
A Deliberately Insecure J2EE
Semantic Web Application

Framework: Injection Attacks and
Defense Mechanisms for Web 3.0

By
Hira Asghar

2010-NUST-MS-CCS-17

Supervisor
Dr. Zahid Anwar

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters in Computer and Communication Security (MS CCS)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(April, 2013)

Approval

It is certified that the contents and form of the thesis entitled “A Delib-
erately Insecure J2EE Semantic Web Application Framework: In-
jection Attacks and Defense Mechanisms for Web 3.0” submitted by
Hira Asghar have been found satisfactory for the requirement of the degree.

Advisor: Dr. Zahid Anwar
Signature:

Date:

Committee Member 1: Dr. Khalid Latif

Signature:
Date:

Committee Member 2: Dr. Farooq Ahmed

Signature:
Date:

Committee Member 3: Dr. Fauzan Mirza

Signature:
Date:

i

Abstract

Semantic Web is an emerging technology that is increasing being employed
across application and community boundaries to make the World Wide Web
more easily interpretable and improve content sharing. Semantic Web uses
Resource Description Framework (RDF), as a standardized logical data model
to make its data machine-readable and RDF Query/Update (SPARQL/S-
PARUL) as standard languages to manipulate RDF data. As Semantic Web
applications grow increasingly popular, new challenges of protecting them
against security threats emerge. Semantic query languages due to their flex-
ible nature are prone to existing attacks such as command injection as well
as attacks that exploit new vulnerabilities in these languages making it nec-
essary for application developers to understand the security risks involved
when deploying Semantic applications. In this research we have analyzed
and categorized the possible injection attacks to which Semantic languages
are vulnerable. We have developed a deliberately insecure J2EE Semantic
Web application, called SemWebGoat-inspired by the open source vulnerable
web application- WebGoat, that offers a realistic teaching environment for ex-
ploiting vulnerabilities in web applications. We have also implemented Web
Application Firewall (WAF) protection mechanisms for mitigating SPAR-
QL/SPAURL injection attacks. For the evaluation of SemWebGoat we con-
ducted a user study as well as performed experimental evaluation in which
we used different web application scanners and penetration testing tools to
detect Semantic Web application vulnerabilities. In addition to these, we
also carried out testing to evaluate the performance of SemWebGoat under
various test scenarios and stress conditions.

The results of the user study concludes that regular web developers
are not normally familiar with the injection vulnerabilities demonstrated in
SemWebGoat. Moreover web application scanners and penetration testing
tools do support SPARQL/SPARUL grammar and are unable to detect its
corresponding injection vulnerabilities. The performance testing validates
that the use of our WAF rules negligibly effect the performance of SemWe-
bGoat, making it a suitable defense mechanism for vulnerable applications.

ii

iii

We have implemented and evaluated WAF rules using the popular open-
source firewall-ModSecurity as well as extended some existing penetration
testing tools to support SPARQL/SPARUL injections with the aim of as-
sisting both developers and web administrators in protecting their Semantic
Web applications.

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Hira Asghar
Signature:

iv

Acknowledgment

I am thankful to Almighty Allah for granting me persistence and ability to
complete MS thesis. I am greatly indebted to my university NUST for pro-
viding me with several opportunities for both academic and personal growth.
The teaching staff was always available for counseling and university admin-
istration was very cooperative.

Next, I would like to express my deep gratitude to Dr. Zahid Anwar,
Dr. Khalid Latif and Dr. Farooq Ahmed for their guidance, support and
useful input throughout the course of this work. I wish to thank Dr. Zahid
Anwar and Dr. Khalid Latif for their mentorship, support and availability.
Their enthusiasm has always been a great motivation and they taught me the
importance of independent learning and continuous effort. I would also like
to thank Dr. Fauzan Mirza for being my committee member and reviewing
this thesis.

Last, but not the least, I thank my family and friends for their love and
support. They all were a great source of motivation and mental relaxation
for me during all this time.

Hira Asghar

v

Contents

1 Introduction and Background 1
1.1 Introduction . 1
1.2 Organization . 4

2 Overview of Semantic Web Languages and Tools 5
2.1 RDF . 5
2.2 SPARQL . 6
2.3 SPARUL . 6
2.4 Semantic Web Tools . 7

3 Related Work 8
3.1 SPARQL and SPARUL Injection Attacks and their Mitigation 8
3.2 Injection Attacks for RDBMS Semantic Web System and a

Defense Mechanism . 9
3.3 Issues in ARC2 . 10

4 Proposed Framework 11

5 Implementation 13
5.1 Implementation of SemWebGoat 13

5.1.1 RDF Database . 15
5.1.2 Interface Design . 15
5.1.3 Lesson Plans . 18

5.2 Implementation of ModSecurity Rule 31

6 Evaluation 36
6.1 User Study . 36
6.2 Experimental Evaluation . 38
6.3 Performance Testing . 38

6.3.1 Evaluation Criteria . 39
6.3.2 Results . 40

vi

CONTENTS vii

7 Conclusion and Future Work 43
7.1 Conclusion . 43
7.2 FutureWork . 44

List of Figures

2.1 A Simple RDF Graph Example 6

4.1 Architecture and Design of Proposed Framework 12

5.1 Implementation View of SemWebGoat 14
5.2 Entity-Relationship Diagram for WebGoat 16
5.3 RDF Data Model of SemWebGoat 16
5.4 Interface of SemWebGoat . 17
5.5 Numeric SPARQL Injection Lesson Interface 20
5.6 String SPARQL Injection Lesson Interface 21
5.7 Modify Data with SPARUL Injection Lesson Interface 23
5.8 Add DATA with SPARUL Injection Lesson Interface 25
5.9 Blind Numeric SPARQL Injection Lesson Interface 27
5.10 Blind String SPARQL Injection Lesson Interface 29
5.11 DoS Attack with SPARQL Injection Lesson Interface 31
5.12 XML Injection Lesson Interface 32
5.13 HTML Error Page . 34

6.1 Throughput (requests/sec) VS Number of Users 40
6.2 Error Rate (%) VS Number of Users 41
6.3 Average Response Time (ms) VS Number of Users 41

viii

List of Tables

5.1 Lessons of WebGoat and SemWebGoat 18

6.1 Summary of Demographics . 37
6.2 Summary of Survey Questions and Results 37
6.3 Characteristics of Scanners and Penetration Testing Tools . . 39
6.4 Vulnerabilities Detected . 39

ix

Chapter 1

Introduction and Background

This chapter gives an introduction of the overall work done and it includes
briefing about the technologies used.

1.1 Introduction

Semantic Web, considered to be the next generation of Web 2.0, has been ex-
panding rapidly in recent years. After the publication and recommendation
of several standards by W3C (World Wide Web Consortium), the Internet
industry is rapidly exploring the benefits of Semantic Web technologies. Se-
mantic Web has been broadly adopted by a large number of domains; includ-
ing finance, business, scientific research and bioinformatics that has raised
issues of security for Semantic Web data. Semantic Web uses a standardized
logical data model namely Resource Description Framework (RDF)[1], to
make its data machine-readable. Semantic Web data is a collection of RDF
statements known as triples in RDF terminology, each consisting of three
parts; Subject, Predicate and Object. RDF triples are stored and managed
by different RDF data management systems, including Jena[2], Sesame[3],
Openlink Virtuoso[4] and 3Store[5], on a single machine. Simple Protocol
and RDF Query Language (SPARQL)[6], is the standard query language
for RDF data recommended by W3C. SPARQL/Update (SPARUL)[7], is an
extension to the SPARQL query language standard that is used to insert,
delete and update RDF data.

A number of incidents have taken place in past years which proved that
the previous query languages[8], [9], [10] such as SQL, XPath and LDAP etc
are highly vulnerable to attacks based on non-sanitized user inputs. In such
attacks, the attacker directly concatenates the malicious query strings with
the inputs to take over control of the application to achieve desired results.

1

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

To create awareness among the developers about the vulnerabilities present
in these query languages a number of deliberately insecure web applications
such as HacmeBank[11] and WebGoat[12] were developed and different safe-
guard measures[13], [14], [15] were proposed and provided for the mitigation
of vulnerabilities. Like previous query languages, SPARQL/SPARUL are
also vulnerable to injection attacks. Various authors have addressed the se-
curity in the Semantic Web. Thuraisingham did an early research[16] on
the security needs in the Semantic Web where he examined the importance
of implementing security mechanisms in different layers of the application.
Agarwal and Sprick[17] identified and developed access control policies and
their corresponding mechanisms for Semantic Web services. In [18], [19] au-
thors identified the basic vulnerabilities in Semantic Web query/update lan-
guages and proposed solutions[19], [20] to prevent such vulnerabilities but so
far no such Semantic Web application has been developed that can provide a
realistic teaching environment for exploiting vulnerabilities in Semantic Web
applications. Thus limited safeguard measures have been provided to protect
Semantic Web applications against such vulnerabilities.

WebGoat is among the most well known and widely used deliberately in-
secure J2EE web applications that is maintained by OWASP and is designed
to teach web application security lessons. WebGoat-5.3 includes lessons on
possible web 2.0 attacks. Lessons in WebGoat-5.3 are split up into eighteen
main categories depending on the nature of the threat and more than sixty
lessons have been demonstrated. Each lesson contains a specific vulnerabil-
ity that is supposed to be exploited by the user to complete the lesson plan.
Some of the main lessons in this web application are Cross site scripting,
Thread safety, SQL injection, Hidden Form Fields, Web Services, Weak Ses-
sion Cookies etc. Users can observe cookies, parameters, and other data sent
to and from the application by using a web proxy. For better understand-
ing of security lessons users are provided with hints, code and solutions.
Some of the lessons in WebGoat-5.3 require third-party software such as
WebScarab[21], Firebug[22], IEWatch[23] and Wireshark[24] to exploit the
vulnerability demonstrated. For developing SemWebGoat the interface de-
sign, database and lesson scenarios of WebGoat-5.3 have been followed. Users
who are familiar with WebGoat’s user interface have an easy transition to
SemWebGoat as it follows a similar teaching style.

ModSecurity is an open source WAF that can identify and block attempts
to exploit a specific vulnerability in an application. In web applications if
vulnerabilities are not found early in the design or testing phases but rather
in production phase then remediation of vulnerabilities becomes expensive
and requires extensive source code modification. In these situations there is
enough time for malicious users to exploit the vulnerability in unprotected

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

web applications. Web application firewalls offer an impressive and ideal
platform for dealing with web application vulnerabilities by examining ev-
erything from user entry fields to URLs, and headers as well as observing
user sessions and cookies, and blocking leakage of sensitive data. ModSecu-
rity provides a set of generic core rulesets that cover areas including XML
protection, malicious software detection, error detection and application level
attacks detection [25]. In 2008, Stephen Craig Evans lead an OWASP Sum-
mer of Code (SoC) Project entitled as “Securing WebGoat with ModSecu-
rity” [26]. The purpose of this project was to create custom ModSecurity
rulesets that, in addition to the Core Set, will protect WebGoat-5.2 Stan-
dard Release from as many of its vulnerabilities as possible without changing
any line of source code. Different rulesets were implemented to mitigate each
vulnerability and each ruleset had its own HTML error file page that ap-
peared on the browser when every attack was detected. In this SoC project
SQL injection attacks were mitigated by using whitelisting and blacklisting
rules. The SoC project encouraged us to implement ModSecurity rules; as
a safeguard measure against the SPARQL/SPARUL injection attacks. This
paper presents the implementation of rules that externally address the vul-
nerabilities demonstrated in SemWebGoat.

Web application scanners are used for detecting vulnerabilities in web ap-
plications. In addition to this they generate observance reports and also sug-
gest a method for mitigating each vulnerability that has been detected. The
most well-known vulnerabilities that the scanners investigate most exten-
sively are SQL Injection (SQLI), Cross Site Scripting (XSS), Cross-Site Re-
quest Forgery (CSRF) and Information Disclosure. HacmeBank[11], WebGoat[12]
and WackoPicko[27] are some of the popular vulnerable applications that are
often used for evaluating scanners. Extensive literature is available on the
evaluation of web application scanners. For example, Doupe et al. evaluated
performance of eleven scanners against their own test application (Wack-
oPicko) and explained the reasons for a scanner’s failure or success [28]. Suto
in [29] showed the comparison of three scanners on detecting web applica-
tion vulnerabilities and in [30] presented the evaluation of seven scanners on
the basis of their detection capabilities and time efficiency. Peine compared
WebGoat with a real-world application for evaluating the user interface of
the seven scanners [31]. To examine the vulnerabilities in SemWebGoat five
different scanners and penetration testing tools have been used and their
performance for detecting the vulnerabilities in Semantic Web applications
has been evaluated.

The Major contributions of our research are:

• Analyzing and categorizing the attacks specific to Semantic Web lan-

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

guages.

• Developing a deliberately insecure J2EE Semantic Web application so
that every user (such as programmer, penetration tester and student)
could learn and practice Semantic Web application security holes in a
safe and legal environment.

• Providing a testing platform to security professionals to test their se-
curity tools (security professionals frequently need to test tools against
a platform known to be vulnerable to ensure that they perform well).

• Implementing ModSecurity rules for protecting the Semantic Web ap-
plications that have been already developed but are vulnerable to SPAR-
QL/SPARUL injection attacks.

• Extending some existing penetration testing tools to support SPAR-
QL/SPARUL injections with the aim of assisting both developers and
web administrators in protecting their Semantic Web applications.

1.2 Organization

The rest of the thesis is structured as follows: Chapter 2 presents the overview
of Semantic Web languages. Chapter 3 outlines the work done in our domain.
In Chapter 4, we have explained the architecture and design of our pro-
posed framework. In Chapter 5, the detail implementation of SemWebGoat
and ModSecurity Rule has been discussed that includes the interface, RDF
database and lessons implementated in SemWebGoat. Chapter 6, presents
the evaluation criteria and the results. Chapter 7 concludes the whole study
and presents future work direction.

Chapter 2

Overview of Semantic Web
Languages and Tools

This chapter provides introduction to Semantic Web languages and tools
that have been used for developing SemWebGoat.

2.1 RDF

RDF[1] is a language used for representing Semantic Web data. Each RDF
statement consists of subject, predicate and object, where the subject and
object are used to represent any two things in the world and a predicate is
used to define the relationship between the two things. The main aspect of
RDF is that the names for triples must be kept global, so the following RDF
conditions apply to store the RDF data in the database:

• A subject can only be a Uniform Resource Identifier (URI) or a blank
node.

• A predicate/property can only be a URI.

• An object can be of any type, such as a blank node, a URI or a literal.

RDF statements are best represented in the form of RDF graphs. The
arc in the RDF graph is labeled as predicate. Arc starts from a subject node
and ends at the object node. For example the RDF graph in Figure 2.1 states
“JamesWatson has age whose value is 27”, where JamesWatson is a subject,
age represents the predicate and 27 represents the object value. The predicate
(exterms:age) in this example is represented in the XML QName (Qualified
Name) form. As the name of the URIs are rather cumbersome and long so

5

CHAPTER 2. OVERVIEWOF SEMANTICWEB LANGUAGES AND TOOLS6

in diagrams they are represented in XML QName form. The part before
the “:” represents a namespace and is known as namespace prefix. In RDF
graphs, predicates are mostly represented in the QName format when written
in RDF/XML as it is convenient. The nsprefix:localname form corresponds
to the URI of the namespace that is concatenated with the localname.

http://��/JamesWatson

27

exterms:age

Figure 2.1: A Simple RDF Graph Example

2.2 SPARQL

For querying the RDF database SPARQL[6] language is used. SPARQL
query language has four query forms:

• SELECT: Returns the variables and their bindings in result.

• CONSTRUCT: Returns an RDF graph by transforming the results.

• ASK: Returns the result in a boolean form. It states whether the
query matches or not.

• DESCRIBE: Returns an RDF graph that contains the description of
the resources found.

A SPARQL query consists of two parts: the SELECT part identifies the
variables to appear in the query results and the WHERE part provides a
graph pattern to match against the RDF data graph. A simple sample query
is shown in Table I that will return the age of JamesWatson. A Variable is
indicated by the ’?’ prefix and will return the binding for the ?age.

2.3 SPARUL

SPARUL[7] is a standard language used for performing updates to the RDF
models/graphs in a database.

SPARUL can be used to perform following tasks:

CHAPTER 2. OVERVIEWOF SEMANTICWEB LANGUAGES AND TOOLS7

Table I: SPARQL Query for Figure 2.1

SELECT ?age

WHERE {

exterms:JamesWatson exterms:age ?age .

}

• Inserting triples in RDF model in the database.

• Deleting triples from the RDF model in the database.

• Clearing an RDF model in a database.

• Loading an RDF model in the database.

• Moving, copying and adding the content of the one RDF model to
another.

• Dropping an RDF model from a database.

• Executing a number of operations in a single action.

2.4 Semantic Web Tools

Number of Semantic Web tools including Jena[2], ARC[32], RDFLib[33] and
Protege[34] are available that are assisting in the development of Semantic
Web applications. Jena framework is used for creating and querying the
back-end RDF database. Jena offers a collection of Java libraries and tools
for developing Semantic Web applications, servers and tools. It includes an
API that supports reading, processing and writing of RDF data into XML,
N-triples and Turtle formats. Jena framework also includes the servers that
allow the publishing of RDF data to other applications by using various
protocols including SPARQL. In Jena, an RDF graph is known as RDF
model and the Model interface is used to represent it.

Chapter 3

Related Work

This chapter gives a brief overview of the work done in domain of Semantic
Web vulnerabilities and their mitigation.

Constructing applications using Semantic Web technologies is a relatively
new trend and therefore previous query languages such as SQL and XPath
are still employed because of developer familiarity along with new Seman-
tic query languages and due to this reason it is more vulnerable than the
previous web applications. Semantic Web application security issues have
been relatively unexplored and while researchers have identified some of the
Semantic Web vulnerabilities in the past but we did not find any significant
security assessment tools that address these vulnerabilities in real Semantic
applications.

3.1 SPARQL and SPARUL Injection Attacks

and their Mitigation

In [18] authors presented the three basic Semantic Web injection techniques:
SPARQL injection, Blind SPARQL injection and SPARUL injection. SPAR-
QL/SPARUL injection is a code injection technique that exploits the security
vulnerabilities in Semantic Web applications. SPARQL/SPARUL commands
are injected from the web form into the database of an application to get
unauthorized data access and to make unauthorized deletion and alteration
of the data. Blind SPARQL injection is identical to normal SPARQL in-
jection except that in this technique an attacker attempts to steal data by
asking a series of true and false questions through SPARQL statements. Li-
braries in other query languages like SQL provide tools to avoid the code
injection attacks, such as Java API supports prepared statements[14] or the

8

CHAPTER 3. RELATED WORK 9

use of parameterized queries[35]. Parameterized queries permit the database
to differentiate between data and code, in spite of what user input is pro-
vided. In this coding method developers are forced to define all the SQL code
before passing any parameters to the query. Use of prepared statements en-
sure that the malicious SQL commands entered by an attacker will not be
able to change the intent of the query. In [20] Orduna et al. provided a
solution with the name of ParameterizedString for preventing SPARQL/S-
PARUL injection attacks, that work in the same way as prepared statements
do for preventing SQL injection attacks. Orduna et al. sent a patch for Pel-
let 1.5.1 and Jena 2.5.5, adding support for the ParameterizedString object
in QueryEngine, QueryFactory and UpdateFactory. The drawback of this
solution is that it is only suitable when the Semantic Web applications are
in the development phase because ParameterizedStrings are used in-line. In
case the vulnerabilities are identified in the production phase then the use of
ParameterizedString would require recoding which is not usually economical
and is generally ignored if the development team is under pressure to roll
out the software product. Our research provides a suitable solution that can
externally address Semantic Web vulnerabilities and can protect applications
without having to change any line of source code.

3.2 Injection Attacks for RDBMS Semantic

Web System and a Defense Mechanism

In [19] authors presented the classification and detection of possible SPAR-
QL/SQL injection attacks for a RDBMS-based Semantic Web system. Such
systems use SPARQL and SQL both as the query languages. RDBMS-based
systems store data in a relational database for persistence and use a transla-
tor module to translate SPARQL data queries to SQL data queries. In this
paper authors have classified injection attacks as either SPARQL-oriented
or SQL-oriented. To detect the injection attacks they proposed a parse tree
validation technique which represents the syntax structure of a string accord-
ing to the grammar. In this proposed technique intended SQL and SPARQL
queries are constructed through a programmer formulation code. The formu-
lation code generates the hard-coded portion of the parse tree and the user
supplied input portion is represented as empty leaf nodes that is later filled
by the user supplied input. So if the user inputs do not store the content
in the parse tree nodes as the intended queries do then it means there is
an injection attack. In brief this technique detects the SPARQL/SQL injec-
tion attack by comparing the intended parse tree with the resulting parse

CHAPTER 3. RELATED WORK 10

tree that is generated by the user supplied input. To validate the proposed
technique they developed a prototype system “SemGuard”, that was used
as a plug-in in a Java application. In this paper only a basic SPARQL in-
jection attack has been discussed and no classification or solution for Blind
SPARQL and SPARUL injection attacks has been provided. This motivated
us to classify the basic SPARQL/SPARUL injection attacks and provide a
appropriate defense mechanism for their mitigation.

3.3 Issues in ARC2

In [36] Onofri and Napolitano presented the possibility of basic SPARQL
injection attacks in Semantic applications. For demonstrating the SPARQL
injection they developed a vulnerable Semantic login where the user was able
to login without even entering the correct password. For the mitigation of
SPARQL injection attacks they recommended the use of parametric query
and data validation techniques as well as suggested proper programming
techniques to write the SPARQL code in safe manner. They also addressed
the same issues in ARC2 and demonstrated that ARC2 version v2011-12-01
and possibly the lower versions are vulnerable to Blind SQL Injection and
Cross Site Scripting vulnerabilities. ARC[37] provides RDF and SPARQL
functionalities to PHP applications and store triples into a MySQL database
so it is possible to attempt Blind SQL Injection attack against the RDB-
based applications by injecting SQL commands in the SPARQL WHERE
clause. As these issues have been fixed by the ARC vendors so for the pro-
tection of Semantic applications users are recommended to update ARC2 to
the latest release or manually fix the “ARC2 StoreEndpoint.php” and other
files. In this research no new safeguard mechanism has been proposed. This
encouraged us to propose a new safeguard measure as well as provide a real
Semantic application where users can not only test basic SPARQL injections
but also other types of possible injection attacks in Semantic applications.

Chapter 4

Proposed Framework

This chapter discusses the overall design of our proposed framework and all
its technical details.

Figure 4.1 explains the architecture and design of our proposed frame-
work. The objective of this framework is to protect Semantic Web appli-
cation from as many of its vulnerabilities as possible by using ModSecurity
rule. Major components of proposed framework are:

• Web Browser/User: User will send the request to retrieve the data.
The request can either be valid or malicious. For sending requests
directly to the web server (Apache in our case), the web browser is
configured on localhost with port 80 but in case an intercepting proxy
such as WebScarab is required, the port can be changed to WebScarab’s
port so that every request can route through it.

• WebScarab: WebScarab is a tool that intercepts HTTP requests and
responses and exploits the vulnerabilities in Semantic Web applications
by editing the parameters at runtime. WebScarab is required for two of
the lesson plans. WebScarab is configured by setting the HTTP proxy
as localhost and port as 80 so that it can forward each request to the
Apache web server.

• ModSecurity: Every request sent by the user is intercepted by a WAF
such as ModSecurity in our case to check attack attempts and block
them accordingly. ModSecurity is configured on Apache web server by
setting the listening port as 80. Apache web server has been configured
as a reverse proxy so that it can communicate with Apache Tomcat-a
J2EE compliant server.

11

CHAPTER 4. PROPOSED FRAMEWORK 12

• SemWebGoat: A deliberately insecure J2EE Semantic Web applica-
tion has been developed. It includes attack lessons that are specific to
Semantic Web languages. SemWebGoat has been deployed on Apache
Tomcat. It retrieves the data from the RDF database and displays it
to the user.

• RDF Database: This is the backend datastore that is used for gener-
ating dynamic content for SemWebGoat and contains data in the form
of triples. In our case we have created this via the Jena API.

ModSecurity for

SemWebGoat

Web Browser/User

Apache Web server

WebScarab

Apache Tomcat

SemWebGoatModSecurity for

SemWebGoat

R
e
q
u
e
s
t

R
e
s
p

o
n
s
e

RDF

Database

Figure 4.1: Architecture and Design of Proposed Framework

Chapter 5

Implementation

The chapter presents the the implementation details of SemWebGoat and
describes the implementation of ModSeurity Rule that has been implemented

for detecting SPARQL/SPARUL injection attacks.

5.1 Implementation of SemWebGoat

SemWebGoat is designed to mirror a typical e-commerce application where
users can interact with different parts of the system by filling in the cor-
responding input fields and selecting through drop-down lists as a result of
which dynamic content is generated based on underlying data in the data-
store. Features such as search, update and viewing personal records are
available. Data is meant to be private and the ability to see other people’s
confidential records such as salaries and credit card numbers via injection
attacks is considering breach of security as can be imagined in a real com-
mercial e-commerce web application. Lessons have been designed in a mix of
difficulty levels where some of the more challenging attacks require expertise
at the end of the hacker whereby he/she can use information exploited from
one vulnerable input field as a stepping stone to exploit another weakness.

Like a dynamic web site, the architecture of a web application also re-
volves around the navigation of the web pages. To represent the function-
ality and architecture of the web system, designers use different models and
viewpoints; such as Implementation View, Site Map, Deployment Model,
Analysis and Design Model. Implementation View describes the abstraction
of web pages and the relationships between them. In Implementation View
hyperlinks are used to represent relationships between the web pages. At
abstraction level the Implementation View of a web application is just like
a Site Map of a web system. Figure 5.1 presents the Implementation View

13

CHAPTER 5. IMPLEMENTATION 14

of SemWebGoat, where the two hyperlinks (<<link>>, <<build>>) are
used to represent the navigation paths through the web application and the
parameter values (such as StationNumber, LastName) are being passed as
arguments and are used by the server pages to build the client pages.

SemWebGoat

Homepage

Add Data with

SPARUL

Injection

Lesson

Get Salary or

Delete

Record

Salary or

Record

Deleted

Modify Data

with SPARUL

Injection

Lesson

String

SPARQL

Injection

Lesson

Numeric

SPARQL

Injection

Lesson

<<link>>

Lesson4

Page
0..*

<<link>>

{UserId} <<build>>

Configuration

Detail

Blind Numeric

SPARQL

Injection

Lesson

Blind String

SPARQL

Injection

Lesson

DoS Attack

with SPARQL

Injection

Lesson

XML Injection

Lesson

Get Salary or

Delete

Record

Salary or

Record

Deleted

Get

Credit Card

Number

Credit Card

Number

Get

Station

Weather

Detail

Station

Weather

Detail

Get Account

Validation or

Get User

Detail

Account

Validation or

User Detail

Get Account

Validation or

Get User

Detail

Account

Validation or

User Detail

Get URI URI

Get Rewards
Rewards

Detail

<<link>>

<<link>>

<<link>>

<<link>>

<<link>>

<<link>>

<<link>>

<<link>>

Configuration

Page

Lesson1

Page

Lesson2

Page

Lesson3

Page

Lesson5

Page

Lesson6

Page

Lesson7

Page

Lesson8

Page

<<link>>

{StationNumber}

<<link>>

{LastName}

<<link>>

{UserId}

<<link>>

{AccountNum/PinNum}

<<link>>

{AccountNum/PinNum}

<<link>>

{PublisherName}

<<link>>

{AccountId}

<<build>>

<<build>>

<<build>>

<<build>>

<<build>>

<<build>>

<<build>>

Client page

Server page

0..*

0..*

0..*

0..*

0..*

0..*

0..*

<< >> Hyperlink

Figure 5.1: Implementation View of SemWebGoat

CHAPTER 5. IMPLEMENTATION 15

5.1.1 RDF Database

The source code of WebGoat has been analyzed to gather information about
the data model of WebGoat. The WebGoat database contains a number of
SQL tables that include information about products, weather, employees etc.
Each lesson in WebGoat is based on a certain scenario and has access to a
certain database table according to the requirement of that scenario. For
our lessons requirements the number of SQL tables that have been used in
implementing the SemWebGoat RDF database are presented in Figure 5.2.
This figure explains the type of data and the fields stored in the database
tables of WebGoat. The entity-relationship diagram defines the following
database tables:

• Employee: Contains all the necessary personal and public informa-
tion (such as names, credit card numbers, social security numbers, ad-
dresses, phones numbers) regarding the employees of a company.

• Weather: Contains weather data of various stations that includes the
station number, station name, state name, maximum and minimum
temperature of each station.

• Pins: Contains information related to credit cards that includes the
credit card numbers, cardholder names, Personal Identification Num-
bers (PIN) and the account numbers.

• Rewards: Contains information about the rewards and the account
IDs that are required to win the rewards.

Figure 5.3 presents the same data and fields that are presented in Figure
5.2, but in the form of RDF graph/model. RDF Data models are used
for representing the Semantic Web data and are considered similar to the
conceptual database modeling approaches such as class diagrams or entity-
relationship diagrams. In RDF data model web resources are described in
the form of triples. To have better understanding of this RDF model/graph
you may refer to Section 2 or [1].

5.1.2 Interface Design

SemWebGoat interface design as shown in Figure 5.4, is similar to WebGoat
and like WebGoat, SemWebGoat also provide users with hints, code and
solutions. The interface elements of SemWebGoat are summarized below.

CHAPTER 5. IMPLEMENTATION 16

Employee

user_id

first_name

last_name

ssn

password

title

phone no.

address 1

address 2

manager

start_date

salary

cc_number

ccn_limit

discipline_date

discipline_notes

personal_description

Weather

station_num

station_name

state_name

max_temp

min_temp

Pins

name

pin

ac_number

cc_number

Rewards

account_id

rewards

Figure 5.2: Entity-Relationship Diagram for WebGoat

:employee :rewards

:weather :pins

user_id

last_name

first_name

e-mail

phone_no.

title

passwordsalary

address2

address1

cc_number

ccn_limitstart_date

personal_description

discipline_datemanager

discipline_note

:user_id

ssn

:first_name

:last_name
:phone_no. :manager

:personal_description

:salary :discipline_date:password

:discipline_note

:address1

:address2

:start_date:e-mail

:cc_number

:ssn :ccn_limit:title

account_id rewards

:account_id :rewards

pin

name

:state_name :pin

station_num

station_name state_name

:station_num

:station_name

:name

max_temp

temp cc_number

ac_number

:max_temp

:temp

:ac_number

:cc_number

subject

object property

object

Figure 5.3: RDF Data Model of SemWebGoat

CHAPTER 5. IMPLEMENTATION 17

1. Introduction and Injection Flaws Categories: Introduction cate-
gory contains short introduction of SemWebGoat and WebScarab plus
provides the configuration settings required for using SemWebGoat.
Injection Flaws category contains the list of lessons demonstrated in
SemWebGoat.

2. Hints: Shows the technical hints to solve the lesson.

3. Show Params: Shows the HTTP Request Parameters.

4. Show Cookies: Shows the HTTP Request Cookies.

5. Lesson Plan: Shows the goals and objectives of the particular lesson.

6. Show Java: Shows the underlying source code.

7. Solution: Shows the complete solution for that particular lesson.

8. Restart this Lesson: This link will restart the lesson.

Figure 5.4: Interface of SemWebGoat

CHAPTER 5. IMPLEMENTATION 18

5.1.3 Lesson Plans

WebGoat includes a number of security lessons on different types of SQL
injections under the category of “Injection Flaws”. In SemWebGoat under
the same category (Injection Flaws) all lessons have been listed that demon-
strate the possible injection attacks to which Semantic Web applications are
vulnerable. For the implementation of lessons we have followed the naming
schemes and scenarios of WebGoat. For better understanding of lessons and
to provide a good comparison of SQL injection attacks with SPARQL/S-
PARUL injection attacks the SemWebGoat lessons will be discussed along
with those of WebGoat. Table 5.1 contains the lessons that will be discussed
in this section. A total of eight lessons have been demonstrated in SemWeb-
Goat; two of which will require third-party software such as “WebScarab” to
exploit the vulnerabilities and the remaining six lessons teach the users how
to exploit the vulnerabilities through user input fields.

Table 5.1: Lessons of WebGoat and SemWebGoat

Injection Lessons in WebGoat Injection Lessons in SemWebGoat

Numeric SQL Numeric SPARQL

String SQL String SPARQL

Modify Data with SQL Modify Data with SPARUL

Add Data with SQL Add Data with SPARUL

Blind Numeric SQL Blind Numeric SPARQL

Blind String SQL Blind String SPARQL

N/A DoS Attack with SPARQL

XML XML

Numeric SPARQL Injection

This lesson uses the same scenario that has been used by “Numeric SQL
Injection” of WebGoat. According to the scenario the user can view the
weather data of a particular station by selecting a station number (such
as 101,102 or 103) from the drop-down list. The goal is to inject a SQL
string that results in all the weather data being displayed. The WebGoat
application is taking the input from the select box and inserting it at the end
of a pre-formed SQL command. In such case the user would need WebScarab

CHAPTER 5. IMPLEMENTATION 19

to intercept the HTTP request and to concatenate the malicious string with
the URL-Encoded value. When the user will replace the URL-Encoded value
with the SQL string that is provided in Table IIa, it will display the weather
data of all the stations since the SQL statement “101 or 1=1!” always resolves
to true.

Table IIa: Numeric SQL Injection

Pre -formed SQL query: SELECT * FROM weather_data

WHERE station = ‘"+ stationNum + "’

Valid URLEncoded value: 101

Malicious SQL string: 101 or 1=1!

In the equivalent SemWebGoat lesson as shown in Figure 5.5, the user
has to inject a SPARQL string instead of SQL string to display the weather
data of all stations. Essential details required to understand this lesson are
provided in Table IIb. The “ + stationNum+” in the pre-formed SPARQL
query is taking the input value from the select box and will return the data of
that particular station number that will be selected by the user from the drop-
down list. In this scenario it is necessary for the user to have prior knowledge
of the predicates that are being used in the back-end query so that a correct
malicious query can be injected. In the malicious query the user can use any
variable (such as s, abc, subject etc) for retrieving all the subjects except the
“uri” because this variable has been already bound to return the weather
data for the single station whereas for retrieving the object values the user
can use any variable (such as o, object etc). In the malicious query “?s”,
“?station name”, “state name”, “max temp” and “min temp” will return all
the data that is associated with the predicates specified in the query and
“#” will comment out the rest of the pre-formed query. By injecting this
malicious query the user will get the weather data of all stations together.

String SPARQL Injection

This lesson uses the same scenario that has been used by “String SQL Injec-
tion” of WebGoat. According to the scenario the user can view credit card
numbers by entering the last names in the input field. The goal is to inject a
SQL string that would display all the credit card numbers at the same time.
When the user will enter “Smith’ OR ‘1’=‘1” instead of “Smith” as shown
in Table IIIa, it will display all the credit card numbers because the SQL
statement always resolves to true.

CHAPTER 5. IMPLEMENTATION 20

Figure 5.5: Numeric SPARQL Injection Lesson Interface

Table IIb: Numeric SPARQL Injection

Pre -formed SPARQL query: SELECT * WHERE {

?uri weather:station_num ‘"+ stationNum + " .

?uri weather:station_name ?station_name .

?uri weather:state_name ?state_name .

?uri weather:max_temp ?max_temp .

?uri weather:min_temp ?min_temp .

}

Valid URLEncoded value: 101

Malicious SPARQL string: 101’ .

?s weather:station_name ?station_name .

?s weather:state_name ?state_name .

?s weather:max_temp ?max_temp .

?s weather:min_temp ?min_temp .

} #

In the corresponding SemWebGoat lesson the difference in the scenario is
that this time the user has to inject a SPARQL string instead of a SQL string

CHAPTER 5. IMPLEMENTATION 21

Table IIIa: String SQL Injection

Pre -formed SQL query: SELECT * FROM user_data

WHERE last_name = ‘"+ LastName + "’

Valid input: Smith

Malicious SQL string: Smith ’ OR ‘1’=‘1

to display all credit card numbers. Essential details required to understand
this lesson are provided in Figure 5.6 and Table IIIb. The “ +LastName+
” in the pre-formed SPARQL query is taking the input value from the input
field and will return the credit card number of that particular user whose
last name has been entered. Like the previous lesson, in this scenario it is
also necessary for the user to have prior knowledge of the predicates that
are being used in back-end query. In the malicious query user can use any
variable for retrieving all the subjects except the “uri” whereas for retrieving
the object values the user can use any variable. In the malicious query
“?s” and “?cc number” will return all the data that is associated with the
predicates specified in the query and “#” will comment out the rest of the
pre-formed query. In the result all the credit card numbers will be displayed
at the same time.

Figure 5.6: String SPARQL Injection Lesson Interface

CHAPTER 5. IMPLEMENTATION 22

Table IIIb: String SPARQL Injection

Pre -formed SPARQL query: SELECT * WHERE {

?uri employee:last_name ‘"+ LastName +"’ .

?uri employee:cc_number ?cc_number .

}

Valid input: Smith

Malicious SPARQL string: Smith ’ .

?s employee:cc_number ?cc_number .

} #

Modify Data with SPARUL Injection

This lesson uses the same scenario that has been used by “Modify Data with
SQL Injection” of WebGoat. According to the scenario the user can view
salaries associated with a user id. As the input field is vulnerable to SQL
injection so the goal is to inject SQL string to modify the salary for user id
“jsmith” (that belongs to John Smith). The solution and source code details
are provided in Table IVa.

Table IVa: Modify Data with SQL Injection

Pre -formed SQL query: SELECT * FROM salaries

WHERE userid = ‘"+ UserId +"’

Valid input: jsmith

Malicious SQL string: jsmith ’;

UPDATE salaries SET SALARY =5000

WHERE userid=‘jsmith

In the equivalent SemWebGoat lesson as shown in Figure 5.7, the users
are provided with two input fields. The first input field allows a user to view
the salaries by entering the user ids. The other input field allows deletion of
the record by entering the user ids. For the implementation of this lesson two
input forms have been used because SELECT query uses SPARQL syntax
whereas MODIFY query uses SPARUL syntax and we cannot use SELECT
and MODIFY queries together in a single statement. To inject this SPARUL
string the user should have prior knowledge about the subject URI, predicate
and object value (salary). This can be achieved using the first input field
to get information about the URI and the salary of John by entering his
user id “jsmith” and the predicate is provided in the pre-formed query. After

CHAPTER 5. IMPLEMENTATION 23

viewing his URI and salary the user can use the second input field to update
his salary. According to the scenario the user has to update salary where
user id is “jsmith” so user should not concatenate the SPARUL statement
with this user id as this will delete the record of “jsmith” . Rather the user
needs to use some other user id such as mstooge or lstooge and concatenate
the SPARUL statement with it. To update the salary the user would always
need to perform two actions together: DELETE and INSERT. The pre-
formed query provided in Table IVb illustrates that it is a DELETE query,
so for updating the salary record the user needs to delete the existing salary
record before inserting the new one. It is also necessary to first delete the
existing record because otherwise the new salary record, will be added with
his previous record of salary and in such a case when the user searches for
John’s salary he/she will get two results. The malicious SPARUL string
clearly illustrates that firstly John’s salary has been deleted and then the
new salary record has been added. After modifying John’s salary the user
can use the first input field to view the updated salary record.

Figure 5.7: Modify Data with SPARUL Injection Lesson Interface

Add Data with SPARUL Injection

This lesson uses the same scenario that has been used by “Add Data with
SQL Injection” of WebGoat. This lesson is conceptually very similar to

CHAPTER 5. IMPLEMENTATION 24

Table IVb: Modify DATA with SPARUL Injection

Pre -formed SPARUL query: DELETE

WHERE {?uri employee:user_id ‘"+ UserId +"’.

?uri employee:salary ?salary .

}

Valid input: jsmith

Malicious SPARUL string: lstooge ’ .

employee:John employee:salary ‘20000’. }

INSERT DATA { employee:John employee:salary

‘5000’. } #

the previous lesson. This time the user has to insert new data instead of
modifying the stored data. According to the scenario the user can view
salaries associated with a user id. As the input field is vulnerable to SQL
injection so the goal is to inject a SQL string to add a new salary record
with any arbitrary name. The solution and source code details are provided
in Table Va.

Table Va: Add DATA with SQL Injection

Pre -formed SQL query: SELECT * FROM salaries

WHERE userid = ‘"+ UserId +"’

Valid input: jsmith

Malicious SQL string: jsmith ’;

insert into salaries values(‘nome ’ ,10000);

In the corresponding SemWebGoat lesson as shown in Figure 5.8, the
users are provided with two input fields. The first input field allows a user
to view the salaries by entering the user ids. The other input field allows
the deletion of the record by entering the user ids. For the implementation
of this lesson two input forms have been used because SELECT query uses
SPARQL synatx whereas INSERT query uses SPARUL syntax and we cannot
use SELECT and INSERT queries together in a single statement. To add
a new record of salary to the database user can use INSERT query that
is provided in Table Vb. The first closing bracket has been used to close
the DELETE query and then the INSERT query has been concatenated
to it. After entering this SPARUL statement a new user record with name
“Nelson”, user id “nome” and salary “10000” will be added into the database.

CHAPTER 5. IMPLEMENTATION 25

After adding a new record the user can use the first input field to view the
salary record with user id “nome”.

Figure 5.8: Add DATA with SPARUL Injection Lesson Interface

Table Vb: Add DATA with SPARUL Injection

Pre -formed SPARUL query: DELETE

WHERE {?uri employee:user_id ‘"+ UserId +"’.

?uri employee:salary ?salary .

}

Valid input: jsmith

Malicious SPARUL string: mstooge ’ . } INSERT DATA

{ employee:Nelson employee:user_id ‘nome ’ .

employee:Nelson employee:salary ‘10000’ .

} #

Blind Numeric SPARQL Injection

This lesson uses the same scenario that has been used by “Blind Numeric
SQL Injection” of WebGoat. According to the scenario the input field allows

CHAPTER 5. IMPLEMENTATION 26

a user to enter an account number and determine if it is valid or not. Such
input field can be used to develop a true/false test to check other entries in
the database. The goal is to find the pin value (that is of type int) for the
credit card number “1111222233334444”. The SQL string provided in Table
VIa would either return valid or invalid. If it would return valid then it
means that the pin value is greater than 10000 and if it would return invalid
then it means that the pin value is less than 10000. By entering a number
of similar SQL statements with different pin values the user can guess the
correct pin value. The user can only pass the lesson by entering the correct
pin value (which is 2364) associated with the specified credit card number.

Table VIa: Blind Numeric SQL Injection

Pre -formed SQL query: SELECT * FROM user_data

WHERE userid = ‘" + accountNo + "’

Valid input: 101

Malicious SQL string :101 AND

((SELECT pin FROM pins WHERE

cc_number = ‘1111222233334444 ’) > 10000);

In the corresponding SemWebGoat lesson as shown in Figure 5.9, the
users are provided with two input fields. The first input field allows a user
to check the valid and invalid account numbers and a user can only view the
information of credit card when the correct pin value will be entered in the
second input field. For the implementation of this lesson, ASK query has
been used behind the first input form as it returns the result in a boolean
(true/false) form. Like previous lessons, in this scenario it is also necessary for
the user to have prior knowledge of the predicates so that a correct malicious
query can be concatenated with the input.The malicious SPARQL string
that has been concatenated with the ASK query for comparing the pin value
is provided in Table VIb. This string uses the FILTER clause. FILTER
allows the filtering of results on certain conditions. For filtering the numbers
FILTER clause uses inequalities and equalities. For determining the pin value
the user can change the pin value (in the provided SPARQL string“10000”
is denoting the pin value) in each statement and can look for each boolean
result. Each boolean result will provide a clear clue to the user regarding the
correct pin value. After determining the correct pin value (which is 2364)
the user can enter it into the second input field to pass the lesson.

CHAPTER 5. IMPLEMENTATION 27

Figure 5.9: Blind Numeric SPARQL Injection Lesson Interface

Table VIb: Blind Numeric SPARQL Injection

Pre -formed SPARQL query: ASK

WHERE {?uri pins:ac_number ‘"+ accountNo +"’.

}

Valid input: 101

Malicious SPARQL string: 101’.

?s pins:cc_number ’1111222233334444 ’ .

?s pins:pin ?pin.

FILTER (xsd:integer (?pin) >10000)

} #

Blind String SPARQL Injection

This lesson uses the same scenario that has been used by “Blind String
SQL Injection” of WebGoat. This lesson is conceptually very similar to the
previous lesson. This time the user has to search for a string, not for a
number. According to the scenario the input field allows a user to enter
an account number and determine if it is valid or not. The goal is to find
the value of the field name for the credit card number “4321432143214321”.

CHAPTER 5. IMPLEMENTATION 28

The SQL strings provided in Table VIIa include the SUBSTRING method
because without using it the user would be trying to compare the complete
string to one letter and this will not help. SUBSTRING method includes
(STRING,START,LENGTH); in the first malicious SQL string it is com-
paring the first letter with “H”. As the correct name associated with the
specified account number is “Jill” so it will return false. By using several
more statements with different letters, inequality and equality operators the
user will be able to determine the first letter. To determine the second let-
ter, the user can change the SUBSTRING parameters as shown in the second
malicious SQL string. After using several more statements the user will be
able to determine the second letter too. In a similar way user can find the
third and fourth letters of the name. Then the user can enter the correct
name in the input field to clear the lesson.

Table VIIa: Blind String SQL Injection

Pre -formed SQL query: SELECT * FROM user_data

WHERE userid = ‘" + accountNo + "’

Valid input: 101

Malicious SQL string :101 AND

(SUBSTRING ((SELECT name FROM pins

WHERE cc_number = ‘4321432143214321 ’) ,

1, 1) < ‘H’);

Malicious SQL string :101

AND (SUBSTRING ((SELECT name FROM pins

WHERE cc_number ‘4321432143214321 ’) ,

<u>2</u>, 1) <= ‘<u>h</u>’);

In the equivalent SemWebGoat lesson as shown in Figure 5.10, the users
are provided with two input fields. The first input field allows a user to
check valid and invalid account numbers and a user can only view the credit
card information when the correct pin value will be entered in the second
input field. In Table VIIb, the FILTER clauses in the malicious SPARQL
strings are using the regex operand that allows the comparison of two text
strings. The provided SPARQL query compares the value of “?name” with
the letter “h”. The caret sign has been used to indicate that the string for
“?name” must start with “h”, not just have it somewhere within the string.
The “i” as the third parameter for the regex operand means that the regular
expression is case insentive but in case the user, want it to be case sensitive
then only the first two parameters would be required. By using the first
malicious SPARQL string the user can find the first letter of name and then

CHAPTER 5. IMPLEMENTATION 29

to determine the second letter he/she can use different combinations with
“J” as shown in the second malicious SPARQL string. User can follow a
similar procedure to determine the rest of the letters of the name and then
he/she can type the name in the second input field to clear the lesson.

Figure 5.10: Blind String SPARQL Injection Lesson Interface

DoS Attack with SPARQL Injection

In WebGoat no such attack has been demonstrated that could cause a De-
nial of Service (DoS) with SQL Injection. The purpose of DoS attack is to
deprive a user or organization from the services of a resource they normally
expect to have. For implementing the DoS attack with SPARQL injection,
SemWebGoat dataset was not large enough so we have used Barton Libraries
Dataset [38] that is publicly available. The motivation behind using a large
dataset is to inject a SPARQL string through the input field that could cause
a database server to perform a time-consuming action. To demonstrate the
DoS attack in SemWebGoat we have only used one million triples at the
back-end though in actual datasets contain millions or billions of triples and
such string injections can be a serious threat to database-driven applica-
tions. According to the scenario as shown in Figure 5.11, the URI of specific
publisher is displayed when the user enters the publisher name in the input

CHAPTER 5. IMPLEMENTATION 30

Table VIIb: Blind String SPARQL Injection

Pre -formed SPARQL query: "ASK

WHERE {?uri pins:ac_number ‘"+ accountNo +"’.

}

Valid input: 101

Malicious SPARQL string: 101’.

?s pins:cc_number ‘4321432143214321 ’ .

?s pins:name ?name.

Filter regex (?name , ‘^h’,‘i’)

}#

Malicious SPARQL string: 101’.

?s pins:cc_number ‘4321432143214321 ’ .

?s pins:name ?name.

Filter regex (?name , ‘^Jh’, ‘i’)

}#

field. In case when the malicious SPARQL statement that is provided in
Table VIII will be passed through the input field, it will make the server
busy for at least 10 minutes. In the provided malicious SPARQL string “?s”
will return all the subjects, “?p” will return all the predicates and “?o” will
return all the object values stored in the RDF dataset. The user can use
any random variables in the string instead of “s”,“p” and “o” such as “?x ?y
?z” or “?aa ?ab ?ac” will give the same results as “?s ?p ?o”. Such strings
are generally used to fetch all the data stored in the back-end RDF dataset
and when the dataset contain millions of triples then such strings can lead
to DoS attack. These query strings illustrates how easy it is for an attacker
to fetch all the data as these strings does not require any prior knowledge
regarding the back-end dataset.

Table VIII: DoS Attack with SPARQL Injection

Pre -formed SPARQL Query:SELECT *

WHERE { ?uri mods:value ‘"+ publisherName +"’.

}

Valid input: Oxford University Press

Malicious SPARQL string: Oxford University Press ’ .

?s ?p ?o .

} #

CHAPTER 5. IMPLEMENTATION 31

Figure 5.11: DoS Attack with SPARQL Injection Lesson Interface

XML Injection

Typically web applications especially Ajax based use XML to store data or
to exchange messages. XML documents are usually treated as databases
that include sensitive information. In web services XML messages are used
to send sensitive information. These XML messages and documents can be
captured and altered by an attacker if the attacker has the ability to write the
raw XML. The Semantic Web applications also use RDF/XML (one of the
most popular RDF formats on the web) to write graph data. The purpose of
implementing this lesson in SemWebGoat is to demonstrate that Semantic
Web applications are also vulnerable to XML Injections as they also use XML
to transmit sensitive information. This SemWebGoat lesson uses the same
scenario that has been used by “XML Injection” of WebGoat. According
to the scenario as shown in Figure 5.12, the user gets the list of rewards
when the user enters the account id. The goal is to try to add more rewards
to allowed list of rewards by using XML injection. To add more rewards
the user would need WebScarab to intercept and modify HTTP response as
illustrated in Table IXb.

5.2 Implementation of ModSecurity Rule

A WAF works as a filter that applies a set of rules to an HTTP conversation.
Number of attacks can be identified and blocked by customizing the rules
according to the applications . We have implemented ModSecurity rules to
provide application level protection to Semantic Web applications against

CHAPTER 5. IMPLEMENTATION 32

Figure 5.12: XML Injection Lesson Interface

Table IXa: XML Injection in WebGoat

Actual HTTP Response: <root >

<reward >WebGoat t-shirt 20 Pts </reward >

<reward >WebGoat Secure Kettle 50 Pts </reward >

<reward >WebGoat Mug 30 Pts </reward >

</root >

Modified HTTP Response with XML Injection:<root >

<reward >WebGoat t-shirt 20 Pts </reward >

<reward >WebGoat Secure Kettle 50 Pts </reward >

<reward >WebGoat Mug 30 Pts </reward >

<reward >WebGoat Core Duo Laptop 2000 Pts </reward >

<reward >WebGoat Hawaii Cruise 3000 Pts </reward >

</root >

SPARQL/SPARUL injection attacks. We have configured ModSecurity-2.7
on Apache- 2.4 server and added our rules in modsecurity.conf file. The
general rule syntax for ModSecurity has been described as “SecRule VARI-

CHAPTER 5. IMPLEMENTATION 33

Table IXb: XML Injection in SemWebGoat

Actual HTTP Response: <binding name=" rewards">

<literal >WebGoat t-shirt 20 Pts ,

WebGoat Secure Kettle 50 Pts ,

WebGoat Mug 30 Pts </literal >

</binding >

Modified HTTP Response with XML Injection:

<binding name=" rewards">

<literal >WebGoat t-shirt 20 Pts ,

WebGoat Secure Kettle 50 Pts ,

WebGoat Mug 30 Pts ,

WebGoat Core Duo Laptop 2000 Pts ,

WebGoat Hawaii Cruise 3000 Pts </literal >

</binding >

ABLES OPERATOR ACTIONS”. VARIABLES, OPERATOR and AC-
TIONS are three basic parts of any ModSecurity rule. Where the VARI-
ABLES part specifies where to look, OPERATOR part specifies how to look
and the ACTIONS part specifies what to do if any match occurs.

For writing the ModSecurity rules, all the SPARQL/SPARUL injection
attack strings that have been used to exploit the vulnerabilities demonstrated
in SemWebGoat have been analyzed. All the attacking strings are using
single quote (’) to concatenate the malicious query with the input and are
ending with closing curly bracket (}) and hash symbol (#) so we implemented
ModSecurity rules that could block all the input strings that contain these
regular patterns in specific order. The ModSecurity rules mentioned in Table
X are using “chain” action to combine the two rules into a single logical rule
that is known as rule chain. The first rule will match “’” in the input string
and the second rule will match whether the input string is ending with “}#”
or not. In second rule “\s*” is used to match the whitespace zero or more
times and “$” sign is used to match the end of the string. The chained rules
are considered similar to AND conditional statements. The actions that are
specified in chained rule are only triggered if all the variable checks return
true. If any of the variable checks return false then the entire rule chain
returns false. After configuring this rule chain if any SPARQL/SPARUL
injection attack string will be entered in the input field of SemWebGoat, the
ModSecurity will intercept the transaction and in result a HTML error page
as shown in Figure 5.13 will appear on the screen.

The description of the ModSecurity chain rule is as follows:

CHAPTER 5. IMPLEMENTATION 34

Table X: ModSecurity Rule for Blocking SPARQL/SPARUL Injection At-
tacks

SecRule "REQUEST_BODY" "@rx ’" "phase:2,t:urlDecode ,

log ,auditlog ,

redirect:http :// localhost :8080/ errorpage.html ,chain"

SecRule "REQUEST_BODY" "@rx (}\s*#)$" "t:urlDecode"

Figure 5.13: HTML Error Page

• SecRule: It is used for creating a rule.

• REQUEST BODY: For optimization ModSecurity rules are defined
in terms of phases to detect the attacks. ModSecurity can check in the
following five phases: Request headers (phase 1), Request body (phase
2), Response headers (phase3), Response body (phase 4) and Logging
(phase 5). All the user inputs forms in SemWebGoat are using POST
method to retrieve data that is why “REQUEST BODY” variable has
been used in the provided ModSecurity rule. The “REQUEST BODY”
variable is specifying ModSecurity to look at the request message body
to match the regular expression.

• @rx: Number of operators can be used in rules such as @pm, @rm,
@beginsWith, @endsWith, @contains, @within and @streq. Operator
starts with @ symbol followed by the operator name. In the given
ModSecurity rule @rx is specifying ModSecurity to match the regular
pattern that is placed next to it.

• phase:2: It is specifying the processing phase action.

• t:urlDecode: This transformation function is used for decoding the

CHAPTER 5. IMPLEMENTATION 35

URL-Encoded input strings.

• log: It is used to log error message on successful rule match.

• auditlog: It is used to log in-progress transactions to the auditlog.

• redirect: It is used for intercepting the malicious transaction and will
redirect it to the specific link.

• chain: It is used to chain the rule with the rule that immediately
follows it.

This ModSecurity rule has been thoroughly tested against all the valid
and malicious user inputs of SemWebGoat based on the MIT Barton dataset
and the WebGoat default dataset in the backend and we did not receive any
false positives or false negatives. The possibility of false positives occurring
is very minor especially for the datasets consisting of words from the English
language. Lets assume, case of a login web page that takes user name and
password values such as Oxford’s}# or ‘abc’def}# but these are rare cases.
To completely remove the possibility of false positives these check should be
applied at the input validation level where the context is well-known. Other
than this, the provided ModSecurity chain rule is a appropriate safeguard
measure for protecting Semantic Web applications against number of injec-
tion attacks.

Chapter 6

Evaluation

The chapter presents the three evaluation methods that have been used for
the testing and evaluation of our work.

For the evaluation of our work we conducted a user study to determine
the comprehensiveness and difficulty level of training as well as performed
a empirical comparison study against existing penetration testing tools to
figure out the overlap in the support for a SPARQL vulnerability analysis.
Finally we did performance testing of the web application under realistic
traffic workloads and both normal and malicious traffic. Since SemWebGoat
is designed to be an e-commerce application deployed in a setting where
multiple users would invoke its various functions our goal was to stress test
it with and without the ModSecurity controls. For each evaluation method
we have used Intel (R) Core(TM) i3 machine with 2.10 GHz CPU, 8GB RAM
and Microsoft Windows 7, Service Pack 1 with 64-bit operating system.

6.1 User Study

SemWebGoat was provided to some programmers and post-graduate stu-
dents and after completing the lessons, users were asked to answer some
survey questions. Our survey results show although users were aware of Se-
mantic Web concepts but they were poorly familiar with the vulnerabilities
demonstrated in SemWebGoat and the lessons improved their security con-
cepts of Semantic Web applications. Results also show that it is important
for the Semantic Web developers to know about such vulnerabilities so that
Semantic Web applications can be protected against attacks. Table 6.1 shows
a summary of the demographics and Table 6.2 presents the summarized sur-
vey results.

36

CHAPTER 6. EVALUATION 37

Table 6.1: Summary of Demographics

Total Users
Total: 6
Post-graduate Students: 3 (50%)
Programmers: 3 (50%)

Age 23-30 years

Working Experience 6 months-4 years

Current General Computer Use 6-10 hours a day

Awareness of Semantic Web and Web Security Tools
Yes: 50%
Some Extent: 50%

Work Experience in Domain of Semantic Web
Yes: 50%
No: 50%

Table 6.2: Summary of Survey Questions and Results

Survey Questions Results

The lessons improve my concepts of vulnerabilities in Semantic Web applications.
Yes: 100%
Some extent: 0%
No: 0%

Each lesson has a well-designed scenario to teach each injection technique.
Yes: 66.7%
Some extent: 33.3%
No: 0%

Each lesson provides sufficient material, such as hints, java code, solutions for exploiting the vulnerability.
Yes: 100%
Some extent: 0%
No: 0%

The lesson covers the injection techniques that I would like to know about.
Yes: 100%
Some extent: 0%
No: 0%

The lessons stimulate my further interest in learning other security technology/concepts.
Yes: 50%
Some extent: 50%
No: 0%

Were you already aware of the vulnerabilities demonstrated in SemWebGoat.
Yes: 0%
Some extent: 50%
No: 50%

Application is user-friendly.
Yes: 100%
Some extent: 0%
No: 0%

Each lesson was related to security of Semantic Web applications.
Yes: 100%
Some extent: 0%
No: 0%

These lessons provide better understanding of security concepts than the verbal lessons.
Yes: 100%
Some extent: 0%
No: 0%

Semantic Web Developers should be aware of such vulnerabilities.
Yes: 100%
Some extent: 0%
No: 0%

The estimated time you spent to complete all lessons. 2 hours

In your view which lesson is most difficult.
Blind Numeric SPARQL Injection
Blind String SPARQL Injection

In your view which lesson is the easiest one. XML Injection

CHAPTER 6. EVALUATION 38

6.2 Experimental Evaluation

In experimental evaluation we have used some of the well-known web appli-
cation scanners and penetration testing tools to find the vulnerabilities in
SemWebGoat. The detail of the scanners and tools is listed in Table 6.3 and
the summary of the vulnerabilities detected is presented in Table 6.4. The
scanners already had built in support for detecting conventional web attacks
such as Cross-Site Scripting (XXS), Cross-Site Request Forgery (CSRF),
SQL Injections (SQLI), ClickJacking, Session Hijacking, HTTP Banner Dis-
closure, Information Disclosure. Even database vulnerabilities such as SQLI
were probed. None of the scanners had support for SPARQLI/SPARULI vul-
nerability. Probing due to its completely different syntax and database struc-
ture as compared to SQL. The results of the scanners assured that SPAR-
QL/SPARUL syntax is different from the SQL syntax that is why none of the
scanner/tool was able to identify SQLI attacks. The results of the scanners
verified that like other web applications, Semantic Web applications are also
vulnerable to attacks such as XXS, CSRF and Information Disclosure while
on the other hand the evaluation results also addressed the need of a scanner
that could automatically detect the possibility of SPARQL/SPARUL injec-
tion attacks. Manual Request Editing is available where Editors can be used
to supply specific SPARQL values in each HTTP request but it is a time
consuming process so we conducted research how to extend scanner to sup-
port SPARQLI/SPARULI vulnerability probing. We find a “Fuzzer Tool”
in WebScarab and Zed Attack Proxy (ZAP) that is used to find vulnerabili-
ties such as SQLI and XXS in any web application by performing automatic
substitution of parameter values in the HTTP request that is forwarded to
the server. This tool allows a user to load a new “.txt” file that can con-
tain user-specified parameter values (attack strings) which are automatically
substituted and tested against the selected HTTP request. We extended the
WebScarab and ZAP using its Fuzzer Tool for detecting SPARQLI/SPARULI
vulnerabilities as a consequence of which detection was made possible (see
Table 6.4).

6.3 Performance Testing

Performance testing is an important part of any distributed or Web appli-
cation testing plan. Early identification of software load limitations helps to
configure the system appropriately to avoid unexpected crashes.

CHAPTER 6. EVALUATION 39

Table 6.3: Characteristics of Scanners and Penetration Testing Tools

Name Version Type Scanning Profiles Used

Acuneitx WVS 8.0 Free Edition Standalone XXS only

Netsparker 2.4.5 Community Edition Standalone Default

Websecurify 0.8 Standalone Default

WebScarab N/A Proxy Fuzzer and Manual

Zed Attack Proxy 1.4.1 Proxy Active Scan, Fuzzer and Manual

Table 6.4: Vulnerabilities Detected

Name XXS CSRF SQLI ClickJacking Session Hijacking HTTP Banner Disclosure Info Disclosure SPARQLI/SPARULI

Acunetix WVS 8 8 8 8 8 8 8 8

Netsparker 8 8 8 8 4 4 4 8

Websecurify 8 8 8 8 8 4 4 8

WebScarab 4 4 8 4 4 4 4 Q

Zed Attack Proxy 4 4 8 4 4 4 4 Q

6.3.1 Evaluation Criteria

A tool named JMeter[39] by Apache is a stress testing tool that can be used to
measure the performance of an application under different load type. JMeter
can be used to make a graphical analysis of performance or to test a network,
server or object under heavy concurrent load. We have used five different
test scenarios to evaluate the performance of SemWebGoat and WebGoat
under different load environments. For varying the load we have increased
the number of threads/users. In each scenario there were six requests per user
and all the users were started concurrently. In each test scenario, number of
users varied from 1000 to 5000 and the total number of samples/requests that
were processed varied from 6000 to 30000. Five different testing scenarios
that have been used are:

• SemWebGoat performance with all valid requests.

• WebGoat performance with all valid requests.

• SemWebGoat performance with 50% malicious requests.

• WebGoat performance with 50% malicious requests.

• SemWebGoat performance with 50% malicious requests and with Mod-
Security.

For measuring the performance of an application we recorded the follow-
ing parameters:

CHAPTER 6. EVALUATION 40

• Throughput: Total number of requests/sec that the server handled
successfully during the test.

• Error Rate (%): The percentage of requests that were lost or delayed
during the transmission.

• Response Time (ms): Time (in milliseconds) taken by the server
to process all the requests representing how efficiently the server is
handling the load.

6.3.2 Results

Figure 6.1 shows the throughput achieved by the proposed system against
number of users. The graph clearly shows that in all test scenarios initially
when the number of users were less, the system gave the highest throughput.
As the number of users increases, throughput decreases.

30

40

50

60

70

80

T
h

ro
u

g
h

p
u

t
(r

e
q

u
e
st

s/
se

c
)

0

10

20

30

1000 2000 3000 4000 5000

T
h

ro
u

g
h

p
u

t

Number of Users

SemWebGoat WebGoat

SemWebGoat (50% malicious requests) WebGoat (50% malicious requests)

SemWebGoat (50% malicious requests and with ModSecurity)

Figure 6.1: Throughput (requests/sec) VS Number of Users

Figure 6.2 shows the error rate against number of users. The graph
illustrates that the error rate was low when the users were less but as the
number of users increased, the error rate also increased.

Figure 6.3 shows the average response time against the number of users.
The graph clearly shows that as the number of users increases, the number of

CHAPTER 6. EVALUATION 41

60

70

80

90

100

E
rr

o
r

R
a
te

 (
%

)

30

40

50

1000 2000 3000 4000 5000

E
rr

o
r

R
a
te

 (
%

)

Number of Users

SemWebGoat WebGoat

SemWebGoat (50% malicious requests) WebGoat (50% malicious requests)

SemWebGoat (50% malicious requests and with ModSecurity)

Figure 6.2: Error Rate (%) VS Number of Users

requests increases and therefore the response time for processing all requests
increases.

15000

20000

25000

30000

35000

40000

A
v
e
ra

g
e
 R

e
sp

o
n

se
 T

im
e

(m

s)

0

5000

10000

15000

1000 2000 3000 4000 5000

A
v
e
ra

g
e
 R

e
sp

o
n

se
 T

im
e

(m

s)

Number of Users

SemWebGoat WebGoat

SemWebGoat (50% malicious requests) WebGoat (50% malicious requests)

SemWebGoat (50% malicious requests and with ModSecurity)

Figure 6.3: Average Response Time (ms) VS Number of Users

CHAPTER 6. EVALUATION 42

While evaluating the performance of application, the stress testing can be
stopped when for a measured throughput the measured response time gets
too high or when the throughput decreases to 0 requests/sec or when the error
rate increases to 100%. The results show that in case of both test scenarios
(with 50% malicious requests) the throughput is less whereas the error rate
and average response time is greater as compared to other test scenarios
because in case of malicious requests server needs to fetch more data for the
response. The graphs also show that in case of SemWebGoat (with 50%
malicious requests) when the users are increased to 5000, throughput almost
decreased to 0% and error rate increased to 100%. In case of the other
remaining test scenarios error rate is also near to 100% and throughput
is near to 10% when number of users are increased to 5000. The results
of SemWebGoat under ModSecurity validates that ModSecurity negligibly
affects the performance of an application and in fact improves the error rate
and response time in case of 50% malicious traffic so ModSecurity is a suitable
solution for protecting applications.

Chapter 7

Conclusion and Future Work

The chapter summarizes overall work done. It also discusses the
dimensions in which this work could be further expanded.

7.1 Conclusion

Semantic Web applications are prone to injection attacks that can allow an
attacker to access or modify the unauthorized data. It is important for the
developers to know how a secure Semantic Web application can be developed,
that can assure the integrity, confidentiality and availability of the web ap-
plication. We presented the basic injection attacks for Semantic Web and
explained the implementation of a insecure J2EE Semantic Web application
that can be used by developers/penetration testers/students to learn and
practice Semantic Web application vulnerabilities in a safe and legal envi-
ronment. We also provided ModSecurity rules that can be used to detect
the SPARQL/SPARUL injection attacks in Semantic Web applications. For
the evaluation of our work we conducted a user study as well as carried out
experimental evaluation and performance testing. The results of user study
concluded that developers should be aware of Semantic Web application vul-
nerabilities and the SemWebGoat lessons helped the users to understand the
Semantic Web application security concepts in a user-friendly environment.
The results of experimental evaluation addressed the need of up-gradation
in web application scanners so that the SPARQL/SPARUL injections can
be detected automatically. The results of performance testing illustrated
that SemWebGoat and WebGoat had similar performance under various test
scenarios and load types and that the use of ModSecurity firewall improved
performance in case of attacks and did not affect the performance of SemWe-
bGoat in a considerable manner overall.

43

CHAPTER 7. CONCLUSION AND FUTURE WORK 44

7.2 FutureWork

We are planning to distribute SemWebGoat as an open source software so
that every user could make use of it. Moreover in future the second class
of vulnerabilities will be identified; for example Stored SPARQL injection
attacks and libraries that provide SQL/SPARQL interoperability will be an-
alyzed in Semantic Web applications.

Bibliography

[1] F. Manola, E. Miller, and B. McBride. RDF Primer. W3c recommen-
dation, World Wide Web Consortium, February 2004. http://www.w3.
org/TR/rdf-primer/

[2] B. McBride. Jena: A Semantic Web Toolkit. IEEE Internet Computing,
vol. 6, no. 6, pp. 55-59, December 2002.

[3] J. Broekstra, A. Kampman, and F. Van Harmelen. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema.The Se-
mantic Web, Sardinia, pp. 54-68, Springer, June 2002.

[4] O. Erling. Implementing a SPARQL Compliant RDF Triple Store using
a SQL-ORDBMS. Technical Report, OpenLink Software Virtuoso, 2001

[5] N. Harris. 3store: Efficient Bulk RDF Storage. 1st International Work-
shop on Practical and Scalable Semantic Systems, Sanibel Island,
Florida, pp. 1-15, 2003.

[6] E. P. Hommeaux and A. Seaborne. SPARQLl Query Language for RDF.
W3c recommendation, World Wide Web Consortium, January 2008.
http://www.w3.org/TR/rdf-sparql-query/

[7] A.Seaborne, G. Manjunath, C. Bizer, J. Breslin, S. Das, I. Davis, S.
Harris, K. Idehen, O. Corby, K. Kjernsmo and B. Nowack. SPAR-
QL/Update: A Language for Updating RDF Graphs. W3c recommen-
dation, World Wide Web Consortium, July 2008. http://www.w3.org/
Submission/SPARQL-Update/

[8] Database language SQL, Part 2: Foundation (SQL/Foundation). AN-
SI/ISO/IEC International Standard (IS), September 1999.

[9] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J.
Robie and J. Simeon. XML Path Language (XPath) 2.0. W3c rec-
ommendation, World Wide Web Consortium, December 2010. http:

//www.w3.org/TR/xpath20/

45

BIBLIOGRAPHY 46

[10] J. Sermersheim. Lightweight Directory Access Protocol (LDAP):
The Protocol. RFC 4511, June 2006. http://tools.ietf.org/html/
rfc4511

[11] OWASP HacmeBank. https://www.owasp.org/index.php/

HacmeBank (Last accessed: December 2012).

[12] Category:OWASP WebGoat Project. https://www.owasp.org/index.
php/Category:OWASP_WebGoat_Project (Last accessed: December
2012).

[13] OWASP Web Application Firewall.https://www.owasp.org/index.
php/Web_Application_Firewall (Last accessed: December 2012).

[14] Using Prepared Statement. http://docs.oracle.com/javase/

tutorial/jdbc/basics/prepared.html (Last accessed: December
2012).

[15] Input Validation Cheat Sheet. https://www.owasp.org/index.php/

Input_Validation_Cheat_Sheet (Last accessed: December 2012).

[16] B. Thuraisingham. Security Standards for the Semantic Web. J. Com-
put. Stand. Interfaces, vol. 27, no. 3, pp.257-268, 2005.

[17] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A
SPARQL Performance Benchmark. In ICDE, pp. 222-233, 2009.

[18] P. Orduna, A. Almeida, U. Aguilera, X. Laiseca, D. Lopez-de-Ipina, and
A. G. Goiri. Identifying Security Issues in the Semantic Web: Injection
Attacks in the Semantic Query Languages. JSWEB, pp. 4350, Valencia,
Spain, September2010.

[19] X. Yang, Y. Chen,W. Zhang and S. Zhang. Exploring Injection Preven-
tion Technologies for Security-aware Distributed Collaborative Manu-
facturing on the Semantic Web. The International Journal of Advanced
Manufacturing Technology, vol.54, pp. 1167-1177, June 2011.

[20] Injection Attacks. http://www.morelab.deusto.es/code_injection/
(Last accessed: December 2012).

[21] WebScarab Getting Started. https://www.owasp.org/index.php/

WebScarab_Getting_Started (Last accessed: December 2012).

[22] Firebug Web Development Evolved. http://getfirebug.com/ (Last
accessed: December 2012).

BIBLIOGRAPHY 47

[23] IEWatch. http://www.iewatch.com/ (Last accessed: December 2012).

[24] Wireshark. http://www.wireshark.org/ (Last accessed: December
2012).

[25] R. Barnett. WAF Virtual Patching Challenge: Securing WebGoat with
ModSecurity. Technical Report, Breach Security, January 2009.

[26] S. C. Evans (Project Leader), Securing WebGoat Using ModSecurity,
Summer of Code 2008. OWASP Beta Level, Version 1.0, Published by
OWASP Foundation, November 2008.

[27] WackoPicko. https://github.com/adamdoupe/WackoPicko(Last ac-
cessed: December 2012).

[28] A. Doupe, M. Cova and G. Vigna. Why Johnny Can’t Pentest: An Anal-
ysis of Black-box Web Vulnerability Scanners. In Proceedings of Detec-
tion of Intrusions and Malware and Vulnerability Assessment (DIMVA),
pp. 111-131, 2010.

[29] L. Suto. Analyzing the Effectiveness and Coverage of Web Application
Security Scanners. Case Study, October 2007.

[30] L. Suto. Analyzing the Accuracy and Time Costs of Web Application
Security Scanners. San Francisco, February 2010.

[31] H. Peine. Security Test Tools for Web Applications. IESE Report-Nr 48,
2006.

[32] ARC. http://www.w3.org/2001/sw/wiki/ARC (Last accessed: Decem-
ber 2012).

[33] RDFLib. http://www.w3.org/2001/sw/wiki/RDFLib (Last accessed:
December 2012).

[34] Protege. http://protege.stanford.edu/ (Last accessed: December
2012).

[35] SQL Injection Prevention Cheat sheet. https://www.owasp.org/

index.php/SQL_Injection_Prevention_Cheat_Sheet (Last accessed:
December 2012).

[36] SPARQL Injection-Attacking the Triple Store. https://www.owasp.

org/images/0/0f/Onofri-NapolitanoOWASPDayItaly2012.pdf (Last
accessed: December 2012).

BIBLIOGRAPHY 48

[37] ARC. http://www.w3.org/2001/sw/wiki/ARC (Last accessed: Decem-
ber 2012).

[38] MIT Barton Catalog MODS. http://archive.org/details/barton_
catalog_mods (Last accessed: December 2012).

[39] Apache JMeter. http://jmeter.apache.org/ (Last accessed: Decem-
ber 2012).

