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ABSTRACT 

 

The project is to develop a digital communication system that would implement OFDM 

on FPGA. The system would be able to transmit and receive voice or data between two 

separate FPGA kits. It handles all the baseband processing of an OFDM system and an 

RF Front-end could be connected for wireless transmission. 

The aim of the project is to establish a system that would be able to communicate at 

higher data rates. The FPGA is specifically being used for its fast, real-time processing 

capabilities along with the efficient high speed RAM made up of flip-flops and logic 

gates. A prototype code of the OFDM system has been established using Verilog HDL. 

The prototype includes various OFDM blocks with specifications of 802.11a standard. It 

incorporates a 16-point FFT block and a 2/3 convolutional encoder. The FPGA used for 

implementation is Xilinx Spartan 3E 1600K.  

The developed prototype has been tested on software by simulating it on the Xilinx ISE 

suite11.1 and the results were in accordance with the theoretically calculated ones. A bit 

stream is introduced as an input signal in place of audio data for testing purposes. The 

developed code was also synthesized using the Xilinx environment to make sure that the 

required resources do not exceed the available ones. The Code was tested successfully on 

the hardware after the implementation of the code on FPGA and the data has been 

transmitted over a wired medium. Voice is fed as an input at the transmitter end and 

recovered back at the receiver end. 
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Chap 1 

Introduction 
 

 

1.1. Overview 
 

This chapter gives the basic information about the project. The chapter covers the 

material on project background, project objectives, project scope and the thesis outline. 

The problem statement of the project will also be carried out in this chapter. 

 

1.2. Project Background 
 

With the rapid growth of digital communication in recent years, the need for high-speed 

data transmission has been increased. The mobile telecommunications industry faces the 

problem of providing the technology that be able to support a variety of services ranging 

from voice communication with a bit rate of a few kbps to wireless multimedia in which 

bit rate up to 100 Mbps. Many systems have been proposed and OFDM system has 

gained much attention for different reasons. 

 

 Although OFDM was first developed in the 1960s, only in recent years, it has been 

recognized as an outstanding method for high-speed cellular data communication where 

its implementation relies on very high-speed digital signal processing. This method has 
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only recently become available with reasonable prices versus performance of hardware 

implementation. 

Since OFDM is carried out in the digital domain, there are several methods to implement 

the system. One of the methods to implement the system is using ASIC (Application 

Specific Integrated Circuit). ASICs are the fastest, smallest, and lowest power way to 

implement OFDM into hardware. The main problem using this method is inflexibility of 

design process involved and the longer time to market period for the designed chip. 

 

Another method that can be used to implement OFDM is general purpose Microprocessor 

or Micro Controller. Power PC 7400 and DSP Processor is an example of microprocessor 

that is capable to implement fast vector operations. This processor is highly 

programmable and flexible in term of changing the OFDM design into the system. The 

disadvantages of using this hardware are, it needs memory and other peripheral chips to 

support the operation. Besides that, it uses the most power usage and memory space, and 

would be the slowest in term of time to produce the output compared to other hardware. 

 

Field-Programmable Gate Array (FPGA) is an example of VLSI circuit which consists of 

a ―sea of NAND gates‖ whereby the function are customer provided in a ―wire list‖. This 

hardware is programmable and the designer has full control over the actual design 

implementation without the need (and delay) for any physical IC fabrication facility. An 

FPGA combines the speed, power, and density attributes of an ASIC with the 

programmability of a general purpose processor will give advantages to the OFDM 

system. An FPGA could be reprogrammed for new functions by a base station to meet 
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future needs particularly when new design is going to fabricate into chip. This will be the 

best choice for OFDM implementation since it gives flexibility to the program design 

besides the low cost hardware component compared to others. 

 

1.3. Project Objective 
 

The aim for this project is to design a baseband OFDM processing including FFT (Fast 

Fourier Transform) and IFFT (Inverse Fast Fourier Transform), mapping (modulator), 

Guard Insertion and scrambling and Convolutional Encoding using hardware 

programming language (Verilog HDL). These designs were developed using Verilog 

HDL programming language in design entry software provided along with the FPGA kits 

available i.e. Xilinx Spartan 3E. Software used is Xilinx ISE v11.1. 

 

The design is then implemented in the Digilent FPGA development board with Xilinx 

Spartan 3E FPGA. Description on the development board will be carried out at 

methodology chapter. 

 

Several tools involved in the process of completing the design in real hardware which can 

be divided into two categories, software tools and hardware tools. The softwares used in 

this project are MATLAB 7.9.1 and Simulink for Simulation purposes and Xilinx ISE 

v11.1 including Xilinx Plan Ahead and iSim modules. While the hardware used is Xilinx 

Spartan 3E FPGA with 1600K Gates (xc3s1600e-5fg320) for real-time hardware 

implementation. 
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1.4. Project Scope 
 

The work of the project will be focused on the design of the processing block which is 16 

point IFFT and FFT function. The design also includes mapping block, Convolutional 

Encoding, Scrambling and Guard Insertion block sets. All design needed to be verified to 

ensure that there are no errors in Verilog programming before being simulated. Design 

process will be described on the methodology chapter. 

 

The second scope is to implement the design into FPGA hardware development board. 

This process is implemented if all designs are correctly verified and simulated using 

particular software. Implementation includes hardware programming on FPGA or 

downloading hardware design into FPGA and software programming. 

 

Creating test bench program also include in the scope of the project. Test bench is a 

program developed using Verilog programming and is intended as the input interface for 

user as well as to control data processing performed by the hardware. Creating this 

software required in understanding the operation of the FFT and IFFT computation 

process. Further chapter will discuss the method on developing the program from 

mathematical algorithm into behavioral synthesis. 

 

The above is to verify the result of the output for each module which has been developed. 

Test bench program is used to deliver the computation result if input value is provided by 
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the user. These computation values should be verified and tested to ensure the correctness 

of the developed module. ‗iSim‘ Software is used to compare the computation performed 

by the FPGA hardware with the software. There are several test performed to the design 

modules and the test process also will be discuss in the methodology chapter. 

 

1.5. Organization of Report 
 

The report about the project covers all the necessary information required to understand 

the proposed digital communication system. It also emphasizes on why there was a need 

to develop it and how did we achieve it. 

 

The first chapter contains the introductory notes about the project. It describes the 

objectives and the scope of the project. The need for a modern high speed communication 

system is introduced in the project background. 

The second chapter gives an overview of the proposed OFDM system and discusses all 

the relevant theoretical information available for the system and the FPGAs. We will 

discuss the specifications of the kit used in the project later on in the report. The relevant 

applications of OFDM and FPGA are also given in this chapter to emphasize on their 

importance. 

The third chapter deals with the development of the project according to the objectives 

established and what techniques were used to achieve those objectives. The procedure 

followed to implement the system is discussed in this chapter. The blocks of OFDM used 
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and implemented are explained in detail and later on the technique to code them in 

Verilog and then burn them on FPGA are also discussed. Later on the use of DAC and 

A/D in the FPGA kit is also mentioned. 

 

 The fourth chapter deals with the analysis of the project. To quantify the completion at 

every stage the results were compared and analyzed. The simulation in MATLAB 

environment and then in Xilinx ISE environment are presented in this chapter. The results 

of signal outputs in the timing diagram and the synthesis reports for every module are 

shown and explained in the chapter.  
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Chapter 2 

Design and Development 
 

 

 

 

2.1. Digital Communication System Structure 
 

A digital communication system involves the transmission of information in digital form 

from one point to another point as shown in Figure 1.1 

 

       Figure 2-1: A Typical Digital Transmission System 

 

Regardless of the form of communication method, the three basic elements in a 

communication system consist of transmitter, channel and receiver[1]. 

The source of information is the messages that are to be transmitted to the other end in 

the receiver. A transmitter can consist of source encoder, channel encoder and 
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modulation. Source encoder employed an efficient representation of the information such 

that resources can be conserved. A channel encoder may include error detection and 

correction code. The aim is to increase the redundancy in the data to improve the 

reliability of transmission. A modulation process convert the base band signal into band 

pass signal before transmission. 

 

During transmission, the signal experiences impairment which attenuates the signals 

amplitude and distort signals phase. Also, the signals transmitting through a channel also 

impaired by noise, which is assumed to be Gaussian distributed component. 

 

In the receiver end, the reversed order of the steps in the transmitter is performed. Ideally, 

the same information must be decoded in the receiving end. 

 

2.2. Multichannel Transmission 
 

OFDM started in the mid 60‘s, Chang [2] proposed a method to synthesis band limited 

signals for multi channel transmission. The idea is to transmit signals simultaneously 

through a linear band limited channel without inter channel (ICI) an inter symbol 

interference (ISI). 

 

After that, Saltzberg [3] performed an analysis based on Chang‘s work and he conclude 

that the focus to design a multi channel transmission must concentrate on reducing 

crosstalk between adjacent channels rather than on perfecting the individual signals. 
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In 1971, Weinstein and Ebert [4] made an important contribution to OFDM. Discrete 

Fourier transform (DFT) method was proposed to perform the base band modulation and 

demodulation. DFT is an efficient signal processing algorithm. It eliminates the banks of 

sub carrier oscillators. They used guard space between symbols to combat ICI and ISI 

problem. This system did not obtain perfect orthogonality between sub carriers over a 

dispersive channel. 

 

It was Peled and Ruiz [5] in 1980 who introduced cyclic prefix (CP) that solves the 

orthogonality issue. They filled the guard space with a cyclic extension of the OFDM 

symbol. It is assume the CP is longer than impulse response of the channel. 

 

2.3. Basic Principles of OFDM 
 

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier transmission 

technique, which divides the available spectrum into many carriers, each one being 

modulated by a low rate data stream.  

OFDM is similar to FDMA in that the multiple user access is achieved by subdividing the 

available bandwidth into multiple channels that are then allocated to users. However, 

OFDM uses the spectrum much more efficiently by spacing the channels much closer 

together. This is achieved by making all the carriers orthogonal to one another, 

preventing interference between the closely spaced carriers. 
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2.3.1. Orthogonality Defined  

 

Orthogonality is defined for both real and complex valued functions. The functions ϕ
m
(t) 

and ϕ
n
(t) are said to be orthogonal with respect to each other over the interval a < t < b if 

they satisfy the condition: 

 

OFDM splits the available bandwidth into many narrowband channels (typically 100-

8000), each with its own sub-carrier[7]. These sub-carriers are made orthogonal to one 

another, meaning that each one has an integer number of cycles over a symbol period. 

Thus the spectrum of each sub-carrier has a ―null‖ at the centrefrequency of each of the 

other sub-carriers in the system, as demonstrated in Figure 2.0 below.

 

Figure 2-2: Orthogonality of sub-carriers 
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 This results in no interference between the sub-carriers, allowing then to be spaced as 

close as theoretically possible. Because of this, there is no great need for the users of the 

channel to be time-multiplexed, and there is no overhead associated with switching 

between users. This overcomes the problem of overhead carrier spacing required in 

FDMA. 

2.3.2. OFDM Carriers 

 

As fore mentioned, OFDM is a special form of Multi Carrier Modulation (MCM) and the 

OFDM time domain waveforms are chosen such that mutual orthogonality is ensured 

even though sub-carrier spectra may over-lap. With respect to OFDM, it can be stated 

that orthogonality is an implication of a definite and fixed relationship between all 

carriers in the collection. 

It means that each carrier is positioned such that it occurs at the zero energy frequency 

point of all other carriers. The sinc function, illustrated in Figure 2-3 exhibits this 

property and it is used as a carrier in an OFDM system.f
u 

is the sub-carrier spacing 



12 
 

 

Figure 2-3: OFDM sub carriers in the frequency domain 

2.3.3. Generation of OFDM Signals 

 

To implement the OFDM transmission scheme, the message signal must first be digitally 

modulated. The carrier is then split into lower-frequency sub-carriers that are orthogonal 

to one another. This is achieved by making use of a series of digital signal processing 

operations. 

The message signal is first modulated using a modulation scheme such as BPSK, QPSK, 

or some form of QAM (16QAM or 64QAM for example). In BPSK, each data symbol 

modulates the phase of a higher frequency carrier. Figure 2.2 shows the time domain 

representation of 8 symbols (01011101) modulated within the carrier using BPSK. In the 

frequence domain, the effect of the phase shifts in the carrier is to expand the bandwidth 

occupied by the BPSK signal to a Sinc function. The zeros (or ―nulls‖) of the sinc 

frequency occur at intervals of the symbol frequency. 
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Figure 2-4: Binary Phase-Shift Key (BPSK) representation of ―01011101‖ 

 

Originally, multicarrier systems were implemented through the use of separate local 

oscillators to general each individual sub-carrier. This was both inefficient and costly. 

With the advent of cheap powerful processors, the sub-carriers can now be generated 

using Fast Fourier Transforms (FFT). The FFT is used to calculate the spectral content of 

the signal. It moves a signal from the time domain where it is expressed as a series of 

time events to the frequency domain where it is expressed as the amplitude and phase of a 

particular frequency. The inverse FFT (IFFT) performs the reciprocal operation. 

 

The underlying principle here is that FFT can keep tones orthogonal to one another if the 

tones have an integer number of cycles in a symbol period. In the example below we see 

signals with 1, 2 and 4 cycles respectively that form an orthogonal set. 
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Figure 2-5: A set of orthogonal signals 

 

To convert the sub-carriers to a set of orthogonal signals, the data is first combined into 

frames of a suitable size for an FFT or IFFT. A FFT should be always in the length of 2N 

(where N is an integer). Next, an N-point IFFT is performed and the data stream is the 

output of the transmitter. Thus when the signals of the IFFT output are transmitted 

sequentially, each of the N channel bits appears at a different sub-carrier frequency. 

 

By using an IFFT process, the spacing of the sub carriers is chosen in such a way that at 

the frequency where the received signal is evaluated, all other signals is zero. In order for 

this orthogonality, the receiver and the transmitter must be perfectly synchronized. This 

means they both must assume exactly the same modulation frequency and the same time-

scale for transmission. At the receiver, the exact inverse operations are performed to 

recover the data. Since the FFT is performed in this stage, the data is back in the 

frequency domain. It is then demodulated according to the block diagram below. 
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Figure 2-6: Block diagram for OFDM communications 

 

2.3.4. Guard Period 

 

One of the most important properties of OFDM transmission is its robustness against 

multi path delay. This is especially important if the signal‘s sub-carriers are to retain their 

orthogonality through the transmission process. The addition of the guard period between 

the transmitted symbols can be used to accomplish this. The guard period allows time for 

multipath signals from the previous symbol to dissipate before information from the 

current symbol is recorded. 

 

The most effective guard period is a ‗cyclic prefix‘ which is appended at the front of 

every OFDM symbol. The cyclic prefix is a copy of the last part of the OFDM symbol, 

and is of equal or greater length than the maximum delay spread of the channel (see 

Figure 2.5). Although the insertion of the cyclic prefix imposes a penalty on bandwidth 

efficiency, it is often the best compromise between performance and efficiency in the 

presence of inter-symbol interference. 
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Figure 2-7: Implementation of cyclic prefix 

 

2.4. Advantages of OFDM 
 

OFDM has several advantages compared to other type of modulation technique 

implemented in wireless system. Below are some of the advantages that describe the 

uniqueness of OFDM compared to others: 

 

2.4.1. Bandwidth Efficiency 

 

A key aspect of all high speed communication system lies in its bandwidth efficiency. 

This is especially important for wireless communications where all current and future 

devices are expected to share an already crowded range of carrier frequencies. In OFDM, 

the frequency band containing the message is sub-divided into parallel bit streams of 

lower frequency carriers. These sub-carriers are designed to be orthogonal to one another, 

such that they can be separated out at the receiver without interference from neighboring 

carriers[7]. In this manner, OFDM is able to space the channels much closer together, 

which allows for more efficient use of the spectrum than through simple frequency 

division multiplexing.  
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The advantage of orthogonality in OFDM does not happen in FDMA where up to 50% of 

the total bandwidth is wasted due to the extra spacing between channels. 

 

2.4.2. OFDM overcomes the effect of ISI 

 

The limitation of sending in high bitrate is the effect of inter-symbol interference (ISI). 

As communication systems increase their information transfer speed, the time for each 

transmission becomes shorter. Since the delay time caused by multi-path remains 

constant, ISI becomes a limitation in sending high data rate communication. OFDM 

avoids this problem by sending many low speed transmissions simultaneously. For 

example figure 2.6 below shows two ways to transmit the same four pieces of binary 

data.  

 

Figure 2-8: Two ways to transmit the same four pieces of binary data 

 

Suppose that this transmission takes four seconds. Then, each piece of data in the left 

picture has duration of four second. When transmit these data, OFDM would send the 
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four pieces simultaneously as shown on the right. In this case, each piece of data has 

duration of 16 seconds. This longer duration leads to fewer problems with ISI. 

 

2.4.3. OFDM combats the effect of frequency selective fading and burst 

error 

 

OFDM is used to spread out a frequency selective fade over many symbols. This 

effectively randomizes burst errors caused by a deep fade or impulse interference, so that 

instead of several adjacent symbols being completely destroyed, many symbols are only 

slightly distorted. This allows successful reconstruction of a majority of them even 

without forward error correction (FEC). Because of this dividing, an entire channel 

bandwidth into many narrow sub-bands, the frequency response over each individual sub-

band is relatively flat. Since each sub-channel covers only a small fraction of original 

bandwidth, equalization is potentially simpler than in a serial system. 

 

 

2.5. The weakness of OFDM 
 

Although OFDM is excellent in combating fading effect, it does not mean that OFDM is 

free from any weaknesses. Below are some of the weaknesses for the OFDM system. 
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2.5.1. Peak-to-Mean Power Ratio 

 

OFDM signal has varying amplitude as shown by figure 2.7. It is very important that the 

amplitude variations be kept intact as they define the content of the signal. If the 

amplitude is clicked or modified, then an FFT of the signal would no longer result in the 

original frequency characteristics and the modulation may be lost. 

 

Figure 2-9: Show amplitude varying in OFDM 

 

This is one of the drawbacks of OFDM, the fact that it requires linear amplification. In 

addition, very large amplitude peaks may occur depending on how the sinusoids line up, 

so the peak-to-average power ratio is high. This means that the linear amplifier has to 

have a large dynamic range to avoid distorting the peaks. The result is a linear amplifier 

with a constant, high bias current resulting in very poor power efficiency. 
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2.5.2. Synchronization 

 

The limitation of OFDM in many applications is that it is very sensitive to frequency 

errors caused by frequency differences between the local oscillators in the transmitter and 

receiver. Carrier frequency offset causes a number of impairments including attenuation 

and rotation of each of the sub carriers and inter-carrier interference (ICI) between sub-

carriers. In the mobile radio environment, the relative movement between transmitter and 

receiver causes Doppler frequency shifts[7]. 

 

 In addition, the carriers can never be perfectly synchronized. These random frequency 

errors in OFDM system distort orthogonality between sub carriers and thus inter-carrier 

interference (ICI) occurs. 

 

To optimize the performance of an OFDM link, time and frequency synchronization 

between the transmitter and receiver is of absolute importance. This is achieved by using 

known pilot tones embedded in the OFDM signal or attaching fine frequency timing 

tracking algorithms within the OFDM signal`s cyclic extension (guard interval). 

 

2.6. Applications of OFDM 
 

OFDM has been chosen for several current and future communications systems all over 

the world. It is well suited for systems in which the channel characteristics make it 

difficult to maintain adequate communications link performance. In addition to high-

speed wireless applications, wired systems such as asynchronous digital subscriber line 
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(ADSL) and cable modem utilize OFDM as its underlying technology to provide a 

method of delivering high-speed data. 

 

 Recently, OFDM has also been adopted into several European wireless communications 

applications such as the digital audio broadcast (DAB) and terrestrial digital video 

broadcast (DVB-T) systems. 

 

2.6.1. Digital Broadcasting 

 

Standardized in 1995, Digital Audio Broadcasting (DAB) was the first standard to use 

OFDM. DAB uses a single frequency network, but the efficient handling of multi path 

delay spread results in improved CD quality sound, new data services, and higher 

spectrum efficiency. A broadcasting industry group also created Digital Video 

Broadcasting (DVB) in 1993. 

 DVB produced a set of specifications forthe delivery of digital television over cable, 

DSL and satellite. In 1997 the terrestrial network, Digital Terrestrial Television 

Broadcasting (DTTB), was standardized. DTTB utilizes OFDM in up to 2,000 and 8,000 

sub-carrier modes[8]. 

 

2.6.2. Terrestrial Digital Video Broadcasting 

 

A pan-broadcasting-industry group created Digital Video Broadcasting (DVB) in 1993. 

DVB produced a set of specifications for the delivery of digital television over cable, 

DSL and satellite. In 1997 the terrestrial network, Digital Terrestrial Television 
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Broadcasting (DTTB), was standardized. DTTB utilizes OFDM in the 2,000 and 8,000 

sub carrier modes.  

 

2.6.3. IEEE 802.11a/HiperLAN2 and MMAC Wireless LAN 

 

OFDM in the new 5GHz band is comprised of 802.11a, HiperLAN2, and WLAN 

standards. In July 1998, IEEE selected OFDM as the basis for the new 802.11a 5GHz 

standard in the U.S. targeting a range of data rates up to 54 Mbps. In Europe, ETSI 

BRAN is now working on three extensions for OFDM in the HiperLAN standard: (i) 

HiperLAN2, a wireless indoor LAN with a QoS provision; (ii) HiperLink, a wireless 

indoor backbone; and (iii) HiperAccess, an outdoor, fixedwireless network providing 

access to a wired infrastructure. In Japan, consumer electronics companies and service 

providers are cooperating in the MMAC project to define new wireless standards similar 

to those of IEEE and ETSI BRAN. 

 

2.6.4. Mobile Wireless Communication 

 

OFDM‘s capability to work around interfering signals gives it potential to threaten 

existing CDMA (2.5G and 3G) wireless technology. This is what is allowing the 

technology to push forward in Europe. In densely populated areas where buildings, 

vehicles and people can scatter the path of a signal, broadcasters as well as high-speed 

data providers are anxious to eliminate multi-path effects. 
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 According to industry analysts, telecom providers may also be lured to OFDM 

technology because it could end up causing only a fraction of what it costs to implement 

3G wireless technologies. 

 

2.7. FPGA 
 

A Field-programmable Gate Array (FPGA) is an integrated circuit designed to be 

configured by the customer or designer after manufacturing—hence "field-

programmable". The FPGA configuration is generally specified using a hardware 

description language (HDL), similar to that used for an application-specific integrated 

circuit (ASIC) (circuit diagrams were previously used to specify the configuration, as 

they were for ASICs, but this is increasingly rare). FPGAs can be used to implement any 

logical function that an ASIC could perform. The FPGA Kit used for the project is given 

below. 
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Figure 2-10 : Xilinx Spartan 3E Kit 

 

FPGAs contain programmable logic components called "logic blocks", and a hierarchy of 

reconfigurable interconnects that allow the blocks to be "wired together"—somewhat like 

many (changeable) logic gates that can be inter-wired in (many) different configurations. 

Logic blocks can be configured to perform complex combinational functions, or merely 

simple logic gates like AND and XOR. In most FPGAs, the logic blocks also include 

memory elements, which may be simple flip-flops or more complete blocks of memory. 
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2.7.1. History and Modern Developments 

 

Xilinx Co-Founders, Ross Freeman and Bernard Vonderschmitt, invented the first 

commercially viable field programmable gate array in 1985 – the XC2064.The XC2064 

had programmable gates and programmable interconnects between gates, the beginnings 

of a new technology and market. The XC2064 boasted a mere 64 configurable logic 

blocks (CLBs), with two 3-input lookup tables (LUTs). More than 20 years later, 

Freeman was entered into the National Inventors Hall of Fame for his invention. 

 

FPGAs got a glimpse of fame in 1997, when Adrian Thompson, a researcher working at 

the University of Sussex, merged genetic algorithm technology and FPGAs to create a 

sound recognition device. Thomson‘s algorithm configured an array of 10 x 10 cells in a 

Xilinx FPGA chip to discriminate between two tones, utilizing analogue features of the 

digital chip. 

 

Current advances in field-programmable gate array (FPGA) technology have enabled 

high-speed processing in a compact footprint, while retaining the flexibility and 

programmability of software radio technology. FPGAs are popular for high-speed, 

compute-intensive, reconfigurable applications (fast Fourier transform (FFT), finite 

impulse response (FIR) and other multiply-accumulate operations). Reconfigurable cores 

are available from FPGA and board vendors and enable implementation of modulator, 

demodulator and CODEC functionality in the FPGA. System designers are increasingly 

looking for front-end acquisition/converter products with integrated FPGA to offload the 

baseband processing and reduce data transfer rates. 
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The first kit was believed to have 9,000 gates and the kits being manufactured nowadays 

have more than a Million gates with the reduced size and energy consumption. The 

FPGA kits nowadays allow the user to process the data very easily and quickly through 

many input and output options along with the flexibility of simulating the code by using 

the company provided software along the kits. Xilinx provides the complete working 

environment in the form of Xilinx ISE Suite along with the FPGA kits which includes all 

the necessary tools to simulate and run the code on FPGAs. 

 

In recent years semiconductor process technology has progressed to the point where 

FPGAs can be installed in both product prototypes and mass produced products, thanks to 

higher capacities and lower prices. In particular, we are now seeing many cases where 

FPGAs are adopted in products that are produced at low volumes and products where 

there is a need for long-term supply, and the demand to install a full-scale graphics sub-

system on these FPGAs is growing every year. 

 

2.7.2. Architecture 

 

The most common FPGA architecture consists of an array of logic blocks (called 

Configurable Logic Block, CLB, or Logic Array Block, LAB, depending on vendor), I/O 

pads, and routing channels. Generally, all the routing channels have the same width 

(number of wires). Multiple I/O pads may fit into the height of one row or the width of 

one column in the array. 
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Figure 2-11: FPGA Chip Blocks 

 

An application circuit must be mapped into an FPGA with adequate resources. While the 

number of CLBs/LABs and I/Os required is easily determined from the design, the 

number of routing tracks needed may vary considerably even among designs with the 

same amount of logic. For example, a crossbar switch requires much more routing than a 

systolic array with the same gate count. Since unused routing tracks increase the cost 

(and decrease the performance) of the part without providing any benefit, FPGA 

manufacturers try to provide just enough tracks so that most designs that will fit in terms 

of LUTs and IOs can be routed. This is determined by estimates such as those derived 

from Rent's rule or by experiments with existing designs. 

 

In general, a logic block (CLB or LAB) consists of a few logical cells (called ALM, LE, 

Slice etc). A typical cell consists of a 4-input Lookup table (LUT), a Full adder (FA) and 

a D-type flip-flop, as shown below. The LUTs are in this figure split into two 3-input 
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LUTs. In normal mode those are combined into a 4-input LUT through the left mux. In 

arithmetic mode, their outputs are fed to the FA. The selection of mode is programmed 

into the middle mux. The output can be either synchronous or asynchronous, depending 

on the programming of the mux to the right, in the figure example. In practice, entire or 

parts of the FA are put as functions into the LUTs in order to save space. 

 

 

Figure 2-12: Simplified example illustration of a logic cell 

 

ALMs and Slices usually contain 2 or 4 structures similar to the example figure, with 

some shared signals. CLBs/LABs typically contain a few ALMs/LEs/Slices. 

In recent years, manufacturers have started moving to 6-input LUTs in their high 

performance parts, claiming increased performance. 

 

Since clock signals (and often other high-fanout signals) are normally routed via special-

purpose dedicated routing networks in commercial FPGAs, they and other signals are 

separately managed. For this example architecture, the locations of the FPGA logic block 

pins are shown below. 
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Figure 2-13: Logic Block Pin Locations 

 

Each input is accessible from one side of the logic block, while the output pin can 

connect to routing wires in both the channel to the right and the channel below the logic 

block. 

Each logic block output pin can connect to any of the wiring segments in the channels 

adjacent to it. 

Similarly, an I/O pad can connect to any one of the wiring segments in the channel 

adjacent to it. For example, an I/O pad at the top of the chip can connect to any of the W 

wires (where W is the channel width) in the horizontal channel immediately below it. 

Generally, the FPGA routing is unsegmented. That is, each wiring segment spans only 

one logic-block before it terminates in a switch box. By turning on some of the 

programmable switches within a switch box, longer paths can be constructed. For higher 

speed interconnect, some FPGA architectures use longer routing lines that span multiple 

logic blocks. 

Whenever a vertical and a horizontal channel intersect, there is a switch box. In this 

architecture, when a wire enters a switch box, there are three programmable switches that 
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allow it to connect to three other wires in adjacent channel segments. The pattern, or 

topology, of switches used in this architecture is the planar or domain-based switch box 

topology. In this switch box topology, a wire in track number one connects only to wires 

in track number one in adjacent channel segments, wires in track number 2 connect only 

to other wires in track number 2 and so on. The figure below illustrates the connections in 

a switch box. 

 

 

Figure 2-14: Switch box topology 

 

Modern FPGA families expand upon the above capabilities to include higher level 

functionality fixed into the silicon. Having these common functions embedded into the 

silicon reduces the area required and gives those functions increased speed compared to 

building them from primitives. Examples of these include multipliers, generic DSP 

blocks, embedded processors, high speed IO logic and embedded memories. 

FPGAs are also widely used for systems validation including pre-silicon validation, post-

silicon validation, and firmware development. This allows chip companies to validate 

their design before the chip is produced in the factory, reducing the time-to-market. 
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To shrink the size and power consumption of FPGAs, vendors such as Tabula and Xilinx 

have introduced new 3D or stacked architectures.  

 

Following the introduction of its 28nm 7-series FPGAs, Xilinx revealed that that several 

of the highest-density parts in those FPGA product lines will be constructed using 

multiple dice in one package, employing technology developed for 3D construction and 

stacked-die assemblies. The technology stacks several (three or four) active FPGA dice 

side-by-side on a silicon interposer – a single piece of silicon that carries passive 

interconnect. 

 

2.7.3. FPGA OR DSP? 

 

FPGAs have evolved from being flexible logic design platforms to signal processing 

engines. They are now an essential component of software radio due to their flexibility 

and real-time processing capabilities. Increasingly, system designers are porting more and 

more signal processing functionalities in FPGAs. The flexibility of having the ability to 

integrate logic design with signal processing is pushing designers to replace traditional 

digital signal processors (DSPs) with FPGAs. 

 

FPGAs are inherently suited for high-speed parallel multiply and accumulate functions. 

Current generation FPGAs can perform 18 × 18 multiplication operation at speeds in 

excess of 200 MHz. This makes FPGAs an ideal platform for operations such as FFT, 

FIR, digital down-converters (DDC), digital up-converters (DUC), correlators and pulse 

compression (for radar processing). 
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It does not imply, however, that all DSP functionalities may be implemented in FPGAs. 

Floating point operations are difficult to implement in FPGAs due to the large amount of 

real estate needed in the device. Also, processing involving matrix inversion (or division) 

is also more suited to a DSP/GPP platform. FPGAs and DSP will thus coexist for a long 

time, and a flexible platform will include a mix of both. 

 

2.7.4. Applications of FPGA 

 

Applications of FPGAs include digital signal processing, software-defined radio, 

aerospace and defense systems, ASIC prototyping, medical imaging, computer vision, 

speech recognition, cryptography, bioinformatics, computer hardware emulation, radio 

astronomy, metal detection and a growing range of other areas. 

 

FPGAs originally began as competitors to CPLDs and competed in a similar space, that 

of glue logic for PCBs. As their size, capabilities, and speed increased, they began to take 

over larger and larger functions to the state where some are now marketed as full systems 

on chips (SoC). Particularly with the introduction of dedicated multipliers into FPGA 

architectures in the late 1990s, applications which had traditionally been the sole reserve 

of DSPs began to incorporate FPGAs instead. 

 

FPGAs especially find applications in any area or algorithm that can make use of the 

massive parallelism offered by their architecture. One such area is code breaking, in 

particular brute-force attack, of cryptographic algorithms. 



33 
 

 

FPGAs are increasingly used in conventional high performance computing applications 

where computational kernels such as FFT or Convolution are performed on the FPGA 

instead of a microprocessor. 

 

The inherent parallelism of the logic resources on an FPGA allows for considerable 

computational throughput even at a low MHz clock rates. The flexibility of the FPGA 

allows for even higher performance by trading off precision and range in the number 

format for an increased number of parallel arithmetic units. This has driven a new type of 

processing called reconfigurable computing, where time intensive tasks are offloaded 

from software to FPGAs. 

 

The adoption of FPGAs in high performance computing is currently limited by the 

complexity of FPGA design compared to conventional software and the turn-around 

times of current design tools. 

 

Traditionally, FPGAs have been reserved for specific vertical applications where the 

volume of production is small. For these low-volume applications, the premium that 

companies pay in hardware costs per unit for a programmable chip is more affordable 

than the development resources spent on creating an ASIC for a low-volume application. 

Today, new cost and performance dynamics have broadened the range of viable 

applications. 
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2.7.5. Applications in Digital Signal Processing 

 

Digital signal processing has traditionally been done using enhanced microprocessors. 

While the high volume of generic product provides a low cost solution, the performance 

falls seriously short for many applications. Until recently, the only alternatives were to 

develop custom hardware (typically board level or ASIC designs), buy expensive fixed 

function processors (e.g. an FFT chip), or use an array of microprocessors. 

 

Recent increases in Field Programmable Gate Array performance and size offer a new 

hardware acceleration opportunity. FPGAs are an array of programmable logic cells 

interconnected by a matrix of wires and programmable switches. Each cell performs a 

simple logic function defined by a user's program. An FPGA has a large number (64 to 

over 20,000) of these cells available to use as building blocks in complex digital circuits. 

Custom hardware has never been so easy to develop. 

 

The ability to manipulate the logic at the gate level means you can construct a custom 

processor to efficiently implement the desired function. By simultaneously performing all 

of the algorithm‘s sub-functions, the FPGA can outperform a DSP by as much as 1000:1. 

 

2.7.6. Applications in Software Defined Radios 

 

SDR baseband processing often requires both processors and FPGAs. In such 

applications, the processor handles system control and configuration functions, while the 

FPGA implements the computationally intensive signal-processing data path and control, 
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minimizing the latency in the system. When it is necessary to switch from one standard to 

another, the processor can switch dynamically between major sections of software, while 

the FPGA can be completely reconfigured, as necessary, to implement the data path for 

the particular standard. 

FPGAs can be used as co-processors to interface with DSPs and general-purpose 

processors, thereby providing higher system performance and lower system costs. Having 

the freedom to choose where to implement baseband-processing algorithms adds another 

dimension to the flexibility when implementing SDR algorithms. 
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Chap 3 

Development and Design 
 

 

3.1. Overview 
 

In this chapter we will discuss the methodology and approach leading to the development 

of this project. We will start the chapter by looking  on the different modules of OFDM 

implemented in our Communication system necessary for quality transmission and how 

they all sum up to form a fast and reliable digital communication system. Later on, we 

will discuss the approaches to implement the communication and the reason why we 

chose the FPGA for the implementation of OFDM. We will sum up this chapter by 

discussing the tools and softwares used to develop the prototype. 

 

3.2. The OFDM Model 
 

OFDM is implemented according to the various standards and techniques required in the 

communication system. The OFDM model we used in our project was according to the 

IEEE 802.11 standard. The modulation technique used is QPSK. 16-point FFT and IFFT 

are employed and the convolutional encoding along with the scrambling precedes the 

FFT block. Guard insertion and Guard Removal also are a part of the prototype 

developed. The block diagram of the developed system is given below: 



37 
 

Figure 3-1: Block Diagram of the OFDM System 

 

Now we will discuss the proposed OFDM communication system in detail. 

 

3.2.1. Scrambler and De-Scrambler 

 

A scrambler is a device that transposes or inverts signals or otherwise encodes a message 

at the transmitter to make the message unintelligible at a receiver not equipped with an 

appropriately set descrambling device. Also referred to as a randomizer, it is a device that 

manipulates a data stream before transmitting. The manipulations are reversed by a 

descrambler at the receiving side. 

Scrambler is basically built from modulo-2 and shift operations at appropriate clock 

cycles. At first the temporary bit is calculated at negative edge of the cycle and then 

pushed to the register along with the shift to right at the positive edge of the clock. 

Scrambler structure is basically similar to that of Linear Feedback Shift Register (LFSR). 

In our design, we have used a frame synchronous scrambler which takes data in octets 

and are placed in the serial bitstream. The scrambler used employs the generator 
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polynomial S(x) = x
7
 + x

4
+1. The same scrambler is used to scramble transmit data and to 

de-scramble received data. While transmitting, the initial state of the scrambler will be set 

over random non-zero state. The LFSR scrambler used is shown below in the figure. 

 

 

Figure 3-2: Scrambler of the standard generator polynomial 

 

There are two main reasons why scrambling is used: 

 It facilitates the work of a timing recovery circuit, an automatic gain control and other 

adaptive circuits of the receiver (eliminating long sequences consisting of '0' or '1' 

only). 

 It eliminates the dependence of a signal's power spectrum upon the actual transmitted 

data, making it more dispersed to meet maximum power spectral density 

requirements (because if the power is concentrated in a narrow frequency band, it can 

interfere with adjacent channels due to the cross modulation and the inter-modulation 

caused by non-linearities of the receiving tract). 

The descrambler works in the same way and brings back the original sequence that was 

scrambled.  
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3.2.2. Convolutional Encoder and Decoder 

 

Convolutional Encoder is implemented in the OFDM system for channel coding, which is 

an essential part of any good digital communication system. Its purpose here is to provide 

forward error correction. It helps provide redundant bits on channel to incorporate 

channel encoding.  

In this design, the encoder uses the generator polynomials g0=x
5
+x

4
+x

2
+x and g1=x

5
 

+x
2
+x+1 of rate (R) = 1/2. The data rates are improved by applying puncturing. It is the 

procedure of omitting some of the encoded bits in the transmitter. On the receiving side, 

the decoder inserts the dummy zeros in place of the omitted bits. Convolutional encoder‘s 

local controller controls the working of the encoder with puncturing module in 

conjunction. 

 

Figure 3-3 : Convolutional Encoder with the given Generator Polynomial 

The convolutional encoding rate used in the project is according to the IEEE Standard 

802.11a which specifies the rate of 1/2 by basic convolutional encoder and 2/3 and 3/4 

with punctured codes. If puncture enable is set high, controller performs basic coding and 

sends the data to puncturing module on the next clock cycle and punctures the incoming 
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code according to the rate flag. When the rate flag is set high, 3/4 convolutional encoding 

is performed, else it is set for rate 2/3.  

 

3.2.3. Interleaving and De-Interleaving 

 

Interleaving is a way to arrange data in a non-contiguous way to increase performance. 

Many communication channels are not memory-less: errors typically occur in bursts 

rather than independently. If the number of errors within a code word exceeds the error-

correcting code's capability, it fails to recover the original code word. Interleaving 

ameliorates this problem by shuffling source symbols across several code words, thereby 

creating a more uniform distribution of errors. 

Symbol interleaver / de-interleaver can mitigate the effects of burst noise. Typically, 

these functions are needed for transport channels that require a bit error ratio (BER) in 

the order of 10
-6

. The encoded data bits are interleaved by the interleaver block with a 

block size corresponding to number of bits in OFDM symbol. The interleaver is defined 

by a two-step permutation.  

The interleaver is defined by a two-step permutation. The first permutation ensures that 

adjacent coded bits are mapped onto nonadjacent subcarriers. The second permutation 

ensures that adjacent coded bits are mapped alternately onto less and more significant bits 

of the constellation, thereby avoiding long runs of low reliability bits. 

k will be used to denote the index of the coded bit before the first permutation; i will 

denote the index after the first and before the second permutation; j will denote the index 

after the second permutation, just prior to modulation mapping.  

The first permutation is defined by 
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i = ( N CBPS /16) (k mod 16) + floor(k/16) k = 0, 1, ..., N CBPS - 1 

The function floor (.) denotes the largest integer not exceeding the parameter. 

The second permutation is defined by 

j = s × floor(i/s) + (i + N CBPS - floor(16 × i/ N CBPS )) mod s i = 0, 1, ... N CBPS - 1 

wheres is determined by the number of coded bits per subcarrier N DBPS 

according to 

s = max ( N DBPS /2, 1) 

 

 

3.2.4. Modulation Mapping and De-mapping 

 

The encoded and interleaved binary serial input data shall be divided into groups of 2 bits 

each and converted into complex numbers representing QPSK constellation points. The 

modulation mapper takes two bits as input and after mapping, outputs a 28-bit stream 

with most significant 14 bits representing real, and the rest 14 representing imaginary part 

of the signal. Unsigned fractional bits for each of the 2-bit input were first calculated 

using MATLAB and then the code was developed accordingly.  

 

3.2.5. FFT / IFFT 

 

In our design, pipelined FFT module has been designed and radix-2 FFT has been 

implemented. We have implemented 16-point FFT; it consists of 8 butterfly structures 

and 4 total stages. The FFT block takes 28 bit N complex data points as serial input 

where N represents the number of points. 
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In the design, serially pipelined FFT has been employed. Parallel pipelined FFT 

processors are employed to meet the growing demand of high processing rate. Highly 

parallel implementations obtain high computation rates but require the simultaneous 

distribution of all data samples. The high rate of distribution of data required to keep the 

processors busy is impossible to achieve especially in real time applications involving 

word-serial data. This problem coupled with limited input/output resources in FPGAs 

makes the parallel algorithm inefficient. 

 

The serially pipelined FFT computes one transform in O(N) processing cycles, producing 

the output sequentially at the input data rate. So the cascaded FFT is ideally suited for 

real-time signal processing. Cascaded FFT uses registers organized as shift-registers 

between butterfly computation units. 

 

FFT is the most important process in implementation of OFDM. The FFT operates by 

decomposing an N point time domain signal into N time domain signals each composed 

of a single point. The second step is to calculate the N frequency spectra corresponding to 

these N time domain signals. Lastly, the N spectra are synthesized into a single frequency 

spectrum.  This way FFT is basically the process that divides the input signal into N 

number of orthogonal frequencies, which is the basic and unique property of OFDM 

technique.  
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Figure 3-4: FFT 16-point signal broken up into 16 different signals 

 

 In our system, 16 point signal is decomposed through four separate stages. The first 

stage breaks the 16 point signal into two signals each consisting of 8 points. The second 

stage decomposes the data into four signals of 4 points. This pattern continues until there 

are N signals composed of a single point. An interlaced decomposition is used each time 

a signal is broken in two, that is, the signal is separated into its even and odd numbered 

samples. There are Log2N stages required in this decomposition, i.e., a 16 point signal 

(2
4
) requires 4 stages. 

 

The structure is replicated at each clock cycle for N/2 butterfly operations and is executed 

in parallel for all stages to get serially pipelined data output of complex 16-points. The 

source controller initializes stage and butterfly controller according to N=16 and forwards 

the control to the data address generator. Address generator will produce addresses 

considering radix-2 structure, for the 2 complex points to be sent to Data Memory. 

These complex points are then forwarded to the radix block where two complex values 

for the next stage are produced. In the radix block, the second complex point is multiplied 
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by the twiddle factor generated by the twiddle address generator and then increments the 

butterfly number for that stage. This cycle continues till N/2 butterflies. In pipelined 

implementation, this process is carried out for log2N i.e., 4 cycles and transformed data is 

presented on the output pins after 16 cycles. 

 

 

3.2.6. Guard Insertion and Removal 

 

Guard insertion is required at the transmitter end to avoid inter-symbol interference. 

Shifting the time TGUARD creates the ―circular Prefix‖ used in OFDM to avoid ISI from 

any previous frame.  

 

The reasons to use a cyclic prefix for the guard interval are: 

 To maintain the receiver carrier synchronization ; some signals instead of a long 

silence must always be transmitted; 

 Cyclic convolution can still be applied between the OFDM signal and the channel 

response to model the transmission system. 

 

The figure below shows the effect of adding a guard interval after every OFDM symbol. 

We can see that the tolerance on timing the samples is considerably more relaxed. 
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Figure 3-5: The effect on Timing Tolerance of adding a Guard Interval 

 

Each symbol now is made up of two parts.  The whole signal is now contained in the 

active symbol (highlighted for the symbol M in the figure below) the last part of which is 

also repeated at the start of the symbol and is called the guard interval. 

 

Figure 3-6: Example of the guard interval 
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3.3. Implementation on FPGA: 
 

After the OFDM structure is created on software, it has to be implemented on FPGA for 

real-time transmission. The architecture would be a simplex system where one FPGA kit 

would act as transmitter and the other would act as the receiver. All the processing would 

be done on FPGA and the data would be transmitted between the two kits serially over 

the UART port. 

 

3.3.1. Integration of Transmitter and Receiver: 

 

Initially all the modules of OFDM were individually coded in Verilog and then the 

modules for transmitter were integrated to create a stand-alone system. The transmitter 

end takes voice (analog) input, performs the formerly mentioned functions and then sends 

the digital data to the receiver over the wired connection where the original signal is 

recovered.  

3.3.2. Burning of Code on FPGA: 

 

Before implementing the code on hardware, it is first synthesized on the software Xilinx 

ISE v11.1. Synthesis results give a summary of all the processing and memory resources 

that would be required to successfully implement the code on FPGA. This result also 

verifies if there are any processes in the code that cannot be implemented on hardware in 

form of gates and latches. After successful synthesis, I/O pins have to be configured. 

There are various input, output and I/O pins available on FPGA kit. In addition, an FX2 

interface device is also available with Spartan 3e with an additional 40 differential I/O 
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pins that can also be used. UCF file is created for the code on which every input and 

output is assigned the location of a pin on the FPGA.  

 

Figure 3-7 : FPGA Code Burning Process 

When the code is burnt on the FPGA, then all the modules will get their inputs 

correspondingly from the physical pins that had been assigned in the UCF file. The 

software used for burning the code on FPGA Cores in the Xilinx Environment is 

‗iMPACT‘ application of the Xilinx ISE v11.1.  
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3.3.3. Audio input and DAC / A/D: 

 

On the transmitter end, voice analog signal is fed to the ADC circuit on the FPGA kit. 

This circuit consists of a pre-amplifier and an analog-to-digital converter IC. This circuit 

interacts with the FPGA over a Serial Peripheral Interface (SPI) where FPGA acts as the 

master and ADC acts as slave. After converting the analog signal to digital format, it is 

sent to the corresponding input port from where it enters the transmitter. After the 

insertion of guard interval, the digital data packet leaves the transmitter and is sent to the 

receiver over the wired channel through the serial UART port. 

Initially all the modules of OFDM were individually coded in Verilog and then the 

modules for transmitter were integrated to create a stand-alone system. The transmitter 

end takes voice (analog) input, performs the formerly mentioned functions and then sends 

the digital data to the receiver over the wired connection where the original signal is 

recovered.  

Before implementing the code on hardware, it is first synthesized on the software Xilinx 

ISE 11. Synthesis results give a summary of all the processing and memory resources that 

would be required to successfully implement the code on FPGA. This result also verifies 

if there are any processes in the code that cannot be implemented on hardware in form of 

gates and latches. After successful synthesis, I/O pins have to be configured. There are 

various input, output and I/O pins available on FPGA kit. In addition, an FX2 interface 

device is also available with Spartan 3e with an additional 40 differential I/O pins that 

can also be used. UCF file is created for the code on which every input and output is 

assigned the location of a pin on the FPGA. When the code is burnt on the FPGA, then all 
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the modules will get their inputs correspondingly from the physical pins that had been 

assigned in the UCF file.  

The Xilinx Spartan 3E has various serial and parallel input ports but it does not contain 

and audio input/output jack. For this reason we have developed an external circuit where 

we have used an external audio jack which converts audio signals into voltage and sends 

this analog signal to the ADC of the transmitter.   

 

Figure 3-8 : DAC and A/D Ports in the FPGA Kit 

On the transmitter end, voice analog signal is fed to the ADC circuit on the FPGA kit. 

This circuit consists of a pre-amplifier and an analog-to-digital converter IC. This circuit 

interacts with the FPGA over a Serial Peripheral Interface (SPI) where FPGA acts as the 

master and ADC acts as slave. After converting the analog signal to digital format, it is 

sent to the corresponding input port from where it enters the transmitter. After the 
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insertion of guard interval, the digital data packet leaves the transmitter and is sent to the 

receiver over the wired channel through the serial UART port. DAC works on the 

receiver end. The received data is processed according to the OFDM standard and the 

output bits from the descrambler enter the DAC, 12 bits per frame, these bits are then 

mapped to by the DAC to reconstruct the analog signal. 

 

In this chapter we discussed the implementation of the proposed OFDM system on the 

FPGA kit. The designs of the blocks of OFDM were explained according to the need and 

the standard followed i.e. IEEE 802.11a after estimating the memory resources available 

on the FPGA kits available. The basic techniques and knowledge of Verilog coding was 

used to implement the OFDM system. We also established a process for synthesizing and 

burning the Verilog code of the given system using the ISE v11.1 .  
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 Chap 4 

Analysis and Evaluation 
 

 

4.1. Overview 
 

In this chapter we will demonstrate the results of the project. We will start over with the 

simulation results in Simulink and then in Xilinx environment through System Generator 

Blockset. We later on implemented the system on FPGA in Real-Time environment 

through coding in Verilog and creating the modules in Xilinx ISE v11.1. All the results of 

the Verilog code were verified using iSim application of the software. The 

implementation was finally analyzed through voice transmission through the use of DAC 

and A/D. the separate results for A/D and DAC were compared with that of the original 

voice. 

 

4.2. Simulink Results 
 

The OFDM code was implemented in simulink before going to the Xilinx and FPGA 

environment to validate the design of the communication system. The system model is 

shown below in the figure 
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Figure 4-1 : Simulink OFDM Model 

 

The Bernoulli Binary Generator was used as the data source followed by the simulink 

block for QPSK mapping. The iFFT and cyclic prefix addition were performed in the 

OFDM modulation block and then sent on the AWGN model. Then the FFT block 

demodulated the OFDM signal and then the QPSK demapper and then the final data sink 

where the signal was analyzed. The result of the simulation is shown below in the figures. 

 

Figure 4-2 : Magnitude of the FFT Signal along the frequency 
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Figure 4-3 : Simulation Performance 

The figure shows that at the end of simulation 1920384 bits were sent from the Bernoulli 

Generator and all of them were correctly recovered at the Data Sink. If the AWGN 

channel modeling is done more aggressively then the bit loss starts to increase slightly. 

  

4.3. ISE Results 
 

The OFDM system was implemented in verilog and tested in the ISE software before 

transferring to the FPGA for real-time transmission. The analysis in the ise software 

enabled us to verify the verilog code syntax and its synthesis. The ise gave warnings and 

errors about any mistakes in the written Verilog code which made them detectable and 

easily removable. The test-bench creation allowed for the analysis of the signal 

processing in the FPGA kit according to the clock of the kit. The results calculated 

theoretically were compared with the results shown for each module in the timing 

diagrams. The memory resources used and the output signals for each module is 

explained in the figures given below. We will explain each module with the repesctive 

figures and the timing diagrams obtained in the iSim Application of the software. 

 



54 
 

 

 Figure 4-4 : Scrambler Synthesis Report in ISE 

 

The synthesis report includes the calculation of the expected use of the memory of FPGA 

kit by the module synthesized. It tells about the number of slices used along with all the 

inputs and outputs required by the module and how much we actually have available in 

the FPGA kit. 

 

Figure 4-5 : Output of Scrambler 
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Output of the scrambler shows the timing diagram of the signals runnig in the scrambler 

module. The first signal is the output of the scrambler that is passed on to the encoder 

module. Then the clock and reset signals are shown along with the start and input signals. 

 

 

Figure 4-6 : Output of Encoder 

Output of the encoder shows the output bits when compared to the initial bits given to the 

encoder module. Puncture enabling signal can also be seen in the figure. 

 

Figure 4-7 : Interleaver Synthesis Report in ISE 
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Interleaver module synthesis report indicated that only 3% of the slices available in the 

Spartan 3E-1600 kit are being used. Input/output blocks have a usage of 6% of the total 

available. 

 

 

Figure 4-8 : Output of Interleaver 

Interleaver output is shown to us which is in accordance with the double permutation 

algorithm we implemented for the interleaving purposes. Permuted data signal and the 

Ncbps Signal can also be seen. 
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Figure 4-9 : Output of QPSK Mapper 

QPSK mapping results in the imaginary and real data comparing to the given input data. 

 

Figure 4-10 : QPSK Mapper Synthesis Report in ISE 

QPSK mapper synthesis tells us that it needs only 23 slices which is negligible to the 

amount of slices available. IOBs needed are 13% of the total. 
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Figure 4-11 : Output of QPSK Demapper 

The imaginary and real data can be seen in the top of the figure and the output 

demodulated signal can be seen at the end. 

 

In this chapter we discussed the simulations and their results. The analysis helped us in 

checking the outputs of our coding and implementation of the system so that we could 

ensure the proper communication and working before we moved forward to real-time 

transmission and reception of the system. The real-time transmission was carried out by 

voice communication through OFDM.  
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5. Future Work 
 

The prototype developed is implemented on the kit Xilinx Spartan 3E with 1600K gates. 

OFDM is continuously evolving with better modulation techniques and higher data rates 

and the upcoming 4G technologies in the market are employing OFDM wireless 

Communication standards. The implementation can be carried out on newer kits with 

available USB interface which can support the SDR applications through connection with 

USRP and much higher data rates could be achieved with better accuracy and robustness. 

 

16-point FFT is currently being implemented in the system and can be further upgraded 

to 128-point FFT for higher data rates and support for newer standards of 

communication. The transceiver designed could be used for video transmission through 

wireless medium by interfacing with IP Camera and the relevant OS. 
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6. Conclusion 
 

The proposed system allows faster and more robust communication as compared to older 

systems and the use of FPGA makes the real-time implementation which results in lesser 

delay. The system was implemented by Verilog HDL coding and the hardware used is the 

Xilinx Spartan 3E kit. The A/D and DAC present in the kit were used to test the system 

through voice communication.  

The Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (FFT) have been 

chosen to implement the design instead of the Discrete Fourier Transform and Inverse 

Discrete Fourier Transform because they offer better speed with less computational time.   

In conclusion, the main objective of this project has been successfully accomplished and 

the result obtained from this project is valid. 
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Scrambler: 

module scrambler(//inputs 

   clk, 

   rst, 

   start, 

   din, 

   //outputs 

   dout_scrambler 

        ); 

 

inputclk  ; 

inputrst  ; 

input start; 

input din  ; 

//outputs 

outputdout_scrambler; 

 

//registers 

regdout_scrambler; 

reg       temp; 

reg [6:0] X_reg   ; 

 

always @(posedgeclk) 

begin 

if(start) 

  begin 

X_reg<=7'b1111111;    

end 

 

else 

begin 

 X_reg<={X_reg[5:0],temp};      

end 

end  

 

always @(negedgeclk)  

begin  

temp<=X_reg[3] ^ X_reg[6]; 

end  
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always @(posedgeclk)  

begin  

dout_scrambler<=din ^ temp; 

end  

 

endmodule 

 

Convolutional Encoder: 

moduleconvEncoder( 

   //inputs 

   clk, 

   rst, 

  // start, 

   din, 

   encoding, //from controller 

   puncturing, //from punture 

   //outputs 

   dout 

   ); 

inputclk   ; 

inputrst   ; 

//input start ; 

input din   ; 

input encoding; 

input puncturing; 

output [1:0] dout ;   

 

//registers 

reg [1:0] dout   ;  

reg [5:0] X_reg   ;   

//assign X_reg = 6'b100100 ; 

 

always @(posedgeclk or negedgerst) 

begin 

 if(!rst) 

 begin 

dout<=0;  

X_reg<=0; 

 

 



65 
 

 end 

  

 else 

 begin 

  if( encoding || puncturing) 

  begin 

 dout[0]     <=X_reg[0] ^ X_reg[1] ^ X_reg[3] ^ X_reg[4] ^ din;  

 dout[1]     <=X_reg[0] ^ X_reg[3] ^ X_reg[4] ^ X_reg[5] ^ din;  

X_reg<={din,X_reg[5:1]}; 

 

end 

 

else 

begin 

dout<=dout;  

X_reg<=X_reg;  

end 

end 

end  

 

endmodule 

 

 

Interleaver: 

modulecomplete_interleaver( 

                            //inputs 

clk       , 

start     , 

Ncbps     , 

chnageNcbps, 

serial_in , 

                            //outputs  

j         ,  

                            permuted_data2   

                            ); 

//inputs  

inputclk        ; 

input start      ; 

input [1:0]Ncbps      ; 

inputchnageNcbps; 
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inputserial_in  ;            

//outputs 

output [8:0] j        ;            

output permuted_data2 ; 

always @ (posedgeclk) 

begin 

 if (start_first_permutation || chnageNcbps)          //incorporated new Ncbps signal 

here so if Ncbps changes, values of k, addrb_0 and flag can be reset 

 begin 

 addrb_0           <=0;             

 permuted_data1_0  <=serial_in;  

 addrb_1           <=0;           

 permuted_data1_1  <=serial_in;  

 k                 <=0;  

 block_length_flag<=0; 

   

 end 

 else 

 begin 

  case(Ncbps) 

 2'b00:   

  

 if(!block_length_flag) 

 begin 

  if(addrb_0==47 && k==47) //check this condition again since it gives 

zero address again here for this memory and stores serial_in that is a new value for zero. 

  begin                    //may be it would work because read cycle occurs after 

one clock cycle so it reads previous value. 

  addrb_0         <=0;    

  permuted_data1_0<=serial_in;   

  k             <=0;  

  block_length_flag<=1;  

 end   

   

  else if(addrb_0==46 && k==31) 

  begin 

  addrb_0         <=2;    

  permuted_data1_0<=serial_in;   

  k             <=k + 1; 

  block_length_flag<=block_length_flag;  
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 end 

   

  else if(addrb_0==45 && k==15) 

  begin 

  addrb_0         <=1;    

  permuted_data1_0<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

  else 

  begin 

   addrb_0         <=addrb_0 + 3;             

         permuted_data1_0<=serial_in;  

         k             <=k + 1;  

   block_length_flag<=block_length_flag;  

  end 

   

 end 

  

 else 

 begin 

  if(addrb_1==47 && k==47) 

  begin 

  addrb_1         <=0;    

  permuted_data1_1<=serial_in;   

  k             <=0;  

  block_length_flag<=0;  

 end   

   

  else if(addrb_1==46 && k==31) 

  begin 

  addrb_1         <=2;    

  permuted_data1_1<=serial_in;   

  k             <=k + 1; 

  block_length_flag<=block_length_flag;  

 end 

   

  else if(addrb_1==45 && k==15) 

  begin 

  addrb_1         <=1;    
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  permuted_data1_1<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

  else 

  begin 

   addrb_1         <=addrb_1 + 3;             

         permuted_data1_1<=serial_in;  

         k             <=k + 1;  

   block_length_flag<=block_length_flag;  

  end 

 end 

  

 2'b01: 

 if(!block_length_flag) 

 begin 

  

  

 if(addrb_0==95 && k==95) 

  begin 

  addrb_0         <=0;    

  permuted_data1_0<=serial_in;   

  k             <=0;  

    block_length_flag<=1;  

 end  

 else if(addrb_0==94 && k==79) 

  begin 

  addrb_0         <=5;    

  permuted_data1_0<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

  

   

 else if(addrb_0==93 && k==63) 

  begin 

  addrb_0         <=4;    

  permuted_data1_0<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  
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 end 

 else if(addrb_0==92 && k==47) 

  begin 

  addrb_0         <=3;    

  permuted_data1_0<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

   

  else if(addrb_0==91 && k==31) 

  begin 

  addrb_0         <=2;    

  permuted_data1_0<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

   

  else if(addrb_0==90 && k==15) 

  begin 

  addrb_0         <=1;    

  permuted_data1_0<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

  else 

  begin 

  addrb_0         <=addrb_0 + 6;             

     permuted_data1_0<=serial_in;  

     k             <=k + 1; 

   block_length_flag<=block_length_flag;   

  end 

  

end 

else 

begin 

  

  

 if(addrb_1==95 && k==95) 

  begin 

  addrb_1         <=0;    
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  permuted_data1_1<=serial_in;   

  k             <=0;  

    block_length_flag<=0;  

 end  

 else if(addrb_1==94 && k==79) 

  begin 

  addrb_1         <=5;    

  permuted_data1_1<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

  

   

 else if(addrb_1==93 && k==63) 

  begin 

  addrb_1         <=4;    

  permuted_data1_1<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

 else if(addrb_1==92 && k==47) 

  begin 

  addrb_1         <=3;    

  permuted_data1_1<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

   

  else if(addrb_1==91 && k==31) 

  begin 

  addrb_1         <=2;    

  permuted_data1_1<=serial_in;   

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

   

  else if(addrb_1==90 && k==15) 

  begin 

  addrb_1         <=1;    

  permuted_data1_1<=serial_in;   



71 
 

  k             <=k + 1;  

    block_length_flag<=block_length_flag;  

 end 

 

always @ (posedgeclk) 

begin 

 if (start_second_permutation || chnageNcbps)    //add Ncbps signal to reset all 

these if Ncbps changes during the block execution 

 begin 

 addra_1         <=0;    

  addra_0         <=0;              

 permuted_data2<=permuted_data1_1;  

 j            <=0;  

 count<=0; 

 flag<=0; 

 block_length_flag<=0; 

 end 

 else 

 begin 

  case(Ncbps) 

 2'b00:  

  

 if(!block_length_flag) 

 begin  

  if(addra_1==47 && j==47) 

  begin 

  addra_1         <=0;    

  permuted_data2<=permuted_data1_1;   

  j            <=0;  

  count<=count; 

  flag<= flag; 

  block_length_flag<=1; 

 

   

 end   

   

  else 

  begin 

   addra_1         <=addra_1 + 1;             

         permuted_data2<=permuted_data1_1;  
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         j            <=j+ 1; 

 count<=count;     

 flag<= flag;   

 block_length_flag<=block_length_flag;   

   

  end 

 end 

 else 

 begin  

  if(addra_0==47 && j==47) 

  begin 

  addra_0         <=0;    

  permuted_data2<=permuted_data1_0;   

  j            <=0;  

  count<=count; 

  flag<= flag; 

  block_length_flag<=0; 

 

   

 end   

   

  else 

  begin 

   addra_0         <=addra_0 + 1;             

         permuted_data2<=permuted_data1_0;  

         j            <=j+ 1; 

 count<=count;     

 flag<= flag;   

 block_length_flag<=block_length_flag;   

   

  end 

 end 

 2'b01: 

 if(!block_length_flag) 

 begin  

 if(addra_1==95 && j==95) 

  begin 

  addra_1         <=0;    

  permuted_data2<=permuted_data1_1;   

  j            <=0; 
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  count<=count;      

  flag<= flag;   

  block_length_flag<=1;    

 end   

   

  else 

  begin 

   addra_1         <=addra_1 + 1;             

         permuted_data2<=permuted_data1_1;  

         j            <=j+ 1; 

 count<=count;     

 flag<= flag;   

 block_length_flag<=block_length_flag;    

  end 

 end 

 else 

 begin  

 if(addra_0==95 && j==95) 

  begin 

  addra_0         <=0;    

  permuted_data2<=permuted_data1_0;   

  j            <=0; 

  count<=count;      

  flag<= flag;   

  block_length_flag<=0;    

 end   

   

  else 

  begin 

   addra_0         <=addra_0 + 1;             

         permuted_data2<=permuted_data1_0;  

         j            <=j+ 1; 

 count<=count;     

 flag<= flag;   

 block_length_flag<=block_length_flag;    

  end 

 end 

  

 2'b10: 

 if(!block_length_flag) 
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 begin  

 if(addra_1==191 ) 

  begin 

  addra_1         <=0;    

  permuted_data2<=permuted_data1_1;   

  j            <=0; 

  count<=0;     

 flag<=0;   

 block_length_flag<=1; 

    

 end   

  

   

 else 

  if((count==23) && (addra_1!=191) ) 

  begin 

     

    addra_1         <=addra_1 + 1;             

          permuted_data2<=permuted_data1_1;  

          j            <=j+2;                     

  count<=0;  

  flag<=0;  

  block_length_flag<=block_length_flag;                             

  end 

   

 else if(count>=11 && count<=22) 

  begin 

   if(!flag) 

   begin   

    addra_1         <=addra_1 + 1;             

          permuted_data2<=permuted_data1_1;  

          j            <=addra_1+ 2;                     

  count<=count + 1;  

  flag<=1;    

  block_length_flag<=block_length_flag;                           

   end 

    

   else 

   begin   

    addra_1         <=addra_1 + 1;             
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          permuted_data2<=permuted_data1_1;  

          j            <=addra_1;                     

  count<=count + 1;  

  flag<=0;  

  block_length_flag<=block_length_flag;                             

   end 

    

  end 

   

  else   

  begin   

   addra_1         <=addra_1 + 1;             

         permuted_data2<=permuted_data1_1;  

         j            <=j+ 1; 

 count<=count + 1;  

 flag<=flag; 

 block_length_flag<=block_length_flag; 

  end 

 end 

 else 

 begin  

 if(addra_0==191 ) 

  begin 

  addra_0         <=0;    

  permuted_data2<=permuted_data1_0;   

  j            <=0; 

  count<=0;     

 flag<=0;   

 block_length_flag<=0; 

    

 end   

  

 else 

  if((count==23) && (addra_0!=191) ) 

  begin 

     

    addra_0         <=addra_0 + 1;             

          permuted_data2<=permuted_data1_0;  

          j            <=j+2;                     

  count<=0;  
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  flag<=0;  

  block_length_flag<=block_length_flag;                             

  end 

   

 else if(count>=11 && count<=22) 

  begin 

   if(!flag) 

   begin   

    addra_0         <=addra_0 + 1;             

          permuted_data2<=permuted_data1_0;  

          j            <=addra_0+ 2;                     

  count<=count + 1;  

  flag<=1;    

  block_length_flag<=block_length_flag;                           

   end 

   else 

   begin   

    addra_0         <=addra_0 + 1;             

          permuted_data2<=permuted_data1_0;  

          j            <=addra_0;                     

  count<=count + 1;  

  flag<=0;   

  block_length_flag<=block_length_flag;                             

   end 
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Modulation Mapper: 

moduleqpsk_main( 

clk, rst, start, qpsk_input,   //inputs 

imag_data, real_data, modulated          //outputs 

       ); 

 

//////////////////////////////////////qpsk ram //////////// 

always @ (posedgeclk) 

begin 

case (qpsk_input) 

 

     2'b00:data_frm_qpsk<=28'b11101001011000_11101001011000 ;  

//-1,-1  //now +1=.707 and -1= -.707      

       2'b01:data_frm_qpsk<=28'b00010110101000_11101001011000 ;  //1 ,-

1      

              2'b11:data_frm_qpsk<=28'b00010110101000_00010110101000 ;  //1 , 1    

              2'b10:data_frm_qpsk<=28'b11101001011000_00010110101000 ;  //-1, 1       

 

 endcase  

       

end 

///////////////////////////////////mapper////////// 

always @ (posedgeclk or negedgerst) 

 

if (!rst) 

begin 

imag_data<=0; 

real_data<=0; 

end   

else 

begin 

 if (start) 

 begin 

 real_data<= data_frm_qpsk [13:0]; 

 imag_data<= data_frm_qpsk [27:14] ; 

 modulated<= data_frm_qpsk; 

     

 end 

end 

endmodule  
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Fast Fourier Transform: 

moduledataAddressGeneratorIn( 

                     //inputs 

clk                     , 

rst                     , 

total_stages            ,        //output from FFT initialization 

gen_data_address        ,    

stage_number            , 

butterfly_number        , 

                     //outputs 

data_address_gen_done    , 

                    data_address1            , 

                    data_address2             

                     );       

always @(posedgeclk or negedgerst) 

begin 

 if(!rst) 

 begin 

 data_address_gen_done<=0; 

 data_address1        <=0; 

    data_address2        <=0; 

generating<=0; 

 end 

else 

 begin  

  if(gen_data_address || generating) 

  begin 

  data_address_gen_done<=1; 

  data_address1        <=butterfly_number - 1; 

        data_address2        <=(temp_reg<<(total_stages - 

stage_number))+(butterfly_number-1); 

generating<=1; 

  end 

  else 

  begin 

  data_address_gen_done<=0                        ; 

  data_address1        <=data_address1        ; 

        data_address2        <=data_address2        ; 

generating<=generating; 

end 
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end 

end 

endmodule      

module radix2cell_datapath( 

                     //inputs 

clk,       

rst, 

                     start_radix2, 

ADDING_state, 

   PRODUCING_ADDITIONS_state, 

                     data_in_line1re, 

                     data_in_line2re, 

                     data_in_line1im, 

                     data_in_line2im, 

                     //outputs 

                     data_out_line1re,       

                     data_out_line2re, 

                     data_out_line1im,  

                     data_out_line2im, 

                     radix2_done  

                     );       

 

always @(posedgeclk or negedgerst) 

begin 

 if(!rst) 

 begin 

     data_out_line1re<=0; 

     data_out_line2re<=0; 

     data_out_line1im<=0; 

     data_out_line2im<=0; 

     radix2_done=0; 

 end 

else 

 begin 

  if(start_radix2 || ADDING_state ||PRODUCING_ADDITIONS_state) 

  begin 

    data_out_line1re<=data_in_line1re + data_in_line2re;   

    data_out_line2re<=data_in_line1re - data_in_line2re;  

    data_out_line1im<=data_in_line1im + data_in_line2im; 

    data_out_line2im<=data_in_line1im - data_in_line2im;  
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             radix2_done=1; 

  end 

else 

 

 

begin 

    data_out_line1re<=0; 

    data_out_line2re<=0;   

    data_out_line1im<=0; 

    data_out_line2im<=0; 

             radix2_done=0; 

  end 

 end 

end 

endmodule 

 

moduletwiddleFactorMultiplication( //inputs                         

clk                          ,       

rst                          , 

twiddle_factor_cos           , //ouput from twiddle factor mem controller 

                     data_out_line2re             , //from radix cell...to be multiplied with cos 

twiddle                   

start_twiddle_multiplication , 

MULTIPLYING_state       , 

 PRODUCING_PRODUCTS_state, 

         

                     //outputs 

                     mult_data_in_line2re    

                     ); 

always @( negedgeclk or negedgerst) 

begin 

  

 if(!rst) 

 begin 

 twiddle_factor_cos_reg<=0; 

        data_out_line2re_reg            <=0; 

        mult_data_in_line2re_reg_MSB    <=0; 

 

 

 end 
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 else 

 begin 

   

 if(twiddle_factor_cos[5] && !data_out_line2re[13] ) 

  begin 

   if((data_out_line2re==0) || (twiddle_factor_cos==0)) 

   begin 

    twiddle_factor_cos_reg<=~(twiddle_factor_cos[4:0]) + 

12'd1; 

                  data_out_line2re_reg         <=data_out_line2re[12:0]  ; 

                  mult_data_in_line2re_reg_MSB <=0; 

     

   end 

   else 

   begin 

twiddle_factor_cos_reg<=~(twiddle_factor_cos[4:0]) + 12'd1; 

                  data_out_line2re_reg         <=data_out_line2re[12:0]  ; 

                  mult_data_in_line2re_reg_MSB <=1; 

end 

end 

 

  else if(!twiddle_factor_cos[5] && data_out_line2re[13] ) 

  begin 

   if((data_out_line2re==0) || (twiddle_factor_cos==0)) 

   begin 

    twiddle_factor_cos_reg<=twiddle_factor_cos[4:0]; 

                  data_out_line2re_reg         <=~(data_out_line2re[12:0]) + 12'd1  ; 

                  mult_data_in_line2re_reg_MSB <=0; 

     

   end 

   else 

  begin 

twiddle_factor_cos_reg<=twiddle_factor_cos[4:0]; 

                  data_out_line2re_reg         <=~(data_out_line2re[12:0]) + 12'd1  ; 

                  mult_data_in_line2re_reg_MSB <=1; 

end 

end 

  else if(twiddle_factor_cos[5] && data_out_line2re[13]) 

  begin 

twiddle_factor_cos_reg<=~(twiddle_factor_cos[4:0]) + 12'd1; 
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                  data_out_line2re_reg        <=~(data_out_line2re[12:0]) + 12'd1  ; 

                  mult_data_in_line2re_reg_MSB<=0; 

end 

  else 

  begin 

twiddle_factor_cos_reg<=twiddle_factor_cos[4:0]; 

                  data_out_line2re_reg        <=data_out_line2re[12:0]  ; 

                  mult_data_in_line2re_reg_MSB<=0; 

end 

 

 

end 

end 

  

    

always @( negedgeclk or negedgerst) 

begin 

  

 if(!rst) 

 begin 

   partial_prod0                 <=0; 

         partial_prod1                 <=0; 

         partial_prod2                 <=0; 

         partial_prod3                 <=0; 

         partial_prod4                 <=0; 

         mult_data_in_line2re_reg_MSB0 <=0; 

 end 

 else 

 begin 

  if (start_twiddle_multiplication || MULTIPLYING_state || 

PRODUCING_PRODUCTS_state) 

  begin 
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    partial_prod0                 <={5'b00000,(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[5]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[3]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[0] & 

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[0] & data_out_line2re_reg[0])}; 

    partial_prod1                 <={4'b0000,(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[1] 

&data_out_line2re_reg[5]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[3]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[1] & 

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[1] & data_out_line2re_reg[0]),1'b0}; 

    partial_prod2                 <={3'b000,(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[5]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[3]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[2] & 

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[2] & data_out_line2re_reg[0]),2'b00}; 



84 
 

    partial_prod3                 <={2'b00,(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[5]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[3]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[3] & 

data_out_line2re_reg[0]),3'b000};   

    partial_prod4                 <={1'b0,(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[12]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[11]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[10]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[9]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[8]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[7]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[6]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[5]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[4]),(twiddle_factor_cos_reg[4] 

&data_out_line2re_reg[3]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[2]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[1]),(twiddle_factor_cos_reg[4] & 

data_out_line2re_reg[0]),4'b0000};  

     mult_data_in_line2re_reg_MSB0 <=mult_data_in_line2re_reg_MSB;      

end 

else 

begin 

       partial_prod0                 <=0; 

       partial_prod1                 <=0; 

       partial_prod2                 <=0; 

       partial_prod3                 <=0; 

       partial_prod4                 <=0; 

       mult_data_in_line2re_reg_MSB0 <=0; 

end 
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 end 

    

end    

    

always @( negedgeclk or negedgerst) 

begin 

  

 if(!rst) 

 begin 

       mult_data_in_line2re_reg<=0; 

       mult_data_in_line2re_reg_MSB1<=0; 

 end 

 else 

  if (MULTIPLYING_state || PRODUCING_PRODUCTS_state) 

 begin 

  mult_data_in_line2re_reg     <=partial_prod0 + partial_prod1 + partial_prod2 + 

partial_prod3 + partial_prod4; 

  mult_data_in_line2re_reg_MSB1<=mult_data_in_line2re_reg_MSB0; 

 end 

 else 

 begin 

   mult_data_in_line2re_reg     <=mult_data_in_line2re_reg     ; 

   mult_data_in_line2re_reg_MSB1<=mult_data_in_line2re_reg_MSB1; 

 end 

end   

  

always @( negedgeclk or negedgerst) 

begin 

  

 if(!rst) 

 begin 

       mult_data_in_line2re_reg_MSB2<=0;  

       mult_data_in_line2re_trunc    <= 0; 

 end 

 else 

    if (MULTIPLYING_state || 

PRODUCING_PRODUCTS_state)        

 

 begin 
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          mult_data_in_line2re_reg_MSB2    <= mult_data_in_line2re_reg_MSB1;  

  

 if(mult_data_in_line2re_reg[4:0]<16) 

          mult_data_in_line2re_trunc <=mult_data_in_line2re_reg[17:5]; 

 else 

          mult_data_in_line2re_trunc <=mult_data_in_line2re_reg[17:5]  + 13'd1; 

 end 

  

 else 

 begin 

       mult_data_in_line2re_trunc    <= 0; 

       mult_data_in_line2re_reg_MSB2<=0;  

 

 end 

  

end 

 

always @( negedgeclk or negedgerst) 

begin  

 if(!rst) 

 begin 

        mult_data_in_line2re_delay[12:0]  <=0; 

        mult_data_in_line2re_delay[13]      <= 0; 

 

 end 

 else 

     if (MULTIPLYING_state || 

PRODUCING_PRODUCTS_state)        

 begin 

   mult_data_in_line2re_delay[13]<=mult_data_in_line2re_reg_MSB2; 

 

if(mult_data_in_line2re_reg_MSB2) 

         mult_data_in_line2re_delay[12:0]  <=~(mult_data_in_line2re_trunc) + 

13'd1; 

 else 

         mult_data_in_line2re_delay[12:0]  <=mult_data_in_line2re_trunc; 

 end 

 else 

 begin 
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         mult_data_in_line2re_delay[12:0]  <=0; 

         mult_data_in_line2re_delay[13]<=0; 

end 

end    

 

always @( posedgeclk or negedgerst) 

begin  

 if(!rst) 

 begin 

        mult_data_in_line2re[12:0]  <=0; 

        mult_data_in_line2re[13]      <= 0; 

 

 end 

 else 

     if (MULTIPLYING_state || 

PRODUCING_PRODUCTS_state)        

 begin 

  mult_data_in_line2re[13]  <=mult_data_in_line2re_delay[13];          

         mult_data_in_line2re[12:0]<=mult_data_in_line2re_delay; 

  

 end 

 else 

 begin 

             mult_data_in_line2re[13]   <=0; 

              mult_data_in_line2re[12:0]<=0; 

 

end 

 

 

end    

endmodule 
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Guard Insertion: 

moduleGI_write( 

clk, 

 BitReversedPoint, 

 start_GI, 

 //outputs 

 addrb_0, 

 addrb1_0, 

 DataPoint_0, 

 GIpoint_0,  

 addrb_1, 

 addrb1_1, 

 DataPoint_1, 

 GIpoint_1, 

 addrb_2, 

 addrb1_2, 

 DataPoint_2, 

 GIpoint_2, 

 addrb_3, 

 addrb1_3, 

 DataPoint_3, 

 GIpoint_3 

 ); 

 

inputclk;  

input [27:0] BitReversedPoint             ; 

inputstart_GI ; 

//outputs             

output [5:0]      addrb_0                ; 

output [3:0]      addrb1_0                ; 

output [27:0] DataPoint_0            ; 

output [27:0] GIpoint_0            ; 

 

output [5:0]      addrb_1                ; 

output [3:0]      addrb1_1                ; 

output [27:0] DataPoint_1            ; 

output [27:0] GIpoint_1            ; 

 

output [5:0]      addrb_2                ; 

output [3:0]      addrb1_2                ; 
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output [27:0] DataPoint_2            ; 

output [27:0] GIpoint_2            ; 

 

output [5:0]      addrb_3                ; 

output [3:0]      addrb1_3                ; 

output [27:0] DataPoint_3            ; 

output [27:0] GIpoint_3            ; 

 

//registers 

reg [5:0]      addrb_0                ; 

reg [3:0]      addrb1_0                ; 

reg [27:0] DataPoint_0            ; 

reg [27:0] GIpoint_0            ; 

 

reg [5:0]      addrb_1                ; 

reg [3:0]      addrb1_1                ; 

reg [27:0] DataPoint_1            ; 

reg [27:0] GIpoint_1            ; 

 

reg [5:0]      addrb_2                ; 

reg [3:0]      addrb1_2                ; 

reg [27:0] DataPoint_2            ; 

reg [27:0] GIpoint_2            ; 

 

reg [5:0]      addrb_3                ; 

reg [3:0]      addrb1_3                ; 

reg [27:0] DataPoint_3            ; 

reg [27:0] GIpoint_3            ;        

 

reg [1:0] mem_count; 

 

reg [5:0]      addrb           ; 

 

 

 

always @(posedgeclk) 

begin 

 if(start_GI) 

 begin 

 mem_count<=0; 
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   addrb_0    <=0; 

   addrb_1    <=0; 

   addrb_2    <=0; 

   addrb_3    <=0; 

   DataPoint_0<=0; 

   DataPoint_1<=0; 

   DataPoint_2<=0; 

   DataPoint_3<=0; 

 addrb<=0; 

 end 

 else 

 case(mem_count) 

  0: 

 if(addrb==15) 

 begin 

        addrb_0<=addrb; 

 addrb<=0; 

mem_count<=1;   

         DataPoint_0<=BitReversedPoint; 

   addrb_1    <=addrb_1; 

   addrb_2    <=addrb_2; 

   addrb_3    <=addrb_3;   

      DataPoint_1<=DataPoint_1; 

      DataPoint_2<=DataPoint_2; 

      DataPoint_3<=DataPoint_3; 

 

 

 end 

 else 

 begin 

        addrb_0<=addrb;     

 addrb<=addrb + 1; 

mem_count<=mem_count; 

         DataPoint_0<=BitReversedPoint; 

   addrb_1    <=addrb_1; 

   addrb_2    <=addrb_2; 

   addrb_3    <=addrb_3; 

      DataPoint_1<=DataPoint_1; 

      DataPoint_2<=DataPoint_2; 

      DataPoint_3<=DataPoint_3; 
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end 

 

     1: 

if(addrb==15) 

 begin 

        addrb_1<=addrb; 

 addrb<=0; 

mem_count<=2;   

         DataPoint_1<=BitReversedPoint; 

         addrb_0    <=addrb_0; 

      addrb_2    <=addrb_2 ; 

      addrb_3    <=addrb_3 ; 

      DataPoint_0<=DataPoint_0; 

         DataPoint_2<=DataPoint_2; 

         DataPoint_3<=DataPoint_3; 

 end 

 else 

 begin 

        addrb_1<=addrb;     

 addrb<=addrb + 1; 

mem_count<=mem_count; 

         DataPoint_1<=BitReversedPoint;   

         addrb_0    <=addrb_0; 

      addrb_2    <=addrb_2; 

      addrb_3    <=addrb_3; 

      DataPoint_0<=DataPoint_0; 

         DataPoint_2<=DataPoint_2; 

         DataPoint_3<=DataPoint_3; 

 

 

end 

     2: 

if(addrb==15) 

 begin 

        addrb_2<=addrb;   

 addrb<=0; 

mem_count<=3;   

         DataPoint_2<=BitReversedPoint; 

         addrb_0    <=addrb_0; 

      addrb_1    <=addrb_1; 
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      addrb_3    <=addrb_3; 

      DataPoint_0<=DataPoint_0; 

         DataPoint_1<=DataPoint_1; 

         DataPoint_3<=DataPoint_3; 

 end 

 else 

 begin 

        addrb_2<=addrb;     

 addrb<=addrb + 1; 

mem_count<=mem_count; 

         DataPoint_2<=BitReversedPoint; 

         addrb_0    <=addrb_0; 

      addrb_1    <=addrb_1; 

      addrb_3    <=addrb_3; 

      DataPoint_0<=DataPoint_0; 

         DataPoint_1<=DataPoint_1; 

         DataPoint_3<=DataPoint_3; 

end 

     3: 

if(addrb==15) 

 begin 

       addrb_3<=addrb;   

 addrb<=0; 

mem_count<=0;   

         DataPoint_3<=BitReversedPoint; 

         addrb_0    <=addrb_0; 

      addrb_1    <=addrb_1; 

      addrb_2    <=addrb_2; 

      DataPoint_0<=DataPoint_0; 

         DataPoint_1<=DataPoint_1; 

         DataPoint_2<=DataPoint_2; 

 end 

 else 

 begin 

        addrb_3<=addrb;     

 addrb<=addrb + 1; 

mem_count<=mem_count; 

         DataPoint_3<=BitReversedPoint; 

         addrb_0    <=addrb_0; 

      addrb_1    <=addrb_1; 
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      addrb_2    <=addrb_2; 

      DataPoint_0<=DataPoint_0; 

         DataPoint_1<=DataPoint_1; 

         DataPoint_2<=DataPoint_2; 

end 

endcase 

end 

 

//GI band memory storage 

 

always @(negedgeclk) 

begin 

 if(start_GI) 

 begin 

   addrb1_0       <=0; 

   addrb1_1       <=0; 

   addrb1_2       <=0; 

   addrb1_3       <=0; 

   GIpoint_0      <=0; 

   GIpoint_1      <=0; 

   GIpoint_2      <=0; 

   GIpoint_3      <=0; 

 end 

 else 

 case(mem_count) 

  0: 

 if(addrb_0>=0 && addrb_0<=15) 

 begin 

        addrb1_0    <=addrb_0;   

         GIpoint_0<=DataPoint_0; 

 end 

 else 

 begin 

        addrb1_0<=addrb1_0;     

         GIpoint_0<=GIpoint_0; 

end 

     1: 

if(addrb_1>=0 && addrb_1<=15) 

 begin 

        addrb1_1    <=addrb_1;   



94 
 

         GIpoint_1<=DataPoint_1; 

 end 

 else 

 begin 

        addrb1_0<=addrb1_0;     

         GIpoint_0<=GIpoint_0; 

end 

     2: 

if(addrb_2>=0 && addrb_2<=15) 

 begin 

        addrb1_2    <=addrb_2;   

         GIpoint_2<=DataPoint_2; 

 end 

 else 

 begin 

        addrb1_2<=addrb1_2;     

         GIpoint_2<=GIpoint_2; 

end 

     3: 

if(addrb_3>=0 && addrb_3<=15) 

 begin 

        addrb1_3    <=addrb_3;   

         GIpoint_3<=DataPoint_3; 

 end 

 else 

 begin 

        addrb1_3<=addrb1_3;     

         GIpoint_3<=GIpoint_3; 

end 

endcase 

end 

endmodule 
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Appendix – B 

 

“Spartan 3E Starter Board Data Sheets” 
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Spartan-3E FPGA Features and Embedded Processing Functions 
 
The Spartan-3E Starter Kit board highlights the unique features of the Spartan-3E FPGA family and 

provides a convenient development board for embedded processing applications. The board highlights 

these features: 

• Spartan-3E FPGA specific features 

• Parallel NOR Flash configuration 

• MultiBoot FPGA configuration from Parallel NOR Flash PROM 

• SPI serial Flash configuration 

• Embedded development 

• MicroBlaze™ 32-bit embedded RISC processor 

• PicoBlaze™ 8-bit embedded controller 

• DDR memory interfaces 

 
 
 

Key Components and Features 
 
The key features of the Spartan-3E Starter Kit board are: 

• Xilinx XC3S500E Spartan-3E FPGA 

• Up to 232 user-I/O pins 

• 320-pin FBGA package 

• Over 10,000 logic cells 

• Xilinx 4 Mbit Platform Flash configuration PROM 

• Xilinx 64-macrocell XC2C64A CoolRunner™ CPLD 

• 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz 

• 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash) 

• FPGA configuration storage 

• MicroBlaze code storage/shadowing 

• 16 Mbits of SPI serial Flash (STMicro) 

• FPGA configuration storage 

• MicroBlaze code shadowing 

• 2-line, 16-character LCD screen 

• PS/2 mouse or keyboard port 

• VGA display port 

• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA) 

• Two 9-pin RS-232 ports (DTE- and DCE-style) 

• On-board USB-based FPGA/CPLD download/debug interface 

• 50 MHz clock oscillator 

• SHA-1 1-wire serial EEPROM for bitstream copy protection 

• Hirose FX2 expansion connector 

• Three Digilent 6-pin expansion connectors 

• Four-output, SPI-based Digital-to-Analog Converter (DAC) 

• Two-input, SPI-based Analog-to-Digital Converter (ADC) with programmable-gain pre-amplifier 

• ChipScope™ SoftTouch debugging port 

• Rotary-encoder with push-button shaft 

• Eight discrete LEDs 

• Four slide switches 

• Four push-button switches 
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• SMA clock input 

• 8-pin DIP socket for auxiliary clock oscillator 

 

 

 

Design Trade-Offs 

 
A few system-level design trade-offs were required in order to provide the Spartan-3E 

Starter Kit board with the most functionality. 

 

Configuration Methods Galore! 

 
A typical FPGA application uses a single non-volatile memory to store configuration 

images. To demonstrate new Spartan-3E FPGA capabilities, the starter kit board has three 

different configuration memory sources that all need to function well together. The extra 

configuration functions make the starter kit board more complex than typical Spartan-3E 

FPGA applications. 

The starter kit board also includes an on-board USB-based JTAG programming interface. 

The on-chip circuitry simplifies the device programming experience. In typical 

applications, the JTAG programming hardware resides off-board or in a separate 

programming module, such as the Xilinx Platform USB cable. 

 

Voltages for all Applications 

 
The Spartan-3E Starter Kit board showcases a triple-output regulator developed by Texas 

Instruments, the TPS75003 specifically to power Spartan-3 and Spartan-3E FPGAs. This 

regulator is sufficient for most stand-alone FPGA applications. However, the starter kit 

board includes DDR SDRAM, which requires its own high-current supply. Similarly, the 

USB-based JTAG download solution requires a separate 1.8V supply. 

 

RS-232 Serial Ports 
Overview 
As shown in Figure 7-1, the Spartan®-3E FPGA Starter Kit board has two RS-232 serial 

ports: a female DB9 DCE connector and a male DTE connector. The DCE-style port 

connects directly to the serial port connector available on most personal computers and 

workstations via a standard straight-through serial cable. Null modem, gender changers, 

or crossover cables are not required. Use the DTE-style connector to control other RS-232 

peripherals, such as modems or printers, or perform simple loopback testing with the DCE 

connector. Note that Figure 7-1 shows the view looking ―out‖ the DTE connector. 
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Figure 7-1: RS-232 Serial Ports 
 
 
 
DB9 Serial Port Connector 
(front view) 

Standard 
9-pin serial cable 
Standard 
9-pin serial cable 
RS CS TR RD TD CD 
TALK/DATA 
TALK 
RS-232 Peripheral 
UG230_c7_01_062008 
 
 

Figure 7-1 shows the connection between the FPGA and the two DB9 connectors. The FPGA supplies 

serial output data using LVTTL or LVCMOS levels to the Maxim device, which in turn, converts the logic 

value to the appropriate RS-232 voltage level. Likewise, the Maxim device converts the RS-232 serial input 

data to LVTTL levels for the FPGA. A series resistor between the Maxim output pin and the FPGA‘s RXD 

pin protects against accidental logic conflicts. 

Hardware flow control is not supported on the connector. The port‘s DCD, DTR, and DSR signals connect 

together, as shown in Figure 7-1. Similarly, the port‘s RTS and CTS signals connect together. 
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UCF Location Constraints 
 
The data below provide the UCF constraints for the DTE and DCE RS-232 ports, respectively, including 

the I/O pin assignment and the I/O standard used. 

 
NET "RS232_DTE_RXD" LOC = "U8" | IOSTANDARD = LVTTL ; 

NET "RS232_DTE_TXD" LOC = "M13" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = SLOW ; 

NET "RS232_DCE_RXD" LOC = "R7" | IOSTANDARD = LVTTL ; 

NET "RS232_DCE_TXD" LOC = "M14" | IOSTANDARD = LVTTL | DRIVE = 8 | SLEW = SLOW ; 

 


