

Aut

in

tomatic

Su
Nation

n partial fu

c Wirel

PC
NC M

ubmitted
nal Univer
ulfilment o

less Reg

NC
C MUHAM
MUHAMM

NC TA
NC SH

Proj

Gp Capt

to the Fac
rsity of Sci
of the req

E

A

gistrati

Syndicate

ALI JAV
MMAD AB
MAD NAE
AHAWAR
HOAIB K

ject Supervi

t (R) Muza

culty of El
iences and
uirements
ngineerin

April 2007

ion Sys

VED
BDULLA

EEM YOU
R ALI

KHAN

isor

affar Ali

ectrical E
d Technolo
s of a B.E
g

7

tem for

AH
UNIS

ngineerin
ogy, Rawa
degree in

r Vehic

g
alpindi
Telecomm

- 137 -

cles

m

 - 138 -

DEDICATION

DEDICATED TO OUR BELOVED PARENTS AND FRIENDS WHOSE CONSTANT SUPPORT

AND APPRECIATION HAS BEEN A SOURCE OF ENCOURAGEMENT FOR US THROUGHOUT.

 - 139 -

ACKNOWLEDGEMENTS

We extend our sincere gratitude to all those who helped us complete the project successfully.

We thank our internal supervisor Gp Capt (R) Muzaffar Ali whose experienced advice stood as the

paragon for us. His kind help and interest and support showed us right through every stage of the

project and we were able to align ourselves in the right direction.

 - 140 -

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of another award

of qualification either at this institution or elsewhere.

 - 141 -

ABSTRACT

Automatic wireless registration system for vehicles is one of the latest techniques in the present era

of telecommunication. This technique is never being implanted before on commercial level.

Although a lot of work is being done in the field of RFID technology using passive tags. We have

used an active module in the car comprising Microcontroller and RF Modem. One of the main

reasons for working on this idea was the fact that manual compliance monitoring methods are

sporadic and usually depend upon other incident detection events, resulting in minimal sampling of

the total vehicle population.

The aim of the project is to establish a communication link between the RF Modems using wireless

channel. The idea is to successfully implement this technology in lab environment in a cost effective

manner using minimum resources. For this purpose microcontrollers are used for the processing,

with the input and output through RF modems. The microcontroller code is implemented using Keil

and the base server code is implemented using Visual Basic.

 - 142 -

Table of Contents

CHAPTER 1 INTRODUCTION………………………………………………………..1

1.1 Electromagnetic spectrum……………………………………………………….1
1.2 Wireless communication using electromagnetic wave…………………………4
1.3 Radio Frequency…………………………………………………………………5
1.4 Brief project description…………………………………………………………7

1.4.1 Basic Goal………………………………………………………………………7
1.4.2 Basic architecture……………………………………………………………….8

 1.4.3 Basic working…………………………………………………………………..9
 1.4.4 Flow charts…………………………………………………………………….12

CHAPTER 2 MICRO CONTROLLER………………………………………………15

2.1 Micro controller………………………………………………………………..15
2.2 Pin Diagram…………………………………………………………………….15
2.3 Block Diagram………………………………………………………………….16
2.4 AT 89C51 Description………………………………………………………….17

2.4.1 Features……………………………………………………………………….17
2.4.2 Absolute Maximum Ratings………………………………………………….18

2.5 Pin Description…………………………………………………………………18
2.6 Port Pin Alternate Function…………………………………………………..20
2.7 Oscillator Characteristics……………………………………………………..22
2.8 Idle Mode………………………………………………………………………22
2.9 Power down mode……………………………………………………………..23
2.10 Programming the Flash……………………………………………………….23
2.11 Chip Erase……………………………………………………………………..24

CHAPTER 3 SERIAL PORT AND COMMUNICATION STANDARDS…………25

3.1 What is a serial port?...25
3.2 Pins and Wires………………………………………………………………….25
3.3 IO Address & IRQ……………………………………………………………..26
3.4 Names: Com1, Com2, etc……………………………………………………….27
3.5 Interrupts………………………………………………………………………..27
3.6 Data Flow (Speeds)……………………………………………………………...29
3.7 Flow Control……………………………………………………………………..29

3.7.1 Symptoms of No flow control……………………………………………....30
 3.7.2 Hardware vs. software flow control………………………………………...30
3.8 Data flow path Buffers…………………………………………………………31
3.9 Pin Out and signals………………………………………………………….....33
3.10 Signals may have no fixed meaning………………………………………..….33
3.11 Cabling Between Serial Ports……………………………………………...…...34
3.12 RTS/CTS and DTR/DSR Flow Control……………………………………...36

 - 143 -

3.13 The DTR and DSR Pins……………………………………………………….37
3.14 Introduction to UARTS……………………………………………………….38
 3.14.1 Types of UARTs………………………………………………………..39
3.15 FIFOs………………………………………………………………………….39
3.16 Why FIFO buffers are small…………………………………………………41
3.17 UART Model Numbers………………………………………………………42
3.18 Introduction to communication standards………………………………….42
 3.18.1 SINGLE-ENDED data transmission……………………………………43
 3.18.2DIFFERENTIAL data transmission…………………………………….44
3.19 Summary………………………………………………………………………47

CHAPTER 4 Xcite OEM RF Modules……………………………………………...48
4.1 Introduction………………………………………………………………………48
4.2 Features…………………………………………………………………………..48
4.3 Specifications……………………………………………………………………..49
4.4 Mechanical Drawing……………………………………………………………..51
4.5 Block Diagram……………………………………………………………………52
4.6 Pin Signals………………………………………………………………………..52
4.7 Application circuit……………………………………………………………….54
4.8 Pin signals………………………………………………………………………...54
 4.8.1 I/O Pin signals……………………………………………………………54
 4.8.2 Flow control pin signals………………………………………………….57
 4.8.3 Remaining pin signals……………………………………………………58
4.9 Electrical characteristics………………………………………………………...60
4.10 RF Module operations…………………………………………………………..62
 4.10.1 Serial Communication………………………………………………….62
 4.10.2 Modes of operation……………………………………………………..64
4.11 RF module configuration……………………………………………………….76
 4.11.1 Command & parameter types…………………………………………..77
 4.11.2 Configuration software…………………………………………………78
 4.11.3 Command description…………………………………………………..80
4.12 Advanced Networking & security……………………………………………...99
 4.12.1 Filtration Layers………………………………………………………..99

CHAPTER 5 CAR MODULE……………………………………………………...104
5.1 Architecture…………………………………………………………………...…104
 5.1.1 Microcontroller…………………………………………………………104
 5.1.2 RS-232 IC………………………………………………………………104
 5.1.3 RF Modem……………………………………………………………...105
 5.1.4 Infrared Receive………………………………………………………...105
5.2 Working………………………………………………………………………….105
5.3 Circuit Components……………………………………………………………..106
5.4 Flow Chart……………………………………………………………………….107
5.5 Code for microcontroller……………………………………………………….108

CHAPTER 6 BASE MODULE…………………………………………………….113
6.1 Architecture……………………………………………………………………..113
6.2 Working…………………………………………………………………………114

 - 144 -

6.3 Code for base server……………………………………………………………114
6.4 Graphical user interface……………………………………………………….120
6.5 Flow chart……………………………………………………………………….121

CHAPTER 7 Infrared Line Cutter System……………………………………….122
7.1 Basic Operation…………………………………………………………………..122
7.2 Architecture………………………………………………………………………122
 7.2.1 Transmitter circuit……………………………………………………...122
 7.2.2 Receiver & Decision circuit……………………………………………123

APPENDIX A
Maxim 232 Description……………………………………………………………126

APPENDIX B
Voltage Regulator LM 7805………………………………………………………. 134

APPENDIX C
General purpose Op-Amp UA-741………………………………………………..136
HEX Inverter SN 74LS04 Data sheet……………………………………………..142

APPENDIX D
Code for base………………………………………………………………………162
Code for Microcontroller………………………………………………………….167

GLOSSARY………………………………………………………………………..172
REFERENCES……………………………………………………………………..173

 - 145 -

List of Figures

Figure 1.1 Waves………………………………………………………………………….2
Figure 1.2 Electromagnetic Spectrum …………………………………………………….3
Figure 1.3 Electromagnetic Spectrum …………………………………………………….4
Figure 1.4 Car Module Block Diagram…………………………………………………...8
Figure 1.5 Base Module Block Diagram………………………………………………….9
Figure 1.6 Base Interrogation ……………………………………………………………10
Figure 1.7 Reply from the Car…………………………………………………………...10
Figure 1.8 Data received by the Base ……………………………………………………11
Figure 1.9 Authentication Accepted ……………………………………………………11
Figure 1.10 Car approaches the barrier…………………………………………………..12
Figure 1.11 Base opens the gate…………………………………………………………12
Figure 1.12 Action in case of invalid/ unregistered car………………………………….13
Figure 2.1 Pin diagram of Microcontroller AT 89C52…………………………………..15
Figure 2.2 Block Diagram of Microcontroller…………………………………………...16
Figure 2.3 Oscillator circuit……………………………………………………………...22
Figure 4.1 Mechanical diagram of RF Modem………………………………………….51
Figure 4.2 Block diagram of RF Modem………………………………………………..52
Figure 4.3 Application circuit of RF Modem ……………………………………………54
Figure 4.4 UART Signal…………………………………………………………………55
Figure 4.5 RF Packet ……………………………………………………………………56
Figure 4.6 RF Link via Modems…………………………………………………………60
Figure 4.7 RF Data flow sequence ………………………………………………………61
Figure 4.8 UART interfaced structure …………………………………………………..62
Figure 4.9 RS-232 Data flow ……………………………………………………………63
Figure 4.10 Serial data…………………………………………………………………...64
Figure 4.11 Modes of operation of RF Modem………………………………………….65
Figure 4.12 Transmit Mode ……………………………………………………………..67
Figure 4.13 Receive Mode ………………………………………………………………68
Figure 4.14 Cyclic scanning actual………………………………………………………72
Figure 4.15 Cyclic scanning for error case………………………………………………73
Figure 4.16 Syntax for entering Command………………………………………………75
Figure 4.17 X-CTU Software windows………………………………………………….79
Figure 4.18 Syntax (AT Command Mode)………………………………………………80
Figure 4.19 BI Parameter………………………………………………………………...82
Figure 4.20 CD Command……………………………………………………………….84
Figure 4.21 CS Command……………………………………………………………….85
Figure 4.22 FL Parameter………………………………………………………………..87
Figure 4.23 Frequency assignment with the command………………………………….89
Figure 4.24 LH Parameter original………………………………………………………92
Figure 4.25 LH Parameter error case……………………………………………………92
Figure 4.26 NB Parameter……………………………………………………………….93
Figure 4.27 PW Parameter……………………………………………………………….94
Figure 4.28 RT Parameter………………………………………………………………..95

 - 146 -

Figure 4.29 SB Parameter………………………………………………………………..96
Figure 4.30 SM Parameter……………………………………………………………….97
Figure 4.31 Filtration Layers…………………………………………………………….99
Figure 4.32 Bit-wise AND Operation ………………………………………………….102
Figure 5.1 Circuit Diagram of Car Module…………………………………………….106
Figure 5.2 Flowchart for the Car Module………………………………………………107
Figure 6.1 Block Diagram of Base Module…………………………………………….113
Figure 6.2 Graphical User Interface…………………………………………………….120
Figure 6.3 Flow Chart of Base module…………………………………………………121
Figure 7.1 Transmitter Circuit (Block Diagram)...123
Figure 7.2 Circuit Diagram of Transmitter Circuit……………………………………..123
Figure 7.3 Receiver and Decision Circuit (Block Diagram)……………………………124
Figure7.4 Circuit Diagram of Receiver and Decision Circuit………………………….125

 - 147 -

CHAPTER 1

INTRODUCTION

1.1 Electromagnetic Spectrum

Waves, as means of transfer of energy, is a well known phenomenon in physics we can see waves

being produced when we throw a stone in water. Water waves are type that we can see. Sound is a

type of wave that we cannot see. Like water waves sound waves also need medium to travel through.

Sound can travel through air because air is made up of molecules. The molecules carry the sound by

bumping into each other, like dominoes knocking each other over. Sound can travel through

anything made of molecules-even water.

There is no sound in space due to absence of molecules to transmit sound waves. Electromagnetic

waves are unlike sound waves because they do not need molecules to travel this means

electromagnetic waves can travel through air and solid materials-but they can also travel through

empty spaces. This is why astronauts on the space walks use radios to communicate radio waves are

type of electromagnetic waves.

While water waves can be produced mechanically by repeatedly dipping a stick in water and sound

waves by vibrations of diaphragm. Electromagnetic waves are formed when an electric field couples

with a magnetic field. Magnetic and electric fields of an electromagnetic wave are perpendicular to

each other and to the direction of waves.

Electrom

to as cres

two troug

particular

waveleng

waveleng

Actually,

visible lig

line at th

rate can e

order from

visible lig

agnetic wav

st and lowest

ghs is calle

r wave per

gth decrease

gth, the more

 the electrom

ght)to long

he fixed rate

exceed the s

m the shorte

ght, infrared

ves like any o

t is referred

ed waveleng

iod is calle

es. The amo

e the energy

magnetic spe

wavelength

of speed of

peed of ligh

est waveleng

rays, microw

Fi

other waves

as trough. T

gth. The num

ed the wav

ount of ene

contained; t

ectrum is th

hs(above visi

f light,299,7

ht. The electr

gth to the lon

waves, and r

ig 1.1 Wave

have severa

The horizont

mber of cre

ve frequency

ergy carried

the long the w

he range of w

ible light).el

792,458 km/

romagnetic

ngest wavele

radio waves.

es

al characteris

al distance b

ests or troug

y. As the

depends o

wavelength,

wavelengths

ectromagnet

s in a vacuu

spectrum inc

ength: Gamm

.

stics. The hi

between two

ghs passing

wave frequ

on waveleng

, the less the

 from short

tic radiation

um. No othe

cludes the fo

ma rays, X-r

ghest part is

o successive

a given po

uency increa

gth. The sho

energy cont

wavelength

s travels in a

er observabl

ollowing arr

rays, ultravio

- 148 -

s referred

crests or

oint in a

ases, the

orter the

tained.

hs (below

a straight

le body’s

ranged in

olet rays,

Light is t

consists o

Gamma r

On the ot

following

spectrum

the only vis

of rainbow o

rays have wa

ther extreme

g figure 1.3

.

sible part of

of colors ra

avelengths le

e, radio wav

3 also help

Fig 1.2 Elec

f spectrum. V

anging from

ess than one

ves have wav

ps us visua

ctromagnetic

Visible ligh

red (longes

ten billionth

velength from

lize the dif

c spectrum

ht makes onl

st wavelengt

h of a meter.

m one millim

fferent wav

ly small por

th) to the (s

meter to sev

ves compris

rtion of spec

hortest wav

veral kilomet

ing electrom

- 149 -

ctrum. It

elength).

ters. The

magnetic

 - 150 -

Fig 1.3 Electromagnetic Spectrum

When electrons move, their movement creates a magnetic field. Electromagnetic waves are created

by the vibration (movement back and forth or oscillation) of an electric charge. The vibration of

atoms creates a wave with both an electric and magnetic component that are both changing the

average energy of the vibrating atoms produce heat which as a result, gives off electromagnetic

radiations. An electromagnetic radiation is emitted from a matter with a temperature greater than

absolute zero. As the temperature increases (atoms vibrate faster), more radiations will be emitted

and shorter wavelengths will be developed if the temperature decreases (atoms vibrate slower), fewer

radiations will be emitted and longer wavelengths will develop.

1.2 Wireless communication using electromagnetic wave

As the electromagnetic wave is travelling through space it is carrying communication in the form of electromagnetic radiations. In order to retrieve the

information to be used by wireless technology a transmitter and a receiver are needed. A transmitter is a component that is used to create a replica of

the electromagnetic wave. Once the transmitter has created the wave a receiver, found in most of today’s wireless products, accept the waves and

decodes the modulated signals. Wireless device can be connected by two different approaches: point-to-point and networked .A point-to-point

connection is usually done using infrared. A networked connection uses bridges (base stations) to connect wireless devices to physical networks .An

 - 151 -

example of networking is using a wireless network card on a laptop computer. All transmitted information from the electromagnetic wave comes

directly from the base station of the network.

1.3 Radio Frequency

Our project uses radio waves as a means of wireless data communication. Radio frequency is a term

that refers to alternating current having characteristics such that, it’ if the current is input to an

antenna, an electromagnetic (EM) field is generated suitable for wireless broadcasting and/or

communications. These frequencies cover a significant portion of the electromagnetic radiation

spectrum, extending from nine kilo hertz (9 kHz), the lowest allocated wireless communications

frequency (it’s within the range of human hearing),to thousands of giga hertz (GHz).

The really nice thing about radio waves is that they will make the electrons in a piece of copper wire

move this means that they generate electric currents in the wire, and electromagnetic waves generate

alternating currents. The electric currents at “radio frequencies” (RF) are used by radio and television

transmitters and receivers.

When a radio frequency current is supplied to an antenna, it gives rise to an electromagnetic field

that propagates through space. This field is sometimes called an RF field; in less technical jargon it is

a “radio Wave”. Any RF field has a wavelength that is inversely proportional to the frequency. In the

atmosphere or in outer space, if f is the frequency in megahertz and s is the wavelength in meters,

then

S =c/f

The frequency of an RF signal is inversely proportional to the wavelength of the EM field to which it

corresponds. At 9 kHz, the free space wavelength is approximately 33 kilometres (km) or 21 miles

(mi). At the highest radio frequencies, the EM wavelength measure approximately one millimetre

 - 152 -

(1mm). As the frequency is increased beyond that of the RF spectrum, EM energy takes the form of

infrared (IR), visible, ultraviolet (UV), X rays, and gamma rays.

Many types of wireless devices make use o f frequency cordless and cellular telephone, radio and

television broadcast stations, satellite communications systems, and two-way radio services all

operate in the radio frequency spectrum. Some wireless devices operate at infrared or visible-light

frequencies, whose electromagnetic wavelengths are shorter than those of radio frequency fields.

Examples include most television –set, remote control boxes, some cordless computer keyboards and

mice, and a few wireless hi-fi stereo headsets.

The radio frequency spectrum is divided in to several ranges, or bands. With the exception of the

lowest frequency segment, each band represents an increase of frequency corresponding to an order

of magnitude (power of 10). The table depicts the eighth bands in the radio frequency spectrum,

showing frequency and bandwidth ranges. The super high frequency and extremely high frequency

bands are often referred to as the microwave spectrum.

Designation Abbreviation Frequencies
Free-space

Wavelengths

Very low frequency VF 9kHz – 30kHz 33km – 10km

Low frequency

LF 30kHz – 300kHz 10km – 1 km

Medium frequency MF 300kHz – 3MHz 1km – 100m

High frequency HF 3Mhz – 30MHz 100m – 10m

Very high frequency VHF 30MHz – 3MHz 10m – 1 m

 - 153 -

Ultra high frequency UHF 300MHz – 30GHz

1m – 100mm

Super high frequency SHF 3GHz – 30GHz 100mm – 10mm

Extremely high

Frequency

EHF 30GHz – 300GHz 10mm – 1mm

1.4 Brief Project Description

1.4.1 Basic Goal

The project is to design a system for vehicles that would provide various facilities, for example

1. Registration of vehicles

2. Detection of blacklisted vehicles

3. To keep their roaming record from one city to another

4. And to keep up with the security of the environment, etc.

1.4.2 Basic Architecture

The project has been divided into two modules for the implementation of the idea. Main feature

of both the modules is that both are active and this is where it differs from the rest of the RFID

systems so far implemented practically. The basic architecture of both the modules is described

below briefly;

a. Car Module

The car module will be installed in the car and it consists of the following basic three

components;

• Microcontroller

 - 154 -

• RS-232 level converter

• RF Modem

Fig 1.4 Car Module Block Diagram

The microcontroller in the car module is being programmed and also contains the data of the car.

RS-232 IC is a level converter and acts as an interface between the microcontroller and RF modem.

RF Modem is used for the reception and transmission of data. Prior to use of the RF modem it has

also been programmed using its software X-CTU and all the parameters for the wireless

communication between RF modems has been set.

b. Base Module

The base module is installed at the point near entry or path to be monitored and acts as a base to

the car module. The base module consists of the following components;

• Base server (computer)

• RS-232 level converter

• RF Modem

 - 155 -

Fig 1.5 Base Module Block Diagram

The base server is the database which contains all the data of the authenticated cars belonging to that

campus RS-232 IC is a level converter and acts as an interface between the base server and RF

modem. RF Modem is used for the reception and transmission of data. Prior to use of the RF modem

it has also been programmed using its software X-CTU and all the parameters for the wireless

communication between RF modems has been set.

1.4.3 Basic Working

1. Base Interrogation

The base is continuously transmitting an interrogation message over its range so that if any car has

entered the range it must get registered with the base.

Fig 1.6 Base Interrogation

2. Reply from the Car Module

 - 156 -

The car module receives the interrogation message and sends its data stored in the car module

(Registration No., Chassis No., Engine No., Owner’s Name and Make of the car etc.)

Fig 1.7 Reply from the Car

3. Data received by the Base Module

The base receives the data from the car and checks whether the data is valid. Then it registers the car

and sends an authentication message to the car.

Fig 1.8 Data received by the Base

4. Car module accepts Authentication

 - 157 -

The car module receives the authentication and goes into a wait loop till the time it reaches the

barrier and sends its notification message.

Fig 1.9 Authentication Accepted

5. Car approaches the base

The car identifies the barrier with the help of an infrared detector ten feet before the barrier. After

sensing infrared detection it sends its specific notification message.

Fig 1.10 Car approaches the barrier

6. Base opens the gate

 - 158 -

The base receives that specific message and gives power output at its printer port to control

mechanical system such as opening the barrier.

Fig 1.11 Base opens the gate

7. Invalid or unregistered car

The base will never open the gate for invalid or unregistered car. If such a car approaches the gate,

the base would detect it and ring an alarm.

Fig 1.12 Action in case of invalid/ unregistered car

1.4.4 Flow Charts

a. Car Module Operation

 - 159 -

b. Base Module Operation

 - 160 -

 - 161 -

Chapter 2

Micro controller AT89C52

2.1 Micro controller

 The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8K bytes of

Flash programmable and erasable read only memory (PEROM). The device is manufactured using

Atmel’s high-density non-volatile memory technology and is compatible with the industry-standard

80C51 and 80C52 instruction set and pin out.

The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional

non-volatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic

chip, the Atmel AT89C52 is a powerful microcontroller which provides a highly-flexible and cost-

effective solution to many embedded control applications.

2.2 Pin Diagram

Fig 2.1 Pin diagram

 - 162 -

2.3 Block Diagram

Fig 2.2 Block Diagram

 - 163 -

2.4 AT89C52 Description

2.4.1 Features

• Compatible with MCS-51™ Products

• 8K Bytes of In-System Reprogrammable Flash Memory

• Endurance: 1,000 Write/Erase Cycles

• Fully Static Operation: 0 Hz to 24 MHz

• Three-level Program Memory Lock

• 256 x 8-bit Internal RAM

• 32 Programmable I/O Lines

• Three 16-bit Timer/Counters

• Eight Interrupt Sources

• Programmable Serial Channel

• Low-power Idle and Power-down Modes

The AT89C52 provides the following standard features: 8K bytes of Flash, 256 bytes of RAM, 32

I/O lines, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full-duplex serial

port, on-chip oscillator, and clock circuitry. In addition, the AT89C52 is designed with static logic

for operation down to zero frequency and supports two software selectable power saving modes. The

Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system

to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator,

disabling all other chip functions until the next hardware reset.

 - 164 -

2.4.2 Absolute Maximum Ratings

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to

the device. This is a stress rating only and functional operation of the device at these or any other

conditions beyond those indicated in the operational sections of this specification are not implied.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

• Operating Temperature -55 C to +125 C

• Storage Temperature -65 C to +150 C

• Voltage on any Pin with Respect to Ground -1.0 V to +7.0 V

• Maximum Operating Voltage 6.6 V

• DC Output Current 5.0 mA

2.5 Pin Description

VCC

Supply voltage.

GND

Ground.

I. Port 0

Port 0 is an 8-bit open drain bi-directional I/O port. As an output port each pin can sink eight TTL

inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs. Port 0 may

also be configured to be the multiplexed low-order address/data bus during accesses to external

program and data memory. In this mode P0 has internal pull-ups. Port 0 also receives the code bytes

 - 165 -

during Flash programming, and outputs the code bytes during program verification. External Pull-

ups are required during program verification.

II. Port 1

Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can

sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal

pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will

source current (IIL) because of the internal pull-ups. In addition, P1.0 and P1.1 can be configured to

be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input

(P1.1/T2EX), respectively, as shown in the following table. Port 1 also receives the low-order

address bytes during Flash programming and verification.

III. Port 2

Port 2 is an8-bit bi-directional I/O port with internal pull-ups. The port 2 output buffers can

sink/source four TTL inputs. When 1s are written to port 2 pins they are pulled high by the internal

pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will

source current (IIL) because of the internal pull-ups. Port 2 emits the high-order address byte during

fetches from external program memory and during accesses to external data memory that uses 16 bit

addresses (MOVX @ DPTR). In this application it uses strong internal pull-ups when emitting 1s.

During accesses to external data memory that uses 8-bit addresses (MOVX @ R1), Port 2 emits the

contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and

some control signals during Flash programming and verification.

IV. Port 3

 - 166 -

Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 3 output buffers can

sink/source four TTL inputs. When 1s are written to port 3 pins they are pulled high by the internal

pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will

source current (IIL) because of the pull-ups. Port 3 also serves the function of various special

features of the AT89C52 as listed below.

2.6 Port Pin Alternate Function

• P3.0 RXD (serial input port)

• P3.1 TXD (serial output port)

• P3.2 INT0 (external interrupt 0)

• P3.3 INT1 (external interrupt 1)

• P3.4 T0 (timer 0 external input)

• P3.5 T1 (timer 1 external input)

• P3.6 WR (external data memory write strobe)

• P3.7 RD (external data memory read strobe)

Port 3 also receives some control signals for Flash programming and programming verification.

I. RST Reset Input

 A high on this pin for two machine cycles while the oscillator is running resets the device.

II. ALE/PROG

Address Latch Enable output pulse for latching the low byte of the address during accesses to

external memory. This pin is also the program pulse input (PROG) during Flash programming. In

normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used

 - 167 -

for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each

access to external Data Memory. If desired, ALE operation can be disabled by setting bit 0 of SFR

location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise,

the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the micro controller is in

external execution mode.

III. PSEN

Program Store Enable is the read strobe to external program memory. When the AT89C51 is

executing code from external program memory, PSEN is activated twice each machine cycle, except

that two PSEN activations are skipped during each access to external data memory.

IV. EA/VPP

External Access Enable, EA must be strapped to GND in order to enable the device to fetch code

from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock

bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for

internal program executions. This pin also receives the 12-volt programming enable voltage (VPP)

during Flash programming, for parts that require 12-volt VPP designed with static logic for operation

down to zero frequency and supports two software selectable power saving modes. The Idle Mode

stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue

functioning. The Power Down Mode saves the RAM contents but freezes the oscillator disabling all

other chip functions until the next hardware reset.

2.7 Oscillator Characteristics

 - 168 -

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier, which can be

configured for use as an on-chip oscillator, as shown in Figure 2.3. Either a quartz crystal or ceramic

resonator may be used. To drive the device from an external clock source, XTAL2 should be left

unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty

cycle of the external clock signal, since the input to the internal clocking circuitry is through a

divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must

be observed.

Fig 2.3 Oscillator circuit

2.8 Idle Mode

In idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode

is invoked by software. The content of the on-chip RAM and all the special functions registers

remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by

a hardware reset. It should be noted that when idle is terminated by a hardware reset, the device

normally resumes program execution, from where it left off, up to two machine cycles before the

internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this

 - 169 -

event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write

to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle

should not be one that writes to a port pin or to external memory.

2.9 Power down mode

In the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is

the last instruction executed. The on-chip RAM and Special Function Registers retain their values

until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset

redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before

VCC is restored to its normal operating level and must be held active long enough to allow the

oscillator to restart and stabilize.

2.10 Programming the Flash

The AT89C52 is normally shipped with the on-chip Flash memory array in the erased state (that is,

contents =FFH) and ready to be programmed. The programming interface accepts either a high-

voltage (12-volts) or a low-voltage (VCC) program enable signal. The low voltage programming

mode provides a convenient way to program AT89C52 inside the user’s system, while the high

voltage programming mode is compatible with conventional third party Flash or EPROM

programmers.

The AT89C52 is shipped with either the high-voltage or low-voltage programming mode enabled.

The AT89C52 code memory array is programmed byte by byte in either programming mode. To

program any non-blank byte in the on-chip Flash Memory, the entire memory must be erased using

the Chip Erase Mode.

 - 170 -

 2.11 Chip Erase

 The entire Flash array is erased electrically by using the proper combination of control

signals and by holding ALE /PROG low for 10 ms. The code array is written with all “1”s. The chip

erase operation must be executed before the code memory can be reprogrammed.

 - 171 -

Chapter 3

Serial port and communication standards

3.1 What is a serial port?

The UART serial port (or just “serial port for short”) is an I/O (input/output) device.

An I/O is just a way to get data into and out of a computer. There are many types of I/O Devices

such as serial ports, parallel ports, and disk drive controllers. Ethernet boards, universal serial buses,

etc. most PC’s have one or two serial ports. Each has a 9-pin connector (sometimes 25 pins) on the

back of the computer. Computer programs can send data (bytes) to the transmit pin (output) and

receive bytes from the receive pin (input). The other pins are for control purposes and ground.

The serial port is much more than a connector. It converts the data from parallel to serial and change

the electrical representation of the data. Inside the computer, data bit flow in parallel (using many

wires at the same time). Serial flow is a stream of bits over a single wire (such as on the transmit and

receive pin of the serial connector).for the serial port to create such a slow, it must convert data from

parallel (inside the computer)to serial on the transmit pin (and conversely).

Most of the serial port is found in a computer chip (or a part of a chip) known as a UART.

3.2 Pins and Wires

Old pc used 25-pin connector but only about 9 pin were actually used so today most connectors are

only 9 pin. Each of the 9 pins usually connects to a wire. Besides the two wires used for transmitting

and receiving data, another pin (wire) is signal ground. The voltage on any wire is measures with

respect to this ground. Thus the minimum number of wires to use for 2-way transmission of data is 3.

 - 172 -

Except that it has been known to work with no signal ground wire but with de-graded performances

and sometimes with errors.

There are still more wires which are for control purposes (signalling) only and not for sending bytes.

All of these signals could have been shared on a single wire, but instead, there is a separate dedicated

wire for every type of signal. Some (or all) of these control wires are called “modem control lines”.

Modem control wires are either in the asserted state (on) of +12 volts or in the negated state (off) of-

12 volts. One of these wires is to signal the computer to stop sending bytes out the serial ports cable.

Conversely, another wire signals the device attached to the serial port to stop sending bytes to the

computer. If the attached device is a modem, other wires may tell the modem to hang up the

telephone line or tell the computer that a connection has been made or that the telephone line is

ringing (someone is attempting to call in).

The serial port (not the USB) is usually a RS-232-C, or EIA-232-D, or EIA-232-E. These three are

almost the same thing. The original RS (recommended standard) prefix became EIA (electronic

industries association) and later EIA/TIA after EIA merged with TIA (telecommunications industries

association). The EIA-232 spec provides also for synchronous (sync) communication but the

hardware to support sync is almost always missing on PC’s. The RS designation is obsolete but is

still widely used. EIA will be used in this how to. Some documents use the full EIA/TIA designation.

3.3 IO Address & IRQ

Since the computer needs to communicate with each serial port, the operating system must know that

each serial port exists are where it is (its I/O address). It also needs to know which wire (IRQ

number) the serial port must use to request service from the computer’s central processing unit. It

requests service by sending an interrupt on this wire. Thus every serial port device must store I its

 - 173 -

non-volatile memory both its I/O address and its interrupt request number: IRQ. For the PCI bus it

doesn’t work exactly this way since the PCI bus has its own interrupts to IRQ’s, it seemingly

behaves just as described above except that sharing of interrupts is allowed (2 or more devices may

use the same IRQ number).

I/O addresses are not the same as memory addresses. When an I/O addresses is put onto the

computers address bus, another wire is energized. This both tells main memory to ignore the address

and tells all devices, which have I/O addresses (such as the serial port) to listen to he address to see if

it matches the devices. If the address matches, then the I/O device reads the data on the data bus.

3.4 Names: Com1, Com2, etc.

The serial ports are named COM1, COM2, etc. in DOS/windows.

3.5 Interrupts

When the serial port receives a number of bytes (may be set to 1,4,8, or 14) into its FIFO buffer, it

signals the central processing unit to fetch them by sending an electrical signal known as an interrupt

on a certain wire normally used only by that port. Thus the FIFO waits until it has received a number

of bytes and then issues an interrupt.

However, this interrupt will also be sent if there is an unexpected delay while waiting for the next

byte to arrive (known as timeout). Thus if the bytes are being received slowly (such as from someone

typing on a terminal keyboard) there may be an interrupt issued for every byte received. For some

UART chips the rule is like this: if 4 bytes in row could have been received in an interval of time,

but none of these 4 shows up, then the port gives up waiting for more bytes and issues an interrupt to

fetch the bytes currently in the FIFO. Of course, if the FIFO is empty, no interrupt will be issued.

 - 174 -

Each interrupt conductor (inside the computer) has a number (IRQ) and the serial port must know

which conductor to use to signal o. for example, ttyS0 normally uses IRQ number 4 known as IRQ4

(or IRQ 4). A list of them and more will be found in “man set serial” (search for “configuring serial

ports”). Interrupts are issued whenever the serial ports needs to get the central processing units

attention. It’s important to do this in a timely manner since the buffer inside the serial port can hold

only 16 incoming bytes. If the central processing unit fails to remove such received bytes promptly,

then there will not be any space left for any more incoming bytes and small buffer may overflow

(overrun) resulting in a loss of data bytes. There is no flow control to prevent this.

Interrupts are also issued when the serial port has just sent out all of its bytes from its small transmits

FIFO buffer out the external cable. It then has space for 16 more outgoing bytes. The interrupt is it

notifies the central processing unit of that fact so that it may put more bytes in the small transmit

buffer to be transmitted. Also, when a modem control line changes state, an interrupt issued.

The buffers mentioned above all hardware buffers. The serial port also has large buffers in main

memory. This will be explained later. Interrupts convey a lot of information but only indirectly. The

interrupt itself just tells a chip called interrupt controller that a certain serial port needs attention. The

interrupt controller then signals the central processing unit. The central processing unit then runs a

special program to service the serial port. That program is called an interrupt service routine (part of

the serial driver software).it tries to find out what has happened to serial port then deals with the

problem such as transferring bytes from (or to) the serial port’s hardware buffer. This program can

easily find out what has happened since the serial port has a registers at I/O addresses known to the

serial driver software. These registers contain status information about the serial port. The software

read these registers and by inspecting the contents, finds out what has happened and takes

appropriate action.

 - 175 -

3.6 Data Flow (Speeds)

Data (bytes representing letters, pictures etc) flows into and out of serial port. Flow rates such as

(56K (56000) bits/sec) are (incorrectly called) “Speed” but almost everyone say speed instead of

“flow rate”. Its important to understand that average speed is often less than the specified speed.

Waits (or idle time) result in lower average speed. These waits include long waits or perhaps a

second due to flow control. At the other extreme there may be very short waits (idle time) of

several microseconds between bytes. If the device on the serial port (such as modem) can’t accept

the full serial port speed, then the average speed must be reduced.

3.7 Flow Control

Flow control means the ability to slow down the flow of bytes in a wire. For serial ports this means

the ability to stop and then restart the flow without any loss of bytes. Flow control is needed for

modems and the other hardware to allow a jump in instantaneous flow rates. The flow control may

be from computer to modem or it may be from modem to computer each direction involves three

buffers.

1. In the modem

2. In the UART chip (called FIFO) and

3. In main memory managed by the serial driver.

Flow control protects all buffers (except the FIFO) from overflowing.

3.7.1 Symptoms of No flow control

Understanding flow-control theory can be of practical use. The symptom of no flow control is that

chunks of data missing from files sent without the benefits of flow control. When overflow

happens, often hundreds or even thousands of bytes get lost, and all in contiguous chunks.

 - 176 -

3.7.2 Hardware vs. software flow control

If feasible, it’s best to use “hardware”2flow control that uses two dedicated “modem control” wires

to send the “stop” and “start” signals. Hardware flow control at the serial ports works like this; the

two pins, RTS (request to send) and CTS (clear to send) are used. When the computer is ready to

receive date it asserts RTS by putting a positive voltage on the RTS pin (meaning “request to send

to me”). When the computer is not able to receive any more bytes, it negates RTS by putting a

negative voltage on the pin saying: “stop sending to me”. The serial cable to another pin on the

modem, printer, and terminal connects the RTS pin, etc. this other pins only function is to receive

the signal.

For the case of the modem this “other” pin will be the modem RTS pin but for a printer, another

pc, or a non modem device, it is usually a CTS pin so a “crossover” or “null modem” cable is

required. This cable connects the CTS pin at one end with the RTS pin at the other end (two wires

since each end of the cable has a CTS pin). For a modem, a straight-thru cable is used.

For the opposite direction of flow similar scheme is used. For a modem, the CTS pin is used to

send the flow control signal to the CTS pin on the PC. For a non- modem, the RTS pins send the

signal. Thus modems and non-modems have the role of their RTS and CTS pin interchanged.

Some non-modems such as dumb terminals may use other pins for flow control such as the DTR

pin instead of RTS.

Software flow control uses the main receive and transmit wires to send the start and stop signals. It

uses the ASCII control characters DC1 (start) and DC3 (stop) for this purpose. They are just

inserted into the regular stream of data. Software flow control is not only slower in reacting but

also doesn’t allow the sending of binary data unless special precautions are taken. Since binary

 - 177 -

data will likely contain DC1 and DC3, special means must be taken o distinguish between a DC3

that means a flow control stop and a DC3 that is part of the binary code. Likewise for DC1.

3.8 Data flow path Buffers

It has been mentioned that there are three buffers for each direction of flow (3 pair altogether):

1. 16 byte FIFO buffers (in the UART)

2. A pair of larger buffers inside a device connected to the serial port (such as a modem).

3. A pair of buffers (say 8k) in main memory.

When an application programs send bytes to the serial port they first get stashed in the transmit

serial port buffer in main memory. The other member of the pair consist of a receive buffer for the

opposite direction of byte-flow. Here’s an example diagram for the case of browsing the Internet

with a browser. Transmit data flow is left to right wile receive flow is right to left. There is a

separate buffer for each direction of flow.

Application 8k-byte 16-byte 1k-byte tele-

BROWSER------MEMORY-------FIFO--------MODEM--------PHONE

Program buffer buffer buffer line

For the transmit case, the serial device driver takes out ay 16 bytes from this transmit buffer (in

main memory), one byte at a time and puts them into 16 byte transmit buffer in the serial UART

 - 178 -

for transmission. Once in that transmit buffer, there is no way to stop them from being transmitted.

They are then transmitted to the modem or (other device connected to the serial port) which also

has a fair sized (say 1k) buffer. When the device driver (on orders from flow control) stops the

flow of outgoing bytes from the computer, what it actually stops is the flow of outgoing bytes from

the large transmit buffer in main memory. Even after this has happened and the flow to the modem

has stopped, an application program may keep sending bytes to the 8k transmit buffer until it

becomes fill. At the same time, the bytes stored in FIFO and MODM continue to be sent out until

these buffers empty.

When the memory buffer gets fill, the application program cant send any more bytes to it (a

“write” statement in a c_ program blocks) and the application program temporarily stops running

and waits until some buffer space becomes available. Thus a flow control “stop” is ultimately able

to stop the program that is sending the bytes. Even though this program stops, the compute does

not necessarily stop computing since it may switch to running other processes while its waiting at a

flow control stop.

The above was little over simplified in three ways. First, some UARTs can do automatic hardware

flow control, which can stop the transmission out of the FIFO buffers if needed (not yet supported

by Linux). Second, while an application process is waiting to write to the transmit buffer, it could

possibly perform other tasks. Third the serial driver (located between the memory buffer and the

FIFO) has its own buffer (in main memory)used to process characters.

3.9 Pin Out and signals

PINOUT of the serial port (direction is out of PC)

(Note DCD is sometimes labelled CD)

 - 179 -

Pin # Pin # Acronym full name direction what-it-may-do/mean

9-pin 25-pin

3 2 T*D transmit data transmit bytes out of PC

2 3 R*D receive data receive bytes into PC

7 4 RTS request to send RTS/CTS flow control

8 5 CTS clear to send RTS/CTS flow control

6 6 DSR data set ready I’m ready to communicate

4 20 DTR data terminal ready I’m ready to communicate

1 8 DCD data career detect modem connected to another

9 22 RI ring indicator telephone line ringing

5 7 SG signal ground

3.10 Signals may have no fixed meaning

Only 3 of the 9pins have a fixed assignment: transmit, receive and signal ground. This is fixed by the

hardware and you can’t change it. But the other signal lines are controlled by software and may do

(and mean) almost anything at all. However they can only be in one of two states: asserted (+12

volts) or negated (-12 volts). Asserted is “on” and Negated is “off”. For example, Linux software

may command that DTR be negated and the hardware only carries out. This Command and puts –12

volts on the DTR pin. Modem (or other device) that receives the DTR signal may do receive the

various things. If a modem has been configured a certain way it will hang up the telephone line when

DTR is negated. In other cases it may ignore this signal or do something else when DR is negated

(turned off).

It’s like this for all the 6 signal lines. The hardware only sends and receives the signals, but what

action (if any) they perform up to the Linux software and the configuration/design of devices that

 - 180 -

you connect to the serial port. However, most pins have certain functions, which they normally

perform but this may vary with the operating system and the device driver configuration. Under

Linux, one may modify the source code to make these signal lines behave differently (some people

have).

3.11 Cabling Between Serial Ports

A cable from a serial port always connects to another serial port. An external modem or other

device that connects to the serial port has a serial port built in to it. For modems, the cable is

always straight thru: pin 2 goes to pin 2 etc. the modem is said to be DCE (data communication

equipment) and the computer is said to be DTE (data terminal equipment).

Thus for connecting DTE-to-DCE you use straight- thru cable. For connecting DTE-to-DTE you

must use a null-modem cable (also called a crossover cable). Her are many ways to wire such cable

(see examples in text –terminal –HOWTO subsection: “direct cable connection”)

There are good reasons why it works this way. One reason is that the signals are unidirectional. If 2

pins send a signal out of it (but is unable to receive any signal) then obviously you can’t connect it

to pin 2 of the same type of device. If you did, they would both send out signals on the same wire

to each other but neither would be able to receive any signal. There are two ways to deal with the

situation. One way is to have two different types of equipment where pin 2 of the first type sends

the signal to pin 2 of the second type (which receives the signal). That’s the way its done when you

connect a PC (DTE) to a modem (DCE). There’s a second way to do this without having two

different types of equipment. That’s the way it’s done when you connect 2 PCs together or a PC to

a terminal (DTE-to-DTE). The cable used for this is called a null-modem cable since it connects

two PCs without use of a modem. A null-modem cable may also be called a cross over cable since

 - 181 -

the wires between pin 2 and 3 crosses over each other (if you draw them on a sheet of paper). The

above example is for a 25-pin connector but for a 9-pin connector the pin numbers are just the

opposite.

The serial pin designations were originally intended for connecting a dumb terminal to a modem.

The terminal was DTE (data terminal equipment) and the modem was DCE (data communication

equipment). Today the PC is usually used as DTE instead of a terminal (but real terminals may still

be used this way). The names of the pins are same on both DTE and DCE. The words: “receive”

and “transmit” are from the “point of view” of the PC (DTE). The transmit pin from the PC

transmits to the “transmit” pin of the modem (but actually the modem is receiving the data from

this pin so from the point of view of the modem it would be a receive pin).

The serial port was originally intended to be used for connecting DTE to DCE, which makes

cabling simple: just use a straight thru cable. Thus when one connects a modem one seldom needs

to worry about which pin is which. But people wanted to connect DTE to DTE (for example a

computer to a terminal) and various ways were found to do this by fabricating various types of

special null ode cables. In this case what pin connects to what pin becomes significant.

3.12 RTS/CTS and DTR/DSR Flow Control

This is “hardware” flow control. Flow control was previously explained in the flow control

subsection but the pins and voltage signals were not. Only RTS/CTS flow control will be discussed

since DTR/DSR flow control works the same way. To get RTS/CTS flow control one needs to

either select hardware flow control in an application program.

The when a DTE (such as a PC) wants to stop the flow into it, it negates RTS. Negated “request to

send” (-12volts) means, “request not to send to me “ (stop sending). When the PC is ready for more

bytes it asserts RTS (+12 volts) and the flow o bytes to it resumes. Flow control signal are always

 - 182 -

sent in a direction opposite to the flow of byte that is being controlled equipment (modems) works

the same way but sends the stop signal out the CTS pin. Thus its RTS/CTS flow control using 2

lines.

On what pins is this stop signal received? That depends on whether we have a DCE-DTE

connection or DTE-DTE connection. For DCE-DTE it’s a straight thru connection so obviously the

signal is received on the pin with the same name as the pin it’s sent out from. Its RTS RTS (PC

to modem) and CTS CTS (modem to PC). For DTE-to- DTE the connection is also easy o figure

out. The RTS pins always sends and the CTS pin always receives. Assume that we connect two

PCs (PC1 and PC2) together via their serial ports. Then its RTS (PC1) CTS (PC2) and CTS

(PC1) RTS (PC2). In other words RTS and CTS cross over. Such a cable (with other signals

crossed over as well) is called a “null modem” cable.

What is sometimes confusing is that there is a original use of RTS where it means about the

opposite of the previous explanation above. This original meaning is: I request to send to you. This

request was intended to be sent from a terminal (or computer) to a modem which, if it decided to

grant the request, would send back an asserted CTS from its CTS pin in to the CTS pin of the

computer: You are cleared to send to me. Note that in contrast to the modern RTS/CTS bi-

directional flow control, this only protects the flow in one direction: from the computer (or

terminal) to the modem. This original use appears to be little used today on modern equipment

(including modems).

3.13 The DTR and DSR Pins

Just like RTS and CTS, these pins are paired. For DTE-to-DTE connections they are likely to cross

over. There are two ways to use these pins. One way is to use them as a substitute for RTS/CTS

flow control. The DTR pin is just like the RTS pin while the DSR pin behaves like the CTS pin.

 - 183 -

Although Linux doesn’t support DTR/DSR flow control, it can be obtained by connecting the

RTS/CTS pins at the PC to the DSR/DTR pins at the device that uses DTR/DSR flow control. DTR

slow control is the same as DTR/DSR flow control but its only one-way and only uses the DTR pin

at the device. Many text terminals and some printers use DTR/DSR (or just DTR) flow control. In

the future, Linux may support DTR/DSR flow control. the software has already been written but its

not clear when (or if)it will incorporated into the serial driver.

The normal use of DTR/DSR (not for flow control) is as follows: a device asserting DTR says that

it powered on and ready to operate. For a modem, the meaning of a DTR signal from the Pc

depends on how the modem is configured. Negating DTR is sometimes called “hanging up” but it

does not always do this. One way to hang up (negate DTR) is to set the baud rate to 0using the

command “sty 0”. Trying to do this from a “foreign “terminal may not work due to thee two-

interface problem. See two interfaces at a terminal. For internal modem-serial ports it worked OK

with a port using minicom but didn’t work if the port was using wvdial.why?

3.14 Introduction to UARTS

UARTs (universal asynchronous receiver transmitter) are serial chips on your PC motherboard (or

o an internal modem card). The UART function may also be done on a chip that does other things

as well. On older computers like many 486’s, the chips were on the disk IO controller card. Still

order computer have dedicated serial boards.

The UARTs purpose is to convert bytes from the PC’s parallel bus to a serial bit-stream. The cable

going out of the serial port is serial and has only one wire for each direction of flow. The serial port

sends out a stream of bits, one bit at a time. Conversely, the bit stream that enters the serial port via

the external cable is converted to parallel bytes that the computer can understand. UARTs deals

with data in byte sized pieces, which Is conveniently also the size of ASCII characters.

 - 184 -

So you have a terminal hooked up to your PC. When you type a character, the terminal gives the

character to its transmitters (also a UART). The transmitter sends that byte out onto the serial line,

one bit at a time, at a specific rate. On the PC end, the receiving UART takes all the bits and

rebuilds the (parallel) byte and puts it in a buffer.

Along with converting between serial and parallel, the UART does some other things as a by

product (side effect) of its primary task. The voltage used to represent basis also converted

(changed). Extra bits (called start and stop bits) are added to each byte before it is transmitted.

See the serial-HOWTO section, “voltage wave shapes” for details. Also, while the flow rate (in

bytes/sec) on the parallel bus inside the computer is very high, the flow rate out the UART on the

serial port side of it is much lower. The UART has a fixed set of rates (speeds), which it can use, at

its serial port interface.

3.14.1 Types of UARTs

There are two basic types of UARTs: dumb UARTS and FIFO UARTS. Dumb UARTs are the 8250,

16450, early 16550, and early 16650. They are obsolete but if you understand how they work it's

easy to understand how the modern ones work with FIFO UARTS (late 16550, 16550A, 16c552, late

16650, 16750, and 16C950).

There is some confusion regarding 16550. Early models had a bug and worked properly only as

16450's (no FIFO). Later models with the bug fixed were named 16550A but many manufacturers

did not accept the name change and continued calling it a 16550. Most all 16550's in use today are

like 16550A's. Linux will report it as being a 16550A even though your hardware manual (or a label

note) says it's a 16550. A similar situation exists for the 16650 (only it's worse since the

 - 185 -

manufacturer allegedly didn't admit anything was wrong). Linux will report a late 16650 as being a

16650V2. If it reports it as 16650 it is bad news and only is used as if it had a one-byte buffer.

 3.15 FIFOs

To understand the differences between dumb and FIFO (First In, First Out queue discipline) first let's

examine what happens when a UART has sent or received a byte. The UART itself can't do anything

with the data passing thru it, it just receives and sends it. For the original dumb UARTS, the CPU

gets an interrupt from the serial device every time a byte has been sent or received. The CPU then

moves the received byte out of the UART's buffer and into memory somewhere, or gives the UART

another byte to send. The 8250 and 16450 UARTs only have a 1 byte buffer. That means that every

time 1 byte is sent or received, the CPU is interrupted. At low transfer rates, this is OK. But, at high

transfer rates, the CPU gets so busy dealing with the UART, that is doesn't have time to adequately

tend to other tasks. In some cases, the CPU does not get around to servicing the interrupt in time, and

the byte is overwritten, because they are coming in so fast. This is called an "overrun" or "overflow".

That's where the FIFO UARTs are useful. The 16550A (or 16550) FIFO chip comes with 16 byte

FIFO buffers. This means that it can receive up to 14 bytes (or send 16 bytes) before it has to

interrupt the CPU. Not only can it wait for more bytes, but the CPU then can transfer all 14 (or more)

bytes at a time. This is a significant advantage over the other UARTs, which only have 1 byte

buffers. The CPU receives less interrupts, and is free to do other things. Data is not lost, and

everyone is happy. Note that the interrupt threshold of FIFO buffers (trigger level) may be set at less

than 14. 1, 4 and 8 are other possible choices.

As of late 2000 there was no way the Linux users could set these directly(set serial can’t do it)While

many pc’s only have a 16550 with 16 bytes buffers, better UARTS have been larger buffers.

 - 186 -

 Note that the interrupt is issued slightly before the buffer gets full (at say a "trigger level" of 14

bytes for a 16-byte buffer). This allows room for a few more bytes to be received during the time that

the interrupt is being serviced. The trigger level may be set to various permitted values by kernel

software. A trigger level of 1 will be almost like a dumb UART (except that it still has room for 15

more bytes after it issues the interrupt).

If you type something while visiting a BBS, the characters you type go out thru the serial port. Your

typed characters that you see on the screen are what was echoed back thru the telephone line thru

your modem and then thru your serial port to the screen. If you had a 16-byte buffer on the serial port

which held back characters until it had 14 of them, you would need to type many characters before

you could see what you typed (before they appeared on the screen). This would be very confusing

but there is a "timeout" to prevent this. Thus you normally see a character on the screen just as soon

as you type it.

The "timeout" works like this for the receive UART buffer: If characters arrive one after another,

then an interrupt is issued only when say the 14th character reaches the buffer. But if a character

arrives and the next character doesn't arrive soon thereafter, then an interrupt is issued. This happens

even though there are not 14 characters in the buffer (there may only be one character in it). Thus

when what you type goes thru this buffer, it acts almost like a 1-byte buffer even though it is actually

a 16-byte buffer (unless your typing speed is a hundred times faster than normal). There is also

"timeout" for the transmit buffer as well.

3.16 Why FIFO buffers are small

You may wonder why the FIFO buffers are not larger. After all, memory is cheap an it wouldn’t

cost much more to use buffers in the kilobyte range. The reason is flow control. Flow control stops

the flow of data on the serial line when necessary. If the stop signal is sent to serial port, then the

 - 187 -

stop request is handled by the software .the serial port hardware knows nothing about this flow

control.

If the serial port buffer contains 64 bytes ready to send when it receives a flow control signal to

stop sending, it will send out the 64 bytes anyway in violation of the stop request. There is no

stopping it since it doesn't know about flow control. If the buffer was large, then many more bytes

would be sent in violation of flow control's request to stop.

 3.17 UART Model Numbers

Here's a list of some UARTs. TL is Trigger Level

• 8250, 16450, early 16550: Obsolete with 1-byte buffers

• 16550, 16550A, 16C552: 16-byte buffers, TL=1,4,8,14; 115.2 kbps standard, many support

230.4 or 460.8 kbps

• 16650: 32-byte buffers. 460.8 kbps

• 16750: 64-byte buffer for send, 56-byte for receive. 921.6 kbps

• 16850, 16C850: 128-byte buffers. 460.8 kbps or 1.5 mbps

• 16950

• Hayes ESP: 1k-byte buffers

For V.90 56k modems, it may be a several percent faster with a 16650 (especially if you are

downloading large uncompressed files). The main advantage of the 16650 is its larger buffer size as

the extra speed isn't needed unless the modem compression ratio is high. Some 56k internal modems

may come with a 16650 ??

Non-UART and intelligent multi port boards use DSP chips to do additional buffering and control,

thus relieving the CPU even more. For example, the Cyclades Cyclom, and Stallion Easy IO boards

 - 188 -

use a Cirrus Logic CD1400 RISC UART, and many boards use 80186 CPUs or even special RISC

CPUs, to handle the serial IO.

3.18 Introduction to communication standards

Line drivers and receivers are commonly used to exchange data between two or more points (nodes)

on a network. Reliable data communications can be difficult in the presence of induced noise, ground

level differences, impedance mismatches, failure to effectively bias for idle line conditions, and other

hazards associated with installation of a network.

The connection between two or more elements (drivers and receivers) should be considered a

transmission line if the rise and/or fall time is less than half the time for the signal to travel from the

transmitter to the receiver. Standards have been developed to insure compatibility between units

provided by different manufacturers, and to allow for reasonable success in transferring data over

specified distances and/or data rates. The Electronics Industry Association (EIA) has produced

standards for RS485, RS422, RS232, and RS423 that deal with data communications. Suggestions

are often made to deal with practical problems that might be encountered in a typical network. EIA

standards where previously marked with the prefix "RS" to indicate recommended standard;

however, the standards are now generally indicated as "EIA" standards to identify the standards

organization. While the standards bring uniformity to data communications, many areas are not

specifically covered and remain as "gray areas" for the user to discover (usually during installation)

on his own.

3.18.1 Single-ended Data Transmission

Electronic data communications between elements will generally fall into two broad categories:

single-ended and differential. RS232 (single-ended) was introduced in 1962, and despite rumours for

 - 189 -

its early demise, has remained widely used through the industry. The specification allows for data

transmission from one transmitter to one receiver at relatively slow data rates (up to 20K bits/second)

and short distances (up to 50Ft. @ the maximum data rate). Independent channels are established for

two-way (full-duplex) communications. The RS232 signals are represented by voltage levels with

respect to a system common (power / logic ground). The "idle" state (MARK) has the signal level

negative with respect to common, and the "active" state (SPACE) has the signal level positive with

respect to common. RS232 has numerous handshaking lines (primarily used with modems), and also

specifies a communications protocol. In general if you are not connected to a modem the

handshaking lines can present a lot of problems if not disabled in software or accounted for in the

hardware (loop-back or pulled-up). RTS (Request to send) does have some utility in certain

applications. RS423 is another single ended specification with enhanced operation over RS232;

however, it has not been widely used in the industry.

3.18.2 Differential Data Transmission

When communicating at high data rates, or over long distances in real world environments, single-

ended methods are often inadequate. Differential data transmission (balanced differential signal)

offers superior performance in most applications. Differential signals can help nullify the effects of

ground shifts and induced noise signals that can appear as common mode voltages on a network.

RS422 (differential) was designed for greater distances and higher Baud rates than RS232. In its

simplest form, a pair of converters from RS232 to RS422 (and back again) can be used to form an

"RS232 extension cord." Data rates of up to 100K bits / second and distances up to 4000 Ft. can be

accommodated with RS422. RS422 is also specified for multi-drop (party-line) applications where

only one driver is connected to, and transmits on, a "bus" of up to 10 receivers.

 - 190 -

While a multi-drop "type" application has many desirable advantages, RS422 devices cannot be used

to construct a truly multi-point network. A true multi-point network consists of multiple drivers and

receivers connected on a single bus, where any node can transmit or receive data. "Quasi" multi-drop

networks (4-wire) are often constructed using RS422 devices. These networks are often used in a

half-duplex mode, where a single master in a system sends a command to one of several "slave"

devices on a network. Typically one device (node) is addressed by the host computer and a response

is received from that device. Systems of this type (4-wire, half-duplex) are often constructed to avoid

"data collision" (bus contention) problems on a multi-drop network (more about solving this problem

on a two-wire network in a moment).

RS485 meets the requirements for a truly multi-point communications network, and the standard

specifies up to 32 drivers and 32 receivers on a single (2-wire) bus. With the introduction of

"automatic" repeaters and high-impedance drivers / receivers this "limitation" can be extended to

hundreds (or even thousands) of nodes on a network. RS485 extends the common mode range for

both drivers and receivers in the "tri-state" mode and with power off. Also, RS485 drivers are able to

withstand "data collisions" (bus contention) problems and bus fault conditions.

To solve the "data collision" problem often present in multi-drop networks hardware units

(converters, repeaters, micro-processor controls) can be constructed to remain in a receive mode until

they are ready to transmit data. Single master systems (many other communications schemes are

available) offer a straight forward and simple means of avoiding "data collisions" in a typical 2-wire,

half-duplex, multi-drop system. The master initiates a communications request to a "slave node" by

addressing that unit. The hardware detects the start-bit of the transmission and automatically enables

(on the fly) the RS485 transmitter. Once a character is sent the hardware reverts back into a receive

mode in about 1-2 microseconds (at least with R.E. Smith converters, repeaters, and remote I/O

boards).

 - 191 -

Any number of characters can be sent, and the transmitter will automatically re-trigger with each

new character (or in many cases a "bit-oriented" timing scheme is used in conjunction with network

biasing for fully automatic operation, including any Baud rate and/or any communications

specification, example . 9600,N, 8,1). Once a "slave" unit is addressed it is able to respond

immediately because of the fast transmitter turn-off time of the automatic device. It is NOT

necessary to introduce long delays in a network to avoid "data collisions." Because delays are NOT

required, networks can be constructed, that will utilize the data communications bandwidth with up

to 100% through put.

Standards have been developed to define how serial ports should work, and how the data exchange

should be controlled. The ports we see offered are named for the Electronic Industry Association

(EIA) standards they are designed around. RS232, RS422, and RS485 are often listed as options

when communication ability is needed

RS232 is the oldest standard, developed by the EIA in the 1970's primarily for use in connecting

computers to modems and terminals. They must have done a darned fine job, because it is still the

most prolific communication port in existence. RS232 is rated for point-to-point data communication

at speeds below 20,000 bits per second (bps or baud) and distances up to 50 feet. The standard also

defines a 25-pin D-connector and assigns functions to each pin for control of data flow. Since cable

capacitance and electrical noise are the limiting factors for speed and distance, we often exceed the

standard's limits by using shielded low-capacitance cable. It's not unusual to see RS232 links running

up to 200 feet at 9600 baud. If distances are kept short (5 feet or less), speeds up to 115,000 baud are

not uncommon. While lots of control lines are defined, in practice we normally only see either 3 or 5

wires used (2 for transmit/receive, one ground, and sometimes 2 for send/receive control or

"handshaking" between the devices).

 - 192 -

RS422 was developed in the 1980's to give greater distance and speed to serial data links. By using a

differential voltage scheme (RS232 measures all voltages relative to ground, RS422 measures them

relative to one another), immunity to electrical noise is very high and much lower voltage levels may

be used, too. As a result, this standard is rated for point-to-point data communication at speeds up to

115,000 baud and distances to 4,000 feet. Data flow control is most often accomplished with

software rather than hardware, so a typical cabling uses only two twisted pairs of wires. At shorter

distances (50 feet), speeds up to 10,000,000 baud are possible. This standard doesn't define a

connector, however, so we're at the mercy of the manufacturers when hooking it up!

RS485 was also developed in the 1980's as an extension to the RS422 standard. It has identical

ratings, and a bonus! RS485 line drivers have the ability to disconnect themselves from the circuit

when they aren't in use, so it is possible to connect up to 32 devices to a single communication link.

One device must be a "master," which controls all communication. The other 31 possible devices can

receive all data but transmit only when the master allows them to. In this fashion, a small network is

created, sort of like an old telephone party line. Some automation companies use RS485 links to

connect multiple controllers for sharing of data such as time schedules and other global variables.

Each device has an address, and the master must poll the various addresses in sequence to make sure

only one device transmits at a time.

3.19 Summary

In summary, RS232 is a pretty fast port for two-way communication. RS422 is a really fast one, and

RS485 is a really fast one, which can handle many devices on one line. Remember, too, that they're

standards and not laws. Manufacturers will often add features, which surpass the limits we've

described. Unlike the warden in Cool Hand Luke, our industry has no problem with "failure to

communicate".

 - 193 -

CHAPTER 4

Xcite OEM RF MODULES

4.1 Introduction

The XCite OEM RF Module is a drop-in wireless solution that can add RF connectivity to any data

system. It transfers a standard asynchronous serial data stream and features the following:

• Continuous data stream of up to 38400 bps (factory-set, RF baud rate)

• Serial Interfacing from 1200 to 57600 bps

• Software selectable between Hopping (FHSS) and Single Frequency Channel Modes

• Approved by the FCC under Part 15 of the FCC Rules and Regulations

• Variable input supply voltage (2.85 – 5.50 VDC)

4.2 Features

Long Range

• Indoor/Urban Range: Up to 300’ (90 m)

• Outdoor/RF Line-of-sight Range: Up to 1000’ (300 m) w/ 2.1 dB dipole antenna

• Receiver Sensitivity: -108 dBm (9600 Baud), -104 dBm (38400 Baud)

Low Power

 - 194 -

• Transmit Power Output: 4 mW [50 mW effective considering excellent receiver sensitivity]

• 55 mA transmit / 45 mA receive current consumption

• Power-down current as low as 20 µA

Advanced Networking & Security (True Peer-to-Peer (no “master” required), Point-to-Point,

Point-to-Multipoint, Multidrop)

4.3 Specifications

Table on next page;

 - 195 -

Table 4.1 RF Modem Specifications

 - 196 -

4.4 Mechanical Drawing

 - 197 -

Fig 4.1 Mechanical diagram

4.5 Block Diagram

Fig 4.2 Block diagram

MaxStream’s proprietary XII™ (Interference Immunity Technology) is contained in the

‘Interference Filter’ of the block diagram. The filter blocks interference from pagers and cellular.

4.6 Pin S

Xcite mo

* Pin util

** Pin ut

*** Pin u

Note: Wh

be left dis

Signals

dule pin sign

lizes 10K Ω

tilizes 10K Ω

utilizes 100K

hen integrati

sconnected (

nals and thei

Pull‐Up res

Ω Pull‐Down

K Ω Pull‐Up

ing the XCit

(floating).

ir functions:

Table

sistor (alread

n resistor (al

p resistor (alr

te Module o

 4.2 Pin sign

dy installed in

lready install

ready install

onto a Host P

nals

n the modul

led in the mo

ed in the mo

PC Board, a

e)

odule)

odule)

all lines thatt are not use

- 198 -

ed should

 - 199 -

Table 4.3 Pin Signals

The interface signals are available through the 11-pin header. All pins operate on VCC CMOS

levels. Five signals commonly used in applications are:

• DI (pin 4 – Data In)

• DO (pin 3 – Data Out)

• VCC (pin 10 – Power)

• GND (pin 11 – Ground)

• DO2-CTS (pin 1 – Clear-to-Send)

The remaining six pins may be used for additional functionality.

4.7 Application Circuit

 - 200 -

Fig 4.3 Application circuit

4.8 PIN SIGNALS

4.8.1 I/O Pin Signals

Pin 4: DI (Data In)

<Input> Data enters the XCite Module through the DI Pin as an asynchronous serial signal. The

signal should idle high when no data is being transmitted.

Each data packet consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit

(high). The diagram of a UART data packet [Figure 10] illustrates the serial bit pattern of data

shifting into the module. The start and stop bits from the UART signal are not transmitted, but are

regenerated on the receiving module.

 DI Buffer

Once serial data has entered the XCite Module through the DI Pin, the data is stored in the DI Buffer

until it can be transmitted.

 - 201 -

Once the first byte of data enters the DI Buffer, the module begins to initialize the RF channel unless

RF data is already being received. In the case where the module is receiving RF data, serial data is

stored in the DI Buffer. When the DI Buffer is 17 bytes away from being full, the XCite Module de-

asserts (high) CTS to signal to the host device to stop sending data. CTS re-asserts once the DI

Buffer has at least 35 bytes available.

In addition to CTS hardware flow control, XON/XOFF software flow control can also be

implemented [See the FL (Software Flow Control) Command]. In this case, the XCite Module sends

XON and XOFF signals in addition to asserting/de-asserting CTS.

Fig 4.4 UART Signal

Data is packetized for transmission. The packet structure is as follows:

Fig 4.5 RF Packet

 - 202 -

Pin 3: DO (Data Out)

<Output> Data from RF (over-the-air) transmission is received through the DO Pin. Received data is

checked for errors and addressing, then sent to the DO Buffer before being sent to the host device.

This pin utilizes a 10K Ω Pull-Up resistor that is already installed in the module.

DO Buffer

Once incoming RF data is received into the DO Buffer, data is sent out the serial port to a host

device. If RTS is enabled for flow control, data will not be sent out the DO Buffer as long as the RTS

pin is de-asserted (high). In such a scenario, data could be lost if RTS is de-asserted long enough to

allow the DO Buffer to become full. Pins 1 & 2 can also be used for flow control.

4.8.2 Flow Control Pin Signals

 Pin 1: DO2-CTS (Clear-to-Send)

<Output> The CTS pin (Clear-to-Send) informs the host device whether or not serial data can be sent

to the XCite Module from the host device. When Pin 1 is asserted (low), serial data is permitted to be

sent to the XCite Module. In RS-232 applications, Pin 1 is directly associated with the DI Buffer. In

RS-485/422 applications, the Pin 1 signal controls the transmit driver (TX enable) on the RS-485 and

RS-422 logic converters (on the MaxStream Interface Board or equivalent). Pin 3 utilizes a 10KΩ

Pull-Up resistor that is already installed in the module. In some applications, Pin 1 may not need to

be observed.

CTS Hardware Flow Control

 - 203 -

If the DI Buffer reaches its capacity, either the CTS line or XON / XOFF flow control must be

observed to prevent loss of data between the host device and the XCite Module. There are two cases

in which the DI Buffer may become full:

• If the serial interface rate is set higher than the default baud rate for the module, the module

will receive serial data faster than it is transmitted.

• If the XCite Module is receiving a continuous stream of data or if it is monitoring data on a

network, any serial data that arrives on the DI pin is placed in the DI Buffer. This data will be

transmitted when the module no longer detects RF data in the network.

XON Software Flow Control

XON/XOFF software flow control can be used (on Pin 3) instead of CTS hardware flow control.

[See FL (Software Flow Control) Command for more information]

 Pin 5: DI2- RTS (Request-to-Send)

<Input> The Pin 5 (RTS) signal can be configured to enable RTS flow control recognition. Use RT

Command to adjust the parameters that control Pin 5 flow control. By default, RTS flow control is

not observed. This pin utilizes a 10KΩ Pull-Down resistor already installed in the module.

RTS Hardware Flow Control

If RTS flow control is enabled, no data is sent out the DO pin when RTS is de-asserted (high). If

RTS flow control is implemented on the host device, RT Parameter must be set on the XCite Module

in order to recognize the RTS signal as a flow control line.

If RTS is asserted (low), all received RF data is placed in the DO Buffer until the line is de-asserted.

Once the DO Buffer reaches capacity, any additional received RF data is lost.

XOFF Software Flow Control

 - 204 -

XON/XOFF software flow control can be used (on Pin 4) to simulate RTS hardware flow control.

[See FL (Software Flow Control) Command for more information]

4.8.3 Remaining Pin Signals

 Pin 2: DI3-Sleep/Power-Down

<Input> Pin 2 can be used to transition the XCite Module into a low power-consuming Sleep Mode.

If SM = 1 [SM (Sleep Mode) Command], allowing Pin 2 to float high causes the module to enter into

a state of minimal power-consumption (until awakened by driving Pin 2 low). [Go to the “Sleep

Modes” section for more information.] This pin utilizes a 10K Ω Pull-Up resistor already installed in

the module.

 Pin 6: RESET

<Input> Pin 6 is almost always high and only low when the radio is reset. Since the OEM module

has an onboard reset monitor, this pin can be left disconnected. Pin 6 utilizes a 10KΩ Pull-Up

resistor already installed in the module.

 Pin 7: DO3-RX LED

<Output> Pin 7 is normally driven low, but is driven high briefly by the radio to indicate RF data

reception. This pin can be tied through a resistor to an LED for visual indication.

 Pin 8: TX/ PWR

<Output> Pin 8 is normally driven high and can be tied through a resistor to an LED to indicate the

following:

• The module has power

 - 205 -

• The module is not is sleep mode

• Pin 8 pulses on/off when data is transmitted over-the-air.

 Pin 9: CONFIG

<Input> When Command Mode cannot be entered using normal procedure [See “Command Mode”

section], the CONFIG pin is used to manually enter the module into Command Mode. If Pin 9 is

asserted during reset or power-up, the module immediately enters into Command Mode at the

module’s default baud rate. After the pin is asserted, the serial port baud rate is temporarily set to

match the default baud rate of the XCite Module in use. Upon entering into Command Mode, all

configured parameters (including baud rate) remain in their saved state unless modified as is

described in the “Module Configurations” chapter of this manual. This pin utilizes a 100K Ω Pull-Up

resistor already installed in the module.

IMPORTANT: The CONFIG pin is intended as a secondary method for entering Command Mode.

The primary method is with a command break sequence. MaxStream reserves the right to change the

functionality of the CONFIG pin and recommends using the command break sequence [See

“Command Mode” section] for entering Command Mode.

 Pin 10: VCC (power)

<Input> Pin 10 accepts regulated 5V signals.

 Pin 11: GND (Ground)

Pin 11 is used for grounding.

4.9 Electrical Characteristics

 - 206 -

• Timing Specifications

The diagram below shows 9XCite Modules providing an RF Link between hosts.

Fig 4.6 RF Link

The RF data flow sequence is initiated when the first byte of data is received by the transmitting

XCite Module. As long as XCite Module A is not already receiving RF data, the serial data goes into

the DI Buffer, is packetized, and then transmitted to XCite Module B.

 - 207 -

Fig 4.7 RF Data flow sequence

Table 4.1 Symbols and parameters

* Reset pulse must last at least 250 nanoseconds

** VI = the input voltage on the pin

4.10 RF Module Operation

4.10.1 Serial Communications

The XCite OEM RF Module interfaces to a host device through a CMOS-level asynchronous serial

port. Through its serial port, the XCite Module can communicate directly with any UART-interfaced

or RS-232/485/422 device. [Timing specifications illustrated in Figure]

UART-Interfaced Data Flow

 - 208 -

Devices that have a UART interface can connect directly through the pins of the XCite OEM RF

Module as is shown in the figure below.

Fig 4.8 UART interfaced structure

RS-232 and RS-485/422 Data Flow

The XCite Module can enable a host device to communicate wirelessly. To transmit, the host device

simply sends serial data to the XCite Module pins. The XCite Module then converts the data into

FCC-approved RF data. Once transmitted, the RF data can be detected by receiving XCite Modules,

checked for integrity and then sent to a receiving device.

 - 209 -

Fig 4.9 RS-232 Data flow

Serial Data

Data enters the MaxStream OEM RF Module through the DI Pin (pin 4) as an asynchronous serial

signal. The signal should idle high when no data is being transmitted.

The UART performs tasks (such as timing and parity checking) needed for communication. Serial

communication consists of two UARTs which must be configured with compatible parameters (Baud

rate, parity, start bits, stop bits, data bits) to have successful communication. Each data packet

consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high). The following

figure illustrates the serial bit pattern of data passing through the module.

Fig 4.10 Serial data

In the example above, the MaxStream Module transfer 8 bits over-the-air [Selectable using BI

(Number of Bits) Parameter]. Start and stop bits of the UART signal are not transmitted over-the-air,

but are regenerated by the receiving module.

The MaxStream OEM RF Modules support the following data formats [See NB (Parity) Parameter]:

• 8-none-1, 7-any-1

• 8-even-1

 - 210 -

• 8-odd-1

• 8-mark-1, 8-none-2

• 8-space-1

DI (Data In) Buffer

Once serial data has entered the 9XCite Module through the Data In (DI) Pin, the data is stored in the

DI Buffer until it can be transmitted.

Once the first byte of data enters the DI Buffer, the module begins to initialize the RF channel

(unless RF data is being received). In the case where the module is receiving RF data, the serial

(UART) data is stored in the DI Buffer. When the DI Buffer has only 17 bytes of memory left, the

XCite Module de-asserts (high) CTS to signal to the host device to stop sending data. CTS re-asserts

once the DI Buffer has at least 35 bytes available in memory. Once in the DI Buffer, the data is

packetized for transmission. [Packet structures are broken down below.]

4.10.2 Modes of Operation

XCite Radio Modems operate in five modes. The modules operate in one mode at a time.

 - 211 -

Fig 4.11 Modes of operation

1. Idle Mode

XCite Modules operate in Idle Mode when data is not being transmitted nor received. While in Idle

Mode, modules use the same amount of power as they do in RX (Receive) mode. Modules will

transition into other modes under any of the following conditions:

1. Serial data is received in the DI Buffer (Module then transitions into Transmit Mode)

2. Valid data is received by the antenna (Module then transitions into Receive Mode)

 - 212 -

3. AT Command Mode Sequence is issued (Module then transitions into AT Command Mode)

4. Sleep Mode condition is met (Module then transitions into Sleep Mode)

Modules automatically transition back to Idle Mode once finished responding to these conditions.

2. Transmit Mode

When the first byte of serial data comes through the DI Pin and arrives in the DI Buffer, the module

transitions into Transmit Mode. Once in Transmit Mode, the module initializes a communications

channel. During channel initialization, incoming serial data accumulates in the DI buffer. After the

channel is initialized, data in the DI buffer is grouped into packets (up to 64 bytes in each packet)

and is transmitted. The module continues to transmit data packets until the DI buffer is empty. Once

transmission is finished, the module returns to Idle Mode. This progression is shown below:

 - 213 -

Fig 4.12 Transmit Mode

Cyclic Redundancy Check (CRC)

To verify data integrity and provide built-in error checking, a 16-bit cyclic redundancy check (CRC)

is computed for the transmitted data and attached to the end of each data packet before transmission.

On the receiving end, the receiver computes the CRC on all incoming data. Received data that has an

invalid CRC is discarded.

Transmission Latency

 - 214 -

Transmission latency depends on the number of bytes contained in a packet and the baud rate of the

module. To reduce latency in the XCite Module, load in a single channel version using the X-CTU

Software. Operating in Single Frequency Channel Mode greatly reduces latency.

3. Receive Mode

If a module detects RF transmitted data while operating in Idle Mode, it transitions into Receive

Mode to start receiving packets. Once a packet is received, it goes through the receiving-end of a

CRC (cyclic redundancy check) to ensure that the data was transmitted without error. If the CRC

data bits on the incoming packet are invalid, the packet is discarded. If the CRC is valid, the packet

is placed the DO Buffer. This process is shown in the figure below:

 - 215 -

Fig 4.13 Receive Mode

The module returns to Idle Mode after valid data is no longer detected or once an error is detected in

the received data. If serial data-to-transmit is stored in the DI buffer while the module is giving

precedence to Receive Mode, the data will be transmitted after the module finishes receiving data

and returns to Idle Mode.

4. Sleep Modes

Sleep Modes enable the XCite Radio Modem to go into states of low power-consumption when not

in use. Any of three Sleep Modes configurations can be used:

1. Host Controlled

2. Wake on RF activity

3. Wake on Serial Port activity

To enter Sleep Mode, one of the following must occur (In addition to SM (Sleep Mode) Command

having a non-zero value):

• The radio modem must be idle (no data transmission or reception) for a user-defined period

of time [See ST (Time before Sleep) Command]

• The Sleep Pin (Pin 2) is de-asserted

Once in Sleep Mode, the radio modem does not transmit or receive data until it first returns to Idle

Mode. The return into Idle Mode is triggered by the de-assertion of Pin 2 or the arrival of a serial

byte through Pin 4 (Data In). Sleep Mode is enabled and disabled using SM Command.

 - 216 -

The following table lists MaxStream’s Sleep Mode configurations and the requirements needed to

transition into and out of Sleep Mode:

Table 4.13 Sleep mode configurations

Pin Sleep (SM = 1)

<Lowest Power Configuration> In order to achieve this low-power state, Pin 2 must be asserted

(high). The module remains in Pin Sleep until the Sleep pin is de-asserted. The module will complete

a transmission or reception before activating Pin Sleep.

After enabling Pin Sleep (SM (Sleep Mode) Parameter = 1), Pin 2 controls whether the XCite

Module is active or in Sleep Mode. When Pin 2 is asserted (high), the module transitions to Sleep

Mode and remains in its lowest power-consuming state until the Sleep pin is de-asserted. The XCite

Module requires 40ms to transition from Sleep Mode to Idle Mode. Pin 2 is only active if the module

is setup to operate in this mode; otherwise the pin is ignored. Once in Pin Sleep Mode, Pin 1 (CTS)

 - 217 -

is de-asserted (high), indicating that data should not be sent to the module. Pin 8 (PWR) is also de-

asserted (low) when the module is in Pin Sleep Mode.

Serial Port Sleep (SM = 2)

Serial Port Sleep is a Sleep Mode setting in which the module runs in a low power state until data is

detected on the DI pin.

When Serial Port Sleep is enabled, the module goes into Sleep Mode after a user-defined period of

inactivity (no transmitting or receiving of data). This period of time is determined by ST (Time

before Sleep) Command. The module returns to Idle Mode once a character is received through the

DI pin.

Cyclic Sleep (SM = 3-8)

Cyclic Sleep is the Sleep Mode setting in which the XCite Module enters into a low power state and

awakens periodically to determine if any transmissions are being sent.

When Cyclic Sleep settings are enabled, the XCite Module goes into Sleep Mode after a user-defined

period of inactivity (no transmission or reception on the RF channel). The user-defined period is

determined by ST Parameter. [See ST (Time before Sleep) Parameter]

While the module is in a low-power state, Pin 1 (CTS) is de-asserted (high) to indicate that data

should not be sent to the module during this time. When the module awakens to listen for data, Pin 1

(CTS) is asserted and any data received on the DI Pin is transmitted. Pin 8 (PWR) is also de-asserted

(low) when the module is in Cyclic Sleep Mode. Pins 1 and 8 are asserted each time the module

cycles into Idle Mode to listen for valid data packets and de-asserts when the module returns to Sleep

Mode.

 - 218 -

The module remains in Sleep Mode for a user-defined period of time ranging from 0.5 seconds to 16

seconds (SM Parameters 3 through 8). After this interval of time, the module returns to Idle Mode

and listens for a valid data packet for 100 ms. If the module does not detect valid data (on any

frequency), the module returns to Sleep Mode. If valid data is detected, the module transitions into

Receive Mode and receives the incoming packets. The module then returns to Sleep Mode after a

Period of inactivity that is determined by ST “Time before Sleep” Parameter.

The module can also be configured to Wake-up from cyclic sleep when the SLEEP Pin (Pin 2) is de-

asserted (low). To configure a module to operate in this manner, PW (Pin Wake-up) Command must

be issued. Once the Pin 2 (Sleep Pin) is de-asserted, the module is forced into Idle Mode and can

begin transmitting or receiving data. It remains active until no data is detected for the period of time

specified by the ST parameter, at which point it resumes its low-power cyclic state.

Cyclic Scanning

Each RF transmission consists of a wake-up initializer and payload data. The wake-up initializer

contains initialization information and all receiving modules must Wake-up during the wake-up

initializer portion of data transmission in order to synchronize with the transmitter and receive the

data.

The length of the wake‐up initializer exceeds the time interval of Cyclic Sleep. The receiver is guara

nteed to detect the wake‐up initializer and receive the accompanying payload data.

 - 219 -

Fig 4.14 Cyclic scanning actual

The length of the wake‐up initializer is shorter than the time interval of Cyclic Sleep. this

is vulnerable to the receiver waking and missing the wake‐up initializer (and therefore also the acco

mpanying payload data).

Fig 4.15 Cyclic scanning for error case

The wake-up initializer is sent with the initial transmitted packet after a user-defined period of

inactivity (no serial or RF data is sent or received). This period of inactivity is adjusted using HT

Command. [See HT (Time before Wake-up Initializer) Parameter] Sending a wake-up initializer

 - 220 -

(length slightly exceeds the cyclic sleep time interval) assures that the receiver will detect the new

transmission and will be able to receive the accompanying data. If the sleeping module misses the

wake-up initializer due to interference and does not respond as expected, a new wake-up initializer

can be sent using FH (Force Wake-up Initializer) Command.

5. Command Mode

AT Command Mode provides access to AT-Settable parameters. These parameters extend flexibility

in configuring modules to fit specific design criteria such as networking modules. Not all of the

parameters in the XCite Module can be adjusted using AT Commands.

Enter AT Command Mode

To issue XCite AT Commands, you must first transition out of Idle Mode and into AT Command

Mode.

To enter into AT Command Mode, use any of the following means:

1. Through X-CTU Software: When using the X-CTU Software, any of the buttons that read or

write modem parameters automatically trigger entrance into AT Command Mode. To successfully

enter into AT Command Mode in this manner, the serial data baud rate [BD (Baud Rate) Parameter]

of the modem must be equal to that of the PC Serial Com Port [Settable using the “PC Settings” tab

of the X-CTU Software.] The X-CTU Software can be downloaded from:

www.maxstream.net/support/downloads.php

2. Through Serial Communications Software (“X-CTU”, “HyperTerminal”, “Pro Comm”, etc.):

When using serial communications software to enter into AT Command Mode, users must send the

“AT Command Mode Sequence”. The default sequence is as follows:

 - 221 -

• No characters sent for 1 second. [Time can be modified using BT (Guard Time Before)

Parameter]

• Input three (3) plus characters (“+++”) within one (1) second. [Character can be modified

using CC (Command Sequence Character) Parameter.]

• No characters sent for one (1) second. [Time can be modified using the AT (Guard Time

After) Parameter.]

“AT” & “BT” times must always be observed.

3. Assert (low) the CONFIG pin*, then power the modem off and then on again. (If using the

MaxStream Interface Board, power and configuration switches are available to facilitate this

process.)

Important: * Never tie the CONFIG pin to the microprocessor.

Configure and Read Module Parameters

Once in AT Command Mode, parameters can be configured and read using AT Commands.

Parameters changed while in AT Command Mode must be saved to non-volatile memory using WR

(Write) Command for the changes to persist in memory. If WR Command is not issued, the

parameters will be reset to their previously stored value the next time the module is powered-up.

The “Modem Configuration” chapter is dedicated to explaining the methods needed to configure and

read module parameters. The following sections explain the protocols and syntax required to

configure and read module parameters.

Syntax. When using serial communications software, ASCII commands and parameters are not case

sensitive. The optional space can be any non-alpha-numeric character and XCite Modules require

parameter values be hexadecimal.

 - 222 -

Fig 4.16 Syntax for entering Command

In example above, the “ATDT 1F” sequence would change the modem’s networking address to a

hexadecimal value of “1F” (decimal 31).

Queries. To query the current value of a particular parameter, send the corresponding AT command

without any parameters (followed by a carriage return).

Multiple Commands. Multiple AT commands can be entered on one line with one carriage return at

the end of the line. Each command must be delimited by a comma (and an optional space). The “AT”

prefix is only sent before the first command and should not be included with subsequent commands

in a line.

System Response. After executing a recognized AT command, the module responds with

“OK<CR>”. If an unrecognized command or a command with a bad parameter is received, the

module responds with “ERROR<CR>.” Modified AT values are reset to previous stored values

upon module power-down unless the WR (Write) Command was issued to save parameters to non-

volatile memory.

4.11 RF Module Configurations

The following versions of the XCite Module are currently available:

 - 223 -

• 900 MHz, 9600 Baud (RF data rate), Hopping Channel Mode

• 900 MHz, 9600 Baud, Single Channel mode

• 900 MHz, 38400 Baud, Hopping Channel mode

• 900 MHz, 38400 Baud, Single Channel mode

XCite Modules can operate in both Single Channel and Hopping modes. Mode is selectable using the

“Function Set” dropdown list of the “XCite Configuration” tab of the MaxStream-provided X-CTU

Software.

The XCite Module is shipped with a unique parameter set in its memory. Parameters within the set

are organized under the following categories: AT Commands & Non-AT Settable Parameters.

4.11.1 Command & Parameter Types

AT Commands

AT Commands can be changed at any time by entering AT Command Mode and sending commands

to the module. [AT Commands are listed in Table 4..]

AT Commands can be modified using the any of the following means:

• X-CTU Software “Modem Configuration” tab

• X-CTU Software “Terminal” tab

• Terminal software program (such as “HyperTerminal”)

• Microcontroller

Non-AT Settable Parameters (X-CTU Software configurable only)

 - 224 -

Non-AT Settable Parameters can only be adjusted using the MaxStream-provided X-CTU Software.

To modify Non-AT Settable Parameter, connect the module to the serial com port of a PC (interface

board is necessary for RS-232 connection) and modify parameter values through the X-CTU

Software interface. These parameters enable features that need to be set before the module is used in

the field. [Non-AT Settable Parameters are listed in Table 4..]

Non-AT Settable Parameters can only be modified using the following means:

• X-CTU Software “Modem Configuration” tab

4.11.2 Configuration Software

a. X-CTU Software

X-CTU is MaxStream-provided software used to configure XCite Modules. It is the only means that

can be used to set all three command parameter types [AT Commands and Non-AT Settable

Parameters].

X-CTU Software is organized into the following four tabs:

• PC Settings tab - Setup PC serial ports to interface with an XCite Module assembly

• Range Test tab – Test XCite Module range

• Terminal tab – Configure and read XCite Module parameters using AT Commands

• Modem Configuration tab – Configure and read XCite Module parameters

 - 225 -

Fig 4.17 X-CTU Software windows

Install X-CTU software

Double-click the "setup_X-CTU.exe" file and follow prompts of the installation screens. This file is

located in the ‘software’ folder of the MaxStream CD and also under the ‘Downloads’ section of the

following web page: www.maxstream.net/support/downloads.php

Using X-CTU software

In order to use the X-CTU software, a module assembly (an XCite Module mounted to a MaxStream

Interface Board) must be connected to the serial port of a PC. The baud rate of the serial port (“PC

Settings” tab) must match the baud rate of the module (BD (Baud Rate) Command on the “Modem

Configuration” tab).

b. Serial Communications Software

 - 226 -

<for AT Commands Only>A terminal program has been built into the X-CTU software. Serial

communications software can be used to issue AT Commands, but cannot be used to set Non-AT

Settable Parameters. Use the syntax illustrated in the following example when issuing AT

Commands. (This example sets the destination address of the module to “0x1F”. WR (Write)

Command would also have to be used to save the new value to non-volatile memory.)

Fig 4.18 Syntax

4.11.3 Command Descriptions

Commands and parameters are listed alphabetically. Parameter types and categories are designated

between “< >” symbols. For example: <AT Command: Networking>. “AT Command” is the

command/parameter type and “Networking” is the command/parameter category.

 AT (Guard Time After) Parameter

<Non-AT Settable Parameter: AT Command Options> AT Parameter is used to set the DI pin silent

time that follows the command sequence character (CC Parameter). By default, 1 half of a second

(500 milliseconds) must elapse before entering another character. The AT Command Mode

Sequence used to enter AT Command Mode is as follows:

• No characters sent for 1 millisecond [BT (Guard Time Before) Parameter]

• Send three plus characters “+++” [CC (Command Sequence Character) Parameter]

• No characters sent for 1 millisecond [AT (Guard Time After) Parameter]

 - 227 -

All of the values in this sequence can be adjusted. AT Parameter is used to adjust the period of

silence that follows the command sequence character.

Parameter Range: 0x02 – 0xFFFF (x 1 millisecond)

of bytes returned: 2

Default Parameter Value: 0x1F4 (500 decimal)

Related Commands: BT (Silence before Sequence), CC (Commands Sequence Character)

 BD (Interface Data Rate) Parameter

<Non-AT Settable Parameter: Serial Interfacing> BD Parameter allows the user to adjust the UART

baud rate and thus modify the rate at which serial data is sent to the module. Baud rates range from

1200 to 57600 baud (bps). The new baud rate does not take effect until CN (Exit AT Command

Mode) Command is issued.

Note: If the serial data baud rate is set to exceed the fixed RF data baud rate of the XCite radio

modem, flow control may need to be implemented as is described in the “I/O Pin Signals” section of

this Manual.

Parameter Range: 0 - 6

of bytes returned: 1

Default Parameter Value: Set to equal radio modem’s fixed RF data rate (baud).

 - 228 -

Fig 4.18 BD Parameter

 BI (Number of Bits) Parameter

<Non-AT Settable Parameter: Serial Interfacing> BI Parameter allows the user to define the number

of data bits between the start and stop bits. Setting 7 bits and Mark or Space parity (NB Parameter)

will result in a setting of 7 bits and no parity.

Parameter Range: 0 - 1

of bytes returned: 1

Default Parameter Value: 1

Fig 4.19 BI Parameter

 BT (Guard Time Before) Parameter

<Non-AT Settable Parameter: AT Command Options> BT Parameter is used to set the DI pin silent

time that precedes the command sequence character (CC Parameter). By default, 1 half of a second

(500 milliseconds) must elapse before entering another character. The AT Command Mode

Sequence used to enter AT Command Mode is as follows:

• No characters sent for 1 millisecond [BT (Guard Time Before) Parameter]

• Send three plus characters “+++” [CC (Command Sequence Character) Parameter]

• No characters sent for 1 millisecond [AT (Guard Time After) Parameter]

 - 229 -

All of the values in this sequence can be adjusted. AT Command is used to adjust the period of

silence that precedes the command sequence character.

Parameter Range: 0 - 0xFFFF (x 1 millisecond)

of bytes returned: 2

Default Parameter Value: 0x1F4 (500 decimal)

Related Commands: AT (Guard Time After), CC (Commands Sequence Character)

 CC (Command Sequence Character) Parameter

<Non-AT Settable Parameter: AT Command Options> CC Parameter is used to adjust the command

sequence character used when entering AT Command Mode.

The AT Command Mode Sequence used to enter AT Command Mode is as follows:

• No characters sent for 1 millisecond [BT (Guard Time Before) Parameter]

• Send three plus characters “+++” [CC (Command Sequence Character) Parameter]

• No characters sent for 1 millisecond [AT (Guard Time After) Parameter]

Parameter Range: 0x20 – 0x7F

of bytes returned: 1

Default Parameter Value: 0x2B (ASCII “+” sign)

Related Parameters: AT (Guard Time After), BT (Guard Time Before)

 CD (DO3 Configuration) Command

<AT Command: Serial Interfacing> Used to redefine the RX LED I/O line.

 - 230 -

AT Command: CD

Parameter Range: 0 – 5

of bytes returned: 1

Default Parameter Value: 0

Fig 4.20 CD Command

 CN (Exit AT Command Mode) Command

<AT Command: AT Command Mode Options> CN Command allows users to explicitly exit AT

Command Mode and return the radio modem into Idle Mode.

AT Command: CN

 CS (DO2 Configuration) Command

<AT Command: Serial Interfacing> CS Command is used to modify the behavior of the CTS signal

such that it either provides RS-232 flow control, enables RS-485 transmission / reception or

determines RS-422 transmit enable. By default, CTS provides RS-232 flow control. CS Parameter

must be adjusted for the module to operate in RS-485/422 environments.

AT Command: CS

Parameter Range: 0 – 4

of bytes returned: 1

Default Parameter Value: 0

 - 231 -

Fig 4.21 CS Command

 CT (Time before Exit AT Command Mode) Parameter

<Non-AT Settable Parameter: AT Command Options> AT Command Mode can be exited manually

using CN (Exit AT Command Mode) Command or, after a given time of inactivity, the module exits

AT Command Mode on its own and return to Idle Mode. CT Command sets the amount of time

before AT Command Mode is exited automatically. If no characters are received before this time

elapses, the module will return to Idle Mode.

Parameter Range: 0x02 – 0xFFFF [x 100 ms]

of bytes returned: 2

Default Parameter Value: 0xC8 (20 seconds decimal)

 DB (Receive Signal Strength) Command

<AT Command: Diagnostic> DB Parameter returns the receive signal strength (in decibels) of the

last received packet. This Parameter is useful in determining range characteristics of the XCite

Modules under various conditions.

AT Command: DB

Parameter Range: 0x25 – 0x6A [Read-only]

of bytes returned: 1

 - 232 -

 DT (Destination Address) Command

<AT Command: Networking> DT Command is used to set the address of the XCite Radio Modem.

XCite Radio Modems use three network layers – the Vendor Identification Number (ATID),

Channels (ATHP) and Destination Addresses (ATDT).

DT Command assigns an address to a radio modem that enables it to communicate only with radio

modems that have matching addresses. This is similar to interconnecting several PCs under a

common hub. All radio modems that share the same destination address can communicate freely

with each other. Radio Modems in the same network with a different destination address (than that of

the transmitter) will listen to all transmissions to stay synchronized, but will not send any of the data

out their serial ports.

AT Command: DT

Parameter Range: 0 - 0xFFFF

of bytes returned: 2

Default Parameter Value: 0

Related Commands: ID (Modem ID), HP (Channel), MK (Address Mask)

 FH (Force Wake-up Initializer) Command

<AT Command: Sleep (Low Power)> FH Command is used to force a Wake-up Initializer to be sent

on the next transmission. WR (Write) Command does not need to be issued with FH Command. Use

only with cyclic sleep modes active on remote modules.

 FL (Software Flow Control) Parameter

<Non-AT Settable Parameter: Serial Interfacing> FL Parameter is used to adjust serial flow control.

Hardware flow control is implemented with the XCite Radio Modem as the CTS pin (which

 - 233 -

regulates when serial data can be transferred to the radio modem). FL Parameter can be used to allow

software flow control to also be enabled. The XON character to use is 0x11 (“17” decimal). The

XOFF character to use is 0x13 (“19” decimal)

Parameter Range: 0 – 1

of bytes returned: 1

Default Parameter Value: 0

Fig 4.22 FL Parameter

 HP (Channel) Command

<AT Command: Networking> HP Command is used to set the radio modem channel number. A

channel is one of three layers of addressing available to the XCite Radio Modem. In order for radio

modems to communicate with each other, the modules must have the same channel number since

each channel uses a different hopping sequence or single frequency. Different channels can be used

to prevent modules in one network from listening to transmissions of another.

The XCite Radio Modem can operate both in Hopping and Single Frequency Channel Modes.

Switching between Single Channel and Hopping Modes can only be done only using the “Function

Set” dropdown list on the “Modem Configuration” tab of the X-CTU Software.

AT Command: HP

Hopping Channel Range: 0 – 6

Single Frequency Channel Range: 0 - 0x18

 - 234 -

of bytes returned: 1

Default Parameter Value: 0

Related Parameters: DT (Destination Address), ID (Modem ID), MK (Address Mask)

A “Hopping Channel” is a channel comprised of a group of frequencies. When in Hopping Channel

Mode, the radio modem hops between the frequencies them when transmitting data. This option

utilizes FHSS (Frequency Hopping Spread Spectrum) technology. This option helps bolster security

in wireless data communications and also makes the system less prone to interference.

The 25 center frequencies available in Single Frequency Channel Mode are spaced 300 KHz apart.

Since each channel occupies a 500 KHz bandwidth, adjacent channels therefore overlap. If modules

are used in the same vicinity but on different channels, the channels used should occupy every other

channel at a minimum separation. If channels used on different radio modems can be separated more

they should be. This will provide for more isolation and less interference.

 - 235 -

Fig 4.23 Frequency assignment with the command

 HT (Time before Wake-up Initializer) Parameter

<Non-AT Settable Parameter: Sleep (Low Power)> If any modules within range are running in a

“Cyclic Sleep Setting”, a wake-up initializer must be sent by the transmitter for the other radio

modems to synchronize to the transmitter [see LH (“Wake-up Initializer Timer”) Command]. When

a receiving radio modem in Cyclic Sleep wakes, it must detect the wake-up initializer portion of the

RF packet in order to synchronize to the transmitter and receive data. HT Parameter sets time period

of inactivity (no serial or RF data is sent or received) before a Wake-up Initializer is sent. Base

station tracks awake-status of remote radios. HT of base radio should be set shorter than ST (Time

before Sleep) of remote radios.

 - 236 -

From the receiver perspective, after “HT” time elapses and the ST (Time before Sleep) Parameter is

met, the receiver goes into cyclic sleep. Once in cyclic sleep, the radio modem must first detect the

wake-up initializer and synchronize to the transmitter before it can receive data. Thus, when time

“HT” time elapses, the transmitter then knows it needs to send a long wake-up initializer for all

receivers to be able to synchronize to its next transmission. Matching “HT” to the “ST” time on the

receiver(s) guarantees that all receivers will detect the next transmission.

Parameter Range: 0 - 0xFFFF [x 100 ms]

of bytes returned: 2

Default Parameter Value: 0xFFFF (long wake-up initializer will not be sent)

Related Parameters: LH (Wake-up Initializer Timer), SM (Sleep Mode), ST (Time before Sleep)

 HV (Hardware Version) Command

<AT Command: AT Command Options> Reads and returns the hardware version of the XCite

Module.

AT Command: HV

Parameter Range: 0 – 0xFFFF [Read-only]

of bytes returned: 2

 ID (Modem VID) Parameter

<Non-AT Settable Parameter: Networking> ID Parameter reads and edits the module’s VID. VID is

a MaxStream-specific acronym that stands for “Vendor Identification Number”. Modules can only

communicate with other modules having the same VID.

Parameter Range: 0 - 0x7FFF (above this range is Read-only)

of bytes returned: 2

 - 237 -

Default Parameter Value: 0x3332

 LH (Wake-up Initializer Timer) Parameter

<Non-AT Settable Parameter: Sleep (Low Power)> LH Parameter adjusts the duration of time in

which the wake-up initializer is sent. When receiving modules are put into the Cyclic Sleep Mode,

they power-down after a period of inactivity (specified by ST (Time before Sleep) Parameter) and

will periodically awaken and listen for transmitted data. In order for the receiving modules to

initialize with the transmitter, they must detect ~35ms of the wake-up initializer. LH Parameter must

be used whenever a receiver is operating in Cyclic Sleep Mode. This lengthens the wake-up

initializer to a specific amount of time (in x 100 ms). The long wake-up initializer must be longer

than the cyclic sleep time that is determined by SM (Sleep Mode) Command. If the wake-up

initializer time were less than the Cyclic Sleep interval, the connection would be at risk of missing

the wake-up initializer transmission. The data and figures on the next page illustrate this behavior:

Parameter Range: 0 – 0xFF [x 100 ms]

of bytes returned: 1

Default Parameter Value: 0x01 (0.1 second)

Related Parameters: HT (Time before Wake-up Initializer), SM (Sleep Mode), ST (Time before

Sleep)

The length of the wake-up initializer exceeds the time interval of Cyclic Sleep. The receiver is

guaranteed to detect the wake-up initializer and receive the accompanying payload data

 - 238 -

Fig 4.24 LH Parameter original

The length of the wake-up initializer is shorter than the time interval of Cyclic Sleep. This

configuration is vulnerable to the receiver waking and missing the wake-up initializer (and therefore

also the accompanying payload data).

Fig 4.25 LH Parameter error case

 MK (Address Mask) Command

<AT Command: Networking> MK Command is used to set the radio modem address mask. All RF

packets contain the Destination Address of the transmitting radio modem. When an RF packet is

received, the transmitter’s Destination Address is logically “ANDed” (bitwise) with the Address

Mask of the receiver. The resulting value must match the Destination Address or the Address Mask

 - 239 -

of the receiver for the packet to be received and sent out the receiving modem serial port. If the

“ANDed” value does not match either the Destination Address or the Address Mask of the receiver,

the packet is discarded. (All “0” values are treated as “irrelevant” values and ignored.)

AT Command: MK

Parameter Range: 0 – 0xFFFF

of bytes returned: 2

Default Parameter Value: 0xFFFF (When set to this value, the Destination Address of the

transmitter must exactly match the Destination Address of the receiver.)

Related Commands: DT (Destination Address), HP (Channel)

 NB (Parity) Parameter

<Non-AT Settable Parameter: Serial Interfacing> NB Parameter allows parity for the module to be

changed. Parity is an error detection method in which a bit (0 or 1) is added to each group of bits so

that it will have either an odd number of 1's or an even number of 1's. For example, if parity is odd,

then any group of bits that arrives with an even number of 1's must contain an error.

Parameter Range: 0 - 4

of bytes returned: 1

Default Parameter Value: 0

Fig 4.26 NB Parameter

 - 240 -

 PW (Pin Wake-up) Parameter

<Non-AT Settable Parameter: Sleep (Low Power)> Under normal operation, a radio modem in

Cyclic Sleep Mode cycles from an active state to a low-power state at regular intervals until data is

ready to be received. If PW Parameter is set to 1, the SLEEP Pin (Pin 2 of the OEM RF Module) can

be used to awaken the module from Cyclic Sleep. If the SLEEP Pin is de-asserted (low), the radio

modem will be fully operational and will not go into Cyclic Sleep. Once SLEEP is asserted, the radio

modem will remain active for the period of time specified by ST (Time before Sleep) Command, and

will return to Cyclic Sleep Mode (if no data is ready to be transmitted). PW Command is only valid

if Cyclic Sleep has been enabled using SM Command.

Parameter Range: 0 – 1

of bytes returned: 1

Default Parameter Value: 0

Related Parameters: SM (Sleep Mode), ST (Time before Sleep)

Fig 4.27 PW Parameter

 RE (Default Configuration) Command

<AT Command: AT Command Options> RE Command restores all AT-settable parameters to

factory default settings. However, RE Command will not write the default values to non-volatile

 - 241 -

memory. Unless the WR (Write) Command is issued after the RE Parameter, the default settings will

not be saved in the event of radio modem reset or power-down.

AT Command: RE

Related Command: WR (Write)

 RT (DI2 Configuration) Parameter

<Non-AT Settable Parameter: Serial Interfacing> RT Parameter enables RTS Mode.

Parameter Range: 0 - 1

of bytes returned: 1

Default Parameter Value: 0

Fig 4.28 RT Parameter

 SB (Stop Bits) Parameter

<Non-AT Settable Parameter: Serial Interfacing> SB Parameter allows the user set the number of

stop bits used in data transmission.

Parameter Range: 0 - 1

of bytes returned: 1

Default Parameter Value: 0

 - 242 -

Fig 4.29 SB Parameter

 SH (Serial Number High) Command

<AT Command: AT Command Options> SH Command reads and returns the module serial number

high word.

AT Command: SH

Parameter Range: 0 – 0xFFFF [Read-only]

of bytes returned: 2

Related Command: SL (Serial Number Low)

 SL (Serial Number Low) Command

<AT Command: AT Command Options> SL Command reads and reports the module serial number

low word.

AT Command: SL

Parameter Range: 0 – 0xFFFF [Read-only]

of bytes returned: 2

Related Command: SH (Serial Number High)

 SM (Sleep Mode) Parameter

 - 243 -

<Non-AT Settable Parameter: Sleep Mode (Low Power)> SM Parameter is used to adjust Sleep

Mode settings. By default, Sleep Mode is disabled and the radio modem remains continually active.

SM Parameter allows the radio modem to run in a lower-power state and be configured in one of

eight settings.

Cyclic Sleep settings wake the radio modem after the amount of time designated by SM Command.

If the radio modem detects a wake-up initializer during the time it is awake, it will synchronize with

the transmitting radio modem and start receiving data after the wake-up initializer runs its duration.

Otherwise, it returns to Sleep Mode and continue to cycle in and out of sleep until the wake-up

initializer is detected. If a Cyclic Sleep setting is chosen, the ST, LH and HT parameters must also be

set as described in the “Sleep Mode” section of this manual.

Parameter Range: 0 - 8

of bytes returned: 1

Default Parameter Value: 0

Related Parameters: LH (Wake-up Initializer Timer), HT (Time before Wake-up Initializer), PW

(Pin Wake-up), ST (Time before Sleep)

Fig 4.30 SM Parameter

 - 244 -

 ST (Time before Sleep) Parameter

<Non-AT Settable Parameter: Sleep Mode (Low Power)> ST Parameter sets the period of time (in

tenths of seconds) in which the radio modem remains inactive before entering into Sleep Mode. For

example, if the ST Parameter is set to 0x64 (“100” decimal), the radio modem will enter into Sleep

Mode after 10 seconds of inactivity (no transmitting or receiving). This command can only be used if

either Cyclic Sleep or Serial Port Sleep Mode settings have been selected using SM (Sleep Mode)

Parameter.

Parameter Range: 0x10 – 0xFFFF [x 100 ms]

of bytes returned: 2

Default Parameter Value: 0x64 (“100” decimal)

Related Parameters: SM (Sleep Mode), LH (Wake-up Initializer Timer), HT (Time before Wake-

up Initializer)

 VR (Firmware Version) Command

<AT Command: AT Command Options> Reads and returns the currently loaded firmware version of

the XCite Radio Modem.

AT Command: VR

Parameter Range: 0 – 0xFFFF [Read-only]

of bytes returned: 2

 WR (Write) Command

 - 245 -

<AT Command: (Special)> WR Command writes all configurable parameters to non-volatile

memory. Using WR Command saves parameters to the radio modem’s persistent memory. (This

means that the parameters remain in the radio modem’s memory until explicitly overwritten by

future uses of WR Command.)

AT Command: WR

4.12 Advanced Networking and Security

4.12.1 Filtration Layers

The XCite Radio Modems utilize three layers of addressing to communicate between radio modems.

The network layers are depicted below. Only radio modems with the matching addresses are able to

communicate. The main layers of XCite Networking and Addressing are:

• Vendor Identification Number (ATID)

• Channel (ATHP)

• Destination Address (ATDT)

 - 246 -

Fig 4.31 Filtration Layers

Each network layer provides a separate layer of filtration. The Vendor Identification Number (VID)

provides the first layer of filtration through the ID (Modem ID) Parameter. If the incoming RF data

carries a matching VID number, the data continues through to the subsequent Channel and

Destination Address layers. The Destination Address is the last network layer and provides the most

granular form of filtration. If at any point during the incoming RF data flow the numbers in question

do not match, the data is discarded.

XCite Modules and RF Modems are built around a peer-to-peer protocol that inherently supports a

multidrop type network (similar to RS-485). In their default state, any XCite radio modem will

communicate with any other XCite radio modem in its default state.

 Vendor Identification Number (ATID)

The bottom half of the ID (Vendor Identification Number) Parameter range is user-settable. The

upper half of the range is factory-set and read-only. The value of the ID Command is called the

Vendor Identification Number (VID). A unique VID is available upon special request. The VID is

programmed to the XCite Module at the factory and is stored in the module’s permanent memory.

Only modules with matching VIDs can communicate with each other.

VID addressing ensures that radio modems ignore transmissions and receptions of XCite Radio

Modems having a different VID in the same vicinity. To request a unique VID, contact MaxStream

to obtain the VID Request Form.

 Channel (ATHP)

 - 247 -

Channels provide a network layer from which channels can be used for isolation. HP (Channel)

Parameter is used to define channel values.

Hopping Channel Mode: HP Parameter value range is 0 through 6

Single Frequency Channel Mode: HP range is 0 through 0x18 (decimal range: 0 – 24)

In “Hopping Channel Mode”, each channel utilizes a different pseudo-random hopping sequence to

navigate through shared hopping channels. In the event that two modules from different networks

collide on a channel, the two modules will jump to separate channels on the next hop. Multiple

module pairs can operate in the same vicinity with minimal interference from each other.

 Destination Address (ATDT) and Address Mask (ATMK)

XCite Destination Addresses and Masks provide the means to set up global or local addresses for

establishing module groups, subnets, etc. The Destination Address network layer provides for more

granular isolation of radio modems. The XCite Destination Addresses and Masks can be used to:

• Set up point-to-point and point-to-multipoint network configurations

• Provide greater flexibility in establishing module groups, subnets, etc.

Each radio modem in a network can be configured with a 16-bit Destination Address to establish

selective communications within a network. This address is set to one of 65535 values using DT

(Destination Address) Command. The default Destination Address is 0.

All radio modems with the same Destination Address can transmit and receive data among

themselves. Radio modems having different Destination Addresses still detect and listen to the data

(in order to maintain network synchronization); however, the data is discarded data rather than

passing on through the DO pin.

Packet-based Radio Modems

 - 248 -

XCite Radio Modems are packet based. This means all data shifted into one module is packetized

and sent out the antenna port. Because XCite modules use a peer-to-peer architecture, all modules on

the same channel (ATHP) will receive the packet and decide whether to pass it to the host or to

throw it away. Each transmitted packet contains information about the transmitting module.

Any module that receives a packet will check the address values and decide what to do with the

packet. The options are as follows:

• Receive the packet as a global packet

• Receive the packet as a local packet

• Discard the packet

Address Mask

The mask parameter can be used to allow a base module to receive data from a range of addresses. It

may also be used to configure "subnets" of modules that communicate in a group together.

See below for the Pseudo 'C' Code that qualifies the Destination Addresses and address masks.

The Pseudo Code uses the bit-wise "AND" operation, "&". This operation is performed bit by bit on

each of the 16 bits in the TXDT, RXDT and RXMK parameters.

Fig 4.32 Bit-wise AND Operation

For example: Hexadecimal: 0x3 & 0x9 = 0x1

 - 249 -

The Address Mask can be used as an additional method of facilitating communications between

modules. The Address Mask can be set to one of 65535 possible values using MK (Address Mask)

Command. The default value of the MK Parameter is 0xFFFF.

All transmitted data packets contain the Destination Address of the transmitting module. When a

transmitted packet is received by a module, the Destination Address of the transmitter (contained in

the packet) is logically “ANDed” (bitwise) with the Address Mask of the Receiver. If the resulting

value matches the Destination Address of the Receiver, or if it matches the Receiver Address Mask,

the packet is accepted. Otherwise, the packet is discarded.

Note: When performing this comparison, any “0” values in the Receiver Address Mask are treated as

irrelevant and are ignored.

 - 250 -

Chapter 5

CAR MODULE

The car module is installed in the vehicle. When the vehicle enters in the range of base, it receives

the interrogation message and it replies it with its data

5.1 Architecture

The basic architecture of car has following components

1. Microcontroller (89C52)

2. Max-232 IC

3. RF modem

4. Infrared Receiver

5.1.1 Microcontroller

The car module uses 89C52 microcontroller. The microcontroller contains the data of the vehicle in

which it is installed. The vehicle data consists of registration no., chassis no. , engine no., owners

name and make of the car.

5.1.2 Max-232 IC

This IC converts voltage levels to and from +5V and +12V. it is placed between microcontroller and

RF modem. Microcontroller operates at +5V whereas RF modem communicates through serial port

at +12V. So there is a need to convert the signal levels going through RF modem to microcontroller

and vice versa. Data coming through RF modem is converted from +12V to +5V. Similarly data

coming through microcontroller is converted from +5V to +12V.

 - 251 -

5.1.3 RF modem

The RF modem communicates with base via a wireless channel. It operates in ISM 900MHz band.

The modulation scheme used is Frequency Hopping Spread Spectrum. The specifications and

features of RF modem are given in chapter 4.

5.1.4 Infrared Receiver

The infrared receiver installed in the car module to detect the base. An infrared transmitter is

installed at the base. It has range of 10 feet. When the car is at a distance of 10 feet, the IR receiver

detects it and tells the car module that it is approaching barrier.

5.2 Working

The car module when enters in the range of the base, it receives an interrogation message. The car

module then replies with its data including registration no., chassis no. , engine no., owners name

and make of the car. The base receives this data and sends an authentication message to the car

module. The car receives this message and goes in the wait loop. When the car reaches the base, the

infrared receiver detects the infrared wave and then car module sends a notification message to base

to open the barrier.

 - 252 -

Fig 5.1 Circuit Diagram of Car Module

5.3 Circuit components

• AT89C52 Microcontroller

• Max-232

• 7404 hex converter

• RF modem

• Interface board

• Relay

• Voltage regulator

• Operational amplifier

• 11.0592 Mhz crystal

• 470 ohms

 - 253 -

• 47 kohms

• 100 kohms

• 100 ohms

• 5.6 kohms

• 2.2 uF

• 30 pF

• 10 uF

• 100 uF

• 100 nF

• C945 npn transistor

• LEDs

5.4 Flow chart of Car Module

 - 254 -

Fig 5.2 Flow Chart for Car Module

5.5 Code for the microcontroller installed in car module

/*--

Wireless Registration System for Vehicles; The Car module.

--*/

#include <atmel/at89x52.h> /* special function register declarations */

 /* for the intended 8051 derivative */

#include <stdio.h> /* prototype declarations for I/O functions */

 - 255 -

/*--

The main C function. Program execution starts

here.

--*/

 char A [12]; /* A character array that is used to receive the authentication msg */

char REG [12]="@OK#RLD 674$"; /* A character array which contains

the required authentication msg */

 sbit P10=P1^0;

 char atr;

 char check1; /* A character that is used to answer the interrogation of base */

 long int c;

 long int i; /* Variable for the FOR LOOP */

 unsigned int j; /* Variable for the FOR LOOP */

 unsigned int x;

 unsigned int y;

 int flag; /* Variable that ensures the reception of authentication */

 int port;

 - 256 -

 void main (void)

{

/*--

--*/

 SCON = 0x50; /* mode 1: 8-bit UART, enable receiver */

 TMOD |= 0x20; /* timer 1 mode 2: 8-Bit reload */

 TH1 = 0xf4; /* reload value 2400 baud */

 TR1 = 1; /* timer 1 run */

 TI = 1; /* TI: set TI to send first char of UART */

/*--

Note that an embedded program never exits (because

there is no operating system to return to). It

must loop and execute forever.

--*/

P0=0xFF;

P1=0xFF;

P2=0xFF;

P3=0xFF;

while(1)

 {

 - 257 -

 port=0;

 flag=0;

 while(flag==0)

 {

 P1=0xFF;

 while (1)

 {

 while (RI!=1);

 check1=SBUF;

 if (check1 == '%')

 {

 P1_1=0; /* Toggle P1.1 */

 break;

 }

 RI=0;

 }

 RI=0;

 printf ("*RLD 674,MEHRAN 2006,ALI JAVED,E171234,C432567;"); /* Sending the car

data */

 P1_2=0; /* Toggle P1.2 */

 for (c=0;c<=76800;c++)

 {

 atr=SBUF;

 if (atr == '@')

 {

 while (SBUF != '$')

 - 258 -

 {for (i=0; i<=11; i++)

 {

 while (RI!=1);

 A[i]=SBUF;

 RI=0;

 }

 }

 for (i=0; i<=11; i++)

 {if (A[i] == REG[i])

 {if (i==11)

 {c=76800;

 flag=1;

 P1_3=0; /* Toggle P1.3 */

 }

 }

 else

 {c=76800;

 break;}

 }

 }

 }

 }

 for (i=1; i<=360000; i++)

 {

 for (j=1; j<=60; j++)

 {

 - 259 -

 if (P10==0)

 {printf("&RLD 674;");

 P1_4=0; /* Toggle P1.4 */

 port=1;

 break;}

 }

 if (port == 1)

 {

 for (x=1; x<=60000; x++)

 {

 for (y=1; y<=120; y++)

 {}

 }

 break;

 }

 }

 }

}

 - 260 -

Chapter 6

BASE MODULE

The Base Module will be installed at the entry points in a campus or near the barriers in case of Toll

Plazas. The function of the base module will be to register the cars in its range, allow them to pass if

the cars are valid and trigger the alarms in case of invalid cars.

6.1 Architecture/Components

1. Base Station Computer

2. RF Modem (for details see Chapter 4)

3. Infrared Transmitters (2 in total)

4. Infrared Receiver and Decision Circuit

Fig 6.1 Block Diagram of Base Module

Note: We have done the programming of Base Station Computer in Visual Basic provided in the

software Visual Studio 2005.

 - 261 -

6.2 Working

The bas station computer is programmed to continuously send an interrogation over its range. In case

of any response to the interrogation message if the base computer receives any car data, it compares

the data with the pre-saved data in its database. If the car is allowed to pass, the base sends an

authentication message to the car module. The purpose of the authentication message is to counter

erroneous transmission of data. One of the two infrared transmitters will be installed at the entrance

in such a way that when the car reaches within 10 ft range of the barrier, it reminds the car module to

send its specific notification message. As the notification message is received the registered car will

be allowed to pass. The second infrared transmitter and the infrared receiver along with the decision

circuit can detect un-registered cars. (For further details on Infrared decision circuit refer to Chapter

No. 7)

6.3 Code for base station computer

Imports System.IO.Ports

Imports System.Threading

Public Class Form1

 Private serialObject As New SerialPort

 Private thread As Thread

 Dim fileStream As System.IO.FileStream

 Dim writer As System.IO.StreamWriter

 Dim reader As System.IO.StreamReader

 Dim dataRead As Boolean

 Dim readingThread As System.Threading.Thread

 - 262 -

 Dim buffer As String

 Dim ok As Boolean

 Dim charArray(0 To 25) As Char

 Public Declare Sub Out Lib "inpout32.dll" Alias "Out32" (ByVal PortAddress As

Short, ByVal Value As Short)

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 If Button1.Text.Equals("Start") Then

 serialObject.BaudRate = 2400

 serialObject.DataBits = 8

 serialObject.Parity = Parity.None

 serialObject.PortName = "COM1"

 serialObject.StopBits = StopBits.One

 PictureBox2.Image=

Bitmap.FromFile("C:\\CarPictures\\StartingPic.bmp")

 serialObject.DiscardNull = True

 serialObject.ReadBufferSize = 200

 serialObject.ReadTimeout = 3000

 Out(&H378S, 240)

 serialObject.Open()

 Try

 serialObject.ReadChar()

 - 263 -

 Catch ex As Exception

 End Try

 Timer1.Enabled = True

 Timer2.Enabled = True

 ok = True

 Timer2_Tick(vbNull, e)

 Button1.Text = "Stop"

 Else

 serialObject.Close()

 Timer1.Enabled = False

 Timer2.Enabled = False

 Button1.Text = "Start"

 End If

 End Sub

 Private Function process()

 Dim stream As System.IO.FileStream

 Dim reader As System.IO.StreamReader

 Dim data As String

 Timer2.Enabled = False

 If (buffer.StartsWith("&")) Then

 data = buffer.Substring(1, buffer.Length - 1)

 If (System.IO.File.Exists("C:\\CarsInRange\\" & data & ".txt")) Then

 Try

 - 264 -

 Try

 System.IO.File.Copy("C:\\CarsInRange\\" & data & ".txt",

"C:\\PassingCarsData\\" & data & ".txt", True)

 System.IO.File.Delete("C:\\CarsInRange\\" & data &

".txt")

 Catch ex As Exception

 MsgBox("Could not move" & ex.Message.ToString)

 End Try

 updateInRangeCars()

 currentlyPassing_txt.Text = data

 PictureBox1.Image = Bitmap.FromFile("C:\\CarPictures\\" &

data & ".jpg")

 Out(&H378S, 15)

 Catch ex As Exception

 MsgBox(ex.Message.ToString)

 End Try

 End If

 ElseIf (buffer.StartsWith("*")) Then

 Dim regNo As String

 Dim tempRead As String

 Dim i As Integer

 data = buffer.Substring(1, buffer.Length - 1)

 regNo = data.Substring(0, data.IndexOf(","))

 - 265 -

 stream = New System.IO.FileStream("C:\\AllCarsData\\" & regNo &

".txt", IO.FileMode.Open)

 reader = New System.IO.StreamReader(stream)

 tempRead = reader.ReadLine()

 If tempRead.ToLower().Equals(data.ToLower()) Then

 If System.IO.File.Exists("C:\\AllCarsData\\" & regNo & ".txt")

Then

 System.IO.File.Copy("C:\\AllCarsData\\" & regNo & ".txt",

"C:\\CarsInRange\\" & regNo & ".txt", True)

 tempRead = "@OK#" & regNo & "$"

 charArray = tempRead.ToCharArray()

 i = 0

 System.Threading.Thread.CurrentThread.Sleep(100)

 While Not charArray(i) = "$"

 serialObject.Write(charArray, i, 1)

 i = i + 1

 End While

 serialObject.Write(charArray, i, 1)

 End If

 End If

 reader.Close()

 stream.Close()

 updateInRangeCars()

 End If

 Timer2.Enabled = True

 - 266 -

 End Function

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Timer1.Tick

 ok = False

 Dim files As String()

 Dim i As Integer

 files = System.IO.Directory.GetFiles("C:\\CarsInRange")

 For i = 0 To files.Length - 1

 If (System.DateTime.Now.TimeOfDay.TotalMinutes -

System.IO.File.GetCreationTime(files(i)).TimeOfDay.TotalMinutes) > 4 Then

 System.IO.File.Delete(files(i))

 updateInRangeCars()

 End If

 Next

 ok = True

 End Sub

 Private Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Timer2.Tick

 If (ok) Then

 serialObject.Write("%")

 Out(&H378S, 240)

 Try

 buffer = serialObject.ReadTo(";")

 process()

 Catch ex As Exception

 End Try

 End If

 - 267 -

 End Sub

 Private Function updateInRangeCars()

 Dim files As String()

 Dim i As Integer

 files = System.IO.Directory.GetFiles("C:\CarsInRange")

 carsInRange_txt.Clear()

 For i = 0 To files.Length - 1

carsInRange_txt.AppendText(files(i).Substring(files(i).LastIndexOf("\") + 1,

files(i).LastIndexOf(".") - files(i).LastIndexOf("\")) & vbCrLf)

 Application.DoEvents()

 Next

 End Function

End Class

6.4 Graphic User Interface

 - 268 -

Fig 6.2 Graphical User Interface

6.5 Flowchart for base module

 - 269 -

Fig 6.3 Flow Chart of Base module

 - 270 -

CHAPTER 7

 INFRARED LINE CUTTER SYSTEM

7.1 BASIC OPERATION

This system detects the arrival of unregistered or illegal cars at the entrance of the base station. The

transmitter is continuously transmitting infrared waves. The receiver at the base is receiving these

waves and through amplifier and rectifier circuits it is fed to the delay which acts as a switch. It gives

output high at +5 V. the decision circuit attached with it checks if any car cuts infrared line. The

registered car would take less than ten seconds to cross the gate and pass by the infrared line. If

anything stays more than twelve seconds the decision circuit will detect some invalid or unregistered

car and an alarm will be rung.

7.2 Architecture

The system comprises of two modules:

1. Transmitter circuit

2. Receiver and Decision circuit

7.2.1 Transmitter Circuit:

The transmitter circuit comprises following main components:

• Oscillator

• Coupling Circuit

• Transmitter LED

The oscil

transmitte

7.2.2 Rec

This circu

llator genera

ed as an infr

 Fig 7.1

ceiver and D

uit comprise

Oscillator

ates a wave o

rared wave v

1 Transmitter

Decision Cir

es of followin

Cou
Ci

of 38 KHz. T

via transmitte

r Circuit (Bl

Fig 7.2

rcuit:

ng main com

upling
ircuit

This wave is

er LED.

lock Diagram

2 Circuit Dia

mponents:

Transm
LE

s fed to the

m)

agram

mitter
ED

coupling cirrcuit which i

- 271 -

is further

 - 272 -

• Photo-transistor Diode

• Operational amplifier

• Rectifier circuit

• Relay (Switch)

• Microcontroller (89c52)

• Alarm

The photo transistor diode receives the infrared waves from the transmitter circuit (LOS

communication). This signal is amplified through an operational amplifier. Then this signal is

converted into a DC signal by the rectifier circuit. After this conversion the DC signal output is fed

to the relay (switch). The relay acts as switch and whenever the infrared line is cut, it gives low

output to the decision circuit. Decision circuit consists of a microcontroller and an alarm. The

microcontroller is programmed in such a way that it detects any obstacle in the path of LOS infrared

link and if the obstacle does not clear the path within twelve seconds, it rings an alarm and security is

being alerted

Receiver
LED

Amplifier

Rectifier Relay
(Switch)

89C52
MICROCONTROLLER

ALARM

LED

Fig 7.3 Reeceiver and D

Fig 7.4

Decision Cir

4 Circuit Dia

rcuit (Block

agram

Diagram)

- 273 -

 - 274 -

APPENDIX A

Maxim 232 Description

General Description

The MAX220–MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and

V.28/V.24 communications interfaces, particularly applications where ±12V is not available.

These parts are especially useful in battery-powered systems, since their low-power shutdown mode

reduces power dissipation to less than 5µW. The MAX225,

MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are

recommended for applications where printed circuit board space is critical.

Applications

 Portable Computers

 Low-Power Modems

 Interface Translation

 - 275 -

 Battery-Powered RS-232 Systems

 Multidrop RS-232 Networks

ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243

Supply Voltage (VCC) ...-0.3V to +6V

V+ (Note 1) ..(VCC - 0.3V) to +14V

V- (Note 1) ...+0.3V to +14V

Input Voltages

TIN..-0.3V to (VCC - 0.3V)

RIN (Except MAX220) ..±30V

RIN (MAX220)...±25V

TOUT (Except MAX220) (Note 2)±15V

TOUT (MAX220)...±13.2V

Output Voltages

TOUT...±15V

ROUT...-0.3V to (VCC + 0.3V)

Driver/Receiver Output Short Circuited to GND.........Continuous

Continuous Power Dissipation (TA = +70°C)

16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)..842mW

 - 276 -

18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)..889mW

20-Pin Plastic DIP (derate 8.00mW/°C above +70°C) ..440mW

16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ...696mW

16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW

18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW

20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW

20-Pin SSOP (derate 8.00mW/°C above +70°C)640mW

16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW

18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW

Operating Temperature Ranges

MAX2_ _AC_ _, MAX2_ _C_ _.............................0°C to +70°C

MAX2_ _AE_ _, MAX2_ _E_ _-40°C to +85°C

MAX2_ _AM_ _, MAX2_ _M_ _.......................-55°C to +125°C

Storage Temperature Range-65°C to +160°C

Lead Temperature (soldering, 10s) (Note 3)+300°C

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243

(VCC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, TA = TMIN to

TMAX‚ unless otherwise noted.)

 - 277 -

 - 278 -

 - 279 -

RS 232 Drivers

The typical driver output voltage swing is ±8V when loaded with a nominal 5k. RS-232 receiver and

VCC = +5V. Output swing is guaranteed to meet the EIA/TIA-

232E and V.28 specification, which calls for ±5V minimum driver output levels under worst-case

conditions.

These include a minimum 3k. load, VCC = +4.5V, and maximum operating temperature. Unloaded

driver output voltage ranges from (V+ -1.3V) to (V- +0.5V).

Input thresholds are both TTL and CMOS compatible. The inputs of unused drivers can be left

unconnected since 400k. input pull-up resistors to VCC are built in

(except for the MAX220). The pull-up resistors force the outputs of unused drivers low because all

drivers invert.

 - 280 -

The internal input pull-up resistors typically source 12µA, except in shutdown mode where the pull-

ups are disabled. Driver outputs turn off and enter a high-impedance

state—where leakage current is typically microamperes (maximum 25µA)—when in shutdown

mode, in three-state mode, or when device power is removed. Outputs can be driven to ±15V. The

power supply current typically drops to 8µA in shutdown mode.

The MAX220 does not have pull-up resistors to force the outputs of the unused drivers low. Connect

unused inputs to GND or VCC.

The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235,

MAX236, MAX240, and MAX241 have both a receiver three-state control

line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and

receiver three state control on the receiver outputs.

The receiver TTL/CMOS outputs are in a high-impedance, three-state mode whenever the three-state

enable line is high (for the MAX225/MAX235/MAX236/MAX239–

MAX241), and are also high-impedance whenever the shutdown control line is high.

When in low-power shutdown mode, the driver outputs are turned off and their leakage current is

less than 1µA with the driver output pulled to ground. The driver output leakage remains less than

1µA, even if the transmitter output is back driven between 0V and (VCC + 6V). Below -0.5V, the

transmitter is diode clamped to ground with 1k. series impedance. The transmitter is also zener

clamped to approximately VCC + 6V, with a series impedance of 1k.. The driver output slew rate is

limited to less than 30V/µs as required by the EIA/TIA-232E and V.28 specifications. Typical slew

rates are 24V/µs unloaded and 10V/µs loaded with 3. and 2500pF.

RS-232 Receivers

 - 281 -

EIA/TIA-232E and V.28 specifications define a voltage level greater than 3V as a logic 0, so all

receivers invert. Input thresholds are set at 0.8V and 2.4V, so receivers

respond to TTL level inputs as well as EIA/TIA-232E and V.28 levels. The receiver inputs withstand

an input over voltage up to ±25V and provide input terminating resistors with nominal 5k. values. The

receivers implement Type 1 interpretation of the fault conditions of V.28 and EIA/TIA-232E. The

receiver input hysteresis is typically 0.5V with a guaranteed minimum of 0.2V. This produces clear

output transitions with slow-moving input signals, even with moderate amounts of noise and ringing.

The receiver propagation delay is typically 600ns and is independent of input swing direction.

 - 282 -

Fig A1 MAX 220/MAX 232/ Pin figuration and typical operating circuit .

 - 283 -

APPENDIX B

Voltage Regulator LM 7805

General Description

The LM78XX series of three terminal positive regulators are available in the TO-220 package and

with several fixed output voltages, making them useful in a wide range of applications.

Each type employs internal current limiting, thermal shut down and safe operating area protection,

making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A

output current. Although designed primarily as fixed voltage regulators, these devices can be used

with external components to obtain adjustable voltages and currents.

Fig B1 Application circuit

 - 284 -

Features

 Output Current up to 1A

 Output Voltages of 5, 6, 8, 9, 12, 15, 18, 24 Volts

 Thermal Overload Protection

 Short Circuit Protection

 Output Transistor Safe Operating Area Protection

 - 285 -

APPENDIX C

UA 741 GENERAL PURPOSE OP AMP DATA SHEET

UA741

GENERAL PURPOSE
SINGLE OPERATIONAL AMPLIFIER

 LARGE INPUT VOLTAGE RANGE

 NO LATCH-UP

 HIGH GAIN

 SHORT-CIRCUIT PROTECTION

 NO FREQUENCY COMPENSATION

 REQUIRED

 SAME PIN CONFIGURATION AS THE UA709

DESCRIPTION

N
DIP8

(Plastic Package)

The UA741 is a high performance monolithic oper-
ational amplifier constructed on a single silicon
chip. It is intented for a wide range of analog appli-
cations.

 Summing amplifier

 Voltage follower

 Integrator

 Active filter

D
SO8

(Plastic Micropackage)

ORDER CODE

Part Number Temperature Range

Package

N D

 Function generator

The high gain and wide range of operating voltag-
es provide superior performances in integrator,
summing amplifier and general feedback applica-
tions. The internal compensation network (6dB/
octave) insures stability in closed loop circuits.

PIN CONNECTIONS (top view)

UA741C 0°C, +70°C • •
UA741I -40°C, +105°C • •
UA741M -55°C, +125°C • •
Example : UA741CN

N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)

1 - Offset null 1

8 2 - Inverting input
3 - Non-inverting input

7 4 - VCC
-

5 - Offset null 2
6 - Output

6 7 - V +
CC

+

 286

8 - N.C.
5

 287

UA741

SCHEMATIC DIAGRAM

Non-Inverting input

Vcc+

Q8 Q9 Q12

Q13

Q1 Q2

Inverting

input

C1

30pF

R7
4.5kΩ

Q18

Q15

Q14

Q3 Q4

R5

39kΩ

R8
7.5kΩ

R9

25Ω

Output

Q7

Q5 Q6 Q10 Q11 Q22

Q16

Q17

R10
50Ω

Q20

R1
1kΩ

R3
50kΩ

Offset
null 1

R2

1kΩ

R4

5kΩ

R12

50kΩ

R11
50Ω

Offset
null 2

Vcc-

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter UA741M UA741I UA741C Unit
VCC Supply voltage ±22 V

Vid Differential Input Voltage ±30 V

Vi Input Voltage ±15 V
Ptot Power Dissipation 1)

500 mW

Output Short-circuit Duration Infinite
Toper Operating Free-air Temperature Range -55 to +125 -40 to +105 0 to +70 °C
Tstg Storage Temperature Range -65 to +150 °C

1. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.

 288

UA741

ELECTRICAL CHARACTERISTICS
VCC = ±15V, Tamb = +25°C (unless otherwise specified)

Symbol Parameter Min. Typ. Max. Unit

Vio

Iio

Iib

Input Offset Voltage (Rs ≤ 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax

Input Offset Current

Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax

Input Bias Current

Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax

mV

1 5
6

nA

2 30
70

nA

10 100
200

Avd

SVR

ICC

Vicm

CMR

Large Signal Voltage Gain (Vo = ±10V, RL = 2kΩ)

Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax

Supply Voltage Rejection Ratio (Rs ≤ 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax

Supply Current, no load

Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax

Input Common Mode Voltage Range

Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax

Common Mode Rejection Ratio (RS ≤ 10kΩ)
Tamb = +25°C
Tmin ≤ Tamb ≤ Tmax

50
25

77
77

±12
±12

70
70

200

90

1.7 2.8

3.3

90

V/mV

dB

mA

V

dB

IOS Output short Circuit Current 10 25 40 mA

±Vopp

Output Voltage Swing

Tamb = +25°C RL = 10kΩ
RL = 2kΩ

Tmin ≤ Tamb ≤ Tmax RL = 10kΩ
RL = 2kΩ

Slew Rate

12 14
10 13
12
10

V

V/µs SR Vi = ±10V, RL = 2kΩ, CL = 100pF, unity Gain 0.25 0.5

tr
Rise Time µs

Vi = ±20mV, RL = 2kΩ, CL = 100pF, unity Gain 0.3

Kov
Overshoot %

Vi = 20mV, RL = 2kΩ, CL = 100pF, unity Gain 5
Ri Input Resistance 0.3 2 MΩ

GBP

THD

Gain Bandwith Product

Vi = 10mV, RL = 2kΩ, CL = 100pF, f =100kHz 0.7 1

Total Harmonic Distortion

f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF,Tamb = +25°C 0.06

MHz

%

nV

en
Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω 23

Hz

∅m Phase Margin 50 Degrees

 - 289 -

UA741

PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP

Dim.

Millimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065
b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430
E 7.95 9.75 0.313 0.384
e 2.54 0.100

e3 7.62 0.300
e4 7.62 0.300
F 6.6 0260
i 5.08 0.200
L 3.18 3.81 0.125 0.150
Z 1.52 0.060

 290

UA741

PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)

L
c1

sb

e3 E

D
M

8 5

1 4

Dim.

Millimeters Inches

Min. Typ. Max. Min. Typ. Max.

A 1.75 0.069
a1 0.1 0.25 0.004 0.010
a2 1.65 0.065
a3 0.65 0.85 0.026 0.033
b 0.35 0.48 0.014 0.019
b1 0.19 0.25 0.007 0.010
C 0.25 0.5 0.010 0.020
c1 45° (typ.)
D 4.8 5.0 0.189 0.197
E 5.8 6.2 0.228 0.244
e 1.27 0.050

e3 3.81 0.150
F 3.8 4.0 0.150 0.157
L 0.4 1.27 0.016 0.050
M 0.6 0.024
S 8° (max.)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its
use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

© http://www.st.com

HEX INVERTER IC SN 74LS04 DATA SHEET

APPENDIX D

Code for base station computer

Imports System.IO.Ports

Imports System.Threading

Public Class Form1

 Private serialObject As New SerialPort

 Private thread As Thread

 Dim fileStream As System.IO.FileStream

 Dim writer As System.IO.StreamWriter

 Dim reader As System.IO.StreamReader

 Dim dataRead As Boolean

 Dim readingThread As System.Threading.Thread

 Dim buffer As String

 Dim ok As Boolean

 Dim charArray(0 To 25) As Char

 Public Declare Sub Out Lib "inpout32.dll" Alias "Out32" (ByVal

PortAddress As Short, ByVal Value As Short)

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 If Button1.Text.Equals("Start") Then

 serialObject.BaudRate = 2400

 serialObject.DataBits = 8

 ccxcii

 serialObject.Parity = Parity.None

 serialObject.PortName = "COM1"

 serialObject.StopBits = StopBits.One

 PictureBox2.Image=

Bitmap.FromFile("C:\\CarPictures\\StartingPic.bmp")

 serialObject.DiscardNull = True

 serialObject.ReadBufferSize = 200

 serialObject.ReadTimeout = 3000

 Out(&H378S, 240)

 serialObject.Open()

 Try

 serialObject.ReadChar()

 Catch ex As Exception

 End Try

 Timer1.Enabled = True

 Timer2.Enabled = True

 ok = True

 Timer2_Tick(vbNull, e)

 Button1.Text = "Stop"

 Else

 serialObject.Close()

 Timer1.Enabled = False

 Timer2.Enabled = False

 Button1.Text = "Start"

 End If

 End Sub

 Private Function process()

 Dim stream As System.IO.FileStream

 Dim reader As System.IO.StreamReader

 Dim data As String

 Timer2.Enabled = False

 If (buffer.StartsWith("&")) Then

 ccxciii

 data = buffer.Substring(1, buffer.Length - 1)

 If (System.IO.File.Exists("C:\\CarsInRange\\" & data &

".txt")) Then

 Try

 Try

 System.IO.File.Copy("C:\\CarsInRange\\" & data

& ".txt", "C:\\PassingCarsData\\" & data & ".txt", True)

 System.IO.File.Delete("C:\\CarsInRange\\" &

data & ".txt")

 Catch ex As Exception

 MsgBox("Could not move" & ex.Message.ToString)

 End Try

 updateInRangeCars()

 currentlyPassing_txt.Text = data

 PictureBox1.Image =

Bitmap.FromFile("C:\\CarPictures\\" & data & ".jpg")

 Out(&H378S, 15)

 Catch ex As Exception

 MsgBox(ex.Message.ToString)

 End Try

 End If

 ElseIf (buffer.StartsWith("*")) Then

 Dim regNo As String

 Dim tempRead As String

 Dim i As Integer

 data = buffer.Substring(1, buffer.Length - 1)

 regNo = data.Substring(0, data.IndexOf(","))

 stream = New System.IO.FileStream("C:\\AllCarsData\\" &

regNo & ".txt", IO.FileMode.Open)

 reader = New System.IO.StreamReader(stream)

 tempRead = reader.ReadLine()

 If tempRead.ToLower().Equals(data.ToLower()) Then

 ccxciv

 If System.IO.File.Exists("C:\\AllCarsData\\" & regNo &

".txt") Then

 System.IO.File.Copy("C:\\AllCarsData\\" & regNo &

".txt", "C:\\CarsInRange\\" & regNo & ".txt", True)

 tempRead = "@OK#" & regNo & "$"

 charArray = tempRead.ToCharArray()

 i = 0

 System.Threading.Thread.CurrentThread.Sleep(100)

 While Not charArray(i) = "$"

 serialObject.Write(charArray, i, 1)

 i = i + 1

 End While

 serialObject.Write(charArray, i, 1)

 End If

 End If

 reader.Close()

 stream.Close()

 updateInRangeCars()

 End If

 Timer2.Enabled = True

 End Function

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Timer1.Tick

 ok = False

 Dim files As String()

 Dim i As Integer

 files = System.IO.Directory.GetFiles("C:\\CarsInRange")

 For i = 0 To files.Length - 1

 If (System.DateTime.Now.TimeOfDay.TotalMinutes -

System.IO.File.GetCreationTime(files(i)).TimeOfDay.TotalMinutes) > 4

Then

 System.IO.File.Delete(files(i))

 updateInRangeCars()

 ccxcv

 End If

 Next

 ok = True

 End Sub

 Private Sub Timer2_Tick(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Timer2.Tick

 If (ok) Then

 serialObject.Write("%")

 Out(&H378S, 240)

 Try

 buffer = serialObject.ReadTo(";")

 process()

 Catch ex As Exception

 End Try

 End If

 End Sub

 Private Function updateInRangeCars()

 Dim files As String()

 Dim i As Integer

 files = System.IO.Directory.GetFiles("C:\CarsInRange")

 carsInRange_txt.Clear()

 For i = 0 To files.Length - 1

carsInRange_txt.AppendText(files(i).Substring(files(i).LastIndexOf("\")

+ 1, files(i).LastIndexOf(".") - files(i).LastIndexOf("\")) & vbCrLf)

 Application.DoEvents()

 Next

 End Function

End Class

 ccxcvi

Code for the microcontroller installed in car module

/*--

Wireless Registration System for Vehicles; The Car module.

--*/

#include <atmel/at89x52.h> /* special function register declarations */

 /* for the intended 8051 derivative */

#include <stdio.h> /* prototype declarations for I/O functions */

/*--

The main C function. Program execution starts

here.

--*/

 char A [12]; /* A character array that is used to receive the authentication msg */

char REG [12]="@OK#RLD 674$"; /* A character array which contains

the required authentication msg */

 sbit P10=P1^0;

 char atr;

 char check1; /* A character that is used to answer the interrogation of base */

 long int c;

 long int i; /* Variable for the FOR LOOP */

 unsigned int j; /* Variable for the FOR LOOP */

 ccxcvii

 unsigned int x;

 unsigned int y;

 int flag; /* Variable that ensures the reception of authentication */

 int port;

 void main (void)

{

/*--

--*/

 SCON = 0x50; /* mode 1: 8-bit UART, enable receiver */

 TMOD |= 0x20; /* timer 1 mode 2: 8-Bit reload */

 TH1 = 0xf4; /* reload value 2400 baud */

 TR1 = 1; /* timer 1 run */

 TI = 1; /* TI: set TI to send first char of UART */

/*--

Note that an embedded program never exits (because

there is no operating system to return to). It

must loop and execute forever.

--*/

P0=0xFF;

P1=0xFF;

P2=0xFF;

P3=0xFF;

while(1)

 {

 ccxcviii

 port=0;

 flag=0;

 while(flag==0)

 {

 P1=0xFF;

 while (1)

 {

 while (RI!=1);

 check1=SBUF;

 if (check1 == '%')

 {

 P1_1=0; /* Toggle P1.1 */

 break;

 }

 RI=0;

 }

 RI=0;

 printf ("*RLD 674,MEHRAN 2006,ALI JAVED,E171234,C432567;"); /*

Sending the car data */

 P1_2=0; /* Toggle P1.2 */

 for (c=0;c<=76800;c++)

 {

 atr=SBUF;

 if (atr == '@')

 {

 while (SBUF != '$')

 {for (i=0; i<=11; i++)

 {

 while (RI!=1);

 A[i]=SBUF;

 RI=0;

 }

 ccxcix

 }

 for (i=0; i<=11; i++)

 {if (A[i] == REG[i])

 {if (i==11)

 {c=76800;

 flag=1;

 P1_3=0; /* Toggle P1.3 */

 }

 }

 else

 {c=76800;

 break;}

 }

 }

 }

 }

 for (i=1; i<=360000; i++)

 {

 for (j=1; j<=60; j++)

 {

 if (P10==0)

 {printf("&RLD 674;");

 P1_4=0; /* Toggle P1.4 */

 port=1;

 break;}

 }

 if (port == 1)

 {

 for (x=1; x<=60000; x++)

 {

 for (y=1; y<=120; y++)

 {}

 }

 break;

 ccc

 }

 }

 }

Glossary

EM Electro Magnetic

RF Radio Frequency

FM Frequency Modulation

UART Universal Asynchronous Receiver Transmitter

EIA Electronics Industries Associations

TIA Telecommunication Industries Associations

PCI Peripheral Control Interface

RS Recommended Standard

DTE Data Terminal Equipment

DCE Data Communication Equipment

RTS Request To Send

CTS Cleared To Send

FIFO First In First Out

IR Infra red

TTL Transistor - Transistor Logic

DC Direct Current

 ccci

REFERENCES

Websites

1. http://ece-www.clorado.edu/~ecen4618/lab4.pdf
2. http://www.maxstream.net/
3. http://www. Linuxdocs.org/HOWTOs/Serail-HOWTO-3.html
4. http://www.see.ed.ac.uk/~gaa/DigilabNotes/Digilab/components/node13.html
5. http://www.rs485.com/rs485spec.html
6. http://www.interq.or.jp/japan/se-inoue/e_ic.html
7. http://kele.com/Tech/Signal/SerialPt.html
8. http://searchnetworking.techtarget.com/sDefination.html
9. http://www.cnes.fr.cnesdeu/sommaire/passion/campagne/national/outils/xr221

1.pdf
10. http://www.jaycar.com.au/images_uploaded/R2206V1.PDF
11. http://www.geo.mtu.edu/rs/back/spectrum.html
12. http://www.purchon.com/physics/electormagnatic.html
13. http://imager.gsfc.nasa.gov/ems/waves2.html
14. http://www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMspec2.html
15. http://.users.muohio.edu/grimlejm/physics_of_Wireless.html
16. http://www.casde.unl.edu/vn/tutorial.emag.lgspec2.html

BOOKS

1. R.M.Marston. 110 integrated circuits projects for home constructor. Printed in
England by Billings & Sons limited, Guildford, London and Worcester, pp71-85.

2. Lloyd Temes and Mitchel E. Schultz. Electronic communication, 2nd edition

McGraw Hill, pp 52-55.

3. Scott Meckenzie 8051 micro controller.

4. Mazidi 8051 micro controller.

