
I-1

Smart Card Based Protection for Dalvik Bytecode

 – Dynamically Loadable Component of an Android

APK

By

Muhammad Shoaib

2011-NUST-MS-CCS-047

Supervisor

Dr. Abdul Ghafoor Abbasi

School of Electrical Engineering and Computer Science

National University of Sciences and Technology

Islamabad, Pakistan.

 July 2015

I-2

Approval

It is certified that the contents and form of the thesis entitled “Smart Card

Based Protection for Dalvik Bytecode – Dynamically Loadable

Component of an Android APK" submitted by Muhammad Shoaib have

been found satisfactory for the requirement of the degree.

Advisor: Dr. Abdul Ghafoor Abbasi

Signature: _________________

Date: __________________

 Committee Member 1: Dr. Adnan Khalid Kiani

 Signature: _________________

 Date: __________________

 Committee Member 2: Mr. Qaiser Chaudhary

 Signature: _________________

 Date: __________________

 Committee Member 3: Ms. Rahat Masood

 Signature: _________________

 Date: __________________

I-3

Abstract

The global smartphone market is growing at a brisk pace and Android, an

open source platform of Google has become one of the most popular mobile

operating systems. Android apps generate lot of revenue which is increasing

every year. The reverse engineering of Android applications is much easier

owing to the use of open source platform. Therefore, it becomes important to

protect applications running on Android from attacks like Break Once Run

Everywhere (BORE), tampering, illegal use and distribution. The goal is to

minimize software flaws by using anti-reverse engineering techniques. In this

paper, we present a protection scheme based on obfuscation, code

modification and cryptographic protection. The combination of these protection

techniques in a single solution can effectively counter reverse engineering on

the Android platform. Our approach makes it tough for an attacker to get the

business logic performed by an Android application such that the resources

and time expended in reverse engineering would be more than are required in

building a new application.

I-4

Publications

In this thesis, we have made the following contributions:

1. In our paper titled Software Protection Techniques: A Survey, authors

Muhammad Shoaib and Abdul Ghafoor Abbasi, to be published in Journal

of Computer Science and Technology (JCST) we have surveyed, reviewed

and categorized current designed and implemented solutions for software

protection. An overview of different protection techniques has been

discussed by primarily focusing on the use of encryption and obfuscation

for software protection and their secure execution. The motivation behind

this paper is to study the existing protection techniques, look at their pros

and cons and then present a comparative study by evaluating their

effectiveness against static and dynamic analysis, tampering and piracy.

The study shows that no protection scheme is entirely perfect. Therefore a

proposition for future research is presented by suggesting a new software

protection technique.

2. In our paper titled, Smart Card Based Protection for Dalvik Bytecode -

Dynamically Loadable Component of an Android APK, authors

Muhammad Shoaib, Abdul Ghafoor and Noor Yasin, published in

proceedings of 7th International Conference on Computer Science and

Information Technology (ICCSIT) held in Barcelona, Spain on 22nd -24th

Dec 2014, we present a software protection scheme for Android

applications that utilizes the benefits of encryption, obfuscation and code

modification to prevent against attacks like reverse engineering, BORE,

illegal use and distribution and tampering. The goal is to give a solution

which is capable of restricting the process of reverse engineering and

illegal distribution for a reasonable amount of time and hence ensures that

desired level of protection of Android applications is achieved.

I-5

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the

award of any degree or diploma at NUST SEECS or at any other educational

institute, except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked at

NUST SEECS or elsewhere, is explicitly acknowledged in the thesis. I also

declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project's design and

conception or in style, presentation and linguistics which has been

acknowledged.

 Author Name: Muhammad Shoaib

 Signature: _________________

I-6

Acknowledgment

I thank Allah for giving me perseverance to pursue my master’s degree and

then my parents and family who have always motivated me to be diligent

and hardworking and helped me believe in my abilities to sore high.

Special thanks to my supervisor Dr. Abdul Ghafoor Abbasi who has always

inspired me with his dedication, commitment and enthusiasm to work. His

guidance, motivation and mentorship by far had been the most

encouraging factors to complete my research work.

I would like to appreciate and thank my committee members, Dr. Adnan

kiyani, Mr. Muhammad Qaiser Chaudhary and Ms. Rahat Masood who had

always given me their precious time and guided me through my work. Their

critique has always helped me in improving my work.

I am glad to have a company of friends who has always provided me all

kind of encouragement throughout the span of my thesis work. I thank my

friends Noor Yasin, Yasir Mehmood and Muhammad Kazim who had been

my companions; they have been critically analyzing and helping me with

my work. I have been part of the KTH-AIS Lab at SEECS which provided

me a competitive, comfortable and friendly environment and necessary

facilities for carrying out my research work.

 Muhammad Shoaib

I-7

Dedication

I-8

Table of Contents
I. CHAPTER 1: Introduction & Motivation .. 1

A. Software protection .. 1

B. Motivation for Attacks: ... 1

C. Android Applications and Piracy: .. 3

D. Android App Protection .. 3

E. Contributions: ... 5

F. Organization of Thesis: ... 5

II. CHAPTER 2: Literature Survey ... 7

A. Attacks on Software .. 8

1) Reverse Engineering .. 8

2) Break Once Run Everywhere (BORE) .. 8

3) Tampering, illegal use & distribution .. 8

B. Protection Against Attacks .. 9

1) Cryptographic and obfuscation techniques .. 9

2) Digital Rights Management (DRM) ... 10

3) Software Security .. 11

C. Android Architecture .. 11

1) Dalvik Executable File (DEX) .. 11

2) Resources and assets .. 12

3) Manifest File.. 12

4) Certificates .. 12

D. Sandboxing .. 12

E. Android Application Build Process: ... 13

F. Reverse Engineering an Android APK: .. 14

1) Analysis Tools .. 14

III. CHAPTER 3: RESEARCH METHODOLOGY .. 16

A. Intro (Research definition) .. 16

B. Research types .. 17

C. Research Methods vs. Research Methodology ... 19

D. Thesis Research Methodology .. 19

E. Research Objectives .. 20

I-9

F. Research Approach ... 20

G. Hypothesis ... 21

H. Observations ... 21

I. Implementation and Verification of Prototype: ... 22

IV. CHAPTER 4: DESIGN .. 23

A. Design Overview ... 24

B. Registration ... 24

C. Encryption & Decryption ... 25

1) Packer .. 25

2) Unpacker ... 26

V. CHAPTER 5: IMPLEMENTATION & ANALYSIS .. 29

A. Android Security Model .. 30

B. Security Architecture .. 30

C. Attack Vectors ... 31

D. Implementation overview ... 32

E. Obfuscation ... 32

F. Encryption & Decryption ... 32

G. Dynamic code modification .. 33

H. Analysis ... 33

I. Implementation Screenshots .. 34

1) Android Emulator: ... 34

2) File Encryption Process: .. 34

3) Entering Decryption Key ... 35

4) File Decryption: ... 36

VI. CHAPTER 6: Conclusion & Future Direction .. 37

A. Advantage and contribution of research: ... 37

B. Limitations and Special Requirements: ... 38

0

List of Figures

Fig 1: Android application Build Process………………………………………………. 14

Fig 2: Decompling an APK……………………….………………………………………15

Fig 3: Thesis Research Metholody Steps………………………………………………22

Fig 4: Design Overview…………………………………………………………………..23

Fig 5: Registration, Authentication & File Download…………………………………25

Fig 6: File Encryption & Decryption Process…………………………………………..27

Fig 7: Android Security Structure……………………………………………………….31

Fig 8: Android Emulator………………………………………………………………….34

Fig 9: File Encryption…………………………………………………………………….35

Fig 10: Entering Decryption Password…………………………………………………36

Fig 11: File Decryption……………………………………………………………………36

1

I. CHAPTER 1: INTRODUCTION & MOTIVATION

A. Software protection

In last few decades, the usage of software applications has increased

tremendously. Software applications and their components are playing very

important and critical role in socio-economic development and have become a

necessity in almost all important fields of life. Ranging from mobile devices to

computers, point-of-sale electronic devices to Photostat machines, physical

access control to logical access control, telecom sector to e-commerce based

web-applications and to software defined systems; Software applications are

all around us including online payment systems, enterprise solutions,

management information systems, critical health care systems and so on. With

such large scale applicability, the software industry generates huge revenue

and has become one of the largest contributing factors in a nation’s economy

and businesses. Worldwide IT spending in the year 2013 exceeded $2.1 trillion

as per International Data Corporation (IDC) predictions. This represents a

growth rate of 5.7% which is well above the worldwide GDP of 3 percent [1].

The importance of software applications and their unprecedented growth have

made software components the prime target of attackers. Software

applications are vulnerable to various attacks. The trend of exploiting these

attacks for illegal use and distribution of software has increased over the

years. Thus software piracy has emerged as a huge threat to the software

industry. Business Software Alliance (BSA) reported that software piracy has

resulted in a loss of 63.4 billion to software industry. More alarming is the fact

that this loss is on the rise and increasing every year as it surged from $58.8

billion in 2010 to $63.4 billion in 2011 [2].

B. Motivation for Attacks:

Attacks on software are for variety of reasons. Apart from economic gains

attained through software cracking, programmers take it as a challenge and do

2

it for fun for their personal satisfaction. Similarly attacks can also result owing

to a disgruntled employee working against the company. There is also a group

of hackers who attack software because they are against the concept of Digital

Rights Management (DRM) and intellectual property rights and advocate for

free and open source software. Another reason behind these illegal activities is

that the open source code debuggers and reverse engineering tools are easily

available and anyone with basic knowledge and tools can actually end up

cracking the software. Thus software cracking has increased probably

because of the ease with which an attacker can analyze software binaries and

executable, and then modify them for illegal or malicious activities.

We usually see registration keys or licensing restrictions in order to use

different software and games. In order to defeat the entire licensing and

registration process, most of the attackers replace the single conditional

branch statement with an unconditional jump to the desired location. Thus, if

an attacker succeeds in breaking the initial protection mechanism then it would

be easy to create tampered versions and distribute it illegally to exacerbate the

piracy problem.

Protecting and breaking software is a long struggle between vendors and

crackers. Users/Clients demand mechanism to ensure that the software they

acquire by paying money is authentic i.e. its source is verified. They want that

software doesn’t contain any malicious content and is not vulnerable. Similarly

the software vendors/developers also have few concerns. They want for

business reasons only authentic and legitimate users of the software with a

valid software license. They also want protection against the attacks like

Reverse Engineering, illegal use and tampering and Break Once Run

Everywhere (BORE) [3]. In order to address clients’ concerns a lot of research

has been done in academia and in industry. They have come up with the

solutions like Antivirus, Firewalls, Intrusion Detection & Prevention Systems

(IDPS) and Digitally Signed Software. These solutions are always evolving and

3

every now and then we get updated versions and updates for such software.

This shows that clients’ side concerns are usually taken care of. On the

contrary the vendor/developer’s concerns are not properly catered with and

mostly ignored. We need solutions that can protect the software against

vulnerabilities exploited by the attackers and reverse engineers.

C. Android Applications and Piracy:

In recent years Android platform, which is developed by the "Android Open

Source Project" has become one of the most popular systems for mobile

devices and the market for Android applications has rapidly grown in variety

and financial volume. This platform is designed in a way that developers can

upload and publish an app on Android market without a review from Google

and users can easily download and install new applications. Since android

apps are java based and open source it is quite easy to decompile them and

reverse engineer. The Android’s smartphone mobile app revenues reached

nearly $6.8 billion by the end of 2013, almost doubling its revenues from the

previous year [4]. This results in an increasing demand to safeguard

intellectual property of developers and protect Android applications files from

piracy.

D. Android App Protection

Android app protection is relatively a new topic. Android applications can be

protected in three ways:

 Anti piracy

 Anti tampering

 Anti reverse engineering.

The anti piracy technique for application protection includes techniques like

4

licensing, Digital Rights management (DRM) and software watermarking.

Google has introduced license verification library, a tool library that protects

apps from being stolen by third parties. Operators like Amazon and Verizon

have introduced their own DRM options to protect their apps from being

pirated or copied. Software watermarking is also an effective tool for anti

piracy.

Anti tampering in Android is mainly achieved via a signature mechanism

which verifies integrity of the APK file. We can also verify the integrity of

classes.dex file in an APK to make sure that source code has not been

tampered with. Encryption can also be used to prevent tampering if key

exchange and key storage is carefully dealt with.

In order to protect the software from malicious attacks, anti reverse

engineering techniques are used for defense. Since Android apps are java

based so protection techniques based on obfuscation that are used to prevent

reverse engineering of java bytecode have been researched and applied to

dalvik bytecode as well.

Code obfuscation is a technique in which a program is automatically

transformed in such a way that its functionality remains the same while it is

more difficult to reverse engineer [5] [6]. Obfuscation is a useful and cost

effective technique and it doesn’t require any special execution environment.

Moreover it is believed to be more effective on Android system [7] [8]. Some

possible code obfuscation methods on the Android platform are identifier

mangling, string obfuscation, dead code insertion [9], clone methods,

reordering expressions and loops, changing the arrays and loop

transformations [10] that aim at increasing the complexity and control flow of

the applications so that it becomes tough for a reverse engineer to get the

business logic behind decompiled code of an Android application [11].

5

Obfuscation has also been used in different code protectors for protection of

Android applications. There are a number of code obfuscators like proguard,

dexguard, allatori, etc that obfuscate the code by removing unused code and

by renaming classes, fields, and methods to semantically obscure names [12].

These obfuscators are used to create apps that are optimized, faster, more

compact, and more difficult to crack.

E. Contributions:

We have seen that anti reversing techniques that have been implemented for

defense of APKs are mostly based on obfuscation. The reason cryptographic

protection is not generally used is that the existing execution environments do

not support execution of encrypted files. Therefore the encrypted file has to be

decrypted before execution and the attacker can intercept the code when it is

decoded for execution into the internal memory. Therefore, we have to

customize/tweak the existing execution environment to enable it to run the

encrypted software. In this paper we have proposed a solution based on

obfuscation, code modification and cryptographic techniques for software

protection. The cryptographic protection prevents static analysis while

obfuscation and code modification delays dynamic analysis. A combination of

both can effectively make reverse engineering hard even for an experienced

attacker.

F. Organization of Thesis:

 This thesis is organized as follows:

Chapter 2 describes the literature survey and related work regarding

software protection in general and android application protection specifically. It

gives an overview of android architecture various tools and techniques that

can be used for protection and reverse engineering.

6

Chapter 3 describes the research methodology followed during the thesis to

achieve the desired goal. A hybrid of research methodologies was used to

achieve the required results including deductive research and conceptual

research methods.

Chapter 4 gives an overview of the proposed solution and then components

of the design are explained with an approach to get maximum inherent

security and ultimate delay of the reverse engineering of APKs. The

shortcomings, restrictions and special requirements if any for every module

are discussed as well.

Chapter 5 gives implementation details, evaluation and analysis of the

proposed solution.

Chapter 6 finally gives conclusion on the android protection method and

suggests future research directions.

7

II. CHAPTER 2: LITERATURE SURVEY

In this chapter we will look into the android structure and its components, the

android APK build process and will show how an android APK can be reversed

engineered using a few tools. We will look into various techniques and tools

that have been used to prevent reverse engineering of Android apps. This

chapter will give the readers an understanding of the Android APK and

protection techniques which will be helpful in understanding concepts

presented later in this dissertation.

8

A. Attacks on Software

Owing to the widespread acceptability of various software applications,

different attacks on software have emerged. We will define these attacks

below:

1) Reverse Engineering

The process of taking a software program’s binary code, analyzing it and

recreating it so as to trace it back to the original source code is called reverse

engineering. It is just like disassembling parts of a machine or vehicle,

understand its functions and then make appropriate changes and adjustments

to get a better performing module. In context of software engineering, reverse

engineering can be used both for productive and non-productive purposes.

Analyzing software to extract design and implementation information can be

useful in a scenario where original source code is lost and it becomes

imperative to reverse engineer the module, get the business logic and improve

it for further use. Similarly a reverse engineer can have malicious intentions as

well in order to steal the business logic of the software.

2) Break Once Run Everywhere (BORE)

It is a class of attack that if successfully executed on one instance of software

can be applied to crack all other instances of the same software. This is owing

to the fact that all copies of software lack diversity and have the same binary

code resulting in development of a generic reverse engineering attack. If

successful, BORE can result in tremendous financial loss to a software

developer/company.

3) Tampering, illegal use & distribution

Tampering is modifying software binary to attain various objectives ranging

from adding malware or malicious content with the code to bypassing the

mechanism of license key to crack to software. Once cracked, software can

9

be illegally used, distributed and even modified to make a copy utilizing the

same business logic and hence violating the Intellectual Property Rights of the

developer.

B. Protection Against Attacks

Security organizations as well as researchers around the globe are working in

three directions to achieve protection against the attacks on software. These

include solutions based on:

1) Cryptographic and obfuscation techniques

The first approach for software protection is by using the techniques of

obfuscation and cryptography. The details of these techniques are given

below:

a) Obfuscation

Code obfuscation is a technique in which a program is transformed in such a

way that its functionality remains the same, while it is more difficult to reverse

engineer using static and dynamic analysis. The objective of obfuscation is to

change the physical appearance of code, to make it unintelligible or hard to

understand. A program can be obfuscated according to the security needs i.e.

for more security a number of obfuscation transformations can be applied, but

the performance of program will also be compromised with every

transformation. Thus there is always a tradeoff between achieving desired

security and the program efficiency and performance. Obfuscation is a useful

technique and provides lot of benefits. It gives protection against static and

dynamic analysis, such that it becomes very difficult and time consuming for

the attacker to reverse engineer the obfuscated program. Obfuscation

introduces diversity, by creating multiple instances of the program, which can

be helpful to counter global attacks. Since obfuscation is a software based

protection method, it incurs no extra costs of maintenance or update, and

provides a cost effective solution. As obfuscation transformations can be

10

applied on high level code providing greater flexibility and platform

independence. Obfuscation techniques can be further classified into the

following types:

 Layout Obfuscation

 Control Flow Obfuscation

 Data Obfuscation

 Preventive Obfuscation

b) Cryptographic Protection

Encryption can be used to protect software as it thwarts the attackers to gain

access to the source code and thus prevent reverse engineering. The main

challenge in this technique is the inherent problem of existing implemented

execution environments that do not support execution of cryptographically

protected software. Therefore, the software has to be decrypted on the fly with

a decryption key prior to its execution.

2) Digital Rights Management (DRM)

Digital Restrictions Management (DRM) is any technology that is built into a

hardware or software product with the aim of limiting its illegal use after

purchase. It is designed to prevent customers from using digital technology in

ways that are conflicting to the business plan of product or service provider. In

essence, DRM removes usage control from the person in possession of digital

content and puts it in the hands of a computer program. E-books with

copyrights, games and software requiring license keys, CDs and DVDs

restricting number of copies or preventing against ripping software are just a

few examples of digital rights management:

11

3) Software Security

Software security, as the name suggests is building secure software by

design. It is based on the principle that building secure software is better than

protecting a vulnerable one. Software security aims at applying good software

engineering practices during the design and implementation phase. It includes

knowing, understanding and analyzing the common threats, designing secure

software and then testing against the attacks [13]. Software security is

relatively a new technique but applying best practices of security at design and

architectural level can make the software inherently secure.

C. Android Architecture

When an Android program is compiled, all of its parts are packaged into one

file called Android Application Package file (APK). An APK is a zipped file

formatted package with .apk extension and contains:

 Dalvik Executable file (.dex file containing dalvik bytecode)

 Resources & Assets

 Certificates

 Manifest file

1) Dalvik Executable File (DEX)

The dex file contains dalvik bytecode i.e. the program code for an Android

application and is executed by the Dalvik Virtual Machine (DVM). Apart from

executing dalvik bytecode, DVM also provides the ability to execute code

which is not part of the dalvik bytecode i.e. by calling native functions within

shared objects. The dalvik bytecode is comparable to java bytecode but is

designed specifically for Android applications. Owing to limitations of

resources on mobile devices, dalvik bytecode is more efficient and compact

than java bytecode.

12

2) Resources and assets

Resources and assets of an APK file include bitmap files, sounds and other

static data that is used by Android application.

3) Manifest File

Every application has an AndroidManifest.xml file in its root directory which

presents essential information about the application to the Android system.

4) Certificates

An APK file, in order to be installed on any device, has to be digitally signed

with a certificate whose private key is held by the developer. Self Signed

certificates can also be used without the need of a Certificate Authority. The

signing process adds no security and merely identifies the application

developer. It happens automatically when we use Eclipse with the Android

Development Toolkit (ADT) plugin.

The Android system comes with an optimizer and verifier tool called “dexopt”

[14]. When an Android application is installed on any device, dexopt will

optimize and verify the dalvik bytecode for efficient execution on underlying

architecture. This process is called optimization and the resultant dex file is

called “odex”.

D. Sandboxing

When it comes to Android security, a key concept is “secure sandbox”. The

Android application Sandbox isolates app data and code execution from other

apps. This is achieved by assigning a unique user ID (UID) to each app

running as a process. By default no application has the permission to interfere

with another app’s resources and private data. Only processes with same

UIDs can share resources. In order to allow an application to interfere with

another application's sandbox, permissions must be explicitly declared up front

13

before the app is installed and cannot be changed after installation.

The only way to break out of application sandbox is by compromising the Linux

kernel which is the operating system Android is based upon. This is called

rooting the device where each app will have a root level access and can

modify other apps data as well as the kernel. Rooting an Android device

renders all the security mechanism null and void.

E. Android Application Build Process:

An Android application needs to go through many steps and requires different

tools for building an APK file which is ready for deployment. The first step of

the build process, as shown in Fig. 1 is compilation of “.java” files into “.class”

files using Java compiler. Class files contain java bytecode and at this step

obfuscation can be applied to this java bytecode. In the next step java

bytecode is transformed into dalvik bytecode using a utility “dx” which comes

with Android Software Development Kit (SDK). The application of “dx” utility on

class files results into a single dex file called “classes.dex”. It is possible to

apply further obfuscation on dalvik bytecode at this stage using Proguard or

any other obfuscation tool. The ApkBuilder then constructs an APK file from

the “classes.dex” file and adds further resources like images and “.so” files.

The “.so” files are shared objects which contain native functions that can be

called from within the DVM. In the last step “jarsigner” adds developer’s

signature to the APK. The signed application can finally be deployed on an

Android device.

14

Fig. 1. Android application build process.

F. Reverse Engineering an Android APK:

Since android is based on an open source platform (JAVA) and we already

stated that it is easy to decompile an APK using some tools and basic

knowledge.

1) Analysis Tools
 There are many tools to interact and analyze Android applications.

Smali/baksmali [15] assembler and disassembler are useful tools for reverse

engineering of Android apps. JAD [16] is a tool that is used to extract source

code from class files. Androguard [17] is python based tool which is used for

reverse engineering of APK files. IDAPro [18], DexDump [19] and Dexter [20]

are also useful code analysis tools which are quite effective for reverse

engineering of Android apps.

We give an example of decompiling an APK using the following tools:

 APK Extractor

 Dex2Jar

 JD-GUI

In the first step we use APK Extractor [21] to extract the contents of an APK.

15

As a result of extraction we can get access to the App resources, DEX file and

the Android Manifest file. As we know the DEX file contains all the code in the

form of dalvik bytecode, so we need to decompile into java .class files.

Dex2Jar [22] is used to convert the resulting files to JAR file which include the

class files. We then use JD-GUI [23] to decompile the class files to readable

java code. The process of reverse engineering is shown below:

Fig. 2. Decompiling an APK.

16

III. CHAPTER 3: RESEARCH METHODOLOGY

This chapter presents the research methodology that we have adopted during

our research work to achieve our goals. Our research was carried out in two

different parts. In the first part a detailed analysis of security situation of

android application files was done, different attack vectors were studied and

also methods to overcome/counter these attacks were analyzed. In the second

segment of our research we focused on design and implementation of a

protection scheme that can effectively counter the various Reverse

Engineering attacks against android application files (APK files). For

completion of our objectives we have adopted different research

methodologies during our research. Different research methods are combined

to conduct the research via a hybrid approach. This chapter illustrates

integration of various research methods into a single one and the effectiveness

of using a hybrid approach for achieving results. In this chapter we define a

complete methodology to identify problem statement, develop a hypothesis

and form a prototype based on the hypothesis.

A. Intro (Research definition)

The word research is derived from the "recherche", which means "to go about

seeking". Research has been defined in a number of different ways:

A broad definition of research is given by Martyn Shuttleworth - "In the

broadest sense of the word, the definition of research includes any gathering

of data, information and facts for the advancement of knowledge" [24].

Another definition of research is given by Creswell who states that - "Research

is a process of steps used to collect and analyze information to increase our

understanding of a topic or issue". It consists of three steps: Pose a question,

collect data to answer the question, and present an answer to the question

[25].

17

Research is a work done on systematic basis to increase knowledge and then

use this knowledge for developing new theories and applications. It involves

investigating a hypothesis, suggesting new interpretations of data and posing

questions for future to explore. Thus research is not an individual activity

rather it’s an act of community. Researchers around the globe build on the

knowledge others have acquired over the years and provide a roadmap for

future research. Every research is done with an objective in mind and

achieving that objective is a motivating factor for research work. There are

different research methods that can lead to achievement of our goals but we

follow the solution and research method which is most effective and efficient.

B. Research types

The various research types are defined below:

Descriptive Research is also called survey research and describes the

state of the art research related to a specific subject area. It employs the

methods of survey and questionnaires to collect data and record observations

but cannot be used for novel contributions.

Analytical Research is a type of research which is done by analyzing

already collected data, evaluating it and drawing conclusions from it. Analytical

research involves analyzing a particular solution and suggesting ways of

improving it.

Applied Research deals with the study of problems faced by industry,

business organizations and society and developing a solution to these

practical problems. This type of research is required for real world problems

and aims at developing new technologies and solutions.

18

Fundamental Research is also called pure research. It is a systematic

study to gain knowledge and understand core concepts related to a

phenomenon. It involves observation of facts to develop a theory and add to

the broad base of organized knowledge that works as a foundation for applied

research.

Quantitative Research , as the name suggests relates to quantifying data

for mathematical analysis. It aims at testing hypothesis and making case and

effect relationships. In this type of research, the researcher gathers data

through surveys to make statistical relationships and test his hypothesis. The

focus of this research is to narrow down a problem and draw conclusions in

connection with mathematical expressions.

Qualitative Research aims at exploring issues and understanding

phenomenon. It uses unstructured data for analysis and answering questions.

Qualitative research methods originated in social and human sciences

and involve the use of various empirical materials like case study, interviews,

group discussions, attitude or opinion tests, program evaluation, etc.

Conceptual Research aims at developing new ideas and concepts on the

basis of existing theories. It focuses only on theory, investigates ideas and

reinterprets them. It involves current review on literature and critically analyzes

a research to give one’s own proposition. Thus conceptual research

formulates new concepts in order to improve existing ideas.

Empirical Research as the name suggests is completely related to

practical work. It aims at verifying facts on basis of observation and experiment

and then draws conclusions. In order to carry out this research, initially a

working hypothesis is formulated which is then evaluated and proved on the

19

basis of extensive experimentation. Empirical research gives the most

powerful support to a given hypothesis.

C. Research Methods vs. Research Methodology

The tasks a researcher carries out during course of his research study are

known as research methods. It includes all the procedures and methods used

to initiate and then complete the research. On the contrary research

methodology is a broader term that encompasses research methods too. It

gives basic guidelines of how to carry a research and defines principles for

carrying a systematic research. Researchers in order to carry out an effective

research need to understand what research methods are most suitable for a

certain scenario. They need to understand the logic behind using a specific

research method and its applicability in the real world. A researcher can

formulate his own research methodology on the basis of problem being

studied and research methods being used. Thus research methodology

provides a much wider scope and covers not only research methods and

techniques but also the logic behind using a specific research method for a

particular problem.

D. Thesis Research Methodology

Thesis research methodology is based on the research objectives that are

targeted. Our research was conducted in two major phases. One was to

analyze the in depth security of android application files (APK) and identify the

vulnerabilities and possible attacks against these applications. The existing

methods and techniques for protection of APKs were also studied. The second

objective was to design a protocol for protection of android APKs against

attacks like reverse engineering and tampering. We proposed a protection

technique build on existing protection methods and implemented a prototype

20

solution. To achieve our objectives and goals we had to adopt a mixed

research methodology approach and use more than one research

methodologies as described above. For instance we used conceptual research

method to study the security architecture of android APK files and adopted

empirical research to implement a solution for security of APKs.

E. Research Objectives

The objectives with which a research is carried out are called research

objectives. We had two major objectives:

o Analyze the security of Android application files.

o Design, implement and validate a framework for protection of android

APK files.

F. Research Approach

To achieve our set of objectives we followed a hybrid of research approaches.

We have used deductive and conceptual research approaches to study the

literature and review it critically. We started by studying the theories related to

android architecture. The protection methods that have been used against

attacks like reverse engineering, BORE and tampering were studied with main

focus on improving the protection against these attacks vectors. Protection

techniques like obfuscation and encryption were examined in detailed by

studying various survey papers, conference papers and journals. All this

research and study led us to the development of our research hypothesis. A

hypothesis is a proposition or supposition based on reasoning and limited

evidence and it serves as a starting point for our investigation and future

research goals. Hypothesis forms the basis of a phenomenon that is to be

tested and verified during the course of our research.

21

G. Hypothesis

The hypothesis of our research was:

Do the security solutions based on obfuscation or encryption prevent the

android APKs from reverse engineering?

Android is based on java which is an open source platform so can we have a

solution which provides run-time security against static and dynamic attacks.

Can we use a combination of solutions to provide a better and more reliable

security model for android APKs protection?

H. Observations

In order to support the hypotheses that have been formulated, the following

observations have been made regarding android bytecode protection.

o Android is based on an open source platform and the protection

techniques like obfuscation which are usually used to protect java

bytecode are also used for dalvik bytecode protection.

o Cryptographic protection and encryption is usually not used for

protection of binaries as the existing platforms and environments do not

support runtime execution of encrypted files.

o A combination of obfuscation and encryption with modification of

execution environment can be used to provide a better security against

reverse engineering attacks.

o Moreover runtime bytecode modification can further make the

application secure making it very tough and time consuming for the

attacker to reverse engineer and APK.

22

I. Implementation and Verification of Prototype:

The last step for deductive research approach was to develop and verify the

prototype. Our design focused on protection of reverse engineering of android

APKs by using a combination of protections techniques like obfuscation,

encryption and bytecode modification. Our prototype includes obfuscation and

encryption. We are not using smartcard for our simulation rather the password

for decryption is entered at runtime from a dialog box. The APK consists of

manisfest file, certificates, images and classes.dex file. The main code and

business logic of an android app lies in classes.dex file and we are only

protecting this file while rest of the data remains unencrypted. The overall

research methodology adapted during the thesis is shown below:

Fig. 3. Thesis Research Methodology steps.

Defining a

Research

Area

Literature

Review

Research

Problem

Identification

Prototype

Testing

Prototype
Implementation

Research

Design

Hypothesis

Formulation

Evaluation

and

Confirmation

23

IV. CHAPTER 4: DESIGN

In this chapter we have first given an overview and then detailed description of

the proposed solution. Various components of the design are explained with

an approach to get maximum inherent security and ultimate delay of the

reverse engineering of APKs. The shortcomings, restrictions and special

requirements if any for every module are discussed as well.

24

A. Design Overview

In the first step of our design, the application developer publishes the app on

the application repository. On receiving a download request from the user, app

repository redirects it to Identity Management Server (IDMS) which requires

the user to register on the IDMS. The user then has to access the app

repository to download the app containing encrypted dex file. The app can only

be downloaded upon authentication from the IDMS. Once the file is

downloaded it can be executed in a customized environment using a Dexfile

loader. The encrypted file is decrypted on the fly using a key provided by the

user via smartcard. An overview of design is given below in Fig. 4:

Fig. 4. Design overview.

B. Registration

The user first registers with the registration server (IDMS) using registration

web page [26]. This registration information is sent using SSL protocol to the

25

Web Server. Once the registration process is complete, a group ID is

generated for the user which acts as a passphrase for generating a Groupkey

for dex file encryption/decryption later. This ID is same for a group of users

with size n and is changed for every subsequent group. For example if we take

a group size of 10 (i.e. n=10), then GroupID will remain same for 10 users and

will change for next group of users. Thus generated key is same for a group

that consists of n users.

In order to download the app, the user sends a download request to app

repository. The app server verifies that user is registered at the IDMS and

allows the download to proceed after authentication as shown in Fig. 5.

Fig. 5. Registration, Authentication & file download

C. Encryption & Decryption

Our protection technique has two main parts:

 Packer (Encryptor)

 Unpacker (Decryptor Stub)

1) Packer

A perfect obfuscator would result in transformation of an application in such a

26

way that it is impossible to analyze it and extract any information from it. But

obviously it is not possible to generate such an ideal transformation. A close

enough result can be achieved by using a technique often used by malware

i.e. packing [27]. A packer takes an executable or binary file, encrypts it so it

cannot be analyzed by the attacker/analyst unless decrypted. We know that

the main code of an Android application is stored in a dex file and we can use

encryption to protect the dex file. In Android, encrypted dex file can easily be

generated using AES [28]. The GroupID which was generated at registration

step is used as a passphrase for generation of key using Password Based

Encryption (PBE) [29]. This key is used to get a .dex file with an encrypted

dalvik bytecode. The application containing encrypted dex file is then stored on

the server. The PBE generated Groupkey is stored by key manager using

public keys of the registered users. Thus each user can use his private key to

extract the GroupKey which will be used for decryption later. In this way the

symmetric key can be distributed to multiple recipients of the group who have

registered at IDMS and downloaded the application with encrypted dex file.

2) Unpacker

The unpacker or Decryptor stub is an important component of our design and

it must be executed when starting an application. It performs some key

functions like fetching the dex file, decrypting and loading it into the memory

and executing it. The loading of dex file is generally achieved by using

reflection which loads dex file from a certain location in a currently running

process. The problem with this simple approach is that data has to be

decrypted on the system prior to execution and this decrypted data can easily

be copied by the analyst, rendering the whole protection scheme futile. The

unpacker in our solution can be used to load encrypted dex file and decrypt it

on the fly for execution.

Our main aim is to make hard the analysis of unpacker and protect dex file

containing dalvik bytecode. This can be achieved by obfuscating the bytecode

and encrypting dex file using a cryptographic function like AES. Android does

27

not allow loading an encrypted dex file. In order to overcome this problem, we

first decrypt the encrypted dex file into a bytearray and then load from it.

Loading a dex file from bytearray into the Dalvik Virtual Machine (DVM) is also

not possible in Android by using standard procedures. Therefore we access

the private method “private static int openDexFile(byte[] fileContents)“ of

DexFile to achieve this task [30]. Private methods in Java can be accessed

either by calling setAccessible (true) on method before invoking it or using

Java Native Interface (JNI). In this way we do not have to store the decrypted

dex file on local storage rather it is present only in the volatile memory and for

rest of the time it remains encrypted. The symmetric key is also stored and

entered via a smartcard by the user and is not stored in the application which

makes protection scheme quite secure. The file encryption and decryption

process is shown in the Fig. 6 below:

Fig. 6. File encryption & decryption process

28

So far the only place where the bytecode is present unencrypted is in the

process memory. An expert attacker can root the device and trace process

memory to get useful information. We know that the DVM as well as the dalvik

bytecode present in the process memory cannot be modified at run time but

we can circumvent that restriction by using native code that can be called from

within the DVM using JNI to modify the dalvik bytecode. Thus, if the attacker

roots the device and accesses process memory still it won’t be easy to analyze

the intercepted code owing to obfuscation and code modification.

29

V. CHAPTER 5: IMPLEMENTATION & ANALYSIS

In this chapter we give an overview and detailed description of how the

proposed solution is implemented. It includes how the protection techniques

are incorporated in the implementation of proposed design described earlier.

Techniques like obfuscation and encryption are utilized for protection of dalvik

bytecode while a code modification technique at runtime is also used to

provide added security. The security of resultant dalvik code is also analyzed

for testing and improvement.

30

A. Android Security Model

The android security model is designed based on layers that provide flexibility

as well as protection for users and developers resulting in secure applications.

Users are given information on how the applications work and what

permissions they have on their device.

B. Security Architecture

The Android operating system's goal is to protect user data, system resources

and provide applications’ isolation. The following security features are provided

are provided to achieve these goals:

 Robust security through the Linux kernel at OS level

 Application sandboxing

 Secure interprocess communication (IPC)

 Application signing

 Application and user-defined permissions

The core of the Android security model is the Linux kernel which has been

around for a very long time. Linux is a very robust kernel and continuously

being improved. It is widely used in industry and trusted by many

professionals. This kernel provides the Android OS with a user-based

permissions model, process isolation, mechanism for secure IPC, and the

ability to remove parts of the kernel.

The figure below shows the different components and considerations of the

Android software stack. Each part of the stack operates under the assumption

that everything below it is properly secured [31].

31

Fig. 7. Android Security Architecture

C. Attack Vectors

Android application attack surfaces can be categorized as:

 The application code/business logic

 Application permissions

 Data at rest and in transit

 Client side logic

 Server side logic

Since, in this research we are dealing with standalone applications so our

focus will be on the applications code/business logic. The developers are

usually under the impression that if they obfuscate their code it cannot be

decompiled and thus they implement the business logic into their applications.

A determined and capable attacker can decompile, de obfuscate and analyze

32

an application to successfully reverse engineer it. Therefore a better approach

is to keep the business logic at the server side. But there are situations when

we have to develop standalone applications with business logic incorporated in

them. In our research we have given a design that can delay the reverse

engineering of an application’s business logic by utilizing a hybrid of protection

techniques.

D. Implementation overview

In our implementation we have used a combination of techniques in order to

implement a secure solution. In order to implement a proof of concept

application we have used an emulator for android SDK. Although the real

application requires smartcard and NFC enabled smart phones, we are using

a dialog box authentication requiring a user input.

E. Obfuscation

Obfuscation is a technique in which program code is transformed in such a

way that it is hard to understand and reverse engineer but the program

remains functionally equivalent. Obfuscation in our code is implemented by

using a built in utility called ProGuard [32] which shrinks the code and

obfuscates it by replacing names by meaningless character sequences. It can

also perform optimizations at the bytecode level, inside and across methods

using techniques like control flow analysis, data flow analysis, partial

evaluation etc. we can also use obfuscator like DexGuard [33] which is slightly

more efficient than ProGuard. Similarly there are other obfuscation techniques

like identifier mangling, string obfuscation, dead code insertion, clone

methods, reordering expressions and loops that can be used for code

obfuscation purposes.

F. Encryption & Decryption

Android application’s code is contained in a file called classes.dex. Therefore

we have used AES to encrypt this file. Android provides the library to use AES

encryption. The component which uses the encryption is called packer. An

33

important component in our solution is unpacker which loads encrypted dex

file and decrypts it on the fly for execution.

Loading an encrypted dex file is not allowed in android. The problem is tackled

by decrypting first the encrypted dex file into a bytearray and then loading from

it. Loading a dex file from bytearray into the Dalvik Virtual Machine (DVM)

requires to access the private method “private static int openDexFile(byte[]

fileContents)“ of DexFile to achieve this task. SetAccessible (true) is called

on the private method before invoking it. In this way the decrypted dex file is

present only in the volatile memory and for rest of the time it remains

encrypted. The symmetric key is also not stored in application and is entered

by the user.

G. Dynamic code modification

In order to modify Dalvik bytecode during runtime, we have to use native code.

This is done using JNI, which enables us to execute native code within current

process context. This means we can access the process memory where dalvik

bytecode is running. The advantage of using native code is that we can access

arbitrary memory locations and modify the dalvik bytecode at runtime.

H. Analysis

We have used obfuscation and encryption that provide protection against

static analysis. The dynamic analysis is countered by runtime modification of

the dalvik bytecode. Since the dalvik bytecode is altered at runtime an attacker

must analyze the native code as well for reverse engineering purposes which

makes the task even harder.

34

I. Implementation Screenshots

Some important implementation steps and their screenshots are shown below.

1) Android Emulator:

Instead of using a real smartphone an emulated android environment is used

for testing and deploying the APK.

Fig. 8: Android Emulator

2) File Encryption Process:

 The dex file is encrypted using AES and 16 Byte key for this proof of concept

application. Once the file is encrypted we cannot deploy it, extract it or display

its contents without the decryption key.

35

Fig 9: File Encryption

3) Entering Decryption Key

 The decryption key is entered at runtime through a dialogue box in order to

get the decrypted dex file. The entering of key via dialog box is just for this proof

of concept application. In a real environment we have to use NFC enabled

smartphone and use smart card to store the key and reenter it for decryption.

36

Fig 10: Entering password for file decryption.

4) File Decryption:

 Finally the file is successfully decrypted after entering the correct decryption

key.

Fig 11: File Decryption

37

VI. CHAPTER 6: CONCLUSION & FUTURE DIRECTION

Software security is an ongoing research and android application security is

relatively a new topic. Over the years developers have been trying to protect

their codes and binaries from attackers. Attacks like Reverse Engineering,

tampering and BORE have evolved and techniques like obfuscation and

encryption have been used to counter these attacks.

There is no such thing as perfect security and usually the aim of protection

technique is to sufficiently delay the reverse engineering time so that attacker

has to utilize more time and resources. As a matter of fact every protection

scheme can be bypassed if it is assumed that the attacker has infinite

resources. Therefore, if the resources required to reverse engineer an

application are more than the value of application, the protection scheme

should be deemed successful.

A. Advantage and contribution of research:

The protection technique proposed in this research is for the applications

where we have to deliver the app code and resources to the users in order to

run the application in offline mode. By applying the approach proposed here

we are making it difficult for the attackers to reverse engineer and access the

bytecode. Once we modify the execution environment, the dex file is decrypted

on the fly into a bytearray from which it is loaded and then executed. The

advantage of this approach is that code is not decrypted into the internal

memory and is only present unencrypted in the volatile memory. Another

advantage of our solution is that the decrypted dex file has not to be stored in

optimized form and thus can be deleted to prevent unauthorized access. The

proposed technique also provides some degree of protection in case the

device is rooted and process memory is accessed. Obfuscation and the use of

JNI for code modification together make analysis hard. Apart from dalvik

bytecode the attacker also has to analyze the native code which further delays

the reverse engineering process. An important technique that we have used in

this research is that decryption key is provided via smartcard by the user. Thus

38

we do not have to store the key with the application. The decryption key is

secured by encrypting it with users’ public key so only authorized users can

get access to the key. Cryptographic protection using Groupkey ensures that

an attacker has to be a registered user which may also be used in future for

tracking the attacker.

B. Limitations and Special Requirements:

The protection scheme presented in this research has some limitations as

well. It cannot be used at large scale and is ideal only for a company or small

group of people. Our proposed scheme does not protect the resources and

assets of an Android app and protects only the dex file containing dalvik

bytecode. The size of dex file should not be very large for this scheme to be

applicable. This technique requires the Android device to be compatible with

smartcards.

Software protection is a challenge and protection of Android apps is still a

relatively new research. Android is basically built on an open source platform

owing to which reverse engineering an Android app is easy as compared to

applications based on some other platform. Therefore, when dealing with

highly secure systems and information, it is better to put all the business logic

and code on the server side. Using a real time service or remote server to

deliver content is the best practice to prevent source code from reversing.

39

Appendix

Algorithm / Code

Encryption of dex file:

public class MainActivity extends Activity {
 //@SuppressWarnings("unchecked")
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 try {

 //static void encrypt() throws IOException,
NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException {

 final String libPath = Environment.getExternalStorageDirectory() +
"/classes.dex";
 // Here you read the cleartext.
 FileInputStream fis = new FileInputStream(libPath);
 // This stream write the encrypted text. This stream will be wrapped
by another stream.
 FileOutputStream fos = new
FileOutputStream(Environment.getExternalStorageDirectory() +
"/encrypted.dex");

 // Length is 16 byte
 SecretKeySpec sks = new SecretKeySpec("thetoughpassword".getBytes(),
"AES");
 // Create cipher
 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, sks);
 // Wrap the output stream
 CipherOutputStream cos = new CipherOutputStream(fos, cipher);
 // Write bytes
 int b;
 byte[] d = new byte[8];
 while((b = fis.read(d)) != -1) {
 cos.write(d, 0, b);
 }
 // Flush and close streams.
 cos.flush();
 cos.close();
 fis.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }

/* @Override

40

 /*protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 try {
 final String libPath = Environment.getExternalStorageDirectory()
+ "/shoaib.jar";
 final File tmpDir = getDir("dex", 0);

 final DexClassLoader classloader = new DexClassLoader(libPath,
tmpDir.getAbsolutePath(), null, this.getClass().getClassLoader());
 final Class<Object> classToLoad = (Class<Object>)
classloader.loadClass("com.example.custom.MyClass");

 final Object myInstance = classToLoad.newInstance();
 final Method doSomething = classToLoad.getMethod("doSomething");

 doSomething.invoke(myInstance);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }*/

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is
present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

Decryption Via Dialog Box

public class MainActivity extends Activity {

 //@SuppressWarnings("unchecked")
 private static final String TAG = "MyActivity";
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 AlertDialog.Builder alert = new AlertDialog.Builder(this);

 alert.setTitle("Title");
 alert.setMessage("Message");

 // Set an EditText view to get user input
 final EditText input = new EditText(this);
 alert.setView(input);

41

 alert.setPositiveButton("Ok", new
DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton)
{
 String value = input.getText().toString();
 try {
 Decrypt(value);
 Log.d(TAG,value);
 } catch (InvalidKeyException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (NoSuchAlgorithmException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (NoSuchPaddingException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 // catch (Exception e) {
 // e.printStackTrace();
 // }
 }});

 alert.setNegativeButton("Cancel", new
DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int
whichButton) {
 // Canceled.
 }
 });

 alert.show(); }
/* static void encrypt(String Value) throws IOException,
NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException {

 final String libPath = Environment.getExternalStorageDirectory() +
"/shoaib.jar";
 // Here you read the cleartext.
 FileInputStream fis = new FileInputStream(libPath);
 // This stream write the encrypted text. This stream will be wrapped by
another stream.
 FileOutputStream fos = new
FileOutputStream(Environment.getExternalStorageDirectory() +
"/encrypted.jar");

 // Length is 16 byte
 SecretKeySpec sks = new SecretKeySpec(Value.getBytes(), "AES");
 // String stringKey = Base64.encodeToString(sks.getEncoded(),
Base64.DEFAULT);
 Log.d(TAG,Value);
 // Create cipher

42

 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, sks);
 // Wrap the output stream
 CipherOutputStream cos = new CipherOutputStream(fos, cipher);
 // Write bytes
 int b;
 byte[] d = new byte[8];
 while((b = fis.read(d)) != -1) {
 cos.write(d, 0, b);
 }
 // Flush and close streams.
 cos.flush();
 cos.close();
 fis.close();
 Decrypt(Value);

}*/
static void Decrypt(String Key) throws IOException, NoSuchAlgorithmException,
NoSuchPaddingException, InvalidKeyException {

 final String libPath = Environment.getExternalStorageDirectory() +
"/encrypted.dex";
 FileInputStream fis = new FileInputStream(libPath);

 FileOutputStream fos = new
FileOutputStream(Environment.getExternalStorageDirectory() +
"/decrypted.dex");
 // byte[] encodedKey = Base64.decode(Key, Base64.DEFAULT);
 // SecretKeySpec originalKey = new SecretKeySpec(encodedKey, 0,
encodedKey.length, "AES");
 // Log.d(TAG,Key);
 SecretKeySpec sks = new SecretKeySpec(Key.getBytes(), "AES");
 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.DECRYPT_MODE, sks /*originalKey*/);
 CipherInputStream cis = new CipherInputStream(fis, cipher);
 int b;
 byte[] d = new byte[8];
 while((b = cis.read(d)) != -1) {
 fos.write(d, 0, b);
 }
 fos.flush();
 fos.close();
 cis.close();
}

/* @Override
 /*protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 try {
 final String libPath = Environment.getExternalStorageDirectory()
+ "/classes.dex";
 final File tmpDir = getDir("dex", 0);

43

 final DexClassLoader classloader = new DexClassLoader(libPath,
tmpDir.getAbsolutePath(), null, this.getClass().getClassLoader());
 final Class<Object> classToLoad = (Class<Object>)
classloader.loadClass("com.example.custom.MyClass");

 final Object myInstance = classToLoad.newInstance();
 final Method doSomething = classToLoad.getMethod("doSomething");

 doSomething.invoke(myInstance);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }*/

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is
present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }

}

44

References

[1]. International Conference on. IEEE. International Monetary Fund. (2013) World Economic Outlook.

www.imf.org

[2]. Business software alliance. http://globalstudy.bsa.org/2011. Last Accessed: 2013-10-28.

[3]. Arxan Technologies. Protecting .NET Software Applications, Arxan Best Practices, White Paper,

http://www.softwaremag.com/pdfs/whitepapers/protecting-NET-software-applications-

wp.pdf?CFID=14965377\& CFTOKEN=16715129

[4]. Abi research. https://www.abiresearch.com/press/android-mobile-app-revenues-will-reach-68-billion-

Last Accessed: 2013-09-18.

[5]. G. Naumovich and N. Memon, “Preventing piracy, reverse engineering, and tampering. Computer,

vol.36, no. 7, pp. 64-71, July 2003.

[6]. P. Sivadasan, P. SojanLa, and N. Sivadasan, “Jdatatrans for array obfuscation in java source codes to

defeat reverse engineering from decompiled codes,” in Proc. 2nd Bangalore Annual Compute Conference,

Bangalore, India, January 2009, pp. 13. ACM.

[7]. A. Venkatesan, “Code obfuscation and virus detection,”M.S. Project, Dept. Comp. Science, San Jose

State University, California, USA, 2008.

[8]. S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against static and dynamic reverse

engineering,” In Information Hiding, pp. 270-284. Springer Berlin Heidelberg, 2011.

[9] P. Schulz, “Code protection in android,” Insititute of Computer Science, Rheinische Friedrich-

Wilhelms-Universitgt Bonn, Germany, 2012.

[10]. D. Kundu, ”JShield: A Java Anti-Reversing Tool,” PhD thesis, San Jose State University, California,

USA, 2011.

[11]. S. Ghosh, S., S.R. Tandan, S. and K. Lahre, “Shielding android application against reverse

engineering,” ESRSA Publications, International Journal of Engineering Research and Technology. Vol.

2. No. 6, June-2013.

[12]. Piao, Yuxue, Jin‐Hyuk Jung, and Jeong Hyun Yi. "Server‐based code obfuscation scheme for APK

tamper detection." Security and Communication Networks (2014).

[13]. McGraw, Gary. Software security: building security in. Vol. 1. Addison-Wesley Professional, 2006.

[14]. DexOpt. https://android.googlesource.com/platform/build/+/donut-release/tools/dexpreopt/dexopt-

wrapper/

[15]. Smali. https://code.google.com/p/smali Last Accessed: 2013-09-18.

[16]. JAD. http://varaneckas.com/jad

[17]. Androguard. https://code.google.com/p/androguard

[18]Idapro. http://hex-rays.com/idapro

https://code.google.com/p/androguard
http://hex-rays.com/idapro

45

[19]. Dex dump 1.1.0. http://dex-dump.soft112.com

[20]. Dexter. http://dexter.dexlabs.org

[21]. Apktool. http://code.google.com/p/android-apktool

[22]. Dex2jar. http://code.google.com/p/dex2jar

[23]. JD GUI. http://jd.benow.ca

[24]. Shuttleworth, Martyn (2008). "Definition of Research". Explorable. Explorable.com. Retrieved 14

August 2011.

[25]. Creswell, J. W. (2008). Educational Research: Planning, conducting, and evaluating quantitative and

qualitative research (3rd ed.). Upper Saddle River: Pearson.

[26]. A.G. Abbasi, S. Muftic, “Cryptonet: Integrated secure workstation,” In International Journal of

Advanced Science and Technology, vol. 12, pp. 1-10, November, 2009.

[27]. obfuscation using code packing. http://www.foocodechu.com/?q=node/55/ Last Accessed: 2013-03-

13.

[28]. Cipher. http://developer.android.com/reference/javax/crypto/Cipher.html/ Last Accessed: 2013-02-

11.

[29]. http://nelenkov.blogspot.com/2012/04/using-password-based-encryption-on.html Last Accessed:

2014-06-25

[30]. Dexfile https://android.googlesource.com/platform/libcore-snapshot/+/ics-

mr1/dalvik/src/main/java/dalvik/system/DexFile.java/ Last Accessed: 2014-01-15.

[31]. Gunasekera, Sheran. "Android Security Architecture." Android Apps Security. Apress, 2012. 31-45.

[32]. Proguard. http://proguard.sourceforge.net/

[33]. Dexguard. http://www.saikoa.com/dexguard/

http://dex-dump.soft112.com/
http://code.google.com/p/android-apktool
http://code.google.com/p/dex2jar
http://explorable.com/definition-of-research

