. 

8.1 Future Work 

 

Proposed denoising scheme can be further extended for the analysis of noises of 

different variances with other transforms for all color spaces. Moreover, it can be used 

in other transform domains like Bandelet, Contourlet, Rigdelet and Curvelet in 

combination with other filters i.e. Bilateral filter. 

Finally, this technique can be further modified with other techniques for the 

achieving improved performance and with reduced computational complexity and low 

latency.  
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