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Abstract

Visual tracking is the process of estimating the location of an object in con-

secutive video frames. It is a major problem in the domain of computer

vision with large set of applications such as traffic monitoring, robot plan-

ning, surveillance, vehicle navigation and human computer interaction. The

problems related to object tracking are complex object shapes, noise in the

image, occlusion, and background clutter. The aim of this work is to develop

such technique which can track object in a complex environment. This work

presents a visual object tracking algorithm using an eigenspace representa-

tion. Object appearance and spatial information is learned from a single

template using a non-linear subspace projection to arrive at a eigenspace

representation. This non-linear subspace representation provides a robust

and compact representation of the object. Localization is performed using

a similarity measure in non-linear eigenspace representation. A probabilistic

search strategy, based on particle filter, is employed to find the region of an

object in each frame of the video sequence that best models the target object

in the subspace representation. Particle filter estimates the posterior distri-

bution using weighted samples. Increasing the number of samples increases

the estimation accuracy at the cost of increased computations. We, therefore

v
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propose a novel kernel subspace integral image framework, which allows the

tracker to densely sample the state space without loosing computational ef-

ficiency. The proposed tracker is tested on number of challenging sequences

to demonstrate the performance.
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Chapter 1

Introduction and Motivation

Object tracking can be defined as the process of locating an object of interest

or the problem of estimating the trajectory of an object in video frames. It is

fundamental problem in computer vision field with many applications traffic

monitoring, robot planning, vehicle navigation, human computer interac-

tion, motion based recognition, and automated surveillance. Object tracking

becomes complex problem because of complex object shapes, noise in the

image, loss of information while projecting 3D data to 2D image, illumina-

tion changes, partial and total occlusions. Many object tracking approaches

have been proposed to track single or multiple objects and these approaches

varied with each other depending on object shape, and its appearance. As

different object representations are used based on its shape, and different

features such as colour, texture, edges etc. are selected based on appearance

of an object. We will explain different object representations, and feature

selection methods used in object detection and will further explain various

tracking methods used on the basis of object and motion representation.

1



CHAPTER 1. INTRODUCTION AND MOTIVATION 2

1.1 Object Representations

Objects is anything that is of interest. Objects can be represented by their

shape and appearance. Joint shape and appearance representations described

as follows as in [3]

• Points: The object can be represented by single point, or set of points.

Point or Centroid symbol is best fit for tracking objects that lodge

minor regions in an image.

• Primitive geometric shapes: The object is represented by ellipse or rect-

angle etc. The motion of an object for this representation is commonly

demonstrated by transformation, affine, translation or projective.

• Object silhouette and contour: Object can be represented by defin-

ing the boundary of an object; known as contour representation. The

region within contour representation is known as silhouette. Contour

and silhouette representation is best fit when objects are of complex

shapes.

• Articulated shape models: Articulated shape model is formed when

different parts of object represented separately using rectangle or ellipse

etc. For example, human body is composed of different body parts,

legs, feet, head, and hands etc., can be represented using this kind of

representation.

• Skeletal models: Rigid as well as articulated objects can be represented

in skeletal model representation.
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There are many ways to characterize the appearance of objects. Most

common representation based on object appearance are described as follows

as in [3].

• Probability densities of object appearance: The probability density of

the object appearance features is approximated either by parametric

or nonparametric. It can be Gaussian or a mixture of Gaussians or can

be nonparametric such as histograms or parzen windows. Appearance

features such as colour, or texture can be calculated from image area

displayed by the contour or silhouette models.

• Templates: Templates provide joint appearance and spatial information

of an object can be used in learning as well as tracking of an object.

This is mostly used when object poses do not change during tracking

as information is generated based on single view only. Templates are

shaped as contour or silhouette.

• Appearance models: Active appearance models can be made by mod-

elling object appearance and shape simultaneously. Appearance vector

of colour, texture, or gradient can be stored for each landmark which

can exist on boundary of an object or inside region. In case of Multi-

view appearance models, subspace can be generated based on different

views of an object using subspace approaches like Principal component

analysis (PCA).

Particular object representation is usually selected based on application

and tracking algorithms. For smaller objects, point or centroid representation
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is used. Primitive geometric representations are normally used when shapes

are looked as similar to rectangle, or circle. For example, Comaniciu et al.

[2] employs colour histograms using elliptical shape representation.

1.2 Feature Selection

Feature selection and Object representations are closely related to each. For

example, in case of histogram based appearance representation, colour can

be used as visual feature while edges can be used as feature in case of contour

based representation. Object can be distinguished based on its uniqueness of

its visual feature. Visual feature plays important role in tracking of particular

object. In general, combination of common visual features described below

are used in object tracking algorithms.

• Color: RGB values are used to represent color in domain of image

processing.

• Edges: Object boundaries or edge detection is used to identify changes

in image intensities. Edges are not as sensitive to illumination changes

as colour is.

• Texture: Texture can measure intensity of surface to identify smooth-

ness. It requires initial processing to generate descriptors and features

are less sensitive as compared to colour of illumination changes.

Features can be selected based on their usefulness or they should not be

correlated with each other. In some cases, for correlated feature, PCA can
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be used to transform correlated features to uncorrelated features. However,

color is mostly used as visual feature for object tracking. Comaniciu et al. [4]

represent the object appearance using colour histogram. As described above,

colour is most sensitive to illumination changes, therefore, combination of

features are used in object tracking to improve tracker performance.

1.3 Object Tracking

The aim of visual object tracker is to locate object position in successive

frame of the video or to generate trajectory or path of an object over time

using joint shape or appearance information extracted from previous frames

based on object representation. Point/centroid based representation, geo-

metric representation using rectangle or ellipse is used to estimate motion

of rigid objects. For non-rigid objects, silhouette or contour based represen-

tation can be used to approximate object motion in the scene. We briefly

introduce main categories of object tracking.

• Point Tracking: Objects are represented by points, and correspondence

of an object can be generated based on object state including position

and motion of an object.

• Kernel Tracking: In kernel tracking, object shape and appearance in-

formation is characterized. Kernel can be in the form of rectangle or

ellipse with colour histogram.

• Silhouette Tracking: Information within object region is used in silhou-

ette tracking methods. Information inside region can be represented as
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appearance density or shape models.

Primitive geometric shapes representation of an object is widely used in

state-of-the-art methods. Parametric motion of the object is computed in

tracking methods based on rigidity constraints. It can be in the form of

affine, projective or translation. Object similarity is maximized using previ-

ous and current frame of video sequence to estimate parametric motion of the

object. There are number of ways to estimate motion of the object. It can

be in the form of gradient ascent/descent based maximization/minimization

approach, or simple brute force approach. The main limitation in using gra-

dient ascent/descent approach is that at least portion of the object must be

visible to track it. To remove this limitation, Kalman filtering approach is

used to predict object location in next frame. However, Kalman filter give

poor results when state space is not Gaussian distribution. To overcome this

issue, conditional probability based particle filtering approach is used to esti-

mate the state of the object. Primitive geometric shapes representation may

not give correct motion estimation using similarity measure because complete

object may not be selected in defined shape, or it may include background

noise. In this case, probability density estimation is used to give high weights

to pixels which are inside shape/region using conditional probability of visual

feature (colour, texture, etc.).

1.4 Thesis Motivation

In recent years, object tracking has been much studied and sufficient progress

has been made. Object tracking still remains a very interesting and challeng-
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ing problem in the domain of computer vision. Several factors such as object

shape, background noise, illumination variations, partial as well as total oc-

clusions make object tracking a very complex problem. No single tracker

exist in the domain of object tracking which can handle all scenarios success-

fully. Still, there is much room for exploration and making contributions in

the domain of object tracking. This work can be applied to improve security

measures by tracking people or vehicles, and also in traffic monitoring and

controlling. Also, it could be used in surveillance using Robots. Major ad-

vantages includes machine-machine interaction can be enhanced by sending

data from robot to computers through video communication which could be

further utilized to be processed and taking actions needed at specific place,

security mechanisms can be improved by tracking people and vehicles and

monitor suspicious activities, especially, in traffic controls system to adjust

traffic signal based on number of vehicles.

1.5 Thesis Contributions

The work presented in thesis [5] uses feature vectors associated to pixels of

the target template as observations. Deformable objects can be tracked as

the learning is carried out pixel wise. At the same time individual pixels are

tied together through non-linear subspace representation of the model, which

provides a robust and compact representation of the object being tracked.

Due to its ability to track rigid and non-rigid objects and robustness to noise,

we base our method on [5].

The method proposed in [5, 6] uses gradient descent method to maximize
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the similarity function with respect to the transformation parameters. An

alternate mean-shift procedure is also given. These strategies can provide

reliable solution and converge to local maximum but fail to recover from lost

objects and to track fast moving objects. We therefore propose to use par-

ticle filtering approach [7] to sequentially estimate the state variables, which

in our case are the transformation parameters of the rectangular target ob-

ject region. Particle filter has the ability to recover from lost tracks and to

track fast moving objects even with partial and total occlusions. Particle

filter has been successfully employed for visual object tracking, see for ex-

ample [8, 9]. Particle filter performance increases by increasing the number

of samples. However, increasing the samples also increases the computa-

tional cost. In this thesis, we propose a novel kernel subspace integral image

formulation that allows us to densely sample the state space without loos-

ing computational efficiency. The speedup obtained over non integral image

based implementation is of about 2.5 orders of magnitude over non-integral

image based implementation.

1.6 Thesis Organization

This thesis is structured as following. Chapter 2 presents the previous work

related to our method. Chapter 3 introduces the proposed methodology

leading to results in Chapter 4. Chapter 5 provides conclusion and future

work directions.



Chapter 2

Literature Review

Visual tracking is the process of estimating the location of an object in con-

secutive video frames. It is a major problem in the domain of computer

vision with large set of applications such as traffic monitoring, robot plan-

ning, surveillance, vehicle navigation and human computer interaction. Some

of the problems associated with object tracking are image noise, occlusion,

background clutter, complex object shapes, etc.

Objects can be represented by their appearances, such as color, texture,

edges, and shape information, which provide characteristic information about

the target object. This characteristic information, gathered from single tem-

plate or multiple templates of the target object, is encoded into a cost or

similarity function.

There are different types of tracking algorithms which determine the cor-

respondence of the object.

9
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2.1 Generative and Discriminitive Methods

Methods which determine the correspondence of the object region in con-

secutive images by optimizing the pre-determined similarity functional are

called generative methods [10, 11], as they search the image space to find the

region most similar to the target model. Generative algorithms models input

data using joint probability distributions, p(x, y), and calculate conditional

probaility p(y|x) by making predictions using Bayes rules.

In contrast to generative methods, discriminative methods formulate the

problem as a binary classification problem and models posterior density,

p(y|x) directly. From positive and negative samples, a classifier is trained

to separate the foregorund from the background. This can be carried out at

pixel level [12, 13] in which classifier is trained to distinguish features between

actual object and background, or at region level [14, 15] in which part of the

object is identified as rigion. The latter methods are also called tracking

by detection. Tracking by detection methods are more suitable for tracking

rigid methods while methods that pose tracking as pixel wise classification

problem are more suitable for non rigid objects as they ignore the spatial

information [8].

2.2 Template based Approaches

Different encoding strategies are employed to track rigid and non-rigid ob-

jects. Tracking rigid objects call for methods that encode the spatial geom-

etry of the object in similarity function. In the simplest case of template
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matching, the similarity function is reduced to per pixel difference between

the template and the target region. More involved methods use multiple tem-

plates, sparse representations and subspace models [16, 17, 10, 18, 19, 20].

2.3 Histogram based Approaches

For deformable objects, histogram based approaches are more suitable [8],

reducing the similarity between target and candidate region to similarity be-

tween color distributions. For example, Comaniciu et al [4] estimated prob-

ability density function of the region of an object using histograms weighted

by a spatial kernel. At the region level, correspondence of an object is de-

termined between consecutive frames using Bhattacharya coefficient which

is optimized using meanshift iterative procedure between candidate distribu-

tions and the target object. Histogram becomes problematic as they discard

spatial information especially when target object lies in the background or

when object is passing through partial or total occlusions. Instead of using

the Bhattacharya coefficient, Hager et al [21] calculated distance between

modulated-kernel histograms using Matusita distance measure technique and

Newton-style iterations are used to optimize Matusita distance. As compared

to meanshift, Matusita distance provides faster convergence. Additionally,

limitations of using a single kernel are provided and an extension using mul-

tiple spatially distributed kernels is developed. Multiple kernels are chosen

so as to increase the rank of the resulting system. Another extension to

multiple-kernel tracking is [22], in which target object can be found using

multiple collaborative kernels. In [23], spatiograms are derived based on his-
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tograms including spatial information. Each histogram bin is expanded to

include covariances, and spatial means of pixels to derive spatiogram. The

algorithms uses probability density functions (histograms) faced two issues;

firstly, In case of higher dimensions, algorithms becomes computationally ex-

pensive and secondly, when sample set is small then feature space becomes

sparse. The sparseness makes similarity measures, such as Bhattacharya co-

efficient, computationally unstable [24]. Methods, such as [24, 25, 26] define

similarity functions between kernel density estimates of the template and

target distribution in a joint feature-spatial space. The relationship between

the appearance and spatial information is more fully exploited as compared

to the previously discussed approaches. Since these methods employ non-

parametric density comparison techniques, the intermediate step of estimat-

ing the density function is not carried out and the similarity functions are

defined directly on the samples obtained from the target and the candidate

regions.

2.4 Variational Target Localization

Appearance and spatial information of the target object is learned using

eigenvalue decomposition of the covariance matrix in an alternate image de-

scriptor. Find the distance between object region covariance matrix and

model covariance matrix. Exhaustive search is performed in [27] over the

image to find the region which has smallest distance between object and

model covariance matrix. The algorithm can recover from partial as well

as total occlusions, or during fast movements due to its global nature but
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at the same time, it is vulnerable to false positives, background clutter and

noise. In [28], Karasev et al extended the covariance tracker by consider-

ing spatially weighted mean and covariance descriptions of the target object,

and provide a variational approach to target localization. Avidan [29] trains

many binary classifiers to separate object pixels from background pixels and

treats tracking problem as binary classification problem. A confidence map

is generated when strong classifier is tested in the current image on all pixels.

Then, object rectangle is found by running meanshift procedure on generated

confidence map.

2.5 Principal Component Analysis

Essential to improved tracking is the derivation of a model that can capture

the relationship between the purely image-based observations and the spatial

content associated to said observations. Some generative methods use unsu-

pervised learning techniques such as principal component analysis (PCA) to

measure the correlation among the pixels of the templates of the target. The

templates are vectorized to form a matrix D = [I1, I2, ...In], where each col-

umn is a vectorized template. The covariance matrix obtained from the data

in D is diagonalized to obtain a low dimensional eigenspace representation of

the target. This representation has been used for tracking in[30] and [31]. In

[31], the subspace is also incrementally updated to account for appearance

and illumination change. Tsai et al. [32] perform PCA on a collection of

vectorized signed distance maps of the training shapes to incorporate the

shape model into the segmentation procedure. In these settings each vec-
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torized template Ii is an observation with the implicit assumption that the

image appearance will remain similar to the training templates. However,

under partial or extensive occlusions this assumption will not hold and the

tracker may give erroneous results. Instead of using vectorized images as ob-

servations, [6] use feature vectors associated to pixels of the target template

as observations. Pixel vectors extracted from a single template are used for

learning the target model. Deformable objects can be tracked as the learning

is carried out pixel wise. At the same time individual pixels are tied together

through non-linear subspace representation of the model, which provides a

robust and compact representation of the object being tracked. Due to its

ability to track rigid and non-rigid objects and robustness to noise, we base

our method on [5, 6] described in next section.



Chapter 3

Background

This chapter explains non-linear eigenspace representation as described in [5]

in which object appearance and spatial information is learned from a single

template using a non-linear subspace projection to arrive at a eigenspace

representation. This representation allows tracking pixel-wise but the pixels

are tied together using non-linear subspace representation which provides a

robust and compact representation of the object.

3.1 Target Eigenspace Representation

The feature/pixel vector associated to a given pixel is a d-dimensional con-

catenation of a p-dimensional appearance vector and a 2-dimensional spatial

vector ρ = [I(x), x]T , where I(x) represents feature extracted at template

pixel location x = [x, y]T . The extracted feature can be color, gradient, tex-

ture, etc., or any combination of these. The pixel vectors are extracted from

the segmented target template image(s). The set of all pixel vectors define

15
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the target input space D,

D = {ρ1, ρ2, ..., ρn},

where n is the total number of pixel vectors extracted from the template

images. The eigenspace representation of the input space comes from per-

forming eigenvalue decomposition of the n×n kernel matrix, Kij = k(ρi, ρj),

where k is a Mercer kernel and n is the number of target object pixel vectors.

An Example of the Mercer kernels is the Gaussian kernel, which is used in

this paper.

k(ρi, ρj) = exp

(
−1

2
(ρi − ρj)TΣ−1(ρi − ρj)

)
, (3.1)

where Σ is a d×d matrix appropriately chosen for rigid and non-rigid objects.

The use of Mercer kernel allows for the computations in higher dimensional

Hilbert space, φ : Rd → H, such that

k(ρi, ρj) = φ(ρi) · φ(ρj).

A test point ρ is represented in the eigenspace by the following projection

equation:

P (ρ) = Λ−
1
2ETkρ, (3.2)

where Λ is a diagonal matrix containing the eigenvalues of matrix K, E is a

n×q matrix containing q eigenvectors, and kρ = [k(ρ, ρ1),k(ρ, ρ2), . . . ,k(ρ, ρn)]T .

This results in q dimensional eigenspace representation of the pixel vector,

P (ρ) = [P1(ρ), . . . , Pq(ρ)]T , where each component is, in expanded form,
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written as

Pk(ρ) =
n∑
i=1

αki k(ρ, ρi), (3.3)

where αki =
Ek

i

λk
with Ek

i begin the ith element of the kth eigenvector.

All further computations are performed in the eigenspace, which is related

nonlinearly to the input space. This results in nonlinear algorithm.

3.1.1 Properties of the Eigenspace Representation

The eigenspace representation has several properties that are advantageous

when tracking. In particular, the benefits described below will transfer to

the similarity function to be defined shortly.

Enhanced clustering/discrimination: Our kernel based eigenspace

representation is based on unsupervised clustering algorithm, kernel princi-

pal component analysis (KPCA). The algorithm can capture a number of

clusters/features equal to the number of eigenvectors retained plus one [33].

In case of principal component analysis (PCA), the maximum eigenvectors

are limited by the the dimension of the input space, Rd. For KPCA, the

maximum number of eigenvectors is given by the number of data points in

the input space, n. Given that n >> d, KPCA can represent significantly

more clusters [33], thus its representation capacity is richer. In case of a

two-dimensional data, PCA can have maximum of two eigenvectors while

the eigenvectors learned using KPCA capture different aspects of the two-

dimensional dataset. The eigenvectors capture non-linear relations among

the dataset. These properties can be very useful for developing an object

tracking algorithm, where the relationship among three or more pixels pro-
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vide useful information about the target [34].

Noise/outlier removal: There are two ways noise and outliers can effect

the tracking process, either during the learning phase (the noise present in

the sample set used for training) or during the tracking phase. The use

of KPCA helps in reducing the effect of noise and outliers in both cases.

Noise suppression is achieved by selecting less than the maximal eigenvalues

possible. In case, when outliers are added to the training set, the isoclines

of the top eigenvector coefficients remain the same. The reconstruction can

show that the eighth eigenvector and beyond will capture noise and therefore

can be ignored. In next section, we will show that the projections on to the

eigenspace go to zero when data is far from the template samples. This

helps in reducing the effect of noise/outliers during the tracking phase. The

remaining sections exploit these properties for tracking.

3.2 Similarity Measure in Target Eigenspace

Object tracking in the target eigenspace requires defining a similarity func-

tion in the eigenspace. Here, the similarity function will measure the sim-

ilarity of a feature vector to the learned model. As per Section 3.1, the

similarity function defined in the eigenspace will capture nonlinear relation-

ships between the feature vectors.

The similarity function comparing a given feature vector (or set of fea-

ture vectors) to the learned model will exploit the geometric properties of the

eigenspace. Under Gaussian kernel, the eigenspace is a high-dimensional el-

liptical space. A feature vector ρ is represented by P (ρ) = [P1(ρ), . . . , Pq(ρ)]T ,
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where each Pk(ρ) is computed using Equation (3.3). It is evident from Equa-

tion (3.3) that the function Pk(ρ) tends to zero as the vector ρ recedes from

the input space D. Similarly, when ρ is a feature vector representative of

an input space element, the distance of the vector P (ρ) from the eigenspace

origin, is bounded and given by

||P (ρ)|| = 〈P (ρ), P (ρ)〉
1
2 = 1.

However, since the projection Pk(ρ) is approximated using the Nystrom ap-

proximation method [35], the distance computation satisfies the inequality

||P (ρ)|| ≤ 1 [36].

All features in the input space are mapped non-linearly to high dimen-

sional Hilbert space. During projection, a feature vector which corresponds

to the data is mapped onto the hyper ellipse surface whereas noise or outlier,

is mapped closer to the origin depending on the probability to which it is

treated as outlier. Therefore, the objects that are onto the surface of ellipse

has maximum distance from origin, used as similarity and ones which are

closer to the origin has less similarity or zero if lies onto the origin. So the

distance from the origin acts as similarity measure or observation likelihood.

The similarity of a test feature vector ρ to the target model D is defined as

s(ρ) = ||P (ρ)||1 =

q∑
k=1

|Pk(ρ)| (3.4)

where q is the total number of eigenvectors retained. In Figure 3.1, the

target color values shown in red are learned using the procedure defined
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Figure 3.1: The target object color values lie on the surface of the ellipse in
eigenspace, while other color values lie interior to the ellipse. The distance
from the origin can be used as a similarity function.

above, while the blue points depict other points in the domain. The learned

eigenspace is shown in Figure 3.1(b), for which both the red and blue points

are mapped. The target object color values lie on the surface of the ellipse

in the eigenspace, while all other color values lie within the ellipse. The dis-

tance from the origin can be used as a similarity function. Importantly, the

similarity function rewards inliers and ignores outliers, thus lending robust-

ness to outliers (such as target occlusions and background clutter). Further

details on the statistical interpretation of this approach and its relation to

robust density matching can be found in [37].
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Design and Methodology

A target eigenspace representation in which feature vector consisting of object

appearance and spatial information is learned from a single template using a

non-linear subspace projection is explained in Section 3.1. The similarity of

feature vector is computed using similarity measure explained in Section 3.2,

then feature vector similarity is summed up to define observation likelihood

used in particle filter explained in Section 4.1 followed by object tracking

methods described in Section 4.2.

4.1 Particle Filter

Particle filter method [38], also knowns as sequential Monte Carlo (SMC)

method approximates the posterior density of the state-space variables of a

dynamical system from sequence of observations. Unlike Kalman filter, the

posterior density is not restricted to be Gaussian distributed. It can be of any

form and is non-parametrically represented by a set of random samples (a.k.a

21
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particles), and associated weights. Let xt and yt be the latent state and ob-

servation variables at time t. Evolution of the process is governed by two

probability distributions: state transition probability xt+1|xt ∼ p(xt+1|xt)

and observation likelihood yt|xt ∼ p(yt|xt), with the assumption that state

evolves according to the first order Markov process. The basic idea is to ap-

proximate the posterior density with a set of m weighted particles {xit, wit}mi=1.

The particles are drawn from a proposal distribution, which can be the same

as the transition probability. The particles are sequentially updated using

transition probability to obtain approximation to the the posterior density

p(xt|y1:t) with a sum of m Dirac functions centered at particles {xit}mi=1 as:

p(xt|y1:t) ≈
m∑
i=1

witδ(xt − xit), (4.1)

where weights are computed as wit ∝ wit−1p(yt|xit). This particular type of

particle filter is called Sequential Importance Sampling (SIS). It suffers from

particle degeneracy problem, where only a handful of particles contribute

to the posterior density approximation. Rest of the particles tend to have

very small weights. This problem can be avoided by using a resampling

stage leading to Sequential Importance Resampling (SIR). At each iteration,

current particles are dropped and new particles are added from the current

dropped particle set with probability proportional to their weights.
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4.2 Visual Object Tracker

The objective of visual object tracking is to provide an accurate and com-

pact region that encompasses the target object in each frame of the video.

The state space consists of location, width and height of the region, x =

[x, y, w, h]T , where {x, y} is the location of the top left corner of the region

in image coordinates. Each dimension of the state space is modeled by an

independent Gaussian distribution:

p(xt|xt−1) ∝ N (xt,Σ). (4.2)

If there is no scale change, the width and height of the region can be kept

fixed. Initial state is provided by the user in the first frame. Feature vectors

from the region defined by the initial state are used to create target object

eigenspace representation using the method described in Section 3.1. m par-

ticles {xi0, wt0}mi=1, are generated initially using Equation (4.2) with weights

set as wi0 = 1/m.

At each new frame of the video sequence, particles are sampled using

Equation (4.2), and their weights updated by wit ∝ wit−1p(yt|xit). The key

component is the observation likelihood, p(yt|xit), which should reflect the

similarity of the particle to the target template. We extract all the feature

vectors from the image region corresponding to the particle and sum the fea-

ture vectors similarity (Equation (3.4)) to define the observation likelihood:

p(yt|xit) ∝ S(rxi
t
) =

1

C

∑
x∈r

xi
t

s(ρ(x)), (4.3)
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where rxi
t

is the region defined by the particle xit. Weight of the particles is

normalized, wit =
wi

t∑m
j=1 w

j
t

. The particle with the maximum weight is used as

the estimate of the object region in the current frame. Resampling of the

particles is carried out to avoid the degeneracy problem.

One limiting factor of particle filtering approach is the large number of

particles required to accurately estimate the posterior distribution. Increas-

ing the particles also increases the computational cost. Specially, in our case

computing observation likelihood Equation (4.3) is expensive as it requires

iterating over all the target feature vectors for each feature vector of the

particle region. In the next sub section, we provide a novel procedure to

efficiently compute Equation (4.3) using integral image. This allows us to

increase the number of samples without the computational overhead.

4.2.1 Kernel Subspace Integral Image based Observa-

tion Likelihood

Let ρ be a feature (e.g. color) extracted at each image location and s be

a function that maps extracted feature ρ computed at location x to a real

number: s : ρ(x)→ R. Filtering of values of s over the region r is defined as

a function A : r → R and expressed as:

S(r) =
∑
x∈r

s(ρ(x)). (4.4)

In the simplest case, ρ(x) is intensity image and s(ρ(x)) = ρ(x). Filtering

over multiple overlapping regions is computationally inefficient as many com-
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putations will be repeated for each region. This calls for an efficient integral

image [39] based framework. Once the integral image has been computed,

filtering (4.4) can be computed in constant time, irrespective of the size of

the region.

4.2.1.1 Integral Image

Let I be an integral image of the feature function s. The value of integral

image at location x = [x, y]t is computed by taking the sum of all pixels

values above and left of x in image s:

I(x) =
∑

x́≤x,ý≤y

s(ρ(x́)). (4.5)

Once, the integral image has been computed, filtering of values of s over a

region r = [x, y, w, h] can be computed in constant time using the following

formula:

S(r) = I(x, y)− I(x + w, y)− I(x, y + h) + I(x + w, y + h). (4.6)

There is one caveat in using integral image, i.e., the function s(ρ(x)) must

be independent of the region definition. This is not true in the case of pixel

similarity function (Equation (3.4)). As mentioned in Section 3.1, the feature

vector is concatenation of appearance and spatial values, ρr(x) = [I(x), u]T ,

where u = [x − xb], with xb being the origin of the candidate region under

consideration. A feature vector extracted from same image location but

for two different candidate regions will have different spatial component,
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resulting in different pixel similarity to the learned model. This means that

the integral image can not be formed for pixel similarity function s(ρr(x)).

Hussein et al. [40] provide an approximate integral image solution for non-

uniform filters. In the next section, we propose a method to compute the

pixel similarity function efficiently using integral image. The pixel similarity

(Equation 3.4) not only contains non-uniform kernel but it also contains

non-linear subspace projection. We call the resulting image, kernel subspace

integral image.

4.2.1.2 Kernel Subspace Integral Image

This section contains one of our main contributions. Similarity of a feature

vector to the learned model is the distance from the origin of the projection

of feature vector onto the learned eigenspace representation (Equation 3.2).

We reproduce Equation (3.4) in expanded form below:

s(ρr(x)) =

q∑
k=1

|Pk(ρr(x))|

=

q∑
k=1

∣∣∣∣∣
n∑
i=1

αki k(ρr(x), ρ)

∣∣∣∣∣
Feature vector is composed of appearance and spatial features. Appearance

features are independent of region definition while the spatial components

are not. We decompose Pk(ρr(x)) into region independent and dependent
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terms as follows:

Pk(ρr(x)) =
n∑
i=1

αki k (ρr(x), ρ)

=
n∑
i=1

αki k (I(x), I(x))k (u, x)

=
n∑
i=1

ai(x)k (u, x)

where x is the ith target object template pixel location, ai(x) = αki k (I(x), I(xti))

is the appearance part which is region independent and k (u, xti) is region de-

pendent as u = [x−xb]T . Following [40], we compute the taylor expansion of

the region dependent component and retain only the first two components.

Pk(ρr(x)) =
n∑
i=1

ai(x)exp

(
−(u− x)2

2σ2
s

)
=

n∑
i=1

ai(x)
∞∑
j=0

1

j!

(
−(u− x)2

2σ2
s

)j
≈

n∑
i=1

ai(x)

(
1− (u− x)2

2σ2
s

)

Expanding it further, Pk(ρr(x)) can be expressed as a linear combination

of region independent terms:

Pk(ρr(x)) ≈
n∑
i=1

ai(x)− 1

2σ2
s

(
n∑
i=1

ai(x)(x− xi)2+

2xb

n∑
i=1

ai(x)(xi − x) + x2
b

n∑
i=1

ai(x)ai(x)

)
.

(4.7)

The region independent terms are s1(x) =
∑n

i=1 ai(x), s2(x) =
∑n

i=1 ai(x)(x−
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Figure 4.1: Kernel integral image based non-linear subspace region similarity.
[First]: Template image. [Second]: Given image. [Third]: Region similarity
of given image. Each pixel represents average of pixel similarity of the region
centered at that pixel.

xi)
2, s3(x) =

∑n
i=1 ai(x)(xi − x) and s4 =

∑n
i=1 ai(x). Filtering of region

independent terms over a region r can be efficiently performed using the in-

tegral image. The observation likelihood (4.3) can therefore be computed

in constant time, once the integral images have been computed. It should

be pointed out that the cost of computing integral image is O(n1 × n2),

where n1×n2 is the size of the image. However, since we densely sample the

state space, resulting in filtering over many overlapping regions, the speedup

obtained is about 2.5 orders of magnitude over a non integral image based

implementation.

Figure 4.1 shows a simple example. Feature vectors ([RGBXY ]T ) are

extracted from the template sunflower and learned using the method de-

scribed in Section 3.1. The non-linear subspace region similarity of the given

sunflowers image is computed using kernel integral image framework (Equa-

tion (4.7)) and shown in Figure 4.1c. Each pixel of this image depicts the

similarity of the region centered at that pixel.
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4.2.2 Overall Algorithm

Input: Rectangular region of the target object in the first frame taken

as target template. Extract Feature vectors of the template to

learn the object eigenspace representation (Section 3.1).

Generate m particles {xi0, wt0}mi=1 using Equation (4.2) and set

weights as wi0 = 1/m.

t=0;

repeat

for i=1:m do

draw samples using the state transition equation (Equation

(4.2)).

end

Crop the current image so that it contains all the particle regions.

Extract feature vectors and compute integral images (Section

4.2.1.2);

for i=1:m do

Update the importance weights of the particles

wik = wik−1p(yk|xik),

where observation likelihood, p(yk|xik) is given by Equation

(4.3) and computed using kernel integral image, Section 4.2.1.2

end

Normalize the weights, wit =
wi

k∑m
j=1 w

j
k

;

Perform resampling;

Choose the particle with the max weight as the current estimate of

the object;

t=t+1;

until end of video;

Algorithm 1: Proposed Algorithms



Chapter 5

Implementation and Results

We have analyzed the performance of proposed Algorithm 1 on number of

tracking videos with significant change in appearance, rotation, and deforma-

tion. The algorithm was implemented in Matlab on core i5 2.4GHz processor.

The run time is 2 frames/sec. Once pixel similarity values are calculated for

each individual frame, region similarity can be efficiently computed in O(1)

time using the proposed integral image framework. In all experiments, 2000

particles are used and feature vectors are built using color and spatial val-

ues of the pixels, (i.e [RGBXY]). The standard deviation in the Gaussian

kernel for color component is set to σa = 40, and for spatial component,

σs =
√
m2

1 +m2
2/(2∗0.99), where m1×m2 is the size of the template object.

This is the lower limit on valid values for σs, such that Equation (4.7) gives

valid approximation. The number of eigenvectors used in learning the target

object nonlinear subspace representation is 25.

For comparison purposes, we have used the tracking dataset of [2]. The

same testing procedure as described in [2] is followed. Each experiment is

30



CHAPTER 5. IMPLEMENTATION AND RESULTS 31

Baseline
[6]

LGT
[2]

Our PAKT
[44]

FOF
[43]

PF
[41]

BHMC
[45]

OBT
[42]

hand 1.0
6.5

0.2
9.1

0.0
4.8

22.6
18.5

10.0
19.7

4.3
14.4

29.9
27.4

10.0
17.5

hand2 7.0
15.5

1.9
10.3

1.1
9.6

40.0
18.7

13.1
17.4

10.1
16.6

45.4
26.1

31.0
22.5

gymnastics X 0.2
11.3

0.9
9.3

3.0
17.1

3.7
23.1

4.7
22.8

9.7
27.6

4.0
21.3

diver X 1.2
13.7

5.9
16.8

2.4
18.1

2.2
19.2

4.3
16.5

3.9
21.1

7.0
17.1

dinosaur 4.0
27.3

0.0
11.5

0.0
16.3

8.2
23.6

2.7
19.2

2.2
23.3

15.6
35.1

7.0
30.3

torus 0.0
5.25

0.0
5.1

0.0
2.8

10.6
15.2

6.0
14.8

2.5
16.4

23.4
21.5

13.0
14.8

Table 5.1: Tracking results. The first number indicates failure rate while
the second number shows RMS between the ground truth center location
and tracker estimate. The adaptive color tracker ACT [1] only tracked torus
sequence and is not listed in the table. Last five columns are taken from
Table 2 in [2] for easy comparison. X indicates that the tracker could not
track the sequence.

repeated multiple times for each sequence and recorded how many times each

tracker failed and needs to be restarted. Root-mean-squared error (RMS)

between ground truth center point location and tracker center point location

is used to measure the tracker accuracy. The proposed tracker is compared

with the baseline tracker [6], local global tracker (LGT) [2] and adaptive color

tracker ACT [1]. Cehovin et.al [2] tested the said dataset on five trackers; a

color-based particle filter [41] (PF), an online boosting tracker [42] (OBT),

a flock-of-features tracker [43] (FOF), a piecewise-affine kernel tracker [44]

(PAKT) and the basin-hopping Monte Carlo tracker [45] (BHMC). They are

also listed in the table for easy comparison.

Table 5.1 summarizes the results of all sequences. The first number indi-
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# 1 # 38 # 80 # 120 # 140 # 212 # 244

# 1 # 42 # 70 # 124 # 140 # 205 # 267

# 1 # 40 # 120 # 140 # 210 # 275 # 297

# 1 # 40 # 70 # 143 # 180 # 200 # 230

# 1 # 40 # 70 # 100 # 122 # 141 # 208

Figure 5.1: Sample tracking results of the proposed tracker, hand (first row),
hand2 (second row), dinosaur (third row), torus (fourth row) and gymnastic
(fifth row).

150 123 117 111  72   1

(a) Caviar data set.

  1  72 111 117 123 150

(b) PETS 2009 data set.

Figure 5.2: In the Caviar data set, the target object is occluded by people
coming from the opposite direction. In Pets 2009 data set, the target object
is successfully tracked in a crowded scene.

cates number of failures per 30 runs of each sequence and the second number

represents RMS error between the ground truth center point and tracker

estimate. Figure 5.1 shows sample tracking results. In hand sequence, the
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proposed tracker tracked the whole sequence without requiring reinitializa-

tion. All other comparison trackers had to be reinitialized at least once. In

hand2 sequence, our tracker shows significant improvement as compared to

other trackers in terms of both failure rate and error accuracy, even though

it was very difficult and challenging sequence because its visual properties

matches with person arm. The gymnastics and diver sequences were most

challenging for our tracker as they contain rapid 360◦ rotation of the hu-

man body. Our tracker learns a holistic view of the target object, whereas

a part based tracker may be more suitable for these sequences. Still, the

performance was at par with the best tracker for gymnastic sequence. For

diver sequence, the proposed tracker did not perform well. We think this

is due to the use of same σ in the Gaussian kernel for both the horizontal

and vertical spatial components. As the diver’s aspect ratio is close to .15,

this results in spurious subspace learning. However, proposed algorithm still

performed better than baseline tracker which failed on both gymnastics and

diver sequences.

The proposed algorithm was also tested on sequences containing partial

occlusions such as the Caviar 2 sequence, whose sample frames are shown

in Figure 5.2(a). The target object is occluded by people coming from the

opposite direction. Similarly, the target object in Pets 2009 data set (Figure

5.2(b)) is successfully tracked in a crowded scene until the person is fully

occluded.
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Conclusion

In this work, we have proposed a probabilistic object tracking algorithm

based on particle filter. A non-linear subspace target representation is learnt

using appearance and spatial information from a single target object tem-

plate. Kernel eigenvalue decomposition is used to learn subspace represen-

tation due to its nonlinear characteristic, excellent discrimination capability,

noise suppression, and outlier rejection. A kernel subspace integral image

framework is derived to compute the observation likelihood of a candidate

region in the subspace representation. This allowed the tracker to have large

number of samples without loosing the computational efficiency. The pro-

posed algorithm was tested on real-world challenging sequences and the re-

sults were compared to other state of art algorithms. Experimental results

show improved tracking performance.

The tracker learns the target model in the first frame and later does not

update the learnt model. Although, the tracker can handle appearance and

shape changes, as the tracked sequences had considerable variations, yet the

34
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performance can further be improved by adding an adaptive step, where the

learnt model is updated to account for shape, appearance and illumination

variations.

In this thesis, fixed size rectangle is used to represent object. Rectan-

gle size is set manually for each sequence using hit and trial method to see

which rectanlge size gives best results. However, rectanlge size can be set au-

tomatically by finding an object span and set appropriate width and height.

During object motion with differnet rotation and pose, if rectangle size can

be scaled based on visible portion of object. This can further enhance tracker

performance.
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