
TARGET TRACKING THROUGH
IMAGE PROCESSING

Submitted by

CAPT ZAHEER HAIDER TE-36
CAPT HAFEEZ ULLAH TE-36
CAPT AFAQ ALI TE-36
LT NAVEED IMTIAZ TE-36
LT NADEEM SAEED TE-36

Supervised by
LT COL TANVEER GOHAR

National University Of Sciences and Technology
Department of Electrical Engineering

Military College of Signals
RAWALPINDI

2000-2003

A project report submitted to the National University of Sciences and

Technology Rawalpindi, in partial fulfillment of the requirements for the
award of the degree of Bachelor of Electrical Engineering (TeleCom)

In the name of Allah,
Most Gracious,
Most Merciful

National University of Sciences and Technology

Rawalpindi

Final Approval

This is to certify that we have examined the report submitted by capt Zaheer
Haider, Capt Hafeez Ullah, Capt Afaq Ali, Lt Naveed Imtiaz and Lt Nadeem
Saeed in our judgment it is of sufficient standard to warrant its acceptance by
theNational University of Sciences and Technology Rawalpindi, for the award of
the degree of Bachelor of Electrical Engineering (TeleCom).

Committee:

Dr Nauman Jafri ___________________________

Wng Cdr Akhlaq Ali ___________________________

Lec Irtiza ___________________________

 Project Supervisor
Lt Col Tanveer Gohar __________________________

Project Brief

Project Title Target Tracking through Image Processing

Objective: Providing a working prototype of a locomotive that can see

its target through Web Camera and can hit its target

Submitted by: CAPT ZAHEER HAIDER TE-36

CAPT HAFEEZ ULLAH TE-36
CAPT AFAQ ALI TE-36
LT NAVEED IMTIAZ TE-36
LT NADEEM SAEED TE-36

Supervised by: Lt Col Tanveer Gohar

Duration: Dec to April 2003

Operating System: Microsoft Windows 98/NT/2000/XP

Hardware: Intel Celeron 500MHz

 RAM 192MB

CONTENTS AT A GLANCE

 Chapter 1: Introduction ... Error! Bookmark not defined.

Part I Image Processing Module

 Chapter 2: Image Segmentation .. 7
 Chapter 3:Objects Recovery ... 19
 Chater 4: Object Recognition and Real World Coordinates Estimation 30
 Appendices .. 33

Part II Locomotive Control Module

 Chapter 5: Introduction .. 51
 Chapter 6: Mathematical Modelling .. 55
 Chapter 7: Circuit Designing.. 63
 Chapter 8: Object Oriented Design .. 69
 Chapter 9: System Calibration ... 73
 Chapter 10: Implementation ... 76
 Appendices .. 79

Table of Contents
1 Chapter 1: Introduction .. 2

1.1 Goals and Objectives ... Error! Bookmark not defined.
1.2 System Statement of Scope .. 2
 1.2.1 General Requirements .. 2
1.3 Project Class .. Error! Bookmark not defined.
1.4 System Context .. Error! Bookmark not defined.
1.5 Mjor Contstraints ... Error! Bookmark not defined.

Part I Image Processing Module

The System Defined .. Error! Bookmark not defined.
Problem Statement .. 6

Chapter 2: Image Segmentation ... 8

2.1 Color Fundamentals .. 8
2.1.1 Image Based on Color Lookup Tables ... 9
2.1.2 Color Spaces ... 10
2.1.3 Uniform Color Space .. 10
2.1.4 RGB Color Model .. 11
2.1.5 HSV Color Model ... 13
2.1.6 Some Interesting Things to Notice ... 14
2.1.7 Why Do We Need to Convert Color Space .. 15

2.2 Operations Performed for Image Segmentation ... 15
2.2.1 Input/Output of Segmentation .. 15
2.2.2 RGB to HSV Color Space Conversion ... 16
2.2.3 Algorithm for Color Based Segmentation .. 17

Chapter 3:Objects Recovery ... 20
3.1 Object Recovery Using Connected Component ... 20
3.2 Binary Image Operations (An Overview) ... 20

3.2.1 Clean Operatin .. 22
3.2.2 Dilation and Erosion ... 23
3.2.3 Structuring Element Applied for Erosion ... 25
3.2.4 Structuring Element Applied for Dilation .. 25

3.3 Perimeter Determination ... 26
3.3.1 4- and 8-Connected Neighborhoods ... 26
3.3.2 Algorithm for Perimeter Determination ... 28

Chater 4: Object Recognition and Real World Coordinates Estimation 30
4.1 Object Recognition .. 31
4.2 Input/Output of Object Recognition Phase ... 31
4.3 Estimation Real World Coordinates of Target .. 31

Appendix A Implementation Notes ... 33
Appendix B The Code ... 34
Appendix C Recommendation ... 46
Appendix D References ... 47

 Part III Locomotive Control Module

Chapter 5: Introduction ... 51
5.1 The System Defined ... 52
5.2 The Problem Statement .. 52
 5.2.1 Problem Analysis ... 54

Chapter 6: Mathematical Modelling ... 55
6.1 Abstract .. 56
6.2 The Problem .. 56
6.3 Mathematical Model ... 57

Chapter 7: Circuit Designing .. 63
7.1 The Circuit .. 64
7.2 Radio Control ... 66

Chapter 8: Object Oriented Design ... 69
8.1 Use Case Model .. 70
8.2 Class Diagram ... 71
8.3 CSDevice Object State Chart ... 72

Chapter 9: System Calibration .. 73
9.1 Calibration .. 74
9.2 Linear Velocity Calibration .. 74
9.3 Turn Radius Calibration ... 75
9.4 Angular Velocity Calibration .. 75

Chapter 10: Implementation ... 76
10.1 Implementation Notes ... 77
10.2 Testing and Deployment ... 77

Appendices
Appendix A References .. 79
Appendix B All Supported Configuration ... 80

List of Figures

Figure 1 RGB Color Model .. 12
Figure 2 HSV Color Model .. 14
Figure 3 Sample Image for Image Processing Operation ... 16
Figure 4 Image after Coversion from RGB to HSV Color Model .. 17
Figure 5 Color Based Segmentation ... 18
Figure 6 Color Image Converted to Binary Image ... 21
Figure 7 Cleaned Operation Performed on Binary Image .. 22
Figure 8 : A Neighbourhood that will be represented as a structuring element ... 24
Figure 9 Erosion Operation Performed on Binary Image ... 25
Figure 10 Dilation Operation Performed on Binary Image .. 26
Figure 11 8-Connected Neighbourhood ... 27
Figure 12 4-Connected Neighbourhood ... 27
Figure 13 Objects Perimeter ... 28
Figure 14 Target Locked after Object Recognition .. 31
Figure 15 Real World Coordinates Estimation ... 32
Figure 16 Logical Relationship Between Master Controller and The Locomotion Control System 52
Figure 17 The representation of a scenario when Locomotive L seeks point Q from P 53
Figure 18 The FSA diagram of the locomotive controller .. 56
Figure 19. ... 57
Figure 20. ... 58
Figure 21 Basic Model Diagram. ... 60

Figure 22 .. 61
Figure 23 Schematic representation of the interfacing circuit .. 64
Figure 24 The Radio Signal .. 67
Figure 25 The Toy Car ... 68
Figure 26 It is the use-case view of the locomotion control module .. 70
Figure 27 Class Diagram .. 71
Figure 28 State Chart for Class CSDevice Object .. 72
 Figure 29 The deployment diagram when program and the SYS file of driver are deployed on a NT class

protected mode OS ... 78

List of Tables

Table 1 RGB Color Map Coordinates .. 13

Table 2 …………………………...……………………………………………………………………… 21

Table 3 Real World Coordiante Estimation .. 32

Chapter 1 : INTRODUCTION

1 Introduction
The product is the core artefact of the software development process. In this

section we will demonstrate the product. It includes product features, constraints,

and operational domain.

1.1 Goals And Objectives

The main idea is to develop a control system, which is fault tolerant and self-

healing. It seeks a target, one that it has recognized. It is based on the

techniques for image processing.

The main objective is to develop a control-system that takes input from digital

camera and then recognizes the object as its target and instructs to hit it by the

car attached to it. The product is defined as:

“The end product is a software-intensive control system which can be viewed as

an imaging based intrusion detector.”

1.2 System Statement of Scope

1.2.1 General Requirements

The main requirement is to develop a software system that seeks a moving

target. It is guided through a CCD camera that captures the image from camera.

Then the controlling computer (Control Station) uses image recognition

techniques to identify the target and then instructs the remotely controlled car

(the locomotive) to hit that target.

.

.

1.3 Project Class

The project falls into the category of Concept Development Projects.

1.4 System Context

Multiple processes are under real-time (Kernel Mode) execution. So, concurrency

must be built into system such that the overall response must be real-time or as

close to it as possible.

1.5 Mjor Contstraints

Time

The development team has completed the project in 5 months. It includes total

time for developing and deploying the system.

Part I: Image Processing Module

The System Defined

The image processing pipeline is showing all the operations performed for

locating the object of interest in the real world.

Objects Recovery

Image Acquisition

Image Segmentation

Real World Coordinate
Estimation

Object Recognition

Locomotive Control System

Problem Statement

The basic aim is to recognize the object of interest (i.e. target) and then

estimating its real world coordinates. Estimated real world coordinates serves as

an input to locomotive used in order to hit the recognized object.

 Chapter 2: Image Segmentation

2.0 Image Segmentation

There are different methods for image segmentation in order to extract

different objects. The extracted objects are further analyzed to get the desired

results. In our domain the results might be extracting different objects those have

some specific colour. Once the colour based extracted objects has been located,

then they are further processed. The image is acquired in BMP format which

uses the RGB colour space to represent the colour of each pixel. Then the colour

space is converted to HSV colour model for colour based segmentation. The

reasons for converting the colour space from RGB to HSV are described after

understanding the basic concepts of Colours.

2.1 Color Fundamentals

 Although human colour acquisition as a psychological phenomenon is not

yet fully understood we know that it is based on the nature of the reflected light

coming from environment objects.

When dealing with achromatic light the intensity is the only perceivable attribute,

resulting in Gray level images.

Chromatic light wavelength spans the EM energy spectrum from roughly 400 to

700 nm. The quality of a chromatic light source can be expressed in terms of:

- Radiance, measured in watts (W) related to the energetic power of the light,

- Luminance, measured in lumens (lm) related to the perceived energy of the

light and

- Brightness, a more ambiguous notion, impossible to measure.

 A colour is defined from human eye capabilities. If you consider a normal

human being, his vision of a colour will be the same as for another normal being.

Of course, to show any collared information, you need a definition (or a model, to

use the right word). There are two kinds of colour definitions:

 - The device-dependent: These definitions are more or less accurate.

It means that when you display on such a device one color with the particular

definition, you get a rendering but when you display on an other device the

same colour, you get another rendering (more or less dramatically different).

 - The device-independent: This means that the model is accurate and you

must adjust your output device to get the same answer. This model is based

on some institute works (curves of colours and associated values). From an

absolute point of view, it means from a human visual sensation, a colour

could be defined by:

 - Hue: The perception of the nuance. It is the perception of what you see in a

rainbow.

 - Colourfulness: The perception of saturation, vividness, purity of a colour. You

can go from a sky blue to a deep blue by changing this component.

 - Luminance: The perception of an area to exhibit more or less light. It is also

called brightness. You can blurry or enhance an image by modifying this

component.

 As you see above, I describe a colour with three parameters. All the students

of math are quickly going to say that the easier representation of this stuff is a

space, a tri-dimensional space with the previous presentation. And I totally agree

with that. That is why we often call 'colour space' a particular model of colours.

2.1.1 Image Based on Color Lookup Tables

 All of the pictures don't use the full colour space. That's why we often use

another scheme to improve the encoding of the picture (especially to get a file

which takes less space). To do so, you have two possibilities:

 - You reduce the bits/sample. It means you use fewer bits for each component

that describe the colour. The colours are described as direct colours, it

means that all the pixels (or vectors, for vectorial descriptions) are directly

stored with the full components. For example, with a RGB (see item 5.1 to

know what RGB is) bitmapped image with a width of 5 pixels and a height of

8 pixels, you have:

(R11, G11, B11) (R12, G12, B12) (R13, G13, B13) (R14, G14, B14) (R15, G15,

B15)

(R21, G21, B21) (R22, G22, B22) (R23, G23, B23) (R24, G24, B24) (R25, G25,

B25)

(R31, G31, B31) (R32, G32, B32) (R33, G33, B33) (R34, G34, B34) (R35, G35,

B35)

(R41, G41, B41) (R42, G42, B42) (R43, G43, B43) (R44, G44, B44) (R45, G45, B45)

(R51, G51, B51) (R52, G52, B52) (R53, G53, B53) (R54, G54, B54) (R55, G55, B55)

(R61, G61, B61) (R62, G62, B62) (R63, G63, B63) (R64, G64, B64) (R65, G65, B65)

(R71, G71, B71) (R72, G72, B72) (R73, G73, B73) (R74, G74, B74) (R75, G75, B75)

(R81, G81, B81) (R82, G82, B82) (R83, G83, B83) (R84, G84, B84) (R85, G85, B85)

Where Ryx, Gyx, Byx are respectively the Red, Green, and Blue components you

need to render a colour for the pixel located at (x, y).

 - You use a palette. In this case, all the colours are stored in a table called a

palette and the components of all the colours for each pixel (or the vector

data) are removed to be replaced with a number. This number is an index in

the palette. It explains why we call the palette, a colour look-up table.

2.1.2 Color Spaces

A colour space is a model for representing colour in terms of intensity values; a

colour space specifies how colour information is represented. It defines a one-,

two-, three-, or four-dimensional space whose dimensions, or components,
represent intensity values. A colour component is also referred to as a colour
channel. For example, RGB space is a three-dimensional colour space whose

components are the red, green, and blue intensities that make up a given colour.

Visually, these spaces are often represented by various solid shapes, such as

cubes, cones, or polyhedron.

2.1.3 Uniform Color Space

 A colour space in which equivalent numerical differences represent equivalent

visual differences, regardless of location within the colour space. A truly uniform

colour space has been the goal of colour scientists for many years. Most colour

spaces, though not perfectly uniform, are referred to as uniform colour spaces,

since they are more nearly uniform when compared to the chromaticity diagram.

2.1.4 RGB Color Model

In the RGB model, an image consists of three independent image planes, one in

each of the primary colours: red, green and blue. (The standard wavelengths for

the three primaries are as shown in figure 1). Specifying a particular colour is by

specifying the amount of each of the primary components present. Figure 1

shows the geometry of the RGB colour model for specifying colours using a

Cartesian coordinate system. The grayscale spectrum, i.e. those colours made

from equal amounts of each primary, lies on the line joining the black and white

vertices.

Figure 1 RGB Color Model

Figure 1: The RGB colour cube. The grayscale spectrum lies on the line joining the

black and white vertices.

This is an additive model, i.e. the colours present in the light add to form new

colours, and is appropriate for the mixing of coloured light for example. The RGB

model is used for colour monitors and most video cameras.

The RGB representation model is based on the usage of the so-called “primary”

colours:

- Red (700 nm)

- Green (546.1 nm)

- Blue (435.8 nm)

This does not mean that any colour can be obtained by varying the intensity of

each

component.

Table 1 RGB Color Map Coordinates

2.1.5 HSV Color Model

Hue, Saturation, and Value colour space was chosen because it is the only main

non-linear transformation from RGB and because it is usually considered the

easiest to use for colour based segmentation.

The HSV colour space, like RGB, is a device-dependent colour space, meaning

the actual colour you see on your monitor depends on what kind of monitor you

are using, and what its settings are.

The HSV Colour Model stands for the Hue, Saturation, and Value based on Tint,

Shade, and Tone.

The coordinate system in a hexagon.

Figure 2 HSV Color Model

Here is a view of the HSV colour model from the side. The axis has been rotated

180 degrees so that the magenta is pointing to the left.

2.1.6 Some Interesting Things to Notice

The top of the HSV hexagon corresponds to the projection one would see by

looking down the principal diagonal of the RGB cube (from white [1, 1, 1],

towards black [0, 0, 0]). Thus, the main diagonal of the RGB cube corresponds to

the V parameter of the HSV space. Therefore, you will notice if you choose S to

be 0 (and H becomes undefined), you are on the V-axis of the HSV hexagon,

which corresponds to the gray-scale main diagonal of the RGB cube, so

changing V simply amounts to moving along this diagonal, producing all the gray-

scales. (If you have the RGB applet running next to it, you will notice this even

better.)

The pure colours are at S=1, V=1 (i.e. the very top slice of the hexagon).

Decreasing S without changing V corresponds to adding white pigment to a

colour, whereas keeping S=1 while changing V corresponds to creating a shade

of a colour. (Again, if you have the RGB applet running next to it, you will notice

this even better.)

2.1.7 Why Do We Need to Convert Color Space

It has been mentioned before that RGB colour space uses the three basic

colours to represent any colour and its attributes (i.e. Brightness and saturation).

Thus any change in the brightness or saturation is accomplished by changing the

primary colours. While considering the HSV colour space; variations in

brightness and saturation are accomplished by changing the respective

components not colour itself.

2.2 Operations Performed for Image Segmentation

There are different binary operations performed for image segmentation. These binary

operations are explained.

2.2.1 Input/Output of Segmentation

The input to this phase is the image acquired and the output is also an image but

having those objects which have met the criteria as explained in the algorithm

below.

Input Image (BMP format, RGB Colour Space)

Figure 3 Sample Image for Image Processing Operation

2.2.2 RGB to HSV Color Space Conversion

The image is converted from RGB colour space to HSV. RGB is a linear colour

space so it is converted to a uniform colour (i.e. HSV)

Figure 4 Image after Coversion from RGB to HSV Color Model

The image looks different from the original image because the monitors

implement the RGB colour space while manufacturing.

V = max (R, G, B)
S = (I - min(R, G, B)) / 255
H = 0 + (G-B)/∆ if max is R
 = 1/3 + (B-R)/∆ if max is G
 = 2/3 + (R-G)/∆ if max is B
(∆ is (max-min) of RGB)

I=(R+G+B) / 3

2.2.3 Algorithm for Color Based Segmentation

The algorithm is

Scan each pixel in the image

 Check whether the pixel lies within a specific region of hue and saturation

 If yes

 then do not change the pixel value

 If no

 Then change the pixel into black.

Figure 5 Color Based Segmentation

Objects are being segmented using colour. In our case the colour we have

selected is close to red including its different variations. Figure 5 shows the

objects with specific colours (i.e. red).

Chapter 3: Objects Recovery

3 Objects Recovery

There are different factors involved which distorts the original image and the

image is not perceived properly as the camera should perceive them. So to

recover the objects in their original shape or to connect the disconnected

components of an object, we used Dilation and Erosion as explained below.

3.1 Object Recovery Using Connected Component

Since the whole task of image processing (starting from image acquisition down

to finding the real world coordinates of the desired object) is in a pipeline. Thus

the output of the previous process is input to the next. Thus the segmented

image based on colour is input to the process under discussion.

While working in this phase different image processing techniques have been

used. It is better to have a brief view of these techniques. Then I would like to

explain their use in our context.

3.2 Binary Image Operations (An Overview)

A binary image is an image in which each pixel assumes one of only two discrete

values. Essentially, these two values correspond to on and off. Looking at an

image in this way makes it easier to distinguish structural features. For example,

in a binary image, it is easy to distinguish objects from the background.

A binary image is stored as a two-dimensional matrix of 0's (which represent off

pixels) and 1's (which represent on pixels). The on pixels are the foreground of

the image, and the off pixels are the background.

Binary image operations return information about the form or structure of binary

images only. To perform these operations on another type of image, you must

first convert it to binary. Figure 6 shows the collared image converted to binary

image.

Figure 6 Color Image Converted to Binary Image

An overview of the following terms will help you to understand methods and

algorithms presented in this report.

Words Definitions

Background The set of black (or off) pixels in a binary object.

Binary image An image containing only black and white pixels. A binary

image is represented by a matrix containing 0's and 1's only.

Connected
component

A set of white pixels that form a connected group. A

connected component is "8-connected" if diagonally adjacent

pixels are considered to be touching; otherwise, it is "4-

connected."

Foreground The set of white (or on) pixels in a binary object.

Morphology A broad set of binary image operations that process images

based on shapes. Morphological operations apply a

structuring element to an input image, creating an output

image of the same size. The most basic morphological

operations are dilation and erosion.

Neighbourhood A set of pixels that are defined by their locations relative to

the pixel of interest. In binary image operations, a

neighbourhood can be defined by a structuring element or by

using the criterion for a 4- or 8-connected neighbourhood.

Object A set of white pixels that form a connected group. In the

context of this chapter, "object" and "connected component"

are basically equivalent. See "Connected component" above.

Structuring
element

A matrix used to define a neighbourhood shape and size for

binary image operations, including dilation and erosion. It

consists of only 0's and 1's and can have an arbitrary shape

and size. The pixels with values of 1 define the

neighbourhood. By choosing a proper structuring element

shape, you can construct a morphological operation that is

sensitive to specific shapes.

Table-2

3.2.1 Clean Operation

'Clean Operation' removes isolated pixels (individual 1's that are surrounded by

0's), such as the centre pixel in this pattern.

0 0 0

0 1 0

0 0 0

Figure 7 Cleaned Operation Performed on Binary Image

3.2.2 Dilation and Erosion

The main morphological operations are dilation and erosion. Dilation and erosion

are related operations, although they produce very different results. Dilation adds

pixels to the boundaries of objects (i.e., changes them from off to on), while

erosion removes pixels on object boundaries (changes them from on to off).

Each dilation or erosion operation uses a specified neighbourhood. The state of

any given pixel in the output image is determined by applying a rule to the

neighbourhood of the corresponding pixel in the input image. The rule used

defines the operation as dilation or erosion.

• For dilation, if any pixel in the input pixel's neighbourhood is on, the output

pixel is on. Otherwise, the output pixel is off.

• For erosion, if every pixel in the input pixel's neighbourhood is on, the

output pixel is on. Otherwise, the output pixel is off.

The neighbourhood for dilation or erosion operation can be of arbitrary shape

and size. The neighbourhood is represented by a structuring element, which is a

matrix consisting of only 0's and 1's. The centre pixel in the structuring element

represents the pixel of interest, while the elements in the matrix that are on (i.e.,

= 1) define the neighbourhood.

The centre pixel is defined as floor ((size (SE) +1)/2), where SE is the structuring

element. For example, in a 4-by-7 structuring element, the centre pixel is (2, 4).

When you construct the structuring element, you should make sure that the pixel

of interest is actually the centre pixel. You can do this by adding rows or columns

of 0's, if necessary. For example, suppose you want the neighbourhood to

consist of a 3-by-3 block of pixels, with the pixel of interest in the upper-left

corner of the block. The structuring element would not be ones (3), because this

matrix has the wrong centre pixel. Rather, you could use this matrix as the

structuring element.

0 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1

For erosion, the neighbourhood consists of the on pixels in the structuring

element. For dilation, the neighbourhood consists of the on pixels in the

structuring element rotated 180 degrees. (The centre pixel is still selected before

the rotation.)

Suppose you want to perform an erosion operation. Figure shows a sample

neighbourhood you might use. Each neighbourhood pixel is indicated by an x, and

the centre pixel is the one with a circle.

Figure 8: A Neighbourhood that will be represented as a structuring element

The structuring element is therefore

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

The state (i.e., on or off) of any given pixel in the output image is determined by

applying the erosion rule to the neighbourhood pixels for the corresponding pixel

in the input image. For example, to determine the state of the pixel (4, 6) in the

output image:

• Overlay the structuring element on the input image, with the centre pixel of

the structuring element covering the pixel (4, 6).

• Look at the pixels in the neighbourhood of the input pixel. These are the

five pixels covered by 1’s in the structuring element. In this case the pixels

are: (2,4), (3,5), (4,6), (5,7), (6,8). If all of these pixels are on, then set the

pixel in the output image (4, 6) to on. If any of these pixels is off, then set

the pixel (4, 6) in the output image to off.

You perform this procedure for each pixel in the input image to determine the

state of each corresponding pixel in the output image.

3.2.3 Structuring Element Applied for Erosion

It is a one by one matrix for erosion. (i.e. 1 only). The output of the erosion

operation has been shown in Figure 9.

Figure 9 Erosion Operation Performed on Binary Image

3.2.4 Structuring Element Applied for Dilation

1 1 1

1 1 1

1 1 1

Figure 10 is the result of the dilated image. The SE used in dilation is a 3*3

matrix shown above

Figure 10 Dilation Operation Performed on Binary Image

3.3 Perimeter Determination

In order to find the skeleton of objects the perimeter is being determined which

serves the purpose for identification in later stages.

In order to recognize different objects we do require the outline of the objects. To

find the outline of the objects there are different approaches like connected

components, Edge Detection algorithm (also used for image segmentation).

There are different approaches for perimeter determination like edge detection

(also used for image segmentation) and connected components. I have used the

method of connected components for this purpose

3.3.1 4 and 8 Connected Neighbourhoods

For many operations, distinguishing objects depends on the convention used to

decide whether pixels are connected. There are two different conventions

typically used: 4-connected or 8-connected neighbourhoods.

In an 8-connected neighbourhood, all of the pixels that touch the pixel of interest

are considered, including those on the diagonals. This means that if two

adjoining pixels are on, they are part of the same object, regardless of whether

they are connected along the horizontal, vertical, or diagonal direction.

Figure 11 8-Connected Neighbourhood

In a 4-connected neighbourhood, the pixels along the diagonals are not

considered. This means that a pair of adjoining pixels is part of the same object

only if they are both on and are connected along the horizontal or vertical

direction.

Figure 12 4-Connected Neighbourhood

The type of neighbourhood you choose affects the number of objects found in an

image and the boundaries of those objects. Therefore, the results of the object-

based operations often differ for the two types of neighbourhoods.

For example, this matrix represents a binary image that has one 8-connected

object or two 4-connected objects.

0 0 0 0 0 0

0 1 1 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

0 0 0 1 1 0

0 0 0 0 0 0

3.3.2 Algorithm for Perimeter Determination

We have used 8-connected neighbourhood for perimeter determination. A pixel is

considered a perimeter pixel if it satisfies both of these criteria:

• It is an on pixel.

• One (or more) of the pixels in its neighbourhood is off.

Figure 13 Objects Perimeter

Figure 13 shows the different objects with perimeter only. These objects are

further analyzed for object recognition

Chapter 4:
Object Recognition and Real World

Coordinates Estimation

4.1 Object Recognition

There are different techniques for object recognition :-

4.2 Input/Output of Object Recognition Phase

The input to this phase is an image with objects outline and the output is a single

recognized object. The ANN makes a bounding box enclosing the recognized

target.

 This is the most critical phase of image processing module and involves much

more effort compared to other phases in image processing.

Figure 14 Target Locked after Object Recognition

4.4 Estimation of Real World Coordinates of Target
Camera calibration has been achieved by keeping the position of the camera

fixed.

Different samples values have been measured and then making a look up table

as shown below.Total 80 samples images were taken for camera calibration.

The centroid of the target in images have been found and then the corresponding

closest match is searched for the Real World Coordinate System.

Figure 15 Real World Coordinates Estimation

Coordinates of Target in Image Real World Coordinates of

Target

0,41 160,162,0

0,61 158,133,0

-90,181 29.45,0

90,221 27,10,0

•

•

•

•

•

•

•

Table 3 Real World Coordiante Estimation

Once the rea lworld coordinates has been found then the locomotion control system

controls the locomotive to hit the target.

Appendix A

Implementation Notes

The Image Processing Module implemented using Matlab 6

Digital Image Processing toolbox was used for all image operations.

APPENDIX B
function ok();

rw_cent_y(1)=41;%x is zero on this line

rw_cent_y(2)=221;

%image coordinate on rw_center

% x is 160 in the image center

im_cent_y(1)=162.35;

im_cent_y(2)=133.22;

im_cent_y(3)=108.43;

im_cent_y(4)=87.04;

im_cent_y(5)=72.02;

im_cent_y(6)=57.07;

im_cent_y(7)=44.54;

im_cent_y(8)=34.4;

im_cent_y(9)=23.77;

im_cent_y(10)=13.0;

% Left side of the data from centeral axis(y) in real world 30 cm from left

rw_n_1y(1)=21;

rw_n_1y(2)=221;

% coordinates in image in x-axis

im_n_1x(1)=83.65;

im_n_1x(2)=89.28;

im_n_1x(3)=90.43;

im_n_1x(4)=93.46;

im_n_1x(5)=101.27;

im_n_1x(6)=103.812;

im_n_1x(7)=107.65;

im_n_1x(8)=108.72;

im_n_1x(9)=115;

im_n_1x(10)=116.62;

im_n_1x(11)=118.30;

% coordinates in image in y-axis

im_n_1y(1)=188.68;

im_n_1y(2)=157.24;

im_n_1y(3)=134.24;

im_n_1y(4)=111;

im_n_1y(5)=88.87;

im_n_1y(6)=69.95;

im_n_1y(7)=59.03;

im_n_1y(8)=43;

im_n_1y(9)=27;

im_n_1y(10)=24;

im_n_1y(11)=16;

%% coordinates in real world in y-axis and deviated 60 cm to the left

rw_n_2y(1)=81;

rw_n_2y(2)=221;

% coordinates in image in x-axis

im_n_2x(1)=38.56;

im_n_2x(2)=46.1;

im_n_2x(3)=53.22;

im_n_2x(4)=60.53;

im_n_2x(5)=69.15;

im_n_2x(6)=73.206;

im_n_2x(7)=78.39;

im_n_2x(8)=88.67;

% coordinates in image in y-axis

im_n_2y(1)=112.86;

im_n_2y(2)=93.1;

im_n_2y(3)=76.69;

im_n_2y(4)=64.39;

im_n_2y(5)=50.59;

im_n_2y(6)=39.45;

im_n_2y(7)=28.82;

im_n_2y(8)=17.07;

%% coordinates in real world in y-axis and deviated 90 cm to the left

rw_n_3y(1)=181;

rw_n_3y(2)=221;

% coordinates in image in x-axis

im_n_3x(1)=29.13;

im_n_3x(2)=34.18;

im_n_3x(3)=43.92;

% coordinates in image in y-axis

im_n_3y(1)=45.50;

im_n_3y(2)=35.49;

im_n_3y(3)=25.29;

% here we go in left quadrant

% right side of the data from centeral axis(y) in real world 30 cm from right

rw_p_1y(1)=21;

rw_p_1y(2)=221;

% coordinates in image in x-axis

im_p_1x(1)=236.84;

im_p_1x(2)=236.53;

im_p_1x(3)=227.43;

im_p_1x(4)=219.29;

im_p_1x(5)=213.85;

im_p_1x(6)=21.69;

im_p_1x(7)=206.28;

im_p_1x(8)=202.77;

im_p_1x(9)=201.47;

im_p_1x(10)=199.91;

im_p_1x(11)=202;

% coordinates in image in y-axis

im_p_1y(1)=180;

im_p_1y(2)=158.32;

im_p_1y(3)=129.56;

im_p_1y(4)=105.41;

im_p_1y(5)=84.74;

im_p_1y(6)=68.32;

im_p_1y(7)=54.36;

im_p_1y(8)=42.45;

im_p_1y(9)=31.43;

im_p_1y(10)=21.47;

im_p_1y(11)=20.67;

%% coordinates in real world in y-axis and deviated 60 cm to the left

rw_p_2y(1)=81;

rw_p_2y(2)=221;

% coordinates in image in x-axis

im_p_2x(1)=279;

im_p_2x(2)=269.91;

im_p_2x(3)=263.47;

im_p_2x(4)=256.3;

im_p_2x(5)=248.68;

im_p_2x(6)=240.85;

im_p_2x(7)=237.84;

im_p_2x(8)=238.19;

% coordinates in image in y-axis

im_p_2y(1)=100.6;

im_p_2y(2)=82.79;

im_p_2y(3)=63.16;

im_p_2y(4)=51.3;

im_p_2y(5)=40.41;

im_p_2y(6)=30.52;

im_p_2y(7)=18.939;

im_p_2y(8)=19.13;

%% coordinates in real world in y-axis and deviated 90 cm to the left

rw_p_3y(1)=181;

rw_p_3y(2)=221;

% coordinates in image in x-axis

im_p_3x(1)=286.23;

im_p_3x(2)=276.60;

im_p_3x(3)=274;

% coordinates in image in y-axis

im_p_3y(1)=25.85;

im_p_3y(2)=15.64;

im_p_3y(3)=10.42;

I = imread('c:\pic','bmp');

P=I;

figure,imshow(I)

title('Original Image')

s=size(I);

hsv=rgb2hsv(I);

figure,imshow(hsv)

title('RGB Image Converted to HSV Color Model')

%imhist(hsv);

d=size(hsv);

h=hsv(:,:,1);

s=size(h);

for j=1:s(1,2)

 for l=1:s(1,1)

 if hsv(l,j,1)<0.5 & hsv(l,j,2)>0.8

 segmented(l,j,1)=I(l,j,1);

 segmented(l,j,2)=I(l,j,2);

 segmented(l,j,3)=I(l,j,3);

 I(l,j,1)=255;

 I(l,j,2)=255;

 I(l,j,3)=255;

 else

 I(l,j,1)=0;

 I(l,j,2)=0;

 I(l,j,3)=0;

 end

 end

 end

 figure,imshow(segmented);

 title('Color Based Segmentation')

 binary=im2bw(I);

 figure,imshow(binary);

 title('Color Image Converted to Binary Image')

 cleaned=bwmorph(binary,'clean',10);

 figure,imshow(cleaned);

 title('Cleaned Operatioin Performed on Binary Image')

 matrix=ones(1,1);

 eroded=erode(cleaned,matrix);

 figure,imshow(eroded);

 title('Eroded Image(Erosion Operation Performed)')

 matrix=ones(3,3);

 dilated=dilate(eroded,matrix);

 figure,imshow(dilated);

 title('Dilated Image(Dilation Operation Performed)')

 filled=bwfill(dilated,3,3,4);

 matrix=ones(2,2);

 eroded=erode(dilated,matrix);

 figure,imshow(eroded);

 title('Eroded again Image')

 boundary=bwperim(eroded);

 figure,imshow(boundary);

 title('Objects Outline')

% contour=imcontour(eroded);

% figure,imshow(contour)

% title('Contour Image')

 area=bwarea(eroded);

 Label=bwlabel(eroded,8);

 stats=imfeature(Label,'Area');

 idx=find([stats.Area]>990);

 object=ismember(Label,idx);

 %figure,imshow(object);

 %title('Object image')

 boundary=bwperim(object);

 %figure,imshow(boundary);

 %title('Boundary of Objects')

 stats=imfeature(object,'Area','Centroid','BoundingBox');

 x1=ceil(stats.BoundingBox(1));

 y1=ceil(stats.BoundingBox(2));

 x2=ceil(x1+stats.BoundingBox(3));

 y2=ceil(y1+stats.BoundingBox(4));

 for m=x1:x2

 for n=y1:y2

 if(m==x1 | m==x2 | n==y1 | n==y2)

 P(n,m,1)=255;

 P(n,m,2)=255;

 P(n,m,3)=255;

 end

 end

 end

 figure,imshow(P)

 title('Target Locked');

 x1=stats.Centroid(1);

 y1=stats.Centroid(2);

 %uint rw_x;

 %uint rw_y;

 %rw_x=uint(rw_x);

 %rw_y=uint(rw_y);

 indices=-1;

 if x1>=160

 x=x1-160;

 x=x*x;

 for i=1:10

 y=y1-im_cent_y(i);

 y=y*y;

 distance(i)=sqrt(x+y);

 end

 j=i+1;

 for i=1:11

 x=x1-im_p_1x(i);

 y=y1-im_p_1y(i);

 x=x*x;

 y=y*y;

 distance(j)=sqrt(x+y);

 j=j+1;

 end

 for i=1:8

 x=x1-im_p_2x(i);

 y=y1-im_p_2y(i);

 x=x*x;

 y=y*y;

 distance(j)=sqrt(x+y);

 j=j+1;

 end

 for i=1:3

 x=x1-im_p_3x(i);

 y=y1-im_p_3y(i);

 x=x*x;

 y=y*y;

 distance(j)=sqrt(x+y);

 j=j+1;

 end

 [min_dist,indices]=min(distance);

 end

 if indices>=1 & indices<=10;

 indices=indices-1;

 rw_x=0;

 rw_y=41+20*(indices);

 end

 if indices>=11 & indices<=21;

 indices=indices-10;

 indices=indices-1;

 rw_x=30.5;

 y_shift=200*(indices);

 rw_y= 21 + y_shift;

 end

 if indices>=22 & indices<=29

 indices=indices-21;

 indices=indices-1;

 rw_x=61;

 y_shift=5*(indices);

 rw_y= 81 + y_shift;

 end

 if indices>=30 & indices<=42

 indices=indices-29;

 indices=indices-1;

 rw_x=91.5;

 y_shift=20*(indices);

 rw_y= 181 + y_shift;

 end

% here we tackle the plane in left plane

 if x1<160

 x=x1-160;

 x=x*x;

 for i=1:10

 y=y1-im_cent_y(i);

 y=y*y;

 distance(i)=sqrt(x+y);

 end

 j=i+1;

 for i=1:11

 x=x1-im_n_1x(i);

 y=y1-im_n_1y(i);

 x=x*x;

 y=y*y;

 distance(j)=sqrt(x+y);

 j=j+1;

 end

 for i=1:8

 x=x1-im_n_2x(i);

 y=y1-im_n_2y(i);

 x=x*x;

 y=y*y;

 distance(j)=sqrt(x+y);

 j=j+1;

 end

 for i=1:3

 x=x1-im_n_3x(i);

 y=y1-im_n_3y(i);

 x=x*x;

 y=y*y;

 distance(j)=sqrt(x+y);

 j=j+1;

 end

 [min_dist,indices]=min(distance);

 end

 if indices>=1 & indices<=10;

 indices=indices-1;

 rw_x=0;

 rw_y=41+20*(indices);

 end

 if indices>=11 & indices<=21;

 indices=indices-10;

 indices=indices-1;

 rw_x=-30.5;

 y_shift=20*(indices);

 rw_y= 21 + y_shift;

 end

 if indices>=22 & indices<=29

 indices=indices-21;

 indices=indices-1;

 rw_x=-61;

 y_shift=20*(indices);

 rw_y= 81 + y_shift;

 end

 if indices>=30 & indices<=32

 indices=indices-29;

 indices=indices-1;

 rw_x=-91.5;

 y_shift=20*(indices);

 rw_y= 181 + y_shift;

 end

 fid=fopen('c:\new.txt','w');

 fprintf(fid,'%6.2f %12.8f\n',rw_x);

 fprintf(fid,'%6.2f %12.8f\n',rw_y);

 fclose(fid);

Appendix C

Recommendatoins
Since it is the first iteration of the project, so basic idea has been implemented

successfully and the foundation has bee laid. Following are the

recommendations for further enhancements provided that you have more

resources to continue.

1. WebCam can be replaced by a customized camera used in Robotics

whose intrinsic parameters are known(i.e provided by the Vendor)

2. A camera can be mounted on stepper motor so that camera can lock the

target even when the target is moving.

3. Algorithm for Moving Target can be implemented in the vicinity of the

camera.

Appendix D

References

1. Digital Image Processing by AK Jain, for Morphological image operations.

2. Zarit, B.D., Super, B.J., Quek, F.K.H., Dept. of Electr. Eng. & Comput.

Sci., Illinois Univ., Chicago, IL, USA, Comparison of five colour

models, (Proceedings International Workshop on Recognition, Analysis,

and Tracking (RATFG-RTS'99), Corfu, Greece, 26-27 Sept. 1999.) Los

Alamitos, CA, USA: IEEE Comput. Soc, 1999. P.58-63.

3. www.cs.rit.edu/~ncs/color/t_convert.html, for color space conversión

4. Pauwels, E.J., Frederix, G., Dept. of Electr. Eng., Katholieke Univ.,

Leuven, Belgium, Colour segmentation and shape extraction for image

interpretation

5. Pitas, Fundamentals of colour image processing. In: Digital Image

Processing Algorithms Prentice-Hall, Englewood Cliffs, NJ (1993), pp.

23¯40.

Part II: Locomotive Control System

Defines the services, protocols, and the configurations of hardware

and software.

EXECUTIVE SUMMARY

This document describes a sub-system of TTIP called as locomotion control

system. It also elaborates the problem (the client’s view) along with its essence

and inherent properties coupled with the analysis (the developer’s view) of the

problem and the process. Next we see further details of the process with the

object oriented analysis and design. After that, system is ready for coding.

Configurations, tests, bug-fixes are also written in this document.

Acknowledgements

Without others support it would not have been possible to accomplish this

project. The cooperation of my teachers is not forgettable.

Chapter 5 : Introduction

5.1.1 The System Defined

The locomotion control system is part of the TTIP. It is responsible for the control

of the Locomotive car in the field. It will take input from Master Control to go for a

position in the field.

Figure 16 Logical Relationships between Master Controller and The Locomotion Control

System

The scope of the Locomotion Control System (LCS) must be clearly understood.

It means that whether some service or protocol is part of the system or not. Once

such a crisp boundary is found, we can express the system’s view as the use-

case.

5.2 The Problem Statement

The desired system must be able to control a locomotive through a coordinate

system (O, x, y) from any initial point P(x, y) to final point Q(x, y).

To achieve this effect, there must be a mathematical model describing the paths

of the locomotive. In this case, the locomotive is a toy cat that can move ahead,

backwards, left, and right. Different constants for this car must be calibrated as

per the mathematical model.

Point
P(x,y)

Point
Q(x’,y’)

Figure 17 The representation of a scenario when Locomotive L seeks point Q

from P

The patterns for the paths must be figured out and modelled as linear equations

or splines functions etc. Then real time processing must be employed to track the

locomotive and make the decisions on time. Note that the locomotive’s constants

must be classified such that there is no dependency of the configuration upon the

binaries.

The locomotive is a small car. Its paths are well defined through the combination

of linear as well as elliptic curves. These paths must be worked out accurately

and the car will be instructed to move. Note that the car moves in the world

coordinate system. Either you can fix a unit of the mesh as an inch, foot, meter,

etc. Or you can use world-to-machine coordinate system transformations.

The life span of car (which is playing the role of a locomotive) is very small. The

life span is defined as the time to reach from point P to Q. It can be assumed that

the life span of the locomotive is 1~10 seconds.

Different constants, as felt necessary, shall be calibrated from the given

locomotive. That car is navigable in the field through its remote controller working

at 27 MHz.

5.2.1 Problem Analysis

This problem is clearly related to hardware interfacing. The control circuit is

analog. It must be interfaced with the communication port of the controlling

computer. For parallel transmission of several signals and their combinations, we

have used the parallel port of the computer which is capable of sending data

from all the data pins, simultaneously.

The controller of the system is the entity which will handle all the application logic

to hit the target. It must have nothing to do with the underlying port or protocol. Its

only requirement is to encapsulate the functionality of the controller.

The mind map diagram of the system at this stage can be visualized as in figure

18. The important characteristics of the system are its real-time or almost-real-

time execution. At the moment, when the system is signalled to move backward

and turn left, then it must be able to do it in real-time.

Moreover, the eventual goal is to implement the application logic i.e. when to

move and where to move, and controlling mechanism separately. Object-

Oriented technology must be used to separate both of the areas by providing one

or more user-defined data-types for each.

The reason for the implementation through objects is its power to reuse and

provide controlled concurrency over the port. The port class should be developed

for Intel 386 class of processors running in protected mode. This needs to gain

access to the port which is not allowed for a user-level process. This issue needs

to be considered and kernel-mode code must be needed to accomplish this.

Chapter 6 : Mathematical Modelling

6.1 Abstract

Mathematics is the language of nature. It is the abstraction for the harmony found

in nature. Planetary motion to growth of plants is understood by the human-

beings through abstraction of mathematical symbols. Thus, any physical

phenomenon can be abstracted in the language of mathematics. Within the

constraints of our system, we need to model a similar technique using

mathematics. Here is what we found.

The Problem

Locomotive used in our implementation is capable of turning left or right and it

can move backwards and forward. Finite-State automation of this scenario is:

Turn Left

Turn Right

Forward

Backwards

Forward Turn Right

Backward Turn Left

Backward Turn Right

Forward Turn Left

Static

init

Figure 18 The FSA diagram of the locomotive controller

6.2 The Problem

The locomotive can move in circular paths or in straight lines this is very easy to

model using 2D analytical geometry.

6.3 Mathematical Model

Intersection of a line and a circle
To prove that the straight line y = m x + c cuts the circle x2+y2=a2 in two
points also to find the condition that the line may touch this circle.
The coordinates of the point in which the straight line

y = m x + c (1)

and the circle

x2+y2 = a2 (2)

intersect, satisfies both the equation and thus they can be obtained by solving eq

(1) and (2) simultaneously substituting for y from eq (1) in eq (2), the abscissae

of the points of intersection are given by the eq :

x2 + (mx+c) 2 = a2

(1+m2) x2 + 2mcx + (c2 - a2) = 0 (3)

this is quadratic in x and thus gives two values of x

Figure - 19

These two values of x are nothing but abscissae of the two points of intersection

corresponding two abscissae x1, x2. we can find two coordinates y1 and y2 from

eq (1) and thus the coordinates of the two points of intersection are determined

the two points of intersection are real and distinct, real and coincident or

imaginary according as the roots of eq (3) are real and distinct, real and equal or

imaginary

the line will touch the circle if two points of intersection coincide or roots of eq (3)

are equal

(2mc) 2 – 4 (1+ m) 2 (c2 – a2) = 0

4m2 c2 – 4 (c2 – a2 + m2c2 – m2a2) = 0

c2 = a2 (1 + m2)

c = ± a √ 1 + m2

Which is the required condition that the line (1) may touch the circle (2) or in

other words may become tangent to the circle

Hence y = mx ± a √1+m2

are the eqs of the tangent to the circle (2) for all values of m.

Length of a tangent segment to a circle from a given point
To find the length of the tangent from an external point p (x1, y1) to the circle

x2 + y2 + 2gx + 2fy + c = 0

let PT and PT’ be the tangents from p (x1, y1) to the given circle whose centre

is

C (-g, -f).

Figure - 20

Join PC , CT and CT’

Now PC2 = (x1 + g) 2 + (y1 + f) 2

 = x12 + y12 + 2gx1 + 2fy1 + g2 + f2

TC2= g2 + f2 – c (required radius)

m < PTC = 90 deg

from right side , ∆ PTC we get

PT2 = PC2 – CT2

 = (x122 + y12 + 2gx1 + 2fy1 + g2 + f2) – (g2 + f2 – c)

 = x12 + y12 + 2gx1 + 2fy1 + c

Which is the square of the length of the tangent drawn from (x1, y1) to the given

circle.

Equation of tangent circle x2 + y2 = r2

 y = mx + c

y = mx + r √ I + m2

through point (a, b)

b = ma + r √ 1 + m2

(b – ma) 2= (r √ 1 + m2) 2

b2 – 2abm + m2a2 = r2 (1+ m2)

b2 – 2ab (m) + (m2) a2 – r2 –r2m2 = 0

a2m2 - r2m2 – 2abm + (b2– r2) = 0

m2 (a2 – r2) – (m) 2ab + (b2 – r2) = 0

m = +2ab ± √ (2ab) 2 – 4 (a2 – r2) (b2 – r2) / 2 (a2 – r2)

m = - 2 (a2– b2) (2ab) ± √ (2ab) 2 – 4 (a2 – r2) (b2 – r2) / 2 (a2 – r2)

Left

Right

P Q

xi-1,yi-1 xi,yi

When we will transform
this circle with center at
a,b with -a -b , then its

equation is
x2+y2-R2=0

LT

RT

T

T

Figure 21 Basic Model Diagram

Basic Model diagram showing that the locomotive has two circles at any position.

When it starts moving in the circular path, its motion is defined by equation of

circle and then when it leaves the circle, its motion is defined by the equation of

the line.

We begin our analysis by looking at the type of path adopted by the locomotive to

hit the target. The problem was:

“Find a point P on the circle with centre at C(x, y) and with Radius R such that

the tangent drawn at point P and point T are collinear”

To achieve this effect we derived it like this:

Let the circle be on the origin and let its radius be equal to R. Then equation of

the tangent to the circle x²+y²-R²=0 from a point T (a, b) is given as:

b=ma±√ (1+m²) (1)

where a and b coordinates of point T

Equation of the tangent through any point P(x, y) is

y= mx ± r√ (1+m²)

Solving equation (1) for m yields

m= (2ab±√ ((2ab)² -4(a²-r²) (b²-r²)))/2(a²-r²) (2)

Now let the equation of the line be

y-y1=m(x-x1)

Solving it simultaneously with equation of the circle yields

xab=2x±√ (4x²-4(1+m²) (x²+y²-R²))/2(1+m²)

Where x1, y1 are the coordinates of Target point T.

Ya= m (xa-x1)+y1 (A)

Yb=m (xb-x1)+y1 (B)

Then points (xa, ya) and (xb,yb) are two tangent points.

Then select one of the points which occur first in counter clockwise direction.

If is the point T is inside the circle the problem became:

“Find a centre of the circle that fits the point T, or find an equation of the circle

that satisfies T (a, b)”

Our derivation is explained from the figure as:

P

D

Figure - 22

There are two sectors:

If the target point is in the RHS sector

New centre is C (-(R2-y12-x1), 0)

If the target point is in the LHS sector

New centre is C (-(R+ (R2-y1
2-x1)), 0)

Where centre C is assumed at origin of the coordinate system.

Chapter 7 : Circuit Designing

7.1 The Circuit

The actual locomotive was equipped with a remote control and the car. The

remote control circuit is made up of four switches and a radio wave emitter. It

generates radio waves signals which were identified as a radio wave whose

frequency is 27 MHz. The car is also equipped with receiver at same frequency.

We interfaced that circuit with its switches attached to a Darlington array called

ULN 2003. When the pulse from the parallel port is generated by our program, it

switches on the open path. Or diagrammatically as:

Figure 23 Schematic representation of the interfacing circuit

7.2 Parallel Port

When a PC sends data to a printer or other device using a parallel port, it sends

8 bits of data (1 byte) at a time. These 8 bits are transmitted parallel to each

other, as opposed to the same eight bits being transmitted serially (all in a single

row) through a serial port. The standard parallel port is capable of sending 50 to

100 kilobytes of data per second

PIN PURPOSE
Pin 1 -Strobe
Pin 2 +Data Bit 0
Pin 3 +Data Bit 1
Pin 4 +Data Bit 2
Pin 5 +Data Bit 3
Pin 6 +Data Bit 4
Pin 7 +Data Bit 5
Pin 8 +Data Bit 6
Pin 9 +Data Bit 7
Pin 10 -Acknowledge
Pin 11 +Busy
Pin 12 +Paper End
Pin 13 +Select
Pin 14 -Auto Feed
Pin 15 -Error
Pin 16 -Initialize Printer
Pin 17 -Select Input
Pin 18 -Data Bit 0 Return (GND)
Pin 19 -Data Bit 1 Return (GND)
Pin 20 -Data Bit 2 Return (GND)
Pin 21 -Data Bit 3 Return (GND)
Pin 22 -Data Bit 4 Return (GND)
Pin 23 -Data Bit 5 Return (GND)
Pin 24 -Data Bit 6 Return (GND)
Pin 25 -Data Bit 7 Return (GND)

Table – 4 Pin Configuration of Parallel Port

The following is an explanation of each of the above purposes.

Pin1 = Data acknowledgement when the signal is low.

Pin 2 - 9 = Data transfer pins.

Pin 10 = Acknowledge that the data has finished processing and when the signal is high

indicates ready for more.

Pin 11 = When the signal goes high indicate that the printer has accepted the data and is

processing it. Once this signal goes low and Pin 10 goes high will accept additional data.

Pin 12 = Printer paper jam when signal is high or no signal if printer jam.

Pin 13 = When high signal printer is indicating that it is on-line and ready to print.

Pin 14 = When low signal PC has indicated that the printer inset a line feed after each

line.

Pin 15 = Printer sends data to the computer telling it that an error has occurred.

Pin 16 = When low signal PC has requested that the printer initiate a internal reset.

Pin 17 = When low signal the PC has selected the printer and should in return prepare for

data being sent.

Pin 18 - 25 = Ground.

7.2 Radio Control
The exact frequency used is 27 MHz. Here's the sequence of events that take

place when you use the RC transmitter:

• You press a trigger to make the truck go forward.

• The trigger causes a pair of electrical contacts to touch, completing a

circuit connected to a specific pin of an integrated circuit (IC).

• The completed circuit causes the transmitter to transmit a set sequence of

electrical pulses.

• Each sequence contains a short group of synchronization pulses, followed

by the pulse sequence. For our truck, the synchronization segment --

which alerts the receiver to incoming information -- is four pulses that are

2.1 milliseconds (thousandths of a second) long, with 700-microsecond

(millionths of a second) intervals. The pulse segment, which tells the

antenna what the new information is, uses 700-microsecond pulses with

700-microsecond intervals.

•
A typical RC signal transmission

•

Figure – 24 The Radio Signal

Here are the pulse sequences used in the pulse segment:

• Forward: 16 pulses

• Reverse: 40 pulses

• Forward/Left: 28 pulses

• Forward/Right: 34 pulses

• Reverse/Left: 52 pulses

• Reverse/Right: 46 pulses

• The transmitter sends bursts of radio waves that oscillate with a frequency

of 27,000,000 cycles per second (27 MHz).

• The truck is constantly monitoring the assigned frequency (27 MHz) for a

signal. When the receiver receives the radio bursts from the transmitter, it

sends the signal to a filter that blocks out any signals picked up by the

antenna other than 27 MHz. The remaining signal is converted back into

an electrical pulse sequence.

• The pulse sequence is sent to the IC in the truck, which decodes the

sequence and starts the appropriate motor. For our example, the pulse

sequence is 16 pulses (forward), which means that the IC sends positive

current to the motor running the wheels. If the next pulse sequence were

40 pulses (reverse), the IC would invert the current to the same motor to

make it spin in the opposite direction.

• The motor's shaft actually has a gear on the end of it, instead of

connecting directly to the axle. This decreases the motor's speed but

increases the torque, giving the truck adequate power through the use of a

small electric motor!

• The truck moves forward.

If you look inside the RC truck, you will see that it is very simple: two electric

motors, an antenna, a battery pack and a circuit board!

A look at the inside of the truck

Figure – 25 The Toy Car

One motor turns the front wheel right or left, while the other motor turns the

rear wheels to go forward or backward. The circuit board contains the IC chip,

amplifier and radio receiver. A few simple gears connect the motors to the

wheels. It is really amazing how versatile the range of movement is with so

few components.

Chapter 8 : Object Oriented Design

8.1 Use Case Model

The high level representation of the system is modelled with use-cases. Two

actors are found interacting with this module:

1. Instructor

2. Locomotive

Instructor

Locomotive

Hit Target

Caliberate
Locomotive

Feed Meta Info

Turn

Go straight

Composite state

Figure 26 It is the use-case view of the locomotion control module

8.2 Class Diagram

.In depth analysis of the use-case model leads us to class diagram.

Figure 27 Class Diagram

8.3 CS Device Object State Chart

The following diagram represents the scenario when an object of the class

CSDevice is instantiated. When its constructor is called, we enter into the initial

state of this diagram and then the device enters into idle state. When the

controller object instructs the device to send a signal, the object enters into a

specific state for a finite time interval and then releases to idle state until its

destructor is called and the object dies, we enter into exit state. Figure 7

illustrates the idea.

Figure 28 State Chart for Class CSDevice Object

Chapter 9 : System Calibration

9.1 Calibration

As our locomotive is free to move in the field and our controller class is going to

control it, the system needs to know the locomotive-specific values. These values

are constant with a surface and the locomotive. These are:

• Linear Velocity

• Angular Velocity

• Radius of turn circle

• Battery life etc.

For each of these, we developed a test; either manual or computer controlled.

Some of the values are found out and the mean and variance are calculated and

the values are fed to the system. There is a provision in the program that can

adjust the 89values anytime you want. The calibration methods are:

9.2 Linear Velocity Calibration

The following procedure is adopted:

Procedure 1

• Mark the current position of the locomotive

• Make a small program that instructs the locomotive to move

forward for exactly x milliseconds

• Find current position of the locomotive

• Measure the distance Ď between the two points

• Approximate errors due to inertia by taking many readings and

subtract from Ď

• Linear velocity v = Ď/x

• Repeat the process for other values of time x

9.3 Turn Radius Calibration

 The following procedure is adopted:

Procedure 2

• Mark the current position of the locomotive

• Turn it right or left and move forward until it comes back to its

original position

• Note the position which is perpendicular to the starting point

• Measure the distance between both points

• It is diameter D. Find Radius r=D/2

• Iterate until values are close to each other

9.4 Angular Velocity Calibration

The following procedure is adopted:

Procedure 3

• Mark the current position of the locomotive

• Turn it right or left and move forward until it comes back to its

original position

• Find the time t to complete this cycle through the program (by

approximation)

• Then angular velocity ώ=2/t measured in radians per millisecond

After calibrating these values for a plane surface Π, feed these values to the

controller object. Then the controller object is able to control the locomotive

effectively.

Chapter 10 : Implementation

10.1 Implementation Notes

• The system is implemented using

• C++ Programming Language

• Facilitation IDE used through out is Visual C++ 6.0

Other important facts:
The implementation is sticky to the platform for which it is developed i.e. if you

take the implementation to Sun Spark, it will not run.

 No container or algorithm from Standard Template Library (STL) has been

employed.

10.2 Testing and Deployment

Testing of the system is quite simple. We attach the devices and then run the

program to move the car, let’s say twenty centimetres. Then we realize the

results and if some problem has occurred, we analyzed the problem and solve it.

The “bugzilla” chart is contained here in Appendix C.

 As far as deployment of the system is concerned, we just need an x86 machine

running NT class operating system. For DOS and Windows 9x, rebuild with

changes is required. The current binaries are produced for Windows XP. The

control module exposes its interface to the environment when it is running. Other

modules can utilize this interface to do what they want. During deployment, it

must be taken into account that there is a sheer dependency with WinIo; a kernel

mode program used to gain access to the ports in I386 protected mode operating

systems. Whenever the system is taken to another node, SYS and DLL files of

this driver must be in the same directory where program executable is placed.

The same is expressed using UML as:

Control Station

Control

WinIoDevic
eDriver

Interface to Other modules

Countrol GUI

Figure 29 The deployment diagram when program and the SYS file of driver are deployed on a

NT class protected mode OS

Appendix A

References

• Grady Booch

• www.beyondlogic.org

• Bjarne Stroustrup

• Mr. Schweller

Appendix B

All Supported Configurations

To date, the only supported configuration of the software is:

Running binaries on Windows XP/2000 with these shared libraries installed

WINIO device driver with winio.sys in the current directory

Nevertheless, it is required that the signalling device is attached to the port and

supports the protocol given in figure 4, otherwise, no error will be generated

because post state has been modified accordingly.

Runs in emulated 16-bit environment by NTVDM

