
1

HARDWARE IMPLEMENTATION OF OFDM ON FPGA FOR SDR

APPLICATIONS

By

NC Saad ur Rehman Fazal

PC Mariam Khizar

NC Usama Karim

Submitted to the Faculty of Electrical Engineering, Military College of Signals

National University of Sciences and Technology, Rawalpindi in partial

fulfillment for the requirements of a B.E Degree in Telecom Engineering

JULY 2011

ABSTRACT

The project is to develop a digital communication system that would implement OFDM

on FPGA. The system would be able to transmit and receive voice or data between two

separate FPGA kits. It handles all the baseband processing of an OFDM system and an

RF Front-end could be connected for wireless transmission.

The aim of the project is to establish a system that would be able to communicate at

higher data rates. The FPGA is specifically being used for its fast, real-time processing

capabilities along with the efficient high speed RAM made up of flip-flops and logic

gates. A prototype code of the OFDM system has been established using Verilog HDL.

The prototype includes various OFDM blocks with specifications of 802.11a standard. It

incorporates a 16-point FFT block and a 2/3 convolutional encoder. The FPGA used for

implementation is Xilinx Spartan 3E 1600K.

The developed prototype has been tested on software by simulating it on the Xilinx ISE

suite11.1 and the results were in accordance with the theoretically calculated ones. A bit

stream is introduced as an input signal in place of audio data for testing purposes. The

developed code was also synthesized using the Xilinx environment to make sure that the

required resources do not exceed the available ones. The Code was tested successfully on

the hardware after the implementation of the code on FPGA and the data has been

transmitted over a wired medium. Voice is fed as an input at the transmitter end and

recovered back at the receiver end.

DECLARATION

Declaration: - No portion of the work presented in this dissertation has been

submitted in support of another award or qualification either at this

institution or elsewhere

Dedicated to

 Almighty Allah,

 Faculty for their help

 and Our Parents for their support and care.

ACKNOWLEDGMENTS

We would like to take this opportunity to express our deepest gratitude to

our supervisor, Dr. Adnan Rashdi for his guidance, help and encouragement

throughout the period of completing our project.

 We would like to thank to Ma`am Saba Zia of SEECS, NUST for all the

help and guidance especially in using Xilinx Spartan development board and

configuration of the related software.

We would also like to sincerely thank all our friends and all those, whoever

has helped us either directly or indirectly, in the completion of our final year

project and thesis.

TABLE OF CONTENTS

Chap 1 ... 1

Introduction .. 1

1.1. Overview ... 1

1.2. Project Background ... 1

1.3. Project Objective ... 3

1.4. Project Scope .. 4

1.5. Organization of Thesis .. 5

Chapter 2 .. 7

Design and Development ... 7

2.1. Digital Communication System Structure .. 7

2.2. Multichannel Transmission ... 8

2.3. Basic Principles of OFDM .. 9

2.3.1. Orthogonality Defined ... 10

2.3.2. OFDM Carriers .. 11

2.3.3. Generation of OFDM Signals .. 12

2.3.4. Guard Period .. 15

2.4. Advantages of OFDM ... 16

2.4.1. Bandwidth Efficiency .. 16

2.4.2. OFDM overcomes the effect of ISI .. 17

2.4.3. OFDM combats the effect of frequency selective fading and burst 18

2.5. The weakness of OFDM ... 18

2.5.1. Peak-to-Mean Power Ratio .. 19

2.5.2. Synchronization ... 20

2.6. Applications of OFDM ... 20

2.6.1. Digital Broadcasting .. 21

2.6.2. Terrestrial Digital Video Broadcasting .. 21

2.6.3. IEEE 802.11a/HiperLAN2 and MMAC Wireless LAN .. 22

2.6.4. Mobile Wireless Communication .. 22

2.7. FPGA .. 23

2.7.1. History and Modern Developments ... 25

2.7.2. Architecture .. 26

2.7.3. FPGA OR DSP? ... 31

2.7.4. Applications of FPGA .. 32

2.7.5. Applications in Digital Signal Processing ... 34

2.7.6. Applications in Software Defined Radios .. 34

Chap 3 ... 36

Development and Design ... 36

3.1. Overview ... 36

3.2. The OFDM Model .. 36

3.2.1. Scrambler and De-Scrambler ... 37

3.2.2. Convolutional Encoder and Decoder ... 39

3.2.3. Interleaving and De-Interleaving ... 40

3.2.4. Modulation Mapping and De-mapping .. 41

3.2.5. FFT / IFFT ... 41

3.2.6. Guard Insertion and Removal .. 44

3.3. Implementation on FPGA: .. 46

3.3.1. Integration of Transmitter and Receiver: ... 46

3.3.2. Burning of Code on FPGA: ... 46

3.3.3. Audio input and DAC / A/D: ... 48

Chap 4 ... 51

Analysis and Evaluation .. 51

4.1. Overview ... 51

4.2. Simulink Results ... 51

4.3. ISE Results .. 53

5. Future Work ... 59

6. Conclusion .. 60

Bibliography ... 61

Appendix - A ... 62

LIST OF FIGURES

Figure 2-1: A Typical Digital Transmission System 18

Figure 2-2: Orthogonality of sub-carriers 21

Figure 2-3: OFDM sub carriers in the frequency domain 23

Figure 2-4: Binary Phase-Shift Key (BPSK) representation of ―01011101‖ 24

Figure 2-5: A set of orthogonal signals 25

Figure 2-6: Block diagram for OFDM communications 26

Figure 2-7: Implementation of cyclic prefix 27

Figure 2-8: Two ways to transmit the same four pieces of binary data 28

Figure 2-9: Show amplitude varying in OFDM 30

Figure 2-10 : Xilinx Spartan 3E Kit 31

Figure 2-11: FPGA Chip Blocks 38

Figure 2-12: Simplified example illustration of a logic cell 39

Figure 2-13: Logic Block Pin Locations 40

Figure 2-14: Switch box topology 41

Figure 3-1: Block Diagram of the OFDM System 48

Figure 3-2: Scrambler of the standard generator polynomial 49

Figure 3-3 : Convolutional Encoder with the given Generator Polynomial 50

Figure 3-4: FFT 16-point signal broken up into 16 different signals 54

Figure 3-5: The effect on Timing Tolerance of adding a Guard Interval 56

Figure 3-6: Example of the guard interval 56

Figure 3-7 : FPGA Code Burning Process 58

Figure 3-8 : DAC and A/D Ports in the FPGA Kit 60

Figure 4-1 : Simulink OFDM Model 63

Figure 4-2 : Magnitude of the FFT Signal along the frequency 64

Figure 4-3 : Simulation Performance 64

Figure 4-4 : Scrambler Synthesis Report in ISE 65

Figure 4-5 : Output of Scrambler 65

Figure 4-6 : Output of Encoder 66

Figure 4-7 : Interleaver Synthesis Report in ISE 66

Figure 4-8 : Output of Interleaver 67

Figure 4-9 : Output of QPSK Mapper 68

Figure 4-10 : QPSK Mapper Synthesis Report in ISE 68

Figure 4-11 : Output of QPSK Demapper 69

KEY TO SYMBOLS

ADC Analog to Digital Converter

ADSL Asymmetric Digital Subscriber Line

ASIC Application-specific integrated circuit

AWGN Additive white Gaussian noise

BPSK Binary Phase Shift Keying

CPLD Complex Programmable Logic Device

DAC Digital to analog Converter

DAB Digital Audio Broadcast

DVB Digital Video Broadcast

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFT Fast Fourier Transform

HDL Hardware description Language

IOB Input Output Blocks

IFFT Inverse Fast Fourier Transform

ICI Inter Carrier Interference

ISI Inter Symbol Interference

LUT Look up Tables

MMAC Multimedia Mobile Access Communication

Mux Multiplexer

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

SPI Serial Peripheral Interface

UART Universal asynchronous receiver/transmitter

UCF User Constraints File

USRP Universal Software Radio Peripheral

VLSI Very Large Scale Integration

1

Chap 1

Introduction

1.1. Overview

This chapter gives the basic information about the project. The chapter covers the

material on project background, project objectives, project scope and the thesis outline.

The problem statement of the project will also be carried out in this chapter.

1.2. Project Background

With the rapid growth of digital communication in recent years, the need for high-speed

data transmission has been increased. The mobile telecommunications industry faces the

problem of providing the technology that be able to support a variety of services ranging

from voice communication with a bit rate of a few kbps to wireless multimedia in which

bit rate up to 100 Mbps. Many systems have been proposed and OFDM system has

gained much attention for different reasons.

 Although OFDM was first developed in the 1960s, only in recent years, it has been

recognized as an outstanding method for high-speed cellular data communication where

its implementation relies on very high-speed digital signal processing. This method has

2

only recently become available with reasonable prices versus performance of hardware

implementation.

Since OFDM is carried out in the digital domain, there are several methods to implement

the system. One of the methods to implement the system is using ASIC (Application

Specific Integrated Circuit). ASICs are the fastest, smallest, and lowest power way to

implement OFDM into hardware. The main problem using this method is inflexibility of

design process involved and the longer time to market period for the designed chip.

Another method that can be used to implement OFDM is general purpose Microprocessor

or Micro Controller. Power PC 7400 and DSP Processor is an example of microprocessor

that is capable to implement fast vector operations. This processor is highly

programmable and flexible in term of changing the OFDM design into the system. The

disadvantages of using this hardware are, it needs memory and other peripheral chips to

support the operation. Besides that, it uses the most power usage and memory space, and

would be the slowest in term of time to produce the output compared to other hardware.

Field-Programmable Gate Array (FPGA) is an example of VLSI circuit which consists of

a ―sea of NAND gates‖ whereby the function are customer provided in a ―wire list‖. This

hardware is programmable and the designer has full control over the actual design

implementation without the need (and delay) for any physical IC fabrication facility. An

FPGA combines the speed, power, and density attributes of an ASIC with the

programmability of a general purpose processor will give advantages to the OFDM

system. An FPGA could be reprogrammed for new functions by a base station to meet

3

future needs particularly when new design is going to fabricate into chip. This will be the

best choice for OFDM implementation since it gives flexibility to the program design

besides the low cost hardware component compared to others.

1.3. Project Objective

The aim for this project is to design a baseband OFDM processing including FFT (Fast

Fourier Transform) and IFFT (Inverse Fast Fourier Transform), mapping (modulator),

Guard Insertion and scrambling and Convolutional Encoding using hardware

programming language (Verilog HDL). These designs were developed using Verilog

HDL programming language in design entry software provided along with the FPGA kits

available i.e. Xilinx Spartan 3E. Software used is Xilinx ISE v11.1.

The design is then implemented in the Digilent FPGA development board with Xilinx

Spartan 3E FPGA. Description on the development board will be carried out at

methodology chapter.

Several tools involved in the process of completing the design in real hardware which can

be divided into two categories, software tools and hardware tools. The softwares used in

this project are MATLAB 7.9.1 and Simulink for Simulation purposes and Xilinx ISE

v11.1 including Xilinx Plan Ahead and iSim modules. While the hardware used is Xilinx

Spartan 3E FPGA with 1600K Gates (xc3s1600e-5fg320) for real-time hardware

implementation.

4

1.4. Project Scope

The work of the project will be focused on the design of the processing block which is 16

point IFFT and FFT function. The design also includes mapping block, Convolutional

Encoding, Scrambling and Guard Insertion block sets. All design needed to be verified to

ensure that there are no errors in Verilog programming before being simulated. Design

process will be described on the methodology chapter.

The second scope is to implement the design into FPGA hardware development board.

This process is implemented if all designs are correctly verified and simulated using

particular software. Implementation includes hardware programming on FPGA or

downloading hardware design into FPGA and software programming.

Creating test bench program also include in the scope of the project. Test bench is a

program developed using Verilog programming and is intended as the input interface for

user as well as to control data processing performed by the hardware. Creating this

software required in understanding the operation of the FFT and IFFT computation

process. Further chapter will discuss the method on developing the program from

mathematical algorithm into behavioral synthesis.

The above is to verify the result of the output for each module which has been developed.

Test bench program is used to deliver the computation result if input value is provided by

5

the user. These computation values should be verified and tested to ensure the correctness

of the developed module. ‗iSim‘ Software is used to compare the computation performed

by the FPGA hardware with the software. There are several test performed to the design

modules and the test process also will be discuss in the methodology chapter.

1.5. Organization of Report

The report about the project covers all the necessary information required to understand

the proposed digital communication system. It also emphasizes on why there was a need

to develop it and how did we achieve it.

The first chapter contains the introductory notes about the project. It describes the

objectives and the scope of the project. The need for a modern high speed communication

system is introduced in the project background.

The second chapter gives an overview of the proposed OFDM system and discusses all

the relevant theoretical information available for the system and the FPGAs. We will

discuss the specifications of the kit used in the project later on in the report. The relevant

applications of OFDM and FPGA are also given in this chapter to emphasize on their

importance.

The third chapter deals with the development of the project according to the objectives

established and what techniques were used to achieve those objectives. The procedure

followed to implement the system is discussed in this chapter. The blocks of OFDM used

6

and implemented are explained in detail and later on the technique to code them in

Verilog and then burn them on FPGA are also discussed. Later on the use of DAC and

A/D in the FPGA kit is also mentioned.

 The fourth chapter deals with the analysis of the project. To quantify the completion at

every stage the results were compared and analyzed. The simulation in MATLAB

environment and then in Xilinx ISE environment are presented in this chapter. The results

of signal outputs in the timing diagram and the synthesis reports for every module are

shown and explained in the chapter.

7

Chapter 2

Design and Development

2.1. Digital Communication System Structure

A digital communication system involves the transmission of information in digital form

from one point to another point as shown in Figure 1.1

 Figure 2-1: A Typical Digital Transmission System

Regardless of the form of communication method, the three basic elements in a

communication system consist of transmitter, channel and receiver[1].

The source of information is the messages that are to be transmitted to the other end in

the receiver. A transmitter can consist of source encoder, channel encoder and

8

modulation. Source encoder employed an efficient representation of the information such

that resources can be conserved. A channel encoder may include error detection and

correction code. The aim is to increase the redundancy in the data to improve the

reliability of transmission. A modulation process convert the base band signal into band

pass signal before transmission.

During transmission, the signal experiences impairment which attenuates the signals

amplitude and distort signals phase. Also, the signals transmitting through a channel also

impaired by noise, which is assumed to be Gaussian distributed component.

In the receiver end, the reversed order of the steps in the transmitter is performed. Ideally,

the same information must be decoded in the receiving end.

2.2. Multichannel Transmission

OFDM started in the mid 60‘s, Chang [2] proposed a method to synthesis band limited

signals for multi channel transmission. The idea is to transmit signals simultaneously

through a linear band limited channel without inter channel (ICI) an inter symbol

interference (ISI).

After that, Saltzberg [3] performed an analysis based on Chang‘s work and he conclude

that the focus to design a multi channel transmission must concentrate on reducing

crosstalk between adjacent channels rather than on perfecting the individual signals.

9

In 1971, Weinstein and Ebert [4] made an important contribution to OFDM. Discrete

Fourier transform (DFT) method was proposed to perform the base band modulation and

demodulation. DFT is an efficient signal processing algorithm. It eliminates the banks of

sub carrier oscillators. They used guard space between symbols to combat ICI and ISI

problem. This system did not obtain perfect orthogonality between sub carriers over a

dispersive channel.

It was Peled and Ruiz [5] in 1980 who introduced cyclic prefix (CP) that solves the

orthogonality issue. They filled the guard space with a cyclic extension of the OFDM

symbol. It is assume the CP is longer than impulse response of the channel.

2.3. Basic Principles of OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier transmission

technique, which divides the available spectrum into many carriers, each one being

modulated by a low rate data stream.

OFDM is similar to FDMA in that the multiple user access is achieved by subdividing the

available bandwidth into multiple channels that are then allocated to users. However,

OFDM uses the spectrum much more efficiently by spacing the channels much closer

together. This is achieved by making all the carriers orthogonal to one another,

preventing interference between the closely spaced carriers.

10

2.3.1. Orthogonality Defined

Orthogonality is defined for both real and complex valued functions. The functions ϕ
m
(t)

and ϕ
n
(t) are said to be orthogonal with respect to each other over the interval a < t < b if

they satisfy the condition:

OFDM splits the available bandwidth into many narrowband channels (typically 100-

8000), each with its own sub-carrier[7]. These sub-carriers are made orthogonal to one

another, meaning that each one has an integer number of cycles over a symbol period.

Thus the spectrum of each sub-carrier has a ―null‖ at the centrefrequency of each of the

other sub-carriers in the system, as demonstrated in Figure 2.0 below.

Figure 2-2: Orthogonality of sub-carriers

11

 This results in no interference between the sub-carriers, allowing then to be spaced as

close as theoretically possible. Because of this, there is no great need for the users of the

channel to be time-multiplexed, and there is no overhead associated with switching

between users. This overcomes the problem of overhead carrier spacing required in

FDMA.

2.3.2. OFDM Carriers

As fore mentioned, OFDM is a special form of Multi Carrier Modulation (MCM) and the

OFDM time domain waveforms are chosen such that mutual orthogonality is ensured

even though sub-carrier spectra may over-lap. With respect to OFDM, it can be stated

that orthogonality is an implication of a definite and fixed relationship between all

carriers in the collection.

It means that each carrier is positioned such that it occurs at the zero energy frequency

point of all other carriers. The sinc function, illustrated in Figure 2-3 exhibits this

property and it is used as a carrier in an OFDM system.f
u

is the sub-carrier spacing

12

Figure 2-3: OFDM sub carriers in the frequency domain

2.3.3. Generation of OFDM Signals

To implement the OFDM transmission scheme, the message signal must first be digitally

modulated. The carrier is then split into lower-frequency sub-carriers that are orthogonal

to one another. This is achieved by making use of a series of digital signal processing

operations.

The message signal is first modulated using a modulation scheme such as BPSK, QPSK,

or some form of QAM (16QAM or 64QAM for example). In BPSK, each data symbol

modulates the phase of a higher frequency carrier. Figure 2.2 shows the time domain

representation of 8 symbols (01011101) modulated within the carrier using BPSK. In the

frequence domain, the effect of the phase shifts in the carrier is to expand the bandwidth

occupied by the BPSK signal to a Sinc function. The zeros (or ―nulls‖) of the sinc

frequency occur at intervals of the symbol frequency.

13

Figure 2-4: Binary Phase-Shift Key (BPSK) representation of ―01011101‖

Originally, multicarrier systems were implemented through the use of separate local

oscillators to general each individual sub-carrier. This was both inefficient and costly.

With the advent of cheap powerful processors, the sub-carriers can now be generated

using Fast Fourier Transforms (FFT). The FFT is used to calculate the spectral content of

the signal. It moves a signal from the time domain where it is expressed as a series of

time events to the frequency domain where it is expressed as the amplitude and phase of a

particular frequency. The inverse FFT (IFFT) performs the reciprocal operation.

The underlying principle here is that FFT can keep tones orthogonal to one another if the

tones have an integer number of cycles in a symbol period. In the example below we see

signals with 1, 2 and 4 cycles respectively that form an orthogonal set.

14

Figure 2-5: A set of orthogonal signals

To convert the sub-carriers to a set of orthogonal signals, the data is first combined into

frames of a suitable size for an FFT or IFFT. A FFT should be always in the length of 2N

(where N is an integer). Next, an N-point IFFT is performed and the data stream is the

output of the transmitter. Thus when the signals of the IFFT output are transmitted

sequentially, each of the N channel bits appears at a different sub-carrier frequency.

By using an IFFT process, the spacing of the sub carriers is chosen in such a way that at

the frequency where the received signal is evaluated, all other signals is zero. In order for

this orthogonality, the receiver and the transmitter must be perfectly synchronized. This

means they both must assume exactly the same modulation frequency and the same time-

scale for transmission. At the receiver, the exact inverse operations are performed to

recover the data. Since the FFT is performed in this stage, the data is back in the

frequency domain. It is then demodulated according to the block diagram below.

15

Figure 2-6: Block diagram for OFDM communications

2.3.4. Guard Period

One of the most important properties of OFDM transmission is its robustness against

multi path delay. This is especially important if the signal‘s sub-carriers are to retain their

orthogonality through the transmission process. The addition of the guard period between

the transmitted symbols can be used to accomplish this. The guard period allows time for

multipath signals from the previous symbol to dissipate before information from the

current symbol is recorded.

The most effective guard period is a ‗cyclic prefix‘ which is appended at the front of

every OFDM symbol. The cyclic prefix is a copy of the last part of the OFDM symbol,

and is of equal or greater length than the maximum delay spread of the channel (see

Figure 2.5). Although the insertion of the cyclic prefix imposes a penalty on bandwidth

efficiency, it is often the best compromise between performance and efficiency in the

presence of inter-symbol interference.

16

Figure 2-7: Implementation of cyclic prefix

2.4. Advantages of OFDM

OFDM has several advantages compared to other type of modulation technique

implemented in wireless system. Below are some of the advantages that describe the

uniqueness of OFDM compared to others:

2.4.1. Bandwidth Efficiency

A key aspect of all high speed communication system lies in its bandwidth efficiency.

This is especially important for wireless communications where all current and future

devices are expected to share an already crowded range of carrier frequencies. In OFDM,

the frequency band containing the message is sub-divided into parallel bit streams of

lower frequency carriers. These sub-carriers are designed to be orthogonal to one another,

such that they can be separated out at the receiver without interference from neighboring

carriers[7]. In this manner, OFDM is able to space the channels much closer together,

which allows for more efficient use of the spectrum than through simple frequency

division multiplexing.

17

The advantage of orthogonality in OFDM does not happen in FDMA where up to 50% of

the total bandwidth is wasted due to the extra spacing between channels.

2.4.2. OFDM overcomes the effect of ISI

The limitation of sending in high bitrate is the effect of inter-symbol interference (ISI).

As communication systems increase their information transfer speed, the time for each

transmission becomes shorter. Since the delay time caused by multi-path remains

constant, ISI becomes a limitation in sending high data rate communication. OFDM

avoids this problem by sending many low speed transmissions simultaneously. For

example figure 2.6 below shows two ways to transmit the same four pieces of binary

data.

Figure 2-8: Two ways to transmit the same four pieces of binary data

Suppose that this transmission takes four seconds. Then, each piece of data in the left

picture has duration of four second. When transmit these data, OFDM would send the

18

four pieces simultaneously as shown on the right. In this case, each piece of data has

duration of 16 seconds. This longer duration leads to fewer problems with ISI.

2.4.3. OFDM combats the effect of frequency selective fading and burst

error

OFDM is used to spread out a frequency selective fade over many symbols. This

effectively randomizes burst errors caused by a deep fade or impulse interference, so that

instead of several adjacent symbols being completely destroyed, many symbols are only

slightly distorted. This allows successful reconstruction of a majority of them even

without forward error correction (FEC). Because of this dividing, an entire channel

bandwidth into many narrow sub-bands, the frequency response over each individual sub-

band is relatively flat. Since each sub-channel covers only a small fraction of original

bandwidth, equalization is potentially simpler than in a serial system.

2.5. The weakness of OFDM

Although OFDM is excellent in combating fading effect, it does not mean that OFDM is

free from any weaknesses. Below are some of the weaknesses for the OFDM system.

19

2.5.1. Peak-to-Mean Power Ratio

OFDM signal has varying amplitude as shown by figure 2.7. It is very important that the

amplitude variations be kept intact as they define the content of the signal. If the

amplitude is clicked or modified, then an FFT of the signal would no longer result in the

original frequency characteristics and the modulation may be lost.

Figure 2-9: Show amplitude varying in OFDM

This is one of the drawbacks of OFDM, the fact that it requires linear amplification. In

addition, very large amplitude peaks may occur depending on how the sinusoids line up,

so the peak-to-average power ratio is high. This means that the linear amplifier has to

have a large dynamic range to avoid distorting the peaks. The result is a linear amplifier

with a constant, high bias current resulting in very poor power efficiency.

20

2.5.2. Synchronization

The limitation of OFDM in many applications is that it is very sensitive to frequency

errors caused by frequency differences between the local oscillators in the transmitter and

receiver. Carrier frequency offset causes a number of impairments including attenuation

and rotation of each of the sub carriers and inter-carrier interference (ICI) between sub-

carriers. In the mobile radio environment, the relative movement between transmitter and

receiver causes Doppler frequency shifts[7].

 In addition, the carriers can never be perfectly synchronized. These random frequency

errors in OFDM system distort orthogonality between sub carriers and thus inter-carrier

interference (ICI) occurs.

To optimize the performance of an OFDM link, time and frequency synchronization

between the transmitter and receiver is of absolute importance. This is achieved by using

known pilot tones embedded in the OFDM signal or attaching fine frequency timing

tracking algorithms within the OFDM signal`s cyclic extension (guard interval).

2.6. Applications of OFDM

OFDM has been chosen for several current and future communications systems all over

the world. It is well suited for systems in which the channel characteristics make it

difficult to maintain adequate communications link performance. In addition to high-

speed wireless applications, wired systems such as asynchronous digital subscriber line

21

(ADSL) and cable modem utilize OFDM as its underlying technology to provide a

method of delivering high-speed data.

 Recently, OFDM has also been adopted into several European wireless communications

applications such as the digital audio broadcast (DAB) and terrestrial digital video

broadcast (DVB-T) systems.

2.6.1. Digital Broadcasting

Standardized in 1995, Digital Audio Broadcasting (DAB) was the first standard to use

OFDM. DAB uses a single frequency network, but the efficient handling of multi path

delay spread results in improved CD quality sound, new data services, and higher

spectrum efficiency. A broadcasting industry group also created Digital Video

Broadcasting (DVB) in 1993.

 DVB produced a set of specifications forthe delivery of digital television over cable,

DSL and satellite. In 1997 the terrestrial network, Digital Terrestrial Television

Broadcasting (DTTB), was standardized. DTTB utilizes OFDM in up to 2,000 and 8,000

sub-carrier modes[8].

2.6.2. Terrestrial Digital Video Broadcasting

A pan-broadcasting-industry group created Digital Video Broadcasting (DVB) in 1993.

DVB produced a set of specifications for the delivery of digital television over cable,

DSL and satellite. In 1997 the terrestrial network, Digital Terrestrial Television

22

Broadcasting (DTTB), was standardized. DTTB utilizes OFDM in the 2,000 and 8,000

sub carrier modes.

2.6.3. IEEE 802.11a/HiperLAN2 and MMAC Wireless LAN

OFDM in the new 5GHz band is comprised of 802.11a, HiperLAN2, and WLAN

standards. In July 1998, IEEE selected OFDM as the basis for the new 802.11a 5GHz

standard in the U.S. targeting a range of data rates up to 54 Mbps. In Europe, ETSI

BRAN is now working on three extensions for OFDM in the HiperLAN standard: (i)

HiperLAN2, a wireless indoor LAN with a QoS provision; (ii) HiperLink, a wireless

indoor backbone; and (iii) HiperAccess, an outdoor, fixedwireless network providing

access to a wired infrastructure. In Japan, consumer electronics companies and service

providers are cooperating in the MMAC project to define new wireless standards similar

to those of IEEE and ETSI BRAN.

2.6.4. Mobile Wireless Communication

OFDM‘s capability to work around interfering signals gives it potential to threaten

existing CDMA (2.5G and 3G) wireless technology. This is what is allowing the

technology to push forward in Europe. In densely populated areas where buildings,

vehicles and people can scatter the path of a signal, broadcasters as well as high-speed

data providers are anxious to eliminate multi-path effects.

23

 According to industry analysts, telecom providers may also be lured to OFDM

technology because it could end up causing only a fraction of what it costs to implement

3G wireless technologies.

2.7. FPGA

A Field-programmable Gate Array (FPGA) is an integrated circuit designed to be

configured by the customer or designer after manufacturing—hence "field-

programmable". The FPGA configuration is generally specified using a hardware

description language (HDL), similar to that used for an application-specific integrated

circuit (ASIC) (circuit diagrams were previously used to specify the configuration, as

they were for ASICs, but this is increasingly rare). FPGAs can be used to implement any

logical function that an ASIC could perform. The FPGA Kit used for the project is given

below.

24

Figure 2-10 : Xilinx Spartan 3E Kit

FPGAs contain programmable logic components called "logic blocks", and a hierarchy of

reconfigurable interconnects that allow the blocks to be "wired together"—somewhat like

many (changeable) logic gates that can be inter-wired in (many) different configurations.

Logic blocks can be configured to perform complex combinational functions, or merely

simple logic gates like AND and XOR. In most FPGAs, the logic blocks also include

memory elements, which may be simple flip-flops or more complete blocks of memory.

25

2.7.1. History and Modern Developments

Xilinx Co-Founders, Ross Freeman and Bernard Vonderschmitt, invented the first

commercially viable field programmable gate array in 1985 – the XC2064.The XC2064

had programmable gates and programmable interconnects between gates, the beginnings

of a new technology and market. The XC2064 boasted a mere 64 configurable logic

blocks (CLBs), with two 3-input lookup tables (LUTs). More than 20 years later,

Freeman was entered into the National Inventors Hall of Fame for his invention.

FPGAs got a glimpse of fame in 1997, when Adrian Thompson, a researcher working at

the University of Sussex, merged genetic algorithm technology and FPGAs to create a

sound recognition device. Thomson‘s algorithm configured an array of 10 x 10 cells in a

Xilinx FPGA chip to discriminate between two tones, utilizing analogue features of the

digital chip.

Current advances in field-programmable gate array (FPGA) technology have enabled

high-speed processing in a compact footprint, while retaining the flexibility and

programmability of software radio technology. FPGAs are popular for high-speed,

compute-intensive, reconfigurable applications (fast Fourier transform (FFT), finite

impulse response (FIR) and other multiply-accumulate operations). Reconfigurable cores

are available from FPGA and board vendors and enable implementation of modulator,

demodulator and CODEC functionality in the FPGA. System designers are increasingly

looking for front-end acquisition/converter products with integrated FPGA to offload the

baseband processing and reduce data transfer rates.

26

The first kit was believed to have 9,000 gates and the kits being manufactured nowadays

have more than a Million gates with the reduced size and energy consumption. The

FPGA kits nowadays allow the user to process the data very easily and quickly through

many input and output options along with the flexibility of simulating the code by using

the company provided software along the kits. Xilinx provides the complete working

environment in the form of Xilinx ISE Suite along with the FPGA kits which includes all

the necessary tools to simulate and run the code on FPGAs.

In recent years semiconductor process technology has progressed to the point where

FPGAs can be installed in both product prototypes and mass produced products, thanks to

higher capacities and lower prices. In particular, we are now seeing many cases where

FPGAs are adopted in products that are produced at low volumes and products where

there is a need for long-term supply, and the demand to install a full-scale graphics sub-

system on these FPGAs is growing every year.

2.7.2. Architecture

The most common FPGA architecture consists of an array of logic blocks (called

Configurable Logic Block, CLB, or Logic Array Block, LAB, depending on vendor), I/O

pads, and routing channels. Generally, all the routing channels have the same width

(number of wires). Multiple I/O pads may fit into the height of one row or the width of

one column in the array.

27

Figure 2-11: FPGA Chip Blocks

An application circuit must be mapped into an FPGA with adequate resources. While the

number of CLBs/LABs and I/Os required is easily determined from the design, the

number of routing tracks needed may vary considerably even among designs with the

same amount of logic. For example, a crossbar switch requires much more routing than a

systolic array with the same gate count. Since unused routing tracks increase the cost

(and decrease the performance) of the part without providing any benefit, FPGA

manufacturers try to provide just enough tracks so that most designs that will fit in terms

of LUTs and IOs can be routed. This is determined by estimates such as those derived

from Rent's rule or by experiments with existing designs.

In general, a logic block (CLB or LAB) consists of a few logical cells (called ALM, LE,

Slice etc). A typical cell consists of a 4-input Lookup table (LUT), a Full adder (FA) and

a D-type flip-flop, as shown below. The LUTs are in this figure split into two 3-input

28

LUTs. In normal mode those are combined into a 4-input LUT through the left mux. In

arithmetic mode, their outputs are fed to the FA. The selection of mode is programmed

into the middle mux. The output can be either synchronous or asynchronous, depending

on the programming of the mux to the right, in the figure example. In practice, entire or

parts of the FA are put as functions into the LUTs in order to save space.

Figure 2-12: Simplified example illustration of a logic cell

ALMs and Slices usually contain 2 or 4 structures similar to the example figure, with

some shared signals. CLBs/LABs typically contain a few ALMs/LEs/Slices.

In recent years, manufacturers have started moving to 6-input LUTs in their high

performance parts, claiming increased performance.

Since clock signals (and often other high-fanout signals) are normally routed via special-

purpose dedicated routing networks in commercial FPGAs, they and other signals are

separately managed. For this example architecture, the locations of the FPGA logic block

pins are shown below.

29

Figure 2-13: Logic Block Pin Locations

Each input is accessible from one side of the logic block, while the output pin can

connect to routing wires in both the channel to the right and the channel below the logic

block.

Each logic block output pin can connect to any of the wiring segments in the channels

adjacent to it.

Similarly, an I/O pad can connect to any one of the wiring segments in the channel

adjacent to it. For example, an I/O pad at the top of the chip can connect to any of the W

wires (where W is the channel width) in the horizontal channel immediately below it.

Generally, the FPGA routing is unsegmented. That is, each wiring segment spans only

one logic-block before it terminates in a switch box. By turning on some of the

programmable switches within a switch box, longer paths can be constructed. For higher

speed interconnect, some FPGA architectures use longer routing lines that span multiple

logic blocks.

Whenever a vertical and a horizontal channel intersect, there is a switch box. In this

architecture, when a wire enters a switch box, there are three programmable switches that

30

allow it to connect to three other wires in adjacent channel segments. The pattern, or

topology, of switches used in this architecture is the planar or domain-based switch box

topology. In this switch box topology, a wire in track number one connects only to wires

in track number one in adjacent channel segments, wires in track number 2 connect only

to other wires in track number 2 and so on. The figure below illustrates the connections in

a switch box.

Figure 2-14: Switch box topology

Modern FPGA families expand upon the above capabilities to include higher level

functionality fixed into the silicon. Having these common functions embedded into the

silicon reduces the area required and gives those functions increased speed compared to

building them from primitives. Examples of these include multipliers, generic DSP

blocks, embedded processors, high speed IO logic and embedded memories.

FPGAs are also widely used for systems validation including pre-silicon validation, post-

silicon validation, and firmware development. This allows chip companies to validate

their design before the chip is produced in the factory, reducing the time-to-market.

31

To shrink the size and power consumption of FPGAs, vendors such as Tabula and Xilinx

have introduced new 3D or stacked architectures.

Following the introduction of its 28nm 7-series FPGAs, Xilinx revealed that that several

of the highest-density parts in those FPGA product lines will be constructed using

multiple dice in one package, employing technology developed for 3D construction and

stacked-die assemblies. The technology stacks several (three or four) active FPGA dice

side-by-side on a silicon interposer – a single piece of silicon that carries passive

interconnect.

2.7.3. FPGA OR DSP?

FPGAs have evolved from being flexible logic design platforms to signal processing

engines. They are now an essential component of software radio due to their flexibility

and real-time processing capabilities. Increasingly, system designers are porting more and

more signal processing functionalities in FPGAs. The flexibility of having the ability to

integrate logic design with signal processing is pushing designers to replace traditional

digital signal processors (DSPs) with FPGAs.

FPGAs are inherently suited for high-speed parallel multiply and accumulate functions.

Current generation FPGAs can perform 18 × 18 multiplication operation at speeds in

excess of 200 MHz. This makes FPGAs an ideal platform for operations such as FFT,

FIR, digital down-converters (DDC), digital up-converters (DUC), correlators and pulse

compression (for radar processing).

32

It does not imply, however, that all DSP functionalities may be implemented in FPGAs.

Floating point operations are difficult to implement in FPGAs due to the large amount of

real estate needed in the device. Also, processing involving matrix inversion (or division)

is also more suited to a DSP/GPP platform. FPGAs and DSP will thus coexist for a long

time, and a flexible platform will include a mix of both.

2.7.4. Applications of FPGA

Applications of FPGAs include digital signal processing, software-defined radio,

aerospace and defense systems, ASIC prototyping, medical imaging, computer vision,

speech recognition, cryptography, bioinformatics, computer hardware emulation, radio

astronomy, metal detection and a growing range of other areas.

FPGAs originally began as competitors to CPLDs and competed in a similar space, that

of glue logic for PCBs. As their size, capabilities, and speed increased, they began to take

over larger and larger functions to the state where some are now marketed as full systems

on chips (SoC). Particularly with the introduction of dedicated multipliers into FPGA

architectures in the late 1990s, applications which had traditionally been the sole reserve

of DSPs began to incorporate FPGAs instead.

FPGAs especially find applications in any area or algorithm that can make use of the

massive parallelism offered by their architecture. One such area is code breaking, in

particular brute-force attack, of cryptographic algorithms.

33

FPGAs are increasingly used in conventional high performance computing applications

where computational kernels such as FFT or Convolution are performed on the FPGA

instead of a microprocessor.

The inherent parallelism of the logic resources on an FPGA allows for considerable

computational throughput even at a low MHz clock rates. The flexibility of the FPGA

allows for even higher performance by trading off precision and range in the number

format for an increased number of parallel arithmetic units. This has driven a new type of

processing called reconfigurable computing, where time intensive tasks are offloaded

from software to FPGAs.

The adoption of FPGAs in high performance computing is currently limited by the

complexity of FPGA design compared to conventional software and the turn-around

times of current design tools.

Traditionally, FPGAs have been reserved for specific vertical applications where the

volume of production is small. For these low-volume applications, the premium that

companies pay in hardware costs per unit for a programmable chip is more affordable

than the development resources spent on creating an ASIC for a low-volume application.

Today, new cost and performance dynamics have broadened the range of viable

applications.

34

2.7.5. Applications in Digital Signal Processing

Digital signal processing has traditionally been done using enhanced microprocessors.

While the high volume of generic product provides a low cost solution, the performance

falls seriously short for many applications. Until recently, the only alternatives were to

develop custom hardware (typically board level or ASIC designs), buy expensive fixed

function processors (e.g. an FFT chip), or use an array of microprocessors.

Recent increases in Field Programmable Gate Array performance and size offer a new

hardware acceleration opportunity. FPGAs are an array of programmable logic cells

interconnected by a matrix of wires and programmable switches. Each cell performs a

simple logic function defined by a user's program. An FPGA has a large number (64 to

over 20,000) of these cells available to use as building blocks in complex digital circuits.

Custom hardware has never been so easy to develop.

The ability to manipulate the logic at the gate level means you can construct a custom

processor to efficiently implement the desired function. By simultaneously performing all

of the algorithm‘s sub-functions, the FPGA can outperform a DSP by as much as 1000:1.

2.7.6. Applications in Software Defined Radios

SDR baseband processing often requires both processors and FPGAs. In such

applications, the processor handles system control and configuration functions, while the

FPGA implements the computationally intensive signal-processing data path and control,

35

minimizing the latency in the system. When it is necessary to switch from one standard to

another, the processor can switch dynamically between major sections of software, while

the FPGA can be completely reconfigured, as necessary, to implement the data path for

the particular standard.

FPGAs can be used as co-processors to interface with DSPs and general-purpose

processors, thereby providing higher system performance and lower system costs. Having

the freedom to choose where to implement baseband-processing algorithms adds another

dimension to the flexibility when implementing SDR algorithms.

36

Chap 3

Development and Design

3.1. Overview

In this chapter we will discuss the methodology and approach leading to the development

of this project. We will start the chapter by looking on the different modules of OFDM

implemented in our Communication system necessary for quality transmission and how

they all sum up to form a fast and reliable digital communication system. Later on, we

will discuss the approaches to implement the communication and the reason why we

chose the FPGA for the implementation of OFDM. We will sum up this chapter by

discussing the tools and softwares used to develop the prototype.

3.2. The OFDM Model

OFDM is implemented according to the various standards and techniques required in the

communication system. The OFDM model we used in our project was according to the

IEEE 802.11 standard. The modulation technique used is QPSK. 16-point FFT and IFFT

are employed and the convolutional encoding along with the scrambling precedes the

FFT block. Guard insertion and Guard Removal also are a part of the prototype

developed. The block diagram of the developed system is given below:

37

Figure 3-1: Block Diagram of the OFDM System

Now we will discuss the proposed OFDM communication system in detail.

3.2.1. Scrambler and De-Scrambler

A scrambler is a device that transposes or inverts signals or otherwise encodes a message

at the transmitter to make the message unintelligible at a receiver not equipped with an

appropriately set descrambling device. Also referred to as a randomizer, it is a device that

manipulates a data stream before transmitting. The manipulations are reversed by a

descrambler at the receiving side.

Scrambler is basically built from modulo-2 and shift operations at appropriate clock

cycles. At first the temporary bit is calculated at negative edge of the cycle and then

pushed to the register along with the shift to right at the positive edge of the clock.

Scrambler structure is basically similar to that of Linear Feedback Shift Register (LFSR).

In our design, we have used a frame synchronous scrambler which takes data in octets

and are placed in the serial bitstream. The scrambler used employs the generator

Scrambler
Convolutional

Encoder
Interleaving

QPSK
Mapping

IFFT
Guard

Insertion

Removing
Guard

FFT
QPSK

Demapping
De-interleaving

Convolutional
Decoder

De-
Scrambler

38

polynomial S(x) = x
7
 + x

4
+1. The same scrambler is used to scramble transmit data and to

de-scramble received data. While transmitting, the initial state of the scrambler will be set

over random non-zero state. The LFSR scrambler used is shown below in the figure.

Figure 3-2: Scrambler of the standard generator polynomial

There are two main reasons why scrambling is used:

 It facilitates the work of a timing recovery circuit, an automatic gain control and other

adaptive circuits of the receiver (eliminating long sequences consisting of '0' or '1'

only).

 It eliminates the dependence of a signal's power spectrum upon the actual transmitted

data, making it more dispersed to meet maximum power spectral density

requirements (because if the power is concentrated in a narrow frequency band, it can

interfere with adjacent channels due to the cross modulation and the inter-modulation

caused by non-linearities of the receiving tract).

The descrambler works in the same way and brings back the original sequence that was

scrambled.

x
7
 x

6
 x

5
 x

4
 x

3
 x

2
 x

1
 x

0

+ +

39

3.2.2. Convolutional Encoder and Decoder

Convolutional Encoder is implemented in the OFDM system for channel coding, which is

an essential part of any good digital communication system. Its purpose here is to provide

forward error correction. It helps provide redundant bits on channel to incorporate

channel encoding.

In this design, the encoder uses the generator polynomials g0=x
5
+x

4
+x

2
+x and g1=x

5

+x
2
+x+1 of rate (R) = 1/2. The data rates are improved by applying puncturing. It is the

procedure of omitting some of the encoded bits in the transmitter. On the receiving side,

the decoder inserts the dummy zeros in place of the omitted bits. Convolutional encoder‘s

local controller controls the working of the encoder with puncturing module in

conjunction.

Figure 3-3 : Convolutional Encoder with the given Generator Polynomial

The convolutional encoding rate used in the project is according to the IEEE Standard

802.11a which specifies the rate of 1/2 by basic convolutional encoder and 2/3 and 3/4

with punctured codes. If puncture enable is set high, controller performs basic coding and

sends the data to puncturing module on the next clock cycle and punctures the incoming

40

code according to the rate flag. When the rate flag is set high, 3/4 convolutional encoding

is performed, else it is set for rate 2/3.

3.2.3. Interleaving and De-Interleaving

Interleaving is a way to arrange data in a non-contiguous way to increase performance.

Many communication channels are not memory-less: errors typically occur in bursts

rather than independently. If the number of errors within a code word exceeds the error-

correcting code's capability, it fails to recover the original code word. Interleaving

ameliorates this problem by shuffling source symbols across several code words, thereby

creating a more uniform distribution of errors.

Symbol interleaver / de-interleaver can mitigate the effects of burst noise. Typically,

these functions are needed for transport channels that require a bit error ratio (BER) in

the order of 10
-6

. The encoded data bits are interleaved by the interleaver block with a

block size corresponding to number of bits in OFDM symbol. The interleaver is defined

by a two-step permutation.

The interleaver is defined by a two-step permutation. The first permutation ensures that

adjacent coded bits are mapped onto nonadjacent subcarriers. The second permutation

ensures that adjacent coded bits are mapped alternately onto less and more significant bits

of the constellation, thereby avoiding long runs of low reliability bits.

k will be used to denote the index of the coded bit before the first permutation; i will

denote the index after the first and before the second permutation; j will denote the index

after the second permutation, just prior to modulation mapping.

The first permutation is defined by

41

i = (N CBPS /16) (k mod 16) + floor(k/16) k = 0, 1, ..., N CBPS - 1

The function floor (.) denotes the largest integer not exceeding the parameter.

The second permutation is defined by

j = s × floor(i/s) + (i + N CBPS - floor(16 × i/ N CBPS)) mod s i = 0, 1, ... N CBPS - 1

wheres is determined by the number of coded bits per subcarrier N DBPS

according to

s = max (N DBPS /2, 1)

3.2.4. Modulation Mapping and De-mapping

The encoded and interleaved binary serial input data shall be divided into groups of 2 bits

each and converted into complex numbers representing QPSK constellation points. The

modulation mapper takes two bits as input and after mapping, outputs a 28-bit stream

with most significant 14 bits representing real, and the rest 14 representing imaginary part

of the signal. Unsigned fractional bits for each of the 2-bit input were first calculated

using MATLAB and then the code was developed accordingly.

3.2.5. FFT / IFFT

In our design, pipelined FFT module has been designed and radix-2 FFT has been

implemented. We have implemented 16-point FFT; it consists of 8 butterfly structures

and 4 total stages. The FFT block takes 28 bit N complex data points as serial input

where N represents the number of points.

42

In the design, serially pipelined FFT has been employed. Parallel pipelined FFT

processors are employed to meet the growing demand of high processing rate. Highly

parallel implementations obtain high computation rates but require the simultaneous

distribution of all data samples. The high rate of distribution of data required to keep the

processors busy is impossible to achieve especially in real time applications involving

word-serial data. This problem coupled with limited input/output resources in FPGAs

makes the parallel algorithm inefficient.

The serially pipelined FFT computes one transform in O(N) processing cycles, producing

the output sequentially at the input data rate. So the cascaded FFT is ideally suited for

real-time signal processing. Cascaded FFT uses registers organized as shift-registers

between butterfly computation units.

FFT is the most important process in implementation of OFDM. The FFT operates by

decomposing an N point time domain signal into N time domain signals each composed

of a single point. The second step is to calculate the N frequency spectra corresponding to

these N time domain signals. Lastly, the N spectra are synthesized into a single frequency

spectrum. This way FFT is basically the process that divides the input signal into N

number of orthogonal frequencies, which is the basic and unique property of OFDM

technique.

43

Figure 3-4: FFT 16-point signal broken up into 16 different signals

 In our system, 16 point signal is decomposed through four separate stages. The first

stage breaks the 16 point signal into two signals each consisting of 8 points. The second

stage decomposes the data into four signals of 4 points. This pattern continues until there

are N signals composed of a single point. An interlaced decomposition is used each time

a signal is broken in two, that is, the signal is separated into its even and odd numbered

samples. There are Log2N stages required in this decomposition, i.e., a 16 point signal

(2
4
) requires 4 stages.

The structure is replicated at each clock cycle for N/2 butterfly operations and is executed

in parallel for all stages to get serially pipelined data output of complex 16-points. The

source controller initializes stage and butterfly controller according to N=16 and forwards

the control to the data address generator. Address generator will produce addresses

considering radix-2 structure, for the 2 complex points to be sent to Data Memory.

These complex points are then forwarded to the radix block where two complex values

for the next stage are produced. In the radix block, the second complex point is multiplied

44

by the twiddle factor generated by the twiddle address generator and then increments the

butterfly number for that stage. This cycle continues till N/2 butterflies. In pipelined

implementation, this process is carried out for log2N i.e., 4 cycles and transformed data is

presented on the output pins after 16 cycles.

3.2.6. Guard Insertion and Removal

Guard insertion is required at the transmitter end to avoid inter-symbol interference.

Shifting the time TGUARD creates the ―circular Prefix‖ used in OFDM to avoid ISI from

any previous frame.

The reasons to use a cyclic prefix for the guard interval are:

 To maintain the receiver carrier synchronization ; some signals instead of a long

silence must always be transmitted;

 Cyclic convolution can still be applied between the OFDM signal and the channel

response to model the transmission system.

The figure below shows the effect of adding a guard interval after every OFDM symbol.

We can see that the tolerance on timing the samples is considerably more relaxed.

45

Figure 3-5: The effect on Timing Tolerance of adding a Guard Interval

Each symbol now is made up of two parts. The whole signal is now contained in the

active symbol (highlighted for the symbol M in the figure below) the last part of which is

also repeated at the start of the symbol and is called the guard interval.

Figure 3-6: Example of the guard interval

46

3.3. Implementation on FPGA:

After the OFDM structure is created on software, it has to be implemented on FPGA for

real-time transmission. The architecture would be a simplex system where one FPGA kit

would act as transmitter and the other would act as the receiver. All the processing would

be done on FPGA and the data would be transmitted between the two kits serially over

the UART port.

3.3.1. Integration of Transmitter and Receiver:

Initially all the modules of OFDM were individually coded in Verilog and then the

modules for transmitter were integrated to create a stand-alone system. The transmitter

end takes voice (analog) input, performs the formerly mentioned functions and then sends

the digital data to the receiver over the wired connection where the original signal is

recovered.

3.3.2. Burning of Code on FPGA:

Before implementing the code on hardware, it is first synthesized on the software Xilinx

ISE v11.1. Synthesis results give a summary of all the processing and memory resources

that would be required to successfully implement the code on FPGA. This result also

verifies if there are any processes in the code that cannot be implemented on hardware in

form of gates and latches. After successful synthesis, I/O pins have to be configured.

There are various input, output and I/O pins available on FPGA kit. In addition, an FX2

interface device is also available with Spartan 3e with an additional 40 differential I/O

47

pins that can also be used. UCF file is created for the code on which every input and

output is assigned the location of a pin on the FPGA.

Figure 3-7 : FPGA Code Burning Process

When the code is burnt on the FPGA, then all the modules will get their inputs

correspondingly from the physical pins that had been assigned in the UCF file. The

software used for burning the code on FPGA Cores in the Xilinx Environment is

‗iMPACT‘ application of the Xilinx ISE v11.1.

48

3.3.3. Audio input and DAC / A/D:

On the transmitter end, voice analog signal is fed to the ADC circuit on the FPGA kit.

This circuit consists of a pre-amplifier and an analog-to-digital converter IC. This circuit

interacts with the FPGA over a Serial Peripheral Interface (SPI) where FPGA acts as the

master and ADC acts as slave. After converting the analog signal to digital format, it is

sent to the corresponding input port from where it enters the transmitter. After the

insertion of guard interval, the digital data packet leaves the transmitter and is sent to the

receiver over the wired channel through the serial UART port.

Initially all the modules of OFDM were individually coded in Verilog and then the

modules for transmitter were integrated to create a stand-alone system. The transmitter

end takes voice (analog) input, performs the formerly mentioned functions and then sends

the digital data to the receiver over the wired connection where the original signal is

recovered.

Before implementing the code on hardware, it is first synthesized on the software Xilinx

ISE 11. Synthesis results give a summary of all the processing and memory resources that

would be required to successfully implement the code on FPGA. This result also verifies

if there are any processes in the code that cannot be implemented on hardware in form of

gates and latches. After successful synthesis, I/O pins have to be configured. There are

various input, output and I/O pins available on FPGA kit. In addition, an FX2 interface

device is also available with Spartan 3e with an additional 40 differential I/O pins that

can also be used. UCF file is created for the code on which every input and output is

assigned the location of a pin on the FPGA. When the code is burnt on the FPGA, then all

49

the modules will get their inputs correspondingly from the physical pins that had been

assigned in the UCF file.

The Xilinx Spartan 3E has various serial and parallel input ports but it does not contain

and audio input/output jack. For this reason we have developed an external circuit where

we have used an external audio jack which converts audio signals into voltage and sends

this analog signal to the ADC of the transmitter.

Figure 3-8 : DAC and A/D Ports in the FPGA Kit

On the transmitter end, voice analog signal is fed to the ADC circuit on the FPGA kit.

This circuit consists of a pre-amplifier and an analog-to-digital converter IC. This circuit

interacts with the FPGA over a Serial Peripheral Interface (SPI) where FPGA acts as the

master and ADC acts as slave. After converting the analog signal to digital format, it is

sent to the corresponding input port from where it enters the transmitter. After the

50

insertion of guard interval, the digital data packet leaves the transmitter and is sent to the

receiver over the wired channel through the serial UART port. DAC works on the

receiver end. The received data is processed according to the OFDM standard and the

output bits from the descrambler enter the DAC, 12 bits per frame, these bits are then

mapped to by the DAC to reconstruct the analog signal.

In this chapter we discussed the implementation of the proposed OFDM system on the

FPGA kit. The designs of the blocks of OFDM were explained according to the need and

the standard followed i.e. IEEE 802.11a after estimating the memory resources available

on the FPGA kits available. The basic techniques and knowledge of Verilog coding was

used to implement the OFDM system. We also established a process for synthesizing and

burning the Verilog code of the given system using the ISE v11.1 .

51

 Chap 4

Analysis and Evaluation

4.1. Overview

In this chapter we will demonstrate the results of the project. We will start over with the

simulation results in Simulink and then in Xilinx environment through System Generator

Blockset. We later on implemented the system on FPGA in Real-Time environment

through coding in Verilog and creating the modules in Xilinx ISE v11.1. All the results of

the Verilog code were verified using iSim application of the software. The

implementation was finally analyzed through voice transmission through the use of DAC

and A/D. the separate results for A/D and DAC were compared with that of the original

voice.

4.2. Simulink Results

The OFDM code was implemented in simulink before going to the Xilinx and FPGA

environment to validate the design of the communication system. The system model is

shown below in the figure

52

Figure 4-1 : Simulink OFDM Model

The Bernoulli Binary Generator was used as the data source followed by the simulink

block for QPSK mapping. The iFFT and cyclic prefix addition were performed in the

OFDM modulation block and then sent on the AWGN model. Then the FFT block

demodulated the OFDM signal and then the QPSK demapper and then the final data sink

where the signal was analyzed. The result of the simulation is shown below in the figures.

Figure 4-2 : Magnitude of the FFT Signal along the frequency

53

Figure 4-3 : Simulation Performance

The figure shows that at the end of simulation 1920384 bits were sent from the Bernoulli

Generator and all of them were correctly recovered at the Data Sink. If the AWGN

channel modeling is done more aggressively then the bit loss starts to increase slightly.

4.3. ISE Results

The OFDM system was implemented in verilog and tested in the ISE software before

transferring to the FPGA for real-time transmission. The analysis in the ise software

enabled us to verify the verilog code syntax and its synthesis. The ise gave warnings and

errors about any mistakes in the written Verilog code which made them detectable and

easily removable. The test-bench creation allowed for the analysis of the signal

processing in the FPGA kit according to the clock of the kit. The results calculated

theoretically were compared with the results shown for each module in the timing

diagrams. The memory resources used and the output signals for each module is

explained in the figures given below. We will explain each module with the repesctive

figures and the timing diagrams obtained in the iSim Application of the software.

54

 Figure 4-4 : Scrambler Synthesis Report in ISE

The synthesis report includes the calculation of the expected use of the memory of FPGA

kit by the module synthesized. It tells about the number of slices used along with all the

inputs and outputs required by the module and how much we actually have available in

the FPGA kit.

Figure 4-5 : Output of Scrambler

55

Output of the scrambler shows the timing diagram of the signals runnig in the scrambler

module. The first signal is the output of the scrambler that is passed on to the encoder

module. Then the clock and reset signals are shown along with the start and input signals.

Figure 4-6 : Output of Encoder

Output of the encoder shows the output bits when compared to the initial bits given to the

encoder module. Puncture enabling signal can also be seen in the figure.

Figure 4-7 : Interleaver Synthesis Report in ISE

56

Interleaver module synthesis report indicated that only 3% of the slices available in the

Spartan 3E-1600 kit are being used. Input/output blocks have a usage of 6% of the total

available.

Figure 4-8 : Output of Interleaver

Interleaver output is shown to us which is in accordance with the double permutation

algorithm we implemented for the interleaving purposes. Permuted data signal and the

Ncbps Signal can also be seen.

57

Figure 4-9 : Output of QPSK Mapper

QPSK mapping results in the imaginary and real data comparing to the given input data.

Figure 4-10 : QPSK Mapper Synthesis Report in ISE

QPSK mapper synthesis tells us that it needs only 23 slices which is negligible to the

amount of slices available. IOBs needed are 13% of the total.

58

Figure 4-11 : Output of QPSK Demapper

The imaginary and real data can be seen in the top of the figure and the output

demodulated signal can be seen at the end.

In this chapter we discussed the simulations and their results. The analysis helped us in

checking the outputs of our coding and implementation of the system so that we could

ensure the proper communication and working before we moved forward to real-time

transmission and reception of the system. The real-time transmission was carried out by

voice communication through OFDM.

59

5. Future Work

The prototype developed is implemented on the kit Xilinx Spartan 3E with 1600K gates.

OFDM is continuously evolving with better modulation techniques and higher data rates

and the upcoming 4G technologies in the market are employing OFDM wireless

Communication standards. The implementation can be carried out on newer kits with

available USB interface which can support the SDR applications through connection with

USRP and much higher data rates could be achieved with better accuracy and robustness.

16-point FFT is currently being implemented in the system and can be further upgraded

to 128-point FFT for higher data rates and support for newer standards of

communication. The transceiver designed could be used for video transmission through

wireless medium by interfacing with IP Camera and the relevant OS.

60

6. Conclusion

The proposed system allows faster and more robust communication as compared to older

systems and the use of FPGA makes the real-time implementation which results in lesser

delay. The system was implemented by Verilog HDL coding and the hardware used is the

Xilinx Spartan 3E kit. The A/D and DAC present in the kit were used to test the system

through voice communication.

The Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (FFT) have been

chosen to implement the design instead of the Discrete Fourier Transform and Inverse

Discrete Fourier Transform because they offer better speed with less computational time.

In conclusion, the main objective of this project has been successfully accomplished and

the result obtained from this project is valid.

61

BIBLIOGRAPHY

[1] Dusan Matiae, ―OFDM as a possible modulation technique for multimedia

applications in the range of mm waves,‖ TUD-TVS, 30-10-1998.

[2] R. W. Chang, ―Synthesis of Bandlimited Orthogonal Signals for Multichannel Data

Transmission,‖ Bell System Tech. J., pp. 1775-1796, Dec, 1966.

[3] B. R. Saltzberg, ―Performance of an Efficient Parallel Data Transmission Sytem,‖

IEEE Trans. Comm. , pp 805-811, Dec, 1967.

[4] S. B. Weinstein and P.M. Ebert, ―Data transmission by frequency division

multiplexing using the discrete fourier transform,‖ IEEE Transactions on Communication

Technology‖, vol. COM-19, pp. 628-634, October 1971.

[5] Joaquin Garcia, Rene Cumplido “On the design of an FPGA-Based OFDM

modulator for IEEE 802.11a” 2nd International Conference on Electrical and Electronics

Engineering (ICEEE) and XI Conference on Electrical Engineering (CIE 2005)

[6] Zhi Yong Li ―OFDM transceiver design with FPGA and DEMO on DE2-70 board‖

2008

[7] Loo, Kah Cheng ―Design of an OFDM transmitter and receiver using FPGA‖ 2006

[8] Maryse Wouters, Geert Vanwijnsberghe, Peter Van Wesemael, Tom Huybrechts,

Steven Thoen ―Real Time Implementation on FPGA of an OFDM based Wireless LAN

modem extended with Adaptive Loading‖, 2010

[9] Chia-Sheng Tsai and Po-Chang Huang ―Concatenated Codes Design for OFDM

based Wireless Local Area Networks‖ Tatung University, Taipei, Taiwan, 2009

[10] Merlyn, M. ―FPGA implementation Of FFT processor with OFDM transceiver‖

Signal and Image Processing (ICSIP), 2010 International Conference

[11] Wang Qiang Tao Cheng Huang Wei ―Efficient Implementation of Synchronization in

OFDM System Based on FPGA‖ Advanced Communication Technology, The 9th

International Conference 12-14 Feb. 2007.

[12] Saba Zia ―Performance Comparison and Evaluation of 802.11A and its

Implementation in Reconfigurable Environment‖, 2009

62

Appendix – A

“Verilog Code Segments”

63

Scrambler:

module scrambler(//inputs

 clk,

 rst,

 start,

 din,

 //outputs

 dout_scrambler

);

inputclk ;

inputrst ;

input start;

input din ;

//outputs

outputdout_scrambler;

//registers

regdout_scrambler;

reg temp;

reg [6:0] X_reg ;

always @(posedgeclk)

begin

if(start)

 begin

X_reg<=7'b1111111;

end

else

begin

 X_reg<={X_reg[5:0],temp};

end

end

always @(negedgeclk)

begin

temp<=X_reg[3] ^ X_reg[6];

end

64

always @(posedgeclk)

begin

dout_scrambler<=din ^ temp;

end

endmodule

Convolutional Encoder:

moduleconvEncoder(

 //inputs

 clk,

 rst,

 // start,

 din,

 encoding, //from controller

 puncturing, //from punture

 //outputs

 dout

);

inputclk ;

inputrst ;

//input start ;

input din ;

input encoding;

input puncturing;

output [1:0] dout ;

//registers

reg [1:0] dout ;

reg [5:0] X_reg ;

//assign X_reg = 6'b100100 ;

always @(posedgeclk or negedgerst)

begin

 if(!rst)

 begin

dout<=0;

X_reg<=0;

65

 end

 else

 begin

 if(encoding || puncturing)

 begin

 dout[0] <=X_reg[0] ^ X_reg[1] ^ X_reg[3] ^ X_reg[4] ^ din;

 dout[1] <=X_reg[0] ^ X_reg[3] ^ X_reg[4] ^ X_reg[5] ^ din;

X_reg<={din,X_reg[5:1]};

end

else

begin

dout<=dout;

X_reg<=X_reg;

end

end

end

endmodule

Interleaver:

modulecomplete_interleaver(

 //inputs

clk ,

start ,

Ncbps ,

chnageNcbps,

serial_in ,

 //outputs

j ,

 permuted_data2

);

//inputs

inputclk ;

input start ;

input [1:0]Ncbps ;

inputchnageNcbps;

66

inputserial_in ;

//outputs

output [8:0] j ;

output permuted_data2 ;

always @ (posedgeclk)

begin

 if (start_first_permutation || chnageNcbps) //incorporated new Ncbps signal

here so if Ncbps changes, values of k, addrb_0 and flag can be reset

 begin

 addrb_0 <=0;

 permuted_data1_0 <=serial_in;

 addrb_1 <=0;

 permuted_data1_1 <=serial_in;

 k <=0;

 block_length_flag<=0;

 end

 else

 begin

 case(Ncbps)

 2'b00:

 if(!block_length_flag)

 begin

 if(addrb_0==47 && k==47) //check this condition again since it gives

zero address again here for this memory and stores serial_in that is a new value for zero.

 begin //may be it would work because read cycle occurs after

one clock cycle so it reads previous value.

 addrb_0 <=0;

 permuted_data1_0<=serial_in;

 k <=0;

 block_length_flag<=1;

 end

 else if(addrb_0==46 && k==31)

 begin

 addrb_0 <=2;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

67

 end

 else if(addrb_0==45 && k==15)

 begin

 addrb_0 <=1;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else

 begin

 addrb_0 <=addrb_0 + 3;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 end

 else

 begin

 if(addrb_1==47 && k==47)

 begin

 addrb_1 <=0;

 permuted_data1_1<=serial_in;

 k <=0;

 block_length_flag<=0;

 end

 else if(addrb_1==46 && k==31)

 begin

 addrb_1 <=2;

 permuted_data1_1<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else if(addrb_1==45 && k==15)

 begin

 addrb_1 <=1;

68

 permuted_data1_1<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else

 begin

 addrb_1 <=addrb_1 + 3;

 permuted_data1_1<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 end

 2'b01:

 if(!block_length_flag)

 begin

 if(addrb_0==95 && k==95)

 begin

 addrb_0 <=0;

 permuted_data1_0<=serial_in;

 k <=0;

 block_length_flag<=1;

 end

 else if(addrb_0==94 && k==79)

 begin

 addrb_0 <=5;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else if(addrb_0==93 && k==63)

 begin

 addrb_0 <=4;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

69

 end

 else if(addrb_0==92 && k==47)

 begin

 addrb_0 <=3;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else if(addrb_0==91 && k==31)

 begin

 addrb_0 <=2;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else if(addrb_0==90 && k==15)

 begin

 addrb_0 <=1;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else

 begin

 addrb_0 <=addrb_0 + 6;

 permuted_data1_0<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

end

else

begin

 if(addrb_1==95 && k==95)

 begin

 addrb_1 <=0;

70

 permuted_data1_1<=serial_in;

 k <=0;

 block_length_flag<=0;

 end

 else if(addrb_1==94 && k==79)

 begin

 addrb_1 <=5;

 permuted_data1_1<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else if(addrb_1==93 && k==63)

 begin

 addrb_1 <=4;

 permuted_data1_1<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else if(addrb_1==92 && k==47)

 begin

 addrb_1 <=3;

 permuted_data1_1<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else if(addrb_1==91 && k==31)

 begin

 addrb_1 <=2;

 permuted_data1_1<=serial_in;

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

 else if(addrb_1==90 && k==15)

 begin

 addrb_1 <=1;

 permuted_data1_1<=serial_in;

71

 k <=k + 1;

 block_length_flag<=block_length_flag;

 end

always @ (posedgeclk)

begin

 if (start_second_permutation || chnageNcbps) //add Ncbps signal to reset all

these if Ncbps changes during the block execution

 begin

 addra_1 <=0;

 addra_0 <=0;

 permuted_data2<=permuted_data1_1;

 j <=0;

 count<=0;

 flag<=0;

 block_length_flag<=0;

 end

 else

 begin

 case(Ncbps)

 2'b00:

 if(!block_length_flag)

 begin

 if(addra_1==47 && j==47)

 begin

 addra_1 <=0;

 permuted_data2<=permuted_data1_1;

 j <=0;

 count<=count;

 flag<= flag;

 block_length_flag<=1;

 end

 else

 begin

 addra_1 <=addra_1 + 1;

 permuted_data2<=permuted_data1_1;

72

 j <=j+ 1;

 count<=count;

 flag<= flag;

 block_length_flag<=block_length_flag;

 end

 end

 else

 begin

 if(addra_0==47 && j==47)

 begin

 addra_0 <=0;

 permuted_data2<=permuted_data1_0;

 j <=0;

 count<=count;

 flag<= flag;

 block_length_flag<=0;

 end

 else

 begin

 addra_0 <=addra_0 + 1;

 permuted_data2<=permuted_data1_0;

 j <=j+ 1;

 count<=count;

 flag<= flag;

 block_length_flag<=block_length_flag;

 end

 end

 2'b01:

 if(!block_length_flag)

 begin

 if(addra_1==95 && j==95)

 begin

 addra_1 <=0;

 permuted_data2<=permuted_data1_1;

 j <=0;

73

 count<=count;

 flag<= flag;

 block_length_flag<=1;

 end

 else

 begin

 addra_1 <=addra_1 + 1;

 permuted_data2<=permuted_data1_1;

 j <=j+ 1;

 count<=count;

 flag<= flag;

 block_length_flag<=block_length_flag;

 end

 end

 else

 begin

 if(addra_0==95 && j==95)

 begin

 addra_0 <=0;

 permuted_data2<=permuted_data1_0;

 j <=0;

 count<=count;

 flag<= flag;

 block_length_flag<=0;

 end

 else

 begin

 addra_0 <=addra_0 + 1;

 permuted_data2<=permuted_data1_0;

 j <=j+ 1;

 count<=count;

 flag<= flag;

 block_length_flag<=block_length_flag;

 end

 end

 2'b10:

 if(!block_length_flag)

74

 begin

 if(addra_1==191)

 begin

 addra_1 <=0;

 permuted_data2<=permuted_data1_1;

 j <=0;

 count<=0;

 flag<=0;

 block_length_flag<=1;

 end

 else

 if((count==23) && (addra_1!=191))

 begin

 addra_1 <=addra_1 + 1;

 permuted_data2<=permuted_data1_1;

 j <=j+2;

 count<=0;

 flag<=0;

 block_length_flag<=block_length_flag;

 end

 else if(count>=11 && count<=22)

 begin

 if(!flag)

 begin

 addra_1 <=addra_1 + 1;

 permuted_data2<=permuted_data1_1;

 j <=addra_1+ 2;

 count<=count + 1;

 flag<=1;

 block_length_flag<=block_length_flag;

 end

 else

 begin

 addra_1 <=addra_1 + 1;

75

 permuted_data2<=permuted_data1_1;

 j <=addra_1;

 count<=count + 1;

 flag<=0;

 block_length_flag<=block_length_flag;

 end

 end

 else

 begin

 addra_1 <=addra_1 + 1;

 permuted_data2<=permuted_data1_1;

 j <=j+ 1;

 count<=count + 1;

 flag<=flag;

 block_length_flag<=block_length_flag;

 end

 end

 else

 begin

 if(addra_0==191)

 begin

 addra_0 <=0;

 permuted_data2<=permuted_data1_0;

 j <=0;

 count<=0;

 flag<=0;

 block_length_flag<=0;

 end

 else

 if((count==23) && (addra_0!=191))

 begin

 addra_0 <=addra_0 + 1;

 permuted_data2<=permuted_data1_0;

 j <=j+2;

 count<=0;

76

 flag<=0;

 block_length_flag<=block_length_flag;

 end

 else if(count>=11 && count<=22)

 begin

 if(!flag)

 begin

 addra_0 <=addra_0 + 1;

 permuted_data2<=permuted_data1_0;

 j <=addra_0+ 2;

 count<=count + 1;

 flag<=1;

 block_length_flag<=block_length_flag;

 end

 else

 begin

 addra_0 <=addra_0 + 1;

 permuted_data2<=permuted_data1_0;

 j <=addra_0;

 count<=count + 1;

 flag<=0;

 block_length_flag<=block_length_flag;

 end

77

Modulation Mapper:

moduleqpsk_main(

clk, rst, start, qpsk_input, //inputs

imag_data, real_data, modulated //outputs

);

//////////////////////////////////////qpsk ram ////////////

always @ (posedgeclk)

begin

case (qpsk_input)

 2'b00:data_frm_qpsk<=28'b11101001011000_11101001011000 ;

//-1,-1 //now +1=.707 and -1= -.707

 2'b01:data_frm_qpsk<=28'b00010110101000_11101001011000 ; //1 ,-

1

 2'b11:data_frm_qpsk<=28'b00010110101000_00010110101000 ; //1 , 1

 2'b10:data_frm_qpsk<=28'b11101001011000_00010110101000 ; //-1, 1

 endcase

end

///////////////////////////////////mapper//////////

always @ (posedgeclk or negedgerst)

if (!rst)

begin

imag_data<=0;

real_data<=0;

end

else

begin

 if (start)

 begin

 real_data<= data_frm_qpsk [13:0];

 imag_data<= data_frm_qpsk [27:14] ;

 modulated<= data_frm_qpsk;

 end

end

endmodule

78

Fast Fourier Transform:

moduledataAddressGeneratorIn(

 //inputs

clk ,

rst ,

total_stages , //output from FFT initialization

gen_data_address ,

stage_number ,

butterfly_number ,

 //outputs

data_address_gen_done ,

 data_address1 ,

 data_address2

);

always @(posedgeclk or negedgerst)

begin

 if(!rst)

 begin

 data_address_gen_done<=0;

 data_address1 <=0;

 data_address2 <=0;

generating<=0;

 end

else

 begin

 if(gen_data_address || generating)

 begin

 data_address_gen_done<=1;

 data_address1 <=butterfly_number - 1;

 data_address2 <=(temp_reg<<(total_stages -

stage_number))+(butterfly_number-1);

generating<=1;

 end

 else

 begin

 data_address_gen_done<=0 ;

 data_address1 <=data_address1 ;

 data_address2 <=data_address2 ;

generating<=generating;

end

79

end

end

endmodule

module radix2cell_datapath(

 //inputs

clk,

rst,

 start_radix2,

ADDING_state,

 PRODUCING_ADDITIONS_state,

 data_in_line1re,

 data_in_line2re,

 data_in_line1im,

 data_in_line2im,

 //outputs

 data_out_line1re,

 data_out_line2re,

 data_out_line1im,

 data_out_line2im,

 radix2_done

);

always @(posedgeclk or negedgerst)

begin

 if(!rst)

 begin

 data_out_line1re<=0;

 data_out_line2re<=0;

 data_out_line1im<=0;

 data_out_line2im<=0;

 radix2_done=0;

 end

else

 begin

 if(start_radix2 || ADDING_state ||PRODUCING_ADDITIONS_state)

 begin

 data_out_line1re<=data_in_line1re + data_in_line2re;

 data_out_line2re<=data_in_line1re - data_in_line2re;

 data_out_line1im<=data_in_line1im + data_in_line2im;

 data_out_line2im<=data_in_line1im - data_in_line2im;

80

 radix2_done=1;

 end

else

begin

 data_out_line1re<=0;

 data_out_line2re<=0;

 data_out_line1im<=0;

 data_out_line2im<=0;

 radix2_done=0;

 end

 end

end

endmodule

moduletwiddleFactorMultiplication(//inputs

clk ,

rst ,

twiddle_factor_cos , //ouput from twiddle factor mem controller

 data_out_line2re , //from radix cell...to be multiplied with cos

twiddle

start_twiddle_multiplication ,

MULTIPLYING_state ,

 PRODUCING_PRODUCTS_state,

 //outputs

 mult_data_in_line2re

);

always @(negedgeclk or negedgerst)

begin

 if(!rst)

 begin

 twiddle_factor_cos_reg<=0;

 data_out_line2re_reg <=0;

 mult_data_in_line2re_reg_MSB <=0;

 end

81

 else

 begin

 if(twiddle_factor_cos[5] && !data_out_line2re[13])

 begin

 if((data_out_line2re==0) || (twiddle_factor_cos==0))

 begin

 twiddle_factor_cos_reg<=~(twiddle_factor_cos[4:0]) +

12'd1;

 data_out_line2re_reg <=data_out_line2re[12:0] ;

 mult_data_in_line2re_reg_MSB <=0;

 end

 else

 begin

twiddle_factor_cos_reg<=~(twiddle_factor_cos[4:0]) + 12'd1;

 data_out_line2re_reg <=data_out_line2re[12:0] ;

 mult_data_in_line2re_reg_MSB <=1;

end

end

 else if(!twiddle_factor_cos[5] && data_out_line2re[13])

 begin

 if((data_out_line2re==0) || (twiddle_factor_cos==0))

 begin

 twiddle_factor_cos_reg<=twiddle_factor_cos[4:0];

 data_out_line2re_reg <=~(data_out_line2re[12:0]) + 12'd1 ;

 mult_data_in_line2re_reg_MSB <=0;

 end

 else

 begin

twiddle_factor_cos_reg<=twiddle_factor_cos[4:0];

 data_out_line2re_reg <=~(data_out_line2re[12:0]) + 12'd1 ;

 mult_data_in_line2re_reg_MSB <=1;

end

end

 else if(twiddle_factor_cos[5] && data_out_line2re[13])

 begin

twiddle_factor_cos_reg<=~(twiddle_factor_cos[4:0]) + 12'd1;

82

 data_out_line2re_reg <=~(data_out_line2re[12:0]) + 12'd1 ;

 mult_data_in_line2re_reg_MSB<=0;

end

 else

 begin

twiddle_factor_cos_reg<=twiddle_factor_cos[4:0];

 data_out_line2re_reg <=data_out_line2re[12:0] ;

 mult_data_in_line2re_reg_MSB<=0;

end

end

end

always @(negedgeclk or negedgerst)

begin

 if(!rst)

 begin

 partial_prod0 <=0;

 partial_prod1 <=0;

 partial_prod2 <=0;

 partial_prod3 <=0;

 partial_prod4 <=0;

 mult_data_in_line2re_reg_MSB0 <=0;

 end

 else

 begin

 if (start_twiddle_multiplication || MULTIPLYING_state ||

PRODUCING_PRODUCTS_state)

 begin

83

 partial_prod0 <={5'b00000,(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[5]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[3]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[0] &

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[0] & data_out_line2re_reg[0])};

 partial_prod1 <={4'b0000,(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[1]

&data_out_line2re_reg[5]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[3]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[1] &

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[1] & data_out_line2re_reg[0]),1'b0};

 partial_prod2 <={3'b000,(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[5]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[3]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[2] &

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[2] & data_out_line2re_reg[0]),2'b00};

84

 partial_prod3 <={2'b00,(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[5]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[3]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[3] &

data_out_line2re_reg[0]),3'b000};

 partial_prod4 <={1'b0,(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[5]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[4]

&data_out_line2re_reg[3]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[4] &

data_out_line2re_reg[0]),4'b0000};

 mult_data_in_line2re_reg_MSB0 <=mult_data_in_line2re_reg_MSB;

end

else

begin

 partial_prod0 <=0;

 partial_prod1 <=0;

 partial_prod2 <=0;

 partial_prod3 <=0;

 partial_prod4 <=0;

 mult_data_in_line2re_reg_MSB0 <=0;

end

85

 end

end

always @(negedgeclk or negedgerst)

begin

 if(!rst)

 begin

 mult_data_in_line2re_reg<=0;

 mult_data_in_line2re_reg_MSB1<=0;

 end

 else

 if (MULTIPLYING_state || PRODUCING_PRODUCTS_state)

 begin

 mult_data_in_line2re_reg <=partial_prod0 + partial_prod1 + partial_prod2 +

partial_prod3 + partial_prod4;

 mult_data_in_line2re_reg_MSB1<=mult_data_in_line2re_reg_MSB0;

 end

 else

 begin

 mult_data_in_line2re_reg <=mult_data_in_line2re_reg ;

 mult_data_in_line2re_reg_MSB1<=mult_data_in_line2re_reg_MSB1;

 end

end

always @(negedgeclk or negedgerst)

begin

 if(!rst)

 begin

 mult_data_in_line2re_reg_MSB2<=0;

 mult_data_in_line2re_trunc <= 0;

 end

 else

 if (MULTIPLYING_state ||

PRODUCING_PRODUCTS_state)

 begin

86

 mult_data_in_line2re_reg_MSB2 <= mult_data_in_line2re_reg_MSB1;

 if(mult_data_in_line2re_reg[4:0]<16)

 mult_data_in_line2re_trunc <=mult_data_in_line2re_reg[17:5];

 else

 mult_data_in_line2re_trunc <=mult_data_in_line2re_reg[17:5] + 13'd1;

 end

 else

 begin

 mult_data_in_line2re_trunc <= 0;

 mult_data_in_line2re_reg_MSB2<=0;

 end

end

always @(negedgeclk or negedgerst)

begin

 if(!rst)

 begin

 mult_data_in_line2re_delay[12:0] <=0;

 mult_data_in_line2re_delay[13] <= 0;

 end

 else

 if (MULTIPLYING_state ||

PRODUCING_PRODUCTS_state)

 begin

 mult_data_in_line2re_delay[13]<=mult_data_in_line2re_reg_MSB2;

if(mult_data_in_line2re_reg_MSB2)

 mult_data_in_line2re_delay[12:0] <=~(mult_data_in_line2re_trunc) +

13'd1;

 else

 mult_data_in_line2re_delay[12:0] <=mult_data_in_line2re_trunc;

 end

 else

 begin

87

 mult_data_in_line2re_delay[12:0] <=0;

 mult_data_in_line2re_delay[13]<=0;

end

end

always @(posedgeclk or negedgerst)

begin

 if(!rst)

 begin

 mult_data_in_line2re[12:0] <=0;

 mult_data_in_line2re[13] <= 0;

 end

 else

 if (MULTIPLYING_state ||

PRODUCING_PRODUCTS_state)

 begin

 mult_data_in_line2re[13] <=mult_data_in_line2re_delay[13];

 mult_data_in_line2re[12:0]<=mult_data_in_line2re_delay;

 end

 else

 begin

 mult_data_in_line2re[13] <=0;

 mult_data_in_line2re[12:0]<=0;

end

end

endmodule

88

Guard Insertion:

moduleGI_write(

clk,

 BitReversedPoint,

 start_GI,

 //outputs

 addrb_0,

 addrb1_0,

 DataPoint_0,

 GIpoint_0,

 addrb_1,

 addrb1_1,

 DataPoint_1,

 GIpoint_1,

 addrb_2,

 addrb1_2,

 DataPoint_2,

 GIpoint_2,

 addrb_3,

 addrb1_3,

 DataPoint_3,

 GIpoint_3

);

inputclk;

input [27:0] BitReversedPoint ;

inputstart_GI ;

//outputs

output [5:0] addrb_0 ;

output [3:0] addrb1_0 ;

output [27:0] DataPoint_0 ;

output [27:0] GIpoint_0 ;

output [5:0] addrb_1 ;

output [3:0] addrb1_1 ;

output [27:0] DataPoint_1 ;

output [27:0] GIpoint_1 ;

output [5:0] addrb_2 ;

output [3:0] addrb1_2 ;

89

output [27:0] DataPoint_2 ;

output [27:0] GIpoint_2 ;

output [5:0] addrb_3 ;

output [3:0] addrb1_3 ;

output [27:0] DataPoint_3 ;

output [27:0] GIpoint_3 ;

//registers

reg [5:0] addrb_0 ;

reg [3:0] addrb1_0 ;

reg [27:0] DataPoint_0 ;

reg [27:0] GIpoint_0 ;

reg [5:0] addrb_1 ;

reg [3:0] addrb1_1 ;

reg [27:0] DataPoint_1 ;

reg [27:0] GIpoint_1 ;

reg [5:0] addrb_2 ;

reg [3:0] addrb1_2 ;

reg [27:0] DataPoint_2 ;

reg [27:0] GIpoint_2 ;

reg [5:0] addrb_3 ;

reg [3:0] addrb1_3 ;

reg [27:0] DataPoint_3 ;

reg [27:0] GIpoint_3 ;

reg [1:0] mem_count;

reg [5:0] addrb ;

always @(posedgeclk)

begin

 if(start_GI)

 begin

 mem_count<=0;

90

 addrb_0 <=0;

 addrb_1 <=0;

 addrb_2 <=0;

 addrb_3 <=0;

 DataPoint_0<=0;

 DataPoint_1<=0;

 DataPoint_2<=0;

 DataPoint_3<=0;

 addrb<=0;

 end

 else

 case(mem_count)

 0:

 if(addrb==15)

 begin

 addrb_0<=addrb;

 addrb<=0;

mem_count<=1;

 DataPoint_0<=BitReversedPoint;

 addrb_1 <=addrb_1;

 addrb_2 <=addrb_2;

 addrb_3 <=addrb_3;

 DataPoint_1<=DataPoint_1;

 DataPoint_2<=DataPoint_2;

 DataPoint_3<=DataPoint_3;

 end

 else

 begin

 addrb_0<=addrb;

 addrb<=addrb + 1;

mem_count<=mem_count;

 DataPoint_0<=BitReversedPoint;

 addrb_1 <=addrb_1;

 addrb_2 <=addrb_2;

 addrb_3 <=addrb_3;

 DataPoint_1<=DataPoint_1;

 DataPoint_2<=DataPoint_2;

 DataPoint_3<=DataPoint_3;

91

end

 1:

if(addrb==15)

 begin

 addrb_1<=addrb;

 addrb<=0;

mem_count<=2;

 DataPoint_1<=BitReversedPoint;

 addrb_0 <=addrb_0;

 addrb_2 <=addrb_2 ;

 addrb_3 <=addrb_3 ;

 DataPoint_0<=DataPoint_0;

 DataPoint_2<=DataPoint_2;

 DataPoint_3<=DataPoint_3;

 end

 else

 begin

 addrb_1<=addrb;

 addrb<=addrb + 1;

mem_count<=mem_count;

 DataPoint_1<=BitReversedPoint;

 addrb_0 <=addrb_0;

 addrb_2 <=addrb_2;

 addrb_3 <=addrb_3;

 DataPoint_0<=DataPoint_0;

 DataPoint_2<=DataPoint_2;

 DataPoint_3<=DataPoint_3;

end

 2:

if(addrb==15)

 begin

 addrb_2<=addrb;

 addrb<=0;

mem_count<=3;

 DataPoint_2<=BitReversedPoint;

 addrb_0 <=addrb_0;

 addrb_1 <=addrb_1;

92

 addrb_3 <=addrb_3;

 DataPoint_0<=DataPoint_0;

 DataPoint_1<=DataPoint_1;

 DataPoint_3<=DataPoint_3;

 end

 else

 begin

 addrb_2<=addrb;

 addrb<=addrb + 1;

mem_count<=mem_count;

 DataPoint_2<=BitReversedPoint;

 addrb_0 <=addrb_0;

 addrb_1 <=addrb_1;

 addrb_3 <=addrb_3;

 DataPoint_0<=DataPoint_0;

 DataPoint_1<=DataPoint_1;

 DataPoint_3<=DataPoint_3;

end

 3:

if(addrb==15)

 begin

 addrb_3<=addrb;

 addrb<=0;

mem_count<=0;

 DataPoint_3<=BitReversedPoint;

 addrb_0 <=addrb_0;

 addrb_1 <=addrb_1;

 addrb_2 <=addrb_2;

 DataPoint_0<=DataPoint_0;

 DataPoint_1<=DataPoint_1;

 DataPoint_2<=DataPoint_2;

 end

 else

 begin

 addrb_3<=addrb;

 addrb<=addrb + 1;

mem_count<=mem_count;

 DataPoint_3<=BitReversedPoint;

 addrb_0 <=addrb_0;

 addrb_1 <=addrb_1;

93

 addrb_2 <=addrb_2;

 DataPoint_0<=DataPoint_0;

 DataPoint_1<=DataPoint_1;

 DataPoint_2<=DataPoint_2;

end

endcase

end

//GI band memory storage

always @(negedgeclk)

begin

 if(start_GI)

 begin

 addrb1_0 <=0;

 addrb1_1 <=0;

 addrb1_2 <=0;

 addrb1_3 <=0;

 GIpoint_0 <=0;

 GIpoint_1 <=0;

 GIpoint_2 <=0;

 GIpoint_3 <=0;

 end

 else

 case(mem_count)

 0:

 if(addrb_0>=0 && addrb_0<=15)

 begin

 addrb1_0 <=addrb_0;

 GIpoint_0<=DataPoint_0;

 end

 else

 begin

 addrb1_0<=addrb1_0;

 GIpoint_0<=GIpoint_0;

end

 1:

if(addrb_1>=0 && addrb_1<=15)

 begin

 addrb1_1 <=addrb_1;

94

 GIpoint_1<=DataPoint_1;

 end

 else

 begin

 addrb1_0<=addrb1_0;

 GIpoint_0<=GIpoint_0;

end

 2:

if(addrb_2>=0 && addrb_2<=15)

 begin

 addrb1_2 <=addrb_2;

 GIpoint_2<=DataPoint_2;

 end

 else

 begin

 addrb1_2<=addrb1_2;

 GIpoint_2<=GIpoint_2;

end

 3:

if(addrb_3>=0 && addrb_3<=15)

 begin

 addrb1_3 <=addrb_3;

 GIpoint_3<=DataPoint_3;

 end

 else

 begin

 addrb1_3<=addrb1_3;

 GIpoint_3<=GIpoint_3;

end

endcase

end

endmodule

95

Appendix – B

“Spartan 3E Starter Board Data Sheets”

96

Spartan-3E FPGA Features and Embedded Processing Functions

The Spartan-3E Starter Kit board highlights the unique features of the Spartan-3E FPGA family and

provides a convenient development board for embedded processing applications. The board highlights

these features:

• Spartan-3E FPGA specific features

• Parallel NOR Flash configuration

• MultiBoot FPGA configuration from Parallel NOR Flash PROM

• SPI serial Flash configuration

• Embedded development

• MicroBlaze™ 32-bit embedded RISC processor

• PicoBlaze™ 8-bit embedded controller

• DDR memory interfaces

Key Components and Features

The key features of the Spartan-3E Starter Kit board are:

• Xilinx XC3S500E Spartan-3E FPGA

• Up to 232 user-I/O pins

• 320-pin FBGA package

• Over 10,000 logic cells

• Xilinx 4 Mbit Platform Flash configuration PROM

• Xilinx 64-macrocell XC2C64A CoolRunner™ CPLD

• 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz

• 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash)

• FPGA configuration storage

• MicroBlaze code storage/shadowing

• 16 Mbits of SPI serial Flash (STMicro)

• FPGA configuration storage

• MicroBlaze code shadowing

• 2-line, 16-character LCD screen

• PS/2 mouse or keyboard port

• VGA display port

• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA)

• Two 9-pin RS-232 ports (DTE- and DCE-style)

• On-board USB-based FPGA/CPLD download/debug interface

• 50 MHz clock oscillator

• SHA-1 1-wire serial EEPROM for bitstream copy protection

• Hirose FX2 expansion connector

• Three Digilent 6-pin expansion connectors

• Four-output, SPI-based Digital-to-Analog Converter (DAC)

• Two-input, SPI-based Analog-to-Digital Converter (ADC) with programmable-gain pre-amplifier

• ChipScope™ SoftTouch debugging port

• Rotary-encoder with push-button shaft

• Eight discrete LEDs

• Four slide switches

• Four push-button switches

97

• SMA clock input

• 8-pin DIP socket for auxiliary clock oscillator

Design Trade-Offs

A few system-level design trade-offs were required in order to provide the Spartan-3E

Starter Kit board with the most functionality.

Configuration Methods Galore!

A typical FPGA application uses a single non-volatile memory to store configuration

images. To demonstrate new Spartan-3E FPGA capabilities, the starter kit board has three

different configuration memory sources that all need to function well together. The extra

configuration functions make the starter kit board more complex than typical Spartan-3E

FPGA applications.

The starter kit board also includes an on-board USB-based JTAG programming interface.

The on-chip circuitry simplifies the device programming experience. In typical

applications, the JTAG programming hardware resides off-board or in a separate

programming module, such as the Xilinx Platform USB cable.

Voltages for all Applications

The Spartan-3E Starter Kit board showcases a triple-output regulator developed by Texas

Instruments, the TPS75003 specifically to power Spartan-3 and Spartan-3E FPGAs. This

regulator is sufficient for most stand-alone FPGA applications. However, the starter kit

board includes DDR SDRAM, which requires its own high-current supply. Similarly, the

USB-based JTAG download solution requires a separate 1.8V supply.

RS-232 Serial Ports
Overview
As shown in Figure 7-1, the Spartan®-3E FPGA Starter Kit board has two RS-232 serial

ports: a female DB9 DCE connector and a male DTE connector. The DCE-style port

connects directly to the serial port connector available on most personal computers and

workstations via a standard straight-through serial cable. Null modem, gender changers,

or crossover cables are not required. Use the DTE-style connector to control other RS-232

peripherals, such as modems or printers, or perform simple loopback testing with the DCE

connector. Note that Figure 7-1 shows the view looking ―out‖ the DTE connector.

98

Figure 7-1: RS-232 Serial Ports

DB9 Serial Port Connector
(front view)

Standard
9-pin serial cable
Standard
9-pin serial cable
RS CS TR RD TD CD
TALK/DATA
TALK
RS-232 Peripheral
UG230_c7_01_062008

Figure 7-1 shows the connection between the FPGA and the two DB9 connectors. The FPGA supplies

serial output data using LVTTL or LVCMOS levels to the Maxim device, which in turn, converts the logic

value to the appropriate RS-232 voltage level. Likewise, the Maxim device converts the RS-232 serial input

data to LVTTL levels for the FPGA. A series resistor between the Maxim output pin and the FPGA‘s RXD

pin protects against accidental logic conflicts.

Hardware flow control is not supported on the connector. The port‘s DCD, DTR, and DSR signals connect

together, as shown in Figure 7-1. Similarly, the port‘s RTS and CTS signals connect together.

99

UCF Location Constraints

The data below provide the UCF constraints for the DTE and DCE RS-232 ports, respectively, including

the I/O pin assignment and the I/O standard used.

NET "RS232_DTE_RXD" LOC = "U8" | IOSTANDARD = LVTTL ;

NET "RS232_DTE_TXD" LOC = "M13" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = SLOW ;

NET "RS232_DCE_RXD" LOC = "R7" | IOSTANDARD = LVTTL ;

NET "RS232_DCE_TXD" LOC = "M14" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = SLOW ;

