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Chapter 1     
 
 

INTRODUCTION 
 
 

The purpose of forward error correction (FEC) is to improve the 

capacity of a channel by adding some carefully designed redundant 

information to the data being transmitted through the channel. The 

process of adding this redundant information is known as channel 

coding. 

Error corrective coding is used to enhance the efficiency and 

accuracy of information transmitted. In a communication transmission 

system, data is transferred from a transmitter to a receiver across a 

physical medium of transmission or channel.  The channel is generally 

affected by noise or fading which introduces errors in the data being 

transferred. Error-correcting code is a signal processing technique used 

for correcting errors introduced in the channel. It is done by encoding the 

data to be transmitted and introducing redundancy in it such that the 

decoder can later reconstruct the data transmitted using the redundant 

information. Figure 2.1 is a block diagram of a simplified model of a 

coded system.  

The information source is a digital source. If it is not, it will be 

converted to digital. The digital source output u is sent to an encoder to 

generate encoder output x which is modulated and then transmitted over 

the physical channel. The decoder will make a best guess u~  of the 

original information u based on the received signal y which is distorted 

by the channel.   

 



 
Figure 1.1 Simplified model of coded system 

A major concern in coding technique is the control of errors so that 

reliable communications can be obtained, i.e., u~ is as close to u as 

possible. There are many coding schemes available. Turbo code is the 

most exciting and potentially important development in the coding theory 

in recent years. This powerful code is capable of achieving near 

Shannon capacity performance [1].  

  Our Design 
Soft input soft output detector and equalizer are used to improve the error 
correcting capability of communication systems



 
 
 



CHAPTER 2 
 

                                     Channel Coding (Part 1) 
 
 

2.1 Introduction 
The purpose of forward error correction (FEC) is to improve the 

capacity of a channel by adding some carefully designed redundant 

information to the data being transmitted through the channel. The 

process of adding this redundant information is known as channel 

coding. 

Error corrective coding is used to enhance the efficiency and 

accuracy of information transmitted. In a communication transmission 

system, data is transferred from a transmitter to a receiver across a 

physical medium of transmission or channel.  The channel is generally 

affected by noise or fading which introduces errors in the data being 

transferred. Error-correcting code is a signal processing technique used 

for correcting errors introduced in the channel. It is done by encoding the 

data to be transmitted and introducing redundancy in it such that the 

decoder can later reconstruct the data transmitted using the redundant 

information. Figure 2.1 is a block diagram of a simplified model of a 

coded system.  

The information source is a digital source. If it is not, it will be 

converted to digital. The digital source output u is sent to an encoder to 

generate encoder output x which is modulated and then transmitted over 

the physical channel. The decoder will make a best guess u~  of the 

original information u based on the received signal y which is distorted 

by the channel.   
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Figure 2.1  Simplified model of a coded system 

 

A major concern in coding technique is the control of errors so that 

reliable communications can be obtained, i.e., u~ is as close to u as 

possible. There are many coding schemes available. Turbo code is the 

most exciting and potentially important development in the coding theory 

in recent years. This powerful code is capable of achieving near 

Shannon capacity performance.  

In the past several years, convolutional coding with Viterbi 

decoding has begun to be supplemented in the geostationary satellite 

communication arena with Reed-Solomon coding. The two coding 

techniques are usually implemented as serially concatenated block and 

convolutional coding. Typically, the information to be transmitted is first 

encoded with the Reed-Solomon code, then with the convolutional code. 

On the receiving end, Viterbi decoding is performed first, followed by 

Reed-Solomon decoding. This is the technique that is used in most if not 

all of the direct-broadcast satellite (DBS) systems, and in several of the 

newer VSAT products as well. At least, that's what the vendors are 

advertising.  

Recently (1993) a new parallel-concatenated convolutional coding 

technique known as turbo coding has emerged. Initial hardware encoder 

and decoder implementations of turbo coding have already appeared on 



the market. This technique achieves substantial improvements in 

performance over concatenated Viterbi and Reed-Solomon coding. A 

variant in which the codes are product codes has also been developed, 

along with hardware implementations 

2.2 Convolutional Coding   

Convolutional coding and block coding are the two major forms of 

channel coding. Convolutional codes operate on serial data, one or a 

few bits at a time. Block codes operate on relatively large (typically, up to 

a couple of hundred bytes) message blocks. There are a variety of 

useful convolutional and block codes, and a variety of algorithms for 

decoding the received coded information sequences to recover the 

original data. Convolutional encoding with Viterbi decoding is a FEC 

technique that is particularly suited to a channel in which the transmitted 

signal is corrupted mainly by additive white gaussian noise (AWGN). 

AWGN channel is a noise whose voltage distribution over time has 

characteristics that can be described using a Gaussian, or normal, 

statistical distribution, i.e. a bell curve. This voltage distribution has zero 

mean and a standard deviation that is a function of the signal-to-noise 

ratio (SNR) of the received signal. Let's assume for the moment that the 

received signal level is fixed. Then if the SNR is high, the standard 

deviation of the noise is small, and vice-versa. In digital communications, 

SNR is usually measured in terms of Eb/N0, which stands for energy per 

bit divided by the one-sided noise density.  

Let's take a moment to look at a couple of examples.  Suppose that 

we have a system where a '1' channel bit is transmitted as a voltage of -

1V, and a '0' channel bit is transmitted as a voltage of +1V.  This is 

called bipolar non-return-to-zero (bipolar NRZ) signaling.  It is also called 

binary "antipodal" (which means the signaling states are exact opposites 

of each other) signaling.  The receiver comprises a comparator that 



decides the received channel bit is a '1' if its voltage is less than 0V, and 

a '0' if its voltage is greater than or equal to 0V.  One would want to 

sample the output of the comparator in the middle of each data bit 

interval.  We will see the behavior of our example system when  Eb/N0 is 

high, and then when the Eb/N0 is lower.  

The following figure shows the results of a channel simulation 

where one million (1 x 106) channel bits are transmitted through an 

AWGN channel with an Eb/N0 level of 20 dB (i.e. the signal voltage is ten 

times the rms noise voltage).  In this simulation, a '1' channel bit is 

transmitted at a level of -1V, and a '0' channel bit is transmitted at a level 

of +1V.  The x axis of this figure corresponds to the received signal 

voltages, and the y axis represents the number of times each voltage 

level was received:  

 

Figure 2.2 AWGN Channel Simulations without channel coding 



Our simple receiver detects a received channel bit as a '1' if its 

voltage is less than 0V, and as a '0' if its voltage is greater than or equal 

to 0V.  Such a receiver would have little difficulty correctly receiving a 

signal as depicted in the figure above.  Very few (if any) channel bit 

reception errors would occur.  In this example simulation with the Eb/N0 

set at 20 dB, a transmitted '0' was never received as a '1', and a 

transmitted '1' was never received as a '0'.   

The next figure shows the results of a similar channel simulation 

when 1 x 106 channel bits are transmitted through an AWGN channel 

where the Eb/N0 level has decreased to 6 dB (i.e. the signal voltage is 

two times the rms noise voltage):  

 

Figure 2.3 AWGN Channel Simulations on 6dbs 

Now right-hand side of the curve in the figure above crosses 0V, 

and left-hand side of the curve also crosses 0V.  The points on the red 

curve that are above 0V represent events where a channel bit that was 



transmitted as a one (-1V) was received as a zero.  The points on the 

right curve that are below 0V represent events where a channel bit that 

was transmitted as a zero (+1V) was received as a one.  These events 

correspond to channel bit reception errors in our simple receiver.  In this 

example simulation with the Eb/N0 set at 6 dB, a transmitted '0' was 

received as a '1' 1,147 times, and a transmitted '1' was received as a '0' 

1,207 times, corresponding to a bit error rate (BER) of about 0.235%.  

Which is not good, especially if you’re trying to transmit highly 

compressed data, such as digital television?  Using convolutional coding 

with Viterbi decoding, you can achieve a BER of better than 1 x 10-7 at 

the same Eb/N0, 6 dB.  

Convolutional codes are usually described using two parameters: 

the code rate and the constraint length. The code rate, k/n, is expressed 

as a ratio of the number of bits into the convolutional encoder (k) to the 

number of channel symbols output by the convolutional encoder (n) in a 

given encoder cycle. The constraint length parameter, K, denotes the 

"length" of the convolutional encoder, i.e. how many k-bit stages are 

available to feed the combinatorial logic that produces the output 

symbols. Closely related to K is the parameter m, which indicates how 

many encoder cycles an input bit is retained and used for encoding after 

it first appears at the input to the convolutional encoder. The m 

parameter can be thought of as the memory length of the encoder. 

Viterbi decoding is one of two types of decoding algorithms used with 

convolutional encoding-the other type is sequential decoding. Sequential 

decoding has the advantage that it can perform very well with long-

constraint-length convolutional codes, but it has a variable decoding 

time.  

 Viterbi decoding has the advantage that it has a fixed decoding 

time. It is well suited to hardware decoder implementation. But its 

computational requirements grow exponentially as a function of the 



constraint length, so it is usually limited in practice to constraint lengths 

of K = 9 or less.  

For years, convolutional coding with Viterbi decoding has been the 

predominant FEC technique used in space communications, particularly 

in geostationary satellite communication networks, such as VSAT (very 

small aperture terminal) networks. Most common variant used in VSAT 

networks is rate 1/2 convolutional coding using a code with a constraint 

length K = 7. With this code, you can transmit binary or quaternary 

phase-shift-keyed (BPSK or QPSK) signals with at least 5 dB less power 

than you'd need without it. That is a reduction in Watts of more than a 

factor of three and is very useful in reducing transmitter and/or antenna 

cost or permitting increased data rates given the same transmitter power 

and antenna sizes.  

There is a tradeoff-the same data rate with rate 1/2 convolutional 

coding takes twice the bandwidth of the same signal without it, given that 

the modulation technique is the same. That's because with rate 1/2 

convolutional encoding, you transmit two channel symbols per data bit. 

However, if you think of the tradeoff as a 5 dB power savings for a 3 dB 

bandwidth expansion, you can see that you come out ahead. 

Remember: if the modulation technique stays the same, the bandwidth 

expansion factor of a convolutional code is simply n/k.  

Many radio channels are AWGN channels, but many, particularly 

terrestrial radio channels also have other impairments, such as 

multipath, selective fading, interference, and atmospheric (lightning) 

noise. Transmitters and receivers can add spurious signals and phase 

noise to the desired signal as well. Although convolutional coding with 

Viterbi decoding might be useful in dealing with those other problems, it 

may not be the best technique.  



2.3 Description of the Algorithms   

2.3.1 Convolutionally Encoding the Data  

Convolutionally encoding the data is accomplished using a shift 

register and associated combinatorial logic that performs modulo-two 

addition. Every time the active edge of the clock occurs, the input to the 

flip-flop is clocked through to the output, and thus the data are shifted 

over one stage. The combinatorial logic is often in the form of cascaded 

exclusive-or gates. As a reminder, exclusive-or gates are two-input, one-

output gates often represented by the logic symbol shown below,  

 

Figure 2.4 x-or Gate 

        The truth table implemented by this gate is given below...   

Input 
A 

Input 
B 

Output  

(A xor B) 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

                         Table 2.1 x-or Truth Table 

Shown below is the convolutional encoder of  rate 1/2, K = 3, m = 2   



 

Figure 2.5 Convolutional encoder 

In this encoder, data bits are provided at a rate of k bits per second. 

Channel symbols are output at a rate of n = 2k symbols per second. The 

input bit is stable during the encoder cycle. The encoder cycle starts 

when an input clock edge occurs. When the input clock edge occurs, the 

output of the left-hand flip-flop is clocked into the right-hand flip-flop, the 

previous input bit is clocked into the left-hand flip-flop, and a new input 

bit becomes available. Then the outputs of the upper and lower modulo-

two adders become stable. The output selector (SEL A/B block) cycles 

through two states-in the first state, it selects and outputs the output of 

the upper modulo-two adder; in the second state, it selects and outputs 

the output of the lower modulo-two adder.  

The encoder shown above encodes the K = 3, (7, 5) convolutional 

code. The octal numbers 7 and 5 represent the code generator 

polynomials, which when read in binary (1112 and 1012) correspond to 

the shift register connections to the upper and lower modulo-two adders, 

respectively. This code has been determined to be the "best" code for 

rate 1/2, K = 3. It is the code I will use for the remaining discussion and 

examples, for reasons that will become readily apparent when we get 

into the Viterbi decoder algorithm.  



Let's look at an example input data stream, and the corresponding 

output data stream:  

Let the input sequence be 0101110010100012.  

Assume that the outputs of both of the flip-flops in the shift register 

are initially cleared, i.e. their outputs are zeroes. The first clock cycle 

makes the first input bit, a zero, available to the encoder. The flip-flop 

outputs are both zeroes. The inputs to the modulo-two adders are all 

zeroes, so the output of the encoder is 002.  

The second clock cycle makes the second input bit available to the 

encoder. The left-hand flip-flop clocks in the previous bit, which was a 

zero, and the right-hand flip-flop clocks in the zero output by the left-

hand flip-flop. The inputs to the top modulo-two adder are 1002, so the 

output is a one. The inputs to the bottom modulo-two adder are 102, so 

the output is also a one. So the encoder outputs 112 for the channel 

symbols.  

The third clock cycle makes the third input bit, a zero, available to 

the encoder. The left-hand flip-flop clocks in the previous bit, which was 

a one, and the right-hand flip-flop clocks in the zero from two bit-times 

ago. The inputs to the top modulo-two adder are 0102, so the output is a 

one. The inputs to the bottom modulo-two adder are 002, so the output is 

zero. So the encoder outputs 102 for the channel symbols.  

And so on. The timing diagram shown below illustrates the process:  

   



 

         Figure 2.6 Clock cycle examples 

After all of the inputs have been presented to the encoder, the output 

sequence will be:  

00 11 10 00 01 10 01 11 11 10 00 10 11 00 112.  

Notice that encoder outputs are paired the first bit in each pair is 

the output of the upper modulo-two adder; the second bit in each pair is 

the output of the lower modulo-two adder.  

You can see from the structure of the rate 1/2 K = 3 convolutional 

encoder and from the example given above that each input bit has an 

effect on three successive pairs of output symbols. That is an extremely 

important point and that is what gives the convolutional code its error-

correcting power. The reason why will become evident when we get into 

the Viterbi decoder algorithm.  

Now if we are only going to send the 15 data bits given above, in 

order for the last bit to affect three pairs of output symbols, we need to 



output two more pairs of symbols. This is accomplished in our example 

encoder by clocking the convolutional encoder flip-flops two ( = m) more 

times, while holding the input at zero. This is called "flushing" the 

encoder, and results in two more pairs of output symbols. The final 

binary output of the encoder is thus 00 11 10 00 01 10 01 11 11 10 00 

10 11 00 11 10 112. If we don't perform the flushing operation, the last m 

bits of the message have less error-correction capability than the first 

through (m - 1)th bits had. This is a pretty important thing to remember if 

you're going to use this FEC technique in a burst-mode environment. 

So's the step of clearing the shift register at the beginning of each burst. 

The encoder must start in a known state and end in a known state for 

the decoder to be able to reconstruct the input data sequence properly.  

Now, let's look at the encoder from another perspective. You can 

think of the encoder as a simple state machine. The example encoder 

has two bits of memory, so there are four possible states. Let's give the 

left-hand flip-flop a binary weight of 21, and the right-hand flip-flop a 

binary weight of 20. Initially, the encoder is in the all-zeroes state. If the 

first input bit is a zero, the encoder stays in the all zeroes state at the 

next clock edge. But if the input bit is a one, the encoder transitions to 

the 102 state at the next clock edge. Then, if the next input bit is zero, 

the encoder transitions to the 012 state, otherwise, it transitions to the 

112 state. The following table gives the next state given the current state 

and the input, with the states given in binary:  

   

   

 

 

 



  Next State, if  

Current 
State 

Input = 0: Input = 1: 

00 00 10 

01 00 10 

10 01 11 

11 01 11 

Table 2.2 Next state table 

The above table is often called a state transition table. We'll refer to 

it as the next state table. Now let us look at a table that lists the channel 

output symbols, given the current state and the input data, which we'll 

refer to as the output table:  

   

   

 Output Symbols, if 

Current 
State 

Input = 0: Input = 1: 

00 00 11 

01 11 00 

10 10 01 

11 01 10 

Table 2.3 out put table 



You should now see that with these two tables, you can completely 

describe the behavior of the example rate 1/2, K = 3 convolutional 

encoder. Note that both of these tables have 2(K - 1) rows, and 2k 

columns, where K is the constraint length and k is the number of bits 

input to the encoder for each cycle. These two tables will come in handy 

when we start discussing the Viterbi decoder algorithm.  

2.3.2 Mapping the Channel Symbols to Signal Levels  

Mapping the one/zero output of the convolutional encoder onto an 

antipodal baseband signaling scheme is simply a matter of translating 

zeroes to +1s and ones to -1s. This can be accomplished by performing 

the operation y = 1 - 2x on each convolutional encoder output symbol.  

2.3.3 Adding Noise to the Transmitted Symbols  

Adding noise to the transmitted channel symbols produced by the 

convolutional encoder involves generating Gaussian random numbers, 

scaling the numbers according to the desired energy per symbol to noise 

density ratio, Es/N 0, and adding the scaled Gaussian random numbers 

to the channel symbol values.  

For the uncoded channel, Es/N0 = Eb/N 0, since there is one 

channel symbol per bit.  However, for the coded channel, Es/N0 = Eb/N0 

+ 10log10(k/n).  For example, for rate 1/2 coding, E s/N0 = Eb/N0 + 

10log10(1/2) = Eb/N0 - 3.01 dB.  Similarly, for rate 2/3 coding, Es/N0 = 

Eb/N0 + 10log10 (2/3) = Eb/N0 - 1.76 dB.  

The Gaussian random number generator is the only interesting part 

of this task. C only provides a uniform random number generator, rand(). 

In order to obtain Gaussian random numbers, we take advantage of 

relationships between uniform, Rayleigh, and Gaussian distributions:  



Given a uniform random variable U, a Rayleigh random variable R 

can be obtained by:  

    ( 2.1 ) 

where  is the variance of the Rayleigh random variable, and given R 

and a second uniform random variable V, two Gaussian random 

variables G and H can be obtained by  

                                         G = R cos V and H = R sin V.        (2.2  ) 

In the AWGN channel, the signal is corrupted by additive noise, 

n(t), which has the power spectrum No/2 watts/Hz. The variance  of 

this noise is equal to  . If we set the energy per symbol Es equal to 

1, then  . So  .  

2.3.4 Performing Viterbi Decoding  

The single most important concept to aid in understanding the 

Viterbi algorithm is the trellis diagram. The figure below shows the trellis 

diagram for our example rate 1/2 K = 3 convolutional encoder, for a 15-

bit message:  

 

Figure 2.7 trellis diagram 



The four possible states of the encoder are depicted as four rows of 

horizontal dots. There is one column of four dots for the initial state of 

the encoder and one for each time instant during the message. For a 15-

bit message with two encoder memory flushing bits, there are 17 time 

instants in addition to t = 0, which represents the initial condition of the 

encoder. The solid lines connecting dots in the diagram represent state 

transitions when the input bit is a one. The dotted lines represent state 

transitions when the input bit is a zero. Notice the correspondence 

between the arrows in the trellis diagram and the state transition table 

discussed above. Also notice that since the initial condition of the 

encoder is State 002, and the two memory flushing bits are zeroes, the 

arrows start out at State 002 and end up at the same state.  

The following diagram shows the states of the trellis that are 

actually reached during the encoding of our example 15-bit message:  

 

Figure 2.8 states of trellis 

The encoder input bits and output symbols are shown at the bottom 

of the diagram. Notice the correspondence between the encoder output 

symbols and the output table discussed above. Let's look at that in more 

detail, using the expanded version of the transition between one time 

instant to the next shown below:  



 

Figure 2.9 state transition and outputs of encoder 

The two-bit numbers labeling the lines are the corresponding 

convolutional encoder channel symbol outputs. Remember that dotted 

lines represent cases where the encoder input is a zero, and solid lines 

represent cases where the encoder input is a one. (In the figure above, 

the two-bit binary numbers labeling dotted lines are on the left, and the 

two-bit binary numbers labeling solid lines are on the right.)  

We have used hard-decision symbol inputs to keep things simple. 

Suppose we receive the above encoded message with a couple of bit 

errors:  

 

Figure (2.10) trellis diagram of received message 



Each time we receive a pair of channel symbols, we're going to 

compute a metric to measure the "distance" between what we received 

and all of the possible channel symbol pairs we could have received. 

Going from t = 0 to t = 1, there are only two possible channel symbol 

pairs we could have received: 002, and 112. That's because we know 

the convolutional encoder was initialized to the all-zeroes state, and 

given one input bit = one or zero, there are only two states we could 

transition to and two possible outputs of the encoder. These possible 

outputs of the encoder are 00 2 and 112.  

The metric we're going to use for now is the Hamming distance 

between the received channel symbol pair and the possible channel 

symbol pairs. The Hamming distance is computed by simply counting 

how many bits are different between the received channel symbol pair 

and the possible channel symbol pairs. The results can only be zero, 

one, or two. The Hamming distance (or other metric) values we compute 

at each time instant for the paths between the states at the previous time 

instant and the states at the current time instant are called branch 

metrics. For the first time instant, we're going to save these results as 

"accumulated error metric" values, associated with states. For the 

second time instant on, the accumulated error metrics will be computed 

by adding the previous accumulated error metrics to the current branch 

metrics.  

At t = 1, we received 002. The only possible channel symbol pairs 

we could have received are 002 and 112. The Hamming distance 

between 002 and 002 is zero. The Hamming distance between 002 and 

112 is two. Therefore, the branch metric value for the branch from State 

002 to State 002 is zero, and for the branch from State 002 to State 102 

it's two. Since the previous accumulated error metric values are equal to 

zero, the accumulated metric values for State 002 and for State 102 are 

equal to the branch metric values. The accumulated error metric values 



for the other two states are undefined. The figure below illustrates the 

results at t = 1:  

 

Figure 2.11 metric calculation at t=1 

Note that the solid lines between states at t = 1 and the state at t 

= 0 illustrate the predecessor-successor relationship between the states 

at t = 1 and the state at t = 0 respectively. This information is shown 

graphically in the figure, but is stored numerically in the actual 

implementation. To be more specific, or maybe clear is a better word, at 

each time instant t, we will store the number of the predecessor state 

that led to each of the current states at t.  

 At t = 2. We received a 112 channel symbol pair. The possible 

channel symbol pairs we could have received in going from t = 1 to t = 2 

are 002 going from State 002 to State 002, 112 going from State 002 to 

State 102, 102 going from State 102 to State 01 2, and 012 going from 

State 102 to State 11 2. The Hamming distance between 002 and 112 is 

two, between 112 and 112 is zero, and between 10 2 or 012 and 112 is 

one. We add these branch metric values to the previous accumulated 

error metric values associated with each state that we came from to get 

to the current states. At t = 1, we could only be at State 002 or State 102. 

The accumulated error metric values associated with those states were 



0 and 2 respectively. The figure below shows the calculation of the 

accumulated error metric associated with each state, at t = 2.  

 

Figure2.12 metric calculation at t=2 

That's all the computation for t = 2. What we carry forward to t = 3 

will be the accumulated error metrics for each state, and the 

predecessor states for each of the four states at t = 2, corresponding to 

the state relationships shown by the solid lines in the illustration of the 

trellis.  

Now look at the figure for t = 3. Things get a bit more complicated 

here, since there are now two different ways that we could get from each 

of the four states that were valid at t = 2 to the four states that are valid 

at t = 3. So how do we handle that? The answer is, we compare the 

accumulated error metrics associated with each branch, and discard the 

larger one of each pair of branches leading into a given state. If the 

members of a pair of accumulated error metrics going into a particular 

state are equal, we just save that value. The other thing that's affected is 

the predecessor-successor history we're keeping. For each state, the 

predecessor that survives is the one with the lower branch metric. If the 

two accumulated error metrics are equal, some people use a fair coin 

toss to choose the surviving predecessor state. Others simply pick one 

of them consistently, i.e. the upper branch or the lower branch. It 



probably doesn't matter which method you use. The operation of adding 

the previous accumulated error metrics to the new branch metrics, 

comparing the results, and selecting the smaller (smallest) accumulated 

error metric to be retained for the next time instant is called the add-

compare-select operation. The figure below shows the results of 

processing t = 3:  

 

Figure2.13 metric calculation at t=3 

Note that the third channel symbol pair we received had a one-

symbol error. The smallest accumulated error metric is a one, and there 

are two of these.  

Let's see what happens now at t = 4. The processing is the same 

as it was for t = 3. The results are shown in the figure:  

 



 

Figure (2.14) metric calculation at t=4 

Notice that at t = 4, the path through the trellis of the actual transmitted 

message, shown in bold, is again associated with the smallest 

accumulated error metric. Let's look at t = 5:  

 

Figure (2.15) metric calculation at t=5 

At t = 5, the path through the trellis corresponding to the actual 

message, shown in bold, is still associated with the smallest 

accumulated error metric. This is the thing that the Viterbi decoder 

exploits to recover the original message.  

Perhaps you're getting tired of stepping through the trellis. I know I am. 

Let's skip to the end.  

At t = 17, the trellis looks like this, with the clutter of the intermediate 

state history removed:  



 

Figure 2.16 Final trellis  

The decoding process begins with building the accumulated error 

metric for some number of received channel symbol pairs, and the 

history of what states preceded the states at each time instant t with the 

smallest accumulated error metric. Once this information is built up, the 

Viterbi decoder is ready to recreate the sequence of bits that were input 

to the convolutional encoder when the message was encoded for 

transmission. This is accomplished by the following steps:  

• First, select the state having the smallest accumulated error 

metric and save the state number of that state.  

• Iteratively perform the following step until the beginning of the 

trellis is reached: Working backward through the state history 

table, for the selected state, select a new state which is listed in 

the state history table as being the predecessor to that state. 

Save the state number of each selected state. This step is called 

traceback.  

• Now work forward through the list of selected states saved in the 

previous steps. Look up what input bit corresponds to a transition 

from each predecessor state to its successor state. That is the bit 

that must have been encoded by the convolutional encoder.  



The following table shows the accumulated metric for the full 15-bit 

(plus two flushing bits) example message at each time t:  

   

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

State 
002 

  0 2 3 3 3 3 4 1 3 4 3 3 2 2 4 5 2 

State 
012 

    3 1 2 2 3 1 4 4 1 4 2 3 4 4 2   

State 
102 

  2 0 2 1 3 3 4 3 1 4 1 4 3 3 2     

State 
112 

    3 1 2 1 1 3 4 4 3 4 2 3 4 4     

Table 2.4 Accumulated Metric table 

It is interesting to note that for this hard-decision-input Viterbi 

decoder example, the smallest accumulated error metric in the final state 

indicates how many channel symbol errors occurred.  

The following state history table shows the surviving predecessor 

states for each state at each time t:  

   

 t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

State 
002 

0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 

State 
012 

0 0 2 2 3 3 2 3 3 2 2 3 2 3 2 2 2 0 



State 
102 

0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 

State 
112 

0 0 2 2 3 2 3 2 3 2 2 3 2 3 2 2 0 0 

Table 2.5 State History Table 

The following table shows the states selected when tracing the path 

back through the survivor state table shown above:  

 

 

 

 

 Table 2.6 Trace back table 

Using a table that maps state transitions to the inputs that caused 

them, we can now recreate the original message. Here is what this table 

looks like for our example rate 1/2 K = 3 convolutional code:  

   

  Input was, Given Next State = 

Current State 002 = 0 012 = 1 102 = 2 112 = 3 

002 = 0 0 x 1 x 

012 = 1 0 x 1 x 

102 = 2 x 0 x 1 

112 = 3 x 0 x 1 

 t 
= 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

  0 0 2 1 2 3 3 1 0 2 1 2 1 0 0 2 1 0 



Table 2.7     Next State Table 

Note: In the above table, x denotes an impossible transition from one 

state to another state.  

So now we have all the tools required to recreate the original message 

from the message we received:  

   

 t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

  0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 

Table 2.8 Decoded bits table 

The two flushing bits are discarded.  

Here's an insight into how the traceback algorithm eventually finds 

its way onto the right path even if it started out choosing the wrong initial 

state. This could happen if more than one state had the smallest 

accumulated error metric, for example. I'll use the figure for the trellis at t 

= 3 again to illustrate this point:  

 

Figure 2.17 Metric calculation at t=3 



See how at t = 3, both States 012 and 112 had an accumulated error 

metric of 1. The correct path goes to State 012 -notice that the bold line 

showing the actual message path goes into this state. But suppose we 

choose State 112 to start our traceback. The predecessor state for State 

112 , which is State 102 , is the same as the predecessor state for State 

012! This is because at t = 2, State 102 had the smallest accumulated 

error metric. So after a false start, we are almost immediately back on 

the correct path.  

For the example 15-bit message, we built the trellis up for the entire 

message before starting traceback. For longer messages, or continuous 

data, this is neither practical or desirable, due to memory constraints and 

decoder delay. Research has shown that a traceback depth of K x 5 is 

sufficient for Viterbi decoding with the type of codes we have been 

discussing. Any deeper traceback increases decoding delay and 

decoder memory requirements, while not significantly improving the 

performance of the decoder. The exception is punctured codes, which I'll 

describe later. They require deeper traceback to reach their final 

performance limits.  

To implement a Viterbi decoder in software, the first step is to build 

some data structures around which the decoder algorithm will be 

implemented. These data structures are best implemented as arrays. 

The primary six arrays that we need for the Viterbi decoder are as 

follows:  

• A copy of the convolutional encoder next state table, the state 

transition table of the encoder. The dimensions of this table (rows 

x columns) are 2(K - 1) x 2k. This array needs to be initialized before 

starting the decoding process.  



• A copy of the convolutional encoder output table. The dimensions 

of this table are 2(K - 1) x 2k. This array needs to be initialized 

before starting the decoding process.  

• An array (table) showing for each convolutional encoder current 

state and next state, what input value (0 or 1) would produce the 

next state, given the current state. We'll call this array the input 

table. Its dimensions are 2(K - 1) x 2(K - 1). This array needs to be 

initialized before starting the decoding process.  

• An array to store state predecessor history for each encoder state 

for up to K x 5 + 1 received channel symbol pairs. We'll call this 

table the state history table. The dimensions of this array are 2 (K - 1) 

x (K x 5 + 1). This array does not need to be initialized before 

starting the decoding process.  

An array to store the accumulated error metrics for each state 

computed using the add-compare-select operation. This array will be 

called the accumulated error metric array. The dimensions of this array are 2 

(K - 1) x 2. This array does not need to be initialized before starting the 

decoding process.  

An array to store a list of states determined during traceback (term to 

be explained below). It is called the state sequence array. The dimensions 

of this array are (K x 5) + 1. This array does not need to be initialized 

before starting the decoding process.  

Puncturing is a common way of achieving higher code rates, i.e. 

larger ratios of k to n. Punctured codes are created by first encoding 

data using a rate 1/n encoder and then deleting some of the channel 

symbols at the output of the encoder. The process of deleting some of 

the channel output symbols is called puncturing. For example, to create 

a rate 3/4 code from the rate 1/2 code described, one would simply 



delete channel symbols in accordance to the following pattern,  

   

1 0 1 

1 1 0 

Table (2.9) puncturing pattern  

Where a one indicates that a channel symbol is to be transmitted, 

and a zero indicates that a channel symbol is to be deleted. To see how 

this make the rate be 3/4, think of each column of the above table as 

corresponding to a bit input to the encoder, and each one in the table as 

corresponding to an output channel symbol. There are three columns in 

the table, and four ones. You can even create a rate 2/3 code using a 

rate 1/2 encoder with the following puncturing pattern:  

   

1 1 

1 0 

Table (2.10) puncturing pattern for K=2/3 

Which has two columns and three ones. 

To decode a punctured code, one must substitute null symbols for 

the deleted symbols at the input to the Viterbi decoder. Null symbols can 

be symbols quantized to levels corresponding to weak ones or weak 

zeroes, or better, can be special flag symbols that when processed by 

the ACS circuits in the decoder, result in no change to the accumulated 

error metric from the previous state.  



Chapter 3 

                Channel Coding (Part 2) 

 

3.1 Concatenated Coding 
 

Concatenated coding is illustrated in Figure 3.1. Here we see the 

information frame illustrated as a square - assuming block interleaving - 

and we see the parity from the vertical encoding and the parity from the 

horizontal encoding. For serial concatenation the parity bits from one of 

the constituent codes are encoded with the second code and we have 

parity of parity. If the codes are working in parallel, we do not have this 

additional parity. The idea of concatenated coding fits well with 

Shannon’s channel coding theorem, stating that as long as we stay on 

the right side of the channel capacity we can correct everything - if the 

code is long enough. This also means that if the code is very long, it 

does not have to be optimal. The length in itself gives good error 

correcting capabilities, and concatenated coding is just a way of 

constructing - and especially decoding - very long codes. 

 

 
 



Figure 3.1 Concatenated coding 
 

There are many papers discussing the Turbo codes . The first one 

is related to the Maximum A Posteriori (MAP) decoding algorithm for 

convolutional codes which was proposed in 1974 by Bahl et al., but 

initially received very little attention because of its increased complexity 

over alternative convolutional decoder for a minimal advantage in bit 

error rate (BER) performance. Recently, however, an iterative decoder 

developed by Berrou et al.  in 1993 has enjoyed renewed and greatly 

increased attention. They considered the iterative decoding of two 

Recursive Systematic Convolutional (RSC) codes concatenated in 

parallel through a non-uniform interleaver. For decoding the component 

codes they used a Soft Input/Soft Output (SISO) decoder based on the 

MAP algorithm. Since then, researchers around the world have 

investigated the performance and design of Turbo codes. Both serial and 

parallel concatenated convolutional codes have been studied. The 

interleaver patterns with high performance also have been evaluated. In 

iterative decoding, several decoding algorithms have been used, 

including the optimal MAP symbol estimation and its simplification called 

the max-log-MAP algorithm (Additive MAP Algorithm)  and . A further 

simplification of log MAP is offered by the modified soft-output Viterbi 

algorithm (SOVA) which works in a sliding-window SISO decoding 

algorithm. 

This thesis evaluates the BER performance of Turbo codes 

Additive White Gaussian Noise (AWGN) and slow fading channels. In 

addition, this thesis presents more accurate approximation in the 

modified Turbo code decoding algorithm under slow Rayleigh fading 

channel and corrects the error in the decoding algorithm under AWGN 

channel presented in. 

 



3.2 TURBO ENCODER 
In this chapter, a system model of Turbo code is introduced and is briefly  discussed, then focus on a 

general Turbo encoder which consists of the RSC encoder, interleaver, and puncturing. 

 

3.2.1  Turbo code system model 
Figure 3.2 shows the basic elements of a communication system 

with Turbo code. The source generates an information sequence of N 

symbols with a constant a priori probability distribution )( uuP k = . The ku  

denotes the trasmitted symbol at time k with value (0, 1), i.e., }1,0{∈ku . 

The ku  is encoded by two RSC encoders whose trellis states start at 

state )(0 is , e.g. )1(0s , and terminal at the final state )1()( Nk sis = , which 

the final state returns to the starting state for encoding the next 

information block. k and i denote time index and state index, 

respectively. The encoder generates a sequence of N output coded 

symbols Nc . The trellis state structure is supposed to be known at the 

receiver side. }',,' ,',,, ,{ 3221 q
kkk

q
kkkk ccccccc =  represents one coded 

symbol at time k with a length of 2q-1, where q
kkk ccc ,, , 21   are generated 

by the first RSC encoder, and q
kkk ccc ',,' ,' 32   are generated by the 

second RSC encoder. Each element l
kc  is binary signal, i.e., 

qlcl
k ,,1},1,1{ =−∈ . After modulation, the coded symbols are mapped 

one by one into transmitted signals kx . 

}',,x',x',,, x,{ ,,3,2,,2,1 pq
k
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pq
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s
kk xxxx =  represents the transmitted 

codeword at time k. s
kx ,1  and pq

k
p

k
p

k
pq

k
p

k
p

k xx ,,3,2,,3,2 ',, x',x',,, x,x   are the 

systematic bit and the parity check bits for the kth symbl, respectively. 

The signal kx   is transmitted over the stationary memoryless channel. At 

the destination, the decoder will evaluate the demodulator output y 

based on the statistic characteristic of the channel, i.e., the conditional 

probability density function (pdf) of ky , ]/(    )/( cCyYpcyp kk ==∆ , 



}',,y',,,y  ,{ ,,2,,2,1 pq
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p
k

pq
k

p
k

s
kk yyyy =  represents the received symbol at 

time k, and then make a decision.  

 

 

Figure (3.2)   Block Diagram of Turbo Code System 

 

3.2.2 General Turbo code encoder 
 A general Turbo encoder is shown in Figure 3.3. The Turbo code encoder employs two identical 

systematic recursive convolutional encoders connected in parallel with an interleaver (the “Turbo interleaver”) 

preceding the second recursive convolutional encoder. The two recursive convolutional encoders are called 

the constituent encoders of the Turbo encoder. The information bits are encoded by both RSC encoders. The 

first encoder operates on the input bits in their original order, while the second encoder operates on the input 

bits as permuted by the Turbo interleaver. If the input symbol is of length 1 and output symbol size is R, then 

the encoder is of code rate rc=1/R. The information bits are always transmitted across the channel. 

Depending on the code rate desired, the parity bits from the two constituent encoders are punctured before 

transmission. The tail bits will be added at the end of the transmitted frame.  



 
        Figure (3.3) General Turbo encoder 

 
3.2.2.1 RSC encoder 

Figure 3.4 shows a complete RSC encoder used in Turbo encoder. ku  is 

an input information bit, kc  is the coded output symbol which is 

represented by }, ,{ 321
kkkk cccc = . The system constraint length K is 4. The 

generator connection matrix is 







++

+++
++

++
= 32

32
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or  [1, 15/13, 17/13] in octal. Its trellis states are shown in figure 2.3.2. 

A systematic convolution code is generated by passing the information 

sequences to be transmitted through a linear finite-state shift register. 

The input data to the encoder is shifted into the register. Hence 

codewords are generated. The encoder is defined by a set of generator 

polynomials 







=
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  and memory size M of 

the shift register (or the convolutional constraint length K which is equal 

to M+1).  gm(D) is the mth  forward generator and gb(D)  is the feed back 

generator. The information bits are passed into the encoder frame by 

frame. The shift register starts at initialized state and end at the initial 

state. To ensure this happens, extra bits are needed to flush the 



memory, which are called encoder tail bits. For example, switch SW 

connects to up when data is inputted, down when tail bit is inputted. If 

the encoder has code rate 1/3, it maps N data bits to 3N coded bits plus 

3M tail bits. The received frame for N bit data will have 3N+3M coded 

bits.  

 
  Figure (3.4) A RSC Turbo Encoder with generator  

------------------------------------------------------------------------------------------------ 

 

     Figure 3.5 An 8 trellis states under a RSC encoder 

 



3.2.2.2  Interleaver 

 A burst of errors is defined as a sequence of bit errors. The method 

of interleaver has proved to increase the reliability in the burst error 

channel. In Turbo code, the structure of interleaver has been carefully 

chosen. It allows that input sequences for which one encoder produces 

low weight codewords will usually cause the other encoder to produce 

high weight codewords. Although the constituent codes are individually 

weak, the combination is surprisingly powerful. The resulting code has 

features similar to a “random” block code with Z information bits.  

 

3.2.2.3 Trellis Termination 
After encoding block of input data encoder is required to be drawn in 

state zero. Knowing the final state helps decoder to perform decoding 

process successfully. Extra bits are inputted to decoder to draw encoder 

to zero state. These bits are called trellis terminating bits. 

 

3.2.2.4 Output puncturing 
The role of Turbo code puncturing is to periodically delete selected 

bits to reduce coding overhead. In Turbo code, the systematic bits c1 in 

constituent encoder 1 are always transmitted for the non-tail bits, the 

systematic bits 1'c  in constituent encoder 2 are always punctured for the 

non-tail bits. Other puncturing patterns depend on the code rate selected 

. 

 



3.3 Interleavers for Turbo Encoder 

The interleaver design is a key factor which determines the good 

performance of a turbo code. Some interleaver types used in turbo 

codes are presented in the following sections. 

3.3.1  “Row–Column” interleaver 

The simplest interleaver is a memory in which data is written row–

wise and read column–wise. This is called a “row–column” interleaver 

and belongs to the class of “block” interleavers. For example, data is 

written as shown in Table below 3.1     

 

 
Table 3.1 row column interleaver 

 
The interleaving process consists in reading data as shown in Table 3.2        

 

 
Table 3.2 output of row column interleaver 

 
A few interesting constructions for other block interleavers are given 

below. 

 
3.3.2 “Helical” interleaver 

A “helical” interleaver writes data row–wise as in Table 3.1 but 

reads data diagonal–wise as shown in Table 3.3 

 
Table 3.3 helical interleaver 



 

3.3.3 “Odd–even” interleaver 
We found that for a rate half encoder as, a particular type of 

interleaver called “odd–even”, gives significant improvements when used 

in a turbo encoder design. Let us assume that we have a random 

sequence of binary data input to a rate one half systematic encoder and 

we store only the odd–positioned coded bits, as shown in Table 3.4 

 

 
Table 3.4 odd-even interleaver 

 

If we were now to interleave the same sequence of binary data in a 

pseudo–random order, encode it and store the even–positioned coded 

bits, the result would be as in Table 

 

 
              Table 3.5 odd-even interleaver 

 

The data which is actually sent through the channel is shown in 

Table 3.6; the original sequence of information bits xi, i = 1,... 15 as in 

Table 3.4 and a multiplexed sequence of the odd– and even–positioned 

coded bits from Tables 3.4 and 3.5. 

 

 
Table 3.6 output of odd even interleaver 

 

In Table 3.4 all the odd–positioned information bits have their own 

coded bit. Due to the pseudo–random way of interleaving, some of the 



coded bits stored in Table 3.4 can be for even–positioned information 

bits and some for odd–positioned information bits. This means that some 

of the information bits will have two coded bits associated with them and 

others will have no coded bit associated with them. Thus, the coding 

power is not uniformly distributed across all the bits. So for errors which 

affect information bits not associated with any coded bit the decoder will 

perform worse in both dimensions. 

An example of an “odd–even” type of interleaver is a block 

interleaver with an odd number of rows and an odd number of columns 

as in Table 3.7 in which we store row–wise the sequence of random 

data. 

 
Table 3.7 odd even interleaver 

 

 We produce the coded bits and store only the odd–positioned 

coded bits as in Table 3.4. Now we read column–wise, encode and store 

the even–positioned coded bits as in Table 3.8 

 

 
Table 3.8 odd-even interleaver 

 

In Table 3.8 all the even–positioned information bits have their own 

coded bit present and in table 3.4 all the odd information bits have their 

own coded bit present as well. When we multiplex the coded bits from 

both Table 3.4 and Table 3.8 we produce the coded sequence as in 

Table 3.9. This means that each of the information bits will have its own 

associate coded bit associated with it. Thus the coding power is now 

uniformly distributed. 



 

 
Table 3.9 odd-even interleaver 

 

3.3.4“Simile” interleaver 
In Section 3.3 we introduced an “odd–even” type of interleaver 

where each information bit is associated with one and only one coded 

bit. In this way the correction capability of the code is uniformly 

distributed over all information bits. We now impose another restriction 

on the interleaver design: after encoding both sequences of information 

bits, (the original and the interleaved one), the state of both encoders of 

the turbo code are to be the same. This allows only one “tail” to be 

appended to the information bits, which drives both encoders to the 

same zero state. This is why we called it a ‘‘simile” type of interleaver 

The idea behind the simile interleaver is that the whole block of N 

information bits can be divided in _ + 1 sequences, where _ is the 

memory length of the code. For _ = 2, we get: 

Sequence 0 = {dk | k mod __ + 1) = 0} 

Sequence 1 = {dk | k mod __ + 1) = 1} 

Sequence 2 = {dk | k mod __ + 1) = 2} 

For example, consider the particular four state encoder shown in 

Figure 3.7 

 



 
Figure 3.7 Four state RSC encoder 

 

For a given N, the final state of the encoder represented by the 

state of the two D flip–flops will be a combination of the above 

sequences as shown in Table 

 

 
Table 3.10 state table of RSC encoder 

The important conclusion is that from the point of view of the final 

encoder state, the order of the individual bits in each sequence does not 

matter, as long as they belong to the same sequence. The simile 

interleaver has to perform the interleaving of the bits within each 

particular sequence in order to drive the encoder to the same state as 

that which occurs without interleaving. 

Since both encoders end in the same state, we need only one tail 

to drive both encoders to state zero at the same time. The above 

interleaver types can be combined in a single interleaver. An example of 

a “simile odd–even” block helical interleaver that can be used with the 

four state RSC encoder given in Figure 3.7 is shown in Table3.12. 



 
Table 3.11 odd even simile interleaver 

 

 Part of the interleaved sequence is shown in Table 

 

 
Table 3.12 interleaved sequence 

 
3.4 Turbo code decoding algorithm under AWGN channel 

AWGN channel model is a simple and common channel model in a 

communication system. It is easier to be studied. In this section, a Turbo 

code decoding algorithm under AWGN channel will be discussed. Figure 

3.8 shows a block diagram of a Turbo decoder. 

 

 



Figure3.8 Block Diagram of Turbo decoder 

 

 

                   

A log ratio of the posteriori probability of uk conditioned on the received 

signal y     is defined as 
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The decoding decision of ku~  is made based on the sign of L(uk), i.e., 

                         [ ])(~
kk uLsignu = .   (3-2) 

L(uk) is computed by three terms which are L_apriori, L_channel , and 

Le(uk). L_apriori is a priori information based on the input bit uk at time k. 

It is provided by the previous decoder. L_channel is the received 

systematic bit at time k, referring to Appendix A for details. 
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Where L_ aprior and L_channel denote )( k
e uL  and s

kyLc ,1⋅  respectively. 

∑
+u

) (  is the summation over all the possible transition branch pair (sk-1, 

sk) at time k given input uk=1 and ∑
−u

) (  is the summation over all the 

possible transition branch pair (sk-1, sk) at time k given input uk=0. Lc is 

the channel reliable factor, its computation is given as the following, 

                           
p

bSNRALc _4 ⋅⋅
= ,               (3-4) 

where A=1 for AWGN channel, SNR_b is the uncoded bit-energy-to-

noise-ratio ( 
0N

Eb ), p denotes 1/rc, rc is code rate of the Turbo encoder. 



Le(uk) is an extrinsic information based on all parity and systematic 

information except the systematic value at time k. It can be passed on to 

a subsequent decoder. It is computed using the following equations:  
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For example, at any given iteration, decoder 1 )(1 kuL  is computed as  
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Where )(1 kuL  is given in equation (3-3). )(21 k
e uL  is extrinsic information 

for decoder 1 derived from decoder 2, and )(12 k
e uL  is the third term in 

equation (3-3) which is used as the extrinsic information for decoder 2 

derived from decoder 1. The decoders are sharing the information with 

each other. The value of L1(uk) decides the degree of the reliability of 

ku~ .  

 



CHAPTER 4 

 

MODULATION, MATCH FILTERING 

AND PULSE SHAPING 
 
 
   Many information bearing signals are transmitted by some type of carrier 

modulation. The channel over which the signal is transmitted is limited in 

bandwidth to an interval of frequencies centered about the carrier, as in double 

sideband modulation Signals and channel which satisfy the condition that their 

bandwidth is much smaller than the carrier frequency are termed narrow 

bandpass signals and channels. The modulation performed at the transmitting 

end of the communication system to generate the bandpass signal and the 

modulation performed at the receiving end to recover the digital information 

involves the frequency translations. With no loss in generality and mathematical 

convenience, it is desirable to reduce all the bandpass signals and channels to 

equivalent lowpass signals and channels [8].  This leads to the complex envelop 

representation of real bandpass signals.                
 

4.1   COMPLEX ENVELOP REPRESENTATION 

   The real-valued signal x(t) is a passband signal when its nonzero Fourier 

transform is near cω , as in Figure 4.1. Passband signals never have DC content, 

so X(0) = 0.  A carrier modulated signal is any passband signal that can be written 

in the following form 

))(cos()()( tttatx c θω +=                                                (4.1) 

where a(t) is the time-varying amplitude or envelope of the modulated signal and 

θ(t) is the time-varying phase. cω  is called the carrier frequency (in radians/sec). 



The carrier frequency cω  is chosen sufficiently large compared with the amplitude 

and phase variations of a(t) so that the power spectral density does not have 

significant energy at ω = 0. See Figure 4.1, wherein the spectrum of X(ω ) is 

concentrated in the passband highlow ωωω << . In digital communication, x(t) is 

equivalently written in quadrature form using the trigonometric identity              

cos(u + v) = cos(u) cos(v) – sin(u) sin(v), leading to a quadrature decomposition. The 

quadrature decomposition of a carrier modulated signal is 

)sin()cos()()( txttxtx cQcI ωω −=                                      (4.2) 
 

 
 

Figure 4.1: Fourier spectrum of Bandpass signal  
 

where ))(cos()()( ttatxI θ=  is the time-varying inphase component of the 

modulated signal, and ))(sin()()( ttatxQ θ=  is the time-varying quadrature 

component. Relationships determining a(t), θ(t) from )()( txtx QI −  are 

)()()( 22 txtxta QI +=                                                     (4.3) 
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In equation 4.4, the inverse tangent is taken with the polarities of the numerator 

and denominator independently known, so there is no quadrant ambiguity in 

computing θ(t). In passband processing and analysis, the objective is to eliminate 

explicit consideration of the carrier frequency cω and directly analyze systems 

using only the inphase and quadrature components. These inphase and 

quadrature components can be combined into a two-dimensional vector, or into 



an equivalent complex signal. By convention, a graph of a quadrature-modulated 

signal plots the inphase component along the real axis and the quadrature 

component along the imaginary axis as shown in figure 4.2. The resultant 

complex vector )(txbb  is known as the complex baseband-equivalent signal. The 

complex baseband-equivalent signal for x(t) in equation 4.1 is  

)()()( txjtxtx QIbb +=                                                      (4.5) 
 

 
 

Figure 4.2: Decomposition of baseband-equivalent signal. 
 

   The baseband-equivalent signal expression no longer explicitly contains the 

carrier frequency cω  Another complex representation that does explicitly contain 

cω  is the analytic equivalent signal for x(t). The analytic-equivalent signal for x(t) 

in equation 4.1 is 
tj

bbA
Cetxtx ω)()( =                                                       (4.6) 

The original real-valued passband signal x(t) is the real part of the analytic 

equivalent signal 

[ ])()( txtx Aℜ=                                                          (4.7) 

The Hilbert transform of x(t), denoted by )(tx , is the imaginary part of the analytic 

signal as 

[ ])()( txtx Aℑ=                                                         (4.8) 



Finally, the inphase component )(txI  and the quadrature component )(txQ  can 

be expressed using the signal x(t) and its Hilbert transform )(tx  as (using 

tj
AQIbb

Cetxtxjtxtx ω)()()()( =+= : 

)sin()()cos()()( ttxttxtx ccI ωω +=                                       (4.9) 

)sin()()cos()()( ttxttxtx ccQ ωω −=                                    (4.10) 

4.1.2   Spectrum of Analytic and Baseband-Equivalent Signals 

   Using equations 4.7 and 4.8 the analytic signal is represented as shown in 

figure 4.3 

)()()( txjtxtx QIA +=                                                    (4.11) 

Taking the Fourier Transform of both sides of equation 4.11 yields 
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Figure 4.3: Complex baseband signal recovery from real passband signal 
 

   The analytic equivalent signal, )(tx A , contains only the positive frequencies of 

x(t) and is identically zero for negative frequencies. The Fourier transform X(ω ) of 

the real signal x(t) has two symmetry properties. The real part [ ])(ωXℜ  is even 

inω , while the imaginary part [ ])(ωXℑ  is odd inω . Knowledge of only the non-

negative frequencies of X(ω ), such as are supplied by the analytic signal, is 

sufficient for reconstruction of X(ω ). Thus, one confirms that the analytic signal 

)(tx  



)(tx A  is truly equivalent to the original signal x(t). Using equation 4.6, the Fourier 

transform of the baseband equivalent signal is simply the Fourier transform of the 

analytic signal translated in frequencyω . Thus 

)()( cbbA XwX ωω −=                                                  (4.13) 

)()( cAbb XwX ωω +=                                                 (4.14) 

   Use of equations 4.6 and 4.7 allows reconstruction of the signal x(t) from the 

baseband equivalent signal )(txbb  and the carrier frequency cω . The baseband 

equivalent signal, in general, may be complex-valued, and thus as shown in 

figure 4.4 the spectrum of )(txbb  may be asymmetric about the originω  = 0 

 
Figure 4.4: Baseband signal spectrum. 

 

4.1.2   Generation of the baseband equivalent 
   To generate the baseband equivalent of a signal, the structure in figure 4.3 is 

used, where the second complex multiply simply is 4 real multiplies using Euler’s 

formula )sin()cos( tjte cc
tj C ωωω += . The first multiply by j alone is, of course, 

symbolic and simply means that the receiver processing views the signal on that 

path as the imaginary part in complex arithmetic. 
 

4.2   DIGITAL BANDPASS MODULATION 
   Digital modulation is the process by which digital symbols are transformed into 

waveforms that are compatible with the characteristics of the channel and 

demodulation is the reverse process of again recovering the original message. In 

the case of baseband modulation, these waveforms usually take the form of 

shaped pulses. But in the case of bandpass modulation the shaped pulses 



modulate a sinusoid called a carrier wave, or simply a carrier; for radio 

transmission the carrier is converted to an electromagnetic (EM) field for 

propagation to the desired destination [14].  

   The modulating process transforms the low frequency baseband signal to a 

bandpass signal around a carrier frequency as sketched in figure 4.5. The 

bandpass signal is the one actually transmitted to the receiver where the 

demodulator reconstructs the low-frequency baseband message. 
 

 
 

Figure 4.5: Power spectra for signals in the modulation and demodulation processes. 
 

Bandpass modulation (either analog or digital) is the process by which an 

information signal is converted to a sinusoidal waveform; for digital modulation, 

such a sinusoid of duration T is referred to as a digital symbol. The sinusoid has 

just three features that can be used to distinguish it from other sinusoids: 

amplitude, frequency, and phase. Thus bandpass modulation can be defined as 

the process whereby the amplitude, frequency, or phase of an RF carrier, or a 

combination of them, is varied in accordance with the information to be 

transmitted. The general form of the carrier wave is 

                                     )(cos)()( ttAts θ=                                                   (4.15) 

where A(t) is the time-varying amplitude and θ(t) is the time-varying angle. It is 

convenient to write 

)()( ttt O φωθ +=                                                   (4.16)     

so that 

[ ])(cos)((( tttAts φωο +=                                               (4.17) 



Where WO is the radian frequency of the carrier and φ(t) is the phase. The terms f 

and ω will each be used to denote frequency. When f is used, frequency in hertz 

is intended; when ω is used, frequency in radians per second is intended. The 

two frequency parameters are related by ω = 2π f. 
 

4.2.1   Phase Shift Keying 
   Under phase-shift keying (PSK), the information bits determine the phase of a 

carrier, which takes values from a discrete set in accordance with the information 

bits. The general form of PSK signals is given by 
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T
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where the phase term, θi , will have M discrete values, typically given by 
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is the signal energy (the same for all signals). We will assume that the signal is 

bipolar rectangular pulse of duration T until the discussion about pulse shaping. 

Equation 4.18 can be re-written in a slightly different form as 
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where )(1 tφ  and )(2 tφ  are easily seen to be orthonormal. Thus, PSK signals are 

points in a two-dimensional space spanned by )(1 tφ and )(2 tφ  [14]. 
 

4.2.2   QPSK Transmitter 
   For the binary PSK M = 2 this means that modulating data signal shifts the 

phase of the waveform )(tsi  to one of the two states either zero or π . Similarly 

for quadriphase or quadrature shift keying M = 4 and the waveform )(tsi shifts the 



phase to one of 4 pahses separated by π/4. The constellation diagram for QPSK 

signal using relation in equation 4.21 is shown in figure 4.6. 
 

 
Figure 4.6: QPSK Constellation diagram 

 

   The illustrated constellation mapping in figure 6, known as Gray coding, has the 

property that adjacent signals are assigned binary sequences that differ in only 

one bit. This is desirable in practice, because, when a detection error is made, it 

is more likely to be to a signal adjacent to the transmitted signal. Then Gray 

coding results in a single bit error for the most likely signal errors. QPSK is also a 

real bandpass signal and using the complex baseband envelop representation of 

real bandpass signals the baseband representation of QPSK is 
tj

AQIbb
Cetstsjtsts ω)()()()( =+=                                                    (4.22) 

where 

)sin()()cos()()( ttsttsts ccI ωω +=  

)sin()()cos()()( ttsttsts ccQ ωω +=  

are the inphase and quadrature phase components of )(ts i . The relation 

between )(ts i  and )(ts bb  is given as 

[ ] [ ])()()( tsetsts A
tj

bbi
c ℜ=ℜ= ω                                        (4.23) 

Using the above relation the QPSK constellation using the complex baseband 

representation is redrawn in figure 4.7. 



 
 

Figure 4.7: QPSK Constellation diagram for complex baseband representation. 
 

   Now using the complex baseband representation the QPSK transmitter is 

drawn in figure 4.8. QPSK lookup table in figure 4.8 is simply the assignment of 

one phase to each of four symbols. Transmit filter is a filter which shapes the 

bitstream to a waveform. After constellation mapping we are having only phase 

as shown in table below. It is the transmit filter which convert them in a waveform 

We will discuss it later. 
Table 4.1: QPSK lookup table 

 

 

 

 
Figure 4.8: QPSK Transmitter 

Symbol Phase 

00 4/πje  

01 4/πje−  

10 4/3πje  

11 4/3π−je  



To recover the analytic signal from the received real QPSK signal same 

approach is used which is described in figure 4.3.  

 

4.2.3   QPSK Detection 

    There are two approaches for detection of any modulated signal. One is called 

coherent detection and other is called non-coherent detection. When the receiver 

exploits knowledge of the carrier's phase to detect the signals, the process is 

called coherent detection; when the receiver does not utilize such phase 

reference information, the process is called no coherent detection. In ideal 

coherent detection, there is available at the receiver a prototype of each possible 

arriving signal. These prototype waveforms attempt to duplicate the transmitted 

signal set in every respect, even RF phase. The receiver is then said to be phase 

locked with the incoming signal. While for non-coherent detection the there is no 

need for the receiver to be phase locked with the transmitter because the phase 

information is provided to the receiver by differentially encoding the symbols at 

the receiver. Thus the receiver design is simplified. 

   We are not using the differential encoding, so we will only discuss the coherent 

detection. In coherent detection the receiver has the decision regions as shown 

in figure 4.9.  

 
 

Figure 4.9: Decision regions for QPSK signal 



If the symbol is in region 1 then the receiver makes the decision that it is 00 and 

so on. The receiver structure is shown in figure 4.10. After recovering the 

complex baseband signal from the real received signal we have to determine 

only the phase and according to that phase we have to select that particular 

region in which phase is lying. After selecting the region the only job left is to 

recover the two bits which conveyed by the phase using the same lookup table 

as shown before. We will discuss the receive filter later.             
 

 
 

Figure 4.10: QPSK Receiver structure 
 

   So far we have explained complex envelop representation of bandpass signals 

and QPSK modulation/demodulation. From now on we will not use the receiver 

structure explained above but only the complex baseband part will be used. The 

frequency translation part will be removed because it the same for all. The 

baseband receiver structure is given in figure 4.11. 
 

 
 

Figure 4.11: Baseband model for QPSK communication system    



4.3   DETECTION IN ADDITIVE WHITE GAUSSIAN NOISE (AWGN)    
 

4.3.1   Additive White Gaussian Noise 
   So far we have assuming the ideal channel because we are receiving the same 

signal which we are transmitting. But this will never happen in practice. There are 

many sources of noise which corrupt the transmitted signal like galaxy and 

atmospheric noise, switching transients, interfering signals from other sources 

and many many more sources. With proper precautions much of the noise and 

interference entering the receiver can be reduced or even eliminated. However 

there is one noise source that cannot be eliminated and that is the noise caused 

by the thermal motion of electrons in any conducting media. This motion 

produces thermal noise in amplifiers and circuits and corrupts the signal. 

   The noise can be thought as a random process. Any random process can be 

modelled statistically using normal or Gaussian. An important case of a random 

signal is the case where the autocorrelation function is a dirac delta function 

which has zero value everywhere except when τ = 0. In other words, the case 

where 
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where Rx(τ) is the auto-correlation function of a random variable x(t) and N0 is any 

constant. The auto-correlation at τ = 0 is also called the power of the signal. The 

Fourier transform of auto-correlation function is called as the power spectral 

density and power spectral density for noise is 
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In this special case where the autocorrelation is a “spike” the Fourier transform 

results in a constant frequency spectrum as shown in figure 4.12. This is in fact a 

description of white noise, which be thought of both as having power at all 

frequencies in the spectrum, and being completely uncorrelated with itself at any 

time except the present (τ = 0). This latter interpretation is what leads white noise 

signals to be called independent. Any sample of the signal at one time is 



completely independent (uncorrelated) from a sample at any other time. While 

impossible to achieve or see in practice (no system can exhibit infinite energy 

throughout an infinite spectrum), white noise is an important building block for 

design and analysis. Often random signals can be modeled as filtered or shaped 

white noise. Literally this means that one could filter the output of a (hypothetical) 

white noise source to achieve a non-white or colored noise source that is both 

band-limited in the frequency domain, and more correlated in the time domain. 

 

 
Figure 4.12: White noise shown in both the time (left) and frequency domain (right). 

 

From above it is clear why thermal noise is called Additive white Gaussian noise 

(AWGN). Additive because it adds in the signal not multiplies. White because it 

has the same power for all the frequencies. Gaussian because it can be 

modelled using Gaussian or normal distribution and power for any normally 

distributed random variable is 2
0σ , where 2

0σ  is the variance of the random 

variable. 

 

4.3.2   SNR Maximization with a Matched Filter 
   SNR is a good measure for a system’s performance, describing the ratio of 

signal power (message) to unwanted noise power. The SNR at the output of a 

filter is defined as the ratio of the modulated signal’s energy to the mean-square 

value of the noise. The SNR can be defined for both continuous- and discrete-

time processes; the discrete SNR is SNR of the samples of the received and 

filtered waveform. A matched filter is a linear filter designed to provide the 

maximum signal-to-noise power ratio at its output for a given transmitted symbol 



waveform. It is called match filter because it impulse response exactly matches 

with the impulse response of the transmitted signal1 [14]. It will be proved now. 

   Consider that a known signal s(t) plus AWGN n(t) is the input to a linear, time-

invariant (receiving) filter followed by a sampler, as shown in Figure 4.13. 

Actually the receive filter is replaced with match filter. At time t = T, the sampler 

output z(T) consists of a signal component ai and a noise component n0 . 

z (T) = ai + n0                                                       (4.26) 

 The variance of the output noise (average noise power) is denoted by 2
0σ , so 

that the ratio of the instantaneous signal power to average noise power. (S/N)T. at 

time t = T, out of the sampler in step 1, is 
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Figure 4.13: QPSK receiver with sampler at symbol rate T and match filter 
 

   We wish to find the filter transfer function Ho(f) that maximizes equation 4.27. 

We can express the signal ai(t) at the filter output in terms of the filter transfer 

function H(f) (before optimization) and the Fourier transform of the input signal,  
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   where S(f) is the Fourier transform of the input signal, S(t). If the two-sided 

power spectra} density of the input noise is No/2 watts/hertz, then, we can 

express the output noise power as              
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We then combine equations 4.27 to 4.29 to express (S/N)T. as follows 
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We next find that value of H(f) = Ho(f) for which the maximum (S/N)T is achieved, 

by using Schwarz's inequality. One form of the inequality can be stated as 
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The equality holds if f1(x) = kf*2(x) where k is an arbitrary constant and * indicates 

complex conjugate. If we identify H(f) with f1(x) and S(f) eTfj2 with f2(x), then 
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Substituting into Equation 4.30 yields 
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Where the energy E of the input signal S(t) is 
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Thus, the maximum output (S/N)T depends on the input signal energy and the 

power spectral density of the noise, not on the particular shape of the waveform 

that is used. The equality in Equation 4.33 holds only if the optimum filter transfer 

function HO(f) is employed, such that 
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Since S(t) is a real-valued signal, we can write, 
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Thus, the impulse response of a filter that produces the maximum output signal-

to-noise ratio is the mirror image of the message signal s(t), delayed by the 

symbol time duration T. Note that the delay of T seconds makes Equation 4.37 

causal; that is, the delay of T seconds makes h(t) a function of positive time in the 



interval 0 < t < T as shown in figure 4.14. Without the delay of T seconds, the 

response s(–t) is unrealizable because it describes a response as a function of 

negative time.  

 
 

Figure 4.14: Impulse responses of received signal and match filter  
 

   The above mathematical discussion proves that if the impulse responses of the 

received signal and the match filter are mirror images of each other then at t=T 

the SNR is maximized. Actually the convolution with itself is a process of 

integration. By match filtering we are actually integrating the received signal. 

AWGN is a zero mean random variable. By averaging we are trying to force it to 

zero. It can be verified that as T approaches ∞  the noise averaged to zero.    

The QPSK receiver with match filter can be redrawn in figure 4.15.    

 
Figure 4.15: QPSK receiver with match filter 

 
4.4   INTERSYMBOL INTERFERENCE AND PULSE SHAPING  
    The spreading and smearing of symbols such that the energy from one symbol 

effects the next ones in such a way that the received signal has a higher 

probability of being interpreted incorrectly is called inter symbol interference (ISI). 



  Let’s assume that the transmit filter has a impulse response of a rectangular 

pulse as shown. We know that the frequency response of rectangular pulse is a 

sinc function which is from [ ∞∞− , ].  This means that it has infinite bandwidth 

which is not the requirement and also the rectangular pulse is not possible to 

design practically.   

 
 

Figure 4.16: Time and frequency response of rectangular pulse 
 

   Another solution is that we used the sinc in time domain because it has a gate 

function in frequency domain which has very pleasant from bandwidth 

requirement. But the problem is that the impulse response of one pulse has 

infinite length. But the sinc pulse is passing through zero after every multiple of T 

as shown above. Now if we transmit the successive pulses such that a pulse has 

its max peak value when the others are passing through zero. In this case we 

may have ISI at the other time but this will ensure that there is no ISI at the 

multiples of symbol interval as shown in figure 4.16.  

Sinc pulse has problem that it is also impractical to design and also it has infinite 

impulse response. A single pulse is affecting all the pulses before or after it. 

Slight misadjustment in time will result in effecting all the pulses.  

     



 
 

Figure 4.17: pulse shaping using sinc. 
 

Nyquist offered ways to build (realizable) shapes that had the same good 

qualities as the sinc pulse and less of the disadvantages. One class of pulses he 

proposed are called the raised cosine pulses. They are really a modification of 

the sinc pulse. Where the sinc pulse has a bandwidth of W, which is given as 

W  =  1 / 2T                                                         (4.38) 

The raised cosine pulses have an adjustable bandwidth which can be varied from 

W to 2W. We want to get as close to W, which is called the Nyquist bandwidth, as 

possible with a reasonable amount of power. The factor α related the achieved 

bandwidth to the ideal bandwidth W as 
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  where W is Nyquist bandwidth, and W0 is the utilized bandwidth. 

   The factor α is called the roll-of factor. It indicates how much bandwidth is being 

used over the ideal bandwidth. Smaller this factor, the more efficient will be the 

scheme. The percentage over the minimum required W is called the excess 

bandwidth. It is 100% for roll-off of 1.0 and 50% for roll-off of 50%. The alternate 

way to express the utilized bandwidth is.  

sRW )1(0 α+=
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Typical roll-off values used for wireless communications range from 2 to 4. 

Obviously we want to use as small a roll-off as possible, since this gives the 

smallest bandwidth. Here is how the class of raised cosine pulse is defined in 

time domain. 
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The first part is the sinc pulse. The second part is a cosine correction applied to 

the sinc pulse to make it behave better. The sinc pulse insures that the function 

transitions at integer multiples of symbol rate which makes it easy to extract 

timing information of the signal. The cosine part works to reduce the excursion in 

between the sampling instants.  The bandwidth is now adjustable. It can be any 

where from 1/2 Rs to Rs.  It is greater than the Nyquist bandwidth by a factor       

(1+ α). For α = 0, the above equation reduces to the sinc pulse, and for α  = 1, the 

equation becomes that of a pure square pulse. 

 

 
 

Figure 4.18: Impulse responses of raised cosine filter with 1,5.0,0=α   



In frequency domain, the relationship is given by 
 

                   (2.41) 

   Why do they call it raised cosine? Because the above response has a cosine 

function in the frequency domain, although other many other trigonometric 

representations of this equation that do not have the cosine-squared term, so it is 

not always clear why these are called raised cosine. 

  The frequency response looks somewhat like a square pulse as we would 

expect. A range of bandwidths are possible depending on the chosen α. The 

bandwidth can be anywhere from 1/2 Rs (this term same as W, the Nyquist 

bandwidth) for the sinc pulse to Rs for the square pulse. The bandwidth utilized is 

greater than the Nyquist bandwidth by a factor (1 + α ). For α = 1 the above 

equation reduces to the sinc pulse, and for α = 1 the equation becomes that of a 

pure square pulse. 

 
 

Figure 4.19: Frequency responses of raised cosine filter with 1,5.0,0=α  
 

  To implement the raised cosine response, we split the filtering in two parts to 

create a matched set. When we split the raised cosine filtering in two parts, each 
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part is called the root-raised cosine.  In frequency domain, we take the square 

root of the frequency response hence the name root-raised cosine.   

  Yes, the whole raised cosine can be applied at once at the transmitter but in 

practice it has been found that concatenating two filters each with a root raised 

cosine response (called split-filtering) works better. 

The root raised cosine shaping of pulses is also called baseband filtering. The 

frequency response of the root raised cosine is given by 
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                                   (4.42) 

Compare the impulse response of the root raised filter to that of the raised 

cosine. We do not see much of a difference except that there is a little bit more 

excursion in the root-raised cosine response. The time domain function is of 

course NOT the square root. The root part applies to frequency domain 
 

 
Figure 4.20: Frequency responses of raised cosine and rootraised cosine filters 

 

   By splitting the raised cosine into two rootraised cosine filter we are achieving 

two things. First is that by doing so we are forcing the ISI to zero at the receiver. 

There is ISI when we are transmitting but there is no ISI at the receiver. Second 

is match filtering because the impulse response of transmit and receiver filters 

are exactly matched. This will give us the highest SNR point at the symbol 



interval. Now the final baseband communication system is given below. Two wire 

connections are for complex data. 

     
Figure 4.21: Baseband model of QPSK communication system 

 

4.5   DISCRETE TIME MODEL OF COMMUNICATION SYSTEM 
   So far we have explained discrete partial analog communication system. In 

figure 4.20 the only analog portion is raised cosine filter. If we realize it in discrete 

time the complete system will become digital. We have already explained the 

upsampling using interpolation in a previous chapter.  We know that the raised 

cosine filter requires the excess bandwidth. So in order to filter the QPSK symbol 

we have to upsample by at least factor of 2 because the maximum excess 

bandwidth is equal to the Nyquist bandwidth. The upsampling is done by the 

insertion of  M–1 zeros in between the QPSK symbol stream and then 

interpolation is done by the digital raised cosine filter. If we are sampling by a 

factor of M then we will say that we have M samples per symbol. At the receiver 

we have to downsample by a factor of M in order to recover the QPSK symbol 

stream. The complete discrete time model is given below 

 
Figure 4.22: Discrete time baseband model of QPSK communication system 

 



4.6 SIMULATION RESULTS 
  A simulation is run for QPSK modulation and pulse shaping using raised cosine 

pulse shaping. The constellation diagram for QPSK symbols at transmitter is  
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Figure 4.23: QPSK Constellation diagram at transmitter 

 

QPSK constellation diagram after the coherent detection at the receiver is  
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Figure 4.24: QPSK Constellation diagram at receiver 

 

Raised cosine filter is splitted into root raised cosine filters at transmitter and 

receiver for match filtering and pulse shaping. 10 samples per symbol are chosen 

for convenience in plotting and the length of filters is 101. The impulse response 

of the raised cosine and root raised cosine filters are shown in figures.    
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Figure 4.25: Impulse response of root raised cosine pulse 

 

From the above figure you can see that impulse response is not passing through 

zero crossings at symbol intervals (multiples of 10) 
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Figure 4.26: Impulse response of root raised cosine pulse 

 

In the above the impulse response is passing through zero crossings at symbol 

intervals and this guarantees the zero ISI at symbol intervals. 

In the following two figures the eye-diagram at transmitter and receiver is plotted 

and from these figures it is clear that there is ISI at the transmitter after filtering 

using root raised cosine filter but the ISI is removed at the receiver after root 

raised cosine filtering because both of them collectively make a raised cosine 

filter.       
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Figure 4.27: Eye diagram at transmitter (there is ISI) 
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Figure 4.28: Eye diagram at receive (no ISI) 

 

 

 



CHAPTER 5 

 

 WIRELESS CHANNEL MODELING 

 
  5.1 INTRODUCTION 

Small scale fading is used to describe the rapid fluctuations of the amplitudes 

, phases or multipath delays of the radio signal over a short period of time or travel 

distance , so that large –scale path loss effects may be ignored . Fading is caused 

by the interference between two or more versions of transmitted signal arrive at the 

receiver antenna at slightly different times. These waves, called multipath waves, 

combine at the receiver antenna to give a resultant signals which can vary widely 

in amplitude and phase , depending on the distributions of the intensity and relative 

propagation time of the waves and the bandwidth of the transmitted signal. 

  

5.2 Small Scale Multipath Propagation  
      Multipath in the radio channel creates small scale fading effects. 

The most important effects are  

  Rapid changes in signal strength over a small travel distance or time interval. 

 Random frequency modulation due to varying Doppler Shifts on different 

multipath signals. 

 Time dispersion (Echoes) caused by the multipath propagation delays 

 
     In urban areas , fading occurs because of the height of the mobile 

antennas are well below  the height of surroundings structures , so there is no 

single line of sight path to the base station. Even when line of sight exists, 

multipath still occurs due to reflections from the ground and surrounding 

structure. The incoming radio waves arrive from different from different directions 

with different propagation delays. The signal received by the mobile at any point 



in the space may consist of a large number of plane waves having randomly 

distributed amplitudes, phases and angles of arrival. These multipath 

components combine vectorially   at the receiver antenna and can cause the 

signal received by the mobile to distort or fade. Even when the mobile is 

stationary, and received signal may fade due to movement of surroundings 

objects in the radio channel. 

 
5.1.1 Factors effecting small scale fading  

        Many physical factors in the radio propagation channel influence small 

scale fading. 

These include the following. 

 

5.1.1.1 MultiPath Propagation 

   The presence of the reflecting objects and scatterers   in the channel 

creates a constantly changing environment that dissipates the signal energy in 

the amplitude, phase and time. These effects results in amplitude versions of the 

transmitted signal  that arrive at receiving antenna , displaced with respect to one 

another in time and spatial orientation. The random phase and amplitudes of the 

different multipath components cause fluctuation in the signal strength, thereby 

including small scale fading, signal distortion, or both.  

 

5.1.1.2 Speed of Mobile 

             The relative motion between baseband   signal and mobile results in 

random frequency modulation due to different Doppler shift on each multipath 

component. Doppler shift would be positive and negative depending on whether 

the mobile receiver is moving toward or away from the base station. 

 
5.1.1.3 Speed of surrounding objects 
   If objects in the radio channel are in random motion, they induce a time 

varying Doppler shift on multipath components. If the surroundings objects move 

at a greater rate than mobile , then this effect dominates the small scale fading 



otherwise , motion of the surroundings objects may be ignored , only speed of 

mobile need be considered. The coherence time defines the STATICNESS of the 

channel and is directly impacted by the Doppler shift. 

 

     5.1.1.4 The Transmission bandwidth of the signal 
If the transmitted radio signal bandwidth is greater than bandwidth of the 

multipath channel, the received signal will be distorted, but the received signal 

strength will not fade much over a local area. 

 

5.2 Parameters of mobile multipath channels 
   Many multiptah channels are derived from the power delay profile. Power  

delay profile  are generally represented as plots of relative received power as 

function of excess delay with respect to a fixed time delay reference. Power 

delay profiles are found by averaging instantaneous power delay 

measurements over a local area in order to determine an average small scale 

power delay profile. 

 

5.2.1 Time and Frequency dispersion parameters 
      In order compare different multipath channels and to develop some 

general design guidelines for wireless systems, parameters which grossly 

quantify the multipath channel are used.  

 

5.2.1.1 Delay spread  
The Mean excess delay, rms delay spread and excess delay spread 

are multipath channel parameters that can be determined from a power delay 

profile.   These delays are measured relative to the first detectable signal 

arriving at the receiver at To=0. The maximum excess delay (X db) of the 

power delay profile is defined to be a time delay during which multipath 

energy falls to X db below the maximum. In other words, excess delay is 

defined is Tx- To. Where To is 1st arriving signals and Tx is the maximum 

delay at which mulitpath energy falls to X db of the strongest arriving 



multipath signal. The maximum excess excess delay (X db) defines the 

temporal extent of the multipath that is above a particular threshold. 

 

      5.2.1.2 Coherence Bandwidth  
 While the delay spread is natural phenomenon caused by reflected 

and scattered propagation paths in the radio channel, the Coherence 

bandwidth Bc, is a defined relation derived from the rms delay spread. 

Coherence bandwidth is statistical measure of the range of frequencies over 

which the channel can be considered “FLAT” i.e. a channel which passes all 

spectral components with approximately equal gain and linear phase. In other 

words coherence bandwidth is range of frequencies over which two frequency 

components have a strong potential for amplitude correlation. Two sinusoids 

with frequency separation greater than Bc are treated differently by the 

channel.  

 

5.2.1.3 Doppler spread  
   Delay spread and coherence bandwidth is parameters which 

describe the time dispersive nature of the channel in a local area. However, 

they don’t offer information about varying  nature of channel caused by 

either relative motion between mobile and base station or by movement of 

objects in the channel in the small scale region. 

 Doppler spread is measure of spectral broadening caused by the time 

rate of change of the mobile radio channel and defined as the range of 

frequencies over which the received Doppler spectrum is essentially non 

zero. When a pure sinusoidal tone of frequency Fc is transmitted in the range 

Fc-Fd to Fc+Fd, where Fd is Doppler shift.  The amount of spectral 

broadening depends upon Fd which is function of relative velocity of the 

mobile and the angle of motion of the mobile and direction of arrival of the 

scattered waves. 

 

5.2.1.4 Coherence time  



Coherence time Tc , time domain dual of Doppler spread and used 

to characterize the time varying nature of the frequency dispersiveness of 

the channel in the time domain .The Doppler spread and coherence time 

are inversely proportional to one another. 

Coherence time is actually a statistical measure of the time duration 

over which the channel impulse response is invariant and quantifies the 

similarity of the channel response at different times.  The definition of 

coherence time implies that two signals arriving with a time separation 

greater than Tc are effected differently by the channel. 

    

5.3 Types of small scale fading 
   Types of fading experienced by signal propagation through a 

mobile radio channel depends on the nature of the transmitted signal with 

respect to the characteristic of the channel. Depending on the relation 

between the signal parameters and the channel parameters and the 

channel parameters, different transmitted signals will go under different 

fading. The time dispersion and frequency dispersion mechanism in a 

mobile radio channel lead to four possible distinct effects.  

   Mulipath delay spread leads to time dispersion and frequency 

selective fading. 

Doppler spread leads to frequency dispersion and time selective 

fading. The tow propagation mechanisms are independent of each other. 

 
5.3.1 Fading Effects due to Multipath Time Delay spread 
     Time dispersion due to multipath causes the transmitted signal to 

undergo either flat or frequency selective fading. 

 

5.3.1.1 FLAT FADING 
       If the mobile radio channel has a constant gain and linear 

response over a bandwidth which is greater than bandwidth of transmitted 

signal, then the receive signal will go under flat fading. In flat fading, the 



multipath structure of the channel is such that spectral characteristics of the 

transmitted signal are preserved at the receiver . However the strength of 

received signal changes with time, due to fluctuations in the gain of channel 

caused by multipath. 

   Flat fading channels are also known as amplitude varying channels 

and are sometimes referred to as narrowband channels, since bandwidth 

applied to signal s narrow as compared to channel flat fading bandwidth. 

Typical flat channels cause deep fades and they require 20 or 30 db more 

transmitted  power to achieve low bit error rates during times of deep fades 

as compared to system operating over non-fading channels. The distribution 

of most common amplitude distributions is Rayleigh distribution. The 

Rayleigh flat fading channel model assumes that channel induces amplitude 

which varies in time according to Rayleigh distribution. 

 

     Mathematically,  

                       Bs << Bc       or      Ts >>Delay spread              (5.1) 

 
Ts is reciprocal of bandwidth or symbol period and Bs is bandwidth. 

Bc is coherence bandwidth. 

 

5.3.1.2 Frequency selective Fading 
       If the channel passes a constant-gain and linear phase response 

over a bandwidth that is smaller than the bandwidth of transmitted signal, 

then channel creates frequency selective fading on the received signal. 

Under such conditions, the channel impulse response has a multipath delay 

spread which is greater than the reciprocal bandwidth of the transmitted 

message waveform. When this occurs, the received signal includes multiple 

version of transmitted waveform which are attenuated and delayed in time, 

and hence the received signal is distorted.  

Frequency selective fading is due to time dispersion of the 

transmitted symbols within the channel. Thus the channel induces 



Intersymbol Interference (ISI). Viewed in the frequency domain, certain 

frequency components in the received signal spectrum have greater gains 

than others. 

     Frequency selective fading channels are much more difficult to 

model than flat fading channels since each multipath signal must be 

modeled and the channel must be considered to be a linear filter. Fir such 

model or fading the spectrum S(f) of the transmitted signal has a bandwidth 

which is greater than coherence  bandwidth Bc  of the channel. Viewed from 

frequency domain, the channel becomes frequency selective, where the 

gain is different for different frequency components. Frequency selective 

fading is caused by multipath delays which approach or exceed the symbol 

period of the transmitted symbol. Frequency selective fading channels are 

also known as wideband channels since the bandwidth of signal S(t) is 

greater than bandwidth of channel impulse response. As time varies, the 

channel varies in gain and phase across the spectrum of S(t), resulting in 

time varying distortion in the received signal r(t). To summarize, a signal 

undergoes frequency selective fading if  

 

                                      Bs >> Bc or   Ts<< Delay spread              (5.2) 

 

Ts is symbol period. And Bc coherence bandwidth. 

 

A common rule of thumb is that a channel is Flat fading if Ts >= 10*(Delay 
spread) and Frequency selective if Ts<10*(Delay spread) 

 

 
5.3.2 Fading Effects due to Multipath Time Doppler spread 

Depending upon how rapidly the transmitted baseband signal 

changes as compared to the rate of change of the channel, a channel mat 

be classified either as a Fast Fading or Slow Fading. 

 



5.3.2.1 Fast Fading   
    In this fading, the channel impulse response changes rapidly within 

the symbol duration. That is, the coherence time of the channel is smaller 

than the symbol period of the transmitted signal. This causes frequency 

dispersion due to Doppler spreading, which leads to signal distortion. 

Viewed in the frequency domain, signal distortion due to fast fading 

increases with increasing Doppler spread relative to bandwidth of the 

transmitted signal. Therefore, signal undergoes fast fading if, 

                                    Ts > Tc            or            Bs < Bd     (5.3) 
 Fast fading only deals with rate of change of channel due to 

motion. In the case of the flat fading channel, we can approximate the 

impulse response to be simply a delta function. Hence, a FLAT FADING, 

FAST FADING channel is channel in which amplitude of the delta function 

varies faster than the rate of change of the transmitted baseband signal. In 

the case of a FREQUENCY SELECTIVE, FAST FADING channel, the 

amplitudes, phases and time delays of any one of the multipath 

components vary faster than the rate of change of transmitted signal. In 

practice, fast fading only occurs for very low data rates. 

 

5.3.2.2 Slow Fading 
   In slow fading channel, the channel impulse response changes at a 

rate much slower than the transmitted baseband signal S (t). In this case, 

the channel may be assumed to be static over several reciprocal bandwidth 

intervals. In the frequency domain, this implies that the Doppler spread of 

the channel is much less than the bandwidth of the baseband signals. 

Therefore the signal goes undergoes slow fading if  

  

                          Ts << Tc               and    Bs >> Bd     (5.4) 

It should be clear that velocity of the mobile and the baseband signaling 

determines whether a signal undergoes fast fading or slow fading. 

 



5.4 Rayleigh Fading Envelope Generation 

The generation of Rayleigh Fading envelopes follows from the basic fact that 

the envelope of a complex Gaussian process (with independent real and 

imaginary parts) has a Raleigh distribution. The general method to generate a 

Rayleigh Fading envelope is illustrated in fig (3). 

 

  

 
Figure 5.1     Rayleigh Fading Generation at Baseband 
 

The Spectral Shaping filter is needed to introduce a desired amount of 

correlation into the Gaussian samples that produce the Rayleigh distribution. In 

case of Mobile Communication Systems where Rayleigh fading has to be 

generated for a particular speed of the mobile,the spectral shaping filter takes the 

form of a Doppler Filter with the maximum Doppler spread specified by the 

Mobile Speed (Clarke/Gans Model). 

 

If Ig(n) and Qg(n) represent the in-phase and quadrature phase 

components of the complex Gaussian process (after spectral shaping), the 

Rayleigh fading envelope can be generated as, 

                                                 (5.5)    



 

 5.4.1 Spectral Shaping Filter 
The Spectral Shaping filter is usually specified in terms of its 

Autocorrelation function or Power Spectral density. When a Power Spectral 

Density is specified, the colored Gaussian samples can be generated by passing 

the white Gaussian Noise samples through a filter whose transfer function H(f) 

can be obtained by solving, 

                                                 (5.6) 

Where, Sxx(f) is the power spectral density of the filter. The digital 

implementation of H (f) can be done either using FFT Techniques or FIR/IIR 

filtering depending on the situation and form of H (f) obtained. 

In the given problem, the PSD can be obtained taking the Fourier transform of 

the specified autocorrelation as, 

                                (5.7) 

 

 

Further, the H(f) can be obtained from the power spectral density as, 

                                                               (5.8) 

 

The digital implementation of the above transfer function can be done in a 

plethora of ways. But the best (and the most relevant) method is the IIR 

implementation of the above Filter using AR models. Even then, a choice has to 

be made between IIR filter synthesizing techniques such bilinear, impulse-

invariance, backward/forward di_erence methods etc. 

Since the filter has a simple one-pole type transfer functions, it is much better to 

use impulse invariance rather then other techniques. Proceeding further, the 

impulse response of the digital filter is obtained as, 



 

                             (5.9) 

 

Where T  represents the sampling duration. In our case, because of the slow 

fading assumption, We have to generate one Rayleigh fading envelope sample 

per symbol (i.e., 8000 Samples per second). This works to to a sampling duration 

of T = 0.125ms. Thus we get, 

       

                                                  (5.10) 

This converts to the simple differential equation,  

                                         (5.11) 

5.4.2 Simulated Envelope.  
The simulated Rayleigh fading envelope at baseband is shown in fig (5.2) 

 



 
Figure 5.2 Rayleigh Noise Envelopes 

5.4.3 Fade Power Adjustment.  
Suppose we require a specified average fade power P, Given the 

generated fading samples , we can generate the fading samples with the 

given average fade power P using the transformation, 

                                         ( 5.11) 

5.4.4 Passing a Signal through Rayleigh Fading 
 Let us say we have a Simple Sine wave, The Figure is given below 



 
 
Figure 5.3 Simple Sine wave 
 

After passing this Sine wave, when it goes under some Rayleigh Fading, the 

result is shown in the figure   

 

 



 
 

Figure 5.4 Sine wave after passing through Rayleigh Fading 

 

 



CHAPTER 6 
                    

ADAPTIVE FILTERS 
 
6.1   ADAPTIVE FILTERS 
    The design of a Weiner filter requires a priori information about the statistics of 

the data to be processed. The filter is optimum only when the statistical 

characteristics of the input data match the priori information on which the design 

of the filter is based. When this information is not known completely, however, it 

may not possible to design the wiener filter or else the design may no longer be 

optimum. A straightforward approach that we may use in such situation is the 

“estimate and plug” procedure. This is a two-stage process whereby the filters 

first “estimate” the statistical parameters of the relevant signals and then “plug” 

the results so obtained into a nonrecursive formula for computing the filter 

parameters. For real-time operation, this procedure has the disadvantage of 

requiring excessively elaborated & costly hardware. To mitigate this limitation, we 

may use adaptive filter.  
 

6.4   WIENER FILTER THEORY 
  We will explain the Weiner filter theory using its application in adaptive channel 

equalization. The equalizer considered here is known as the MMSE linear 

equalizer.   

 Let us assume that Weiner filter is a FIR filter with 2K+1 coefficients 

,,,,, 21 KKKK cccc +−+−−                                                    (6.1) 

The input to the filter is the received signal r(n) and the output signal is 

∑
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The filter coefficients are chosen to minimize the mean square value of the 



)(ˆ)()( nsnsn −=ε                                                          (6.3) 

where s(n) is the transmitted symbol and )(ˆ ns  is the its estimate( see figure 6.1).   

Note that after equalization, there will still be residual ISI. On top of that, there is 

an additive Gaussian noise term. The MMSE equalizer minimizes the combined 

residual ISI plus noise power. The non-casuality in the mathematical description 

of the MMSE equalizer translates into a decision delay in the actual 

implementation (see figure 6.1). The delay is due to the filtering with channel filter 

and equalizer filter. 

 

 
 

Figure 6.1: The Weiner filter(C(n)) configuration for equalization  
 

To obtain the filter coefficients of the equalizer filter, we first express all signals 

involved in matrix form. Specifically, let 
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be the received vector at time n and 

],,,,[ 21 KKKK cccc +−+−−=C                                           (6.5) 

be a general transversal (i.e. FIR) equalizer. By substituting for the matrix 

notation into equation 6.2, it is possible to represent the estimated error signal by 

equation 6.6 below. The equalizer output at time n is thus 

)()(ˆ nns CR=                                                      (6.6) 



 and instantaneous squared error of the signal can be found by squaring 

equation 6.6 such that it can be represented as the following equation: 
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where 2σ is the variance of s(n) because s(n) has a zero mean, i.e., 

( )222 )()( xExE −=σ . Also assuming s(n) a bipolar signal (BPSK or QPSK) with 

values ±1 then we can say 2σ =1. Mean square error (MSE),γ , is defined by the 

“expectation” of the squared error, from equation 6.7. Hence the MSE can be 

represented by equation 6.8. 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

T
RR

T
ss

T
RR

T
sRRs

TTTT

TTTT

nnEnnsEnnsE
nnEnnsEnnsEnE

CCUCu
CCUCuCu

CRRCCRRC
CRCRRCCR

+−=

+−−=

+−−=

+−−==

21

1
)()()()()()(1
)()()()()()(1)( 2εγ

        (6.8) 

where 

[ ] T
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T
sR nnsE uRu == )()(                                          (6.9) 

is the 2K+1 length cross correlation vector between s(n) and the received vector 

R(n), and 

   It is clear from this expression that the mean square error γ  is a quadratic 

function of the weight vector C (filter coefficients). That is, when Equation 6.8 is 

expanded, the elements of C will appear in the first and second order only. This 

is valid when the input components and desired response inputs are wide-sense 

stationary stochastic (random) variables . 
 

6.5   PERFORMANCE SURFACE 

  A portion of a typical two-dimensional MSE function is illustrated in figure 6.2. 

The vertical axis represents the mean square error and the two horizontal axes 

represent the values of two filter coefficients. The quadratic error function, or 



performance surface, can be used to determine the optimum weight vector optC  

(or Wiener filter coefficients). With a quadratic performance function there is only 

one global optimum; no local minima exist. The shape of the function would be 

hyper-parabolic if there were more than two weights.  

Many adaptive processes that cause the weight vector to search for the minimum 

of the performance surface do so by the gradient method [11]. The gradient of 

the mean square error of the performance surface, designated∇ , can be 

obtained by differentiating equation 6.8 with respect to each component of the 

weight vector. 
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Figure 6.2: A two dimensional error performance surface 
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   The gradient vector is the tangent of the N-dimensional surface γ  at the point 

optC  When the gradient vector is zero, the surface γ  reaches its lowest value 

and hence the mean square error will be minimized. The point in the N-

dimensional space where this occurs is. Therefore, setting equation 6.13 to zero 

we get 

optRRsR CUu 220 +−=  

1−= RRsRopt UuC                                                    (6.14) 

and corresponding MSE is 
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   This equation is known as the Wiener-Hopf equation in matrix form, and the 

filter given by optC  in equation 6.14 is the Wiener filter. However, in practice it is 

not usual to evaluate. In addition, optC  has to be calculated repeatedly for non-

stationary signals and this can be computationally intensive because it requires 

matrix inversions. But another question is how to determine the values of sRu  and 

RRU  in case of channel equalization. 

6.6    STEEPEST DESCENT ALGORITHM 
   In practice it is not usual to calculate the optimum filter optC  using equation 14 

directly. The problem is that the evaluation of 1−
RRU involves the inversion of a 

matrix of dimension 2K+1 by 2K+1 which is computationally very complex. 

Furthermore, if the channel statistics are non-stationary, which is quite often the 

case, then the calculation has to be undertaken periodically in order to track the 

changing conditions. An alternative method of calculation is therefore the 

steepest descent algorithm. In this method the weights are adjusted iteratively in 

the direction of the gradient. Let C(n) be the estimate of  optC  at discrete-time (or 

iteration index) n. Then based on C(n), we can obtain 

[ ]RRsr nn UCu )(2)( −−=∇                                  (6.25) 



The gradient vector of the error surface γ  at C(n) ; see the equation 6.13 Based 

C(n) and )(n∇ , we obtain the next estimate of optC  according to 
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where µ is the step size of this iterative procedure, and I is an identity matrix of 

2K+1 by 2K+1 . Basically, the method of steepest descent is based on the idea 

that we can reach the global minimum by searching in the opposite direction as 

indicated by the gradient vector (slope) at the current estimate; see the scalar 

case below as an example. 

 
Figure 6.3: Operation of steepest descent algorithm. 

 

6.7 THE LMS ALGORITHM 
   While the steepest descent method is able to determine the optimal equalizer 

coefficients without performing any matrix inversion, its operation is still based on 

the assumption that the channel parameters the correlation vector sRu  and the 

covariance matrix RRU  known to the receiver. Recall that the receiver uses these 

parameters to compute the gradient vector )(n∇  required for updating the the 

equalizer coefficients. In the LMS algorithm, the gradient vector is replaced by its 

estimate. Let us consider the correlation of the received vector R(n) (see 

equation 6.4) with the equalization error 

)()()(ˆ)()( nnsnsnsn CR−=−=ε                                   (6.47) 

for the equalizer C. The result is 
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Now, if we evaluate this correlation vector at C = C(n) , then we obtain 

)(
2
1)()( nn RRsRnR ∇−=−== UCuw CCε                          (6.49) 

where )(n∇  is the gradient vector at the point C = C(n) of the error surface γ . To 

simply put, the updating equation in the steepest descent method can be 

rewritten as 

[ ]TnnEn

nnn

)()()(

)(
2

)()1(

RC

CC

ε

µ

+=

∇−=+
                                    (6.50) 

The LMS algorithm is obtained by removing the average operator in the above 

equation, i.e. 
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   In other word, the LMS algorithm uses a noisy estimate of the true gradient in updating 

the filter coefficients.  



CHAPTER 7 

 

CHANNEL EQUALIZATION 
 
 
7.1   INTRODUCTION 
   Communication channels are susceptible to Intersymbol Interference (ISI). 

Without channel equalization, the utilization of the channel bandwidth becomes 

inefficient. Channel equalization is a process of compensating for the effects 

caused by a band-limited channel, hence enabling higher data rates. 

Equalization describes a set of operations intended to eliminate ISI and the 

effects of multipath propagation in communication channels. One can define an 

equalizer as 

“An equalizer is a device that compensates for unwanted channel effects and 

provides the receiver with a sequence of samples with acceptable levels of ISI”. 

   These disruptive effects are due to the dispersive transmission medium (e.g. 

telephone cables) and the multipath effects in the radio channel. A typical 

communication system is depicted in figure 7.1 where the equalizer is 

incorporated within the receiver while the channel introduces intersymbol 

interference. The transfer function of the equalizer is an estimate of the direct 

inverse of the channel transfer function. To transmit high speed data over a 

bandlimited channel, the frequency response of the channel is usually not known 

with sufficient precision to design an optimum match filter. The equalizer is, 

therefore, designed to be adaptive to the channel variation. The configuration of 

an adaptive linear equalizer is depicted in figure 7.2. Based on the observed 

channel output, an adaptive algorithm recursively updates the equalizer to 

reconstruct the output signal. 



 
Figure 7.1: A typical communication system. 

 

 
Figure 7.2: A simple linear channel equalizer configuration. 

 

 Equalization does not mean that all the channel distortions are completely 

removed but its job is to provide the receiver enough information which is 

necessary to make a decision.  
 

7.2   ISI DUE TO MULTIPATH EFFECTS  
   In a wireless radio channel, the ISI is caused by the multipath effects when the 

multipath spread as explained previously is greater than the symbol interval.   

Multipath effects describe the situation in which there are several propagation 

paths from transmitter to receiver. Most commonly, this results when there are 

reflected signals detected at the receiver following the direct path. The multipath 

phenomenon can be modeled by an FIR system (see chapter 3). The center tap 

represents the direct path, while the succeeding tap weights represent the 

amplitudes, delays, and phases of the reflected paths. For simple examples, see 

the two cases described in Figure 7.3 and Figure 7.4. 
  Figure 7.3(a) shows the time response of an ideal transmission path, which is a 

δ function. Such a channel exerts no spectral distortion or delayed signals. Figure 

7.3(b) shows the spectral response of such a system. Note that the frequency 

magnitude response is perfectly flat, as indicated by the solid horizontal line. 



 
 

Figure 7.3: (a) Impulse response and (b) frequency response of ideal single path channel 
 

Figure 7.4(a) shows the time response of a system that contains a single 

multipath channel [8]. The first nonzero sample of the response represents the 

direct path, while the second represents a delayed path to the receiver. In this 

instance, the pulses are identical in amplitude and phase and are separated by 

ten sample intervals.  

 
Figure 7.4: (a) Time response and (b) frequency response of two path wireless channel 

 

Notice in Figure 7.4(b) that the magnitude response exhibits t0/2 nulls, where t0 

represents the sample delay. Even though you are effectively adding two 



identical flat spectra (as shown in Figure 7.3(b)) the time delay results in a phase 

delay in the spectral domain. This phase delay results in nulls where the two 

signals are of equal amplitude but opposite phase. Obviously, multipath effects 

can have major effects on the system spectral response, thereby providing 

another justification for channel equalization 

  Now it is time to represent it mathematically what we all said so far. Suppose 

that a channel model (see figure 7.5) is used to describe the distortion effect and 

it is given as a sum of weighted time delayed discrete-time channel impulse 

responses, H(z): 
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  The coefficients hi represent the strength of the dispersion and the multipath 

delay. For FIR modelled channel, the output from the channel can be written as: 
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Where y (k) is the input to the equalizer (received signal after passing through 

channel) which is simply the convolution of hi and u (k). u(k) is the transmitted 

sequence, hi  is the channel impulse response, n(k) represents additive white 

Gaussian noise (AWGN) added to the channel and L represents the length of the 

channel impulse response. Equation (7.2) shows that the transmitted symbol u (k) 

is affected by the weighted delay symbols of u(k-i), thus causing intersymbol 

interference. 

 

 

Figure 7.5: A multipath wireless channel model.  



7.3   COMMUNICATION SYSTEM MODEL WITH EQUALIZER 
 

7.3.1 Continuous-time Model  
   For our communication system which is employing a linear modulation, QPSK, 

through a dispersive channel, the whole system can be described the conceptual 

model in Figure 7.7, in which the sequence of information symbols is denoted by 

}{ kI and )(),( fHfH CT and )( fH R are the transfer functions of the transmission 

(root raised cosine pulse-shaping) filter, the dispersive channel and the receiving 

filter, respectively. The Nyquist condition for no ISI developed in previous chapter 

can be easily generalized to the above communication system. Letting 

)()()()( fHfHfHfX RCT=  the condition for no ISI is that the folded 

spectrum )( fX , is constant for all frequencies, i.e. 
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Figure 7.7: Continuous-time communication model over a multipath dispersive channel 

 

One method to achieve the Nyquist condition is to fix the receiving filter to be the 

matched filter, i.e. set )()()( fHfHfH CTR
∗∗= , and choose the transmission 

filter so that (7.5) is satisfied. This is the Nyquist pulse design method described 

in previous chapter. The major disadvantage of this pulse shaping method is that 

it is in general difficult to construct the appropriate analog filters for )( fHT  and 

)( fH R in practice. Moreover, we have to know the channel response )( fH C in 

advance to construct the transmission and receiving filters. 

   An alternative method is to fix the transmission filter4 and choose the receiving 

filter )( fH R  to satisfy the condition in (7.3). As for the previous method, it is also 

difficult to build the appropriate analog filter )( fH R  to eliminate ISI. However, 



notice that what we want eventually are the samples at intervals T at the receiver. 

Therefore, we may choose to build a simpler (practical) filter )( fH R , take 

samples at intervals T, and put a digital filter, called equalizer, at the output to 

eliminate ISI as shown below in Figure 7.7. This approach to remove ISI is 

usually known as equalization. The main advantage of this approach is that a 

digital filter is easy to build and is easy to alter for different equalization schemes, 

as well as to fit different channel conditions. 

 
Figure 7.7: Communication system with equalizer 

 

7.3.2   Equivalent discrete-time model 
  Our goal is to design the equalizer which can remove (or suppress) ISI. To do 

so, we translate the continuous-time communication system model in Figure 7.7 

to an equivalent discrete-time model that is easier to work with. The following 

steps describe the translation process: 

• Instead of considering AWGN being added before the receiving filter )( fH R , 

we can consider an equivalent colored Gaussian noise being added after )( fH R  

when we analyze the system. The equivalent colored noise is the output of 

)( fH R  due to AWGN. The resulting model is shown in Figure 7.8. 

• We input a bit or a symbol to the communication system every T seconds, 

and get back a sample at the output of the sampler every T seconds. Therefore, 

we can represent the communication system in Figure 7.8 from the information 

source to the sampler as a digital filter. 
 

 
 

Figure 7.8: Equivalent communication system with colored Gaussian noise 



Since )(),( fHfH CT and )( fH R  are LTI filters, they can be combined and 

represented by an equivalent digital LTI filter. Denote its transfer function by H(z) 

and its impulse response by ∞
−∞=kkh }{ . The result is the discrete time-linear filter 

model shown in Figure 7.9, in which the output sequence }{ kI ′  is given by 
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In general, hj ≠ 0 for some j ≠ 0. Therefore, ISI is present. Notice that the noise sequence 

}{ kn consists of samples of the colored Gaussian noise (AWGN filtered by )( fH R ), and 

is not white in general. 

 
Figure 7.9: Equivalent discrete-time communication system model with colored noise 

 

• Usually, the equalizer consists of two parts, namely, a noise-whitening digital 

filter )(zHW  and an equalizing circuit that equalizes the noise-whitened output as 

shown in Figure 7.9. The effect of )(zHW  is to “whiten” the noise sequence so 

that the noise samples are uncorrelated. Notice that )(zHW  depends only 

on )( fH R , and can be determined a prior according to our choice of )( fH R  . At 

the output of )(zHW , the noise sequence is white. Therefore, equivalently, we 

can consider the equivalent discrete-time model shown in Figure 7.11, in which 

}{ kn  is an AWGN sequence. 

 
 

Figure 7.10: Typical equalizer 



• Let )()()( zHzHzG W= . The communication system from the information 

source to the output of the noise whitening filter can now be represented by the 

discrete-time white-noise linear filter model in Figure 7.12. The output sequence 

}~{ kI  is given by: 
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Where }{ kg  is the impulse response corresponding to the transfer function G(z), 

and }{ kn  is an AWGN sequence. We will work with this discrete-time model in all 

the following sections. 
 

 
Figure 7.11: Equivalent discrete-time communication system model with white noise 

 

 
 

 
Figure 7.12: Equivalent discrete-time white-noise linear filter model 

 

  Finally, the equalizing circuit (we simply call it the equalizer from now on) 

attempts to remove ISI from the output of G(z). The focus of our coming 

discussion is the design of this equalizer. Suppose that the equalizer is also an 

LTI filter with transfer function )(zH E  and corresponding impulse response }{ Ejh . 

Then the output of the equalizer is given by 

∑ −=
j

Ejjkk hII ~ˆ                                                     (7.6) 



Ideally kÎ contains only contributions from the current symbol Ik and the AWGN 

sequence with small variance. 

 

7.4 CLASSIFICATION OF EQUALIZERS 
   Equalizers are classified into two main classes. Linear Equalizers Non-linear 

Equalizers 

Linear equalizers (LE) only have feedback from linear devices and can be 

implemented as a simple FIR filter (transversal filter)also called linear transversal 

equalizer (LTE). They are easy to implement cheap, suboptimal performance, 

high BER they have problem like enhances noise and bad for channels with 

spectral nulls as we will see shortly. They can also be implemented as lattice 

filter to achieve numerical stability and fast convergence but they are more 

complicated to implement. 

 Non-linear equalizers (NLE) have feedback from non-linear devices (i.e. 

quantizer) and they have better performance than linear equalizers like fine with 

spectral nulls and also fine with large distortion.  

   Decision Feedback Equalizers (DFE) are non linear equalizers. They are more 

complex than a linear transversal equalizer. They have both feed forward and 

feedback filters. They are cheap, better performance than LTE and they can 

equalize severely distorted channels & handle spectral nulls. 

  Maximum Likelihood Symbol Detection (MLSD) is also included in the class of 

non linear equalizers. They have optimal performance at the cost of high cost & 

exponential computational complexity. They use trellis approach with probability 

methods and Viterbi algorithm. 

  Maximum Likelihood Sequence Estimation (MLSE) is another category of non 

linear equalizers. Like MLSD they also have optimal performance. They are 

different from MLSD because ML applied to sequences rather than symbols. 

They are often too computationally complex to implement in a mobile receiver. 

  In figure 7.13 types of equalizers, their structures and the algorithm for learning 

channel environment is given. 

 



 
Figure 7.13: Classification of equalizers 

  

  Non-linear equalization is important in providing optimum performance for ill-

conditioned channels that non-linear techniques require more computation and 

controls. However, in order the study the gradient descent-based adaptive 

algorithms’ performance, the linear equalizer is more appropriate.  Table 7.1 also 

gives some performance, computation complexity and implementation cost 

measures of the equalizers. 
  

Table 7.1: Cost, performance and complexity analysis of equalizers 
 

Equalization System Complexity Cost Performance 

Linear Transversal Equalizer Low Cheap Suboptimal 

Decision Feedback Equalizer Medium Average Suboptimal 

Maximum Likelihood Sequenc  

Estimation 
High High Optimal 

Maximum Likelihood 

Symbol Detection 
High High Optimal 

 

 7.5   MMSE EQUALIZER 
 The zero-forcing equalizer, although removes ISI, may not give the best error 

performance for the communication system because it does not take into account 

noises in the system. A different equalizer that takes noises into account is the 

minimum mean square error (MMSE) equalizer. It is based on the mean square 



error (MSE) criterion.   Before going into the mathematics of MMSE we want to 

clear that the detail derivation for minimizing the MSE and reaching the Weiner 

solution can be found from the previous chapter on adaptive filters. Here only the 

necessary steps are repeated.     

   Without knowing the values of the information symbols kI  beforehand, we 

model each symbol kI  as a random variable. Assume that the information 

sequence }{ kI  is WSS. We choose a linear equalizer )(zH E  to minimize the 

MSE between the original information symbols kI  and the output of the 

equalizer kÎ : 
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   Let us employ the FIR filter of order 2L+1 shown in Figure 7.14 as the 

equalizer. We note that a delay of L symbols is incurred at the output of the FIR 

filter. Then 
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Figure 7.14: FIR Filter as a MMSE Equalizer 



We want to minimize MSE by suitable choices of LELE hh ,, ,,− . Differentiating 

with respect to each jEh ,  and setting the result to zero, we get 

0)]~(~[ =− E
T
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Rearranging we get 

dhR =E                                                         (7.12) 

Where 
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  If R and d are available, then the MMSE equalizer can be found by solving the 

linear matrix equation 7.12. It can be shown that the signal-to-noise ratio at the 

output of the MMSE equalizer is better than that of the zero-forcing equalizer. 

  The linear MMSE equalizer can also be found iteratively. First, notice that the 

MSE is a quadratic function of equalizer filter taps hE. The gradient of the MSE 

with respect to hE gives the direction to change hE for the largest increase of the 

MSE. In our notation, the gradient is )(2 ERhd −− . To decrease the MSE, we can 

update hE in the direction opposite to the gradient. This is the steepest descent 

algorithm: At the kth step, the vector hE(k) is updated as 

))1(()1()( −−+−= kkk EEE Rhdhh µ                                    (7.15) 

where μ is a small positive constant that controls the rate of convergence to the 

optimal solution. Once again we are repeating that all this mathematics is done in 

the previous chapter. 

  In many applications, we do not know R and d in advance. However, the 

transmitter can transmit a training sequence that is known a priori by the 

receiver. With a training sequence, the receiver can estimate R and d. 

Alternatively, with a training sequence, we can replace R and d at each step in 

the steepest descent algorithm by the rough estimates T
kk II ~~ and kkI I~~ , 

respectively. The algorithm becomes: 

kE
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This is a stochastic steepest descent algorithm called the least mean square 

(LMS) algorithm.  

  The beauty of the approach is that the only parameter to be adjusted is the 

adaptation step size μ. Through an iterative process, explained above, all filter 

tap weights are adjusted during each sample period in the training sequence. 

Eventually, the filter will reach a configuration that minimizes the mean square 

error between the equalized signal and the stored reference. As might be 

expected, the choice of μ involves a tradeoff between rapid convergence and 

residual steady-state error. A too-large setting for μ can result in a system that 

converges rapidly on start-up, but then chops around the optimal coefficient 

settings at steady state.  

  The LMS equalizer can also be shown to have better noise performance than 

the ZFE. Heuristically, the ZFE calculates coefficients based upon the received 

samples of one training signal. Since the captured data will always contain some 

noise, the calculated coefficients will be noisy (noise in / noise out). On the other 

hand, the LMS algorithm gradually adapts a filter based on many cycles of the 

training signal. If the noise is zero mean and is averaged over time, its effect will 

be minimized (noise integrates to 0).  
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