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Abstract

Object Segmentation is an open area of research in the field of Computer Vi-
sion. Image and video segmentation are two separate segmentation problems
that aim to identify the objects of interest in images and videos respectively.
While Image segmentation methods use visual cues for separating foreground
objects from background, video segmentation solutions, in addition to visual
cues, can use motion and other temporal cues as well. Video segmentation
has uses in a wide variety of applications including scene analysis and object
tracking. Human Visual System (HVS) has the ability to identify object(s)
of interest from a scene. An individual's focus and attention is directed to
the object(s) of interest by the visual system as soon as visual contact is
made with the scene. The rest of the details go in the background and the
person does not pay attention to the unnecessary details. There has been
a tremendous amount of research carried out by biologists to explain the
ways in which the HVS works. Additionally, a lot of efforts have been made
by researchers to provide a solution that mimics the behavior of the HVS.
Video Object Segmentation is a challenging problem that aims to automate
the properties of the HVS in order to identify objects present within a video.
The properties of the input videos can vary depending on the surrounding
conditions, camera quality and object appearance and size. The effectiveness
of the segmentation algorithm can depend on the properties of the video se-
quences. The videos can contain single or multiple objects present in few
or all of the frames. These objects can be occluded, deformed and can have
interactions with each other. Additionally, the videos can also contain mo-
tion blur, camera movement, slow motion and appearance change. In this
work, the aim is to provide a generic segmentation solution that produces
an effective result for all types of input videos. The proposed solution will
be evaluated on publicly available datasets and compared against commonly
used state-of-the-art solutions.
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Chapter 1

Introduction

1.1 Video Object Segmentation

Computer Vision is an area of Computer Science that aims to produce solu-
tions which can help in the interpretation of real-world data, e.g. images and
videos etc. The problems associated with Computer Vision include segmen-
tation, object tracking, object recognition, image analysis and scene analysis
etc. The solutions of these problems usually make use of a combination of
machine learning and image processing algorithms. The automation of the
identification, recognition, analysis and tracking of real-world data can save
a lot of time and human effort otherwise required for the manual completion
of such tasks. The introduction of high performance hardware has raised the
demands for the automation of such tasks. As a result, a lot of research is
being carried out in different areas of Computer Vision.

Object Segmentation is an open area of research in the field of Computer
Vision that involves the identification and retrieval of objects of interests in
a given dataset. Each pixel of a given image is classified as background or
foreground based on the features that it possesses. A foreground pixel is
usually labeled as one (1) while a background pixel is labeled as zero (0).

Image and video segmentation are two separate segmentation problems
that aim to identify the objects of interest in images and videos respec-
tively. A number of different features can be used for the labeling of pixels.
These include color, saliency score, optical flow and spatial co-ordinates etc.
Different techniques make use of different features in different ways for the
extraction of objects. Image segmentation methods (Bai and Wang, 2014;
Achanta et al., 2008; Li and Chen, 2015; Li et al., 2012) usually use visual
and spatial cues for the extraction of interesting objects from a given image.
On the other hand, video segmentation techniques (Fukuchi et al., 2009; Li
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CHAPTER 1. INTRODUCTION 2

et al., 2013b; Banica et al., 2013; Wang et al., 2015; Shi, 2012), in addition
to visual and spatial cues, also make use of temporal cues for the correct
identification of objects.

1.2 Motivation

Video segmentation has uses in a wide variety of applications. The segmenta-
tion results can be used as an input for saliency detection (Xu et al., 2013) ,
multiple object tracking (Milan et al., 2015), object recognition, motion anal-
ysis and scene analysis. Additionally, video segmentation has applications
in the field of surveillance (Luque et al., 2008). The segmentation algo-
rithms can be incorporated into Closed-Circuit Television (CCTV) cameras
to provide automated segmentation of unusual targets in order to improve
the security systems of public places.

The Human Visual System (HVS) has the ability to identify object(s)
of interest from a scene. An individual's focus and attention is directed to
the object(s) of interest by the visual system as soon as visual contact is
made with the scene. The rest of the details go in the background and the
person does not pay attention to the unnecessary details. There has been a
tremendous amount of research carried out by biologists to explain the ways
in which the HVS works. Additionally, a lot of efforts have been made by
researchers to provide a solution that mimics the behavior of the HVS. Such
solutions make use of eye movement patterns and attention models to imitate
the visual system of humans (Fukuchi et al., 2009).

Video Object Segmentation is a challenging problem that aims to auto-
mate the properties of the HVS in order to identify objects present within
a video. The properties of the input videos can vary depending on the sur-
rounding conditions, camera quality and object appearance and size. The
effectiveness of the segmentation algorithm can depend on the properties of
the video sequences. The videos can contain single or multiple objects present
in few or all of the frames. These objects can be occluded, deformed and can
have interactions with each other. Additionally, the videos can also contain
motion blur, camera movement, slow motion and appearance changes.

Various unsupervised video object segmentation techniques have been
proposed in the past. Each solution has presented a different algorithm for
the identification of object(s) of interest in a given video sequence. However,
all the existing solutions have problems that limit the effectiveness of the
results. One problem is the error caused due to similarities between the
features of neighboring foreground and background pixels. If neighboring
foreground and background pixels have similar color, motion and saliency
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scores, there is a high possibility that both will be labeled as foreground or
background causing the mis-segmentation rate (or error segmentation rate)
to rise. Additionally, camera movement and motion blur can reduce the
accuracy of the results. Also, there are solutions with high tolerance for
errors but they perform segmentation of single objects only. Hence, there
is a need to propose a solution that overcomes the aforementioned problems
and lowers the mis-segmentation rate.

1.3 Proposed Methodology

The focus of the research is to provide an unsupervised video object segmen-
tation method that effectively identifies all of the objects in a given video
sequence. The different methodologies that can be employed for solving the
segmentation problem are explained. Additionally, the existing solutions al-
ready presented for solving the given problem are discussed outlining the
benefits and drawbacks of each method. A solution is proposed that im-
proves on the results of the existing techniques. The solution is evaluated
on publicly available video datasets using average pixel error rate, precision,
recall and F1-score as the evaluation measures. The results of the proposed
solution are compared with the state-of-the-art methods to provide a quan-
titative difference between the proposed and existing solutions.

1.4 Contributions

The thesis makes the following contributions:

� The extension of superpixel segmentation technique originally proposed
for images to perform frame by frame spatio-temporal oversegmentation
of videos.

� A foreground separation model that uses multiple features to produce
segmentation maps by introducing thresholds defined based on differ-
ences between foreground and background segments.

� The construction of a Conditional Random Field (CRF) and introduc-
tion of a potential function to show the relationships between different
pixels in a given frame and solving it to get the final segmentation
results.
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1.5 Organization of Thesis

The rest of the thesis is organized as follows: Chapter 2 presents a literature
review of the existing techniques for video object segmentation. In Chapter 3,
the proposed solution is discussed in detail. Chapter 4 provides experimental
results of the solution on publicly available datasets and comparison with
state-of-the-art methods. Finally, Chapter 5 concludes the thesis and gives
possible future directions.



Chapter 2

Literature Review

This chapter discusses some of the existing solutions for performing unsuper-
vised video object segmentation which involves the use of different types of
graphs. The methods construct graphs to show the relationships between dif-
ferent parts of a video. Individual pixels or a set of closely related pixels can
be used as nodes of the graph while edges between the nodes are responsible
for showing the weighted similarity between them. Some of the commonly
used graph based methods are discussed. The algorithms proposed by dif-
ferent researchers are discussed along with the experimental results of each
technique. The benefits and drawbacks of each solution are also stated.

2.1 Markov Random Field

Markov Random Field is a type of undirected graph used to model joint
probability distributions. The nodes of the graph can be represented through
pixels/superpixels while edges between nodes show the dependencies between
specific pixels/superpixels. In Markov Random Fields, each node has a sep-
arate unary potential for each possible output. Hence, in case of binary
segmentation, each node has two unary potentials usually obtained by calcu-
lating negative log likelihood of each label. Similarly, each edge represents a
pairwise potential between two nodes and is calculated using features of both
the nodes. In Markov Random Fields, the unary potential of a given node
is only dependent on the node and the respective label itself. Similarly, the
pairwise potential of two nodes is only dependent on those two observations.
The graph can be solved using energy minimization techniques to obtain the
final segmentation results.

The solution proposed by (Fukuchi et al., 2009) uses saliency and Markov
Random Fields to solve the segmentation problem. Figure 2.1 shows the
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framework of the proposed solution. It introduces a saliency based human
visual attention model for obtaining the visual attention density for each
frame of the input sequence. A final eye focusing density map is obtained
by combining density from the saliency map and eye movement patterns
of individuals acquired manually. A Markov Random Field (MRF) is built
where the density values from the visual attention model are used to estimate
the priors of foreground/background as well as the feature likelihoods. This
technique uses priors of previous frames while calculating the priors of the
next frames. The priors for each frame are updated using Kalman filter as
the combination of previous segmentation results and the original priors for
the current frame. Salient regions are obtained from the Markov Random
Field by maximum a posteriori (MAP) estimation using graph cuts solved
by an Energy Minimization (EM) algorithm. The solution is evaluated over
ten different sequences but the quantitative results are not made available.
Nevertheless, the method provides satisfactory results for simple input se-
quences but fails when the similarity between color and saliency values of
the neighboring foreground and background pixels increases.

Figure 2.1: Figure taken from (Fukuchi et al., 2009) outlining the proposed
framework

(Lee et al., 2011) propose a solution that uses Markov Random Field
construction in the last step of implementation. Fig 2.2 shows the overview
of the proposed technique. Initially, the algorithm proposed by (Endres and
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Hoiem, 2014) is used to obtain a set of possible objects for each frame of
the video. The objects are then scored according to their relative movement
and difference in shape and color to the rest of the frame to determine the
likelihood of the object proposal belonging to the foreground. Then, set
of objects with similar region scores across frames are clustered together to
form key-segment hypotheses representing a single object across frames. The
key-segment hypotheses are used to construct a series of space time Markov
Random fields across frames showing the relationship between pixels in terms
of shape, color and motion used in an energy function. The energy function
is minimized using graph cuts to get the final segmentation. The method
is evaluated on a single dataset using segmentation error as the evaluation
measure. It fails to produce satisfactory results for videos with motion blur,
camera movement and foreground/background color similarity. Additionally,
the technique yields high error rates for videos having multiple objects.

Figure 2.2: Figure taken from (Lee et al., 2011) showing the proposed frame-
work

2.2 Conditional Random Field

Conditional Random Field is a variant of Markov Random Field considered
more suitable for binary classification. Unlike Markov Random Fields, the
unary and pairwise potential of nodes in a Conditional Random Field can be
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made as a function of all the possible observations. This allows each random
variable to be conditioned over a set of global observations. The Conditional
Random Field can be solved using energy minimization techniques.

(Li et al., 2013b) propose a solution that constructs a Conditional Ran-
dom Field to perform segmentation of video sequences. Figure 2.3 shows
the model of the proposed solution. The method generalizes well for video
sequences captured by moving cameras. It separates the foreground from
background without treating either of them as outliers. Each frame of the
video is segmented into superpixels using Turbopixels (Levinshtein et al.,
2009) and a saliency score is calculated for each superpixel. The motion
saliency score for each pixel is calculated using optical flow and the mo-
tion saliency image is converted into a binary image to obtain the shape
information from the motion saliency map. The shape calculation process is
performed for multiple resolutions making the process scale invariant. The
color cues for the foreground and background parts are obtained by thresh-
olding the shape likelihood in order to separate the foreground and back-
ground regions. Gaussian Mixture Model (GMM) tuned using Expectation
Maximization (EM) algorithm is used to find the RGB distribution for each
model. The color models, visual saliency score and shape likelihood are inte-
grated into a Visual Object Extraction (VOE) model. Conditional Random
Field (CRF) for the VOE model is constructed and solved using graph based
energy minimization techniques. To preserve spatio-temporal consistency,
a pairwise term is introduced in the CRF that uses the information of the
neighboring pixels to maintain consistency. The method is evaluated on eight
different video sequences and compared with state-of-the-art techniques us-
ing average mis-segmentation rate as the evaluation metric. The proposed
technique is able to outperform most of the existing techniques. However,
a similarity in color, shape, saliency and motion of neighboring foreground
and background pixels increases the mis-segmentation rate of the method.
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Figure 2.3: Figure taken from (W. T. Li, 2013) outlining the proposed frame-
work

2.3 Directed Acyclic Graph

Directed Acyclic Graph (DAG) is a directed graph that does not consist of
any cycles. It can be used to solve the video segmentation problem. The
nodes of the graph can be represented by pixels/superpixels and edges can
be used to show the association between different pixels/superpixels. It can
be solved using Dynamic Programming (DP) to obtain the highest/lowest
weighted path to get the segmentation solution.

(Zhang et al., 2013) present a layered Directed Acyclic Graph (DAG)
based framework using spatial and temporal features to extract primary
objects from a given video sequence. Figure 2.4 illustrates the proposed
framework. The process involves obtaining a set of object proposals and
constructing a DAG across all frames to show the association between dif-
ferent frame objects. A layered structure is formed such that each frame is
represented by two layers in the graph. The graph consists of unary and
binary edges. The unary edges show the appearance and motion informa-
tion of each object proposal while the binary edges measure region, color,
location, size and shape similarity between two object proposals. Dynamic
programming is used to find the highest weighted path of the graph. The
initial object segmentation results are refined using Gaussian Mixture Model
(GMM) and Markov Random Field (MRF) based optimization to get the
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per pixel segmentation results. The technique is evaluated on two datasets
using average pixel error as the evaluation measure. The solution does not
segment videos with multiple objects and fails to produce satisfactory results
for videos with foreground/background color and motion similarity.

Figure 2.4: Diagram taken from (Zhang et al., 2013) outlining the proposed
framework

2.4 Clustering

Clustering is an unsupervised machine learning technique commonly used to
group similar data items together. The pixels/superpixels can be used as
the data points that need to be grouped according to specific features. The
similarity between different pixels/superpixels is exploited using a distance
function and similar items are grouped together to segment the data into
two or more groups. Figure 2.5 provides an example showing clustering of 2-
dimensional data into four clusters (RJ, 2015). Clustering can be performed
using a variety of different methods (Han, 2005),

� Partitioning Methods
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� Hierarchical Methods

� Density Based Methods

� Grid Based Methods

Figure 2.5: Example of 2-dimensional Clustering

(Galasso et al., 2013) proposes a video segmentation solution that uses
Spectral Clustering to produce the final results. The method introduces the
use of motion aware superpixel segmentations to form groupings of pixels
similar in motion and appearance. The superpixels are used in multiple
between and within frame combinations that use appearance and motion
as features to show the association between superpixels over all the frames.
Three different types of superpixel combinations are used:

� between-frame

� within-frame

� within and between frame.

The between-frame combination consists of two affinity matrices show-
ing short-term-temporal affinity and long-term-temporal affinity where short-
term affinity is measured between a small set of frames while long-term is
calculated between a larger number of frames. The within-frame affinity
consists of across-boundary-appearance affinity and across-boundary-motion
affinity. Similarly, within and between frame affinities consist of spatio-
temporal-appearance and spatio-temporal-motion affinity matrices. Spectral
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Clustering is performed over the superpixels to get the final segmentation
results. The solution is evaluated on a single dataset using average error
as the evaluation measure. It fails to produce good results for videos with
camera movement and blurred motion. Additionally, it is unable to segment
multiple object videos effectively.

2.5 Others

Some of the existing solutions construct special graphs for performing seg-
mentation. (Banica et al., 2013) propose a technique that extends Con-
strained Parametric Min Cuts method (CPMC) (Carreira and Sminchisescu,
2012) to generate motion and salient specific segment pool for each frame. A
large coarse pool of Salient Segment Chains (SSCs) is constructed that cor-
respond to paths in a trellis arranged and connected such that each node at
each frame is connected to all the nodes of the immediate previous and next
frames. A coarse SSC is built by initializing it with a segment and greedily
adding other segments based on the robust-mean of their Euclidean distance
from all the other segments. The chain is stopped when the distance falls
below a specified threshold. The SSCs are ranked using Maximum Marginal
Relevance (MMR) measure using per frame average segment overlap as the
redundancy measure and the top 150 SSCs are used for further processing.
A set of refined SSCs are obtained by labeling the pixels based on color us-
ing Gaussian Mixture Models, location using Euclidean distance transform,
and foreground and boundary priors. Each refined SSC corresponds to one
object in the video. A video partition and a potential function are defined
such that a video partition does not have any overlapping SSCs and it cannot
be extended using the SSCs from the pool. The potential function uses the
properties of the segments within an SSC and the affinities between different
SSCs to produce a segmentation solution using an energy minimization tech-
nique. The algorithm is evaluated on three different datasets and average per
frame pixel error is used as the evaluation measure. The proposed solution
outperforms the state-of-the-art methods but fails to produce satisfactory
results for videos with blurred motion and camera movement.

(Wang et al., 2015) propose a saliency aware graph based solution that
uses geodesic distance to solve the segmentation problem. Figure 2.6 shows
the proposed framework. The method over-segments the input frames to
obtain superpixels using SLIC (Achanta et al., 2008). Spatial static edges
and motion boundary edges are obtained for all the superpixels. The spatio-
temporal edge probability map is constructed by combining the spatial and
motion edge information. Object probability of each superpixel is computed
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by using geodesic distance (i.e. the shortest path between two superpixels
in one frame) in an intra-frame graph. The intra-frame graph consists of
superpixels as nodes and edges forming the connection between the nodes.
The weight on the edges is calculated using the spatio-temporal boundary
probability of both nodes. The probability of a superpixel belonging to the
foreground is calculated using shortest geodesic distance of the superpixel to
the image boundaries. An initial set of background and foreground labeling
are obtained using a self-adaptive threshold. Then, an inter-frame graph is
constructed for each pair of subsequent frames to produce spatio-temporal
saliency maps by computing the geodesic distance between the background
regions of the two frames. A global appearance model for foreground and
background is obtained using the saliency maps. Additionally, the motion
information of few subsequent frames is used to build the dynamic motion
model for each frame. The saliency maps, global appearance and dynamic
location models are used to obtain the final segmentation by defining an
energy function that consists of saliency, location and appearance in the
unary terms and spatial and temporal information in the pairwise terms.
The energy function is solved using graph-cuts to get the final segmentation
results. The technique is evaluated on two different datasets using average
per frame pixel error rate for evaluation. The results show that the method
outperforms the state-of-the-art solutions. However, it only performs single
object segmentation and hence, fails to produce a low error rate for videos
consisting of multiple objects.

Figure 2.6: Figure taken from the (Wang et al., 2015) showing the proposed
framework



Chapter 3

Proposed Methodology

This chapter proposes a solution for video object segmentation. The method
consists of four steps:

� Feature Extraction

� Superpixel Segmentation and Merging

� Foreground Separation Model

� Conditional Random Field Construction and Solving.

Figure 3.1 provides an overview of the proposed framework.

Figure 3.1: Overview of Proposed Framework

14
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3.1 Feature Extraction

A number of different features are extracted from the input videos. The
CIELAB color space representation and spatial co-ordinate values of each
frame of the input video are obtained.

3.1.1 Optical Flow

Dense optical flow of each frame is calculated using the method given by (Chang
et al., 2013). The method calculates the backward and forward optical flow
of all the pixels of a frame by calculating the apparent motion of each pixel.
The backward optical flow is the motion of pixels in frame t compared to
the pixels in frame t− 1 while forward optical flow is the motion of pixels in
frame t compared to the pixels in frame t+ 1. The mean of the forward and
backward motion of each pixel is calculated and used by the solution.

The method also uses the CIELAB color representation of the optical flow
as mentioned in (Chang et al., 2013). The method works by constructing a
color wheel for the possible optical flow values and assigns a specific color to
each motion value. An example input frame and its corresponding optical
flow color representation are showed in figure 3.2

Figure 3.2: Example image with optical flow color representation

3.1.2 Spatio-temporal Saliency

The spatio-temporal saliency score for each input frame is obtained using the
method proposed by (Liu et al., 2014). The method uses motion and color as
local features at the superpixel level and global features at the frame level.
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The temporal and spatial saliency is measured at the superpixel level and a
pixel-level saliency method is derived to obtain temporal and spatial saliency
maps at the pixel-level. An adaptive fusion method is used to compute the
final spatiotemporal saliency map. Figure 3.3 shows an input image and its
corresponding spatio-temporal saliency map.

Figure 3.3: Example image with spatio-temporal saliency map

3.2 Superpixel Segmentation and Merging

The technique proposed by (Li and Chen, 2015) is extended to obtain spatio-
temporal superpixel segmentations for the input frames. The original tech-
nique was proposed for dataset consisting of images and produced superpix-
els that were uniform in nature and required low computation time. The
method represented each image pixel using a 5-dimensional feature vector
p = (l, α, β, x, y) where l, α, β were CIELAB color components while x, y
were the spatial coordinates of each pixel in the image. Originally, the 5-
dimensional feature vector was mapped onto a 10-dimensional feature vector
φ(p) to generate superpixels using Linear Spectral Clustering (LSC) using,

l1(i, j) = cos
π

2
.l(i, j) (3.1)

l2(i, j) = sin
π

2
.l(i, j) (3.2)

Where l1, l2 were the two mappings of l component of CIELAB color value
of a pixel present at location (i, j). The mappings of the other features were
calculated in the same manner.
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While the original algorithm provides satisfactory results for images with
variation in foreground and background color, the performance deteriorates
when there is similarity between adjacent foreground and background pixels
of the input image. This happens because all pixels with similar colors located
close to one other are grouped into a single superpixel.

In order to produce superpixels with separate foreground and background
pixels irrespective of their spatial closeness and color similarity, the feature
vector is extended to include optical flow and saliency values resulting in an
8-dimensional spatio-temporal feature vector p = (l, α, β, x, y, u, v, s) where
u, v is the optical flow and s is the saliency score of the respective pixel.
The extended 8-dimensional feature vector is mapped onto a 16-dimensional
feature vector and superpixels are generated for each frame of the video using
Linear Spectral Clustering.

Instead of using a single oversegmentation for each frame, multiple dif-
ferent superpixel segmentations for each frame are obtained with varying
number of superpixels using different values for color, saliency and flow con-
stants. For identifying the exact number of segmentations to use, two seg-
mentations are started with and the number is increased until the super-
pixels are constructed such that the process is not too time consuming and
foreground/background separation is maximized. A total of five superpixel
segmentations are taken as the superpixel segmentation and merging using
five combinations takes average computation time and produces a good level
of separation between foreground and background. The use of different con-
stant values helps generate five non-identical segmentation maps-each group-
ing pixels based on emphasis given to different features. Table 3.1 shows the
values of constants and superpixels used for each segmentation.

S. No Pixels per Superpixel Color Saliency Motion

1 450 100 0 0
2 400 100 20 50
3 350 100 20 30
4 300 100 20 40
5 250 100 10 50

Table 3.1: The parameters used for representing the input frame in different
superpixel segmentations.

The five oversegmentations are merged into a single superpixel map that
accurately segments the input frame into a segmentation having 500 pixels
per superpixel. For the merging process, the technique proposed by (Li et al.,
2012) is used. The method constructs a bipartite graph showing relationships
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between pixels and superpixels within and between the multiple superpixel
segmentations. The graph is solved using spectral clustering to produce a sin-
gle oversegmentation effectively merging different superpixel segmentations
into one. Figure 3.4 shows the result of the superpixel segmentation process
over an image.

Figure 3.4: Example image with superpixel segmentation map

3.3 Foreground Separation Model

This step presents a foreground separation model that uses the superpixel
segmentation from the previous step, and spatio-temporal saliency score,
CIELAB color and CIELAB optical flow color representation as features to
obtain an initial segmentation map for each frame of the input video. This
model consists of three different thresholding steps:

� Saliency thresholding

� Optical Flow thresholding

� Color thresholding
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Figure 3.5: Overview of foreground separation model

Figure 3.5 shows the results produced after different steps of the fore-
ground separation model.

3.3.1 Saliency Thresholding

In order to obtain an initial set of background segments having low saliency
scores, a saliency threshold,s, is introduced. All the pixels in the input frame
are labeled using,

labels =

{
0, if saliency(i, j) < s

1, otherwise
(3.3)

Where saliency(i, j) is the spatio-temporal saliency score of a given pixel in
an input frame.

Then, the number of pixels labeled as foreground and background are
counted for each segment. In order to assign same label to all the pixels in
a given segment, the entire segment is labeled with the label of the majority
of pixels in the frame to get the results of saliency thresholding.
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3.3.2 Optical Flow Thresholding

As a result of saliency thresholding, the majority of background segments
having low spatio-temporal saliency scores are classified to be belonging to
the background. However, there will exist some background segments which
are classified as the foreground due to their high spatio-temporal saliency
score. Such segments have a high saliency score due to their spatial closeness
with foreground segments. In order to relabel such background segments
currently labeled as foreground, a flow threshold f is defined.

For each foreground segment, the segments adjacent to it in the N4 neigh-
borhood are found. For each adjacent background segment, the Euclidean
distance between the average CIELAB optical flow color values of the two
segments is calculated. All the foreground segments are relabeled,

labelf =

{
0, if dist(i, j) < f

1, otherwise
(3.4)

Where dist(i, j) is the Euclidean distance in average optical flow of two seg-
ments, i and j, such that one is currently labeled as foreground while the
other is background. The relabeling process is repeated until there is no
change in the labels of the segments.

3.3.3 Color Thresholding

This step consists of two parts:

� Superpixel level color thresholding

� Pixel level color thresholding

After flow thresholding, there is a possibility of having segments belonging
to the background but currently labeled as foreground due to their close
color similarity with the foreground segments.To relabel such segments, a
superpixel level color threshold, cs, is defined,

cs =
1

t

∑
i,j∈Bs

√
(li − lj)2 + (αi − αj)2 + (βi − βj)2 (3.5)

Where l, α, β are the CIELAB color values of two neighboring segments i, j
belonging to Bs the set of segments labeled as background, and t is the total
count of such segment pairs.

Again, the background segments adjacent to currently labeled foreground
segments are found and the Euclidean distance between the average CIELAB
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color values of the two segments is calculated. The foreground segments are
relabeled,

labelc =

{
0, if dist(i, j) < cs − ε
1, otherwise

(3.6)

Where dist(i, j) is the Euclidean distance in average CIELAB color of two
segments, i and j, such that one is currently labeled as foreground while the
other is background and ε is a constant. The relabeling process is repeated
until there is no change in the labels of the segments.

Finally, for background pixels falsely labeled as foreground another thresh-
old cp is defined,

cp =
1

t

∑
m,n∈Bp

√
(lm − ln)2 + (αm − αn)2 + (βm − βn)2 (3.7)

Where l, α, β are the CIELAB color values of two neighboring pixels m,n
belonging to Bp the set of pixels labeled as background, and t is the total
count of such pixel pairs.

All the foreground pixels are relabeled using,

labelp =

{
0, if dist(m,n) < cp

1, otherwise
(3.8)

Where dist(m,n) is the Euclidean distance in CIELAB color of two pixels,
m and n, such that one is currently labeled as foreground while the other
is background. The relabeling process is repeated until significant change in
the labeling stops.

3.3.4 Post-processing

Finally, the number of foreground and background pixels for each segment are
counted and each segment is relabeled as the majority label. Then, simple
morphological operations are applied to fill holes and remove unnecessary
segments existing in isolation. The foreground separation model provides
an initial labeling for superpixels helping to identify possible object regions.
The result of this model is used in the next step while performing final
segmentation.



CHAPTER 3. PROPOSED METHODOLOGY 22

3.4 Conditional Random Field Construction

and Solving

This is the final step of the proposed solution. In this, a Conditional Random
Field is constructed and solved to get the final segmentation results. This
step consists of three parts:

� Preprocessing

� Potential Function Definition

� Segmentation using Conditional Random Field

3.4.1 Preprocessing

The foreground separation provides an initial labeling for possible foreground
and background pixels. This labeling can be used to calculate the likelihood
of a pixel belonging to a particular class. Gaussian Mixture Model (GMM)
implemented by (Li et al., 2013b) is used to model the likelihood for each pixel
in a given frame. Gaussian Mixture Models (GMM) are parametric proba-
bility distributions that use weighted sum of multiple Gaussian densities for
representing conditional probabilities. The parameters for the distribution
are learned using an Expectation Maximization (EM) algorithm.

The color and optical flow color representation of the input frame are
used separately to calculate the individual GMM likelihoods for foreground
and background of both features using the labeling provided by foreground
separation model. This information is used in the unary potential calculation
of each pixel.

The labeling produced by foreground separation model for each frame is
converted into RGB color space by assigning different color values to both
labels. This color representation is used in the pairwise potential calculation
to impose a high cost on the incorrect labeling of neighboring pixels.

3.4.2 Potential Function Definition

Here, a potential function is defined that is used to label the unary and
pairwise energies of nodes in the next step. The potential function uses
spatio-temporal saliency, GMM color, GMM optical flow color and RGB
foreground separation labeling for energy calculation.
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3.4.2.1 Unary Potential

The unary potential is used to label the nodes with the likelihood of each
possible label. Since there are two possible labels, each node will have two
unary potentials. The unary potential uses spatio-temporal saliency, GMM
color and GMM optical flow color values of each pixel to calculate the energy.
The unary energy of each pixel for foreground is calculated using,

uf (i, j) = λfGFf (i, j) + λcGFc(i, j) + λs(− log saliency(i, j)) (3.9)

Where GFf (i, j), GFc(i, j) are the GMM color foreground likelihood and
GMM optical flow color foreground likelihood for a pixel at location (i, j)
of the frame. saliency(i, j) is the spatio-temporal saliency score of the pixel
while λf , λc, λs are tuning constants.

Similary, the unary potential of each pixel for background is calculated
using,

ub(i, j) = λfGBf (i, j) + λcGBc(i, j) (3.10)

Where GBf (i, j), GBc(i, j) are the GMM color background likelihood and
GMM optical flow color background likelihood for a pixel at location (i, j)
of the frame.

It should be noted that saliency scores have not been used while cal-
culating background unary potential. This is because if a pixel belongs to
the background, its saliency score should ideally be close to zero. Further-
more, the saliency value of foreground pixels should be significantly high.
Hence, the saliency score is only used in the calculation of foreground unary
potential.

3.4.2.2 Pairwise Potential

The pairwise potential is used to label the edges connecting two nodes in
the Conditional Random Field. It is defined to impose spatial consistency
among neighboring pixels. The method of calculating pairwise term is in-
spired from (Li et al., 2013b) and is found using,

p(a, b) = La − Lb(λ1 + λ2(exp

(
−||ra − rb||

β

)
)) (3.11)

Where La, Lb are the labels for pixels a, b (connected in the 8-neighborhood)
predicted by the foreground separation model and ra, rb are the RGB fore-
ground separation labeling value of each pixel. λ1, λ2 are tuning parameters
and β is the average difference in color of the RGB representation of the two
labels.
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3.4.3 Segmentation using Conditional Random Field

This step involves constructing a Conditional Random Field and solving it
to obtain the final segmentation results for the input sequence. Each frame
of the video is taken separately and the pixels in it are used to represent the
nodes of the CRF. The pixels are labeled using their unary background and
foreground potential. An edge is maintained between every pixel and each
of its N8 neighbors. The weight of the edge is determined by calculating the
pairwise energy maintaining spatial consistency throughout the graph.

The overall energy of the graph is represented as the summation of the
unary and pairwise potentials for each pixel. The aim is to find the la-
beling that minimizes the overall energy of the graph. To solve the CRF,
max-flow/min-cut algorithm implemented by (Li et al., 2013b) is used. Fig-
ure 3.6 shows an example segmentation produced by the CRF construction
and solving step.

Figure 3.6: Example image with final segmentation result



Chapter 4

Implementation and Results

This chapter includes the implementation details of the proposed solution.
Additionally, the experimental results of the proposed technique and com-
parison with state-of-the-art methods is also covered in detail.

4.1 Implementation Details

The solution is implemented and evaluated on Matlab R2014 on a 64 bit
machine with Intel i7 processor and Windows 10 operating system. The
implemented solution takes approximately 2.5 minutes to segment a single
frame of size 259 x 327.

The constants mentioned in the previous chapter are learned by taking a
set of frames from each input sequence of SegTrack v2 dataset and iteratively
evaluating the results over different values to find the ones that produce the
lowest error. For the foreground separation model, each constant is identified
separately by using the output of separate threshlolding steps and choosing
the value that minimizes the overall error for that particular step. In pairwise
term of CRF construction and Solving, (Li et al., 2013b) suggest the ratio of
the two parameters to be 1:5. The parameter learning process is started with
this ratio and different combinations of both the constants in the range of
1-10 are tried. The parameter values that give the lowest error are selected.
For the unary term of the Conditional Random Field, different combinations
of the three parameters for three possible values (i.e. 0.00, 0.50 and 1.00) are
evaluated and the error for each set is calculated. This is used to understand
the effect of each parameter on the overall results. The parameter values
producing the lowest error are taken and the value for each parameter is
refined by keeping the other two parameters constant and only changing
that particular parameter between 0.00-1.00 using a window of 0.10. The

25
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parameter values producing the lowest error are selected. In the next step,
the parameter values are refined again using values in the range of 0.01 of
the new values. Then, the constants producing the overall lowest error are
selected. The selected constant values are mentioned in Table 4.1

S. No Methodology Step Name Value

1 Foreground Separation Model s 75.00
2 Foreground Separation Model f 4.00
3 Foreground Separation Model ε 10.00
4 CRF Construction and Solving λf 0.70
5 CRF Construction and Solving λc 0.13
6 CRF Construction and Solving λs 1.00
7 CRF Construction and Solving λ1 6.00
8 CRF Construction and Solving λ2 10.00

Table 4.1: The parameters used in different steps of the solution.

4.2 Datasets

The proposed solution is evaluated on two different video object segmentation
datasets. The use of variety of videos from different datasets helps explore
the extent to which the proposed and existing solutions conform to generic
sequences.

4.2.1 SegTrack v2 Dataset

The SegTrack v2 dataset (Li et al., 2013a) consists of 14 video sequences.
The properties of all the video sequences of the dataset are mentioned in
Table 4.2.
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Sequences Frames Objects Motion Properties Camera

birdofparadise 97 1 Smooth Appearance change Static
birdfall2 29 1 Smooth Simple Static

bmx 35 2 Blur Object occlusion,
deformation and

interaction

Static

cheetah 28 2 Blur Object occlusion,
deformation and

interaction

Moving

frog 278 1 Slow Simple Static
drift 73 2 Smooth Object occlusion and

interaction
Moving

girl 20 1 Smooth Object deformation Moving
hummingbird 28 2 Blur Object deformation,

occlusion and
interaction

Static

monkey 30 1 Smooth Object deformation Moving
monkeydog 70 2 Blur Object deformation Moving
parachute 50 1 Smooth Simple Moving
penguin 41 6 Smooth Object occlusion Static
soldier 31 1 Smooth Object deformation Moving
worm 242 1 Blur Simple Static

Table 4.2: The properties of different sequences of SegTrack v2 Dataset.

4.2.2 Videos used by (Fukuchi et al., 2009)

A total of 10 videos were used by (Fukuchi et al., 2009) for evaluation in
their video segmentation paper. Out of those, only 9 have been used in the
experimentation. The properties of each video are mentioned in Table 4.3.
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Sequences Frames Objects Motion Properties Camera

AN119T 84 1 Smooth Simple Static
BR128T 102 1 Smooth Appearance change Static
BR130T 65 1 Blur Appearance change Static

DO01 013 73 3 Smooth Appearance change Moving
DO01 014 85 1 Smooth Simple Moving
DO01 030 85 1 Smooth Object deformation Static
DO01 055 47 1 Blur Object deformation Moving
DO02 001 64 1 Blur Simple Moving
VWC102T 91 1 Slow,Blur Object deformation Moving

Table 4.3: The properties of different sequences used by (Fukuchi et al.,
2009).

4.3 Evaluation Measures

For evaluation, average pixel error per frame (Tsai et al., 2012) , precision,
recall and F1-measure are used. The average per-frame pixel error rate for
a sequence is the average number of pixels per frame misclassified when
evaluated against the ground-truth segmentation. Precision is a measure of
exactness for a given sequence and is calculated using,

precision =
tp

tp + fp
(4.1)

Where tp, fp are true positives and false positives respectively.
Recall is a measure of completeness and is calculated using,

recall =
tp

tp + fn
(4.2)

Where tp, fn are true positives and false negatives respectively.
F1-score is the harmonic mean of precision and recall calculated using,

F1 =
2.precision.recall

precision+ recall
(4.3)

In terms of accuracy, a lower average pixel error rate, and higher precision,
recall and F1-score are preferred.
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4.4 State-of-the-art methods

The proposed solution is compared with three state-of-the-art methods. The
first method was proposed by (Lee et al., 2011). The solution uses spatio-
temporal features to score different regions of an image. The regions are then
clustered and ranked to identify key segments that are later labeled as fore-
ground and background. The second method was proposed in by (Galasso
et al., 2013) which uses multiple superpixel segmentations to represent each
frame in the video. The superpixel maps are solved using spectral cluster-
ing to get the final segmenation results. The third method was proposed
by (Zhang et al., 2013) which presents a layered Directed Acyclic Graph
(DAG) based framework using spatial and temporal features to extract pri-
mary objects from a given video sequence. The initial segmentation results
are refined by Gaussian Mixture Model (GMM) and Markov Random Field
(MRF) based optimization.

4.5 Other Comparison method

The proposed solution is also compared with an alternative method which
was proposed during the course of the research. This alternative method
uses the same first three steps as the proposed solution but uses inter-frame
Spectral Clustering in the last step of implementation. The method will be
referred to as the Spectral Clustering (SC) solution.

4.6 Time Complexity

Table 4.4 includes the system specifications of the implementations of the
proposed and state-of-the-art solutions along with running time complexity
of each over a 10 frame video sequence of size 259 x 327.
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Method Specifications Running Time

Ours Matlab R2014, 64 bit machine with Intel i7
processor and Windows 10 operating system

25 minutes

Spectral
Clustering

Matlab R2014, 64 bit machine with Intel i7
processor and Windows 10 operating system

30 minutes

(Lee et al.) Matlab R2012, 64 bit machine with 4
processors and Virtual Machine Ubuntu

operating system

40 minutes

(Zhang et al.) Matlab R2014, 64 bit machine with Intel i7
processor and Windows 10 operating system

18 minutes

(Galasso et al.) Matlab R2012, 64 bit machine with 4
processors and Virtual Machine Ubuntu

operating system

30 minutes

Table 4.4: The system specifications and running time complexity of pro-
posed and state-of-the-art methods.

4.7 Results

Table 4.5 shows the average pixel error rate for Segtrack v2 dataset while
Table 4.6 shows the same for dataset used by (Fukuchi et al., 2009). The
lowest error for each sequence is shown in bold.
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Ours (Lee et al.) (Zhang et al.) (Galasso et al.)

bird of paradise 2753 11572 35264 13783
birdfall 626 1091 150 18533
bmx 10213 12071 152527 17133
cheetah 2424 22977 1914 4532
drift 15031 21864 150664 29643
frog 4385 8860 7217 19955
girl 4957 2054 1495 4079
hummingbird 17696 18288 13601 21404
monkey 7039 3205 3430 18697
monkeydog 7967 9081 1676 2947
parachute 1251 204 3695 407
penguin 36797 24772 30205 37092
soldier 9503 57586 24764 5592
worm 3140 46600 3509 5930
Average 8841 17159 30722 14266

Table 4.5: The average per-frame pixel error rate of different segmentation
techniques over SegTrack v2 dataset.

Ours (Lee et al.) (Zhang et al.) (Galasso et al.)

AN119T 1855 1679 18461 5348
BR128T 12364 19624 14732 24033
BR130T 1643 1817 7702 5214
DO01 013 10924 18159 23835 26348
DO01 014 3540 1232 2050 19356
DO01 030 15884 26378 29220 61826
DO01 055 2594 73893 11323 5538
DO02 001 1731 804 1738 16573
VWC102T 8143 13171 18489 14708
Average 6520 17417 14172 19883

Table 4.6: The average per-frame pixel error rate of different segmentation
techniques over dataset used by (Fukuchi et al.)

Table 4.7 shows the precision, recall and Table 4.8 shows the F1-measures
of the proposed solution and state-of-the-art methods on different video se-
quences of the SegTrack v2 dataset. The highest precision, recall and F1-
measure for each sequence is shown in bold.
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Ours (Lee et al.) (Zhang et al.) (Galasso et al.)
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

bird of paradise 0.97 0.96 0.86 0.85 0.99 0.12 0.97 0.68
birdfall 0.43 0.80 0.00 0.00 0.89 0.78 0.01 0.38
bmx 0.68 0.76 0.98 0.30 0.10 0.99 0.53 0.05
cheetah 0.63 0.46 0.03 0.23 0.94 0.40 0.00 0.00
drift 0.81 0.47 0.53 0.53 0.13 1.00 0.00 0.00
frog 0.86 0.47 0.00 0.00 0.73 0.91 0.05 0.10
girl 0.67 0.77 0.97 0.77 0.96 0.80 0.81 0.61
hummingbird 0.78 0.33 0.98 0.22 0.88 0.48 0.93 0.09
monkey 0.46 0.92 0.67 0.91 0.65 0.91 0.07 0.22
monkeydog 0.10 0.24 0.01 0.03 0.97 0.40 0.00 0.00
parachute 0.84 0.82 0.99 0.96 0.99 0.84 0.97 0.92
penguin 0.30 0.13 0.56 1.00 0.79 0.06 0.44 0.67
soldier 0.39 0.90 0.09 0.95 0.17 0.84 0.68 0.19
worm 0.53 0.84 0.06 0.85 0.06 0.52 0.00 0.00
Average 0.60 0.63 0.48 0.54 0.66 0.65 0.39 0.28

Table 4.7: The precision and recall of different segmentation techniques over
SegTrack v2 dataset.
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Ours (Lee et al.) (Zhang et al.) (Galasso et al.)

bird of paradise 0.97 0.85 0.22 0.80
birdfall 0.56 0.00 0.83 0.02
bmx 0.72 0.46 0.18 0.10
cheetah 0.53 0.06 0.56 0.00
drift 0.59 0.53 0.24 0.00
frog 0.61 0.00 0.81 0.07
girl 0.72 0.86 0.88 0.70
hummingbird 0.47 0.36 0.62 0.17
monkey 0.61 0.77 0.76 0.11
monkeydog 0.14 0.02 0.57 0.00
parachute 0.83 0.97 0.91 0.94
penguin 0.18 0.72 0.11 0.53
soldier 0.54 0.17 0.29 0.30
worm 0.65 0.11 0.11 0.00
Average 0.58 0.42 0.51 0.27

Table 4.8: The F1-measure of different segmentation techniques over Seg-
Track v2 dataset.

Table 4.9 shows the precision, recall and Table 4.10 shows the F1-measures
of the proposed solution and state-of-the-art methods on different video se-
quences of the dataset used by (Fukuchi et al., 2009) in their research. The
highest precision, recall and F1-measure for each sequence is shown in bold.
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Ours (Lee et al.) (Zhang et al.) (Galasso et al.)
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

AN119T 0.98 0.92 0.92 0.99 0.92 0.90 0.86 0.85
BR128T 0.78 0.24 0.00 0.00 0.74 0.78 0.12 0.10
BR130T 0.93 0.86 0.87 0.92 0.64 0.03 0.94 0.40
DO01 013 0.98 0.61 0.98 0.34 0.65 0.05 0.88 0.04
DO01 014 0.88 0.77 0.95 0.94 0.86 0.97 0.27 0.46
DO01 030 0.98 0.47 0.53 1.00 0.86 0.00 0.32 1.00
DO01 055 0.76 0.69 0.05 0.86 0.28 0.82 0.45 0.58
DO02 001 0.96 0.88 0.96 0.97 0.90 0.96 0.41 0.99
VWC102T 0.56 0.47 0.04 0.02 0.31 0.84 0.19 0.19
Average 0.87 0.66 0.59 0.67 0.68 0.59 0.49 0.51

Table 4.9: The precision and recall of different segmentation techniques over
dataset used by (Fukuchi et al.).

Ours (Lee et al.) (Zhang et al.) (Galasso et al.)

AN119T 0.95 0.96 0.91 0.85
BR128T 0.36 0.00 0.76 0.11
BR130T 0.90 0.89 0.06 0.56
DO01 013 0.75 0.51 0.09 0.08
DO01 014 0.82 0.94 0.91 0.34
DO01 030 0.63 0.69 0.00 0.49
DO01 055 0.72 0.10 0.41 0.50
DO02 001 0.92 0.96 0.93 0.58
VWC102T 0.51 0.03 0.45 0.19
Average 0.73 0.56 0.50 0.41

Table 4.10: The F1-measures of different segmentation techniques over
dataset used by (Fukuchi et al.).

The proposed solution is compared with the Spectral Clustering solution
using only the first 50 frames of videos having more than 50 frames. This
is due to the high memory and time requirement of the Spectral Clustering
solution when constructing and solving the inter-frame graph. Table 4.11
shows the average pixel error per frame and Table 4.12 shows the precision,
recall and F1-measures of the proposed solution, Spectral Clustering solution
and state-of-the-art methods on the SegTrack v2 dataset. The lowest error
and highest precision, recall and F1-measure are shown in bold.
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Ours SC (Lee et al.) (Zhang et al.) (Galasso et al.)

bird of paradise 1312 4845 13041 35429 11832
birdfall 626 980 1091 150 18533
bmx 10213 10339 12071 152527 17133
cheetah 2423 2626 22977 1914 4532
drift 10879 19614 15503 147480 42130
frog 336 2854 3387 1767 15216
girl 4957 4802 2054 1495 4079
hummingbird 17696 18237 18288 13601 21404
monkey 7039 7230 3205 3430 18697
monkeydog 7030 8065 9337 2241 3671
parachute 1251 1104 202 219 382
penguin 36797 36786 24751 30325 37022
soldier 9503 6660 57586 24764 5592
worm 644 2839 1470 4147 17745
Average 7908 9070 13212 29963 15569

Table 4.11: The average per-frame pixel error rate of proposed technique,
Spectral Clustering solution and state-of-the-art methods over SegTrack v2
dataset.

Ours SC (Lee et al.) (Zhang et al.) (Galasso et al.)

Precision 0.61 0.61 0.63 0.62 0.43
Recall 0.66 0.60 0.57 0.66 0.31
F-measure 0.60 0.57 0.52 0.54 0.28

Table 4.12: The precision, recall and F-measure of different segmentation
techniques over the complete SegTrack v2 dataset.

Figure 4.1 and Figure 4.2 show some visual segmentation results for all
techniques on SegTrack v2 dataset and (Fukuchi et al., 2009) sequences
respectively.
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birdfall

bird of paradise

bmx

cheetah

monkeydog
Original GT Ours (Lee) (Zhang) (Galasso)

Figure 4.1: Comparison of our segmentation results with other methods
against the ground-truth on SegTrack v2 dataset.
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DO01 013

DO01 014

DO02 001

VWC102T
Original GT Ours (Lee) (Zhang) (Galasso)

Figure 4.2: Comparison of our segmentation results with other methods
against the ground-truth on (Fukuchi et al.) dataset.

4.8 Discussion

Tables 4.5 and 4.6 show that the proposed technique produces a lower error
rate compared to the other techniques. The proposed methodology not only
outperforms the existing techniques but maintains a margin of 5,425 over
the SegTrack v2 dataset and 7,652 over the dataset provided by (Fukuchi
et al., 2009) when compared with the second best performing technique.
The average pixel error rate over both datasets proves the superiority of the
proposed technique over the existing solutions.

Tables 4.7, 4.8, 4.9 and 4.10 show that the proposed solution produces
the highest F1-measure for both datasets. Although, the methodology has
a lower average precision and recall on the SegTrack v2 dataset and lower
recall over the other dataset, the difference between the highest quantities is
not too high. Additionally, as the F1-score is higher for both datasets, it can
be concluded that the performance of the proposed solution is better since
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F1-score is the harmonic mean of precision and recall and is considered a
better measure for evaluation.

Tables 4.11 and 4.12 show the comparison of our solution with another
method proposed during the research process. The results show that our
method produces a lower average error and higher precision, recall and F1-
score than both the previously proposed and existing state-of-the-art meth-
ods.

The proposed solution outperforms the existing solutions on both the
datasets and maintains decent results for all input videos. The results can
be analyzed to conclude that the presented methodology is generic in nature
as it is able to produce satisfactory results for both datasets. It should be
noted that while the technique by (Galasso et al., 2013) and (Zhang et al.,
2013) produce the lowest average per-frame pixel error rate for one dataset,
they provide the highest error for the other dataset. This drastic change in
performance reflects the non-generic nature of the existing solutions. Addi-
tionally, the visual segmentation results in Figures 4.1 and 4.2 clearly show
that the proposed solution is able to generate satisfactory results for all types
of videos consisting of both single and multiple objects. However, although
the presented technique produces decent results for both datasets, the re-
sults can still be improved to further lower the overall segmentation error.
The proposed solution generates a higher error for videos with camera move-
ment and multiple moving objects which can be improved to produce better
results.

The other techniques produced high error rates due to their inability
to separate foreground and background parts having a high color similar-
ity particularly for sequences captured with a moving camera. The proposed
methodology produces superpixels that decently separate the foreground and
background pixels on the basis of color, optical flow, saliency and spatial co-
ordinates. Additionally, the foreground separation model introduces thresh-
olds that iteratively separate the foreground segments from the background
for individual frames. The final step of the algorithm uses the result of fore-
ground separation model along with other features to construct a CRF that
on solving produces suitable segmentation results.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The thesis discussed the problem of video object segmentation as an area of
research in Computer Vision. The methodologies that can be employed for
performing video object segmentation were covered in detail. Additionally,
the existing solutions for solving the problem of video segmentation were
discussed along with the benefits and draw back of each technique.

The thesis proposed a solution for solving the given problem and ex-
plained each step of the process in detail. The presented solution used graph
based methods to solve the segmentation problem. A Linear Spectral clus-
tering based implementation was presented that used color, motion, spatial
co-ordinates and saliency to oversegment every frame of the input video into
five different superpixel segmentations. The multiple segmentations were
merged by constructing a bipartite graph and solving it using Spectral Clus-
tering. Furthermore, a foreground separation model was proposed that used
color, optical flow and spatio-temporal saliency to provide an initial segmen-
tation map for each frame. Finally, a CRF was constructed and solved using
energy minimization to obtain the final segmentation results.

The presented solution was evaluated on two datasets using average pixel
error rate, precision, recall and F1-score as the evaluation measures. The
solution was also compared with state-of-the-art methods and both numerical
and visual results showed that it outperformed all the techniques on both
datasets.

39



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 40

5.2 Future Work

Although, the solution proposed in the thesis produces a lower error than
the existing techniques, the technique can still be improved in the future to
produce better results. The limitation of the solution to extract multiple
objects effectively can be improved by introducing temporal cues that ef-
fectively identify the movement of separate objects in different parts of the
frame and store their respective information separately. The spatio-temporal
saliency implementation used to provide saliency scores to each pixel of the
frame can be improved to produce better results by taking camera movement
into consideration. Hence, more research can be carried out in the area of
video object segmentation to improve the overall results for the problem and
produce a lower error than the one produced by the proposed solution.
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