

Security Architecture for Source Code

Protection

By

Noor Yasin

2011-NUST-MS-CCS-33

Supervisor

Dr. Abdul Ghafoor

School of Electrical Engineering and Computer Science
National University of Sciences and Technology

Islamabad, Pakistan.

July 2015

Approval

It is certified that the contents and form of the thesis entitled “Security Architecture

for Source Code Protection” submitted by Noor Yasin have been found

satisfactory for the requirement of the degree.

Advisor: Dr. Abdul Ghafoor

Signature: ________________________

Date: ________________________

Committee Member 1: Dr. Sead Muftic

Signature: ______________________

 Date: ______________________

Committee Member 2: Dr. Adnan Khalid Kiani

Signature: ______________________

 Date: ______________________

Committee Member 3: Ms. Rahat Masood

Signature: ______________________

 Date: ______________________

Abstract

Software industry is the biggest industry nowadays. When software is distributed it is

distributed in the form of executable files. The source code isn’t distributed because

software could easily be modified or the working logic could be understood. If the

source code of some software gets stolen the software gets vulnerable. So, software

source code security is the biggest concern for the software industry. Lack of

security techniques to protect these source code and binaries might result into great

finical or data loss. Unfortunately, the source code is saved on a local drive in plain

form. So anyone getting access to the source code (which is in plain form) can

launch on its own computer using the IDE.

We have given architecture for both single user and teaming environment to protect

the source code and binaries. The source code and their binaries would be

automatically protected in this architecture at backend and the developer won’t need

to worry about their protection. Any single code written would be automatically

protected and only authorized and authentic users would have access to this source

code. If somehow these source code and binaries are stolen they would be of no use

because they are protected.

We have adopted the security techniques like encryption, decryption, authentication

and authorization to protect the source code and their binaries

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the award of

any degree or diploma at National University of Sciences & Technology (NUST)

School of Electrical Engineering & Computer Science (SEECS) or at any other

educational institute, except where due acknowledgement has been made in the

thesis. Any contribution made to the research by others, with whom I have worked at

NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project's design and conception or

in style, presentation and linguistics which has been acknowledged.

 Author Name: Noor Yasin

 Signature: _________________

Acknowledgement

I am very thankful to Almighty Allah for giving me the intellect and strength to carry

out this project. I would like to thanks’ my supervisor Dr. Abdul Ghafoor because

this thesis research would not have been possible without his continuous support.

Thanks to my class fellow Muhammad Shoaib for proof reading of this dissertation

for any grammatical mistakes.

Also thankful to my committee members, Dr. Sead Muftic, Dr. Adnan Khalid

Kiani, and Ms. Rahat Masood, for their guidance and support.

And finally, thanks to my family, and numerous friends who endured this long

process with me, always offering support and love.

Dedicated

To

My loving Family
&

Supervisor

Table of Contents

1 Introduction ... 1

 1.1 Introduction and Motivation ... 2

 1.2 Problem Statement ... 3

 1.3 Research Contributions .. 3

 1.4 Thesis Organization .. 4

2 Literature Review .. 5

 2.1 Attacks on Source code and Binaries .. 6

 2.2 Existing Protection Methods ... 7

 2.2.1 Obfuscation .. 7

 2.3 Reverse Engineering of Binaries ... 9

 2.4 Related Papers ... 10

3 Research Methodology .. 12

 3.1 Research ... 13

 3.1.1 Research Method & Research Methodology 13

 3.1.2 Types of Research Methods ... 13

 3.2 Thesis Research Approach ... 14

 3.2.1 Defining Research Area .. 15

 3.2.2 Literature Survey ... 16

 3.2.3 Problem Statement .. 16

 3.2.4 Hypothesis ... 16

 3.2.5 Design Formulation .. 17

 3.3.6 Implementation and Verification of Protocol 17

 3.3.7 Evaluation and Confirmation ... 17

4 System Architecture & Design ... 18

 4.1 Security Protocols .. 19

 4.1.1 Security protocol for Single User Environment 19

 4.1.1.1 Architectural Design of the System .. 19

 4.1.2 Security Protocol for Teaming Environment 24

 4.1.2.1 Detailed Architectural Design ... 24

5 Implementation .. 29

 5.1 Getting the Source code of Eclipse IDE .. 30

 5.1.1 Import as Plug-in .. 30

 5.1.2 Complete Source code available on Eclipse Website 34

 5.1.3 Git Repository .. 35

 5.2 Plug-in Spy .. 36

 5.3 Development ... 37

 5.3.1 Running eclipse Source code ... 37

 5.3.2 Setting Startup Environment .. 38

 5.3.3 Required Plug-in and classes .. 39

 5.3.4 Authentication Module ... 40

 5.3.5 Encryption and Decryption Functions ... 41

 5.3.6 Final Outcome ... 41

6 Conclusion & Future Directions .. 44

 6.1 Conclusion ... 45

 6.2 Future Directions ... 46

A Appendix Source Code (Java) …………………………………………….….……………….47

 A.1 Authentication…………………………………………...……………………….…………...47

 A.2 Encryption………………………………………………………………………………...…...…..53

 A.3 Decryption………………………………………………………………………..……………….56

 A.4 Registration……………………………………………………………………….………………62

List of Figures

2.1 Risk Factors Diagram ……………………………………………………………….………….……6

2.2 Simple Hello World Program ………………………………………….…………….……….……7

2.3 Obfuscated Hello World Program …………………………………….…………….……….……8

2.4 Decompiled .class file using de-compiler …………………….…….…………….……………..10

3.1 Thesis Research Workflow………..…..15

4.1 Authentication Diagram ………..….......20

4.2 Authorization Diagram ………..….......21

4.3 Architecture diagram for Single user …..….......22

4.4 Architecture diagram for Teaming Environment …..….......26

5.1 Eclipse Import Wizard …..….......30

5.2 Eclipse Import Plug-in and Fragmentation Diagram…………..........................….......31

5.3 Eclipse Importing Existing Plug-ins..….......31

5.4 Eclipse Importing Existing Plug-ins 2..…....32

5.5 Eclipse Source code …...…........33

5.6 Eclipse 3.7.2 Build …..…..............34

5.7 Git Repository…..….........35

5.8 Plug-in Spy …..….........37

5.9 Compiling Eclipse Source code …..….........38

5.10 Eclipse Startup Environment …..39

5.11 Required Plug-ins …...40

5.12 Login Screen …..41

5.13 Source file in plain form…...…..42

5.14 Binary file in plain form …...42

5.15 Source file in Encrypted form …...43

5.16 Binary file in Encrypted form …...43

Chapter 1

Introduction

“The more knowledge you have, the greater will be your fear of

Allah.”

-Abu Bakar (R.A)

 This chapter presents the introduction and the motivational

part of our thesis work. In this chapter we will discuss why this area

was chosen for thesis research. We will present a summary of our

thesis in this chapter that will give a complete picture of our thesis.

We will define the problem statement that will be addressed and also

discuss about our research contribution made in this area. And the

last part will tell about the thesis organization.

http://www.brainyquote.com/quotes/authors/a/abu_bakr.html

Chapter 1: Introduction 2

1.1 Introduction and Motivation

 Software industry is the largest industry nowadays and it’s expanding day by

day. Lots of new software’s are introduced daily in market. The software that are

commercial or clients specific are always distributed in the form of executables. The

source code is never handed over to user to protect it from modification and stopping

others to understand its working. Some software’s are open source in which the

source code is freely available and modifications are encouraged. But majority of the

software’s are available without their source code. Any source code can easily be

launched in a compatible IDE. If the source code gets stolen, it might result in great

data or finical losses. On the other hand, a binary file can be easily reverse

engineered to get source code using some de-compiler like JAD [1] to introduce

malicious code injection. Therefore, it is the requirements of software industry to

provide a comprehensive solution for protection of source code from hackers.

 From literature survey, we found that no solution was proposed to protect

these source files and their binaries. Furthermore, a lot of work has been done to

preserve the piracy of software but all of them provide these through licensing

mechanism which is considered a weak solution. We came across a solution that was

proposed to protect important files. The solution described a methodology using

AES and MD5 for encrypting files [2]. The outcome file was hashed and strongly

encrypted through the software. These files were useless if they got stolen. We got

inspired from this solution and thought we would protect our source code and

binaries the same way. Our main motivation was that the user should have minimum

involvement and these files automatically get encrypted and decrypted at backend.

 So we presented a secure architecture for protecting these source code and

binaries in both single user and teaming environment. In our architecture we have

adopted some security techniques like encryption, decryption, authentication and

authorization that will provide automatic protection to these files. We also

implemented our solution to validate our design. An IDE (Integrated development

Chapter 1: Introduction 3

environment) was to be chosen whose source code was easily available. IDE is a

software application designed to facilitate software developers for developing

software. It is basically a single program in which all development is done. It

consists of source code editor, compiler, debugger and a GUI to facilitate developers.

We chose Eclipse IDE to validate our design. Eclipse is an open source IDE with an

extensible plug-in architecture to customize the environment [3]. A plug-in was

designed that could be easily integrated with existing eclipse architecture to facilitate

users by provide protection. The plug-in will authenticate user and authorize his

access to source code and binaries. These source file and binaries would be

automatically encrypted and decrypted at backend with user’s key.

 Research has been done to explore the major security issues to source code

files and their binaries and providing a secure architecture for their protection. Due

to great importance of these source code files this area of research was chosen.

1.2 Problem Statement

 To provide a secure architecture for the protection of source code and their

binaries during the development/building phase. A plug-in will be developed which

will be automatically integrated with the IDE to provide source code protection. The

source code and binaries would be automatically encrypted and decrypted at

backend.

1.3 Research Contributions

 This research will contribute in protecting the source code and their binaries.

From research point of view a research publication has been made in ICCSIT 2014.

The publication described the overall architecture of the protection mechanism. In

detail the threats to source code and their binaries were discussed.

 Same paper was accepted by ICCSIT to be published in a Journal named

LNSE Vol. 4, No. 2, May 2016, pp. 153-156.

Chapter 1: Introduction 4

 From practical aspect, we have implemented the proposed solution. In which

the source code and binaries would be automatically protected. The solution is in a

form of plug-in that will be easily distributed. The plug-in will be easily integrated

with existing IDE architecture.

1.4 Thesis Organization

 This thesis is organized in a systematic way to clearly state the research

approach adopted and the contributions made in the thesis. Chapter 2 will describes

the detailed literature survey related to this research. Chapter 3 describes the research

methodology adopted during the thesis to achieve this solution. Different research

methodologies like deductive research and conceptual research methods were

combined to achieve the required results.

 In chapter 4, we will discuss the detail design and architecture of our system.

Chapter 5 will include the implementation of the system that was discussed in

chapter 4. In chapter 6, conclusion of our thesis is given with some proposals for

future extension of the thesis. In the end, references are given.

Chapter 2

Literature Review

“The only truly secure system is one that is powered off, cast

in a block of concrete and sealed in a lead-lined room with

armed guards.”

– Gene Spafford

 This chapter presents the related work that has been done for

the protection of source code and binaries. We will look into the

details of all possible attacks that could be launched on source code

and their binaries. We will also discuss how binaries can be

reversed engineered to get source code if they aren’t protected. We

will present a summary of related papers. And at last we will present

an analysis on conventional ways of protecting source code and

binaries.

Chapter 2: Literature Review 6

2.1 Attacks on Source code and Binaries

 In Software Industry software source code security is of great concern. Lack

of protection technique to protect the source files and their binaries might result into

great data or finical loss. If somehow the source code or their binaries get

compromised the whole application/product is compromised. Risk factors increase

when the source code or their binaries get compromised.

Risk factors that are involved when the source code or binary files are

compromised are finding loopholes in an application, adding unwanted features in an

application, Steal idea of the application and make similar product, it could be used

to bypass license checks, malicious code can be added in the application, Source and

binaries can give information about loopholes in an application, unwanted feature

can be added to the product and redistributed, Working Logic of application can be

understood etc.

 Figure 2.1: Risk Factors Diagram

Chapter 2: Literature Review 7

2.2 Existing Protection Methods

2.2.1 Obfuscation

Obfuscation is a technique of transforming original source code that has

original behavior but far more confusing, complex and harder to perceive or

understand while preserving code semantics [4, 5]. This technique is used to prevent

reverse engineering but providing same functionality. Obfuscating is replacing name

and variables with meaningless ones that are harder to understand. Obfuscating

removes all user defined comments. In Java obfuscation can be performed in two

ways [6]:

 Source code obfuscation

 Byte Code Obfuscation

Source code obfuscation

Source code obfuscation involves in transforming the source code of an

application to another source code that is similar in behavior but it’s difficult to

comprehend. In source code obfuscation you replace the names of identifiers with

more ambiguous ones. A simple example of source code obfuscation is shown

below.

public class HelloWorld {

 public static void main(String args[]) {

 System.out.println("Hello World!");

 }

 }

 Figure 2.2: Simple Hello World Program

Chapter 2: Literature Review 8

When we obfuscate the above code using some tool the output would be

something like this. The below function has the same output behavior but it’s harder

to understand and annoying.

public class HelloWorld {

 public static void main(String args[]) {

 double d1 = 0.0134654879927;

 double d2 = 0.0234987519084;

 for (int i1 = 0; i1 < 72; i1++) {

 d1 = d2 + 0.00000001020102;

 }

 for (int i1 = 0; i1 < 59; i1++) {

 d2 = d1 + 0.00000001120102;

 }

 //System.out.println(d1+d2);

 if ((d1+d2) > 0.04699753441986) {

 System.out.println("Hello World!");

 }

 else if ((d1+d2) < 0.04699753441186) {

 System.out.println("Goodbye World!");

 }

 //This chain of alternatives could go on for a

 //long time...

 }

}

 Figure 2.3: Obfuscated Hello World Program

Obfuscation can make reverse-engineering, reading of code, writing of code

difficult and time-consuming, but not necessarily impossible [7].

Byte Code Obfuscation

When source code is compiled it is transformed into intermediate code know

as byte code. Byte code involves in transforming this byte code to another byte code

that is same in functionality but makes reverse engineering particularly difficult. This

byte code obfuscation is advance form of obfuscation which makes source code hard

to decompile or recompile [8]. The main goal of byte code obfuscation is to produce

http://en.wikipedia.org/wiki/Obfuscation_(software)#cite_note-13

Chapter 2: Literature Review 9

deviant class files, when these class files are decompiled in is difficult to

recompile them.

2.3 Reverse Engineering of Binaries

Java is a platform independent programming language. When source code is

compiled it is converted to an intermediate language know as class file. The class file

contains a great amount of source code information. When class files are reversed

engineered java files (source code files) can be obtained. When software is

distributed to end user it is distributed in intermediate file format. This intermediate

files can be reversed engineered using de-compilers or automated tools and making

appropriate changing’s in the software. Developers can place some sort of protection

in the software that can be removed by reverse engineering these files. Software’s

contains license checks that verify the presence of license files. However an attack

could be launched by reverse engineering the intermediate files and removing those

license checks. We will use a de-compiling tool to reverse engineer the intermediate

files and support our claim.

There are different decompiles that offer the decompiling of class files

(intermediate code) back to source code. JAD is a de-compiler available for Java. It

decompiles the .class files back to .java files. Figure 2.4 shows that

EntityCategory.class file is decompiled using de-compiler.

Chapter 2: Literature Review 10

 Figure 2.4: Decompiled .class files using de-compiler

2.4 Related Papers

 The idea of protecting source code and its binaries was influenced from

some of its related work

 Guy-Armand Yandji, Lui Lian Hao, Amir-Eddine Youssouf, Jules

Ehoussou [9] presented a model for normal file encryption and

decryption. The paper describes a methodology using AES and MD5

for encrypting files. The outcome file will as a result be hashed and

strongly encrypted through the software.

 Xiufeng Zhang and Qiaoyan Wen [10] described the flexibility of

Java language, which makes the protection become very difficult.

Chapter 2: Literature Review 11

Using decompiler such as JAD we can easily extract the source code

from the binary file. Therefore, any malicious users can use the anti-

compiler tools to make reverse-engineering attacks. The paper

presented an AOP-Based J2EE Source Code Protection technique in

they gave solution to the problem that arises when encrypting J2EE

applications.

 ByungRae Cha [11] presented a CRYPTEX model for protecting

software source code. The model presented safe protection and access

control of software source codes. The access control to the source

code was achieved using digital certificate. The CRYPTEX consisted

of software source codes and an algorithm to control access.

 A White Paper sponsored by CA Technologies [12] for Protecting

API’s against attack and hijack presented a secure API architecture.

APIs are windows into applications and as with any window an API

can easily be misused. APIs put applications under the hacker

microscope and increase attack surface on client application. So a

solution was presented using SecureSpan API proxy.

 SVN [13] and CVS [14] are used to control versions. A version

control system keeps track of all work and all the changes in a set of

files, and allows several developers to access them. Access to these

files is controls using authentication and authorization if the files are

not open source. Subversion can operate on network which will allow

various people to modify and manage the same set of data.

Chapter 3

Research Methodology

“Research is to see what everybody else has seen, and to think what

nobody else has thought.”

-Albert Szent-Gyorgyi

 In this chapter, we will discuss the research methodology

adopted during our thesis research. We will discuss different

research approaches and also discuss in detail the approach that we

have adopted in our thesis. Our research was divided into three

main components. First, we had to find out all the possible attacks

that could be lunched on source code and binaries. Secondly, we

presented an architecture that will protect the source code and

binaries in both single user and teaming environment. And last

phase will be, to implement our proof of concept. This chapter

presents detail about selecting the right methodology for and

effective research.

Chapter 3: Research Methodology 13

3.1 Research

 The world research is composed to two syllables, “re” and “search” [15]. Re

is a prefix meaning again or over again. Search is a verb meaning to make a through

examine of. Together they make a noun meaning a systematic investigation in order

to establish facts and reach new conclusions. It is basically gathering and searching

information in order to answer particular question [16]. In research we come up with

new ideas and try to execute those in order to help human nature. It is also about

addressing new problems that haven’t been solved before. Research is

communicating to larger audience the knowledge your have acquired. Research done

systematically and proofed logically is considered good. Research could also be

carried out on improving existing solutions to a problem.

3.1.1 Research Method & Research Methodology

 Research method and Research methodology are two different terms that are

often considered to be the same. Research methods are the methods, tools,

techniques or processes that we use in our research [17]. Whereas research

methodology is the approach adopted in answering research questions. Methodology

is the principles that guide our research practices. In research methodology we study

various steps that are adopted generally by the researchers in studying the research

problem along with the logic.

3.1.2 Types of Research Methods

All the methods that are adopted during the any research are described below.

Applied research is a methodology used to solve a practical, specific problem of a

group or an individual [18]. The study and research is used in education, medicine

and business in order to find solutions that may solve everyday problem, scientific

problems, develop technology or cure diseases.

http://www.yourdictionary.com/applied-research

Chapter 3: Research Methodology 14

Qualitative research is about finding people thinking. To understand their

motivations and feelings it’s about getting people to talk about their opinions [19]. It

is about getting, analyzing and interpreting data by observing what people do or say.

Qualitative research is more subjective and is performed by using different methods

like interviews, meetings, group discussions.

Quantitative research aims to measure the quantity or amount and then

compares it with past records to project future. In involves survey from a group of

people by asking their opinions and views [20]. In quantitative research structured

technique is applied like online questionnaires, telephonic or on-street interviews.

Fundamental research (Basic research) refers to the study and analysis that is

meant to increase scientific knowledge [21]. Its main motivation is to expend man’s

knowledge not to invent or create something new.

Descriptive research describes specific behavior occurring in the environment

[22]. It tells what exists and may help to uncover new facts and meaning like finding

out the most common disease among children in a specific town which will tell what

cure to do in order to live healthy life.

Conceptual research involves developing a theory to explain specific behavior or

phenomena.

Empirical research does not involve theory rather it involves observation and

experiments.

3.2 Thesis Research Approach

 Our research is conducted in two main components. First we analyzed the

behavior of IDE and find out how IDE saves source code and binaries. We needed to

know all possible attacks that could be lunched on the source code and binaries.

Storing the source code in plain form was not a good idea so we had to present a

secure architecture that could protect these source code and binaries from getting

Chapter 3: Research Methodology 15

stolen or reverse engineered. We achieved our research by using more than one

research methodologies. Deductive, Empirical, Analytical and Qualitative research

methodologies have been combined, since we have diverse research objectives with

multiple contributions.

3.2.1 Defining Research Area

 As a first step, protection of source code and binaries were chosen as the area

of research. Because the source files and their binaries have a lot of importance in

software so this area was of our interest. A deductive approach was carried out for to

find out different solutions proposed for the protection of source files and their

binaries. Limitations of these solutions were observed and a problem statement was

derived from that.

 Figure 3.1: Thesis Research Workflow Diagram

Chapter 3: Research Methodology 16

 3.2.2 Literature Survey

 The most important step in any thesis is its literature survey. This step tells

what you are planning to propose is valid or not. Existing solutions and their

limitation are observed during literature survey. Literature survey also strengthens

your research area. From literature survey problem statement is derived and

validated.

 In our literature survey we tried to find out different solution proposed for the

protection of source code and their binaries. The importance of these source files and

how binary files can be reversed engineered.

3.2.3 Problem Statement

 After going through literature survey phase we derived our problem

statement for the protection of source files and their binaries.

 To provide a secure architecture for the protection of source code and their

binaries during the implementation phase in both single user and teaming

environment.

 The source code and binaries are automatically encrypted and decrypted at

backend. Only authorized user will have access to these files.

3.2.4 Hypothesis

 The hypothesis of our research was,

 Does existing solution satisfy all the requirements by fully protecting the

source code and their binaries and preventing them from all kind of attacks.

 Do these solutions protect binary files from getting reverse engineered?

Chapter 3: Research Methodology 17

3.2.5 Design Formulation

 The design of our system was performed in during this phase. In this phase

all the architectural, sequence and system diagrams were designed during this phase.

The architectural diagram tells the architecture of the system. How different

components will interact with each other. Sequence diagram was designed to know

about the flow of messages, events and actions between objects and components.

3.3.6 Implementation and Verification of Protocol

 The last step of our deductive approach was implementation and verification

of our research. First of all we had to get an open source code of an IDE that could

be modified. The right was needed so that less effort could be made. The next step

included in developing different modules that will perform encryption and

decryption on source file and their binaries. The modules were then integrated with

the existing IDE source code. And the last step was to verify the protocol and the

outcome from IDE.

3.3.7 Evaluation and Confirmation

 The encrypted files were stored on hard drive in normal fashion. The

protected encrypted source files and their binaries were evaluated using reverse

engineering and different tools. The protected files were safe from any kind of attack

Chapter 4

System Architecture

& Design

“Scientists investigate that which already is, Engineers create that

which has never been.''

-Albert Einstein

 This chapter presents the overall design of our system. In this

chapter we will discuss the in detail the security protocols. Two

types of protocols will be discussed in this chapter. These protocols

will provide security measures to source code and their binaries. The

detail architectural design of these protocols and working will be

discussed in detail.

Chapter 4: System Architecture & Design 19

4.1 Security Protocols

 Software implementation is a phase during software development. The

implementation of software is either done by a single user or multiple users in a

teaming environment. In single user environment a single user will use an IDE and

generate the source code and binaries on his system. All these files are stored on

local machine in plain form. In a teaming environment multiple users implement

software and the source code is placed on a central location in plain form. All the

users access the same source code and new files are uploaded with modification on

server. We will discuss in detail both the protocols and their design.

4.1.1 Security protocol for Single User Environment

 In a single user environment a user using IDE on his system/computer would

face all the challenges to the source code and their binaries that we have discussed.

The Source code is stored on the local drive in plain form. Anyone getting access to

that drive can misuse or steal the source code. As the source code is in plain form the

thief could launch this source code on his computer using compatible IDE without

any extra effort. Similarly, binaries could be reverse engineered using some de-

compiler like JAD to get source file or could be used to inject malicious code. So,

we have to protect the source code files and their reprehensive binaries.

4.1.1.1 Architectural Design of the System

 The main components of our security protocol are editor console,

authentication module, protection module, authorization module, cryptographic

engine and identity and credential management system. All these components will

make up a secure protocol needed to provide protection to the source code and their

binaries. We will discuss in detail all these components.

Chapter 4: System Architecture & Design 20

Editor console is the GUI user interacts with. The editor console is used for user

input. It is used to launch IDE, input user credentials, software coding, close IDE etc.

Authentication module is a module that authenticates user via credential. This

module activates when IDE is launched and validate any user using username and

password. When user is authenticated eclipse IDE is launched.

 Figure 4.1: Authentication Diagram

 The user authentication can be shown in figure 4.1. The user requests for

some protected resource and his asked for the username and password. If the user

enters correct username and password pair he would be authenticated and allowed to

view the requested resource.

Protection module is the main module that controls source code protection and

ownership of these files. Any existing protected files or opened files in IDE that need

protection will be controlled by this module.

Authorization module controls the authorization process. Protected source files

and their binaries will only be visible to authorized users. Authorization will be

achieved through user password. Whenever user tries to open protected source files,

these files would be decrypted using user’s password. If these files were created by

the same user then they would have been encrypted by the same user password. So,

Chapter 4: System Architecture & Design 21

decryption will be performed and these files will be visible to the user. Figure 2

shows the authorization process.

Figure 4.2: Authorization Diagram

Cryptographic engine performs the encryption and decryption of source files and

their binaries. The protection module and the authorization module send source file

and their binaries to cryptographic engine and asked to perform encryption or

decryption on them.

Identity and Credential management system is used to store and retrieve the

user credentials. The user credentials include username and password. The ICMS is

accessed by the authentication module when authenticating user and accessed by the

cryptographic engine to get user password and encrypt or decrypt source files and

binaries with it.

Chapter 4: System Architecture & Design 22

 User

 ICMS

Editor Console

Authentication Module

Authorization Module

Cryptographic Engine

Protection Module

 Figure 4.3: Architecture diagram for Single user

Chapter 4: System Architecture & Design 23

 Architecture diagram of single user protection protocol can be seen in fig 4.3.

First step would be to authenticate the user using the IDE. So when the user

launches the IDE the authentication module activates and it opens a login screen

asking for his credential (i.e. username and password). If the user is logging for the

first time in IDE, he has to get registered and the hash of the password is taken and

stored with username in ICMS. If his already registered the entered password has

to be hashed and is compared with the hash that is already stored with a particular

username. Now if the both hash match then the user would be login to the IDE.

After a successful login the IDE would launch. If there is some kind of error the

user would be asked to re-enter the credential, Skip and run IDE normally or exit.

 Our main emphasis would be at start and exit of IDE. Because on these two

states the source code should be protected. When the user tries to open an existing

project in IDE, The protection module will ask the authorization module to check

if he is authorized to view this project. The authorization module will send the

protected source files to the cryptographic engine and will ask it to decrypt them.

The cryptographic engine will decrypt these files with the user’s password. If

these files were encrypted with same user password then they will be decrypted

without any error. After successful decryption the source files are available to

user but if his wrong user he won’t have access to it.

 The authorization module will inform the protection main module that his the

correct user. The protection main module will allow the user to view the file.

 When the user tries to exit the IDE, first the source files would be saved

automatically for any necessary changes then all the source files and binaries

would be encrypted automatically with the existing user’s key and then these

encrypted source files and binaries would be stored on local drive.

 In the given architecture if someone gets access to your source code or

binaries he won’t be able to open them in an IDE, because these files are in

encrypted form rather than plain form.

Chapter 4: System Architecture & Design 24

4.1.2 Security Protocol for Teaming Environment

The teaming environment is quite an interesting environment in which

developers working on same project would like to have the source code to be

centralized. They could fetch the source code to their own machine. There should be

some mechanism that would authenticate and authorized users on this source code.

The mechanism that we would present would allow user’s authentication,

authorization, uploading and downloading of the source code.

4.1.2.1 Detailed Architectural Design

 The main components of our security protocol are client application,

authentication module, TGS, Data server, protection module, authorization module,

cryptographic engine and credential management system CMS. All these

components will make up a secure protocol needed to provide protection to the

source code and their binaries. We will discuss in detail all these components.

Client application is an application running on client machine. It will interact

with server to retrieve and upload source code from server.

Authentication module is a module that running at server end and used to

authenticate user via credential. This module interacts with client application and

validates user using username and password.

TGS ticket granting server grants ticket after user has been authenticated. The ticket

is handed to client application which then takes the ticket and interacts with data

server containing source code.

Data server contains the source code needed by the user. This server stores source

code in encrypted form and provides only to authorized user. User will also upload

his source code to this server. Version control of source code is also controlled by

this system.

Chapter 4: System Architecture & Design 25

Protection module controls the authorization process. This module is revoked

when user tries to get access to any source code from the given list.

Authorization module checks whether the user accessing the said source code is

authorized for this action or not. This module will get the shared key from user and

his name against the said project. If the said user is available in the authorized

persons list, then this module will send the shared key and the source code to

cryptographic engine for decryption.

Cryptographic engine controls the encryption and decryption process of this

system. Authorization module will interact with this cryptographic engine to check

security measures.

Credential management system CMS is a database storing the shared key

value and the authorized persons list. Authorization module will interact with this

system to retrieve and store credentials.

Chapter 4: System Architecture & Design 26

 Client

 CMS

Authentication Module

Data Server

Authorization Module

Cryptographic Engine

Protection Module

TGS

 Figure 4.4: Architecture diagram for Teaming Environment

Chapter 4: System Architecture & Design 27

The teaming environment is an environment in which users would be

working on a similar project and it has to be stored on some centralized location

where everyone could have access to it. There would be a client module and server

module to which the client would interact. User will add his credentials to the client

module which would send it to the server module. As shown in figure 4.4 upon

authentication of user the project list would be provided to the user.

Two servers would be needed to make this environment work (i.e.

authentication/ TGS server and data server).First the client module will interact with

the ATGS in order to achieve authentication. The client module will send username

and password to the ATGS server after getting it from user.

The ATGS would have two modules running on it (i.e. ticket granting

module & authentication module). The authentication module would verify that

either the username or password provided are valid or not. The provided password

would be taken hashed and compared with the one stored on the server, If they both

match the user would be authenticated and then the ticket granting module would

grant a ticket for the data server to the user. The user will take this ticket to the data

server.

The ticket would be verified by the ticket verification module. If the ticket is

valid then the user would be displayed with the list of all projects on the server. He

would be able to upload a project or download one if his authorized to do that. First

let’s consider the uploading of project. The user will upload a project and it would be

encrypted using a shared key. The owner of the project can also provide the list of

users that are authorized to download this project. He has to share the shared key

with them.

Now in the downloading part the user would be authenticated the same way

and his ticket is also verified as discussed earlier. After seeing list of all projects the

user would like to download one. The authorization module will check its

authorization and if he is authorized then he would be asked to enter the shared key.

Chapter 4: System Architecture & Design 28

Now using this shared key the project would be decrypted and downloaded

onto user’s machine.

Chapter 5

Implementation

“Success is no accident. It is hard work, perseverance, learning,

studying, sacrifice and most of all, love of what you are doing or

learning to do”

-Pelé

 In this chapter we will discuss the implementation details of

our research. Eclipse IDE was chosen to add these security features.

Because eclipse IDE is open source which means that its source

code is available. So, we can get the source code of eclipse IDE and

compile that code and make our necessary changes. We compiled

eclipse source code within eclipse which means that eclipse was

running its own source code. The process was slow because the

source code was too much and it took time in compiling.

http://www.goodreads.com/author/show/302745.Pel_

Chapter 5: Implementation 30

5.1 Getting the Source code of Eclipse IDE

Getting source code of Eclipse IDE was a task that took a great time. They are

different ways you can get the eclipse source code discussed below.

5.1.1 Import as Plug-in

Source code of eclipse can be imported from its self. We can import all or a

specific plug-in from eclipse target directory. When eclipse IDE is downloaded it

contains a folder with all the plug-ins in it. Running eclipse IDE and selecting import

from the file menu.

 Figure 5.1: Eclipse Import Wizard

Selecting Plug-in and fragmentation from the import menu and click next.

Chapter 5: Implementation 31

Figure 5.2: Eclipse Import Plug-in and Fragmentation Diagram

You have to select the directory from which the plug-ins will be imported.

Giving the complete path of the directory and selecting projects with source folders

and clicking next.

Figure 5.3: Eclipse Importing Existing Plug-ins

The selection menu will ask about the plug-ins you like to import in our case we

imported all the plug-ins from the list.

Chapter 5: Implementation 32

Figure 5.4: Eclipse Importing Existing Plug-ins(2)

Click finish and it will start importing the plug-ins from eclipse IDE into eclipse

IDE. After importing all the plug-ins, eclipse IDE will provide all the complete list

of the plug-ins in its project explorer.

The problem with this type of import is that they are in the form of class files not

java files. You have to attach the source folders to it. You can run these files and

eclipse would be launched but you can’t view the source files. As we only required

the source code of one or two plug-ins in which we had to make our changes. So we

adopted two steps for this issue.

 Download required plug-in source code and attach it.

 Use JAD to reverse engineer the binaries of plug-ins and get source files

and attach them.

Chapter 5: Implementation 33

Figure 5.5: Eclipse Source code

 Source code of the required plug-ins were found using above two techniques

but when it was attached, it was not editable (means you can make any change in

those source files). So this type of method could only be adopted if you want to make

any new plug-in for eclipse and check the behavior of eclipse when it’s integrated

with it.

Chapter 5: Implementation 34

5.1.2 Complete Source code available on Eclipse Website

 Eclipse complete source code could be downloaded from eclipse website.

Figure 5.6: Eclipse 3.7.2 Build on Website

 The folder contains all the plug-ins source code java files. We can import the

plug-ins into eclipse and compile them. After importing and compiling these files

there were too many errors or dependencies in it. It could have taken too much time

to remove these errors and dependencies so we decided that its better to find an error

free code.

Chapter 5: Implementation 35

5.1.3 Git Repository

 Eclipse plug-ins source code was finally downloaded from grepcode

repository. The grepcode repository contains the source code of all the versions of

eclipse.

Figure 5.7: Git Repository

 We were running eclipse juno so we downloaded the 4.2 version source code

of eclipse IDE. It took a great time to get these files from repository because they

were around 900 files that we had to download. After downloading all the files we

imported these files into eclipse and compiled them. The result was great we had

eclipse running within it and the source files were editable.

Chapter 5: Implementation 36

5.2 Plug-in Spy

 Running UI modules information can be found with Plug-in spy. By

pressing Alt+Shift+F1 you can get information about the currently selected user

interface component in your Eclipse IDE [23]. This way immediate access to the

plug-in which is currently running can be found.

 By pressing Alt+Shift+F2 and select any menu then you could find out the

class or plug-in contributing in this menu.

Chapter 5: Implementation 37

Figure 5.8: Plug-in Spy

 In diagram 5.8 we can see the class contributing in save action and the plug-

in containing this class.

5.3 Development

 In this part of thesis we will discuss all the development done in out thesis

research. We will describe how we protected our source code and binaries in IDE.

5.3.1 Running eclipse Source code

 The first part was to compile and execute eclipse source code that we fetched

from grepcode repository. We imported all the plug-ins in eclipse and executed

them. The outcome was a running eclipse within eclipse.

Chapter 5: Implementation 38

 Figure 5.9: Compiling Eclipse Source code

5.3.2 Setting Startup Environment

 Now we had to set the eclipse startup environment. This startup environment

was the environment of virtual eclipse that was running in eclipse IDE. We had to set

up this environment so that we can select what to run in virtual eclipse IDE. This

environment could be set by running the run configurations. As we have specified

the location folder of the workspace for our virtual eclipse IDE.

Chapter 5: Implementation 39

Figure 5.10: Eclipse Startup Environment

5.3.3 Required Plug-in and classes

 Eclipse is a set of plug-ins. All the plug-in have different functionalities

which when combined will result into eclipse IDE. A plug-in controls the start and

closing of eclipse as well, we found out that org.eclipse.equinox.launcher was the

said plug-in to control this feature and the main class in this plug-in was the class

containing the main function.

Chapter 5: Implementation 40

Figure 5.11: Required Plug-ins

 We had to make the necessary changes in this class to make our architecture

work. Authentication module had to be called at the start of main function and

encryption module had to be called while exiting the main function.

5.3.4 Authentication Module

 The authentication module controls the authentication part of an application.

An authentication module is created to perform the said functionalities. The

authentication module should accommodate existing as well as new user in the IDE.

Mysql database was used to store the user ID’s and passwords.

This Login module class instance was created in Main class and its function was

called.

public static void main(String[] args) {

Chapter 5: Implementation 41

SimpleLdapLoginModule s=new SimpleLdapLoginModule();

s.method(args);

Upon compiling the said code we had achieved the authentication part of our

development. The outcome was a GUI launched at startup of eclipse asking user to

enter username and password.

 Figure 5.12: Login Screen

5.3.5 Encryption and Decryption Functions

 The encryption and decryption was performed using AES. AES is a

symmetric key block cipher algorithm. The encryption module was called on closing

eclipse IDE in main class. The decryption module was same with functionalities in

reverse.

5.3.6 Final Outcome

 The final outcome of our thesis development was protected source code and

binaries. We can see in figure 5.13 that the source file is in plain form and we can

view its contents using notepad.

Chapter 5: Implementation 42

Figure 5.13: Source file in plain form

 Figure 5.14 shows that the binary file is not protected and we can get the

source code from it using any de-compiler like JAD.

Figure 5.14: Binary file in plain form

 Figure 5.15 shows that the source file is protected and cannot be viewed with

any time of editor. The java.enc extension was used so that when we decrypt these

source file and binaries we don’t lose the original extensions. Just to differentiate

between source files and binaries.

Chapter 5: Implementation 43

Figure 5.15: Source file in Encrypted form

 Figure 5.16 shows that binary file is encrypted/ protected and we can’t

decompile such file using any de-compiler.

Figure 5.16: Binary file in Encrypted form

 So our source files and binaries are protected automatically without the

developer’s involvement. He simply does not need to care about their protection.

Chapter 6

Conclusion

&

Future Directions

“Yesterday is gone. Tomorrow has not yet come. We have only

today. Let us begin.”

 ― Mother Teresa

http://www.goodreads.com/author/show/838305.Mother_Teresa

Chapter 6: Conclusion and Future Directions 45

6.1 Conclusion

 In the current era of software, software plays an important role in almost

every aspect of human life. Software has a big role in modernizing the human lives

i.e. imagine banking environment before banking software solutions, things were

written and stored on paper. Just as software in very important nowadays, software

source code in very important for software to survive. Source code is the code that is

used to develop any software and it is further used to add any kind of modification in

the software. The source code is kept safe and never distributed to the user (unless

the software is open source). The software is distributed in the form of executables.

During the developing phase of the software the source code is compiled using

compatible compiler and they generate binary files. These binary files are not

machine specific and can be run on any machine. These binary files are almost

ignored during software development. These files have a great importance and can

be reversed engineered to get the source code. These files are reversed engineered

using some de-compiler like JAD.

 As the source code and binaries have great importance they shouldn’t be kept

on hard disk in plain form. Anyone getting access to these files can misuse them.

These files can be used to add unwanted feature in software, redistribute the software

with some abnormal behavior, understand its working logic’s, bypass license checks

etc. So there was a need to protect these files.

 We presented a solution that automatically encrypts and decrypts the source

files and their binaries at backend. Only authorized users can access the source code.

If somehow this source code or their binary files are stolen they are of no use

because they are protected. The solution is presented for both the single user as well

as teaming environment. The solution is an easy way to protect the source code and

their binaries and any single code written would be protected automatically at

backend. No source code or their binary will be stored in plain form.

Chapter 6: Conclusion and Future Directions 46

6.2 Future Research

 To date no effective solution is available to protect the source code or their

binaries. Our solution is sufficient and enough to provide protection to the source

code and their binaries. But due to the limitation of encryption algorithm, the

protection mechanism becomes slow when it comes to encrypting and decrypting

large amount of source code. So, some light weight algorithm could be introduced in

place of AES which could speedup this process.

 47

Appendix A

Source Code (JAVA)

1. Authentication Code

package org.eclipse.equinox.launcher;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.File;

import java.io.IOException;

import javax.imageio.ImageIO;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.sql.Statement;

public class SimpleLdapLoginModule extends JFrame

{

private static final long serialVersionUID = 7526472295622776147L;

private JLabel jLabel1;

private JLabel jLabel2;

private JTextField jTextField1;

private JPasswordField jPasswordField1;

private JButton jButton1;

private JButton jButton2;

private JButton jButton3;

private JPanel contentPane;

public String[] sing;

 48

public String paswd;

public SimpleLdapLoginModule()

{

super();

}

public void method(String[] args)

{

create();

this.setVisible(true);

sing=args;

}

private void create()

{

jLabel1 = new JLabel();

jLabel2 = new JLabel();

jTextField1 = new JTextField();

jPasswordField1 = new JPasswordField();

jButton1 = new JButton();

jButton2 = new JButton();

jButton3 = new JButton();

contentPane = (JPanel)this.getContentPane();

jLabel1.setHorizontalAlignment(SwingConstants.LEFT);

jLabel1.setForeground(new Color(0, 0, 255));

jLabel1.setText("Username:");

jLabel2.setHorizontalAlignment(SwingConstants.LEFT);

jLabel2.setForeground(new Color(0, 0, 255));

jLabel2.setText("Password:");

jTextField1.setForeground(new Color(0, 0, 255));

jTextField1.setSelectedTextColor(new Color(0, 0, 255));

jTextField1.setToolTipText("Enter your username");

jTextField1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

 49

jTextField1_actionPerformed(e);

}

});

jPasswordField1.setForeground(new Color(0, 0, 255));

jPasswordField1.setToolTipText("Enter your password");

jPasswordField1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jPasswordField1_actionPerformed(e);

}

});

jButton1.setBackground(new Color(204, 204, 204));

jButton1.setForeground(new Color(0, 0, 255));

jButton1.setText("Login");

jButton1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton1_actionPerformed(e);

}

});

jButton2.setBackground(new Color(204, 204, 204));

jButton2.setForeground(new Color(0, 0, 255));

jButton2.setText("Exit");

jButton2.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton2_actionPerformed(e);

}

});

jButton3.setBackground(new Color(204, 204, 204));

jButton3.setForeground(new Color(0, 0, 255));

 50

jButton3.setText("Register");

jButton3.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton3_actionPerformed(e);

}

});

contentPane.setLayout(null);

contentPane.setBorder(BorderFactory.createEtchedBorder());

contentPane.setBackground(new Color(204, 204, 204));

addComponent(contentPane, jLabel1, 5,10,106,18);

addComponent(contentPane, jLabel2, 5,47,97,18);

addComponent(contentPane, jTextField1, 110,10,183,22);

addComponent(contentPane, jPasswordField1, 110,45,183,22);

addComponent(contentPane, jButton1, 20,75,83,28);

addComponent(contentPane, jButton3, 120,75,83,28);

addComponent(contentPane, jButton2, 210,75,83,28);

this.setTitle("Login");

this.setLocation(new Point(76, 182));

this.setSize(new Dimension(335, 140));

this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

this.setResizable(false);

}

/** Add Component Without a Layout Manager (Absolute Positioning) */

private void addComponent(Container container,Component c,int x,int y,int width,int height)

{

c.setBounds(x,y,width,height);

container.add(c);

}

private void jTextField1_actionPerformed(ActionEvent e)

 51

{

}

private void jPasswordField1_actionPerformed(ActionEvent e)

{

}

private void jButton3_actionPerformed(ActionEvent e)

{

new Register();

}

private void jButton2_actionPerformed(ActionEvent e)

{

System.exit(1);

}

public String Paswd_Fun()

{

return paswd;

}

private void jButton1_actionPerformed(ActionEvent e)

{

System.out.println("\njButton1_actionPerformed(ActionEvent e) called.");

String user = new String(jTextField1.getText());

//@SuppressWarnings("deprecation")

paswd = new String(jPasswordField1.getText());

if(user.equals("") || paswd.equals("")) // If password and username is empty > Do this >>>

{

jButton1.setEnabled(false);

JLabel errorFields = new JLabel("<HTML>You must enter a username
and password to login.</HTML>");

JOptionPane.showMessageDialog(null,errorFields);

jTextField1.setText("");

jPasswordField1.setText("");

jButton1.setEnabled(true);

this.setVisible(true);

 52

}

else if(user!=null && paswd!=null)

{

try{

String databaseUsername = "";

String databasePassword = "";

Class.forName("com.mysql.jdbc.Driver");

Connection con =
DriverManager.getConnection("jdbc:mysql://localhost:3306/test","root","1234");

Statement stmt = con.createStatement();

String SQL = "SELECT * FROM login WHERE username='" + user + "' && password='" + paswd+
"'";

ResultSet rs = stmt.executeQuery(SQL);

while (rs.next()) {

databaseUsername = rs.getString("username");

databasePassword = rs.getString("password");

}

if (user.equals(databaseUsername) && paswd.equals(databasePassword)) {

JOptionPane.showMessageDialog(null,"Successful Login");

Window w = SwingUtilities.getWindowAncestor(contentPane);

w.setVisible(false);

Decryption Dec=new Decryption();

Dec.Decrypt_Fun(paswd);

JOptionPane.showMessageDialog(null,"Project Decrypted");

Main m=new Main();

m.run(sing,paswd);

} else {

JOptionPane.showMessageDialog(null,"Incorrect Username or Password. Please retry");

}}

catch (Exception esp) {

esp.printStackTrace();

}}}};

 53

2. Encryption Code

package org.eclipse.equinox.launcher;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.List;

import java.util.Queue;

import java.io.IOException;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.util.zip.ZipEntry;

import java.util.zip.ZipOutputStream;

import java.io.File;

import javax.swing.*;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.InputStream;

import java.io.OutputStream;

import java.security.SecureRandom;

import javax.crypto.Cipher;

import javax.crypto.CipherOutputStream;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public class Encryption {

public void Encrypt_Fun(String Password)throws Exception

{

String key=Password;

 54

try{

List<File> allFiles = new ArrayList<File>();

Queue<File> dirs = new LinkedList<File>();

dirs.add(new File("C:\\Users\\Noor\\Desktop\\Help2\\Example"));

while (!dirs.isEmpty()) {

for (File f : dirs.poll().listFiles()) {

if (f.isDirectory()) {

dirs.add(f);

} else if (f.isFile()) {

String filename = f.getName();

if (filename.endsWith(".java") ||filename.endsWith(".class"))

allFiles.add(f);

}

}

}

for (File file : allFiles) {

String tempFileName1=file.getCanonicalPath()+".enc";

copy(Cipher.ENCRYPT_MODE, file.getCanonicalPath(),tempFileName1, key);

BufferedInputStream input1 = new BufferedInputStream(new FileInputStream(tempFileName1));

BufferedOutputStream output1 = new BufferedOutputStream(new
FileOutputStream(file.getCanonicalPath()));

byte[] buf = new byte[1024];

int len;

while ((len = input1.read(buf)) > 0) {

output1.write(buf, 0, len);

}

input1.close();

output1.close();

File myfile = new File(file.getCanonicalPath());

myfile.delete();

}

}

 55

catch(IOException e)

{}

}

private static final int IV_LENGTH=16; //key length

public static byte[] encrypt(String plainText, String password) throws Exception {

ByteArrayInputStream bis = new ByteArrayInputStream(plainText.getBytes("UTF8"));

ByteArrayOutputStream bos = new ByteArrayOutputStream();

encrypt(bis, bos, password);

return bos.toByteArray();

}

public static void encrypt(InputStream in, OutputStream out, String password) throws Exception{

SecureRandom r = new SecureRandom();

byte[] iv = new byte[IV_LENGTH];

r.nextBytes(iv);

out.write(iv); //write IV as a prefix

out.flush();

Cipher cipher = Cipher.getInstance("AES/CFB8/NoPadding");
//"DES/ECB/PKCS5Padding";"AES/CBC/PKCS5Padding"

SecretKeySpec keySpec = new SecretKeySpec(password.getBytes(), "AES");

IvParameterSpec ivSpec = new IvParameterSpec(iv);

cipher.init(Cipher.ENCRYPT_MODE, keySpec, ivSpec);

out = new CipherOutputStream(out, cipher);

byte[] buf = new byte[1024];

int numRead = 0;

while ((numRead = in.read(buf)) >= 0) {

out.write(buf, 0, numRead);

}

out.close();

}

public static void copy(int mode, String inputFile, String outputFile, String password) throws
Exception {

BufferedInputStream is = new BufferedInputStream(new FileInputStream(inputFile));

 56

BufferedOutputStream os = new BufferedOutputStream(new FileOutputStream(outputFile));

if(mode==Cipher.ENCRYPT_MODE){

encrypt(is, os, password);

}

is.close();

os.close();

}

}

3. Decryption Code

package org.eclipse.equinox.launcher;

import java.io.IOException;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.List;

import java.util.Queue;

import java.util.zip.ZipEntry;

import java.util.zip.ZipOutputStream;

import java.io.File;

import javax.swing.*;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.BufferedReader;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

 57

import java.io.InputStream;

import java.io.InputStreamReader;

import java.io.OutputStream;

import java.security.SecureRandom;

import javax.crypto.Cipher;

import javax.crypto.CipherInputStream;

import javax.crypto.CipherOutputStream;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public class Decryption {

public void Decrypt_Fun(String Password)throws Exception

{

String key=Password;

try{

List<File> allFiles = new ArrayList<File>();

Queue<File> dirs = new LinkedList<File>();

dirs.add(new File("C:\\Users\\Noor\\Desktop\\Help2\\Example"));

while (!dirs.isEmpty()) {

for (File f : dirs.poll().listFiles()) {

if (f.isDirectory()) {

dirs.add(f);

} else if (f.isFile()) {

String filename = f.getName();

if (filename.endsWith(".enc"))

 58

allFiles.add(f);

}

}

}

for (File file : allFiles) {

String tempFileName1=file.getCanonicalPath()+".dec";

copy(Cipher.DECRYPT_MODE, file.getCanonicalPath(), tempFileName1, key);

BufferedInputStream input = new BufferedInputStream(new

FileInputStream(tempFileName1));

BufferedOutputStream output = new BufferedOutputStream(new

FileOutputStream(file.getCanonicalPath()));

byte[] buf = new byte[1024];

int len;

while ((len = input.read(buf)) > 0) {

output.write(buf, 0, len);

}

input.close();

output.close();

String foo = tempFileName1;

foo = foo.substring(0, foo.lastIndexOf('.'));

foo = foo.substring(0, foo.lastIndexOf('.'));

File oldFileName = new File(tempFileName1);

File newFileName = new File(foo);

oldFileName.renameTo(newFileName);

File myfile = new File(file.getCanonicalPath());

 59

myfile.delete();

}

}

catch(Exception e){

e.printStackTrace();

}

}

private static final int IV_LENGTH=16;//key length

static String stripExtension (String str) {

if (str == null) return null;

int pos = str.lastIndexOf(".");

if (pos == -1) return str;

return str.substring(0, pos);

}

public static byte[] decrypt(String cipherText, String password) throws Exception {

byte[] cipherTextBytes = cipherText.getBytes();

ByteArrayInputStream bis = new ByteArrayInputStream(cipherTextBytes);

ByteArrayOutputStream bos = new ByteArrayOutputStream();

decrypt(bis, bos, password);

return bos.toByteArray();

}

public static void decrypt(InputStream in, OutputStream out, String password) throws

Exception{

byte[] iv = new byte[IV_LENGTH];

 60

in.read(iv);

Cipher cipher = Cipher.getInstance("AES/CFB8/NoPadding");

//"DES/ECB/PKCS5Padding";"AES/CBC/PKCS5Padding"

SecretKeySpec keySpec = new SecretKeySpec(password.getBytes(), "AES");

IvParameterSpec ivSpec = new IvParameterSpec(iv);

cipher.init(Cipher.DECRYPT_MODE, keySpec, ivSpec);

in = new CipherInputStream(in, cipher);

byte[] buf = new byte[1024];

int numRead = 0;

while ((numRead = in.read(buf)) >= 0) {

out.write(buf, 0, numRead);

}

out.close();

}

public static void copy(int mode, String inputFile, String outputFile, String password) throws

Exception {

BufferedInputStream is = new BufferedInputStream(new FileInputStream(inputFile));

BufferedOutputStream os = new BufferedOutputStream(new FileOutputStream(outputFile));

if(mode==Cipher.DECRYPT_MODE){

decrypt(is, os, password);

}

is.close();

os.close();

}

static public void zipFolder(String srcFolder, String destZipFile) throws Exception {

 61

ZipOutputStream zip = null;

FileOutputStream fileWriter = null;

fileWriter = new FileOutputStream(destZipFile);

zip = new ZipOutputStream(fileWriter);

addFolderToZip("", srcFolder, zip);

zip.flush();

zip.close();

}

static private void addFileToZip(String path, String srcFile, ZipOutputStream zip)

throws Exception {

File folder = new File(srcFile);

if (folder.isDirectory()) {

addFolderToZip(path, srcFile, zip);

} else {

byte[] buf = new byte[1024];

int len;

FileInputStream in = new FileInputStream(srcFile);

zip.putNextEntry(new ZipEntry(path + "/" + folder.getName()));

while ((len = in.read(buf)) > 0) {

zip.write(buf, 0, len);

}

}

}

static private void addFolderToZip(String path, String srcFolder, ZipOutputStream zip)

throws Exception {

 62

File folder = new File(srcFolder);

for (String fileName : folder.list()) {

if (path.equals("")) {

addFileToZip(folder.getName(), srcFolder + "/" + fileName, zip);

} else {

addFileToZip(path + "/" + folder.getName(), srcFolder + "/" + fileName, zip);

}}}}

4. Registration Code

package org.eclipse.equinox.launcher;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.File;

import java.io.IOException;

import javax.imageio.ImageIO;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.sql.Statement;

public class Register extends JFrame

{

 63

private static final long serialVersionUID = 7526472295622776147L;

private JLabel jLabel1;

private JLabel jLabel2;

private JLabel jLabel3;

private JTextField jTextField1;

private JPasswordField jPasswordField1;

private JPasswordField jconfirmPasswordField1;

private JButton jButton1;

private JButton jButton2;

private JPanel contentPane;

public Register()

{

super();

create();

this.setVisible(true);

}

private void create()

{

jLabel1 = new JLabel();

jLabel2 = new JLabel();

jLabel3 = new JLabel();

jTextField1 = new JTextField();

jPasswordField1 = new JPasswordField();

jconfirmPasswordField1 = new JPasswordField();

jButton1 = new JButton();

 64

jButton2 = new JButton();

contentPane = (JPanel)this.getContentPane();

jLabel1.setHorizontalAlignment(SwingConstants.LEFT);

jLabel1.setForeground(new Color(0, 0, 255));

jLabel1.setText("Username:");

jLabel2.setHorizontalAlignment(SwingConstants.LEFT);

jLabel2.setForeground(new Color(0, 0, 255));

jLabel2.setText("Password:");

jLabel3.setHorizontalAlignment(SwingConstants.LEFT);

jLabel3.setForeground(new Color(0, 0, 255));

jLabel3.setText("Confirm Password:");

jTextField1.setForeground(new Color(0, 0, 255));

jTextField1.setSelectedTextColor(new Color(0, 0, 255));

jTextField1.setToolTipText("Enter your username");

jTextField1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jTextField1_actionPerformed(e);

}

});

jPasswordField1.setForeground(new Color(0, 0, 255));

jPasswordField1.setToolTipText("Enter your password");

jPasswordField1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

 65

jPasswordField1_actionPerformed(e);

}

});

jconfirmPasswordField1.setForeground(new Color(0, 0, 255));

jconfirmPasswordField1.setToolTipText("Enter your password again");

jconfirmPasswordField1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jPasswordField1_actionPerformed(e);

}

});

jButton1.setBackground(new Color(204, 204, 204));

jButton1.setForeground(new Color(0, 0, 255));

jButton1.setText("OK");

jButton1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton1_actionPerformed(e);

}

});

jButton2.setBackground(new Color(204, 204, 204));

jButton2.setForeground(new Color(0, 0, 255));

jButton2.setText("Exit");

 66

jButton2.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)

{

jButton2_actionPerformed(e);

}

});

contentPane.setLayout(null);

contentPane.setBorder(BorderFactory.createEtchedBorder());

contentPane.setBackground(new Color(204, 204, 204));

addComponent(contentPane, jLabel1, 10,10,106,18);

addComponent(contentPane, jLabel2, 10,47,97,18);

addComponent(contentPane, jLabel3, 10,84,110,18);

addComponent(contentPane, jTextField1, 125,10,183,22);

addComponent(contentPane, jPasswordField1, 125,45,183,22);

addComponent(contentPane, jconfirmPasswordField1, 125,80,183,22);

addComponent(contentPane, jButton1, 125,120,83,28);

addComponent(contentPane, jButton2, 225,120,83,28);

this.setTitle("Registration");

this.setLocation(new Point(76, 182));

this.setSize(new Dimension(350,190));

this.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

this.setResizable(false);

}

public static Connection getConnection() throws Exception {

String driver = "org.gjt.mm.mysql.Driver";

 67

String url = "jdbc:mysql://localhost:3306/test";

String username = "root";

String password = "1234";

Connection conn = null;

Class.forName(driver);

try {

conn = DriverManager.getConnection(url, username, password);

} catch (SQLException e) {

System.out.println("ERROR: Unable to Connect to Database.");

}

return conn;

}

private void addComponent(Container container,Component c,int x,int y,int width,int height)

{

c.setBounds(x,y,width,height);

container.add(c);

}

private void jTextField1_actionPerformed(ActionEvent e)

{

}

private void jPasswordField1_actionPerformed(ActionEvent e)

{

}

 68

private void jconfirmPasswordField1_actionPerformed(ActionEvent e)

{

}

private void jButton3_actionPerformed(ActionEvent e)

{

}

private void jButton2_actionPerformed(ActionEvent e)

{

System.exit(1);

}

private void jButton1_actionPerformed(ActionEvent e){

System.out.println("\njButton1_actionPerformed(ActionEvent e) called.");

String Value1 = new String(jTextField1.getText());

//@SuppressWarnings("deprecation")

String Value2 = new String(jPasswordField1.getText());

String Value3 = new String(jconfirmPasswordField1.getText());

if (Value2.equals(Value3))

{

try{

Class.forName("com.mysql.jdbc.Driver");

Connection con =

DriverManager.getConnection("jdbc:mysql://localhost:3306/test","root","1234");

 69

PreparedStatement stmt = con.prepareStatement("INSERT INTO login(username,password)

VALUES (?,?)");

stmt.setString(1, Value1);

stmt.setString(2, Value2);

//stmt.setString(3, "Lee");

stmt.executeUpdate();

Window w = SwingUtilities.getWindowAncestor(contentPane);

w.setVisible(false);

}

catch (Exception esp) {

esp.printStackTrace();

}

}

else

{

JOptionPane.showMessageDialog(null,"Error: Password Does not Match. Please retry");

}}};

 70

Bibliography

[1] T. Proesbsting, S. Watterson, and Krakatoa. “Decompilation in java (does bytecode

reveal source?)” In Proceedings of the 3rd USENIX Conference on Object-

Oriented Technologies and Systems, pp. 185–197, Portland, Oregon, 1997.

[2] Guy-Armand Yandji, Lui Lian Hao, Amir-Eddine Youssouf, Jules Ehoussou

“Research on a normal file encryption and decryption” The International

Conference on Computer and Management (CAMAN),Wuhan,China,19-21 May

2011.

[3] “Eclipse (Software)” http://en.wikipedia.org/wiki/Eclipse_%28software%29

[visited: Jan 2015].

[4] Jan M. Memon, Shams-ul-Arfeen, Asghar Mughal, Faisal Memon “Preventing

Reverse Engineering Threat in Java Using Byte Code Obfuscation Techniques”

2nd International Conference on Emerging Technologies (IEEE—ICET 2006),

Peshawar, Pakistan 13-14 November 2006.

[5] S.K. Udupa, S.K. Debray, and M. Madou, Deobfuscation: “Reverse Engineering

Obfuscated Code” Proceedings of the 12th Working Conference on Reverse

Engineering (WCRE’05), 2005, pp. 45-54.

[6] M. Madou, B. Anckaert, B.D. Bus, K.D. Bosschere, J.Cappaert, and B. Preneel,

“On the Effectiveness of Source Code Transformations for Binary Obfuscation”

Proceedings of the International Conference on Software Engineering Research and

Practice (SERP06), CSREA Press, 2006, pp. 527-533.

[7] “Can We Obfuscate Programs?” http://www.math.ias.edu/~boaz

/Papers/obf_informal .html [visited: Jan 2015].

[8] Jien-Tsai Chan *, Wuu Yang “Advanced obfuscation techniques for Java bytecode”

The Journal of Systems and Software 71, (2004), pp. 1–10.

[9] Guy-Armand Yandji, Lui Lian Hao, Amir-Eddine Youssouf, Jules Ehoussou

“Research on a normal file encryption and decryption” The International

Conference on Computer and Management (CAMAN),Wuhan,China,19-21 May

2011.

 71

[10] X. Zhang, Q. Wen, “AOP-Based J2EE Source Code Protection” International

 Conference on Computational Intelligence and Security Workshops, Harbin,

Heilongjiang, China, 2007, pp. 581-584.

[11] ByungRae Cha “CRYPTEX Model for Software Source Code” International

 Conference on Information Security and Assurance, Busan, Korea , 24-26

 April 2008.

[12] Layer 7 Technologies “Protecting Your APIs Against Attack & Hijack”

 http://docs.media.bitpipe.com/io_11x/io_113161/item_826348/8%20%20Prot

 ecting%20 Your%20APIs%20Against%20Attack%20and%20Hijack.pdf

 [visited: May 2014]

[13] “Subversion” http://svnbook.red-bean.com/en/1.6/svn.intro.whatis.html [visited:

Jan 2015]

[14] “CVS” http://en.wikipedia.org/wiki/Concurrent_Versions_System [visited:

 Jan 2015]

[15] “RESEARCH METHODOLOGY” http://www.mech.hku.hk/bse/bbse3002/

Research_ Methodology.pdf [visited: Feb 2015]

[16] “What is Research?” http://www.smccd.edu/accounts/csmlibrary/tutorials

 /what.html [visited: Feb 2015]

[17] “Method or methodology, what’s the difference?”

 http://whanauoraresearch.co.nz/news/method-or-methodology-whats-the-

 difference/ [visited: Feb 2015]

[18] “Applied Research” http://examples.yourdictionary.com/examples-of- applied-

research.html [visited: Feb 2015]

[19] “What is qualitative research” http://www.qsrinternational.com/what-is-

 qualitative-research.aspx[visited: Feb 2015]

[20] “What is quantitative research?” http://www.marketingdonut.co.uk

 /marketing/market- research/what-is-quantitative-research- [visited: Feb

 2015]

[21] “Basic research” http://en.wikipedia.org/wiki/Basic_research - [visited: Feb

 2015]

 72

[22] “DESCRIPTIVE RESEARCH” http://www.researchproposalsforhealth

 professionals .com /descriptive_research1.htm [visited: March 2015]

[23] Eclipse Source Code Tutorial” http://www.vogella.com/tutorials

 /EclipseCodeAccess/ article.html [visited: March 2015]

