
 1

 CHAPTER 1

PROJECT OVERVIEW

 2

PROJECT OVERVIEW

1.1 INTRODUCTION

 Modern age is the age of computers and all recent equipment are working on

the principles of digital communication techniques and efforts have been made to

upgrade older equipments to the new standards, hence increasing their service life

cycle. This in addition to enhanced efficiency has a pleasant effect on the

economy. In this context, one area which has been neglected and holds great

potential is military inventory. It includes equipment which may be as big as

aeroplanes to radars, tanks and other communication systems. It will save not only

foreign exchanges but also a step towards self sufficiency and decrease our

dependence on other countries. So we decided to focus our efforts on this

department which has been ignored in the past. One such example is AN/TPQ-36

artillery locating radar currently used by artillery.

AN/TPQ-36 is an American radar and a very costly equipment acquired in

late 80’s. It locates enemy artillery guns and acquires their exact location.

Currently it is being operated by an operator who performs all the functions

manually i.e. the operator manually plots the coordinates on a map. And then

through a radio set passes the information to the concerned parties. This consumes

a lot of time and is prone to human errors. The solution to problem is either to

acquire the digital map kit from the manufacturer at a handsome cost or to try and

develop a much cheaper solution locally. Apart from the cost factor there were

other hurdles in the form of the imposed sanctions. C4I has been working on this

project and the project undertaken is the endeavour in the same direction.

The first and the most important task is to acquire the data generated by the

radar so that it can be used with digital maps. Developing an interface with the

radar is a gigantic task . It is so because of the complexity of radar circuitry it self

 3

and non compatibility of its components with modern equipment. Most of the IC’s

used are unknown and hence in case of malfunction cannot be repaired. Prior to

our involvement projects had been undertaken on the same lines which were

unsuccessful. Hence there were two options available to us; either to continue with

incomplete work of the previous attempts or to develop and implement a design of

our own. We decided to go with the second option.

The second important issue is transfer of data generated by the radar after it

was transferred to the computer. It requires developing an interface which could

link the data with the digital maps. Our problem was some what simplified because

we didn’t have to digitize the map as we were using the digitized map that is

currently being used by the C4I. For this purpose they were using a GIS

(Geographical Information System) Geomedia. Our objective was to develop the

software that will use the data useful software. The design phase was completed in

visual c++ and the code for this is given at the end .

 4

1.2 OVERVIEW

FIGURE 1.1 PROJECT OVERVIEW

FIGURE 1.1 shows the modular diagram of the project. The information from the radar
(AN/TPQ-36) is fed to the computer through a hardware interface. The main project effort
was concentrated in designing and implementing this module. The data was transferred to the
computer through its serial port. The emphasis was given to synchronization of the source
and the receiver. The parameter which governs the transfer of data is the baud rate. In order
to use the data received correctly it had to be converted to a specific format. For this an
algorithm in c/visual c++ was written so that it is compatible with the digital map. A
software that includes codes for converting data into required format and displaying the
location of the gun on the digital map was developed and successfully implemented. The
main challenge in the project was its real time implementation. The main issues adhered
were synchronization of the transmitter and the receiver.

HARDWAR
E
INTERFACE

SOFTWARE
DESIGN

COMPUTER

RADAR
TPQ-36

DIGITAL
MAP

 5

1.3 PROJECT MODULES.
The project comprised of the following modules.

• Studying the radar
• Selection of data source
• Designing Hardware interface
• Studying computer communication ports
• Study and implementation of Software interface
• C/VC++ coding
• MATLAB based simulation
• Real time implementation

 6

CHAPTER 2

 STUDY OF RADAR

 7

 STUDY OF RADAR

2.1. INTRODUCTION

AN/TPQ-36 Firefinder Weapon Locating System general properties.
• Benefits
• Early threat detection from medium standoff ranges
• Detection of multiple threats— mortars, artillery, and rockets
• Support of friendly weapons, reduced fratricide
• Exceptional accuracy
• Superior mobility
• . Rapid emplacement and displacement .
• High system operational availability .
• Reduced maintenance costs and downtime
• Medium-Range Surveillance Raytheon’s compact, mobile, combat-proven

AN/TPQ-36
• Firefinder radar accurately, rapidly, and automatically locates medium-range

enemy mortars, artillery, and rocket launchers. It can handle simultaneous fire
from weapons at multiple locations, detecting and reporting their positions on
the first round. No longer must front-line troops and armor be exposed to long
periods of enemy mortar, artillery, and rocket attacks. The AN/TPQ-36 directs
accurate counterfire to neutralize enemy positions. The AN/TPQ-36’s automatic
detection, tracking, and locating process is so fast that an enemy weapon’s
position can often be pinpointed before its projectile impacts. Locations are
automatically corrected for Electronic Systems Sometimes the best offense is a
good defense. In seconds, the mediumrange AN/TPQ-36 Firefinder Weapon
Locating System detects and backplots enemy projectiles and provides pinpoint
targeting data for the counterattack. altitude differences, using computer-stored
digital maps, and presented to the operator in northing, easting, and altitude
coordinates. The system is so automatic and simple to operate that, once set up,
the operator need not be present in the operation control shelter to determine a
weapon’s location. Rounds from friendly weapons also can be tracked, for more
accurate delivery. Defeats Enemy Firepower, Supports Friendly Weapons The
AN/TPQ-36’s stationary antenna sweeps a rapid sequence of beams along the
horizon, forming an electronic radar curtain over a 90° area. Any target enetrating
the curtain triggers an immediate verification beam. On verification, an automatic
tracking sequence begins.AN/TPQ-36 Firefinder Weapon Locating System While
tracking any single target, the radar continues scanning, locating, and tracking
others. The AN/TPQ-36 can detect and report the positions of up to 10 different
weapons in seconds, at a maximum range of 24 km. The system also corrects
and improves the delivery of friendly fire. Signal and data processors test each
track to filter out birds, aircraft, and other unwanted returns, giving the
AN/TPQ-36 an extremely low false-location rate and a very high probability of
location. Once the computer establishes a target’s validity, it smooths the easured
track data, deriving a trajectory that it extrapolates to establish the target’s firing

 8

position and impact location. Those data are displayed on a visual map and
printed out in map coordinates. From the operation control shelter, the power-
driven antenna can be tilted or rotated to any azimuth position. The system also
offers a 360° sectoring mode Maximum range: 24 km

2.2 System Capabilities Specifications
Locates mortars, artillery, and rocket launchers Highly Mobile Compact and highly

mobile, the AN/TPQ-36 supports rapid deployment of forces and close combat. It can be
positioned and ready for operation in 15 minutes. It can be readied for movement in 5 minutes by
a five-man crew. Because it can move quickly from one position to another, it is typically located
close to the forward battle line in direct support of brigade operations. The AN/TPQ-36
comprises an antenna-transceiver trailer, a generator, and an operation control shelter that
contains processing equipment, the weapon-locating unit, and communications equipment. For
the U.S. army, the 2,500-lb shelter is carried on a HMMWV or a 2.5-ton truck; however, it can
also be carried by other tactical vehicles. The manned operation control shelter can be located as
far as Locates 10 weapons simultaneously Locates targets on first round Performs high-burst,
datum-plane, and impact registrations Adjusts friendly fire Interfaces with tactical fire Predicts
impact of hostile projectiles search one sector for a short period, then automatically rotate in turn
to the other sectors.

Effective range
Artillery: 18 km
Rockets: 24 km
Azimuth sector: 90°
Frequency: X-band, 32 frequencies
Prime power: 115/200 VAC, 400 Hz, 3-phase, 8 kW
Peak transmitted power: 23 kW, minimum 50 m away from the unmanned
antenna trailer.

Exceptionally Reliable With high system reliability and maintainability simplified by computer-
controlled, built-in test equipment, Raytheon’s AN/TPQ-36 provides unusually high system
availability. On-line fault detection and off-line fault diagnostics alert the operator to system
faults, directing repair action to the unit that must be replaced. Ninety percent of all repairs
required in the field can be performed by the crew, with a mean-time-to-repair of only 30
minutes. The AN/TPQ-36’s cost effectiveness is enhanced by its 90°–360° sector, small crew,
ease of operation, and high availability. The operation control shelter can be used
interchangeably with either the AN/TPQ-36 or the longer-range AN/TPQ-37, with only a
software change, thereby providing operational flexibility and much greater life-cycle cost
effectiveness. Features Permanent storage for 99 targets Field exercise mode Digital data
interface .

 9

FIGURE 2 AN/TPQ-36 FIREFINDER

2.3 DATA GENERATED BY THE RADAR
 AN/TPQ-36 has a computer and supporting PCB which interface the computer

with various components such as the line printer , magnetic tape unit,B-scope etc. when
operational AN/TPQ-36 locates the exact location of enemy guns and generates the
data which is provided to various peripherals through a controller called “Cartridge
and Printer controller”. Cartridge and Printer controller (CPC) basically controls all the
operations regarding the transfer of data to these devices .

2.3.1 DATA AT B-SCOPE
 The computer sends the data to the B-scope where it is displayed as Easting,

northing and altitude. The radar also generates the location of the impact as well.
2.3.2 DATA AT WLU(Weapon Location Unit)
 The computer sends the same data to the weapon location unit . the format of the

data is the same at all three terminals
2.3.3 DATA AT LINE PRINTER
 computer sends seven bit data and a strobe to the line printer. In return the line

printer sends two signals back to the line printer i.e. fault and ready. In simple words
handshaking occurs between the printer and the computer through the cartridge and
printer controller.

 10

 2.4 SELECTION OF DATA INPUT DEVICE
 Computer sends data to

• B-scope
• WLU
• Line printer

So we had to select a point from which we can extract data with ease . after extensive
study we came to the conclusion that line printer was the easiest and safest approach. The
reason for the selection of line printer was that B-scope and WLU were difficult to access
moreover PCB connected to them were very sensitive and the probability of damaging the
components was higher. There was also a possibility of extracting data directly from the
computer instead of the peripherals. But this proposal was rejected because an attempt had
already been made by AWC(Air Weapon Complex) which was unsuccessful and they
damaged some of the PCB’s which were expensive. After keeping all these factors in
mind we decided to extract data at the input of the line printer.

 11

CHAPTER 3

INTERFACING THROUGH COMPUTER PORTS.

 12

a. PARALLEL PORT.

3.1 Introduction to Parallel Ports

The Parallel Port is the most commonly used port for interfacing home made
projects. This port will allow the input of up to 9 bits or the output of 12 bits at any one given
time, thus requiring minimal external circuitry to implement many simpler tasks. The port is
composed of 4 control lines, 5 status lines and 8 data lines. It's found commonly on the back of
your PC as a D-Type 25 Pin female connector. There may also be a D-Type 25 pin male
connector. This will be a serial RS-232 port and thus, is a totally incompatible port. Newer
Parallel Port’s are standardized under the IEEE 1284 standard first released in 1994. This
standard defines 5 modes of operation which are as follows,

1. Compatibility Mode.
2. Nibble Mode. (Protocol not Described in this Document)
3. Byte Mode. (Protocol not Described in this Document)
4. EPP Mode (Enhanced Parallel Port).
5. ECP Mode (Extended Capabilities Port).

The aim was to design new drivers and devices which were compatible with each other

and also backwards compatible with the Standard Parallel Port (SPP). Compatibility, Nibble &
Byte modes use just the standard hardware available on the original Parallel Port cards while
EPP & ECP modes require additional hardware which can run at faster speeds, while still being
downwards compatible with the Standard Parallel Port.

Compatibility mode or "Centronics Mode" as it is commonly known, can only send data
in the forward direction at a typical speed of 50 kbytes per second but can be as high as 150+
kbytes a second. In order to receive data, you must change the mode to either

1. Nibble or
2. Byte mode.

1. Nibble mode can input a nibble (4 bits) in the reverse direction. E.g. from device to

computer.
2. Byte mode uses the Parallel's bi-directional feature (found only on some cards) to

input a byte (8 bits) of data in the reverse direction.

Extended and Enhanced Parallel Ports use additional hardware to generate and manage

handshaking. To output a byte to a printer (or anything in that matter) using compatibility mode,
the software must.

1. Write the byte to the Data Port.
2. Check to see is the printer is busy. If the printer is busy, it will not accept any
data, thus any data which is written will be lost.
3. Take the Strobe (Pin 1) low. This tells the printer that there is the correct data on the
data lines. (Pins 2-9)

 13

4. Put the strobe high again after waiting approximately 5 microseconds after putting the
strobe low. (Step 3)

This limits the speed at which the port can run at. The EPP & ECP ports get around this

by letting the hardware check to see if the printer is busy and generate a strobe and /or
appropriate handshaking. This means only one I/O instruction need to be performed, thus
increasing the speed.

These ports can output at around 1-2 megabytes per second. The ECP port also has the
advantage of using DMA channels and FIFO buffers, thus data can be shifted around without
using I/O instructions.

3.2 Hardware Properties

The D-Type 25 pin connector is the most common connector found on the Parallel Port
of the computer, while the Centronics Connector is commonly found on printers. The IEEE 1284
standard however specifies 3 different connectors for use with the Parallel Port. The first one,
1284 Type A is the D-Type 25 connector found on the back of most computers. The 2nd is the
1284 Type B which is the 36 pin Centronics Connector found on most printers.

IEEE 1284 Type C however, is a 36 conductor connector like the Centronics, but smaller.

Pin #(D-TYPE
25)

SPP SIGNAL DIRECTION
IN/OUT

REGISTER HARDWARE
INVERTED

 1 NStrobe In/Out Control Yes
 2 Data 0 Out Data
 3 Data 1 Out Data
 4 Data 2 Out Data
 5 Data 3 Out Data
 6 Data 4 Out Data
 7 Data 5 Out Data
 8 Data 6 Out Data
 9 Data 7 Out Data
 10 NAck In Status
 11 Busy In Status Yes
 12 Paper-out

PaperEnd
 In Status

 13 Select In Status
 14 nAuto Linefeed In/Out Control Yes
 15 nError/nFault In Status
 16 NInitialize In/Out Control
 17 nselect-Printer

nselect-In
 In/Out Control Yes

 18-25 Ground Gnd
 Table 3.1 Pin Assignments of the D-Type 25 pin Parallel Port Connector.

 14

The above table uses "n" in front of the signal name to denote that the signal is active
low. e.g. nError. If the printer has occurred an error then this line is low. This line normally is
high, should the printer be functioning correctly. The "Hardware Inverted" means the signal is
inverted by the Parallel card's hardware. Such an example is the Busy line. If +5v (Logic 1) was
applied to this pin and the status register read, it would return back a 0 in Bit 7 of the Status
Register.

The output of the Parallel Port is normally TTL logic levels. The voltage levels are the
easy part. The current you can sink and source varies from port to port. Most Parallel Ports
implemented in ASIC, can sink and source around 12mA. However these are just some of the
figures taken from Data sheets, Sink/Source 6mA, Source 12mA/Sink 20mA, Sink 16mA/Source
4mA, Sink/Source 12mA. As you can see they vary quite a bit. The best bet is to use a buffer, so
the least current is drawn from the Parallel Port.

3.3 Port Addresses

The Parallel Port has three commonly used base addresses. These are listed in table 2,
below. The 3BCh base address was originally introduced used for Parallel Ports on early Video
Cards. This address then disappeared for a while, when Parallel Ports were later removed from
Video Cards. They has now reappeared as an option for Parallel Ports integrated onto
motherboards, upon which their configuration can be changed using BIOS.

LPT1 is normally assigned base address 378h, while LPT2 is assigned 278h. However
this may not always be the case as explained later. 378h & 278h have always been commonly
used for Parallel Ports. The lower case h denotes that it is in hexadecimal. These addresses may
change from machine to machine.

 ADDRESS NOTES:
 3BCh-3BFh Used for Parallel Ports which were

incorporated in to Video Cards and
now, commonly an option for Ports
controlled by BIOS. - Doesn't support
ECP addresses.

 378h-37Fh Usual Address For LPT 1

 278h-27Fh Usual Address For LPT 2

 Table 3.2 Port Addresses

When the computer is first turned on, BIOS (Basic Input/Output System) will determine

the number of ports you have and assign device labels LPT1, LPT2 & LPT3 to them. BIOS first
looks at address 3BCh. If a Parallel Port is found here, it is assigned as LPT1, then it searches at
location 378h. If a Parallel card is found there, it is assigned the next free device label. This
would be LPT1 if a card wasn't found at 3BCh or LPT2 if a card was found at 3BCh. The last
port of call, is 278h and follows the same procedure than the other two ports. Therefore it is
possible to have a LPT2 which is at 378h and not at the expected address 278h.

What can make this even confusing, is that some manufacturers of Parallel Port Cards,
have jumpers which allow you to set your Port to LPT1, LPT2, LPT3. Now what address is

 15

LPT1? - On the majority of cards LPT1 is 378h, and LPT2, 278h, but some will use 3BCh as
LPT1, 378h as LPT1 and 278h as LPT2. Life wasn’t meant to be easy.

The assigned devices LPT1, LPT2 & LPT3 should not be a worry to people wishing to
interface devices to their PC's. Most of the time the base address is used to interface the port
rather than LPT1 etc. However should you want to find the address of LPT1 or any of the Line
PrinTer Devices, you can use a lookup table provided by BIOS. When BIOS assigns addresses
to your printer devices, it stores the address at specific locations in memory, so we can find them.

 START ADDRESS FUNCTION
0000-0408 LPT1’s Base Address
0000-040A LPT2’s Base Address
0000-040C LPT3’s Base Address
0000-040E LPT4’s Base Address (Note 1)
 Table 3.3 - LPT Addresses in the BIOS Data Area

Note 1 : Address 0000:040E in the BIOS Data Area may be used as the Extended Bios Data Area
in PS/2 and newer Bioses, and thus this field may be invalid.

The above table, table 3.3, shows the address at which we can find the Printer Port's

addresses in the BIOS Data Area. Each address will take up 2 bytes. The following sample
program in C, shows how you can read these locations to obtain the addresses of your printer
ports.

#include <stdio.h>
#include <dos.h>
void main(void)
{
unsigned int far *ptraddr; /* Pointer to location of Port Addresses */
unsigned int address; /* Address of Port */
int a;
ptraddr=(unsigned int far *)0x00000408;
for (a = 0; a < 3; a++)

{
address = *ptraddr;
if (address == 0)
printf("No port found for LPT%d \n",a+1);
else
printf("Address assigned to LPT%d is %Xh\n",a+1,address);
*ptraddr++;
}

}

 16

3.4 Software Registers - Standard Parallel Port (SPP)

OFFSET NAME READ/WRITE BIT NO PROPERTIES
BASE +0 DATA PORT WRITE (Note 1) Bit 7

Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Data 7(Pin 9)
Data 6(Pin 8)
Data 5(Pin 7)
Data 4(Pin 6)
Data 3(Pin 5)
Data 2(Pin 4)
Data 1(Pin 3)
Data 0(Pin 2)

 Table 3.4 Data Port

Note 1 : If the Port is bi-directional then Read and Write Operations can be performed on the
Data Register.

The base address, usually called the Data Port or Data Register is simply used for
outputting data on the Parallel Port's data lines (Pins 2-9). This register is normally a write only
port. If you read from the port, you should get the last byte sent. However if your port is bi-
directional, you can receive data on this address. See Bi-directional Ports for more detail.

BASE +1 STATUS PORT READ ONLY Bit 7

Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

 Busy
 Ack
 Paper out
 Select in
 Error
 IRQ
 Reserved
 Reserved

 Table 3.5 Status Port

The Status Port (base address + 1) is a read only port. Any data written to this port will be
ignored. The Status Port is made up of 5 input lines (Pins 10,11,12,13 & 15), a IRQ status
register and two reserved bits. Please note that Bit 7 (Busy) is a active low input. E.g. If bit 7
happens to show a logic 0, this means that there is +5v at pin 11. Likewise with Bit 2. (nIRQ) If
this bit shows a '1' then an interrupt has not occurred.

BASE +2 CONTROL PORT READ\WRITE Bit 7

Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

Unused
Unused
Enable bi-directional port
Enable IRQ via Ack line
Select printer
Initialize printer (Reset)
Auto linefeed
Strobe

 Table 3.6 Control Port

 17

The Control Port (base address + 2) was intended as a write only port. When a printer is

attached to the Parallel Port, four "controls" are used. These are Strobe, Auto Linefeed, Initialize
and Select Printer, all of which are inverted except Initialize.

The printer would not send a signal to initialize the computer, nor would it tell the
computer to use auto linefeed. However these four outputs can also be used for inputs. If the
computer has placed a pin high (e.g. +5v) and your device wanted to take it low, you would
effectively short out the port, causing a conflict on that pin. Therefore these lines are "open
collector" outputs (or open drain for CMOS devices). This means that it has two states. A low
state (0v) and a high impedance state (open circuit).

Normally the Printer Card will have internal pull-up resistors, but as you would expect,
not all will. Some may just have open collector outputs, while others may even have normal
totem pole outputs. In order to make your device work correctly on as many Printer Ports as
possible, you can use an external resistor as well. Should you already have an internal resistor,
then it will act in Parallel with it, or if you have Totem pole outputs, the resistor will act as a
load.

An external 4.7k resistor can be used to pull the pin high. I wouldn't use anything lower,
just in case you do have an internal pull up resistor, as the external resistor would act in parallel
giving effectively, a lower value pull up resistor. When in high impedance state the pin on the
Parallel Port is high (+5v). When in this state, your external device can pull the pin low and have
the control port change read a different value. This way the 4 pins of the Control Port can be
used for bi-directional data transfer. However the Control Port must be set to xxxx0100 to be
able to read data, that is all pins to be +5v at the port so that you can pull it down to GND (logic
0).

Bits 4 & 5 are internal controls. Bit four will enable the IRQ (See Using the Parallel
Ports IRQ) and Bit 5 will enable the bi-directional port meaning that you can input 8 bits using
(DATA0-7). This mode is only possible if your card supports it. Bits 6 & 7 are reserved. Any
writes to these two bits will be ignored.

 18

b. SERIAL PORT

3.5 Introduction

The Serial Port is harder to interface than the Parallel Port. In most cases, any device you
connect to the serial port will need the serial transmission converted back to parallel so that it can
be used. This can be done using a UART. On the software side of things, there are many more
registers that you have to attend to than on a Standard Parallel Port. (SPP)
So what are the advantages of using serial data transfer rather than parallel?

1. Serial Cables can be longer than Parallel cables. The serial port transmits a '1'
 as -3 to -25 volts and a '0' as +3 to +25 volts where as a parallel port
 transmits a '0' as 0v and a '1' as 5v. Therefore the serial port can have a
 maximum swing of 50V compared to the parallel port which has a maximum
 swing of 5 Volts. Therefore cable loss is not going to be as much of a
 problem for serial cables than they are for parallel.
2. You don't need as many wires than parallel transmission. If your device
 needs to be mounted a far distance away from the computer then 3 core cable
 (Null Modem Configuration) is going to be a lot cheaper that running 19 or
 25 core cable. However you must take into account the cost of the interfacing
 at each end.
3. Infra Red devices have proven quite popular recently. You may of seen many
 electronic diaries and palmtop computers which have infra red capabilities
 build in. However could you imagine transmitting 8 bits of data at the one
 time across the room and being able to (from the devices point of view)
 decipher which bits are which? Therefore serial transmission is used where
 one bit is sent at a time. IrDA-1 (The first infra red specifications) was
 capable of 115.2k baud and was interfaced into a UART. The pulse length
 however was cut down to 3/16th of a RS232 bit length to conserve power
 considering these devices are mainly used on diaries, laptops and palmtops.
4. Microcontroller's have also proven to be quite popular recently. Many of
 these have in built SCI (Serial Communications Interfaces) which can be
 used to talk to the outside world. Serial Communication reduces the pin
 count of these MPU's. Only two pins are commonly used, Transmit Data
 (TXD) and Receive Data (RXD) compared with at least 8 pins if you use a 8
 bit Parallel method (You may also require a Strobe).

3.6 Hardware Properties

Devices which use serial cables for their communication are split into two categories.
These are DCE (Data Communications Equipment) and DTE (Data Terminal Equipment.) Data
Communications Equipment are devices such as your modem, TA adapter, plotter etc while Data
Terminal Equipment is your Computer or Terminal.
The electrical specifications of the serial port is contained in the EIA (Electronics Industry
Association) RS232C standard. It states many parameters such as -

 19

1. A "Space" (logic 0) will be between +3 and +25 Volts.
2. A "Mark" (Logic 1) will be between -3 and -25 Volts.
3. The region between +3 and -3 volts is undefined.
4. An open circuit voltage should never exceed 25 volts. (In Reference to
 GND)
5. A short circuit current should not exceed 500mA. The driver should be
 able to handle this without damage. (Take note of this one!)

Above is no where near a complete list of the EIA standard. Line Capacitance, Maximum

Baud Rates etc are also included. For more information please consult the EIA RS232-E
standard. It is interesting to note however, that the RS232C standard specifies a maximum baud
rate of 20,000 BPS!, which is rather slow by today's standards. Revised standards, EIA-232D &
EIA-232E were released, in 1987 & 1991 respectively.

Serial Ports come in two "sizes", There are the D-Type 25 pin connector and the D-Type
9 pin connector both of which are male on the back of the PC, thus you will require a female
connector on your device. Below is a table of pin connections for the 9 pin and 25 pin D-Type
connectors.

3.6.1 Serial Pinouts (D25 and D9 Connectors)

D-Type 25 Pin No D-Type 9Pin No Abbreviations Full Name
 Pin 2 Pin 3 TD Transmit Data
 Pin 3 Pin 2 RD Receive Data
 Pin 4 Pin 7 RTS Request to send
 Pin 5 Pin 8 CTS Clear to send
 Pin 6 Pin 6 DSR Data send ready
 Pin 7 Pin 5 SG Signal ground
 Pin 8 Pin 1 CD Carrier detect
 Pin 20 Pin 4 DTR Data terminal ready
 Pin 22 Pin 9 RI Ring indicator
 Table 3.8 : D Type 9 Pin and D Type 25 Pin Connectors

3.6.2 Pin Functions

Abbreviations Full Name Functions
 TD Transmit Data Serial data output (TXD)
 RD Receive Data Serial data input (RXD)
 DCD Data carrier detect When the data detects Carrier from the

modem at the other end of the phone line,
this Line becomes active.

 CTS Clear to send This line indicate that modem is ready to
exchange data.

 DSR Data send ready This tells the UART that the modem is
ready to establish the link.

 20

 DTR Data terminal ready This is opposite to DSR. This tells the
modem that the UART is ready to link.

 RTS Request to send This line informs the modem that the
UART is ready to exchange data.

 RI Ring indicator Goes active when the modem detects the
ringing signal from the PSTN.

3.7 Null Modems

A Null Modem is used to connect two DTE's together. This is commonly used as a cheap
way to network games or to transfer files between computers using Zmodem Protocol, Xmodem
Protocol etc. This can also be used with many Microprocessor Development Systems.

Figure 3.4 : Null Modem Wiring Diagram

Above is my preferred method of wiring a Null Modem. It only requires 3 wires (TD, RD
& SG) to be wired straight through thus is more cost effective to use with long cable runs. The
theory of operation is reasonably easy. The aim is to make to computer think it is talking to a
modem rather than another computer. Any data transmitted from the first computer must be
received by the second thus TD is connected to RD. The second computer must have the same
set-up thus RD is connected to TD. Signal Ground (SG) must also be connected so both grounds
are common to each computer.

The Data Terminal Ready is looped back to Data Set Ready and Carrier Detect on both
computers. When the Data Terminal Ready is asserted active, then the Data Set Ready and
Carrier Detect immediately become active. At this point the computer thinks the Virtual Modem
to which it is connected is ready and has detected the carrier of the other modem.

All left to worry about now is the Request to Send and Clear To Send. As both computers
communicate together at the same speed, flow control is not needed thus these two lines are also
linked together on each computer. When the computer wishes to send data, it asserts the Request
to Send high and as it's hooked together with the Clear to Send, It immediately gets a reply that it
is ok to send and does so.

Notice that the ring indicator is not connected to anything of each end. This line is only
used to tell the computer that there is a ringing signal on the phone line. As we don't have a
modem connected to the phone line this is left disconnected.

 21

3.8 LoopBack Plug

This loopback plug can come in extremely handy when writing Serial / RS232
Communications Programs. It has the receive and transmit lines connected together, so that
anything transmitted out of the Serial Port is immediately received by the same port. If you
connect this to a Serial Port an load a Terminal Program, anything you type will be immediately
displayed on the screen. This can be used with the examples later in this tutorial.

 Figure 3.5

3.9 DTE / DCE Speeds

We have already talked briefly about DTE & DCE. A typical Data Terminal Device is a
computer and a typical Data Communications Device is a Modem. Often people will talk about
DTE to DCE or DCE to DCE speeds. DTE to DCE is the speed between your modem and
computer, sometimes referred to as your terminal speed. This should run at faster speeds than the
DCE to DCE speed. DCE to DCE is the link between modems, sometimes called the line speed.

Most people today will have 28.8K or 33.6K modems. Therefore we should expect the
DCE to DCE speed to be either 28.8K or 33.6K. Considering the high speed of the modem we
should expect the DTE to DCE speed to be about 115,200 BPS. (Maximum Speed of the 16550a
UART) This is where some people often fall into a trap. The communications program which
they use have settings for DCE to DTE speeds. However they see 9.6 KBPS, 14.4 KBPS etc and
think it is your modem speed.

Today's Modems should have Data Compression build into them. This is very much like
PK-ZIP but the software in your modem compresses and decompresses the data. When set up
correctly you can expect compression ratios of 1:4 or even higher. 1 to 4 compression would be
typical of a text file. If we were transferring that text file at 28.8K (DCE-DCE), then when the
modem compresses it you are actually transferring 115.2 KBPS between computers and thus
have a DCE-DTE speed of 115.2 KBPS.

Thus this is why the DCE-DTE should be much higher than your modem's connection
speed. Some modem manufacturers quote a maximum compression ratio as 1:8. Lets say for
example its on a new 33.6 KBPS modem then we may get a maximum 268,800 BPS transfer
between modem and UART. If you only have a 16550a which can do 115,200 BPS tops, then

 22

you would be missing out on a extra bit of performance. Buying a 16C650 should fix your
problem with a maximum transfer rate of 230,400 BPS.

However don't abuse your modem if you don't get these rates. These are MAXIMUM
compression ratios. In some instances if you try to send a already compressed file, your modem
can spend more time trying the compress it, thus you get a transmission speed less than your
modem's connection speed. If this occurs try turning off your data compression. This should be
fixed on newer modems. Some files compress easier than others thus any file which compresses
easier is naturally going to have a higher compression ratio.

3.10 Flow Control

So if our DTE to DCE speed is several times faster than our DCE to DCE speed the PC
can send data to your modem at 115,200 BPS. Sooner or later data is going to get lost as buffers
overflow, thus flow control is used. Flow control has two basic varieties, Hardware or Software.

Software flow control, sometimes expressed as Xon/Xoff uses two characters Xon and
Xoff. Xon is normally indicated by the ASCII 17 character where as the ASCII 19 character is
used for Xoff. The modem will only have a small buffer so when the computer fills it up the
modem sends a Xoff character to tell the computer to stop sending data. Once the modem has
room for more data it then sends a Xon character and the computer sends more data. This type of
flow control has the advantage that it doesn't
require any more wires as the characters are sent via the TD/RD lines. However on slow links
each character requires 10 bits which can slow communications down.

Hardware flow control is also known as RTS/CTS flow control. It uses two wires in your
serial cable rather than extra characters transmitted in your data lines. Thus hardware flow
control will not slow down transmission times like Xon-Xoff does. When the computer wishes to
send data it takes active the Request to Send line. If the modem has room for this data, then the
modem will reply by taking active the Clear to Send line and the computer starts sending data. If
the modem does not have the room then it will not send a Clear to Send.

 23

c. PARALLEL TO SERIAL DATA CONVERSION

3.11 The UART (8250 and Compatibles)

UART stands for Universal Asynchronous Receiver / Transmitter. Its the little box of
tricks found on your serial card which plays the little games with your modem or other connected
devices. Most cards will have the UART's integrated into other chips which may also control
your parallel port, games port, floppy or hard disk drives and are typically surface mount
devices. The 8250 series, which includes the 16450, 16550, 16650, & 16750 UARTS are the
most commonly found type in your PC. Later we will look at other types which can be used in
your homemade devices and projects.

Figure 3.6 : Pin Diagrams for 16550, 16450 & 8250 UARTs

The 16550 is chip compatible with the 8250 & 16450. The only two differences are pins
24 & 29. On the 8250 Pin 24 was chip select out which functioned only as a indicator to if the
chip was active or not. Pin 29 was not connected on the 8250/16450 UARTs. The 16550
introduced two new pins in their place. These are Transmit Ready and Receive Ready which can
be implemented with DMA (Direct Memory Access). These Pins have two different modes of
operation. Mode 0 supports single transfer DMA where as Mode 1 supports Multi-transfer DMA.

Mode 0 is also called the 16450 mode. This mode is selected when the FIFO buffers are
disabled via Bit 0 of the FIFO Control Register or When the FIFO buffers are enabled but DMA
Mode Select = 0. (Bit 3 of FCR) In this mode RXRDY is active low when at least one character
(Byte) is present in the Receiver Buffer. RXRDY will go inactive high when no more characters
are left in the Receiver Buffer. TXRDY will be active low when there are no characters in the

 24

Transmit Buffer. It will go inactive highafter the first character / byte is loaded into the Transmit
Buffer.

Mode 1 is when the FIFO buffers are active and the DMA Mode Select = 1. In Mode 1,
RXRDY will go active low when the trigger level is reached or when 16550 Time Out occurs
and will return to inactive state when no more characters are left in the FIFO. TXRDY will be
active when no characters are present in the Transmit Buffer and will go inactive when the FIFO
Transmit Buffer is completely Full.

All the UARTs pins are TTL compatible. That includes TD, RD, RI, DCD, DSR, CTS,
DTR and RTS which all interface into your serial plug, typically a D-type connector. Therefore
RS232 Level Converters (which we talk about in detail later) are used. These are commonly the
DS1489 Receiver and the DS1488 as the PC has +12 and -12 volt rails which can be used by
these devices. The RS232 Converters will convert the TTL signal into RS232 Logic Levels.

The UART requires a Clock to run. If you look at your serial card a common crystal
found is either a 1.8432 MHZ or a 18.432 MHZ Crystal. The crystal in connected to the XIN-
XOUT pins of the UART using a few extra components which help the crystal to start
oscillating. This clock will be used for the Programmable Baud Rate Generator which directly
interfaces into the transmit timing circuits but not directly into the receiver timing circuits. For
this an external connection mast be made from pin 15 (BaudOut) to pin 9 (Receiver clock in.)
Note that the clock signal will be at Baudrate 16.

 25

 26

Table 3.9 : Pin Assignments for 16550A UART

3.11.1 Types of UARTS (For PC's)

8250 First UART in this series. It contains no scratch register. The 8250A was
an improved version of the 8250 which operates faster on the bus side.

8250A This UART is faster than the 8250 on the bus side. Looks exactly the same
to software than 16450.

8250B Very similar to that of the 8250 UART.
16450 Used in AT's (Improved bus speed over 8250's). Operates comfortably at

38.4KBPS. Still quite common today.
16550 This was the first generation of buffered UART. It has a 16 byte buffer,

however it doesn't work and is replaced with the 16550A.
16550A Is the most common UART use for high speed communications eg 14.4K

& 28.8K Modems. They made sure the FIFO buffers worked on this
UART.

16650 Very recent breed of UART. Contains a 32 byte FIFO, Programmable X-
On / XOff characters and supports power management.

16750 Produced by Texas Instruments. Contains a 64 byte FIFO.

 27

3.11.2 Serial Port's Registers (PC's) Port Addresses & IRQ's

 NAME ADDRESS IRQ
 COM 1 3F8 4
 COM 2 2F8 3
 COM 3 3E8 4
 COM 4 2E8 3

Table 3.10 : Standard Port Addresses

Above is the standard port addresses. These should work for most P.C's. If you just
happen to be lucky enough to own a IBM P/S2 which has a micro-channel bus, then expect a
different set of addresses and IRQ's. Just like the LPT ports, the base addresses for the COM
ports can be read from the BIOS Data Area.

START ADDRESS FUNCTION
0000 : 0400 COM 1’s Base Address
0000 : 0402 COM 2’s Base Address
0000 : 0404 COM 3’s Base Address
0000 : 0406 COM 4’s Base Address

Table 3.11 - COM Port Addresses in the BIOS Data Area;

The above table shows the address at which we can find the Communications (COM)
ports addresses in the BIOS Data Area. Each address will take up 2 bytes. The following sample
program in C, shows how you can read these locations to obtain the addresses of your
communications ports.

#include <stdio.h>
#include <dos.h>
void main(void)
{
unsigned int far *ptraddr; /* Pointer to location of Port Addresses */
unsigned int address; /* Address of Port */
int a;
ptraddr=(unsigned int far *)0x00000400;
for (a = 0; a < 4; a++)
{
address = *ptraddr;
if (address == 0)
printf("No port found for COM%d \n",a+1);
else
printf("Address assigned to COM%d is %Xh\n",a+1,address);
*ptraddr++;
}
}

 28

3.11.3 Table of Registers

Table 3.12 : Table of Registers

3.11.4 DLAB ?

You will have noticed in the table of registers that there is a DLAB column. When DLAB
is set to '0' or '1' some of the registers change. This is how the UART is able to have 12 registers
(including the scratch register) through only 8 port addresses. DLAB stands for Divisor Latch
Access Bit. When DLAB is set to '1' via the line control register, two registers become available
from which you can set your speed of communications measured in bits per second.

The UART will have a crystal which should oscillate around 1.8432 MHZ. The UART
incorporates a divide by 16 counter which simply divides the incoming clock signal by 16.
Assuming we had the 1.8432 MHZ clock signal, that would leave us with a maximum, 115,200
hertz signal making the UART capable of transmitting and receiving at 115,200 Bits Per Second
(BPS). That would be fine for some of the faster modems and devices which can handle that
speed, but others just wouldn't communicate at all. Therefore the UART is fitted with a
Programmable Baud Rate Generator which is
controlled by two registers.
Lets say for example we only wanted to communicate at 2400 BPS. We worked out that we
would have to divide 115,200 by 48 to get a workable 2400 Hertz Clock. The "Divisor", in this
case 48, is stored in the two registers controlled by the "Divisor Latch Access Bit". This divisor

 29

can be any number which can be stored in 16 bits (ie 0 to 65535). The UART only has a 8 bit
data bus, thus this is where the two registers are used. The first register (Base + 0) when DLAB =
1 stores the "Divisor latch low byte" where as the second register (base + 1 when DLAB = 1)
stores the "Divisor latch high byte."

Below is a table of some more common speeds and their divisor latch high bytes & low
bytes. Note that all the divisors are shown in Hexadecimal.

Table 3.13 : Table of Commonly Used Baudrate Divisors

3.11.5 Interrupt Enable Register (IER)

Bits Notes
Bit 7 Reserved
Bit 6 Reserved
Bit 5 Enable low power mode (16750)
Bit 4 Enables sleep mode(16750)
Bit 3 Enable modem status interrupt
Bit 2 Enable receive line status interrupt
Bit 1 Enable transmit holding register empty interrupt
Bit 0 Enable received data available interrupt

Table 3.14 : Interrupt Enable Register

The Interrupt Enable Register could possibly be one of the easiest registers on a UART to
understand. Setting Bit 0 high enables the Received Data Available Interrupt which generates an
interrupt when the receiving register/FIFO contains data to be read by the CPU.

Bit 1 enables Transmit Holding Register Empty Interrupt. This interrupts the CPU when
the transmitter buffer is empty. Bit 2 enables the receiver line status interrupt. The UART will
interrupt when the receiver line status changes. Likewise for bit 3 which enables the modem

 30

status interrupt. Bits 4 to 7 are the easy ones. They are simply reserved. (If only everything was
that easy!)

3.11.6 Interrupt Identification Register (IIR)

Table 3.15 : Interrupt Identification Register

The interrupt identification register is a read only register. Bits 6 and 7 give status on the

FIFO Buffer. When both bits are '0' no FIFO buffers are active. This should be the only result
you will get from a 8250 or 16450. If bit 7 is active but bit 6 is not active then the UART has it's
buffers enabled but are unusable. This occurs on the 16550 UART where a bug in the FIFO
buffer made the FIFO's unusable. If both bits are '1' then the FIFO buffers are enabled and fully
operational.

Bits 4 and 5 are reserved. Bit 3 shows the status of the time-out interrupt on a 16550 or
higher. Lets jump to Bit 0 which shows whether an interrupt has occurred. If an interrupt has
occurred it's status will shown by bits 1 and 2. These interrupts work on a priority status. The
Line Status Interrupt has the highest Priority, followed by the Data Available Interrupt, then the

 31

Transmit Register Empty Interrupt and then the Modem Status Interrupt which has the lowest
priority.

3.11.7 First In / First Out Control Register (FCR)

Table 3.16 : FIFO Control Register

The FIFO register is a write only register. This register is used to control the FIFO (First

In / First Out) buffers which are found on 16550's and higher.
Bit 0 enables the operation of the receive and transmit FIFO's. Writing a '0' to this bit will

disable the operation of transmit and receive FIFO's, thus you will loose all data stored in these
FIFO buffers.

Bit's 1 and 2 control the clearing of the transmit or receive FIFO's. Bit 1 is responsible for
the receive buffer while bit 2 is responsible for the transmit buffer. Setting these bits to 1 will
only clear the contents of the FIFO and will not affect the shift registers. These two bits are self
resetting, thus you don't need to set the bits to '0' when finished.

Bit 3 enables the DMA mode select which is found on 16550 UARTs and higher. More
on this later. Bits 4 and 5 are those easy type again, Reserved.

 32

Bits 6 and 7 are used to set the triggering level on the Receive FIFO. For example if bit 7
was set to '1' and bit 6 was set to '0' then the trigger level is set to 8 bytes. When there is 8 bytes
of data in the receive FIFO then the Received Data Available interrupt is set. See (IIR)

3.11.8 Line Control Register (LCR)

The Line Control register sets the basic parameters for communication. Bit 7 is the
Divisor Latch Access Bit or DLAB for short. We have already talked about what it does. (See
DLAB?) Bit 6 Sets break enable. When active, the TD line goes into "Spacing" state which
causes a break in the receiving UART.Setting this bit to '0' Disables the Break.Bits 3,4 and 5
select parity. If you study the 3 bits, you will find that bit 3 controls parity. That is, if it is set to
'0' then no parity is used, but if it is set to '1' then parity is used. Jumping to bit 5, we can see that
it controls sticky parity. Sticky parity is simply when the parity bit is always transmitted and
checked as a '1' or '0'. This has very little success in checking for errors as if the first 4 bits
contain errors but the sticky parity bit contains the appropriately set bit, then a parity error will
not result. Sticky high parity is the use of a '1' for the parity bit, while the opposite, sticky low
parity is the use of a '0' for the parity bit.If bit 5 controls sticky parity, then turning this bit off
must produce normal parity provided bit 3 is still set to '1'. Odd parity is when the parity bit is
transmitted as a '1' or '0' so that there is a odd number of 1's. Even parity must then be the parity
bit produces and even number of 1's. This provides better error checking but still is not perfect,
thus CRC-32 is often used for software error correction. If one bit happens to be inverted with
even or odd parity set, then a parity error will occur, however if two bits are flipped in such a
way that it produces the correct parity bit then an parity error will no occur.

Bit 2 sets the length of the stop bits. Setting this bit to '0' will produce one stop bit,
however setting it to '1' will produce either 1.5 or 2 stop bits depending upon the word length.
Note that the receiver only checks the first stop bit.Bits 0 and 1 set the word length. This should
be pretty straight forward. A word length of 8 bits is most commonly used today.

 33

Table 3.17 : Line Control Register

 34

3.11.9 Modem Control Register (MCR)

Table 3.18 : Modem Control Register

The Modem Control Register is a Read/Write Register. Bits 5,6 and 7 are reserved. Bit 4

activates the loopback mode. In Loopback mode the transmitter serial output is placed into
marking state. The receiver serial input is disconnected. The transmitter out is looped back to the
receiver in. DSR, CTS, RI & DCD are disconnected. DTR, RTS, OUT1 & OUT2 are connected
to the modem control inputs. The modem control output pins are then place in an inactive state.
In this mode any data which is placed in the transmitter registers for output is received by the
receiver circuitry on the same chip and is available at the receiver buffer. This can be used to test
the UARTs operation.

Aux Output 2 maybe connected to external circuitry which controls the UART-CPU
interrupt process. Aux Output 1 is normally disconnected, but on some cards is used to switch
between a 1.8432MHZ crystal to a 4MHZ crystal which is used for MIDI. Bits 0 and 1 simply
control their relevant data lines. For example setting bit 1 to '1' makes the request to send line
active.

3.11.10 Line Status Register (LSR)

The line status register is a read only register. Bit 7 is the error in received FIFO bit. This
bit is high when at least one break, parity or framing error has occurred on a byte which is
contained in the FIFO.When bit 6 is set, both the transmitter holding register and the shift
register are empty. The UART's holding register holds the next byte of data to be sent in parallel
fashion. The shift register is used to convert the byte to serial, so that it can be transmitted over
one line. When bit 5 is set, only the transmitter holding register is empty. So what's the
difference between the two? When bit 6, the transmitter holding and shift registers are empty, no
serial conversions are taking place so there should be no activity on the transmit data line. When

 35

bit 5 is set, the transmitter holding register is empty, thus another byte can be sent to the data
port, but a serial conversion using the shift register may be taking place.

 Table 3.19 : Line Status Register

The break interrupt (Bit 4) occurs when the received data line is held in a logic state '0'
(Space) for more than the time it takes to send a full word. That includes the time for the start bit,
data bits, parity bits and stop bits.

A framing error (Bit 3) occurs when the last bit is not a stop bit. This may occur due to a
timing error. You will most commonly encounter a framing error when using a null modem
linking two computers or a protocol analyzer when the speed at which the data is being sent is
different to that of what you have the UART set to receive it at.

A overrun error normally occurs when your program can't read from the port fast enough.
If you don't get an incoming byte out of the register fast enough, and another byte just happens to
be received, then the last byte will be lost and a overrun error will result.

Bit 0 shows data ready, which means that a byte has been received by the UART and is at
the receiver buffer ready to be read.

3.11.11 Modem Status Register (MSR)

 36

Table 3.20 : Modem Status Register

Bit 0 of the modem status register shows delta clear to send, delta meaning a change in,

thus delta clear to send means that there was a change in the clear to send line, since the last read
of this register. This is the same for bits 1 and 3. Bit 1 shows a change in the Data Set Ready line
where as Bit 3 shows a change in the Data Carrier Detect line. Bit 2 is the Trailing Edge Ring
Indicator which indicates that there was a transformation from low to high state on the Ring
Indicator line.

Bits 4 to 7 show the current state of the data lines when read. Bit 7 shows Carrier Detect,
Bit 6 shows Ring Indicator, Bit 5 shows Data Set Ready & Bit 4 shows the status of the Clear To
Send line.

3.11.12 Scratch Register

The scratch register is not used for communications but rather used as a place to leave a
byte of data. The only real use it has is to determine whether the UART is a 8250/8250B or a
8250A/16450 and even that is not very practical today as the 8250/8250B was never designed for
AT's and can't hack the bus speed.

3.12 Interfacing Devices to RS-232 Ports
3.12.1 RS-232 Waveforms

So far we have introduced RS-232 Communications in relation to the PC. RS-232
communication is asynchronous. That is a clock signal is not sent with the data. Each word is
synchronized using it's start bit, and an internal clock on each side, keeps tabs on the timing.

 37

Figure 3.7 : TTL/CMOS Serial Logic Waveform

The diagram above, shows the expected waveform from the UART when using the
common 8N1 format. 8N1 signifies 8 Data bits, No Parity and 1 Stop Bit. The RS-232 line, when
idle is in the Mark State (Logic 1). A transmission starts with a start bit which is (Logic 0). Then
each bit is sent down the line, one at a time. The LSB (Least Significant Bit) is sent first. A Stop
Bit (Logic 1) is then appended to the signal to make up the transmission.

The diagram, shows the next bit after the Stop Bit to be Logic 0. This must mean another
word is following, and this is it's Start Bit. If there is no more data coming then the receive line
will stay in it's idle state(logic 1). We have encountered something called a "Break" Signal. This
is when the data line is held in a Logic 0 state for a time long enough to send an entire word.
Therefore if you don't put the line back into an idle state, then the receiving end will interpret this
as a break signal.

The data sent using this method, is said to be framed. That is the data is framed between a
Start and Stop Bit. Should the Stop Bit be received as a Logic 0, then a framing error will occur.
This is common, when both sides are communicating at different speeds.

The above diagram is only relevant for the signal immediately at the UART. RS-232
logic levels uses +3 to +25 volts to signify a "Space" (Logic 0) and -3 to -25 volts for a "Mark"
(logic 1). Any voltage in between these regions (ie between +3 and -3 Volts) is undefined.
Therefore this signal is put through a "RS-232 Level Converter". This is the signal present on the
RS-232 Port of your computer, shown below.

Figure 3.8 : RS-232 Logic Waveform

The above waveform applies to the Transmit and Receive lines on the RS-232 port.

These lines carry serial data, hence the name Serial Port. There are other lines on the RS-232
port which, in essence are Parallel lines. These lines (RTS, CTS, DCD, DSR, DTR, RTS and RI)
are also at RS-232 Logic Levels.

3.12.2 RS-232 Level Converter

Almost all digital devices which we use require either TTL or CMOS logic levels.
Therefore the first step to connecting a device to the RS-232 port is to transform the RS-232
levels back into 0 and 5 Volts. As we have already covered, this is done by RS-232 Level
Converters.

Two common RS-232 Level Converters are the 1488 RS-232 Driver and the 1489 RS-
232 Receiver. Each package contains 4 inverters of the one type, either Drivers or Receivers. The
driver requires two supply rails, +7.5 to +15v and -7.5 to -15v. As you could imagine this may
pose a problem in many instances where only a single supply of +5V is present. However the
advantages of these I.C's are they are cheap.

 38

 (Figure 3.9) Pinouts for the MAX-232,
RS-232 Driver/Receiver.

 (Figure 3.10) Typical MAX-232 Circuit.

Another device is the MAX-232. It includes a Charge Pump, which generates +10V and -
10V from a single 5v supply. This I.C. also includes two receivers and two transmitters in the
same package. This is handy in many cases when you only want to use the Transmit and Receive
data Lines. You don't need to use two chips, one for the receive line and one for the transmit.
However all this convenience comes at a price, but compared with the price of designing a new
power supply it is very cheap.

There are also many variations of these devices. The large value of capacitors are not
only bulky, but also expensive. Therefore other devices are available which use smaller
capacitors and even some with inbuilt capacitors. (Note : Some MAX-232's can use 1 micro farad
Capacitors). However the MAX-232 is the most common, and thus we will use this RS-232
Level Converter in our examples.

3.12.3 Making use of the Serial Format

In order to do anything useful with our Serially transmitted data, we must convert it back
to Parallel. (You could connect an LED to the serial port and watch it flash if you really want
too, but it's not extremely useful). This in the past has been done with the use of UART's.
However with the popularity of cheap Microcontroller's, these can be more suited to many
applications. We will look into the advantages and disadvantages of each method.

3.13 8250 and Compatible UARTs

We have already looked at one type of UART, the 8250 and compatibles found in your
PC. These devices have configuration registers accessible via the data and address buses which
have to be initialized before use. This is not a problem if your device which you are building
uses a Microprocessor.

 39

However if you are making a stand alone device, how are you going to initialize it? Most
Microprocessors / Microcontrollers these days can be brought with build-in Serial
Communication Interfaces (SCI). Therefore there is little need to connect a 40 pin 16550 to, for
example a 68HC11 when you can buy one built in. If you are still in love with the Z-80 or 8086
then an 16550 may be option!

Figure 3.11 : Pin Diagrams for 16550, 16450 & 8250 UARTs

3.14 Microcontrollers

It is also possible to use microcontrollers to transmit and receive Serial data. As we have
already covered, some of these MCU's (Micro Controller Units) have built in UART's among
other things Microcontroller and thus reducing the chip count and the cost of the project.

It only supports slow transmission speeds, commonly 2400, 9600 or maybe even 19,200

BPS if you are lucky. The other disadvantage is that it's really only effective in half duplex
mode. That is, it can only communicate in one direction at any one given time. However in many
applications this is not a problem.

As there are many different types of Micro-Controllers all with their different instruction
sets, it is very hard to give examples here which will suit everyone.

 40

3.14.1An Introduction to MicroControllers & Embedded Systems

\What is a Controller?

 A machine to control various kinds of devices at a time or independently

What is a MicroController?
 As name implies a controller fabricated in a small scale to control the devices at hand
 simultaneously or independently

Embedded Systems
 Most of the MicroControllers have built in ROM; so code is rather “embedded” in it.
 MicroProcessors need external RAM and ROM for a complete system; while most of the
 MicroControllers have built in RAM and ROMs (Nowadays EEPROMs)

General purpose Vs Dedicated Machine
 A MicroProcessor is a general purpose machine while a MicroController is a dedicated
 machine.

“No Direct Talk” Vs “Direct Talk” (Interface)
 MicroProcessors cannot directly “talk” or in other words interfaced to outside world; they
 need chips to do so e.g. 8255 for Parallel Communication and 8251 for Serial
 Communication (for Intel Systems). MicroController have dedicated ports for these
 interfaces e.g. Port 1 and RxD & TxD of 89C51

 41

Comparisons of various MicroControllers in MCS51 Series

3.14.2 AT89C51 Basic Features
• 4 K Bytes ROM
• 128 Bytes RAM
• Four 8-bit I/O Ports
• Two 16 Bit Timers
• Serial Interface
• 64 K External Code Memory Space
• 64 K External Data Memory Space
• Boolean processor (operates on single bits)
• 210 Bit Addressable Locations
• 4 Microseconds Multiply / Divide

3.14.2.1 A Brief Description of Pinouts of AT89C51
• Pins 1-8 :

 Pins 1 through 8 are the pins of Port 1. Port 1 is a dedicated I/O port; so these pins are
available for interfacing external devices as required. No alternate function is assigned to these
pins.

• Pin 9 :
 Pin Number 9 is the system RESET (RST) of CPU of AT89C51. AT89C51 is reset by holding
RST high for at least two machine cycles and then returning it low. The Reset may be manually
activated using a switch, or may be activated upon power-up using RC network. After a system
reset, Program Counter is loaded with 0000H. When RST returns low, program execution begins
at the first location in code memory at address 0000H. The contents of on-chip RAM are not
affected by a reset operation.

Below are the RC networks connected with RST pin:

Part
Number

On-Chip
Code
Memory

On-Chip
Data
Memory

No of
Timers

xx31 0K ROM 128 bytes 2

xx51 4K ROM 128 bytes 2

xx32 0K ROM 256 bytes 3

xx52 8K ROM 256 bytes 3

 42

• Pins 10-17 :
 Pins’ numbers 10 through 17 constitute Port 3 which is a dual-purpose port. As well as general
purpose I/O, these pins are multifunctional with each having an alternate purpose related to
special features of C51.
 These features along with pins are summarized in the coming table

• Pins 18-19 :
 Pins’ numbers 18 and 19 comprise the inputs of crystal to be connected to the on-chip
oscillator of AT89C51. Two Stabilizing capacitors of 30 pF each are also required.

• Pin 20 :
 It is the common ground of 89C51 and accompanying networks.

• Pins 21-28 :
 Pins 21 through 28 are of Port 2.
 Port 2 is a also a dual purpose port. It can serve as a general purpose I/O port or as the
high byte of the address bus for designs with external code memory or more than 128 bytes of
data memory.

• Pin 29 and Pin 31 :
 These pins are used in conjunction with external code memory being used or else. On Pin
number 29 is a control signal PSEN# (Program Store Enable) that enables external code
(Program) memory. It is usually connected to an EEPROMs Output Enable

Pin # Bit # Symbol Bit Add Alternate Function
10 P3.0 RxD B0 H Receive data for Serial Port
11 P3.1 TxD B1 H Transmit data for Serial Port
12 P3.2 INT0# B2 H External Interrupt 0
13 P3.3 INT1# B3 H External Interrupt 1
14 P3.4 T0 B4 H Timer/Counter 0 external input
15 P3.5 T1 B5 H Timer/Counter 1 external input
16 P3.6 WR# B6 H External Memory write strobe
17 P3.7 RD# B7 H External Memory read strobe

 43

 (OE#) pin to permit reading of program bytes. Pin 31 i.e. EA# (External Access) is either
tied high (+5V) or low (ground). If high, the C51 executes programs from internal ROM
otherwise from external code memory (and then PSEN# comes into play).

• Pins 32 - 39 and Pin Number 30:
 Pins 32 through 39 make up Port 0. Port 0 ,in addition to being used as an I/O port, has
the capacity to act as multiplexed data and address bus. The discrimination of data and address is
provided through ALE (Address Latch Enable) which is Pin number 30.

3.14.2.2 AT89C51 Pinouts Diagram

 44

3.14.3 C51 Internal Architecture

3.14.4 A Brief Description of SFRs of C51

• Program Control Register … PSW
 (Program Status Word)

• General Purpose Registers … ACC (ACCumulator) and B
Registers

• Ports’ Registers … P0, P1, P2 and P3

• Data Flow Register … DPH and DPL or DPTR (the only 16 bit register)

 (Data PoinTeR
 … addressable as 16 bit)

• Stack Operation Register … SP (Stack Pointer)

• Power Control Register … PCON (Power CONtrol)

 45

• Timer/Counter Registers … TCON (Timer CONtrol) ,

 TMOD (Timer MODe),
 Timer #0 Registers TL0 & TH0
 Timer #1 Registers TL1 & TH1

• Serial Interface Registers … SCON (Serial CONtrol)
 SBUF (Serial BUFfer)

• Interrupt System Registers … IE (Interrupt Enable)
 IP (Interrupt Priority

3.14.4.1 PSW (Program Status Word)

PSW Bit No

Symbol

Address Meaning

PSW.0 P D0.H Even parity flag
PSW.1 - D1.H Reserved flag
PSW.2 0V D2.H Overflow flag
PSW.3 RS0 D3.H Register bank select
PSW.4 RS1 D4.H Register bank select
PSW.5 F0 D5.H Flag 0 for user apply
PSW.6 AC D6.H Auxiliary carry flag
PSW.7 CY D7.H Carry flag

3.14.4.2 ACC (ACCumulator) & B Registers
 ACC (ACCumulator) and B Registers are general purpose Registers; their combined use
lies mostly in Arithmetic Instructions while ACC being used in most of the other instructions
(like Logic and Program Flow Control Instructions) of C51 Instruction Set. Both registers are
Bit-Addressable. ACC is at address E0H while B Register is at address F0H.

3.14.4.3 Ports’ Registers…P0, P1, P2 and P3

 Ports’ Registers P0 for Port #0; P1 for Port #1; P2 for Port #2 and P3 for Port #3; are used
in accordance with the functionality used in these ports. Writing data to any Port Registers
causes an immediate transfer of the data to the respective port while reading data from any Port
Register is analogues to reading the data from the respective physical port. All of the four
registers are Bit-Addressable. P0 is at 80H, P1 at 90H, P2 at A0H and P3 at B0H.

3.14.4.4 DPTR (Data PoinTeR) Register
 DPTR is the only Register in AT89C51 which is accessible as 16 bit register. It is also
byte addressable as DPL (Data Pointer Low Byte) and DPH (Data Pointer High Byte). DPTR is

 46

mostly used in addressing blocks of data I.e. as a pointer for a large block of data in Instructions
like MOVX. DPTR is Not-Bit-

3.14.4.5 SP (Stack Pointer) Register
 Pushing data onto the stack increments the SP. Likewise, popping data from the stack,
decrements the SP. If the application software does not re-initialize the SP, then register bank 1
(and perhaps 2 and 3) is not available, since this area of internal RAM is in stack.

3.14.4.6 PCON (Power CONtrol) Register

PCON Bit No

Symbol

Meaning

PCON.0 IDL Idle mode ,Set to active idle mode
PCON.1 PD Power down mode
PCON.2 GF0 General purpose Flag bit 0
PCON.3 GF1 General purpose Flag bit 1
PCON.4 - Not defined
PCON.5 - Not defined
PCON.6 - Not defined
PCON.7 SMOD Baud rate bit, when set baud rate is

- - doubled in Serial Port Modes 1,2 or 3.

3.14.4.7 Timer/Counter Operation & its Registers
 The Data Registers for the two timers are TL0 and TH0 for Timer #1 while TL1 and TH1
for the other one. TMOD and TCON control their operation and modes. There are four modes of
operation of the two timers set by TMOD.

 A description of TMOD and TCON follows :

 47

TMOD Bit No

Symbol

Meaning

TMOD.0 M0 Timer#0 mode select bit#0
TMOD.1 M1 Timer#0 mode select bit#0
TMOD.2 C/T# Timer #0 Counter/Timer (Low Enable) Select Bit
TMOD.3 GATE Timer #0 GATE Bit , set, timer only rubs INT1 is high
TMOD.4 M0 Timer#1 mode select bit#0
TMOD.5 M1 Timer#1 mode select bit#0
TMOD.6 C/T# Timer #1 Counter/Timer (Low Enable) Select Bit
TMOD.7 GATE Timer #1 GATE Bit , set, timer only rubs INT1 is high

M0 M1 Mode Description
0 0 0 13-bit Timer Mode
0 0 1 16-bit Timer Mode
1 0 2 8-bit Auto-Reload Mode

1 1 3 Split Timer Mode; TL0 8-
bit timer by its

- - - mode bits, TH0 same xcept
by

- - - timer 1 mode bits ,Timer 1
stopped

TCON Register

 48

 49

CHAPTER 4

SOFTWARE STUDY SIMULATION AND CODING

 50

GIS – Concepts

4.1 What IS GIS - An Overview

In the past 10 years or so Geographic Information System (GIS) are gaining importance
for storing and organizing spatial information in a computer. GIS empowered by dropping costs
of workstations and increasing power of graphics, are beginning to make their way from urban
planning, natural resource management, and cartographic production shops.

Geographic Information System are characterized by a wide variety of
architectures/platforms, applications, and processing requirements due to a heterogeneous
universe of users including geographic, natural resource management environment sciences and
archeology.

4.2 Definitions of a GIS

Different definitions provide different perspectives of GIS following is a blend view of
GIS:

A system of hardware, software, data, people, organizations and institutional
arrangements for collecting, storing, analyzing, and disseminating information about areas of the
earth.
A particular form of information system applied to geographical data. It was developed from the
need to handle and manipulate geographically referenced spatial data.

4.3 How GIS Works

While there is a large range of the sophistication in GIS, a typical GIS has to perform
following few functions:

Data Capture
Data Transfer
Validate & Edit the data
Store & Structure
Generalize
Transform
Query
Analyze
Output

These functions, when considered without reference to spatial versus attribute distinction,
are very generic, and could be used to describe high-level functionalities of many typical GIS.
4.4 Components of GIS

Two basic components required for any GIS application are:
Computer hardware
Sets of application software

 51

4.4.1 Computer hardware for GIS

The computer or central processing unit is linked to a disk drive storage unit,
which provides space frosting data programs. A digitizer or another device is used to
convert data from maps and documents into digital form and send them to computer. A
plotter or other kind of display device is used to present the result of the data or program
on magnetic tape, or for communicating with other systems. Inter computer
communication can also take place via a network system over special data lines, or over
telephone lines using a Modem. The user controls the computer and peripherals (general
term for plotters, printers, digitizer and other apparatus linked to the computer) via a
Visual Display Unit (VDU), known as terminal. The user’s terminal might itself be a
microcomputer, or it might incorporate special hardware to allow maps to be displayed
quickly. There is a very wide range of devices that can be used to fill these general
hardware requirements.
4.4.2 GIS software component

Data input module/Data capture.
Data storage and database management.
Data output and presentation.
Data transformation.
Interaction with user.

 Data Input
Data input covers all aspects of transforming data captured in the form of existing

maps, field observation and sensors (including aerial photography, satellites and
recording interments) into a compatible digital form. A wide range of computer tools are
available for this purpose, including the interactive terminal or Visual Display Unit
(VDU), the digitizer, lists of data in text files, scanners (n satellites or airplane for direct
recording of data or for covering maps and photographic images) already written on a
magnetic media such as tapes, drums and disks. Data input and the verification of data
needed to build a geographical database.

Putting the information into the system is the time consuming component of GIS
work. Identities of the objects on the map must be specified, as well as their spatial
relationships. Editing of information that is automatically captured can also be difficult.
Electronic scanners record blemishes on a map just as faithfully as they record the map
features. For example, a fleck of dirt might connect two lines that should not be
connected. Extraneous data must be edited, or removed from the digital data file.
Data Storage

Topology and attributes of geographical elements (points, lines and areas
representing objects on the earth’s surface) are structured and organized, both with
respect to the way they are handled in the computer and how they are perceived by the
users of the system. The computer program used to organize the database is known as a
Database Management System (DBMS). In our case this system is Oracle database or Ms
Access Database files.

 Data transformation
Data transformation embraces two classes of operation.
1. Transformation needed to remove errors from the data or to bring them up
to date or to match them to other data sets.

 52

2. The large array of analysis methods that can be applied to the data in order
to achieve answers to the questions asked to the GIS.
Transformation can operate on the spatial and the non-spatial aspects of the data,

either separately or in combination. Many of these transformation such as those
associated with scale-changing, fitting data to new projections, logical retrieval of data,
and calculation of area and perimeters, are of such a general nature that one should not
expect to find them in every kind of GIS in one form or another. Other kinds of
manipulation may be extremely application specific, and their incorporation into a
particular GIS may be only to satisfy the particular users of that system. The kinds of
transformation method available, their optimum use and misuse, the ways in which sets
of simple transformations can be combined in order achieve certain types of geographical
or spatial modeling.

 Interaction with the users
This module is concerned with the interaction with the user and query input,

which are essential for the acceptance of the use of nay geographical information system.
Certainly it is an aspect that until relatively recently has received less attention than it
deserves. It is only in the last few years that the average user has received less attention
than it deserves. It is only in the last few years that the average user has been able to
make direct contact with computer other than via the impersonal and unforgiving media
of punched paper tapes and cad handed into the computing center. The widespread
introduction of the personnel computer and of programs that are operated by commands
chosen from a menu (a list), or that are initiated by a response to requests in an English
like command language of verbs, nouns, and modifiers has broken down the barriers that
once frightened many a would be computer user away for life.

4.3.3 Querying the GIS

The GIS stores both spatial and non-spatial data in a database system which links the two
types of data to provide flexible and powerful ways of querying or asking questions about the
data. An example of a spatial query might look like this:
"Locate and display all playgrounds downstream of landfills within 100 year flood plain"
This type of query is answered by a set of commands to the GIS that then generates a map
display of all sites meeting the criteria expressed in the query. The user may also query the GIS
by the textual attributes in the tabular database and then display the map features that correspond
to these attributes. An example of this type of query is as follows:
"Display all water mains installed before 1950 with a diameter less than 12 inches"
This query results in a map display of the water mains in the study area with the specific mains
in the query highlighted. Alternatively a report could be generated which lists the complete
information on each segment of water mains which meet the criteria in the query.

GIS data integration
Many Geographic Information Systems handle both vector and raster data from a

wide variety of sources including satellite imagery, cadastral information, hand digitized
maps and scanned images.

 Data output and presentation
Data output and presentation concerns the ways data is displayed and the results

of analysis are reported to the users. Data may be presented as maps, table and figures
(graphs and charts) in a variety of ways, ranging from the ephemeral image on cathode

 53

ray tube (CRT) through hard copy output drawn on printer or plotter to information
recorded on magnetic media in digital form.

4.3.4 GIS Applications
GIS are now used extensively in government, business, and research for a wide range of

applications including environmental resource analysis, land use planning, location analysis, tax
appraisal, utility and infrastructure planning, real estate analysis, marketing and demographic
analysis, habitat studies, archaeological analysis, and military planning.
 Natural resources management

This is one of the first major areas of application it includes management of
Wildlife habitat.

Wild and scenic rivers.
Recreation resources.
Floodplains.
Wetlands.
Agricultural lands.
Aquifers.
Forests.

 Facilities management
One of the largest areas of application has been in facilities management. Uses for GIS in

this area have included
Locating underground pipes and cables.
Balancing loads in electrical networks.
Planning facility maintenance.
Tracking energy use.

 Land management
Local, state, and federal governments have found GIS particularly useful in land

management. GIS has been commonly applied in areas like
Zoning and subdivision planning.
Land acquisition.
Environmental impact policy.
Water quality management.
Maintenance of ownership.
Street networks
Address matching.
Location analysis / site selection.

4.4 Research And Analysis
4.4.1 Graphics and GIS

Geographical information systems differ from computer graphics because the latter are
largely concerned with the display and manipulation
of visible material. Computer graphics systems do not pay much attention to the non-graphic
attributes that the visible entities might or might not have, and which are useful data for analysis.
Good computer graphics packages are neither by itself sufficient for performing the tasks
expected, nor such drawing packages necessarily a good basis for developing such a system.

 54

4.4.2 CADD and GIS
 Computer Aided Design and Drafting (CADD) technology is widely used by many

professionals (including engineers, architects, and planners) to help them design and produce
design drawings. Data in a CADD system is organized on layers that are conceptually like
registered overlays. The layers can be used to organize map features by theme, such as streams
versus roads versus structures, or by type of data, such as line work versus text. The table
represents the elements stored in a CADD data file. Plotted CADD data rivals scribed
cartographic products in graphic quality and precision. CADD can greatly reduce map
production time and save money over the traditional cartographic process. For instance,
corrections are much easier to make. To make changes to the map, the manual process requires
erasing and re-inking. A CADD system allows the user to quickly modify a single element
without affecting other features. CADD offers many other benefits over traditional film-based,
manually prepared mapping techniques; data is better organized easier to store and retrieve, and
so on. For these reasons, many civil engineers use CADD to store and manipulate map- ping data
used in the design process.

Similarly, map atlas producers and other cartographers can use CADD-based systems to
create maps. However, CADD is not suited for analyzing map data. In a CADD system, map
features are associated by theme, using layers, and the features are all referenced to a common
geographic coordinate system, but further relationships among the data elements are not defined.
4.4.3 COMPARASION

GIS is similar to CADD in that it references graphic data elements to a xy coordinate
system, and it separates map features by layer (also referred to as a map "theme" or "coverage").
Although the GIS may divide the entire area being mapped into separate files, much like map
sheets, it handles all of the data in these files as though they were in one large "seamless" map
file. In addition to graphic (often referred to as "spatial") data, a GIS also stores attribute data.
These are associated with the spatial data and provide further descriptive information about
them.

GIS differs from CADD in that the spatial relationships among all data elements are
defined. This convention, known as data topology, goes beyond merely describing the location
and geometry of map features. Topology also describes how linear map features are connected,
how areas are bounded, and which areas are contiguous. To define map topology, a GIS uses a
special database structure. As in a CADD system, all map features are related to a geographic
coordinate system. However, unlike a CADD system (which defines map features simply as
lines, line strings, and symbols), a GIS defines map features as nodes, lines, and areas. (Other
terms-such as points, arcs, and polygon are also frequently used).
4.4.4 Existing GIS

In order to get a better idea of the types of features found in a GIS system, this chapter
reviews the core products of the four leading GIS vendors according to the GIS industry:
Environmental Systems Research Institute, Inc. (ESRI), Intergraph, MapInfo, and AutoDesk.

ArcInfo
ArcInfo provides a series of out-of-the-box GIS applications, as well as a

customization capability. ArcInfo can be customized using drag-and-drop and menu
driven tools. Industry-standard Microsoft Visual Basic for Applications (VBA) is

 55

provided for all scripting and application customization jobs. Any component object
model (COM)-compliant programming language can also be used to customize and
extend ArcInfo.

 In ArcInfo , display, query, and analysis of map data are supported by the
ArcMap application. ArcMap provides a direct data read capability, which allows data
sets to be used on the fly without translation or use of an intermediate format. ArcMap
supports ArcInfo coverages, ESRI shapefiles, Spatial Database Engine (SDE) layers, map
libraries, ArcStorm layers, DXF and DWG, DGN, and many image types. In addition,
ArcMap supports on-the-fly projection at the individual layer level.

ArcMap is a menu-driven application for working with map data. It is an
integrated application for creating and editing spatial databases, displaying and querying
geographic data, performing complex analysis, generating quality reports and charts, and
making high-quality maps. Features include the following.

Integrated map display, editing, and production environment
Windows user interface

 Data visualization for interpretation/analysis
Out-of-the-box usability
Creation of charts and reports
Mapping capabilities Computer-aided design (CAD) editing on intelligent GIS

databases (ArcSDE databases, coverages, and shapefiles)
Drag-and-drop customization
ArcMap includes an integrated Object Editor capable of multiuser geographic and

attribute entry and update. The Object Editor can work with coverages, shapefiles, and
geodatabases stored in a database management system (DBMS) using ArcSDE. The
Object Editor supports the following.

Creation and updating of shapefiles, coverages, and geodatabases
Editing of features according to rules/behavior (i.e., network connectivity,

attribute consistency, and so on)
Display of raster and vector data
Snapping to vector data (including CAD files)
Versioning and conflict resolution across work groups
CAD/sketching function directly on the GIS database

 Editing within magnify windows
Integrated tracing
Customization for user-defined tasks/tools

The Object Editor includes many of the graphic editing functions of CAD editing
packages for editing map features, using rule-based tools for creating and maintain- ing spatial
databases. The Object Editor also enables users to directly edit data in a DBMS via ArcSDE.

Arc View

ArcView is a desktop mapping and GIS tool that enables the user to select and display
various combinations of data. ArcView is integrated with other applications, creating an
environment for analysis and desktop publishing, and spreadsheets, databases, word processing,
publication graphics, and other software applications that extend the functionality of ArcView.
ArcView works directly with ArcInfo, Arc- CAD, PC ArcInfo, and SDE databases. It can import

 56

a variety of data sources, including CAD files, spreadsheets, raster data, and other databases. The
key features of ArcView include the following.

"Windows" graphical interface
Integrated charts, maps, tables, graphics, and multimedia
Visual mapping
Wizards for map composition
Labeling and text tools
Industry/ application -specific symbols
Geographic hot links to supported data formats
Analysis wizards for geoprocessing operations
Address matching and geocoding
Utility for projection and datum transformation
Geographic and tabular data editing
Integration of images and CAD data
Client/server access to data warehouses

Five CDs of data included
 Report writing using Crystal Reports

Self-paced tutorial
User manual
Online help
Customizable with developer environment

Expanded analysis capabilities using optional extensions
ArcView runs on Microsoft Windows and UNIX computers. ArcView can map tabular

data residing in Microsoft Access, dBASE, FoxPro, ASCII, INFO, SQL, Open Database
Connectivity (ODBC), and/or SAP R/3 databases. ArcView supports the following GIS data
formats. ESRI shapefiles, Arclnfo coverages, Arclnfo dynamic segmentation coverages, route
systems, PC Arclnfo coverages, AutoCAD (DXF and DWG), MicroStation (DGN and MSG),
TIFF 6.0 (including GeoTIFF), VPF, ADRG, CADRG, CIB, NITF, MrSID, JPEG (JFIF),
ERDAS IMAGINE, ERDAS LAN and GIS, BSQ, BIL, BIP, SunRaster files, BMP , GRID (as
image data), and DIGEST (ASRP and USRP) ArcSDE with Spatial Data- base Engine (SDE), or
Oracle Spatial Data Option (SDO) with SDE.

GeoMedia
 GeoMedia is a GIS visualization and analysis tool, as well as a platform for custom GIS
solutions, providing the following tools.

Data integration with major GIS vendor formats
Spatial analysis tools
Map layout
An open development platform for creating custom applications
Microsoft Windows-standard user interface

 GeoMedia provides access to leading GIS product formats through "live" data con-
nections to "native" GIS data repositories. GeoMedia can integrate data using on- the-fly
coordinate transformation and feature definition. GeoMedia data server technology supports
views of multiple GIS data sets in various formats, and analyzes this information by running
queries, buffer zones, and thematics across multiple GIS formats. Accessible GIS formats

 57

include MGE, FRAMME, MGE Segment Man- ager, Maplnfo, AutoCAD, Oracle SC Relational,
MicroStation, Arclnfo, ArcView Shapefiles, Microsoft SQL Server, and Oracle8i Spatial.
GeoMedia supports Oracle, including Oracle8i Spatial, as the geospatial warehouse.
 GeoMedia's analysis tools include nine types of spatial functions, such as "entirely
contained by" or "touches"; a suite of arithmetic operations; and the tools necessary to create
"what if' queries. It can create buffer zones and spatial overlays, and query spatial data within a
specified area. GeoMedia's dynamic segmentation capabilities can query and segment linear and
point data from multiple MGE databases.
 GeoMedia's thematic mapping features create maps with color-coded and patterned
attribute data, and integrate multimedia with GIS, including hyperlinks to files that contain
sounds, images, text, and satellite imagery. GeoMedia also supports geocod- ing, which
translates tabular data, such as street addresses, into spatial data.
 GeoMedia can create maps and presentations with tools for map layout. This includes
tools for the placement of map information, as well as the typical graphics found on printed maps
and charts. Marginalia such as legends, scale bars, and North arrows are automatically generated
and dynamically linked to the map information. Changes to the map are automatically reflected
in the layout. GeoMedia provides multiple selection methods for controlling the map data to plot:
map window, exist- ing area feature, rectangle, polygon, paper size, geographic frame, or
projected frame.

AutoCAD Map
 AutoCAD Map is software for mapping and GIS analysis in the AutoCAD environment.
It provides GIS analysis tools and features for creating, maintaining, and producing maps and
geographic information, along with the underlying functionality of AutoCAD. The following are
some of its key features.

Data integration: Import and export maps from standard CAD and GIS file formats.
Provides database-linking capability to add "intelligence" to maps. Link internally and externally
to Microsoft Access, dBase, Oracle, FoxPro, Paradox, and other ODBC-compliant databases
with drag-and-drop configuration. Raster tools provide support for multiple raster file formats.

Multiple map access: Work with large data sets and multiple maps, simulta- neously
sharing them with other users without version conflicts. Work with multiple maps, in different
coordinate systems, in a single session. Save map projects and the settings for the session are
saved automatically for recall at a later time. Provide multiuser access to single or multiple maps
with entity- level locking.

 Map creation and cleanup: Digitizing,coordinate transformation, and drawing cleanup.
Digitizing tools attach object data or SQL links. Transform maps with different coordinate
systems into one standard or customized system. Edit map data with rubber sheeting, edge and
boundary trim, and so on. Prepare for topology, with automated drawing cleanup tools.

Querying: Access and query data from different sources and combine the information
into one map, alter object properties during queries, save routine queries for future use, and
perform topology queries.

GIS spatial analysis: Topological operations, path tracing, and other analytical
capabilities. Create, edit, and save node, network, and polygon topologies. Perform flood
analysis and buffer, shortest, and optimal path trace. Conduct polygon overlay and dissolve
operations. Create thematic maps based on associated data.

 58

Coordinate conversion: Support for global and local coordinate systems. Combine
multiple maps into a common coordinate system. Define a custom coordinate system.

Construction tools: Build new maps using construction tools. Use polar construction
tools to place field locations of objects the way they were measured. Switch between multiple
editing alignments.

Presentation and plotting: Thematic mapping and plotting. Flexible plot styles support
changes to the visual properties of any object, including color, line type, line weight, and pen
assignment at plot time. Predefine map's appearance and reapply the same settings.

4.4.6 Assessment

Requirement was to make a decision support system having following characteristics:
Working in a GIS environments
Integration of an expert system to help in decision.

4.5.1 Tools available
Following were available for our use:

Existing GIS: Commonly used GIS like Arcview and Geomedia
Expert system: Control structures of an expert system for making a
communication planning have been developed earlier and were available for use.

4.5.2 Analysis
Available GIS have their own standard format in which these deal and understand.
Almost all available GIS (Arcview and Geomedia) have been developed using special

languages (e.g., Arcview use avenue script).
4.5.3 Approach Followed

Make our own GIS environment using language in which the skill level is better.
The GIS should be easy and have the specific necessary functions required.
Map the control structures on the GIS which can easily interface with these control structures.

44..66 SSOOFFTTWWAARREE PPOORRTTIIOONN

TThhee ssooffttwwaarree ooff aa rraaddaarr iinntteerrffaaccee ssyysstteemm eesssseennttiiaallllyy nneeeeddss ttoo ddoo tthhee ffoolllloowwiinngg ttaasskkss:: --

11.. DDiissppllaayy tthhee mmaapp ooff tthhee llooccaattiioonn..
22.. TToo rreecceeiivvee tthhee nnaavviiggaattiioonn ddaattaa tthhrroouugghh sseerriiaall ppoorrtt..

 33.. CCoonnvveerrtt tthhee RRaaddaarr ccoo--oorrddiinnaatteess iinnttoo ssccrreeeenn ccoo--oorrddiinnaatteess..
 44.. DDiissppllaayy tthhee ffiirriinngg aanndd ttaarrggeett llooccaattiioonn ooff eenneemmyy gguunn..

II wwiillll ccoovveerr aallll tthhee ppaarrttss oonnee bbyy oonnee.. BBuutt iinniittiiaallllyy tthhee bbaassiicc
pprriinncciippllee ooff tthhee ssooffttwwaarree wwiillll bbee eexxppllaaiinneedd..

 59

44..77 PPRRIINNCCIIPPLLEE OOFF TTRRAACCKKIINNGG

 TThhiiss ppoorrttiioonn ooff tthhee ssooffttwwaarree wwoorrkkss oonn aa vveerryy ssiimmppllee pprriinncciippllee tthhaatt iiss ddeessccrriibbeedd iinn tthhee
ffoolllloowwiinngg:: --

 IIff wwee hhaavvee tthhee mmaapp ooff tthhee llooccaattiioonn ooff tthhee ffiieelldd,, tthheenn wwee jjuusstt nneeeedd tthhee eexxaacctt ccoooorrddiinnaatteess ooff
oonnllyy ttwwoo ppooiinnttss ttoo ccaalliibbrraattee tthhee mmaapp aanndd ttrraacckk tthhee vveehhiiccllee..

LLeett ttwwoo ppooiinnttss bbee PPooiinntt11 aanndd PPooiinntt22.. BByy ppooiinntt II mmeeaann tthhaatt eeaacchh ppooiinntt ccoommpprriisseess llaattiittuuddee,,
lloonnggiittuuddee,, aallttiittuuddee,, xx--ppoossiittiioonn aanndd yy--ppoossiittiioonn oonn tthhee mmaapp.. TThhee xx aanndd yy ppoossiittiioonnss wwiillll bbee xx aanndd yy--
ccoooorrddiinnaatteess oonn tthhee ssccrreeeenn..
 NNooww wwee ccaann ddeeffiinnee aa ssccaallee iinn tthhee xx aanndd yy ddiirreeccttiioonnss aass ffoolllloowwss..

xx__SSccaallee == ((PPooiinntt11..LLoonnggiittuuddee -- PPooiinntt22..LLoonnggiittuuddee))//((PPooiinntt11..xx -- PPooiinntt22..xx))
yy__SSccaallee == ((PPooiinntt11..LLaattiittuuddee -- PPooiinntt22..LLaattiittuuddee))//((PPooiinntt11..yy -- PPooiinntt22..yy))

 FFrroomm tthhee PPooiinntt11 aanndd tthhee ssccaalleess,, wwee nnooww ccaann gguueessss tthhee llaattiittuuddee aanndd lloonnggiittuuddee ooff tthhee OOrriiggiinn
((00,,00)).. NNooww,,

OOrriiggiinn..LLaattiittuuddee == PPooiinntt11..LLaattiittuuddee -- ((PPooiinntt11..yy ** yy__SSccaallee))
OOrriiggiinn..LLoonnggiittuuddee == PPooiinntt11..LLoonnggiittuuddee -- ((PPooiinntt11..xx ** xx__SSccaallee))

 AAfftteerr wwee hhaavvee ggoott tthhee ccoooorrddiinnaatteess ooff tthhee ppooiinntt ((00,,00)),, wwee ccaann ttrraacckk tthhee ppooiinntt.. TToo ddoo tthhiiss,,
aassssuummee tthhaatt tthhee ppooiinntt oobbttaaiinneedd bbyy tthhee rraaddaarr iiss tthhee ppoossiittiioonn oobbttaaiinneedd bbyy tthhee PPCC aass CCuurrrrPPoossiittiioonn..
 NNooww tthhee xx aanndd yy--ppoossiittiioonn ooff tthhee ppooiinntt oonn tthhee mmaapp wwiillll bbee ccaallccuullaatteedd aass ffoolllloowwss::

xx == ((CCuurrrrPPoossiittiioonn..LLoonnggiittuuddee -- OOrriiggiinn..LLoonnggiittuuddee))//xx__SSccaallee
yy == ((CCuurrrrPPoossiittiioonn..LLaattiittuuddee -- OOrriiggiinn..LLaattiittuuddee))//yy__SSccaallee

 BBuutt iinn oouurr pprroojjeecctt aass wwee hhaavvee aaccqquuiirreedd tthhee mmaapp wwhhiicchh hhaass aallrreeaaddyy bbeeeenn ddiiggiittiizzeedd,, ssoo wwee
ddoo nnoott ggoo iinnttoo tthhee ddiiggiittiizzaattiioonn ((ggeeoo--rreeffeerreenncciinngg)) ppoorrttiioonn ooff tthhee mmaapp..

NNooww tthhee ffoouurr ppoorrttiioonnss ooff tthhee ssooffttwwaarree wwiillll bbee eexxppllaaiinneedd oonnee bbyy oonnee..

44..88 CCHHOOIICCEE OOFF TTHHEE PPRROOGGRRAAMMIINNGG EENNVVOOIIRRNNMMEENNTT

 The choices available with us for programming were: -

11.. MMiiccrroossoofftt VViissuuaall BBaassiicc
22.. TTuurrbboo CC++++
33.. MMiiccrroossoofftt VViissuuaall CC++++

TThhee aaddvvaannttaaggeess aanndd sshhoorrttccoommiinnggss ooff eeaacchh wwiillll bbee ddiissccuusssseedd oonnee bbyy

oonnee..

 60

44..88..11 VVIISSUUAALL BBAASSIICC

VViissuuaall BBaassiicc iiss aa vveerryy ggoooodd pprrooggrraammmmiinngg ttooooll wwiitthh rreessppeecctt ttoo mmaakkiinngg ffoorrmmss aanndd GGUUII''ss..
TThhee GGUUII iinn oouurr pprroojjeecctt aass ddeessccrriibbeedd aabboovvee iiss aann oovveerrllaayy wwiinnddooww iinntteerraaccttiinngg wwiitthh aa wwoorrkkiinngg
eennvviirroonnmmeenntt ii..ee GGeeoommeeddiiaa.. VViissuuaall BBaassiicc iiss eeaassyy aanndd ccaann hhaannddllee tthhee ggrraapphhiiccaall iimmaaggeess vveerryy eeaassiillyy..
SSoo iitt mmuusstt bbee aa llaanngguuaaggee ooff cchhooiiccee aass ffoorr aass GGUUII aanndd llooaaddiinngg ooff aa mmaapp aarree ccoonncceerrnneedd.. BBuutt tthhee
oonnllyy pprroobblleemm wwiitthh vviissuuaall bbaassiicc iiss iittss llaacckk ooff ssuuppppoorrtt ffoorr ccoommmmuunniiccaattiinngg wwiitthh tthhee ppoorrttss.. WWhheerreeaass
aa vveerryy iimmppoorrttaanntt ppaarrtt ooff oouurr ssooffttwwaarree iiss ttoo rreettrriieevvee ddaattaa ffrroomm tthhee sseerriiaall ppoorrtt.. TThhuuss tthhiiss cchhooiiccee wwaass
rruulleedd oouutt..

44..88..22 TTUURRBBOO CC++++

TThhee sseeccoonndd ggoooodd ooppttiioonn wwaass TTuurrbboo CC++++.. TTuurrbboo CC++++ iiss vveerryy ggoooodd aatt ddeeaalliinngg wwiitthh tthhee
sseerriiaall aanndd ootthheerr ppoorrttss.. SSoo iitt ssoollvveedd oouurr pprroobblleemm ooff ppoorrtt II//OO.. BBuutt aaggaaiinn iitt wwaass aa ppaarrttiiaall ssoolluuttiioonn
bbeeccaauussee TTuurrbboo CC++++ iiss ppoooorr aatt ddeeaalliinngg wwiitthh GGUUII''ss aanndd ggrraapphhiiccss.. IInn ccoonnnneeccttiioonn ttoo ggrraapphhiiccss iitt iiss
wwoorrtthh mmeennttiioonniinngg hheerree tthhaatt TTuurrbboo CC++++ ddooeess nnoott ccaarrrryy tthhee ccaappaabbiilliittyy ooff ddiissppllaayyiinngg mmoorree tthhaann 1166
ccoolloorrss wwhheerreeaass aa bbiittmmaapp iiss 2244--bbiitt ccoolloorreedd iimmaaggee.. TThhuuss tthhiiss cchhooiiccee wwaass aallssoo rruulleedd oouutt..

44..88..33 VVIISSUUAALL CC++++

CCoommiinngg oonn ttoo tthhee llaasstt cchhooiiccee ii..ee.. MMiiccrroossoofftt VViissuuaall CC++++66..00.. TThhiiss llaanngguuaaggee hhaadd aallll tthhee
ddeessiirreedd ccaappaabbiilliittiieess ffoorr uuss.. IItt iiss eexxttrreemmeellyy ssttrroonngg aatt mmaakkiinngg GGUUII''ss,, ddiissppllaayyiinngg ggrraapphhiiccss aanndd hhaass
tthhee iinnhheerriitteedd ccaappaabbiilliittyy ooff hhaarrddwwaarree aacccceessss ffrroomm TTuurrbboo CC++++ ((iittss pprreeddeecceessssoorr)).. TThhuuss wwee ddeecciiddeedd
ttoo uussee VViissuuaall CC++++ ffoorr oouurr pprroojjeecctt aanndd ssuucccceessssffuullllyy iimmpplleemmeenntteedd tthhee pprriinncciippllee iinn iitt..

44..99 CCHHOOIICCEE OOFF PPRROOGGRRAAMMIINNGG FFRRAAMMEEWWOORRKK

FFoorr uussiinngg VViissuuaall CC++++ wwee hhaadd tthhee cchhooiiccee ttoo uussee:: --
11.. AAPPII''ss ((AApppplliiccaattiioonn PPrrooggrraammmmiinngg IInntteerrffaacceess))
22.. MMFFCC''ss ((MMiiccrroossoofftt FFoouunnddaattiioonn CCllaasssseess))

IInn tthhee ffoolllloowwiinngg aa bbrriieeff ddeessccrriippttiioonn ooff bbootthh iiss ggiivveenn aanndd tthheenn
iinn tthhee eenndd oouurr ddeessiiggnn aapppprrooaacchh iiss ggiivveenn..

44..99..11 AAPPII''ss

 AAPPII''ss aarree aa sseett ooff mmoorree tthhaann oonnee tthhoouussaanndd ffuunnccttiioonnss eessppeecciiaallllyy ddeessiiggnneedd ffoorr VViissuuaall CC++++
pprrooggrraammmmeerrss.. TThheessee ffuunnccttiioonnss ccoommee aass aa sseett ooff AAPPII''ss ffoorr iimmpplleemmeennttiinngg tthhee WWiinn 3322
pprrooggrraammmmiinngg.. TThhee pprrooggrraammmmiinngg ssttyyllee uussiinngg AAPPII''ss iiss jjuusstt lliikkee pprrooggrraammmmiinngg iinn TTuurrbboo CC++++.. II aallssoo
uusseedd aa bbiitt ooff iitt uunnttiill II hhaadd sshhiifftteedd ttoo MMFFCC''ss.. AAPPII''ss aarree vveerryy ssttrroonngg bbuutt tthhee pprroobblleemm wwiitthh tthheemm iiss
tthhaatt aass tthhee pprrooggrraamm lleennggtthh ggrroowwss,, tthheeiirr ccoommpplleexxiittyy iinnccrreeaasseess ttrreemmeennddoouussllyy ttoo aa ppooiinntt wwhheerree iitt
bbeeccoommeess eexxttrreemmeellyy ddiiffffiiccuulltt ttoo ffiinndd ssoommeetthhiinngg ooff yyoouurr ccoonncceerrnn.. TThhee sseeccoonndd pprroobblleemm wwiitthh tthhee
AAPPII''ss iiss tthhaatt bbeeffoorree ssttaarrttiinngg aannyy wwoorrkk ooff yyoouurr ccoonncceerrnn yyoouu hhaavvee ttoo ssppeenndd aa lloott ooff ttiimmee ddeevveellooppiinngg
tthhee mmaaiinn wwiinnddooww ooff yyoouurr pprrooggrraamm.. SSoo aa ggoooodd ppoorrttiioonn ooff yyoouurr ttiimmee iiss wwaasstteedd iinn mmaakkiinngg aa GGUUII..

 61

44..99..22 MMFFCC''ss

MMFFCC''ss aallssoo mmaaddee bbyy VViissuuaall CC++++ pprrooggrraammmmeerrss pprroovviiddee yyoouu wwiitthh tthhee ffoolllloowwiinngg
aaddvvaannttaaggeess:: --

11.. AAfftteerr iittss ssiixx sstteeppss yyoouu hhaavvee aa wwoorrkkiinngg aapppplliiccaattiioonn aanndd yyoouu ddoonn''tt hhaavvee ttoo wwoorrrryy
aabboouutt mmaakkiinngg aa GGUUII..

22.. CCllaassss WWiizzaarrdd iiss aallwwaayyss tthheerree ttoo aassssiisstt yyoouu iinn mmaakkiinngg aa pprrooggrraamm..
33.. TThhee SSDDII//MMDDII ssuuppppoorrtt iiss aavvaaiillaabbllee wwhhiicchh iiss ootthheerrwwiissee vveerryy ddiiffffiiccuulltt iinn AAPPII''ss..
TThhee ddooccuummeenntt//vviieeww aarrcchhiitteeccttuurree aanndd ffrraammeewwoorrkk iiss eexxttrreemmeellyy ssttrroonngg aanndd oonnccee uunnddeerrssttoooodd

pprroovviiddeess yyoouu wwiitthh aa lloott ooff hheellpp ccoonncceeppttuuaallllyy..

TTwwoo tthhiinnggss CCllaassss WWiizzaarrdd aanndd ddooccuummeenntt//vviieeww aarrcchhiitteeccttuurree nneeeedd
aa lliittttllee eexxppllaannaattiioonn hheerree..

CCllaassss WWiizzaarrdd iiss aa ddiiaalloogg bbooxx tthhaatt hhaass iinnffoorrmmaattiioonn bboouutt aallll yyoouurr ccllaasssseess,, iiccoonnss,, mmeennuu
rreessoouurrcceess.. IItt aallssoo hhaass tthhee ddeeffiinniittiioonn ooff aallll tthhee wwiinnddoowwss mmeessssaaggeess tthhaatt ccaann bbee ddeeaalltt bbyy aa ssppeecciiffiicc
ccllaassss.. SSoo wwhheenneevveerr yyoouu nneeeedd ttoo aadddd aa mmeessssaaggee hhaannddlleerr ttoo yyoouurr pprrooggrraamm,, yyoouu ccaann ggeett tthhee hheellpp
ffrroomm CCllaassss WWiizzaarrdd..

TThhee sseeccoonndd tthhiinngg iiss ddooccuummeenntt//vviieeww aarrcchhiitteeccttuurree.. TThhiiss ccoonncceepptt iiss bbaassee oonn tthhee ffaacctt tthhaatt
ddooccuummeenntt iiss aa uunniivveerrssaall sseett ooff aapppplliiccaattiioonn''ss ddaattaa aanndd vviieeww iiss iittss ssuubbsseett aanndd ddiissppllaayyss ppaarrtt ooff tthhee
ddooccuummeenntt.. SSoo wwhhaatteevveerr ddaattaa hhaannddlliinngg iiss ddoonnee,, tthhaatt iiss ddoonnee iinn tthhee ddooccuummeenntt ccllaassss aanndd tthhee ddiissppllaayy
ffuunnccttiioonnss aarree wwrriitttteenn iinn tthhee vviieeww ccllaassss.. TThhee vviieeww ccllaassss hhaass tthhee kknnoowwlleeddggee aabboouutt iittss ddooccuummeenntt
tthhrroouugghh aa ffuunnccttiioonn GGeettDDooccuummeenntt(()) aanndd ssiimmiillaarrllyy ddooccuummeenntt aallssoo hhaass kknnoowwlleeddggee aabboouutt iittss aallll tthhee
ccoonnnneecctteedd vviieeww.. II hhaavvee aallssoo uusseedd tthhiiss ccoonncceepptt iinn mmyy aapppplliiccaattiioonn aanndd kkeepptt tthhee ddaattaa aawwaayy ffrroomm tthhee
ddiissppllaayy..

TThhiirrddllyy tthhiiss ooppttiioonn wwaass mmoosstt ffeeaassiibbllee aass tthhee ssoouurrccee ccooddee ooff GGeeoommeeddiiaa iiss wwrriitttteenn uussiinngg
MMFFCCss..

 62

// parser.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "parser.h"

#include "MainFrm.h"
#include "parserDoc.h"
#include "parserView.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CParserApp

BEGIN_MESSAGE_MAP(CParserApp, CWinApp)
 //{{AFX_MSG_MAP(CParserApp)
 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
 // NOTE - the ClassWizard will add and remove mapping macros
here.
 // DO NOT EDIT what you see in these blocks of generated code!
 //}}AFX_MSG_MAP
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)
END_MESSAGE_MAP()

///
// CParserApp construction

CParserApp::CParserApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

///
// The one and only CParserApp object

CParserApp theApp;

///
// CParserApp initialization

BOOL CParserApp::InitInstance()
{
 AfxEnableControlContainer();

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following

 63

 // the specific initialization routines you do not need.

#ifdef _AFXDLL
 Enable3dControls(); // Call this when using MFC in a shared DLL
#else
 Enable3dControlsStatic(); // Call this when linking to MFC statically
#endif

 // Change the registry key under which our settings are stored.
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization.
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file options (including MRU)

 // Register the application's document templates. Document templates
 // serve as the connection between documents, frame windows and views.

 CSingleDocTemplate* pDocTemplate;
 pDocTemplate = new CSingleDocTemplate(
 IDR_MAINFRAME,
 RUNTIME_CLASS(CParserDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CParserView));
 AddDocTemplate(pDocTemplate);

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;

 // The one and only window has been initialized, so show and update it.
 m_pMainWnd->ShowWindow(SW_SHOW);
 m_pMainWnd->UpdateWindow();

 return TRUE;
}

///
// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{

 64

public:
 CAboutDlg();

// Dialog Data
 //{{AFX_DATA(CAboutDlg)
 enum { IDD = IDD_ABOUTBOX };
 //}}AFX_DATA

 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CAboutDlg)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 //}}AFX_VIRTUAL

// Implementation
protected:
 //{{AFX_MSG(CAboutDlg)
 // No message handlers
 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
 //{{AFX_DATA_INIT(CAboutDlg)
 //}}AFX_DATA_INIT
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 //{{AFX_DATA_MAP(CAboutDlg)
 //}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
 //{{AFX_MSG_MAP(CAboutDlg)
 // No message handlers
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

// App command to run the dialog
void CParserApp::OnAppAbout()
{
 CAboutDlg aboutDlg;
 aboutDlg.DoModal();

 65

}

///
// CParserApp message handlers

Now the program for accessing the ports is

// Port.cpp: implementation of the CPort class.
//
//

#include "stdafx.h"
#include "PortIo.h"

//
// Construction/Destruction
//

CPortIo::CPortIo()
{
m_hComm = NULL;

// create events
m_ov.hEvent = NULL ;
m_IsOpen=FALSE ;
}

CPortIo::~CPortIo()
{
}

BOOL CPortIo::WriteToPort(CPortIo*port,int batch,int size)
{
if(m_IsOpen==TRUE)
{
ASSERT(m_hComm != 0);
// memset(m_WriteBuffer, 0,
// sizeof(m_WriteBuffer));
//for(int i=0;i<size;i++)
//{
// m_WriteBuffer[i]=Buffer[i];
// WriteChar(port,m_WriteBuffer[i]);
//}
WriteChar(port,batch,size);
return TRUE;

 66

}
else
AfxMessageBox("Please Open COM First");
return FALSE;
}

void CPortIo::WriteChar(CPortIo*port,int batch,int length)//unsigned char byte)
{

BOOL bWrite = TRUE;
BOOL bResult = TRUE;

DWORD BytesSent = 0;

if (bWrite)
{
// Initailize variables
port->m_ov.Offset = 0;
port->m_ov.OffsetHigh = 0;

// Clear buffer
PurgeComm(port->m_hComm, PURGE_TXCLEAR);

bResult = WriteFile(port->m_hComm, // Handle to COMM Port
&port->target[batch],
length,//1,strlen((char*)port->m_WriteBuffer), // Length of message to send
&BytesSent, // Where to store the number of
bytes sent
&port->m_ov);

// deal with any error codes
if (!bResult)
{
// AfxMessageBox(port->m_WriteBuffer);

DWORD dwError = GetLastError();
switch (dwError)
{
case ERROR_IO_PENDING:
{
// continue to GetOverlappedResults()
BytesSent = 0;
bWrite = FALSE;
break;
}
case ERROR_INVALID_HANDLE:

 67

{
AfxMessageBox("invalid handle");
break;
}
default:
{
// all other error codes
port->ProcessErrorMessage("WriteFile()");
}
}
}
else
{
AfxMessageBox("Send Failure");
}
} // end if(bWrite)

if (!bWrite)
{
bWrite = TRUE;
bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
&port->m_ov, // Overlapped structure
&BytesSent, // Stores number of bytes sent
TRUE);
// Wait flag returns the results of an overlapped operation
// communications device.
// deal with the error code

if (!bResult)
{
port->ProcessErrorMessage("GetOverlappedResults() in WriteFile()");
}
} // end if (!bWrite)

// Verify that the data size send equals what we tried to send
// if (BytesSent != strlen((char*)port->m_WriteBuffer))
// {
// TRACE("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length:
%d\n", BytesSent, strlen((char*)port->m_WriteBuffer));
// }
}

BOOL CPortIo::InitPort(CWnd *pPortOwner, UINT portno, UINT baud,
char parity, UINT databits, UINT stopbits,
DWORD dwCommEvents)
{

 68

ASSERT(portno>0 && portno<3);
ASSERT(pPortOwner!=NULL);

if(m_ov.hEvent!=NULL)
ResetEvent(m_ov.hEvent);
m_ov.hEvent=CreateEvent(NULL,TRUE,FALSE,NULL);

m_pOwner=pPortOwner;
m_portno=portno;
m_dwCommEvents=dwCommEvents;
char *szPort=new char[50];
char *szBaud=new char[50];

if(m_hComm!=NULL)
{
CloseHandle(m_hComm);
m_hComm=NULL;
}
sprintf(szPort, "COM%d", portno);
sprintf(szBaud, "baud=%d parity=%c data=%d stop=%d",
baud, parity, databits, stopbits);

m_dcb.BaudRate=baud;
m_dcb.ByteSize=databits;
m_dcb.Parity=parity;
m_dcb.StopBits=stopbits;
m_dcb.fBinary=TRUE;
if(parity!='N')
m_dcb.fParity=TRUE;

m_hComm=CreateFile(szPort,
GENERIC_READ|GENERIC_WRITE,
0,
NULL,
OPEN_EXISTING,
FILE_FLAG_OVERLAPPED,
0);
if(m_hComm==INVALID_HANDLE_VALUE)
{
delete [] szPort;
delete [] szBaud;
return FALSE;
}
SetupComm(m_hComm,512,1024);
m_CommTimeouts.ReadIntervalTimeout = 0;// time limit every 2 char in comunication line
m_CommTimeouts.ReadTotalTimeoutMultiplier = 0;

 69

m_CommTimeouts.ReadTotalTimeoutConstant = 0;
m_CommTimeouts.WriteTotalTimeoutMultiplier = 0;
m_CommTimeouts.WriteTotalTimeoutConstant = 0;

// configure
if (SetCommTimeouts(m_hComm, &m_CommTimeouts))
{
if (SetCommMask(m_hComm, dwCommEvents))
{
if (GetCommState(m_hComm, &m_dcb))
{
m_dcb.fRtsControl = RTS_CONTROL_ENABLE; // set RTS bit high!
if (BuildCommDCB(szBaud, &m_dcb))
{
if (SetCommState(m_hComm, &m_dcb))
; // normal operation... continue
else
ProcessErrorMessage("SetCommState()");
}
else
ProcessErrorMessage("BuildCommDCB()");
}
else
ProcessErrorMessage("GetCommState()");
}
else
ProcessErrorMessage("SetCommMask()");
}
else
ProcessErrorMessage("SetCommTimeouts()");

delete [] szPort;
delete [] szBaud;

PurgeComm(m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT |
PURGE_TXABORT);

TRACE("Initialisation for communicationport %d completed.\nUse Startmonitor to
communicate.\n", portno);
m_IsOpen=TRUE;
return TRUE;
}

void CPortIo::ProcessErrorMessage(char *ErrorText)
{
char *Temp = new char[200];

 70

LPVOID lpMsgBuf;

FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(LPTSTR) &lpMsgBuf,
0,
NULL
);

sprintf(Temp, "WARNING: %s Failed with the following error: \n%s\nPort: %d\n",
(char*)ErrorText, lpMsgBuf, m_portno);
MessageBox(NULL, Temp, "Application Error", MB_ICONSTOP);

LocalFree(lpMsgBuf);
delete[] Temp;
}

 71

References
www.beyondlogic.com
www.google.com.pk
www.raytheon.com
www.programmersheaven.com
www.logix4u.com
www.atmel.com
www.intel.com
www.mathworks.com
Interfacing 8086 microprocessor.
Microprocessor Architecture by D.V.Hall.
Programming in C++ by Dietel & Dietel.
Programming in Visual C++ by Ivor Horton.

http://www.google.com.pk/
http://www.raytheon.com/
http://www.programmersheaven.com/
http://www.logix4u.com/
http://www.atmel.com/
http://www.intel.com/
http://www.mathworks.com/

 72

	1.1 INTRODUCTION
	References

