
Integration of ASM with Event-B
RODIN

By
Innayat Ullah

2011-NUST-MS-CCS 02

Supervisor
Dr. Osman Hasan

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters in Computer and Communication Security (MS CCS)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(July 2015)

Approval

It is certified that the contents and form of the thesis entitled “Integration
of ASM with Event-B RODIN” submitted by Innayat Ullah have been
found satisfactory for the requirement of the degree.

Advisor: Dr. Osman Hasan
Signature:

Date:

Committee Member 1: Dr. Abdul Ghafoor Abbassi

Signature:
Date:

Committee Member 2: Dr. Atif Mashkoor

Signature:
Date:

Committee Member 3: Dr. Sohail Iqbal

Signature:
Date:

i

Abstract

This thesis is related to the integration of diverse formal verification tools
to harness their capabilities for better modeling and verification of complex
systems. In this effort we worked on integrating Abstract State Machines
(ASMs) with Event-B using the RODIN platform.

Event-B is a formal verification tool that is used for real-time system-level
modeling and analysis. Event-B is primarily based on the B Method, which is
a formal method for the development of program code from a specification in
the Abstract Machine Notation. Event-B uses sets and first-order predicate
logic as its foundations. It allows different abstraction levels to be shown
using refinements. Event-B is supported by the RODIN platform that uses
the Eclipse IDE. ASMs are very easy to develop and manipulate but their
verification is an issue. The tool set is not that rich in verification. Whereas
RODIN toolset is very rich in Verification and Validation of the requirements.

In particular, in the thesis, we define Event-B and ASMs and the tech-
nique we devised to perform their translation (ASM to Event-B). Moreover
there is an architectural and visual design of the tool-set that we propose to
develop for this translation.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Innayat Ullah
Signature:

iii

Acknowledgment

I’m very thankful to Almighty Allah for giving me the strength and intellect
to complete this thesis. I would like to say special thanks to my supervisor
Dr. Osman Hasan for his utmost support and help to carry out the tasks.
Without his help I wouldn’t have been able to complete it. I’m also very
thankful to the committee members for bearing with me in this research.
Their help, guidance and support was a light in the dark for me. Specially
Dr. Atif Mashkoor who was the main driving force behind this research.
Thank you sir. Thanks to my family my wife and friends for their support,
it was really encouraging for me in the course of my research. Thank you all.

iv

DEDICATED
TO

MY LOVING PARENTS
MY WIFE

&
MY SUPERVISOR

v

Table of Contents

1 Introduction and Motivation 1
1.1 Problem Statement . 3
1.2 Research Contribution . 3
1.3 Thesis Organization . 3

2 Literature Review 4
2.1 Getting to know Event-B . 5
2.2 Getting to know ASML . 7
2.3 Event-B and SPIN . 8

3 Research Methodology 10
3.1 What is Research? . 11
3.2 Difference between Research Method and Research Methodology 11
3.3 Types of Research Method . 11

3.3.1 Fundamental or Basic Research 11
3.3.2 Applied Research . 11
3.3.3 Normal Research . 12
3.3.4 Revolutionary Research 12
3.3.5 Quantitative Research 12
3.3.6 Qualitative Research 12

3.4 Thesis Research Approach . 12
3.4.1 Defining the Research Area 13
3.4.2 Literature Review . 14
3.4.3 Problem Statement . 14
3.4.4 Hypothesis . 14
3.4.5 Architecture Design . 14
3.4.6 Execution and Evaluation 15

4 System Design and Architecture 16
4.1 Plugin Development in Eclipse 17
4.2 Architecture of Plugin . 17

vi

TABLE OF CONTENTS vii

4.2.1 GUI . 18
4.2.2 ASM Validator . 18
4.2.3 AsmetaLc Invoker . 18
4.2.4 Transformer . 19
4.2.5 File Generator . 19

5 Implementation 20
5.1 Wizard Project in Eclipse . 21
5.2 Package Implementation Details 21

5.2.1 ASM Transformer . 21
5.2.2 ASM . 24
5.2.3 Event B . 26
5.2.4 Views . 31
5.2.5 Import Wizard . 31

5.3 Translation Rules Table . 31
5.4 Plug-in in action . 34

5.4.1 Open Import View . 34
5.4.2 Import ASM File . 34
5.4.3 Final Out Put . 40

6 Conclusion 41
6.1 Conclusion . 42
6.2 Future Direction . 42

A Java Source code 43
A.1 edu.seecs.nust.asmtransformer 43

A.1.1 Activator.java . 43
A.1.2 EventBFile.java . 45
A.1.3 Transformer.java . 45
A.1.4 Utilities.java . 47
A.1.5 XmlGenerator.java . 49

A.2 edu.seecs.nust.asmtransformer.views 50
A.2.1 ImportView.java . 50

A.3 edu.seecs.nust.asmtransformer.importWizards 51
A.3.1 ImportWizard.java . 51
A.3.2 ImportWizardPage.java 53
A.3.3 XmiEditorPage.java 58

A.4 edu.seecs.nust.asmtransformer.asm 59
A.4.1 Asm.java . 59

A.5 edu.seecs.nust.asmtransformer.eventb 61
A.5.1 contextFile.java . 61

TABLE OF CONTENTS viii

A.5.2 machineFile.java . 63

List of Figures

2.1 Event-B Machine Context relationship 5
2.2 Event-B Event . 6
2.3 Abstract State Machine Conditional State Transition Flow . . 7
2.4 Abstract State Machine Run 8

3.1 Research Methodology . 13

4.1 ASM to Event-B machine File generator module Architecture 17

5.1 Plugin type selection . 22
5.2 Custom wizard parts selection 23
5.3 Custom wizard parts selection 25
5.4 ASM Package Class Diagram 27
5.5 Event-B Package Class Diagram 28
5.6 Views Package Class Diagram 29
5.7 ImportWizard Package Class Diagram 30
5.8 Import View Selection Step 1 34
5.9 Import View Selection Step 2 35
5.10 Import Wizard Step 1 . 36
5.11 Import Wizard Step 2 . 37
5.12 Import Wizard Step 3 . 37
5.13 Import Wizard Step 4 . 38
5.14 Import Wizard Step 5 . 38
5.15 Import Wizard Step 6 . 39
5.16 Imported context file . 39
5.17 Imported machine file . 39
5.18 Event-B Entities created from ASM file 39

ix

List of Tables

5.1 Translation Table . 33

x

Chapter 1

Introduction and Motivation

“O Lord! Increase me in knowledge.”

Al-Quran (20:114)

This chapter presents introduction to the topic. The motivation behind
choosing this topic for research. A summary of the thesis will be presented

to give an abstract picture of the whole work. First we’ll describe the
problem statement for the research topic and our approach to address the

problem. Then we’ll let the readers know about the organization of the
thesis chapters and their content. We will also shed some light on the

research contribution attempted for a related field of this topic

1

CHAPTER 1. INTRODUCTION AND MOTIVATION 2

Software and hardware system designing and development is major sys-
tem development area these days. Computer systems are being used to design
safety critical systems. These safety critical system need to be fault-less for
them to be safe both financially and from life point of view. This brings
Forma Methods to the front for the engineers and the scientists. Formal
method is a fault avoidance and error detecting technique that uses mathe-
matical techniques and theoretical computer science fundamentals such as:

• Particular Calculi

• Formal Languages

• Automata Theory

• Program Semantics

• Type Systems

• Algebraic Data

Therefore, Formal method can become really complex for which easy-to-use
tools are needed. A relatively new tool for formal method is Event-B which
is used for system-level modeling and analysis. Event-B is a simplified and
extended version of the B Method. B is a formal method for the development
of program code from a specification in the Abstract Machine Notation. (for,
). Event-B uses sets and first-order predicate logic. It allows different ab-
straction levels to be shown using refinements. Event-B is provided support
from the platform Rodin that uses the Eclipse IDE. This thesis is related
to integration of diverse formal verification tools to harness their capabili-
ties for better modeling and verification of complex systems. In this effort
we worked on integrating Abstract State Machines (ASMs) with Event-B in
RODIN platform. In the document we will define Event-B and ASMs and
the technique we devised to perform their translation (ASM to Event-B).
Moreover there will be an architectural and visual design of the toolset that
we propose to develop for this translation.
Dr. Atif Mashkoor is Scientific Head Rigorous Methods in Software Engi-
neering at Software Competence Center Hagenberg, Austria. He’s been an
active researcher in the field of formal verification. During their applied re-
search at the Center they felt the need of a tool that can integrate ASM with
Event-B. ASMs are very easy to develop and manipulate but their verifica-
tion is an issue. The tool set is not that rich in verification. Whereas RODIN
toolset is very rich in Verification and Validation of the requirements. There
was a presentation given by Egon Börger and Laurent Voisin that described

CHAPTER 1. INTRODUCTION AND MOTIVATION 3

Defining ASMs as Event-B Machines and Vice Versa. That was the main
motivation behind this thesis work.

1.1 Problem Statement

There are various powerful techniques and tools, such as simulators, model
checkers and theorem provers that have been developed for the individual
state-based formal methods, such as Event-B and ASM. It would be very
interested and beneficial for industry if we can use the simplicity and ease of
ASM combined with the strength and power of tool-set of RODIN (Event-B)

1.2 Research Contribution

Model creation using Event-B was practiced fo a Model of Airplane’s Landing
Gear System(Boniol and Wiels,). With this model we participated in ABZ
conference 2014 call for papers case study track, unfortunately our solution
was rejected.

1.3 Thesis Organization

This thesis is organized in a systematic way so that the reader can get a grasp
of the idea and the implementation. First of all we will present literature
review in Chapter 2. Then we will have a look at the research methodology
followed to carry out the research in Chapter 3. In Chapter 4 we will discuss
the design and architecture for the proposed plug-in. Chapter 5 discusses
the implementation details of the plug-in. Chapter 6 is the conclusion. Then
we have an appendix at the end, it contains the code of main classes of the
plug-in.

Chapter 2

Literature Review

This chapter presents the work that is already done in this field. A look at
similar researches done in the field of integrating different tools. We will
look at the documentation and resources that we consulted in order to get

hold of Event-B and ASM machine development.

4

CHAPTER 2. LITERATURE REVIEW 5

Figure 2.1: Event-B Machine Context relationship

2.1 Getting to know Event-B

Event-B is a simplified version of B Method for formal verification. B Method
is aimed at Software Development whereas Event-B is aimed at System de-
sign(Jean-Raymond Abrial,). RODIN is the integrated environment that
is mainly used with Event-B construct definition and verification. Event-
B consists of two types of constructs Machine and Context. Machines and
Contexts are refined in the process of generating a concrete machine from an
abstract machine. A machine M* is a refinement of machine M and practi-
cally M* M in semantic and working. A machine M* refines M and can see
multiple contexts Ci, C*i, . , Ck. As machines are refined from their abstract
to concrete machines similarly Contexts are also refined from their abstract
representation C to their more concrete representation C*. As shown in the
figure 2.1 An Event-B machines consists of Variables (v) Invariants (Inv)
Events (eve) and Theorems(C. Mtayer J.-R. Abrial,). While refining the
machines (also called models) all the invariants, theorems and axioms must
hold valid in the refined machine. An event in a machine basically introduces
a change in the state of the machine. In order to introduce a change in the

CHAPTER 2. LITERATURE REVIEW 6

Event.jpg

Figure 2.2: Event-B Event

state of the machine there are different guards that can be applied to ensure
the validity of the post conditions for the event to occur. There are two
ways to add guards in an event. a) Any Where b) Where, in Any Where
method a guard G is validated for any local variable x,y Whereas in Where
type of guard a guard G is validated for global constants and/or variables.
An example of an Event-B event is shown in figure 2.2

Once the machine is defined the verification of machines correctness is
done through Proof Obligations (POs). In RODIN environment there are
different POs automatically generated for the defined machine. Some of the
proof obligations are automatically discharged others need manual discharg-
ing. Manual discharging includes but not limited to theorems and guard
strengthening. For a machine to discharge all the POs it should display
following properties(C. Mtayer J.-R. Abrial,):

1. All the theorems should be preserved

2. All the invariants should be preserved

3. Variables should be initialized in the initialization step

4. There is no deadlock at any point of time in machines execution

CHAPTER 2. LITERATURE REVIEW 7

conditional flow.jpg

Figure 2.3: Abstract State Machine Conditional State Transition Flow

2.2 Getting to know ASML

Abstract state machines are mathematical models of real life systems. There
are different states of the systems and a state transition steps takes the ma-
chine from one system state to another. These state transitions are governed
by rules and constraints. Depending upon the rules a transition can take
place or the other. Figure 2.3 shows a conditional state transition flow for a
typical state machine.

A common language to define abstract state machines is Abstract State
Machine Language (AsmL). It is .net based tool to define and refine ASMs.
AsmL has its own fixed vocabulary defined for state machine definition. This
vocabulary can be used to define ASMs. There are mainly two parts of an
ASM a) State Operations b) State Variables. Operations are the control logic
that is applied to the input state to produce a valid output state. Whereas
state variables are the containers to store different values that create a state.
These values can be number or strings. Each machine has a run that is the
sequence of the states that are interlinked to completely depict the machine
behavior. A machine consists of different statements such as conditions and
assignments. A typical conditional statement is like if cond1 then update
and the updates are the assignments of new state values to state variables
and syntactically are represented as a := b. A typical run of a machine is
graphically represented in the figure 2.4.

An abstract state machine in AsmL consists of following components

1. Import

CHAPTER 2. LITERATURE REVIEW 8

run.jpg

Figure 2.4: Abstract State Machine Run

2. Signature

3. Definition

4. Default initialization state

In AsmL the name of the asm should be same as the name of the asm
file(Microsoft-Research,). There are standard libraries already developed
for AsmL that can be used by importing them to the asm file using import
keyword and path to standard library. Then there are signatures of different
state variables. Definitions contain different rules and functions for the state
transition of the machine. There should be atleast one main rule present in
the machine in order for it to be a valid ASM. In the end there should be a
default init state that should initialize variables with the initial values.

2.3 Event-B and SPIN

During my literature review I came across a very similar work. In this thesis
the author integrated Event-B and Promela Language by translating Event-
B models to Promela. (SPIN is a tool for promela language).

The author describes that he first converted Event-B entities into java

objects and then used those java objects to transform them into Promela
processes. There were some direct substitutions from Event-B to Promela
as both are asynchronous. The machines from Event-B are represented as
do loop in Promela. The author developed an architecture consisting of

CHAPTER 2. LITERATURE REVIEW 9

Properties selector, Promela File Generator, UI and Promela Representation
Manager. Using these components the author was able to successfully convert
Event-B entities to Promela Processes.
This thesis was a great help in realizing our idea of integrating ASM with
Event-B RODIN. Taking help from the thesis we were able to come up with
an architecture similar to the one presented in this thesis. But we used a
little different approach in intermediate objects. We used the XMI and XML
files of both Event-B and ASML to translate. Moreover we have designed
this plug-in as an Import wizard. As our aim is to import an ASM file from
the system to the Event-B project as an Event-B entity.

Chapter 3

Research Methodology

This chapter presents the research methodology that we used to conduct this
research. In this chapter we will also discuss other research methodologies

and why we chose our methodology over others. A lot of that depends upon
our research phases that lead us to our research approach. There were three
major phases in our research. First: Identify the possibility of integration of
ASM with Event-B, Second: Present an architecture for the transformation

of ASM files to Event-B entities, Third: Implement the proposed
architecture as a plug-in for RODIN platform

10

CHAPTER 3. RESEARCH METHODOLOGY 11

3.1 What is Research?

The word Research is composed of two syllables ”Re” & ”Search”. In simple
English ”Re” means again and again whereas ”Search” means finding or ex-
ploring something. Research is not only confined to science and technology
but it is an active part of growth of a society. There are six key parts of
research. First identify the issues, then do study on the identified issue to
form some hypothesis, then perform experimentation based on that hypoth-
esis, then observe the experimental results and analyze and compare them
with other hypothesis and results with logical reasoning(S. Rajasekar,).

3.2 Difference between Research Method and

Research Methodology

Research method and Research methodology are often mistaken to be the
same terms but they are not. Research method are the tools, different proce-
dures and algorithms, numerical and statistical analysis techniques whereas
Research methodology is a systematic way to approach the problem in order
to solve it(S. Rajasekar,).

3.3 Types of Research Method

As described in previous section there are different methods of performing
research. There are mainly two major methods of research and then there is
their sub division. Some research methods and their division is given below

3.3.1 Fundamental or Basic Research

Basic or fundamental research is also called ”theoretical research(S. Ra-
jasekar,). It is the study of natural phenomenon and may not lead to
immediate application in real life but it gives new properties of different
natural material or even discover new material. This is the basic scientific
research with hypothesis and theories.

3.3.2 Applied Research

Applied research is the type of research in which a researcher applies his/her
knowledge in a specific field(S. Rajasekar,). They tend to provide logical

CHAPTER 3. RESEARCH METHODOLOGY 12

reasoning and perform experiments in that particular field to analyze and
compare different results to prove a hypothesis.

3.3.3 Normal Research

Normal research is a sub-part of Basic Research. In a particular field normal
research is performed based upon the rules and procedures already defined by
the scientists in that field. These rules and procedures are called Paradigms.

3.3.4 Revolutionary Research

In the process of normal research when there is some anomaly or unexpected
results are realized. They open a new direction and make changes or create
new paradigms for that field of research. This is an evolutionary process and
the type of research is called Revolutionary Research.

3.3.5 Quantitative Research

A quantitative research is the research of quantity for a particular problem
or in a general field. The research is carried out and the results are measured
quantitatively (in numbers).

3.3.6 Qualitative Research

Unlike quantitative research qualitative research is concerned with the qual-
ity. It is non-numerical that is it doesn’t involve numbers. It is theoretical
and is expressed in words. It tries to answer why and what kind of questions.

3.4 Thesis Research Approach

In this thesis we divided our problem into three stages. First stage was
to get to know the languages and their helping tools. In order to get to
know Event-B I was involved in a research paper based on a case study,
as a partner with two undergraduate students of SEECS. We worked on
developing an Event-B model for Airplane Landing Gear System. Based
upon the model we participated in a conference ABZ’2014 CASE STUDY
track. Unfortunately our paper was not accepted but we were given a healthy
feedback on the model and it’s improvements by the reviewers. After getting
to know the RODIN IDE and Event-B next task was to get to know ASMs
and their structure. After getting to know the languages next task was to

CHAPTER 3. RESEARCH METHODOLOGY 13

Methodology.jpg

Figure 3.1: Research Methodology

find out the middle ground for the transformation. As the field of work is
quite diverse we had to combine different research methods in order to get
the results that we were striving for.

3.4.1 Defining the Research Area

This was the first step of our research. Dr. Atif Mashkoor has been involved
in formal verification process for quite some time. He’s been working with
Event-B for modeling of different systems. The research problem and it’s
importance was discussed with my supervisor and with me. As it involved
some development of the plug-in along with extensive research for finding
the semantic translation between ASM and Event-B. We finally decided to
go with this problem statement.

CHAPTER 3. RESEARCH METHODOLOGY 14

3.4.2 Literature Review

Literature review is the building block of any research. It provides the re-
searcher the opportunity to explore what is going on in the selected research
area. A researcher has to go through the research papers to find out what
are the techniques that are being used in his/her field of research and what
are their pros and cons. If there are any shortcomings that are identified. It
helps the researcher to strengthen his/her research area and helps validate
the problem statement.
For this particular thesis we tried to find out different similar work that have
been done in the industry and academia. One similar work was translating
Event-B to Promela language(MULLER,). It helped us allot to stream-
line our research problem and how to approach it. Further we had to get
familiar with Event-B language and it’s IDE and how the models are devel-
oped in this environment. A research paper was written in Case Study track
of ABZ’14 conference. That was very instrumental in getting the grasp of
Event-B models. Then we had to study ASM and how they are developed
using AsmetaL.

3.4.3 Problem Statement

Our research area was already defined and the specifics of problem statement
were laid down too. The research problem that we addressed in this thesis is

Various State based tools and methods are present in the industry and
academia. It would be very interested and beneficial for industry if we can

use the simplicity and ease of ASM combined with the strength and power of
tool-set of RODIN (Event-B)

3.4.4 Hypothesis

The hypothesis after literature review was that there is no practical research
done on this topic except some theories presented by Egon Börger. There
should be a semantic translation from ASM constructs to Event-B constructs
without changing the structure, meanings and working of the models.

3.4.5 Architecture Design

During this phase we designed the architecture of the tool that we had to
build. The architecture of the tool was inspired by eclipse import wizard and
Event-B to SPIN translation tool architecture.

CHAPTER 3. RESEARCH METHODOLOGY 15

3.4.6 Execution and Evaluation

In this phase of the research we developed the designed tool for RODIN. It
is a wizard type tool that uses import file wizard to import the files into the
Event-B project. Once the tool was developed we had to evaluate if it is
generating the files in the correct way of not.

Chapter 4

System Design and
Architecture

This chapter presents overall architecture of the plug-in. Here we will
discuss different plug-in options that were available for us. Why we selected

wizard type plug-in and its architectural design.

16

CHAPTER 4. SYSTEM DESIGN AND ARCHITECTURE 17

Figure 4.1: ASM to Event-B machine File generator module Architecture

4.1 Plugin Development in Eclipse

Eclipse platform provides rich support for Plugin as well as complete IDE
development. There are different kinds of plug-ins that can be developed in
Eclipse.

4.2 Architecture of Plugin

ASM to Event-B plug-in will plug itself into RODIN architecture. It will use
extension points of Event-B, RODIN and RODIN GUI to plug and make itself
functional in the Event-B RODIN domain. There are five major components
of our plug-in. Figure 4.1 shows these components graphically.

CHAPTER 4. SYSTEM DESIGN AND ARCHITECTURE 18

1. GUI

2. ASM Validator

3. AsmetaLc Invoker

4. Transformer

5. File Generator

In the upcoming content we will discuss each component and it’s responsi-
bilities briefly. Their detailed working will be discussed in next chapter.

4.2.1 GUI

This component extends RODIN GUI to allow the user to select the files for
conversion from ASM to Event-B machines. When the perspective is loaded
it will show a popup window for the user to select the file that the user wants
to convert to Event-B machine. It will import the file to a local storage where
AsmetaLc is already stored.

4.2.2 ASM Validator

This component is responsible for validating the selected ASM file. There are
a certain set of rules to define a valid ASM. It will do a schema comparison
for the ASM. The Schema comparison will be done using an XML schema
document. If all the schema requirements are met i.e. machine name is same
as file name, there is atleast one main rule, and there is exactly one default
initialization etc. Once the file is validated it will signal AsmetaLc invoker
to perform further steps else it will show an error message on the GUI to let
the user know that the ASM file is not a valid ASM file

4.2.3 AsmetaLc Invoker

This component is responsible for calling AsmetaLc to generate the inter-
mediate XMI file that will be used by the Transformer to transform it to
Event-B EMF file. AsmetaLc is a jar file that can be invoked from command
line. The command to generate the XMI file from an ASM file is given below
with their optional parameters.

java -jar AsmetaLc [-xmi] [-log <log4j file >]

↪→ <model.asm >

-xmi: generate the XMI output format.

CHAPTER 4. SYSTEM DESIGN AND ARCHITECTURE 19

-log: generate debug info.

<log4j file >: configuration file of the logger

<model.asm >: path name of the ASM spec.

4.2.4 Transformer

This component is responsible for generating the EMF that will be used
for generating Event-B machine files. It will take XMI file generated by
AsmetaLc invoker as the input file and will semantically translate the XMI
file to EMF model. EMF model is the metamodel of Event-B machines that
is designed specifically for the purpose of transforming machines from one
syntax to another (cross tool support).

4.2.5 File Generator

This component is responsible for generating files from EMF Meta model of
Event-B models. It is basically creating different required files in order to
create a machine. A typical Event-B machine consists of five types of files
.bcm, .bpr, .bpo, .bps and .bum. Each file contains relevant xml that defines
the events, variables, invariants and axioms etc of the machine.

Chapter 5

Implementation

In this chapter we will have a look at the implementation details of the
plug-in. We used Eclipse IDE to develop the ASM Import Wizard Plugin
for RODIN. As RODIN is built on Eclipse it was the best choice for the

plug-in development. Each individual java package, why it was required and
it’s implementation detail is discussed.

20

CHAPTER 5. IMPLEMENTATION 21

5.1 Wizard Project in Eclipse

First step was to create a project for our import wizard in eclipse. From
file menu we selected ”Eclipse Plugin Project as the type of project. As we
needed some other views along with file import wizard we selected ”Customer
plug-in wizard” from the plug-in templates . The next step was to choose
templates from Available Templates. We selected ”File Import Wizard”
and ”View” from the templates and finished the ”New plug-in project with
custom templates” wizard. It created a project in Eclipse with following
packages in it.

1. edu.seecs.nust.asmtransformer

2. edu.seecs.nust.asmtransformer.importWizards

3. edu.seecs.nust.asmtransformer.views

Further we had to translate the XMI files of ASM to concrete Java objects.
Another package to store all the XMI entities was added. Then in order to
generate the XML file for Event-B Entities there was a requirement of another
package that can hold Event-B entities. These two packages are actually the
models of ASM and Event-B respectively. The two more packages that were
added to the project are listed below.

1. edu.seecs.nust.asmtransformer.asm

2. edu.seecs.nust.asmtransformer.eventb

In the upcoming sections we will have a look at each of these five packages
and will discuss their responsibilities and intercommunication for translating
ASMs to Event-B entities.

5.2 Package Implementation Details

In this section we will explore all the packages. We will see all the classes
present in the package and their role in the wizard.

5.2.1 ASM Transformer

ASM transformer package is basically responsible for transforming ASM Java
Objects to Event-B Java Objects. The class diagram of ASM Transformer is
shown in Figure 5.3. There are a total of five(5) classes present in this Java
package. These classes are:

CHAPTER 5. IMPLEMENTATION 22

Figure 5.1: Plugin type selection

CHAPTER 5. IMPLEMENTATION 23

Figure 5.2: Custom wizard parts selection

CHAPTER 5. IMPLEMENTATION 24

1. Activator.java

2. EventBFile.java

3. Transformer.java

4. Utilities.java

5. XmlGenerator.java

Activator.java

This class is responsible for controlling the plug-in life cycle. It stores all the
necessary information for the plug-in to activate itself and run in an IDE i.e.
Eclipse, RODIN

EventBFile.java

This class is a data-model of Event-B entities. It stores two more Event-B
structs ”Context” and ”MachineFile”.

Transformer.java

This class is responsible for performing the transformation actions. It will
also call other class operations i.e. GenerateXml operation for generating
Event-B files.

Utilities.java

This class is a general utilities class for the whole project. It contains the
common methods that are used at multiple locations within the project.

XmlGenerator.java

This class is responsible for generating XML file from the passed content
with the passed name and extension.

5.2.2 ASM

ASM package contains the necessary data model classes to store the XMI in
Java Object form. Each class has their own properties and/or sub entities.
Figure 5.4 shows the class diagram of the package. There are seventeen (17)
classes present in this package. These classes are:

CHAPTER 5. IMPLEMENTATION 25

Class Diagram.jpg

Figure 5.3: Custom wizard parts selection

1. argument.java

2. Asm.java

3. body.java

4. bodySection.java

5. domain.java

6. function.java

7. element.java

8. functionDefinition.java

9. functionInitialization.java

10. headerSection.java

11. importClause.java

12. initialState.java

13. ruleDeclaration.java

14. signature.java

15. StaxAsmParser.java

16. structuredDomain.java

17. variable.java

CHAPTER 5. IMPLEMENTATION 26

Asm.java

Asm.java class is the main class in this package. It is the main element of
ASM XMI file. It stores all the other classes except StaxAsmParser.java. An
Asm.java object represents an Abstract State Machine.

StaxAsmParser.java

This class is responsible for parsing the XMI file generated by the Asmet-
aLc.jar into ASM Java object. It reads the XMI files and fills an ASM object
that is then used in the transformation process to generate Event-B Entities.

5.2.3 Event B

This package contains the data-model classes for the translated Event-B ob-
jects. Each class has it’s own properties and sub entities. Figure 5.5 shows
the class diagram for Event-B package. There are a total of seventeen (17)
classes in this package. These classes are:

1. action.java

2. axiom.java

3. carrierSet.java

4. constant.java

5. Context.java

6. contextFile.java

7. evet.java

8. extendsContext.java

9. guard.java

10. invariant.java

11. machineFile.java

12. MachineFileRoot.java

13. parameter.java

CHAPTER 5. IMPLEMENTATION 27

Figure 5.4: ASM Package Class Diagram

CHAPTER 5. IMPLEMENTATION 28

Figure 5.5: Event-B Package Class Diagram

14. refinesEvent.java

15. refinesMachine.java

16. seesContext.java

17. variable.java

Context.java

Context.java file is the main file for Event-B construct ”Context”. It stores
the static components of Event-B model. It consists of lists of Constants,
Axioms and Carrier Sets. This file is used to produce ”.buc” xml file that is
the basic file of an Event-B Context in RODIN platform.

MachineFileRoot.java

This file is the main file for Event-B construct ”Machine”. It stores the
dynamic components of Event-B model like Variables, Events, Invariants
and Theorems. This file is used to produce ”.bum” xml file that is the xml
representation of Event-B Machine Model in RODIN.

CHAPTER 5. IMPLEMENTATION 29

Figure 5.6: Views Package Class Diagram

CHAPTER 5. IMPLEMENTATION 30

Figure 5.7: ImportWizard Package Class Diagram

CHAPTER 5. IMPLEMENTATION 31

5.2.4 Views

Views package contains the UI view related classes. These classes are used
to display data/output to the user. The class diagram for the views package is
shown in the figure 5.6. This package contains only one class ImportView.java.

5.2.5 Import Wizard

This is the main import wizard. It is used to import the ASM file. It is
responsible for using AsmetaLc Invoker to invoke the AsmetaLc compiler jar
file for XMI generation. Once the XMI file is generated it then calls the
method to move the XMI file into the selected Event-B project. The class
diagram for the package is shown in the figure 5.7. There are three (3)
classes in this package. Once is the main import file wizard where as the
other two files are the wizard pages.

1. ImportWizard.java

2. ImportWizardPage.java

3. XmiEditorPage.java

5.3 Translation Rules Table

As we have discussed earlier, we used AsmetaLc.jar compiler provided by
Asmeta team to generate the XMI file from the selected ASM file. That
XMI file is then converted into Java Objects for further rule application
for translating the ASM objects to Event-B objects. We had to define a
translation table in order to co the translation between these two modeling
languages. The table works as a guideline and the translation is done in
manner that is part of most of the well known compilers these days. The
program looks for the keyword finds out it’s type from the table and maps
it to the output (Event-B) keyword type. Table 5.1 shows some of the
translational mappings. First column is the ASM keyword (struct) type,
second column is it’s translation and the third column is a brief description
of the translation. Note that there can be multiple keywords in one cell.

ASM entity Event-B en-
tity

Remarks

CHAPTER 5. IMPLEMENTATION 32

Anydomain CarrierSet,
Constant,
axiom

Any domain is a user defined domain. It can
or can not be finite. In order to accommo-
date this domain a CarrierSet is defined. If
there are any symbols present in the anydo-
main those symbols will be translated as con-
stants. To make a relationship between the
symbols and the set there will be a correspond-
ing axiom generated that will depict their re-
lationship.

Enum CarrierSet,
Constants,
Axiom

Enum is a set of multiple symbols and their
relationship. In Event-B the symbols are de-
clared as constants, Enum as The CarrierSet
and their relationship is declared as Axioms.

AbstractDomain CarrierSet,
Constants,
Axiom

Like Anydomain abstract domain is also de-
clared as Carrierset constant and axioms for
their relationship.

BasicDomain Corresponding
basic domain
(i.e. Integer,
boolean, nat-
ural number
etc.)

Basic domains are directly mapped to cor-
responding basic structures i.e. Integer,
boolean, natural, real etc.

Function Event(s) Function performs multiple operations on the
variables etc. hence there can be one or more
events for a function. Although a par rule
within a function will be evaluated to one and
only one event. As the assignments in a par
rule are autonomous as they are in an Event-B
function

Rule Event Rule will be mapped to an Event-B event.
invariant Invariant ASM invariant will be translated to Event B

invariant
Variable Variable Directly translated to Event B variable with

it’s domain
PowersetDomain Power set defi-

nition over do-
main d

Directly translated to powerset over a domain
in Event-B

CHAPTER 5. IMPLEMENTATION 33

ConcreteDomain Subset of basic
domain

Subsets of basic domains such as Integers,
Natural Numbers etc. It is also the same for
sequence domains the only difference is the se-
quence domain is a sequential subset of basic
domains.

UpdateRule Update state-
ment

Translated to assignment statement of Event-
B

ConditionalRule If - then state-
ment

Translated to conditional statement

ForallTerm Forall rule of
Event-B

Translated to ForAll rule of event b for vari-
able v over the domain d

ExistTerm Exist term of
Event-B

Translated to Exists rule of Event-B.

Case rule If - Then state-
ment (multiple
events - one for
each case)

Translated to Multiple events with conditional
statements.

Default Init Initialization
Event

Directly translated to Initialization event of
Event B

minus (unary) - Arthematic operator
plus (unary) + Arthematic operator
pwr Xn̂ Power is multiplication of number power

times.
mult * Arthematic operator
div / Arthematic operator
mod if x < 0 then x

:= x * -1
Modulus is unsigned number hence if it is less
than 0 just multiply it with -1

eq = Translated to equal to
lt < Translated to less than
le <= Translated to less than or equal to
gt > Translated to greater than
ge >= Translated to greater than or equal to
neq /= Translated to Not equal to
in belongs to set Translated to is element of a set
notin doesn’t belong

to set
Translated to is not an element of a set

implies implies sign Translated to implication
iff if cond1 then Translation to if cond1 then stmt1 endif

Table 5.1: Translation Table

CHAPTER 5. IMPLEMENTATION 34

Figure 5.8: Import View Selection Step 1

5.4 Plug-in in action

Now we will present our plug-in in a step by step manner. In order to install
the plug-in in the RODIN platform follow the steps

1. Copy the plug-in jar file and the AsmetaLc.jar file and paste it into
your RODIN Plugins folder.

2. Restart the RODIN

Once you’ve restarted RODIN, you can find the plug-in in file → import
wizard.

5.4.1 Open Import View

In order to open import view in RODIN IDE follow the steps shown in the
figure 5.8. Go to Window→Show View→Other.. or Press Alt+Shift+Q.
A window like Figure 5.9 will open. Type ”Import View” in the filter box.
You’ll see a view with the name ”Import View” under ”Import Category”.
Select the view and Click ”OK”. Import view will be visible in the IDE.

5.4.2 Import ASM File

We will have a look at how an ASM file can be imported to any selected
project. Open your RODIN IDE, create a new Event-B project (if there

CHAPTER 5. IMPLEMENTATION 35

Figure 5.9: Import View Selection Step 2

CHAPTER 5. IMPLEMENTATION 36

Figure 5.10: Import Wizard Step 1

CHAPTER 5. IMPLEMENTATION 37

Figure 5.11: Import Wizard Step 2

Figure 5.12: Import Wizard Step 3

CHAPTER 5. IMPLEMENTATION 38

Figure 5.13: Import Wizard Step 4

Figure 5.14: Import Wizard Step 5

CHAPTER 5. IMPLEMENTATION 39

Figure 5.15: Import Wizard Step 6

Figure 5.16: Imported context file

Figure 5.17: Imported machine file

Figure 5.18: Event-B Entities created from ASM file

CHAPTER 5. IMPLEMENTATION 40

isn’t any). Select your desired Event-B project go to File→Import (Figure
5.10). An import wizard will open. In the filter box type ”Import File”
you’ll see Import File wizard under ASM File Import folder (Figure 5.11).
Select Import Wizard and click Next. Another window with the name ”File
Import Wizard” will open. The window will have your project selected. Click
”Browse” button to select your ASM file from the hard drive. Once the file
is selected it will be converted and imported at the back-end to the selected
project (Figure 5.12). You’ll see the output of the process in the import view
that we opened earlier. The output in the import view will be (Figure 5.14).
At this stage you can Finish the wizard by clicking on ”Finish” button in the
wizard or you can click Next to move to the next page of the wizard. Here
you can see the generated XMI from the ASM file (Figure 5.13). Clicking on
Finish button will close the wizard. Right click on your selected project and
refresh (or select the project and press F5). The project will be refreshed
and newly generated Event-B entities will be present in the project (Figure
5.18).

5.4.3 Final Out Put

Once the files are generated they will contain the constructs and the keywords
of Event-B according to the ASM file. Figure 5.16 shows the Context file
generated. It will contain static parts i.e. constants, axioms and sets of an
Event-B entity. Figure 5.17 shows the Machine file. It contains the dynamic
parts i.e. variables, invariants and events etc. of an Event-B entity.

Chapter 6

Conclusion

In this chapter we will look briefly at what we did in this research. What is
remaining and the future direction for this translation plug-in.

41

CHAPTER 6. CONCLUSION 42

6.1 Conclusion

Computer systems are being used to design and develop different software
and hardware systems. These systems range from simple mathematical cal-
culators to safety critical systems. Formal methods come into play when
we are designing safety critical systems. They help us eradicate the design
errors. They decrease development and testing costs and produce reliable
systems.
Event-B and ASM are widely used formal methods. Where ASM is easy to
develop, Event-B tool support is excellent. It’s easy to validate and verify
the models in Event-B IDE RODIN. Industry and academia require such a
tool that can take ASM machines as input and can produce Event-B entities
(Context, Machine). We approached this problem with a plug-in that inte-
grates itself in the RODIN platform and semantically translates the ASM
files into Event-B. A translation table is used to perform the mapping from
one Event-B. As Eclipse is the base of RODIN and it provides rich support
for plug-in development, we chose Eclipse for our development.

6.2 Future Direction

In this thesis work we focused on Single Agent Asynchronous ASM. In future
the work can be done for multi-agent and Synchronous ASMs. This plug-in
works with a limited set of ASM files. The work can be expanded to include
all kinds of ASMs.

Appendix A

Java Source code

A.1 edu.seecs.nust.asmtransformer

A.1.1 Activator.java

package edu.seecs.nust.asmtransformer;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.ui.plugin.AbstractUIPlugin;

import org.osgi.framework.BundleContext;

/**

* The activator class controls the plug -in life cycle

*/

public class Activator extends AbstractUIPlugin {

// The plug -in ID

public static final String PLUGIN_ID =

↪→ "edu.seecs.nust.asmtransformer";

↪→ //$NON -NLS -1$

// The shared instance

private static Activator plugin;

/**

* The constructor

*/

public Activator () {

}

43

APPENDIX A. JAVA SOURCE CODE 44

/*

* (non -Javadoc)

* @see org.eclipse.ui.plugin.AbstractUIPlugin#st

↪→ art(org.osgi.framework.BundleContext)

*/

public void start(BundleContext context) throws

↪→ Exception {

super.start(context);

plugin = this;

}

/*

* (non -Javadoc)

* @see org.eclipse.ui.plugin.AbstractUIPlugin#st

↪→ op(org.osgi.framework.BundleContext)

*/

public void stop(BundleContext context) throws

↪→ Exception {

plugin = null;

super.stop(context);

}

/**

* Returns the shared instance

*

* @return the shared instance

*/

public static Activator getDefault () {

return plugin;

}

/**

* Returns an image descriptor for the image file

↪→ at the given

* plug -in relative path

*

* @param path the path

* @return the image descriptor

*/

public static ImageDescriptor

↪→ getImageDescriptor(String path) {

return imageDescriptorFromPlugin(PLUGIN_ID ,

↪→ path);

APPENDIX A. JAVA SOURCE CODE 45

}

}

A.1.2 EventBFile.java

package edu.seecs.nust.asmtransformer;

import edu.seecs.nust.asmtransformer.eventb.Context;

import edu.seecs.nust.asmtransformer.eventb.Machinef

↪→ ileRoot;

public class EventBFiles {

Context context;

MachinefileRoot machineFileRoot;

public Context getcontext () {

return context;

}

public void setcontext(Context ctx) {

context = ctx;

}

public MachinefileRoot getmachineFileRoot () {

return machineFileRoot;

}

public void setmachineFileRoot(MachinefileRoot

↪→ mfRoot) {

machineFileRoot = mfRoot;

}

}

A.1.3 Transformer.java

package edu.seecs.nust.asmtransformer;

import edu.seecs.nust.asmtransformer.asm.Asm;

import edu.seecs.nust.asmtransformer.eventb .*;

APPENDIX A. JAVA SOURCE CODE 46

public class Transformer {

private static String CONTEXT_CONFIG = "org.e

↪→ ventb.core.fwd;de.prob.symbolic.ctxBase;de.pr

↪→ ob.units.mchBase;org.animb.valuation.valBase";

private static String MACHINE_CONFIG =

↪→ "org.eventb.core.fwd;de.prob.units.mchBase";

private static String CONTEXT_VERSION = "1";

private static String MACHINE_VERSION = "1";

public static EventBFiles Transform(Asm asm){

EventBFiles ebFiles = new EventBFiles ();

Context ctx = GetContext(asm);

MachinefileRoot mfRoot = GetMachineFile(asm);

ebFiles.setcontext(ctx);

ebFiles.setmachineFileRoot(mfRoot);

return ebFiles;

}

private static MachinefileRoot GetMachineFile(Asm

↪→ asm) {

MachinefileRoot mfRoot = new MachinefileRoot ();

machineFile machineFile = new machineFile ();

machineFile.setconfiguration(MACHINE_CONFIG);

machineFile.setVersion(MACHINE_VERSION);

mfRoot.setmachineFile(machineFile);

return mfRoot;

}

private static Context GetContext(Asm asm) {

Context ctx = new Context ();

contextFile ctxFile = new contextFile ();

ctxFile.setconfiguration(CONTEXT_CONFIG);

ctxFile.setVersion(CONTEXT_VERSION);

ctx.setcontextFile(ctxFile);

return ctx;

}

APPENDIX A. JAVA SOURCE CODE 47

}

A.1.4 Utilities.java

package edu.seecs.nust.asmtransformer;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.net.URL;

import org.eclipse.core.resources.IProject;

import org.eclipse.core.resources.IResource;

import org.eclipse.core.runtime.Platform;

import org.eclipse.jface.viewers.ISelection;

import

↪→ org.eclipse.jface.viewers.IStructuredSelection;

import org.eclipse.ui.ISelectionService;

import org.eclipse.ui.internal.Workbench;

@SuppressWarnings("restriction")

public class Utilities {

/*

* Returns the current selected project

*/

public static IProject getCurrentProject (){

ISelectionService selectionService =

Workbench.getInstance ().getActiveWorkbenchWindow ().

↪→ getSelectionService ();

ISelection selection =

↪→ selectionService.getSelection ();

IProject project = null;

if(selection instanceof IStructuredSelection) {

Object element = ((IStructuredSelection)

↪→ selection).getFirstElement ();

if (element instanceof IResource) {

project= ((IResource)element).getProject ();

APPENDIX A. JAVA SOURCE CODE 48

}

}

return project;

}

public static byte[] getBytes(InputStream is)

↪→ throws IOException {

int len;

int size = 1024;

byte[] buf;

if (is instanceof ByteArrayInputStream) {

size = is.available ();

buf = new byte[size];

len = is.read(buf , 0, size);

} else {

ByteArrayOutputStream bos = new

↪→ ByteArrayOutputStream ();

buf = new byte[size];

while ((len = is.read(buf , 0, size)) != -1)

bos.write(buf , 0, len);

buf = bos.toByteArray ();

}

return buf;

}

/*

* Processes the passed as file in command prompt

↪→ and returns the process

*/

public static Process ProcessInCommandLine(String

↪→ command){

Runtime rt = Runtime.getRuntime ();

try {

Process pr = rt.exec(command);

return pr;

} catch (IOException e) {

e.printStackTrace ();

return null;

}

}

APPENDIX A. JAVA SOURCE CODE 49

public static String GetPluginLocation (){

return Platform.getInstallLocation ().getURL ()

↪→ .getPath ();

}

public static String ChangeExtension(String

↪→ source , String extension){

String [] splittedString = source.split("\\.");

splittedString[splittedString.length -1] =

↪→ extension;

return JoinStrings(splittedString , ".");

}

public static String JoinStrings(String [] source ,

↪→ String glueingChar){

String dest = "";

for(int i=1; i< source.length; i++){

dest += source[i-1] + glueingChar +

↪→ source[i];

}

return dest;

}

}

A.1.5 XmlGenerator.java

package edu.seecs.nust.asmtransformer;

import java.io.File;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.JAXBException;

import javax.xml.bind.Marshaller;

public class XmlGenerator {

public void GenerateXML(Object rootMachineFile ,

↪→ String destPath){

try {

File file = new File(destPath);

JAXBContext jaxbContext =

↪→ JAXBContext.newInstance(

↪→ rootMachineFile.getClass ());

Marshaller jaxbMarshaller =

↪→ jaxbContext.createMarshaller ();

APPENDIX A. JAVA SOURCE CODE 50

// output pretty printed

jaxbMarshaller.setProperty(Marshaller.

↪→ JAXB_FORMATTED_OUTPUT , true);

jaxbMarshaller.marshal(rootMachineFile ,

↪→ file);

jaxbMarshaller.marshal(rootMachineFile ,

↪→ System.out);

} catch (JAXBException e) {

e.printStackTrace ();

}

}

}

A.2 edu.seecs.nust.asmtransformer.views

A.2.1 ImportView.java

package edu.seecs.nust.asmtransformer.views;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Label;

import org.eclipse.ui.part .*;

import org.eclipse.jface.viewers .*;

import org.eclipse.swt.graphics.Image;

import org.eclipse.jface.action .*;

import org.eclipse.jface.dialogs.MessageDialog;

import org.eclipse.ui.*;

import org.eclipse.swt.widgets.Menu;

import org.eclipse.swt.SWT;

public class ImportView extends ViewPart {

/**

* The ID of the view as specified by the

↪→ extension.

*/

public static final String ID = "edu.seecs.nust.

↪→ asmtransformer.views.ImportView";

private static Label label;

/**

* The constructor.

*/

APPENDIX A. JAVA SOURCE CODE 51

public ImportView () {

}

/**

* This is a callback that will allow us

* to create the viewer and initialize it.

*/

public void createPartControl(Composite parent) {

label = new Label(parent , SWT.WRAP);

}

public static void SetText(String text ,

↪→ Boolean ... reset){

if(reset.length > 0 && reset [0] == true)

label.setText("");

label.setText(label.getText () +"\r\n" +

↪→ text);

}

}

A.3 edu.seecs.nust.asmtransformer.importWizards

A.3.1 ImportWizard.java

package edu.seecs.nust.asmtransformer.importWizards;

import java.io.IOException;

import java.nio.file.Path;

import

↪→ org.eclipse.jface.viewers.IStructuredSelection;

import org.eclipse.jface.wizard.IWizardPage;

import org.eclipse.jface.wizard.Wizard;

import org.eclipse.ui.IImportWizard;

import org.eclipse.ui.IWorkbench;

import edu.seecs.nust.asmtransformer.asm.Asm;

import

↪→ edu.seecs.nust.asmtransformer.asm.StaxAsmParser;

public class ImportWizard extends Wizard implements

↪→ IImportWizard {

ImportWizardPage importPage;

XmiEditorPage editorPage;

APPENDIX A. JAVA SOURCE CODE 52

Asm asmObject = null;

Path filePath;

public ImportWizard () {

super ();

}

/* (non -Javadoc)

* @see org.eclipse.jface.wizard.Wizard#

↪→ performFinish ()

*/

public boolean performFinish () {

Boolean copied = false;

Boolean converted = false;

return true;

}

/* (non -Javadoc)

* @see org.eclipse.ui.IWorkbenchWizard#

↪→ init(org.eclipse.ui.IWorkbench , org.eclipse

↪→ .jface.viewers.IStructuredSelection)

*/

public void init(IWorkbench workbench ,

↪→ IStructuredSelection selection) {

setWindowTitle("File Import Wizard");

↪→ //NON -NLS -1

setNeedsProgressMonitor(true);

importPage = new ImportWizardPage("Import

↪→ ASM", selection); //NON -NLS -1

editorPage = new XmiEditorPage("Generated XMI

↪→ File"); //NON -NLS -1

}

/* (non -Javadoc)

* @see org.eclipse.jface.wizard.IWizard#addPages ()

*/

public void addPages () {

super.addPages ();

addPage(importPage);

addPage(editorPage);

}

public IWizardPage getNextPage(IWizardPage page){

APPENDIX A. JAVA SOURCE CODE 53

if(page.getName () == "Import ASM")

{

try {

importPage.CopyFile ();

filePath = importPage.desPath;

editorPage.xmiFilePath = filePath;

StaxAsmParser asmParser = new

↪→ StaxAsmParser ();

String fileContent = asmParser.Get

↪→ FileContents(filePath.toString ());

editorPage.SetText(fileContent);

if(asmObject == null){

asmObject = asmParser.readFile

↪→ (filePath.toString ());

}

editorPage.GenerateDummyEventBFiles ();

} catch (IOException e) {

e.printStackTrace ();

}

}

return super.getNextPage(page);

}

}

A.3.2 ImportWizardPage.java

package edu.seecs.nust.asmtransformer.importWizards;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStream;

import java.nio.file.Files;

import java.nio.file.Paths;

import java.nio.file.StandardCopyOption;

import org.eclipse.core.resources.IProject;

import org.eclipse.core.runtime.IPath;

import org.eclipse.core.runtime.IStatus;

import org.eclipse.core.runtime.Path;

import org.eclipse.core.runtime.Status;

import org.eclipse.jface.preference.FileFieldEditor;

APPENDIX A. JAVA SOURCE CODE 54

import

↪→ org.eclipse.jface.viewers.IStructuredSelection;

import org.eclipse.swt.SWT;

import org.eclipse.swt.events.ModifyEvent;

import org.eclipse.swt.events.ModifyListener;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Text;

import

↪→ org.eclipse.ui.dialogs.WizardNewFileCreationPage;

import edu.seecs.nust.asmtransformer.Utilities;

import

↪→ edu.seecs.nust.asmtransformer.asm.StaxAsmParser;

import

↪→ edu.seecs.nust.asmtransformer.views.ImportView;

public class ImportWizardPage extends

↪→ WizardNewFileCreationPage {

protected FileFieldEditor editor;

protected Composite fileSelectionArea;

public java.nio.file.Path desPath;

public String sourceFile;

public ImportWizardPage(String pageName ,

↪→ IStructuredSelection selection) {

super(pageName , selection);

setTitle(pageName); //NON -NLS -1

setDescription("Import a file from the local

↪→ file system into the workspace");

↪→ //NON -NLS -1

}

/* (non -Javadoc)

* @see org.eclipse.ui.dialogs.WizardNewFile

↪→ CreationPage#createAdvancedControls(org

↪→ .eclipse.swt.widgets.Composite)

*/

protected void createAdvancedControls(Composite

↪→ parent) {

fileSelectionArea = new Composite(parent ,

↪→ SWT.NONE);

APPENDIX A. JAVA SOURCE CODE 55

GridData fileSelectionData = new

↪→ GridData(GridData.GRAB_HORIZONTAL

| GridData.FILL_HORIZONTAL);

fileSelectionArea.setLayoutData(

↪→ fileSelectionData);

GridLayout fileSelectionLayout = new

↪→ GridLayout ();

fileSelectionLayout.numColumns = 3;

fileSelectionLayout.makeColumnsEqualWidth =

↪→ false;

fileSelectionLayout.marginWidth = 0;

fileSelectionLayout.marginHeight = 0;

fileSelectionArea.setLayout(

↪→ fileSelectionLayout);

editor = new

↪→ FileFieldEditor("fileSelect","Select

↪→ File: ",fileSelectionArea); //NON -NLS -1

↪→ //NON -NLS -2

editor.getTextControl(fileSelectionArea)

↪→ .addModifyListener(new ModifyListener (){

public void modifyText(ModifyEvent e) {

IPath path = new

↪→ Path(ImportWizardPage.this.editor

↪→ .getStringValue ());

setFileName(path.lastSegment ());

if(!path.lastSegment ().isEmpty ()){

setPageComplete(true);

}

}

});

String [] extensions = new String [] { "*.asm"

↪→ }; //NON -NLS -1

editor.setFileExtensions(extensions);

fileSelectionArea.moveAbove(null);

}

/* (non -Javadoc)

* @see org.eclipse.ui.dialogs.WizardNewFile

↪→ CreationPage#createLinkTarget ()

*/

protected void createLinkTarget () {

APPENDIX A. JAVA SOURCE CODE 56

}

/* (non -Javadoc)

* @see org.eclipse.ui.dialogs.WizardNewFile

↪→ CreationPage#getInitialContents ()

*/

protected InputStream getInitialContents () {

try {

return new FileInputStream(new

↪→ File(editor.getStringValue ()));

} catch (FileNotFoundException e) {

return null;

}

}

/* (non -Javadoc)

* @see org.eclipse.ui.dialogs.WizardNewFile

↪→ CreationPage#getNewFileLabel ()

*/

protected String getNewFileLabel () {

return "New File Name:"; //NON -NLS -1

}

/* (non -Javadoc)

* @see org.eclipse.ui.dialogs.WizardNewFile

↪→ CreationPage#validateLinkedResource ()

*/

protected IStatus validateLinkedResource () {

return new Status(IStatus.OK ,

↪→ "com.seecs.nust.asmtransformer",

↪→ IStatus.OK , "", null); //NON -NLS -1

↪→ //NON -NLS -2

}

public Boolean CopyFile () throws IOException{

Text fileControl =

↪→ editor.getTextControl(fileSelectionArea);

sourceFile = fileControl.getText ();

ImportView.SetText(sourceFile ,true);

ConvertToXMI ();

sourceFile =

↪→ Utilities.ChangeExtension(sourceFile ,

↪→ "xmi");

APPENDIX A. JAVA SOURCE CODE 57

ImportView.SetText("XMI file generate");

IProject project =

↪→ Utilities.getCurrentProject ();

if(project != null){

java.nio.file.Path sourcePath =

↪→ Paths.get(sourceFile);

String fileName = getFileName ();

desPath = Paths.get(project.getLocationURI ());

fileName = Utilities.ChangeExtension(fileName ,

↪→ "xmi");

ImportView.SetText(fileName);

desPath = desPath.resolve(fileName);

Files.copy(sourcePath , desPath ,

↪→ StandardCopyOption.REPLACE_EXISTING);

ImportView.SetText("File copied to: " +

↪→ desPath.toString ());

}

return true;

}

public Boolean ConvertToXMI (){

try{

String command = "java -jar \"";

command += Utilities.GetPluginLocation ()

↪→ .substring (1);

command += "plugins/ASMetaLc.jar\"";

command += " -xmi \"";

command += sourceFile + "\"";

Process process =

↪→ Utilities.ProcessInCommandLine(command);

ImportView.SetText(new

↪→ String(Utilities.getBytes(

↪→ process.getErrorStream ()), "UTF -8"));

ImportView.SetText(new

↪→ String(Utilities.getBytes(

↪→ process.getInputStream ()), "UTF -8"));

return true;

}

catch(Exception ex){

System.console ().printf(ex.getMessage ());

return false;

}

APPENDIX A. JAVA SOURCE CODE 58

}

}

A.3.3 XmiEditorPage.java

package edu.seecs.nust.asmtransformer.importWizards;

import java.nio.file.Path;

import java.util.ArrayList;

import org.eclipse.jface.wizard.WizardPage;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Text;

import edu.seecs.nust.asmtransformer.Transformer;

import edu.seecs.nust.asmtransformer.Utilities;

import edu.seecs.nust.asmtransformer.XmlGenerator;

import edu.seecs.nust.asmtransformer.asm.Asm;

import edu.seecs.nust.asmtransformer.eventb .*;

public class XmiEditorPage extends WizardPage {

private Text textArea;

public Path xmiFilePath;

protected XmiEditorPage(String pageName) {

super(pageName);

setTitle(pageName); //NON -NLS -1

setDescription("Displays imported XMI file for

↪→ transformation");

}

@Override

public void createControl(Composite parent) {

initializeDialogUnits(parent);

Composite composite= new Composite(parent ,

↪→ SWT.NONE);

int nColumns= 1;

GridLayout layout= new GridLayout ();

layout.numColumns= nColumns;

composite.setLayout(layout);

GridData gd= new GridData ();

gd.horizontalSpan= nColumns;

APPENDIX A. JAVA SOURCE CODE 59

gd.widthHint = 480;

gd.heightHint = 480;

textArea= new Text(composite , SWT.READ_ONLY |

↪→ SWT.BORDER | SWT.V_SCROLL | SWT.WRAP);

textArea.setLayoutData(gd);

textArea.setText("");

textArea.setBackground(parent.getShell ()

↪→ .getDisplay ().getSystemColor(SWT.COLOR_LIS

↪→ T_BACKGROUND));

setControl(composite);

}

public void SetText(String text){

textArea.setText(text);

}

public void GenerateEventBFiles(Asm asm){

Transformer.Transform(asm);

}

}

A.4 edu.seecs.nust.asmtransformer.asm

A.4.1 Asm.java

package edu.seecs.nust.asmtransformer.asm;

public class Asm {

String name;

String defaultInitialState;

String mainrule;

Boolean isAsynchr;

initialState initialState;

bodySection bodySection;

headerSection headerSection;

public String getName (){

return name;

}

APPENDIX A. JAVA SOURCE CODE 60

public void setName(String n){

name = n;

}

public String getDefaultInitialState (){

return defaultInitialState;

}

public void setDefaultInitialState(String dis){

defaultInitialState = dis;

}

public String getMainrule (){

return mainrule;

}

public void setMainRule(String mr){

mainrule = mr;

}

public Boolean getIsAsynchr (){

return isAsynchr;

}

public void setIsAsynchr(Boolean ia){

isAsynchr = ia;

}

public initialState getInitialState (){

return initialState;

}

public void setInitialState(initialState is){

initialState = is;

}

public bodySection getBodySection () {

return bodySection;

}

public void setBodySection(bodySection bs) {

bodySection = bs;

APPENDIX A. JAVA SOURCE CODE 61

}

public headerSection getHeaderSection () {

return headerSection;

}

public void setHeaderSection(headerSection hs) {

headerSection = hs;

}

}

A.5 edu.seecs.nust.asmtransformer.eventb

A.5.1 contextFile.java

package edu.seecs.nust.asmtransformer.eventb;

import java.util.ArrayList;

import javax.xml.bind.annotation .*;

@XmlRootElement(name = "org.eventb.core.contextFile")

public class contextFile{

private ArrayList <axiom > axiom;

private String configuration;

private extendsContext extendsContext;

private ArrayList <constant > constant;

private ArrayList <carrierSet > carrierSet;

private String version;

public ArrayList <axiom > getaxiom (){

return axiom;

}

@XmlElement(name = "org.eventb.core.axiom")

public void setaxiom (ArrayList <axiom > axiom){

this.axiom = axiom;

}

public String getconfiguration (){

return configuration;

}

APPENDIX A. JAVA SOURCE CODE 62

@XmlAttribute(name =

↪→ "org.eventb.core.configuration")

public void setconfiguration (String

↪→ configuration){

this.configuration = configuration;

}

public extendsContext getextendsContext (){

return extendsContext;

}

@XmlElement(name =

↪→ "org.eventb.core.extendsContext")

public void setextendsContext (extendsContext

↪→ extendsContext){

this.extendsContext = extendsContext;

}

public ArrayList <constant > getconstant ()

{

return constant;

}

@XmlElement(name = "org.eventb.core.constant")

public void setconstant (ArrayList <constant >

↪→ constant){

this.constant = constant;

}

public ArrayList <carrierSet > getcarrierSet (){

return carrierSet;

}

@XmlElement(name = "org.eventb.core.carrierSet")

public void setcarrierSet (ArrayList <carrierSet >

↪→ carrierSet){

this.carrierSet = carrierSet;

}

public String getVersion (){

return version;

}

APPENDIX A. JAVA SOURCE CODE 63

@XmlAttribute

public void setVersion (String version){

this.version = version;

}

@Override

public String toString (){

return "contextFile [axiom = "+axiom+",

↪→ configuration = "+configuration+",

↪→ extendsContext = "+extendsContext+",

↪→ constant = "+constant+", carrierSet =

↪→ "+carrierSet+", version = "+version+"]";

}

}

A.5.2 machineFile.java

package edu.seecs.nust.asmtransformer.eventb;

import java.util.ArrayList;

import javax.xml.bind.annotation.XmlAttribute;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "org.eventb.core.machineFile")

public class machineFile{

private String configuration;

private refinesMachine refinesMachine;

private seesContext seesContext;

private ArrayList <invariant > invariant;

private String version;

private ArrayList <variable > variable;

private ArrayList <event > event;

public String getconfiguration (){

return configuration;

}

@XmlAttribute(name =

↪→ "org.eventb.core.configuration")

APPENDIX A. JAVA SOURCE CODE 64

public void setconfiguration (String

↪→ configuration){

this.configuration = configuration;

}

public refinesMachine getrefinesMachine (){

return refinesMachine;

}

@XmlElement(name =

↪→ "org.eventb.core.refinesMachine")

public void setrefinesMachine (refinesMachine

↪→ refinesMachine){

this.refinesMachine = refinesMachine;

}

public seesContext getseesContext (){

return seesContext;

}

@XmlElement(name="org.eventb.core.seesContext")

public void setseesContext (seesContext

↪→ seesContext){

this.seesContext = seesContext;

}

public ArrayList <invariant > getinvariant (){

return invariant;

}

@XmlElement(name = "org.eventb.core.invariant")

public void setinvariant (ArrayList <invariant >

↪→ invariant){

this.invariant = invariant;

}

public String getVersion (){

return version;

}

@XmlAttribute

public void setVersion (String version){

this.version = version;

APPENDIX A. JAVA SOURCE CODE 65

}

public ArrayList <variable > getvariable (){

return variable;

}

@XmlElement(name = "org.eventb.core.variable")

public void setvariable (ArrayList <variable >

↪→ variable){

this.variable = variable;

}

public ArrayList <event > getevent (){

return event;

}

@XmlElement(name = "org.eventb.core.event")

public void setevent (ArrayList <event > event){

this.event = event;

}

@Override

public String toString (){

return "machineFile [configuration =

↪→ "+configuration+", refinesMachine =

↪→ "+refinesMachine+", seesContext =

↪→ "+seesContext+", invariant =

↪→ "+invariant+", version = "+version+",

↪→ variable = "+variable+", event =

↪→ "+event+"]";

}

}

Bibliography

Formal methods wiki : http://formalmethods.wikia.com/wiki/formal methods wiki.
Boniol, F. and Wiels, V. Landing gear system.
C. Mtayer J.-R. Abrial, L. V. Event-B Language.
Jean-Raymond Abrial, Michael Butler, S. H. T. S. H. F. M. L. V. RODIN:

An Open Toolset for Modelling and Reasoning in Event-B.
Microsoft-Research. Introducing AsmL: A Tutorial for the Abstract State

Machine Language.
MULLER, T. Formal methods, model-cheking and rodin plugin development

to link event-b and spin.
S. Rajasekar, P. Philominathan, V. C. RESEARCH METHODOLOGY.

66

