
 1

Real Time Implementation Of The Advanced
Encryption Standard On DSK 6711

BY

GC HASAN ANSARI (Syndicate LEADER)
GC IKRAM HUSSAIN
PC HAMMAD HAFEEZ

PROJECT DS : Maj (R) Fazal Ahmed

Dissertation Submitted for partial fulfilment of the requirements of MCS/NUST for
the award of B.E degree in Telecommunication Engineering.

Department of Electrical Engineering
Military College of Signals
Rawalpindi

APRIL, 2004

 2

TABLE OF CONTENTS

Declaration i
Acknowledgments ii
Dedication
Abstract

Iii
iv

CHAPTER1 PROJECT OVERVIEW

1.1.Introduction 8
1.2.Overview 9
1.3.The Secure Communication Model 10
1.4. Project Modules 11
1.4.1.Selection Of Cryptographic Algorithms 12
1.4.2.Study Of Advanced Encryption standards(AES) 12
1.4.3.Matlab Design Of The Advanced Encryption Standard 12
1.4.4.Design Of The Speech Encryption System 12
1.4.5.C-Coding 13
1.4.6.Real Time Implementation

13

CHAPTER 2 Cryptology

2.1 Introduction 14
2.2 Cryptographic goals 15
2.2.1Confidentiality 16
2.2.2 Data Integrity 16
2.2.3 Authentication 16
2.2.4 Non-repudiation 16
2.3 Criterion for Assessing Cryptographic Algorithms 17
2.3.1 Level of security 17
2.3.2 Functionality 18
2.3.3 Methods of operation. 18
2.3.4 Performance. 18
2.3.5 Ease of implementation 19
2.4 A taxonomy of cryptographic primitives. 19
2.4.1 Unkeyed Primitives. 20
2.4.1.1 Arbitrary length hash functions 20
2.4.1.2 One-way permutations 20
2.4.2 Symmetric Key Primitives. 21

 3

2.4.2.1 Symmetric-key ciphers 21
2.4.2.1.1 Block Ciphers 21
2.4.2.1.2 Stream Ciphers 22
2.4.2.2 Pseudorandom sequences 23
2.4.3 Public-key Primitives. 23
2.4.3.1 Public-key ciphers 24
2.4.3.2 Identification primitives 24
2.4.3.3 Signatures 24
2.5 Classes of attacks and security models 24
2.5.1 Attacks on encryption schemes 25
2.5.1.1. Known-plaintext attack 25
2.5.1.2 Chosen-plaintext attack 26
2.5.1.3 Adaptive chosen-plaintext attack 26
2.5.1.4 Chosen-cipher text attack 26
2.5.1.5 Adaptive chosen-ciphertext attack 26
2.5.2 Models for evaluating security 27
2.5.2.1 Unconditional security 27
2.5.2.2 Complexity-theoretic security 28
2.5.2.3 Provable security 29
2.5.2.4 Computational security 29
2.5.2.5 Ad hoc security

30

CHAPTER 3 EVOLUTION OF THE ADVANCED ENCRYPTION
STANDARDS (AES)

3.1.Introduction 31
3.2.Need for encryption 32
3.3. Necessity of an encryption standard 33
3.4 .The predecessors of AES .Data Encryption standard (DES) 33
3.5 .Cracking of DES
3.6. Triple DES(3DES)
3.7. The Competition For AES

35
35
37

3.7.1.AES requirements
3.7.2.Creation of the Algorithm

37
39

3.7.3.The Selection Procedure 39
3.7.4.A Chronology Of NIST AES Initiative 41
3.7.5 Submitted Algorithms

42

 4

CHAPTER 4 The Advanced Encryption Standard

4.1 Introduction 44
4.2 Finite Field Arithmetics 44
4.3 Polynomial Addition 44
4.4 Polynomial Multiplication
4.5 Polynomial Division

46
47

4.7 Algorithm Specification 48
4.7.1 Cipher 49
4.7.2 SubBytes()Transformation 50
4.7.3 ShiftRows() Transformation 51
4.7.4 MixColumns() Transformation 52
4.7.5 AddRoundKey() Transformation 53
4.8 Inverse Cipher 53
4.8.1 InvShiftRows() Transformation 54
4.8.2 InvSubBytes() Transformation 54
4.8.3 InvMixColumns() Transformation 55
4.8.4 Inverse of the AddRoundKey() Transformation 55

CHAPTER 5 Design Of the project

5.1 Introduction 56
5.2 MATLAB the Language of Technical Computing: 57
5.3 Intended Goals of Matlab implementation: 57
5.4 Modular Description of the Matlab Implementation. 58
5.4.1 Encrypt. 58
5.4.1.1 Subbytes. 59
5.4.1.2 Shiftrows. 60
5.4.1.3 Mixcolumns. 61
5.4.1.4 Addroundkey. 62
5.4.2 Decrypt. 63
5.4.2.1 Inverse Subbytes 64
5.4.2.2 Inverse Shiftrows 65
5.4.2.3 Inverse Mixcolumns. 66
5.4.3 Key Scheduling. 67
5.4.3.1 Keys 68
5.4.3.2 Key expansion 68
5.5 The Speech Encryption System. 69
5.5.1. The Cipher 69
5.5.2 The Decipher 71
5.5.3 The Graphical User Interface. 73

 5

5.6 Feasibility of AES for Image Encryption 74
5.6.1 Particularities of Image Encryption
5.6.2 Image Encryption using Advanced Encryption Standard

75
79

CHAPTER 6 Implementation Of the AES

6.1 Introduction
82

6.2 DSK 6711 and the code composer studio. 83
6.2.1 The DSP starter kit 83

6.2.2 Code Composer Studio.
84

6.2.3 Usage overview 85
6.2.4 Getting started with the 6711DSK and CCS 86
6.2.4.1 Connecting the PC and DSK 86
6.2.4.2 Getting familiar with CCS 87
6.2.4.3 Running the code 87
6.2.4.4 Use of printf 87
6.3 Implementation of the Advanced Encryption Standard. 88
6.3.1 Implementation on DSK 6711. 88
6.3.1.1 Code Optimization, Transformation from C++ to C. 88
6.3.1.2 Implementation of the encrypter and decrypter. 89
6.3.1.3 Audio Communication between Two DSK 6711. 90
6.3.2 Implementation on Personal computers. 91
6.3.2.1 Serial Port Communication 91
6.3.2.2 RS–232 Specifications 92
6.3.2.2.1 Electrical Characteristics. 93
6.3.2.2.2 Functional Characteristics. 94
6.3.2.2.3 Mechanical Characteristics. 96
6.3.2.3 Real time encrypted data transmission and reception. 97

Chapter 7 Summary , Recommendations And Conclusions.
7.1 Summary 98
7.2 Recommendations. 98
7.3 Conclusion 99

References 100

 6

List of Figures

Figure 1.1 Project Overview. 9
Figure 1.2 The secure communication model. 11
Figure 3.1 Block diagram of 3-DES 27
Figure 4.1 Classical polynomial addition 45
Figure 4.2 Binary polynomial addition 45
Figure 4.3 ”Classical” polynomial multiplication 46
Figure 4.4 Binary polynomial multiplication 47
Figure 4.5 Classical polynomial division
Figure 4.6 Binary polynomial division
Figure 4.7 S-box: substitution values for the byte xy (in hexadecimal format).
Figure 4.8 ShiftRows() cyclically shifts the last three rows in the State.
Figure 4.9 MixColumns()operates on the State column-by-column.
Figure 4.10 Add round key transformation
Figure 4.11 InvShiftRows()cyclically shifts the last three rows in the State.
Figure 4.12 Matrix multiplication in Inverse Mix columns

47
48
50
51
52
53
54
55

Figure 5.1 The Flow Diagram of Operations 59
Figure 5.2 Flow Diagram of Subbytes 60
Figure 5.3 The Matlab Function Shift rows. 61
Figure 5.4 Multiplication in Mixcolumns 61
Figure 5.5 Matlab Code for Mixcolumns. 62
Figure 5.6 Modular Diagram OF Decrypt 63
Figure 5.7 Modular description of Inv Subbytes 64
Figure 5.8 Matlab Function invsubbytes 65
Figure 5.9 The Matlab Function Inverse Shift rows. 65
Figure 5.10 Matrix operations In Shift rows. 66
Figure 5.11 Matrix operations In inverse Mixcolumns 66
Figure 5.12 Matlab Code for Inv Mixcolumns 67
Figure 5.13 Matlab Code for Key expansion 67
Figure 5.14 Modular Description of Key expansion routine 68
Figure 5.15 The Matlab Code for Cipher. 69
Figure 5.16 Modular Diagram of the speech encryption system 70
Figure 5.17 Matlab Code for decipher 71
Figure 5.18 Modular Description of the Speech Encryption System. 72
Figure 5.19 Figure MATLAB GUI 73
Figure 5.20 Figure MATLAB GUI in operation. 74
Figure 5.21 Original image. 79
Figure 5.22 Gray scale image. 79
Figure 5.23 Encrypted Image 80
Figure 5.24 Correctly Decrypted image 80

 7

Figure 5.25 Image encrypted with slightly wrong key. 81
Figure 6.1 DSK 6711 84
Figure 6.2 Block Diagram Of audio capture 90
Figure 6.3 Electrical Specifications 94
Figure 6.4 RS 232 Defined Signals 96
Figure 6.5 RS232 Mechanical Specifications 96
Figure 6.6 Flow of Operations 97

 8

CHAPTER 1

Project Overview.

1.1 Introduction

The growth of the communications market and the associated need for

information integrity and secrecy encourages the development of secure

communications systems. Communication security is especially of greater interest for

military purposes. Whatever measures be adopted to provide communication security,

they always face the looming danger of being breached by hostile sources. Hence the

need to implement a fool proof security measure remains a difficult task. The Project

undertaken is an endeavor in the same direction. The aim of the project is to develop a

secure communication system over wireless and wire line media with optimum

guaranteed security. For this purpose it was required to implement an established

encryption algorithm. Developing of encryption algorithm is a gigantic task. The field

of cryptanalysis aided by the modern high power computers has further complicated

the task of cryptologists. The recent history has shown that many encryption

algorithms made by very highly rated firms were cracked by very low budget

organization in a matter of days. Most of the speech encryption algorithms remain

unpublished hence there were two options available either to develop an encryption

algorithm or to tailor one of the published encryption algorithms to our own needs.

We chose the second option. In the initial phase of the project various published

algorithms were studied. Our task was simplified due to a competition held by NIST

for selection of advanced encryption Standard. The winner of this competition was

 9

“Rijndael” an encryption algorithm designed by two Belgians. The evolution of AES

is described in chapter 2 of this document. The second important issue was the

selection of the platform on which we had to implement our project. The DSK 6711

available in the DSP lab were an instant choice due to there suitability for DSP

applications. However AES was a computational intensive algorithm therefore we

used a twofold approach and also implemented the secure communication system

using PCs with windows platform. The design phase was completed using MATLAB

which is described in Chapter 3 of this document. Finally the algorithm was coded in

C and implemented on DSK 6711 and on the PC.

1.2 Overview.

The goal of the Project was to develop a secure communication system to be

inserted between the information source and the non-secure channel thereby providing

a secure channel.

Figure 1.1 Project Overview.

Figure on the previous page shows the modular diagram of the project that we

undertook. The information from the information source had to be input to a secure

communication system. The main project effort was concentrated in designing and

 10

implementing this module. The emphasis was kept on making the communication

security unquestionable. The parameter which determines the security of the channel

is the cryptographic algorithm being put into use. The Advanced encryption standard

that has been implemented is arguably the most secure in the world. The encrypted

information was put onto the channel and received at the other end. The information

was decrypted and then output to the information destination. The channel which is

otherwise insecure was transformed to a secure channel with a fool proof

cryptographic technique. The main challenge in the project was its real time

implementation.

1.3 The Secure Communication Model.

Various security algorithms have different structures. This section explains the basic

structure of the cryptographic algorithm that has been implemented so as to give the

reader the idea as to how encryption and decryption has been achieved.

Figure 2 shows the secure communication model. At the source side there are two

parameters that are input to the encrypter i.e.

• Message and

• Encryption key

The message M is encrypted (ciphered) by a transformation governed by the

algorithm specified by the Advanced Encryption Standard. The encryption key is used

to encrypt the message. The message is then sent to its destination where it is

decrypted using the same key as used for the encryption. The message M is obtained

by application of the inverse transformation, at the destination. It is essential that the

key should be same, even a one bit difference in the key at the encrypter and

decrypter would yield undesirable results.

 11

 The cryptanalyst algorithm tries to estimate M from the knowledge of the encrypted

message. However due to the ignorance of the encryption key fails to decrypt the

message. The security of the system resides only in the secrecy of the key K.

Figure 1.2: The secure communication model.

1.4 Project Modules.

The Project was broken into following work phases/ modules.

• Selection of the Cryptographic Algorithms.

• Study of Advanced Encryption Standards (AES).

• Matlab Implementation of the Advanced Encryption Standard.

• Design Of the speech encryption system.

• C-coding

• Real Time implementation.

1.4.1 Selection of the Cryptographic Algorithms.

The very first phase was the selection of the cryptographic algorithm. We selected

advanced encryption standard which is arguably the most secure algorithm in the

present day world. The in detail reasoning as to how AES evolved to have the stated

status are explained the chapter 3.

 12

1.4.2 Study of Advanced Encryption Standards (AES).

Having selected the cryptographic algorithm the next task at hand was to study and

develop adequate understanding. The FIPS 197 and the Rijndael submission by its

authors to NIST were the two documents that proved to be very helpful. These

documents explain the standard down to smallest details such as mathematical

preliminaries. Once the study of the algorithm was completed the next phase was its

implementation.

1.4.3 Matlab Design of the Advanced Encryption Standard.

The Matlab design of the algorithm is explained in detail in Chapter 4 of this

document. The Matlab implementation of the standard was perhaps the most

important aid to understand the functionality of the algorithm. Matlab is a powerful

design tool which enabled us to leave the programming worries aside and concentrate

on understanding the algorithm. All the test vectors given the FIPS 197 were verified

thus proving the correctness of the implementation.

1.4.4 Design of the speech encryption system.

The authors of the Rijndael had specifically stated the suitability of the algorithm for

ATM, HDTV, B-ISDN, voice and satellite. Hence AES was put to use to encrypt

audio.

Once having implemented the Advanced Encryption Standard in Matlab, the code was

put to use to encrypt audio. The computational intensive nature of the algorithm and

also the fact that Matlab is essentially a design tool hampered the real time

implementation on the said platform. However this was not an intended goal from the

 13

very beginning. The Matlab implementation however helped to judge the feasibility of

the project and the transmission of the encrypted speech on the channel.

1.4.5 C-coding

The next important task at hand was the C coding of the AES. The implementation in

Matlab had simplified the task as the algo was clear now. The encrypter and

decrypted were implemented initially in C++, however the code was slightly modified

to convert it to C which was required for the implementation on the DSK 6711. The

C++ implementation achieved the desired result on an 800 MHz processor and the

real time implementation was now visible as possible.

1.4.6 Real Time implementation.

The final task of the Project was the real time encryption and decryption. Two

Platforms were considered in this regard i.e. The DSK6711 and the PC.

A complete secure communication system was realized using the windows based

personal computers communicating via the serial port.

 14

Chapter 2

Cryptology.

2.1 Introduction

 Cryptography is the study of mathematical techniques related to aspects of

information security such as confidentiality, data integrity, entity authentication, and

data origin authentication. Cryptography has a long and fascinating history. It is a

complex art which has been practiced over the ages. The predominant practitioners of

the art were those associated with the military, the diplomatic service and government

in general. Encryption was used as a tool to protect national secrets and strategies.

The proliferation of computers and communications systems in the 1960s brought

with it a demand from the private sector for means to protect information in digital

form and to provide security services. Beginning with the work of Feistel at IBM in

the early 1970s and culminating in 1977 with the adoption as a U.S. Federal

Information Processing Standard for encrypting unclassified information, DES, the

Data Encryption Standard. Over the centuries, an elaborate set of protocols and

mechanisms has been created to deal with information security issues when the

information is conveyed by physical documents. Often the objectives of information

security cannot solely be achieved through mathematical algorithms and protocols

alone, but require procedural techniques and abidance of laws to achieve the desired

result.

Conceptually, the way information is recorded has not changed dramatically over

time. Whereas information was typically stored and transmitted on paper, much of it

 15

now resides on magnetic media and is transmitted via telecommunications systems,

some wireless. What has changed dramatically is the ability to copy and alter

information. One can make thousands of identical copies of a piece of information

stored electronically and each is indistinguishable from the original. With information

on paper, this is much more difficult. What is needed then for a setup where

information is mostly stored and transmitted in electronic form is a means to ensure

information security which is independent of the physical medium recording or

conveying it and such that the objectives of information security rely solely on digital

information itself. Information security manifests itself in many ways according to the

situation and requirement. Achieving information security in an electronic society

requires a vast array of technical and legal skills. There is, however, no guarantee that

all of the information security objectives deemed necessary can be adequately met.

The technical means is provided through cryptography.

2.2 Cryptographic goals

 Of all the information security objectives, the following four form a framework upon

which the others are derived:

• Privacy or confidentiality.

• Data integrity.

• Authentication.

• Non-repudiation.

2.2.1 Confidentiality

 It is a service used to keep the content of information from all but those authorized to

have it. Secrecy is a term synonymous with confidentiality and privacy. There are

 16

numerous approaches to providing confidentiality, ranging from physical protection to

mathematical algorithms which render data unintelligible.

2.2.2 Data integrity

 This service addresses the unauthorized alteration of data. To assure data integrity,

one must have the ability to detect data manipulation by unauthorized parties. Data

manipulation includes such things as insertion, deletion, and substitution.

2.2.3 Authentication

 It is a service related to identification. This function applies to both entities and

information itself. Two parties entering into a communication should identify each

other. Information delivered over a channel should be authenticated as to origin, date

of origin, data content, time sent, etc. For these reasons this aspect of cryptography is

usually subdivided into two major classes: entity authentication and data origin

authentication. Data origin authentication implicitly provides data integrity (for if a

message is modified, the source has changed).

2.2.4 Non-repudiation

 Non-repudiation is a service which prevents an entity from denying previous

commitments or actions. When disputes arise due to an entity denying that certain

actions were taken, a means to resolve the situation is necessary. For example, one

entity may authorize the purchase of property by another entity and later deny such

authorization was granted. A procedure involving a trusted third party is needed to

resolve the dispute.

 17

A fundamental goal of cryptography is to adequately address these four areas in both

theory and practice. Cryptography is about the prevention and detection of cheating

and other malicious activities.

2.3 Criterion for Assessing Cryptographic Algorithms.

 The cryptographic algorithm comes with their own weaknesses and strength. There

cannot be a standard measuring of the ability of the cryptographic tools; however over

the years various criterions have been set to asses the cryptographic algorithms. They

are as follows.

• Level of security.

• Functionality.

• Methods of operation.

• Performance. Ease of implementation.

2.3.1 Level of security.

 This is usually difficult to quantify. Often it is given in terms of the number of

operations required (using the best methods currently known) to defeat the intended

objective. For example to break the security of a key based algorithm it would be

typical to calculate all the possible key combinations. Recently the Data Encryption

Standard was cracked in a similar fashion by brute force attack. The level of security

of a key based algorithm can be increased by increasing the key size. Typically the

level of security is defined by an upper bound on the amount of work necessary to

defeat the objective. This is sometimes called the work factor.

 18

2.3.2 Functionality.

 Cryptographic algorithms will need to be combined to meet various information

security objectives. Which cryptographic algorithms are most effective for a given

objective will be determined by the basic properties of the cryptographic algorithms.

2.3.3 Methods of operation.

 Cryptographic algorithms, when applied in various ways and with various inputs, will

typically exhibit different characteristics; thus, one primitive could provide very

different functionality depending on its mode of operation or usage.

2.3.4 Performance.

 This refers to the efficiency of a primitive in a particular mode of operation.

(For example, an encryption algorithm may be rated by the number of bits per second

which it can encrypt.)

2.3.5 Ease of implementation.

 This refers to the difficulty of realizing the primitive in a practical instantiation. This

might include the complexity of implementing the primitive in either a software or

hardware environment. The relative importance of various criteria is very much

dependent on the application and resources available. For example, in an environment

 19

where computing power is limited one may have to trade off a very high level of

security for better performance of the system as a whole. Cryptography, over the ages,

has been an art practiced by many who have devised ad hoc techniques to meet some

of the information security requirements. The last twenty years have been a period of

transition as the discipline moved from an art to a science. There are now several

international scientific conferences devoted exclusively to cryptography and also an

international scientific organization, the International Association for Cryptologic

Research (IACR), aimed at fostering research in the area.

2.4 A taxonomy of cryptographic primitives.

 Security Primitives can be broadly classified as

• Unkeyed Primitives.

• Symmetric-key Primitives.

• Public-key Primitives.

2.4.1 Unkeyed Primitives.

 The Unkeyed primitives are those which donot make use of a key for encrypting the
plain text. They can be further classified as

• Arbitrary length hash functions
• One-way permutations

2.4.1.1 Arbitrary length hash functions

 A hash function is a computationally efficient function mapping binary strings of

arbitrary length to binary strings of some fixed length, called hash-values.

 20

2.4.1.2 One-way permutations

 Permutations are functions which are often used in various cryptographic constructs.

A permutation p on S is a bijection. For example permutation p: S −S is defined as

follows:

P (1) = 3; P (2) = 5; P (3) = 4; P (4) = 2; P (5) = 1:

A permutation can be described in various ways. It can be displayed as above or as an

array:

P = (1 2 3 4 5)
 (3 5 4 2 1)

2.4.2 Symmetric Key Primitives.

 They are further classified as.

• Symmetric-key ciphers

• Pseudorandom sequences

2.4.2.1 Symmetric-key ciphers

 The cryptographic primitives that make use of the same key for encryption and

decryption are known as symmetric key primitives.

 21

Symmetric Key ciphers are further classified as

• Block Ciphers

• Stream Ciphers.

2.4.2.1.1 Block Ciphers

 A block cipher is a function which maps n-bit plaintext blocks to n-bit cipher text

blocks; n is called the block length. Symmetric-key block ciphers are the most

prominent and important elements in many cryptographic systems. Individually, they

provide confidentiality. As a fundamental building block, their versatility allows

construction of pseudorandom number generators, stream ciphers, MACs, and hash

functions. They may furthermore serve as a central component in message

authentication techniques, data integrity mechanisms, entity authentication protocols,

and (symmetric-key) digital signature schemes. This chapter examines symmetric-key

block ciphers, including both general concepts and details of specific algorithms. No

block cipher is ideally suited for all applications, even one offering a high level of

security. This is a result of inevitable tradeoffs required in practical applications,

including those arising from, for example, speed requirements and memory

limitations (e.g., code size, data size, cache memory), constraints imposed by

implementation platforms (e.g., hardware, software, chip cards), and differing

tolerances of applications to properties of various modes of operation. In addition,

efficiency must typically be traded off against security. Thus it is beneficial to have a

number of candidate ciphers from which to draw.

 22

2.4.2.1.2 Stream Ciphers.

 Stream ciphers are an important class of encryption algorithms. They encrypt

individual characters (usually binary digits) of a plaintext message one at a time,

using an encryption transformation which varies with time. By contrast, block ciphers

tend to simultaneously encrypt groups of characters of a plaintext message using a

fixed encryption transformation. Stream ciphers are generally faster than block

ciphers in hardware, and have less complex hardware circuitry. They are also more

appropriate, and in some cases mandatory (e.g., in some telecommunications

applications), when buffering is limited or when characters must be individually

processed as they are received. Because they have limited or no error propagation,

stream ciphers may also be advantageous in situations where transmission errors are

highly probable. There is a vast body of theoretical knowledge on stream ciphers, and

various design principles for stream ciphers have been proposed and extensively

analyzed. However, there are relatively few fully-specified stream cipher algorithms

in the open literature. This unfortunate

state of affairs can partially be explained by the fact that most stream ciphers used in

practice tend to be proprietary and confidential. By contrast, numerous concrete block

cipher proposals have been published, some of which have been standardized or

placed in the public domain. Nevertheless, because of their significant advantages,

stream ciphers are widely used today, and one can expect increasingly more concrete

proposals in the coming years.

2.4.2.2 Pseudorandom sequences

 The Pseudorandom sequences are those sequences which are triggered by a key.

The encryption and decryption of such a sequence is done through similar key.

 23

2.4.3 Public-key Primitives.

 They are further classified as

• Public-key ciphers

• Identification primitives

• Signatures

2.4.3.1 Public-key ciphers

 The cryptographic primitives that make use of a different key for encryption and

decryption are known as public key ciphers.

2.4.3.2 Identification primitives

 An identification or entity authentication technique assures one party (through

acquisition of corroborative evidence) of both the identity of a second party involved,

and that the second was active at the time the evidence was created or acquired.

Typically the only data transmitted is that necessary to identify the communicating

parties. The entities are both active in the communication, giving a timeliness

guarantee.

2.4.3.3 Signatures

 A cryptographic primitive which is fundamental in authentication, authorization, and

non repudiation is the digital signature. The purpose of a digital signature is to

provide a means for an entity to bind its identity to a piece of information. The

 24

process of signing entails transforming the message and some secret information held

by the entity into a tag called

a signature.

2.5 Classes of attacks and security models

 Over the years, many different types of attacks on cryptographic primitives and

protocols have been identified. The attacks these adversaries can mount may be

classified as follows:.

• A passive attack is one where the adversary only monitors the communication

channel. A passive attacker only threatens confidentiality of data.

• An active attack is one where the adversary attempts to delete, add, or in some

other way alter the transmission on the channel. An active attacker threatens data

integrity and authentication as well as confidentiality.

A passive attack can be further subdivided into more specialized attacks for deducing

plaintext from cipher text

2.5.1 Attacks on encryption schemes

 The objective of the following attacks is to systematically recover plaintext from

cipher text, or even more drastically, to deduce the decryption key.

 A cipher text-only attack is one where the adversary (or cryptanalyst) tries to deduce

the decryption key or plaintext by only observing cipher text. Any encryption scheme

vulnerable to this type of attack is considered to be completely insecure.

 25

2.5.1.1 Known-plaintext attack

 A known-plaintext attack is one where the adversary has a quantity of plaintext and

corresponding cipher text. This type of attack is typically only marginally more

difficult to mount.

2.5.1.2 Chosen-plaintext attack

 A chosen-plaintext attack is one where the adversary chooses plaintext and is then

given corresponding cipher text. Subsequently, the adversary uses any information

deduced in order to recover plaintext corresponding to previously unseen cipher text.

2.5.1.3 Adaptive chosen-plaintext attack

 An adaptive chosen-plaintext attack is a chosen-plaintext attack wherein the choice

of plaintext may depend on the cipher text received from previous requests.

2.5.1.4 Chosen-cipher text attack

 A chosen-cipher text attack is one where the adversary selects the ciphertext and is

then given the corresponding plaintext. One way to mount such an attack is for the

adversary to gain access to the equipment used for decryption (but not the decryption

key, which may be securely embedded in the equipment). The objective is then to be

able, without access to such equipment, to deduce the plaintext from (different) cipher

text.

 26

2.5.1.5 Adaptive chosen-cipher text attack

 An adaptive chosen-cipher text attack is a chosen-cipher text attack where the

choice of cipher text may depend on the plaintext received from previous requests.

Most of these attacks also apply to digital signature schemes and message

authentication codes. In this case, the objective of the attacker is to forge messages or

Macs.

2.5.2 Models for evaluating security

 The security of cryptographic primitives and protocols can be evaluated under

several different models. The most practical security metrics are computational,

provable, and ad hoc methodology, although the latter is often dangerous. The

confidence level in the amount of security provided by a primitive or protocol based

on computational or ad hoc security increases with time and investigation of the

scheme. Following are the models for evaluating security.

• Unconditional security

• Complexity-theoretic security

• Provable security

• Computational security

• Ad hoc security

2.5.2.1 Unconditional security

 The most stringent measure is an information-theoretic measure – whether or not a

system has unconditional security. An adversary is assumed to have unlimited

computational resources, and the question is whether or not there is enough

 27

information available to defeat the system. Unconditional security for encryption

systems is called perfect secrecy. For perfect secrecy, the uncertainty in the plaintext,

after observing the cipher text, must be equal to the a priori uncertainty about the

plaintext – observation of the cipher text provides no information whatsoever to an

adversary. A necessary condition for a symmetric-key encryption scheme to be

unconditionally secure is that the key be at least as long as the message.

2.5.2.2 Complexity-theoretic security

 An appropriate model of computation is defined and adversaries are modeled as

having polynomial computational power. (They mount attacks involving time and

space polynomial in the size of appropriate security parameters.) A proof of security

relative to the model is then constructed. An objective is to design a cryptographic

method based on the weakest assumptions possible anticipating a powerful adversary.

Asymptotic analysis and usually also worst-case analysis is used and so care must be

exercised to determine when proofs have practical significance. In contrast,

polynomial attacks which are feasible under the model might, in practice, still be

computationally infeasible. Security analysis of this type, although not of practical

value in all cases, may nonetheless pave the way to a better overall understanding of

security. Complexity-theoretic analysis is invaluable for formulating fundamental

principles and confirming intuition. This is like many other sciences, whose practical

techniques are discovered early in the development, well before a theoretical basis

and understanding is attained.

 28

2.5.2.3 Provable security

 A cryptographic method is said to be provably secure if the difficulty of defeating it

can be shown to be essentially as difficult as solving a well-known and supposedly

difficult (typically number-theoretic) problem, such as integer factorization or the

computation of discrete logarithms. Thus, “provable” here means provable subject to

assumptions. This approach is considered by some to be as good a practical analysis

technique as exists. Provable security may be considered part of a special sub-class of

the larger class of computational security considered next.

2.5.2.4 Computational security

 This measure the amount of computational effort required, by the best currently-

known methods, to defeat a system; it must be assumed here that the system has been

well-studied to determine which attacks are relevant. A proposed technique is said to

be computationally secure if the perceived level of computation required to defeat it

(using the best attack known) exceeds, by a comfortable margin, the computational

resources of the hypothesized adversary. Often methods in this class are related to

hard problems but, unlike for provable security, no proof of equivalence is known.

Most of the best known public-key and symmetric key schemes in current use are in

this class. This class is sometimes also called practical security.

2.5.2.5 Ad hoc security

 This approach consists of any variety of convincing arguments that every successful

attack requires a resource level (e.g., time and space) greater than the fixed resources

of a perceived adversary. Cryptographic primitives and protocols which survive such

analysis are said to have heuristic security, with security here typically in the

computational sense.

 29

Chapter 3

Evolution of the Advanced Encryption

Standard (AES).

3.1 Introduction.

 Cryptology is the art and science of making and breaking mathematical schemes

that attempt to prevent the disclosure of information to others. It is most often used to

conceal information hat could be potentially harmful if it was made publicly

available.

The great majority of Cryptology that most people know of comes directly from the

ideas of classical Cryptology, where poly alphabetic substitution and other trivial

methods are used to try to protect secret messages. Children often use single

alphabetic substitution to encipher messages they send to friends, and it should be

noted that such encryption can often be broken in a fraction of a second on a modern

personal computer.

Modern Cryptology, in contrast with classical Cryptology, is often much more

mathematically involved. It is modern Cryptology that plays the greatest role in our

everyday lives, and it is modern Cryptology that is most often used on computers.

Cryptology is needed in today's world for many reasons. It is often used for secure

online transactions over the Internet, banking, digital authentication and verification,

electronic mail, online privacy, and many other situations where private

communications are required.

 30

Modern Cryptology has its roots in mathematics because mathematics makes it easier

to understand and verify that a cryptosystem is indeed secure. These mathematical

problems are easy to solve given some inputs, but it is nearly impossible to recover

the original inputs if given the answer. Cryptology as a whole consists of two main

areas of study: cryptography and cryptanalysis. Cryptography is simply

defined as the art of creating and using cryptosystems, where a cryptosystem is any

way of disguising messages so that only certain people can see through the veil of

secrecy. Cryptanalysis, in turn, is the art of breaking cryptosystems, or in other words

seeing through the veil of secrecy even when one is not the person to whom the

message was intended.

Both cryptography and cryptanalysis are intense areas of study in today's world, as the

demand for communications security reaches unprecedented levels. Just as modern

technology has increased the strength and complexity of cryptosystems, it has also

allowed for the creation of a wider range of increasingly sophisticated attacks against

them.

3.2 Need for encryption

 Streams of information flow around the world. More and more networks are

being set up both locally and globally. The channels through which your information

passes are increasingly being taken out of control. Transmission actually takes place

via invisible high-tech channels, and although this is very efficient, it is not

secure. Particularly if your data is sensitive and much depends on its content.

What can actually happen to your information while en route? You have probably

asked yourself that question many times and probably imagined something worrying.

You don‘t want any unauthorized persons reading, viewing or listening to confidential

information, manipulating data, or helping themselves to the traffic on the data

 31

highway.

Encryption is an elegant way of solving security problems against unauthorized

access, even before they have begun their travels. Flexibility and modular structure

enable solutions that are completely tailor-made to your special needs as a public

authority or company. Cryptography is the science of encrypting and decrypting data

for security reasons. The above-mentioned security services can now be performed by

implementing cryptographic mechanisms. These mechanisms use cryptographic

algorithms. Different solutions use symmetric encryption schemes (secret key

cryptography) as well as asymmetric encryption schemes (public key cryptography).

These solutions are based upon highest quality proprietary symmetric cipher

algorithms and well known public key mechanisms like RSA, Diffie-Hellman, elliptic

curves etc.

3.3 Necessity of an Encryption Standard.

 In 1972, the National Institute of Standards and Technology (called the National

Bureau of Standards at the time) decided that a strong cryptographic algorithm was

needed to protect non-classified information. The algorithm was required to be cheap,

widely available, and very secure. NIST envisioned something that would be

available to the general public and could be used in a wide variety of applications. So

they asked for public proposals for such an algorithm

3.4 The Predecessor Of AES ;
 Data Encryption Standard (DES).

 In 1974 IBM submitted the Lucifer algorithm, which appeared to meet most of

NIST's design requirements. NIST enlisted the help of the National Security Agency

to evaluate the security of Lucifer. At the time many people distrusted the NSA due to

 32

their extremely secretive activities, so there was initially a certain degree of

skepticism regarding the analysis of Lucifer. One of the greatest worries was that the

key length, originally 128 bits, was reduced to just 56 bits, weakening it significantly.

The NSA was also accused of changing the algorithm to plant a "back door" in it that

would allow agents to decrypt any information without having to know the encryption

key. But these fears proved unjustified and no such back door has ever been found.

The modified Lucifer algorithm was adopted by NIST as a federal standard on

November 23, 1976. Its name was changed to the Data Encryption Standard (DES).

The algorithm specification was published in January 1977, and with the official

backing of the government it became a very widely employed algorithm in a short

amount of time. For many years the well-known cipher DES (Digital Encryption

Standard) was the cryptographic standard for unclassified use within the USA. DES

has been applied in banks as well as in many software- and hardware products for

more than 20 years. One could say that this algorithm is the most widespread cipher at

all. Some experts warned that some trapdoor might be built in because the secret

service NSA was consulted during the design. Such a trapdoor was never found,

although significant theoretical weaknesses which could hardly be exploited in

practice were identified shortly after DES was adopted. DES encrypts and decrypts

data in 64-bit blocks, using a 64-bit key .It takes a 64-bit block of plaintext as input

and outputs a 64-bit block of ciphertext. Since it always operates on blocks of equal

size and it uses both permutations and substitutions in the algorithm, DES is both a

block cipher and a product cipher. DES has 16 rounds, meaning the main algorithm is

repeated 16 times to produce the ciphertext. It has been found that the number of

rounds is exponentially proportional to the amount of time required to find a key

using a brute-force attack. So as the number of rounds increases, the security of the

 33

algorithm increases exponentially. Although the input key for DES is 64 bits long, the

actual key used by DES is only 56 bits in length. The least significant (right-most) bit

in each byte is a parity bit, and should be set so that there are always an odd number

of 1s in every byte. These parity bits are ignored, so only the seven most significant

bits of each byte are used, resulting in a key length of 56 bits.

3.5 The Cracking of DES

 The weak point of DES was not its design, but its key size of only 56 bit. This

corresponds to about 72,000,000,000,000,000 possible keys. In the seventies (when

DES was introduced), this was an astronomical number. Meanwhile hardware has

become very fast. In summer 1998 an organization named EFF built and

demonstrated a special computer, Deep Crack, that could decrypt a DES-enciphered

text within an average time of 4.5 days. Crypto experts were not surprised.

Unfortunately, over time various shortcut attacks were found that could significantly

reduce the amount of time needed to find a DES key by brute force. And as computers

became progressively faster and more powerful, it was recognized that a 56-bit key

was simply not large enough for high security applications. As a result of these

serious flaws, NIST abandoned their official endorsement of DES in 1997 and began

work on a replacement, to be called the Advanced Encryption Standard (AES). As an

interim measure a variant of the DES algorithm known as triple DES or 3 DES was

put in place.

3.6 Triple DES (3DES)

 3DES is a threefold DES encryption in which two 56-bit keys are applied. That

means a practical security of 112 bits in strength which, as far we know today, should

be reasonably secure. Triple DES was the answer to many of the shortcomings of

 34

DES. Since it is based on the DES algorithm, it is very easy to modify existing

software to use Triple DES. It also has the advantage of proven reliability and a

longer key length that eliminates many of the shortcut attacks that can be used to

reduce the amount of time it takes to break DES. However, even this more powerful

version of DES was not strong enough to protect data for very much longer. The DES

algorithm itself has become obsolete and is in need of replacement. To this end the

National Institute of Standards and Technology (NIST) held a competition to develop

the Advanced Encryption Standard (AES) as a replacement for DES. Triple DES has

been endorsed by NIST as a temporary standard to be used until the AES was

finished.Triple DES is simply another mode of DES operation. It takes three 64-bit

keys, for an overall key length of 192 bits. In Stealth, you simply type in the entire

192-bit (24 character) key rather than entering each of the three keys individually. The

Triple DES then breaks the user provided key into three subkeys, padding the keys if

necessary so they are each 64 bits long. The procedure for encryption is exactly the

same as regular DES, but it is repeated three times. Hence the name Triple DES. The

data is encrypted with the first key, decrypted with the second key, and finally

encrypted again with the third key.

Figure 3.1 Block diagram of 3-DES

 35

3.7 The Competition for AES.

 DES was now outdated. Even 3DES did not fulfill the requirements of a modern

algorithm - it must be suited for implementation in software as well as in hardware.

(DES is functionally only hardware-friendly.) – The need for a new standard was

imminent. It was clear that the new standard must have variable key and block sizes

and - it must be able to resist all known crypt analytical attacks, even if these can not

be used in practice yet.

In the beginning of 1997 NIST formulated the call for a new algorithm with the name

“AES” (Advanced Encryption Standard). It was clear that this process would take a

long time: Still more than the design of a cipher, its analysis is an extraordinary

difficult task, except if the cipher is obviously weak. To say it frankly, this is an

unsolvable task. One can not prove that some algorithm is secure (with a single

exception of almost no practical interest); one can only show that known attack

methods do not work. Nevertheless, cryptographers have to take this challenge. Since

cryptanalysis has been strongly developed, particularly in the past decade, we have a

rich experience in cipher evaluation today.

3.7.1 AES Requirements

These requirements where formulated by NIST after public discussion, among others

during a workshop at 15 April 1997. Here are only some criteria: It must be a

symmetric cipher (the same key is used for encryption and decryption), more

precisely a block cipher. (The public cryptanalysis of so-called stream ciphers seems

not to

be so well developed). The block size must be at least 128 bits; keys of 128, 192 and

256 bits must be applicable. AES must be well suited to different purposes, thus is

 36

must be easy to implement in both hard and software and perform well in both cases.

AES must be able to resist all known methods of cryptanalysis. Especially, AES must

be resistant against timing and power attacks. For the use inside smartcards in

particular, it must be able to work with limited resource availability (short code, small

memory). There must be no patent right on the algorithm. It must be free to use for

everybody. A remark concerning the demanded key and block sizes is appropriate

here. During a public discussion in Germany some years ago, a legal expert declared

that trying out all possible keys is only a question of “dedication

and industriousness”. The example of a 256-bit key shows exactly how “dedication”

is really needed: Suppose, for instance, that you would store all 2256 possible keys

and only one atom were used for each key (currently nobody knows how to do that!).

The required memory would have a mass of about 1047 grams. This is about 1014

times the weight of a typical star. As Bruce Schneier has already mentioned, in such

cases the storage medium would create a black hole and thus never let out any

information. For 128-bit keys this memory would only have a mass of about 300 tons.

It would still store the incredible amount of 1024 TB. We did not speak yet about the

CPU to perform the necessary calculations. However, for AES such thought

experiments are no motivation. More realistic dangers are first that the still

hypothetical quantum computers could reach a new quality in parallelizing attacks.

Secondly, it is always possible that AES could be attacked more elegantly than with

brute force (i.e., trying all possible keys). In this case we need a large safety margin.

By the way, 3DES could never be an AES candidate because of its “short” key size of

112 bits.

 37

3.7.2 Creation of the Algorithm

Experts have said it over and over again: Only a publicly analyzed algorithm can be

secure. Ciphers with secret designs are almost always weak. There is an intrinsic

example for this: The algorithms A3 and A5 used in GSM mobile phones were

disclosed not long after their application. A3 is responsible for authentication. After

only one day of analysis it was broken: Mobile phones can be cloned in practice now

(i.e., you can create your own SIM card with a false number and use it charging

someone else). Even if an algorithm is known it should be clear why it was designed

just this way. If this is not clear, users will distrust it. The best example is DES: The

modification of the so-called “S-boxes” (presumably by NSA) caused the suspicion

that some trapdoor was built in. Some design principles were published years later,

but it was too late. However, the AES election procedure was really open: Anybody

could propose a cipher, the best cryptologists in the world analyzed it. And the design

principles were also published.

3.7.3 The Selection Procedure

The NIST received 15 proposals for algorithms. After thorough investigation, five

candidates remained. The best cryptanalysts of the world dealt with them. Now a pat

situation arose: All five algorithms were excellent and were also very hard to

compare. Each of them could have

easily become the new standard; none of them had any significant weak point. Each

of them had some advantages over the others - but what properties should be the most

important? During the Third AES conference Don B. Johnson (Certicom) asked in

two lectures: Must there be a best algorithm at all? Modern software anyway

 38

implements some normed crypto API and offers several algorithms in parallel. The

five AES candidates are small enough to be all contained in one product. Of course,

the situation for hardware is not so convenient. So it would be prudent to prefer

different algorithms for different purposes in hardware (smartcards, online

enciphering, enciphering,) and to offer all five in software. Such a flexibility would

have more advantages than disadvantages. Products that are fixed on some algorithm

would become suddenly insecure if a weakness of these algorithms is discovered in

spite of all expectations. Remember the use of DES in banks? It was applied for about

20 years. The switch to 3DES took several years and consumed huge amounts of

money. The Adoption of Rijndael Ultimately, NIST decided differently from what

most people expected - only one algorithm was the winner, Rijndael, the Belgian

algorithm developed by Joan Daemen and Vincent Rijmen. The official reasons for

this decision (which do not convince everyone) are as follows: -

-Should a weakness of Rijndael be discovered, larger key sizes will give more

security.

- In the worst case, 3DES could be an alternative for some time (3DES will remain

secure in the near future).

 - It is cheaper to implement one single algorithm (this argument is certainly only true

for hardware - R.W.)

- Developers of similar algorithms could claim patent rights. If only one algorithm is

selected, costs will be smaller.

The selection process was open and fair. Not long ago in the USA cryptographic

algorithms were still classified as “munitions.” Now a cipher developed in Belgium

and evaluated internationally will become a fundament of national security in the

 39

States, although not exclusively, since the US Government will apply it for “sensitive,

not classified” information only (and similarly the NSA). But in practice it will

dominate - in business, in good crypto products for private use etc. NIST expects AES

to be the base for enciphering for the next 20 years or more. There is no reason yet to

doubt these assertions.

3.7.4 A Chronology of the NIST AES Initiative

2.1.97: Call for algorithms, accepting proposals until 12.9.97.

5.4.97: During a public AES workshop, the detailed requirements are

formulated.

20.8.98: First AES Conference. NIST announces the receipt of 15 algorithms, sent by

cryptographers from all over the world. The public evaluation starts.

March 99: Second AES conference. Discussion of obtained results. 28 publications

had been submitted before and were put on the NIST homepage to make conference

discussions more effective.

15.4.99: End of public evaluation of all candidates. Five candidates (MARS, RC6,

Rijndael, Serpent, Twofish) are in the next round. Further work will be concentrated

on these algorithms from now.

13./14.4.00: Third AES Conference. The analysis of the final five candidates are

presented and discussed.

 40

15.5.00: End of public discussion.

2.10.00: The “winner,” Rijndael, is announced.

November 2000: The FIPS standard is published as a draft. Public comments are

possible.

February 2001: End of the public discussion of the standard.

April-June 2001: Confirmation of the FIPS standard.

3.7.5 Submitted algorithms

Round 1:

CAST-256: Entrust Technologies, Inc.
CRYPTON: Future Systems, Inc.
DEAL: Richard Outerbridge, Lars Knudsen
DFC: CNRS Centre National pour la Recherche
Scientifique - Ecole Normale Superieure
E2: NTT - Nippon Telegraph and Telephone Corporation
FROG: TecApro Internacional S.A.
HPC: Rich Schroeppel
LOKI97: Lawrie Brown, Josef Pieprzyk, Jennifer Seberry
MAGENTA: Deutsche Telekom AG
MARS: IBM
RC6: RSA Laboratories
RIJNDAEL: Joan Daemen, Vincent Rijmen
SAFER+: Cylink Corporation
SERPENT: Ross Anderson, Eli Biham, Lars Knudsen

H: Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, Niels
Ferguson
Round 2 finalists:

MARS
 RC6
 Rijndael
 Serpent
 Twofish

Selected after Round 3:

Rijndael

 41

 Chapter 4

The Advanced Encryption Standard

4.1 Introduction

AES is based on the block cipher Rijndael and became the designated successor of the

Data Encryption Standard (DES) which has been implemented in a tremendous

number of cryptographic modules worldwide since 1977.

4.2 Finite Field Arithmetics

 The following section introduces the different representation forms of a byte and

discusses the basic arithmetics of finite fields. A finite field, also called a Galois Field

, is a field with only finitely many elements. The finite field GF(28) e. g. consists of

the 28 = 256 di_erent numbers (0 . . . 255) represented by one byte (8 bits). Special

xor- and modulo-operations, explained in detail in the following sections, make sure

that the sum and the product of two finite field elements remain within the range of

the original finite field.

4.3 Polynomial Addition

 Usually two polynomials are added by adding the coefficients of like powers of x

according to Figure 1.

 Figure 4.1 Classical polynomial addition

 42

Since this might lead to some coefficients of the resulting polynomial not being 0 or 1

(e. g. 2x and 2 in Figure 1), this ”classical” sum does not represent a byte (i. e. an

element of the original finite field).In order to make sure that the resulting polynomial

has only binary coefficients, the xor (exclusive or) operation depicted in Table 1 is

used for the addition. Since the xor-”sum” of two 1’s is not 2 but 0 (1 xor 1 = 0), no 2-

coe_cient can appear.

Table 1: xor operation

Figure 4.2 Binary polynomial addition

The resulting byte 244d = F4h = 11110100b = x7 + x6 + x5 + x4 + x2 (6)

directly corresponds to the polynomial of Figure 1, if the ”non-binary” terms 2x and 2

are omitted there. The bit-wise xor operation bitxor is a build-in function of Matlab

and is used throughout AES, whenever two bytes are added:

bitxor (87, 163)

ans =244

 43

4.4 Polynomial Multiplication

 Two polynomials are multiplied by multiplying each summand of the first

polynomial by (every summand of) the second polynomial and adding the coefficients

of like powers

 Figure 4.3 ”Classical” polynomial multiplication

Once again, some coefficients of the resulting polynomial in Figure 5.3 are 2 or even

3 and have to be treated differently. The generalization of the xor-concept would now

omit every power having an even coefficient and reduce every odd coefficient to 1,

leading to a polynomial of x^13 + x^8 + x^7 + x^4 + x^3 + 1.On the bit level (see

Figure 4.4) the same result is achieved by shifting the second byte one bit to the left

for every bit in the first byte. If a bit in the first byte is 0, a 0-byte is used instead of

the second byte. Finally all corresponding bits are xor’ed.

Figure 4.4 Binary polynomial multiplication

 44

Unfortunately the resulting polynomial (7) has a degree greater than 7, can therefore

not be expressed in one byte (i. e. it is not a GF(28) element) and has to be

transformed back into the ”byte range” by the modulo division described in the next

section.

4.5 Polynomial Division

 The manual algorithm to divide two polynomials is depicted in Figure 4.5.

 Figure 4.5 Classical polynomial division

 The greatest power of the numerator (x13) is divided by the greatest power of the

denominator (x8) yielding the first resulting term (x5). This term is multiplied by the

complete denominator (! x13 + x9 + x8 + x6 + x5) and subtracted from the numerator,

resulting in a new numerator (-x9 +x7 -x6 -x5 +x4 +x3 +1). This procedure is

repeated until the greatest power of the new numerator has become less than the

greatest power of the

denominator. The final numerator (x7 - x6 + 2x4 + x3 + x2 + x + 1) is the remainder

of this modulo operation. Applying the ”generalized xor-rules” (even coefficients ! 0,

odd coefficients ! 1) to the remainder leaves the desired byte-conform polynomial: x7

+ x6 + x3 + x2 + x + 1 (8) The bit level operations illustrated in Figure 6 achieve the

same result by bit-wise shift and xor operations: The denominator is shifted to the left

until its most significant bit (MSB) matches the MSB of the numerator. The

subtraction is then performed via xor, resulting in a new, smaller numerator. The

shifting and xor-ing is repeated, until the resulting numerator (the remainder) fits into

one byte.

 45

 (8601 = 2199) d h

(207 = CF) d h

(283 = 11B) d h

 :
Figure 4.6 Binary polynomial division

4.7 Algorithm Specification

 In the AES algorithm, the length of the input block, the output block and the State

(which is formed by breaking the speech in the blocks) is 128 bits. For the AES

algorithm, the length of the Cipher Key, K, is variable and can be 128, 192, or 256

bits. For the AES algorithm, the number of rounds to be performed during the

execution of the algorithm is dependent on the key size. The only Key-Block-Round

combinations that conform to this standard are given in Fig.

 Key-Block-Round Combinations.

For both its Cipher and Inverse Cipher, the AES algorithm uses a round function that

is composed of four different byte-oriented transformations: 1) byte substitution using

a substitution table (S-box), 2) shifting rows of the State array by different offsets, 3)

 46

mixing the data within each column of the State array, and 4) adding a Round Key to

the State.

4.7.1 Cipher

 At the start of the Cipher, the input is copied to the State array. After an initial

Round Key addition, the State array is transformed by implementing a

round function 10, 12, or 14 times depending on the key length. The round function is

parameterized using a key schedule that consists of a one-dimensional array of four-

byte words derived using the Key Expansion routine. The individual transformations

involved in the algorithm are as follows: -

1) SubBytes()

2) ShiftRows(),

3) MixColumns(),

4) AddRoundKey()

The final round does not include the MixColumns() transformation.

4.7.2 SubBytes()Transformation

The SubBytes() transformation is a non-linear byte substitution that operates

independently on each byte of the State using a substitution table (S-box). The S-Box

is formed by taking the multiplicative inverse in the finite field and then applying the

affine transformation in the finite field GF (2^8) the element {00} is mapped to itself.

 47

Figure 4.7 S-box: substitution values for the byte xy (in hexadecimal format).

4.7.3 ShiftRows() Transformation

In the ShiftRows() transformation, the bytes in the last three rows of the State are

cyclically shifted over different numbers of bytes (offsets). The first row is not

shifted, row 1 is shifted over 1 byte, row 2 over 2 bytes and row 3 over 3 bytes. This

has the effect of moving bytes to “lower” positions in the row while the “lowest”

bytes wrap around into the “top” of the row.

 48

 Figure 4.8 ShiftRows() cyclically shifts the last three rows in the
State.

4.7.4 MixColumns() Transformation

The function Mixcolumns multiplies each column of the state with the irreducible

polynomial given by the following matrix.

 x= [2 3 1 1

 1 2 3 1

 1 1 2 3

 3 1 1 2];

The multiplication in the finite field is different from the ordinary multiplication, this

is achieved by the function polymult() as shown in the figure

 49

.

 Figure 4.9 MixColumns()operates on the State column-by-
column.

4.7.5 AddRoundKey() Transformation

 In the AddRoundKey() transformation, a Round Key is added to the State by a

simple bitwise exclusive or (XOR) operation. The function receives at its input the

state, the round number and the array containing the expanded keys. With the

information of the round number it extracts the round key for that particular round.

Next it performs the bit xor of the state and the round key. This function is called

iteratively by the function cipher

 50

 Figure 4.10 Add round key transformation

4.8 Inverse Cipher

 The Cipher transformations can be inverted and then implemented in reverse order

to produce a straightforward Inverse Cipher for the AES algorithm. The individual

transformations used in the Inverse Cipher are

• InvShiftRows(),

• InvSubBytes()

• InvMixColumns(),

• AddRoundKey()

4.8.1 InvShiftRows() Transformation

 In Inverse Shiftrows, the rows of the State are cyclically shifted over different

offsets. Row 0 is not shifted; Row 1 is shifted over 1 byte, row 2 over 2 bytes and row

3 over 3 bytes. In Matlab this is achieved by a very simple approach of matrix re

assignment.

.

 51

 Figure 4.11 InvShiftRows()cyclically shifts the last three rows in the State.

4.8.2 InvSubBytes() Transformation

The variable Sbox contains the Sbox used in Subbytes. The S-Box is formed by

taking the multiplicative inverse in the finite field and then applying the affine

transformation in the finite field GF (2^8) the element {00} is mapped to itself. The

Matlab function Inverse Subbytes uses the code book method and uses an already

stored Sbox hence increasing the execution speed. This function accepts the state

(which is formed by breaking the speech in the blocks of 128 bit). The function has an

already stored Sbox through which the substitution is done.

4.8.3 InvMixColumns() Transformation

The function Inverse Mixcolumns multiplies each column of the state with the

irreducible polynomial given by the following matrix.

 x= [2 3 1 1

 1 2 3 1

 1 1 2 3

 3 1 1 2];

 52

The multiplication in the finite field is different from the ordinary multiplication, this

is achieved by the function polymult() as shown in the figure.

 Figure 4.12 Matrix multiplication in Inverse Mix columns

4.8.4 Inverse of the AddRoundKey() Transformation

AddRoundKey, is its own inverse, since it only involves an application of the XOR

operation.

 53

Chapter 5

Design Of the project

5.1 Introduction

 The actual implementation of AES based encryption system required an

implementation of the standard and the verification of the test vectors given in the

FIPS 197.The software we chose for the design simulation and testing of our project

is MATLAB. This chapter discusses a Matlab implementation speech encryption

system based on the Advanced Encryption Standard. AES is based on the block cipher

Rijndael and became the designated successor of the Data Encryption Standard (DES)

which has been implemented in a tremendous number of cryptographic modules

worldwide since 1977. Matlab is a matrix-oriented programming language, perfectly

suited for the matrix-based data structure of AES. This implementation is fully

operational and executes a speech encryption system based on the advanced

encryption standard. The main optimization parameter of this implementation has

been execution speed. The shifting and substitution functions have not been coded

algorithmically step-by-step instead simple predefined lookup tables have been used.

Furthermore, in order to minimize the number of if-then-else-conditions, a key length

of 128 bits (16 bytes) has been implemented only; the extension to 24 or 32 bytes key

lengths, as defined in, can easily be realized by altering the corresponding constants.

The test vectors given in the FIPS 197 have been encrypted and decrypted with

successful results. The speech encryption based on AES has been achieved in this

implementation. Speech is recorded as wave files using the sound card. It is sampled

 54

at the Nyquist rate and saved as an array. This array is then mu-law encoded. The

sampled and mu-law encoded speech is broken up in

packets of 128 bits. Each packet is then reshaped to give it the form of a 4 x 4 array

that is the standard form of the AES state. It is then encrypted using the cipher. The

encrypted speech is then deciphered. The study of the channel effects on the

encrypted speech is underway which would ascertain the feasibility of the wire line or

wireless transmission of the ciphered data.

5.2 MATLAB the Language of Technical Computing:

The choice of MATLAB as a test tool was quite obvious. No other software

gives you as much of flexibility and enhanced features as are given in MATLAB. The

language is being used for design testing and simulation in more than 100 fields of

sciences and engineering, which include signal processing, DSP, communications,

artificial intelligence, fuzzy logic, neural networks, control system design, data

acquisition, image processing, power systems, optimization, spline, statistics,

symbolic mathematics, 3d Calculus, system design, system identification, wavelets,

financial derivatives and time series, filter design etc. No other software can be used

for such an extensive design and testing of communication or signal processing

designs. We used the software for communication based system design and

simulation.

5.3 Intended Goals of Matlab implementation:

 To analyze the working of an AES based encryption system we focused on

following aspects.

• Implementation of the AES, encryption and decryption.

 55

• Verification of the test vectors given in the standard.

• Study the suitability of AES for speech and image encryption.

 The AES based encrypter and decrypter was programmed in MATLAB and the

subsequent testing was carried out. The following sections illustrate the MATLAB

implementation of the AES. The main optimization parameter of this implementation

has been execution speed. The shifting and substitution functions have not been coded

algorithmically step-by-step instead simple predefined lookup tables have been used.

Furthermore, in order to minimize the number of if-then-else-conditions, a key length

of 128 bits (16 bytes) has been implemented only; the extension to 24 or 32 bytes key

lengths, as defined in, can easily be realized by altering the corresponding constants.

The test vectors given in the FIPS 197 have been encrypted and decrypted with

successful results.

5.4 Modular Description of the Matlab Implementation.

The Matlab implementation can be described to be in three distinct modules

• Encrypter
• Decrypter
• The key generator.

A description of the modules and the member functions is given as follows.

5.4.1 Encrypt.

 The function encrypt performs the encryption of the 128 bit block given to it as

the input. The function also receives the encryption key.

 This function calls the following member function.

• Subbytes ()

• Shiftrows ()

 56

• Mixcolumns ()

• Addroundkey ()

Figure 5.1 The Flow Diagram of Operations

5.4.1.1 Subbytes ()

 The variable Sbox contains the Sbox used in Subbytes. The S-Box is formed by

taking the multiplicative inverse in the finite field and then applying the affine

transformation in the finite field GF (2^8) the element {00} is mapped to itself. The

Matlab function Subbytes uses the code book method and uses an already stored Sbox

hence increasing the execution speed. This function accepts the state (which is

 57

formed by breaking the speech in the blocks of 128 bit). The function has an already

stored Sbox through which the substitution is done.

 Figure 5.2 Flow Diagram of Subbytes

The Matlab code for Subbytes is given as under.

 [m,n]=size(state);
 z=dec2hex(state,2);

 for i=1:(m*n)
 state_s(i)=sbox(hex2dec(z(i,1))+1,hex2dec(z(i,2))+1);
 end
 state_s=reshape(state_s,m,n)';
 state_sd=dec2hex(state_s);

 58

5.4.1.2 Shiftrows.

In Shiftrows, the rows of the State are cyclically shifted over different offsets.

Row 0 is not shifted; Row 1 is shifted over 1 byte, row 2 over 2 bytes and row 3 over

3 bytes. In Matlab this is achieved by a very simple approach of matrix re assignment.

The code for this reassignment is as follows.

function state_s=shiftrows(state)

a=reshape(state,4,4)';

state_s=[a(1,1) a(1,2) a(1,3) a(1,4)
 a(2,2) a(2,3) a(2,4) a(2,1)
 a(3,3) a(3,4) a(3,1) a(3,2)
 a(4,4) a(4,1) a(4,2) a(4,3)];

Figure 5.3 The Matlab Function Shift rows.

5.4.1.3 Mixcolumns.

The function Mixcolumns multiplies each column of the state with the

irreducible polynomial given by the following matrix.

x= [2 3 1 1

 1 2 3 1

 1 1 2 3

 3 1 1 2];

The multiplication in the finite field is different from the ordinary multiplication, this

is achieved by the function polymult() as shown in the figure.

 59

Figure 5.4 Multiplication in Mixcolumns

The code for the function Mixcolumns is given as

function state_m=mixcolumns(state)

x=[2 3 1 1
 1 2 3 1
 1 1 2 3
 3 1 1 2];
mod_pol = bin2dec ('100011011');
for i_col_state = 1 : 4
 for i_row_state = 1 : 4
 temp_state = 0;
 for i_inner = 1 : 4
 temp_prod = polymult (x(i_row_state, i_inner),state(i_inner,
i_col_state),mod_pol);
 temp_state = bitxor (temp_state, temp_prod);
 end
 state_m(i_row_state, i_col_state) = temp_state;
 end
 end

Figure 5.5 Matlab Code for Mixcolumns.

5.4.1.4 Addroundkey.

The function addroundkey performs the bitwise xor of the state and the round

key. The function receives at its input the state, the round number and the array

 60

containing the expanded keys. With the information of the round number it extracts

the round key for that particular round. Next it performs the bit xor of the state and the

round key. This function is called iteratively by the function cipher.

5.4.2 Decrypt.

 The function decrypt performs the decryption of the 128 bit encrypted block given

to it as the input. The function also receives the encryption key.

 This function calls the following member function.

• Inverse Subbytes ()

• Inverse Shiftrows ()

• Inverse Mixcolumns ()

• Addroundkey ()

Figure 5.6 Modular Diagram OF Decrypt

 61

5.4.2.1 Inverse Subbytes

 The variable Sbox contains the Sbox used in Subbytes. The S-Box is formed by

taking the multiplicative inverse in the finite field and then applying the affine

transformation in the finite field GF (2^8) the element {00} is mapped to itself. The

Matlab function Inverse Subbytes uses the code book method and uses an already

stored Sbox hence increasing the execution speed. This function accepts the state

(which is formed by breaking the speech in the blocks of 128 bit). The function has an

already stored Sbox through which the substitution is done.

 Figure 5.7 Modular description of Inv Subbytes

The Matlab code for Inverse Subbytes is given as under.

 62

 function state_s=invsubbytes(state);

 [m,n]=size(state);

 z=dec2hex(state);

 for i=1:(m*n)

 state_s(i)=invsbox(hex2dec(z(i,1))+1,hex2dec(z(i,2))+1);
 end
 state_s=reshape(state_s,m,n);
 state_sd=dec2hex(state_s);

 Figure 5.8 Matlab Function invsubbytes

5.4.2.2 Inverse Shiftrows.

In Inverse Shiftrows, the rows of the State are cyclically shifted over different

offsets. Row 0 is not shifted; Row 1 is shifted over 1 byte, row 2 over 2 bytes and row

3 over 3 bytes. In Matlab this is achieved by a very simple approach of matrix re

assignment. The code for this reassignment is given below.

function state_s=invshiftrows(state)

a = state;

state _s=[a(1,1) a(1,2) a(1,3) a(1,4)
 a(2,4) a(2,1) a(2,2) a(2,3)
 a(3,3) a(3,4) a(3,1) a(3,2)
 a(4,2) a(4,3) a(4,4) a(4,1)];

Figure 5.9 The Matlab Function Inverse Shift rows.

Graphically the transformation can be shown as

 63

Figure 5.10 Matrix operations In Shift rows.

5.4.2.3 Inverse Mixcolumns.

The function Inverse Mixcolumns multiplies each column of the state with the

irreducible polynomial given by a fixed matrix.

The multiplication in the finite field is different from the ordinary multiplication, this

is achieved by the function polymult() as shown in the figure.

Figure 5.11 Matrix operations In inverse Mixcolumns

The code for the function Inverse Mixcolumns is given as

 64

function state_m=invmixcolumns(state)
x= [14 11 13 9
 9 14 11 13
 13 9 14 11
 11 13 9 14];
mod_pol = bin2dec ('100011011');
for i_col_state = 1 : 4
 for i_row_state = 1 : 4
 temp_state = 0;
 for i_inner = 1 : 4
 temp_prod = poly_mult (x(i_row_state, i_inner),state(i_inner,
i_col_state),mod_pol);
 temp_state = bitxor (temp_state, temp_prod);
 end
 state_m(i_row_state, i_col_state) = temp_state;
 end
 end

Figure 5.12 Matlab Code for Inv Mixcolumns
5.4.3 Key Scheduling.

The key scheduling is done with the help of two important functions

• Keys

• Key expansion.

A brief description of the working of these two functions is explained below.

5.4.3.1 Keys

 The function keys serves to generate all round key and store them. The function

iteratively call the function keyexp() which generates the round keys.

function z=keys(k);
for i=1:10
 keys=keyexp(k,i);
 k=keys;
 if i==1
 z=k;
 else
 z=cat(2,z,k);
 end
end

Figure 5.13 Matlab Code for Key expansion

 65

5.4.3.2 Key expansion

The function key expansion serves to give the key for each round. The

function accepts at its input the round number and the round key of the previous

round. In case of round one the input is the cipher key which is being expanded. The

function has predefined look up tables for rcon. The function generates the rotword

from the fourth column of the key and then calls subbytes for its byte substitution and

xors this with the column of the rcon that corresponds with the round number and the

first column of the key to generate the first column of the new roundkey. The rest of

the three columns of the new round key are generated by simply xor of the i th column

with the i-1 column. The round key for each round is generated in a similar fashion.

The same is illustrated with the help of a block diagram.

Figure 5.14 Modular Description of Key expansion routine

 66

5.5 The Speech Encryption System.

 5.5.1. The Cipher

 The Matlab function cipher () serves to input the recorded audio to the function

encrypt. It accepts the audio file and the encryption key from the user. It converts the

audio to the mu-law encoded state using the Matlab built in function lin2mu which

convert audio ranging in amplitudes from -1 to 1 to mu-law encoded form ranging in

amplitudes from 0 to 255. It catenates the encrypted packets to form the encrypted

audio. The iterations depend upon the sampling rate of the audio. As the audio is

being sampled at the Nyquist rate of 8000 samples per second hence the iterations are

500 / second.

function msg=cipher (s,f);

z=wavread(s,8000);

y=lin2mu(z);

a=1:16:8000;

b=16:16:8000;

for i=1:500

 z=y(a(1,i):b(1,i),1);

 m=reshape(z,4,4);

 m=encrypt(m,f);

 m=reshape(m,16,1);

 m1(a(1,i):b(1,i),1)=m;

end
 msg=m1;

Figure 5.15 The Matlab Code for Cipher.

 67

`

Figure 5.16 Modular Diagram of the speech encryption system

The block diagram clearly shows the functionality of the function cipher().The input

audio is converted to mu-law coded speech and it is broken into blocks of 128 bit

each. These blocks are sequentially passed to the function encrypt which serves to

convert them into their respective AES ciphered form. The function cipher() the

function encrypt() and passes the packets of mu law coded speech to it to be

converted into ciphered form.

 68

The functionality of the function encrypt is described in the section 5.4.1.1.

5.5.2 The Decipher

 The Matlab function decipher () serves to input the encrypted speech to the

function decrypt. It accepts the encrypted audio file and the encryption key from the

user. It serves to break the encrypted speech into blocks or packets and passes them to

the function decrypt () for decryption. Finally the decrypted audio is converted back

to linear format using the Matlab built in function mu2lin(). The output of the

decipher function is the original speech.

function msg=decipher (s,f);

y=s;

a=1:16:8000;

b=16:16:8000;

for i=1:492

z=y(a(1,i):b(1,i),1);

m=reshape(z,4,4);

m=decrypt(m,f);

m=reshape(m,16,1);

msg(a(1,i):b(1,i),1)=m;

end

msg=mu2lin(msg);

Figure 5.17 Matlab Code for decipher

 69

Figure 5.18 Modular Description of the Speech Encryption System.

The block diagram clearly shows the functionality of the function decipher().The

input audio is converted to mu-law coded speech and it is broken into blocks of 128

bit each. These blocks are sequentially passed to the function encrypt which serves to

convert them into their respective AES ciphered form.

 70

5.5.3 The Graphical User Interface.

For the ease of usage and understanding of the users, the AES core designed in

MATLAB was put to use in making a graphical user interface. The interface is

basically used for speech encryption which is shown in the figure.

The user has the options to enter the name of the speech file and then enter an

encryption key. Once the data inputs are complete the user can press the Plain speech

tab to see the plot of the plain speech and play the speech in the wav file format.

Figure 5.19 Figure MATLAB GUI

The user can then press the Cipher/send button to encrypt the speech and then send it

to the remote end. At the remote end the user presses the receive / decipher to receives

the encrypted message and decipher it at the remote end. The user at the remote end

 71

has to be in the knowledge of the encryption key in order to decrypt the message

correctly. Even a single bit error causes the message to be decrypted incorrectly.

Figure 5.20 Figure MATLAB GUI in operation.

5.6 Feasibility of AES for Image Encryption

With the proliferation of the Internet and maturation of the digital signal

processing technology, applications of digital imaging are prevalent and still

continuously and rapidly increasing today. Its coverage is literally penetrating all

aspects of our daily lives, ranging from digital cinemas, to remote-sense imaging, to

medical image processing. And yet the main obstacle in the widespread deployment

of digital image services has been enforcing security and ensuring authorized access

 72

to sensitive data. In this regard, a direct solution is to use an encryption algorithm to

mask the image data streams, which has led to the celebrated number-theory based

encryption algorithms such as DES (Data Encryption Standard), IDEA (International

Data Encryption Algorithm) and RSA (developed by Rivest, Shamir and Adleman) .

However, these encryption schemes are not ideal for image applications, due to some

intrinsic features of images such as bulk data capacity and high redundancy which are

troublesome for traditional encryption. Moreover, these encryption schemes require

extra operations on compressed image data, thereby demanding long computational

time and high computing power. In real-time communications, due to their low

encryption and decryption speeds, they may introduce significant latency. Compared

with text encryption, which most existing encryption standards aim at, image

encryption (or more generally, multimedia encryption) has its own characteristics and

special features with many unique specifications. In order to develop effective image

encryption techniques, these have to be fully understood.

5.6.1 Particularities of Image Encryption

Unlike text messages, image data have their special features such as bulk

capacity, high redundancy, and high correlation among pixels, not to mention that

they usually are huge in size, which together make traditional encryption methods

diffcult to apply and slow to process. Sometimes, image applications also have their

own requirements like realtime processing, fidelity reservation, image format

consistence, and data compression for transmission, etc. Simultaneous fulfillment of

these requirements, along with high security and high quality demands, have

presented great challenges to real-time imaging practice. One example in point is the

case where one needs to manage both encryption and compression. In doing so, if he

 73

wants to have an image encrypted after its format is converted, say from a TIFF file to

a GIF file, he has to implement encryption before compression. However, for a

conventional encrypted image, it has very little compressibility. On the other hand,

compression will make a correct and lossless decipher impossible, particularly when a

highly secure image encryption scheme is used. This conflict between the

compressibility and the security is very difficult, if not impossible, to completely

solve. Particularities of image encryption may be summarized as follows:

1. High redundancy and bulk capacity generally make encrypted image data

vulnerable to attacks via cryptanalysis. Based on the bulk capacity, the opponent can

gain enough cipher text samples (even from one picture) for statistical analysis.

Meanwhile, since data in image have high redundancy, adjacent pixels likely have

similar grayscale values, or image blocks have similar patterns, which usually embed

the image with certain, patterns that results in secret leakage. In the plain-image,

adjacent 8-pixel blocks often have similar patterns; therefore, the encrypted image

still layouts some intelligible patterns.

2. Image data have strong correlations among adjacent pixels, which makes fast data-

shuffling quite difficult. Statistical analysis on large amounts of images shows that

averagely adjacent 8 to 16 pixels are correlative in horizontal, vertical, and also

diagonal directions for both natural and computer-graphical images. According to

Shannon’s information theory, secure cryptosystem should fulfill a condition on the

information entropy, E(P|C) = E(P), where P stands for plain message and C for

ciphered message, that is, the ciphered (i.e., encrypted) image should not provide any

information about the plain-image. To meet this requirement, therefore, the ciphered

image should be presented as randomly as possible. Since a uniformly distributed

message source has a maximum uncertainty, an ideal cipher-image should have an

 74

equilibrium histogram, and any two adjacent pixels should be uncorrelated

statistically. This goal is not easy to achieve under only a few rounds of permutation

and diffusion.

3. Bulk capacity of image data also makes real-time encryption difficult. Compared

with texts, image data capacity is horrendously large. For example, a common 24 bits

true color image with 512-pixel height and 512- pixel width will occupy 512 X 512 X

24= 768KBytes in space. Thus, a one-second motion picture will reach up to about

19MBytes. Real-time processing constraints are often required for imaging

applications, such as video-conferencing, image surveillance, etc. Vast amount of

image data put a great burden on the encoding and decoding processes. Encryption

during or after the encoding phase, and decryption during or after the decoding phase,

will aggravate the problem. If an encryption algorithm ran very slowly, even with

high security, it would have little practical value for real-time imaging applications.

That is the reason why current encryption methods such as DES, IDEA and RSA are

not the best candidates for this consideration.

4. Image encryption is often to be carried out in combination with data compression.

In almost all cases, the data are compressed before they are stored or transmitted, due

to the huge amount of image data and their very high redundancy. The main challenge

is how to ensure reasonable security while reducing the computational cost without

downgrading the compression performance.

5. In image usage, file format conversion is a frequent operation. Image encryption is

desirable not to affect such an operation. Thus, directly treating image data as

ordinary data for encryption will lead to file format conversion impossible. In this

 75

scenario, contents encryption, where only image data are encrypted leaving file

header and control information unencrypted, is preferable.

6. Human vision has high robustness to image degradation and noise. Only encrypting

those data bits tied with intelligibility can efficiently accomplish image protection.

However, conventional cryptography treats all image data bits equally in importance,

thus requires a considerable amount of computational power to encrypt all of them,

which has proved unnecessary oftentimes.

7. In terms of security, image data are not as sensitive as text information. Security of

image is largely determined by the real situation in an application. Usually, the value

of the image information is relatively low, except in some special situations like

military and espionage applications or video-conferencing in serious business. A very

expensive attack of encrypted median data is generally not worthwhile. In practice,

many image applications do not have very strict security requirements. Under certain

circumstances, protection of the fidelity of an image object is more important than

that of its secrecy. An example in point is electronic signature. As another example, in

image database applications, only those users who have paid for the service can

access large-size images with high resolution. Adversaries may be able to get some

small-size images with low resolution by attacks based on cryptanalysis, but those

images have little business values – perhaps much cheaper than the cost they spent on

preparing and executing the attacks. In the worst case, possible partial leakage of

some secrecy in multimedia, within a certain limitations, is always permitted, while

for text information this scenario is largely forbidden because it is then quite easy to

predict the entire message based on the obtained information from a partial leakage.

Today, there does not seem to be any image encryption algorithm that can fulfill all

the aforementioned specifications and requirements. Chaos-based image encryption,

 76

to be further described below, cannot solve all these problems either. However, it can

provide a class of very promising methods that can partially fulfill many of these

specs and requirements and demonstrate superiority over the conventional encryption

methods, particularly in a good combination of speed, security, and flexibility. As will

be seen below, through an elaborative design, either chaotic block cipher or chaotic

stream cipher can achieve considerably good overall performance.

5.6.2 Image Encryption using Advanced Encryption

Standard

The image is read in the RGB format and then is converted into gray scale

mainly to scale it down to a smaller size. The Matlab built in command Rgb2gray is

used to perform this conversion. RGB2GRAY converts RGB images to grayscale by

eliminating the hue and saturation information while retaining the luminance.

 Figure 5.21 Original image. Figure 5.22 Gray scale image.

 77

The image is stored in the uint8 format. Then it is converted to the double format.

Afterwards it is broken into Packets of 128 bit each and input to the AES core. The

output of the encrypter is as shown in the figure.

Figure 5.23 Encrypted Image

 Figure 5.24 Correctly Decrypted image

At the decrypting end the only the correct knowledge of the key ensures a successful

decryption even a one bit error results in a completely obscure result as shown in the

figure.

 78

 Figure 5.25 Image encrypted with slightly wrong key.

 79

Chapter 6

Implementation of the Advanced

Encryption Standard.

6.1 Introduction

 The Advanced Encryption Standard is a computationally intensive Algorithm.

Hence the real time implementation of the standard is quite a programming task. As

defines in the project statement the aim of the project was to implement the advanced

encryption standard on the DSK 6711. This was achieved hence the main task of the

project was achieved with success. The encrypter and the decrypter were designed and

tested on the DSK 6711 and they were found to be fully functional however due to

hardware constraints and the unavailability of requisite expertise a real time secure

communication could not be achieved between two DSK 6711.

However to prove the practicality of the idea a peer to peer communication model was

achieved using the Personal Computers communicating through the serial port. The C

code was optimized for this purpose. In addition the serial port communication was

understood. The result was a real time secure communication between two computers

which was in accordance with the specifications of the advanced encryption standard.

 Hence the implementation of the advanced encryption standard were two fold.

• Implementation on the DSK 6711

• Implementation in a Peer to Peer Communication Model between PCs via the

 80

serial port.

The following sections explain the working of the DSK 6711. In addition a brief

introduction has been provided regarding the programming procedures on the DSK

6711. A brief introduction to the Code Composer Studio is also provided which the

Integrated Development environment (IDE) is for the programming of the DSK 6711.

6.2 DSK 6711 and the code composer studio.

 6.2.1 The DSP starter kit

 The TMS320C611 (‘6711) DSP is a 32-bit, 150 MHz, floating point digital

signal processor. It is based on the very long instruction word (VLIW) architecture.

Each VLIW is composed of eight 32-bit instructions, meant for processing by eight

pipelined processing units, in parallel. The CPU delivers 1200 MFLOPS (million

floating-point operations per second) and 600 MIPS (million instructions per second)

of processing power. On-chip memory consists of 32 Kbytes of program memory, 32

Kbytes of data memory, and 8 Kbytes of cache memory. The ‘6711 features two 32-

bit timers, and two multi-channel buffered serial ports (MCBSP), which can be used

for high-speed communication with external devices. This and other high-

performance floating-point processors are extensively deployed in cellular base

station transceivers. The DSP starter kit (DSK) for the ‘6711 is a low cost test-bed for

TI’s high-end floating point DSPs. As shown in Figure 3.6, this DSK has a parallel-

port PC interface, two 80-pin input-output (IO) digital connectors for interfacing with

other external devices, and JTAG (joint test action group) connectors for testing. The

board also includes 128 Kbytes of flash ROM, and 16 Mbytes of RAM. The ‘C6711

 81

DSK is capable of transferring up to 35 Mb/s of data through each of its MCBSP

ports.

 Figure 6.1 DSK 6711

6.2.2 Code Composer Studio.

 The Code Composer Studio (CCS) software which is an integrated development

environment (IDE) for editing programs, compiling, linking, download to target (i.e.,

to the DSK board) and debugging. The CCS also includes the DSP/BIOS real-time

operating system. The DSP/BIOS co de considerably simplifies the code development

for real-time applications which include interrupt driven and time scheduled tasks.

Code Composer Studio (CCS) is an integrated development environment customized

for the TI family of DSPs. It includes an editor, debugger, project manager, compiler,

assembler, linker, and simulator for code generation and testing. What sets it apart

from other compiler software is its DSP/BIOS real-time operating system.

DSP/BIOS provide a graphical interface for static system setup, such as initialization

of system peripherals. It also allows real time data exchange (RTDX) with the host

computer. Interrupts and other tasks can be scheduled through the DSP/BIOS

 82

interface. Furthermore, it allows the real-time monitoring and analysis of system

parameters through graphical tools such as spectrum and time-domain plots of

variables, or the timing diagrams.

The TMS320C6000 family of pipelined DSPs’ complex architecture limits the

practicality of assembly coding. Thus most programming is done in high-level

languages such as C and C++. The CCS C compiler is touted to be 80% as efficient as

hand-coded assembly. The popular signal processing software package, MATLAB,

now includes a TI DSP toolbox. This allows the compilation and interfacing of

MATLAB code directly to the DSP, by bypassing CCS.

One of the advantages of using TI DSPs is their popularity. There is a treasure trove

of programming resources and examples for download on the Internet. The TI website

features optimized function libraries free for download. Furthermore, there are

archived newsgroups dedicated to each family of the TI line of DSPs, where users

from across the world discuss DSP related problems and anecdotes.

6.2.3 Usage overview

Working with the DSK involves the following steps:

• The first step is the algorithm development and programming in C/C++ or

assembler. We will only consider coding in C in this document. The program is typed

using the editor capabilities of the CCS. Also the DSP/BIOS configuration is

performed in a special configuration window. • When the co de is finished it is time to

compile and link the different code parts together. This is all done automatically in

CCS after pressing the Build button. If the compilation and linking succeeded the

finished program is downloaded to the DSK board.

• The operation of DSK board can be controlled using CCS, i.e., CCS also works as a

debugger. The program can be started and stopped and single-step. Variables in the

 83

program can be inspected with the Watch functionality. Breakpoints can be inserted in

the code.

6.2.4 Getting started with the 6711DSK and CCS

In this section you will be introduced to the programming environment and will

download

and execute a simple program on the DSK.

6.2.4.1 Connecting the PC and DSK

The DSK is communicating with the host PC using the parallel-port interface.

• Connect the parallel port of the PC to the parallel port connector on the DSP.

• Power up the DSK by inserting the AC power cable to the black AC/DC

converter.

Start Code Composer Studio by clicking on the CCS-SDK2 (C’6000) icon on the

workspace.

6.2.4.2 Getting familiar with CCS

CCS arranges its operation around a project and the project view window is displayed

to the left. Here all files which related to a certain project are present. At the bottom

of the CCS window is the status output view in which status information will be

displayed such as compile or link errors as well as other types of information. The

window has several tabs for different types of output.

6.2.4.3 Running the code

After a successful build command (compile, link and download) the program is now

resident in the DSK and ready for execution. A disassembly window appears showing

the Assembly language instructions produced by the compiler.

 84

At the bottom CPU HALTED message appears indicating that the CPU is not

executing any code. A few options are available depending on if you want to debug or

just run the code. To simply run the code do the following steps.:

• Select Debug.Run to start the execution. At the bottom left you will see the status

CPU RUNNING indicating that the program is executed.

• To stop the DSP select Debug. Halt.

• If you want the restart the program do Debug. Restart followed by Debug. Run

6.2.4.4 Use of printf

The printf command which prints information from the DSP to the Stdout window in

CCS is not real-time capable. Hence it cannot be used when the DSP is operating in

real-time and have hard deadlines to meet. The important tool which was used to view

the variables during execution during real time was the watch window utility.

6.3 Implementation of the Advanced Encryption Standard.

 This section discusses the real time implementation of the advanced encryption

standard on the two platforms

• TI DSK 6711

• Personal Computers.

6.3.1 Implementation on DSK 6711.

For the real time implementation on TI DSK 6711 following major steps were done.

• Code Optimization for TI DSK 6711.

• Implementation of the encrypter and decrypter.

• Communication between Two DSK 6711.

 85

6.3.1.1 Code Optimization, Transformation from C++ to C.

The programming effort done initially was without the knowledge of the

functionalities of the DSK 6711 and the CCS. However C++ code for the encrypter

and the decrypter was written. They both were dealt with as separate modules

however later on they were merged as a single functionality. A function based

approach was used in the programming. Each step was programmed as a single

function. Generally the global variables were used and the arguments were not passed

to the functions. Once the code was transferred to the DSK 6711 it was found that the

CCS did not support the <iostream.h>. Hence the code was transformed from C++ to

C. The main change was the use of the inline functions. Also the CCS did not allow

variable declarations at certain places in the function definition. The code was

virtually re-written in the debugging effort. Also the DSK 6711 did not allow the

luxury of using as many variables as one wishes so the number of variables was

reduced drastically to improve efficiency. The ma\in optimization effort could not be

realized as the profile based compilation feature of the CCS was not working. This

feature enables the programmer to identify the time consuming portions of the code.

Hence the optimization level that was achieved could not be measured statistically.

6.3.1.2 Implementation of the encrypter and decrypter.

The encrypter and the decrypter were successfully implemented on the DSK 6711.

They were made to function as two separate modules, however the integration of the

two is also possible and was realized later on. The test vectors given in the FIPS 197

were verified and both the modules were found to be working and yielding the

required results.

 86

6.3.1.3 Audio Communication between Two DSK 6711.

The audio communication between two DSK 6711 was achieved. This requires the

following steps.

• Audio Capture.

• Play back

• Transmission and Reception.

The following block diagram illustrates the functionality of the audio capture and

output to the speaker.

 Figure 6.2 Block Diagram Of audio capture

Two pipe objects are used to exchange data between the software interrupt and the

serial port connected to the codec.

These pipes are DSS_rxPipe and DSS_txPipe. Data input from the codec flows from

the serial port Interrupt Service Routine (ISR) through DSS_rxPipe to the software

 87

interrupt, where it is copied to DSS_txPipe Then it is sent back to the serial port ISR

to be transmitted out through the codec, the

ISR for the serial port receive interrupt copies each new 32 bit data sample in the

Data Receive Register (DRR) to a frame from the DSS_rxPipe pipe object. When the

frame is full, the ISR puts the frame back into DSS_rxPipe to be read by the audio

function.The output from the speaker of the transmitting DSK 6711 is given to the

input of the receiving DSK 6711. A similar audio capture utility is functioning at the

remote end that enables the communication.The processor of the DSK 6711 is a 150

MHZ chip which was found to be insufficient for our use.

When the two modules described in sections 6.3.1.3 and 6.3.1.2 were made to

integrate the system was unable to give the required results. Hence to realize a real

time implementation the shift towards the use of PCs as a platform was inevitable.

6.3.2 Implementation on Personal computers.

For the real time communication on the personal computers and the secure

communication following steps were performed.

• Serial Port Communication.

• Real time encrypted data transmission and reception.

6.3.2.1 Serial Port Communication

Designing an interface between systems is not a simple or straight-forward task.

Parameters that must be taken into account include: data rate, data format, cable

length, mode of transmission, termination, bus common mode range, connector type,

and system configuration. Noting the number of parameters illustrates how complex

this task actually is. Additionally, the

 88

interface’s compatibility with systems from other manufacturers is also critically

important. Thus, the need for standardized interfaces becomes evident. Interface

Standards resolve both the compatibility issue, and ease the design through the use of

non-custom standardized Drivers and Receivers.

Standards have been developed to insure compatibility between units provided by

different manufacturers, and to allow for reasonable success in transferring data over

specified distances and/or data rates. The Electronics Industry Association (EIA) has

produced standards for RS485, RS422, RS232, and RS423 that deal with data

communications. Suggestions are often made to deal with practical problems that

might be encountered in a typical network. EIA standards where previously marked

with the prefix "RS" to indicate recommended standard; however, the standards are

now generally indicated as "EIA" standards to identify the standards organization.

6.3.2.2 RS–232 Specifications

RS–232 is a “complete” standard. This means that the standard sets out to ensure

compatibility between the host and peripheral systems by specifying 1) common

voltage and signal levels, 2)common pin wiring configurations, and 3) a minimal

amount of control information between the host and peripheral systems. Unlike many

standards which simply specify the electrical characteristics of a given interface, RS–

232 specifies electrical, functional, and mechanical characteristics in order to meet the

above three criteria

 89

6.3.2.2.1 Electrical Characteristics.

The electrical characteristics section of the RS–232 standard includes specifications

on voltage levels, rate of change of signal levels, and line impedance. The original

RS–232 standard was defined in 1962. As this was before the days of TTL logic, it

should not be surprising that the standard does not use 5 volt and ground logic levels.

Instead, a high level for the driver output is defined as being +5 to +15 volts and a low

level for the driver output is defined as being between –5 and –15 volts. The receiver

logic levels were defined to provide a 2 volt noise margin. As such, a high level for

the receiver is defined as +3 to +15 volts and a low level is –3 to –15 volts. Figure 1

illustrates the logic levels defined by the RS–232 standard. It is necessary to note that,

for RS–232 communication, a low level (–3 to –15 volts) is defined as a logic 1 and is

historically referred to as “marking”. Likewise a high level (+3 to +15 volts) is

defined as logic 0 and is referred to as “spacing”. The RS–232 standard also limits the

maximum slew rate at the driver output. This limitation was included to help reduce

the likelihood of cross–talk between adjacent signals. The slower the rise and fall

time, the smaller the chance of cross talk. With this in mind, the maximum slew rate

allowed is 30 V/μs. Additionally, a maximum data rate of 20k bits/second has been

defined by the standard.

 90

Figure 6.3 Electrical Specifications

 Again with the purpose of reducing the chance of cross talk, the impedance of the

interface between the driver and receiver has also been defined. The load seen by the

driver is specified to be 3k to 7k.. For the original RS–232 standard, the cable

between the driver and the receiver was also specified to be a maximum of 15 meters

in length. This part of the standard was changed in revision “D” (EIA/TIA–232–D).

Instead of specifying the maximum length of cable, a maximum capacitive load of

2500 pF was specified which is clearly a more adequate specification.

6.3.2.2.2 Functional Characteristics.

Since RS–232 is a “complete” standard, it includes more than just specifications on

electrical characteristics. The second aspect of operation that is covered by the

standard concerns the functional characteristics of the interface. This essentially

means that RS–232 has defined the function of the different signals that are used in

 91

the interface. These signals are divided into four different categories: common, data,

control, and timing. Table 1 illustrates the signals that are defined by the RS–232

standard. As can be seen from the table there is an overwhelming number of signals

defined by the standard. The standard provides an abundance of control signals and

supports a primary and secondary communications channel. Fortunately few

applications, if any, require all of these defined signals. For example, only eight

signals are used for a typical modem. Some simple applications may require only four

signals (two for data and two for handshaking) while others may require only data

signals with no handshaking.

Figure 6.4 RS 232 Defined Signals

 92

6.3.2.2.3 MECHANICAL CHARACTERISTICS

The third area covered by RS–232 concerns the mechanical interface. In particular,

RS–232 specifies a 25–pin connector. This is the minimum connector size that can

accommodate all of the signals defined in the functional portion of the standard. The

pin assignment for this connector is shown in Figure. The connector for DCE

equipment is male for the connector housing and female for the connection pins.

Likewise, the DTE connector is a female housing with male connection pins.

Although RS–232 specifies a 25–position connector, it should be noted that often this

connector is not used. This is due to the fact that most applications do not require all

of the defined signals and therefore a25–pin connector is larger than necessary. This

being the case, it is very common for other connector types to be used. Perhaps the

most popular is the 9–position DB9S connector which is also illustrated in Figure.

Figure 6.5 RS232 Mechanical Specifications

 93

6.3.2.3 Real time encrypted data transmission and reception.

The AES core programmed in C was now put to use for the encrypted data

transmission via the serial port. As imperative AES only accepts data in the block

format of 128 bit size. Hence the packetization of the data input had to be done. The

inputs to the program are the 128 bit key and the data in the stream format. The

following flow diagram explains the flow of the operations.

Figure 6.6 Flow of Operations

 94

The key is sent to the key expansion routines and the round keys are generated. These

round keys are used in the encryption process. Since the encryption key is entered as a

128 bit packet no additional processing is required. However this is not true in case of

the data. The data entered through the keyboard is read and stored in a one

dimensional array. The size of the array is checked and one it is 16 values or 128 bits

it is reshaped into a 4x4 array into the packets of 128 bit each. This packet of size of

128 bit is sent into the AES core. The AES core encrypts the packet and sends it via

the serial port.

 95

Chapter 7

Summary Recommendations and
Conclusion

7.1 Summary

The advanced encryption standard forms a very solid base for a secure

communication system. The standard has been tested for various types of inputs like

text, image and speech and has been found to be very effective. The end result of the

project can be summarized as

• The DSK 6711 was programmed to work as an encryption and the decryption

device which was found to be working in prefect conditions. The test vectors

given in FIPS 197 were verified.

• The DSK 6711 could not be interfaced with a transceiver due to the

unavailability of the daughter cards of the DSK 6711.

• Speech encryption scheme was design and simulated in Matlab and was found

to give excellent result.

• The encryption and decryption were tested in a real time system using the

windows 98 based computers communicating via the serial port.

• A study was undertaken to ascertain the feasibility of AES for image

encryption and the results were very encouraging.

• A speech encryption system in C has nearly been implemented. A few logical

errors are holding up the end result.

 96

7.2 Recommendations.

For the application and improvement of the project following recommendations are

given

• DSK 6711 has a 150 MHZ processor which was found to be in sufficient for

the speech encryption in real time. DSP chips with highly improved

processing speeds are available now a days which are more suitable for

computationally intensive algorithms like AES.

• Daughter cards for the DSK 6711 are readily available and can be procured

from Texas Instruments. These cards have better sampling rate and are

necessary for applications like images.

• Transceivers should be designed which should be interfaced with the DSK

6711.

• By interfacing an FSK modem with the serial port of the computer the

encrypted data can be transmitted over the HF and VHF links. Such a project

has been realized while using the DES encryption scheme.

• The AES core implemented can be implemented for network security

applications.

• Profile based compilation tool is not available in the DSP lab which is needed

to optimize the code.

 97

7.3 Conclusion

Secure communications systems are of great importance these days. Communication

security is especially of greater interest for military purposes. Whatever measures be

adopted to provide communication security, they always face the looming danger of

being breached by hostile sources. Hence the need to implement a fool proof security

measure remains a difficult task. The Project undertaken is an endeavor in the same

direction. The aim of the project is to develop a secure communication system over

wireless and wire line media with optimum guaranteed security. The Advanced

encryption standard promises to be the state of the art technology for the next many

decades. The option to increase the block size to 192 and 256 bits in case of a

cracking of the 128 bit key provides a back up plan

With the help of the improved processors which are readily available in the market

AES promises to be suitable for voice, ISDN and HDTV. A hardware implementation

of the AES must be pursued for better results.

 98

References.

[1] The Mathworks: Matlab , The Language of Technical Computing. http://www.

mathworks.com/products/matlab, (2001).

[2] The Mathworks: Galois Field Computations. http://www.mathworks.com/

access/helpdesk/help/toolbox/comm/tutor3.shtml, Communications Toolbox,

(2001).

[3] J. Daemen, L. R. Knudsen, and V. Rijmen: The Galois Field GF(28). http:

//www.ddj.com/documents/s=936/ddj9710e/9710es1.htm, Dr. Dobb’s Journal,

(October 1997).

[4] V. Rijmen: The block cipher Rijndael. http://www.esat.kuleuven.ac.be/

~rijmen/rijndael/, (2001).

[5] J. Daemen, V. Rijmen: AES proposal: Rijndael. http://www.esat.kuleuven.ac.

be/~rijmen/rijndael/rijndaeldocV2.zip, (1999).

[6] J. Daemen: Annex to AES proposal Rijndael. http://www.esat.kuleuven.ac.be/

~rijmen/rijndael/PropCorr.PDF, (1998).

[7] National Institute of Standards and Technology: Specification for the Advanced

Encryption

Standard (AES). http://csrc.nist.gov/publications/fips/fips197/

fips-197.pdf, (2001).

[8] National Institute of Standards and Technology: Data Encryption Standard (DES).

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf, (2001).

[9] B. Schneier: Applied Cryptography. Addison-Wesley, (1996).

 99

[10] [SPRU305] EVM Technical Reference

[11] [SPRU273B] TMS320C6x Peripheral Support Library Programmer’s Reference

[12] [SPRU190] TMS320C6000 Peripheral Reference Guide

[13] [SPRU189E] TMS320C6000 CPU and Instruction Set Reference Guide

	GC HASAN ANSARI (Syndicate LEADER)
	CHAPTER1 PROJECT OVERVIEW
	CHAPTER 2 Cryptology
	CHAPTER 3 EVOLUTION OF THE ADVANCED ENCRYPTION STANDARDS (AES)
	CHAPTER 4 The Advanced Encryption Standard
	6.1 Introduction
	6.2.2 Code Composer Studio.
	5.5 The Speech Encryption System.
	5.5.1. The Cipher
	5.5.2 The Decipher

