

Chapter Page

Chapter 1 INTORDUCTION

Chapter 2 CHANNEL CODING & DECODING (part 1)
 2.1 INTRODUCTION
 2.2 CONVOLUTIONAL CODING
 2.3 DESCRIPTION OF ALGORITHMS
 2.3.1 Convolutional Encoding of Data
 2.3.2 Mapping the channel symbols to signal levels
 2.3.3 Adding Noise to Transmitted Signal
 2.3.4 Performing Veterbi Decoding

Chapter 3 CHANNEL CODING & DECODING (part 2)
 3.1 INTRODUCTION
 3.2 TURBOENCODER
 3.2.1 Turbo code system model

3.2.2 General Turbo encoder
 3.2.2.1 RSC Encoder

 3.2.2.2 Interleaver
 3.2.2.3 Trellis Termination
 3.2.2.4 Output puncturing
 3.3 INTERLEAVERS FOR TURBO ENCODER
 3.4 TURBO DECODING ALGORITHM UNDER AWGN CHANNEL

Chapter 4 MODULATION, MATCH FILTERING AND PULSE SHAPING

 4.1 COMPLEX ENVELOP REPRESENTATION
 4.1.2 Spectrum of Analytic and Baseband-Equivalent Signals
 4.1.2 Generation of the baseband equivalent

 4.2 DIGITAL BANDPASS MODULATION
 4.2.1 Phase Shift Keying
 4.2.2 QPSK Transmitter
 4.2.3 QPSK Detection

 4.3 DETECTION IN ADDITIVE WHITE GAUSSIAN NOISE (AWGN)
 4.3.1 Additive White Gaussian Noise
 4.3.2 SNR Maximization with a Matched Filter

 4.4 INTERSYMBOL INTERFERENCE AND PULSE SHAPING
 4.5 DISCRETE TIME MODEL OF COMMUNICATION SYSTEM
 4.6 SIMULATION RESULTS

 Chapter5 WIRELESS CHANNELS MODELING
 5.1 SMALL SCALE MULIPATH PROPAGATION

 5.1.1 Factors effecting small scale fading
 5.1.1.1 Multipath Propagation

 5.1.1.2 Speed of mobile
 5.1.1.3 Speed of surroundings objects
 5.1.1.4 The transmission bandwidth of the signal

 5.2 PARAMETERS OF MOBILE MULITIPATH CHANNELS
 5.2.1 Time and frequency dispersion parameters

 5.2.1.1 Delay spread
 5.2.1.2 Coherence bandwidth
 5.2.1.3 Doppler Spread
 5.2.1.4 Coherence Time

 5.3 TYPES OF SMALL SCALE FADING
 5.3.1 Fading Effects due to multipath Time Delay Spread
 5.3.1.1 Flat Fading
 5.3.1.2 Frequency Selective Fading
 5.3.2 Fading Effects Due to Multipath Time Doppler Spread
 5.3.2.1 Fast Fading
 5.3.2.2 Slow Fading
 5.4 SIMULATION MODEL FOR RAYLEIGH PROCESS

 5.4.1 Spectral Shaping Filter
 5.4.2 Simulated Envelope
 5.4.3 Fade Power Adjustment
 5.4.4 Passing a Signal through Rayleigh Fading

Chapter 6 ADAPTIVE FILTERS

 6.1 INTRODUCTI
 6.2 LINEAR OPTIMUM FILTERS
 6.3 ADAPTIVE FILTERS
 6.4 WIENER FILTER THEORY
 6.5 PERFORMANCE SURFACE
 6.6 STEEPEST DESCENT ALGORITHM

 5.6.1 A simple choice for μ
 6.7 THE LMS ALGORITHM
 6.8 SIMULATION RESULTS

 Chapter 7 EQUALIZATION

 7.1 INTRODUCTION
 7.2 ISI DUE TO MULTIPATH EFFECTS
 7.3 COMMUNICATION SYSTEM MODEL WITH EQUALIZER

 7.3.1 Continuous-time Model
 7.3.2 Equivalent discrete-time model

 7.4 CLASSIFICATION OF EQUALIZERS
 7.5 MMSE EQUALIZER

 7.8.1 Linear FSE
 7.8.2 Decision Feedback Equalizer

Chapter 8 TRACKING OF TIME VARYING SYTEMS BY LMS
 ALGORITHM
 8.1 INTRODUCTION
 8.2 CRITERIA FOR TRACKING ASSESSMENT
 8.3 THE PROBLEM SPECIFICATION
 8.4 PROPOSED SOLUTION
 8.5 SIMULATED RESULTS

Chapter 1

INTRODUCTION

The purpose of forward error correction (FEC) is to improve the

capacity of a channel by adding some carefully designed redundant

information to the data being transmitted through the channel. The

process of adding this redundant information is known as channel

coding.

Error corrective coding is used to enhance the efficiency and

accuracy of information transmitted. In a communication transmission

system, data is transferred from a transmitter to a receiver across a

physical medium of transmission or channel. The channel is generally

affected by noise or fading which introduces errors in the data being

transferred. Error-correcting code is a signal processing technique used

for correcting errors introduced in the channel. It is done by encoding the

data to be transmitted and introducing redundancy in it such that the

decoder can later reconstruct the data transmitted using the redundant

information. Figure 2.1 is a block diagram of a simplified model of a

coded system.

The information source is a digital source. If it is not, it will be

converted to digital. The digital source output u is sent to an encoder to

generate encoder output x which is modulated and then transmitted over

the physical channel. The decoder will make a best guess u~ of the

original information u based on the received signal y which is distorted

by the channel.

Figure 1.1 Simplified model of coded system

A major concern in coding technique is the control of errors so that

reliable communications can be obtained, i.e., u~ is as close to u as

possible. There are many coding schemes available. Turbo code is the

most exciting and potentially important development in the coding theory

in recent years. This powerful code is capable of achieving near

Shannon capacity performance [1].

 Our Design
Soft input soft output detector and equalizer are used to improve the error
correcting capability of communication systems

CHAPTER 2

 Channel Coding (Part 1)

2.1 Introduction
The purpose of forward error correction (FEC) is to improve the

capacity of a channel by adding some carefully designed redundant

information to the data being transmitted through the channel. The

process of adding this redundant information is known as channel

coding.

Error corrective coding is used to enhance the efficiency and

accuracy of information transmitted. In a communication transmission

system, data is transferred from a transmitter to a receiver across a

physical medium of transmission or channel. The channel is generally

affected by noise or fading which introduces errors in the data being

transferred. Error-correcting code is a signal processing technique used

for correcting errors introduced in the channel. It is done by encoding the

data to be transmitted and introducing redundancy in it such that the

decoder can later reconstruct the data transmitted using the redundant

information. Figure 2.1 is a block diagram of a simplified model of a

coded system.

The information source is a digital source. If it is not, it will be

converted to digital. The digital source output u is sent to an encoder to

generate encoder output x which is modulated and then transmitted over

the physical channel. The decoder will make a best guess u~ of the

original information u based on the received signal y which is distorted

by the channel.

u x

y u~

Digital
source

Encoder

Coding
channel

Decoder Destination

Figure 2.1 Simplified model of a coded system

A major concern in coding technique is the control of errors so that

reliable communications can be obtained, i.e., u~ is as close to u as

possible. There are many coding schemes available. Turbo code is the

most exciting and potentially important development in the coding theory

in recent years. This powerful code is capable of achieving near

Shannon capacity performance.

In the past several years, convolutional coding with Viterbi

decoding has begun to be supplemented in the geostationary satellite

communication arena with Reed-Solomon coding. The two coding

techniques are usually implemented as serially concatenated block and

convolutional coding. Typically, the information to be transmitted is first

encoded with the Reed-Solomon code, then with the convolutional code.

On the receiving end, Viterbi decoding is performed first, followed by

Reed-Solomon decoding. This is the technique that is used in most if not

all of the direct-broadcast satellite (DBS) systems, and in several of the

newer VSAT products as well. At least, that's what the vendors are

advertising.

Recently (1993) a new parallel-concatenated convolutional coding

technique known as turbo coding has emerged. Initial hardware encoder

and decoder implementations of turbo coding have already appeared on

the market. This technique achieves substantial improvements in

performance over concatenated Viterbi and Reed-Solomon coding. A

variant in which the codes are product codes has also been developed,

along with hardware implementations

2.2 Convolutional Coding

Convolutional coding and block coding are the two major forms of

channel coding. Convolutional codes operate on serial data, one or a

few bits at a time. Block codes operate on relatively large (typically, up to

a couple of hundred bytes) message blocks. There are a variety of

useful convolutional and block codes, and a variety of algorithms for

decoding the received coded information sequences to recover the

original data. Convolutional encoding with Viterbi decoding is a FEC

technique that is particularly suited to a channel in which the transmitted

signal is corrupted mainly by additive white gaussian noise (AWGN).

AWGN channel is a noise whose voltage distribution over time has

characteristics that can be described using a Gaussian, or normal,

statistical distribution, i.e. a bell curve. This voltage distribution has zero

mean and a standard deviation that is a function of the signal-to-noise

ratio (SNR) of the received signal. Let's assume for the moment that the

received signal level is fixed. Then if the SNR is high, the standard

deviation of the noise is small, and vice-versa. In digital communications,

SNR is usually measured in terms of Eb/N0, which stands for energy per

bit divided by the one-sided noise density.

Let's take a moment to look at a couple of examples. Suppose that

we have a system where a '1' channel bit is transmitted as a voltage of -

1V, and a '0' channel bit is transmitted as a voltage of +1V. This is

called bipolar non-return-to-zero (bipolar NRZ) signaling. It is also called

binary "antipodal" (which means the signaling states are exact opposites

of each other) signaling. The receiver comprises a comparator that

decides the received channel bit is a '1' if its voltage is less than 0V, and

a '0' if its voltage is greater than or equal to 0V. One would want to

sample the output of the comparator in the middle of each data bit

interval. We will see the behavior of our example system when Eb/N0 is

high, and then when the Eb/N0 is lower.

The following figure shows the results of a channel simulation

where one million (1 x 106) channel bits are transmitted through an

AWGN channel with an Eb/N0 level of 20 dB (i.e. the signal voltage is ten

times the rms noise voltage). In this simulation, a '1' channel bit is

transmitted at a level of -1V, and a '0' channel bit is transmitted at a level

of +1V. The x axis of this figure corresponds to the received signal

voltages, and the y axis represents the number of times each voltage

level was received:

Figure 2.2 AWGN Channel Simulations without channel coding

Our simple receiver detects a received channel bit as a '1' if its

voltage is less than 0V, and as a '0' if its voltage is greater than or equal

to 0V. Such a receiver would have little difficulty correctly receiving a

signal as depicted in the figure above. Very few (if any) channel bit

reception errors would occur. In this example simulation with the Eb/N0

set at 20 dB, a transmitted '0' was never received as a '1', and a

transmitted '1' was never received as a '0'.

The next figure shows the results of a similar channel simulation

when 1 x 106 channel bits are transmitted through an AWGN channel

where the Eb/N0 level has decreased to 6 dB (i.e. the signal voltage is

two times the rms noise voltage):

Figure 2.3 AWGN Channel Simulations on 6dbs

Now right-hand side of the curve in the figure above crosses 0V,

and left-hand side of the curve also crosses 0V. The points on the red

curve that are above 0V represent events where a channel bit that was

transmitted as a one (-1V) was received as a zero. The points on the

right curve that are below 0V represent events where a channel bit that

was transmitted as a zero (+1V) was received as a one. These events

correspond to channel bit reception errors in our simple receiver. In this

example simulation with the Eb/N0 set at 6 dB, a transmitted '0' was

received as a '1' 1,147 times, and a transmitted '1' was received as a '0'

1,207 times, corresponding to a bit error rate (BER) of about 0.235%.

Which is not good, especially if you’re trying to transmit highly

compressed data, such as digital television? Using convolutional coding

with Viterbi decoding, you can achieve a BER of better than 1 x 10-7 at

the same Eb/N0, 6 dB.

Convolutional codes are usually described using two parameters:

the code rate and the constraint length. The code rate, k/n, is expressed

as a ratio of the number of bits into the convolutional encoder (k) to the

number of channel symbols output by the convolutional encoder (n) in a

given encoder cycle. The constraint length parameter, K, denotes the

"length" of the convolutional encoder, i.e. how many k-bit stages are

available to feed the combinatorial logic that produces the output

symbols. Closely related to K is the parameter m, which indicates how

many encoder cycles an input bit is retained and used for encoding after

it first appears at the input to the convolutional encoder. The m

parameter can be thought of as the memory length of the encoder.

Viterbi decoding is one of two types of decoding algorithms used with

convolutional encoding-the other type is sequential decoding. Sequential

decoding has the advantage that it can perform very well with long-

constraint-length convolutional codes, but it has a variable decoding

time.

 Viterbi decoding has the advantage that it has a fixed decoding

time. It is well suited to hardware decoder implementation. But its

computational requirements grow exponentially as a function of the

constraint length, so it is usually limited in practice to constraint lengths

of K = 9 or less.

For years, convolutional coding with Viterbi decoding has been the

predominant FEC technique used in space communications, particularly

in geostationary satellite communication networks, such as VSAT (very

small aperture terminal) networks. Most common variant used in VSAT

networks is rate 1/2 convolutional coding using a code with a constraint

length K = 7. With this code, you can transmit binary or quaternary

phase-shift-keyed (BPSK or QPSK) signals with at least 5 dB less power

than you'd need without it. That is a reduction in Watts of more than a

factor of three and is very useful in reducing transmitter and/or antenna

cost or permitting increased data rates given the same transmitter power

and antenna sizes.

There is a tradeoff-the same data rate with rate 1/2 convolutional

coding takes twice the bandwidth of the same signal without it, given that

the modulation technique is the same. That's because with rate 1/2

convolutional encoding, you transmit two channel symbols per data bit.

However, if you think of the tradeoff as a 5 dB power savings for a 3 dB

bandwidth expansion, you can see that you come out ahead.

Remember: if the modulation technique stays the same, the bandwidth

expansion factor of a convolutional code is simply n/k.

Many radio channels are AWGN channels, but many, particularly

terrestrial radio channels also have other impairments, such as

multipath, selective fading, interference, and atmospheric (lightning)

noise. Transmitters and receivers can add spurious signals and phase

noise to the desired signal as well. Although convolutional coding with

Viterbi decoding might be useful in dealing with those other problems, it

may not be the best technique.

2.3 Description of the Algorithms

2.3.1 Convolutionally Encoding the Data

Convolutionally encoding the data is accomplished using a shift

register and associated combinatorial logic that performs modulo-two

addition. Every time the active edge of the clock occurs, the input to the

flip-flop is clocked through to the output, and thus the data are shifted

over one stage. The combinatorial logic is often in the form of cascaded

exclusive-or gates. As a reminder, exclusive-or gates are two-input, one-

output gates often represented by the logic symbol shown below,

Figure 2.4 x-or Gate

 The truth table implemented by this gate is given below...

Input
A

Input
B

Output

(A xor B)

0 0 0

0 1 1

1 0 1

1 1 0

 Table 2.1 x-or Truth Table

Shown below is the convolutional encoder of rate 1/2, K = 3, m = 2

Figure 2.5 Convolutional encoder

In this encoder, data bits are provided at a rate of k bits per second.

Channel symbols are output at a rate of n = 2k symbols per second. The

input bit is stable during the encoder cycle. The encoder cycle starts

when an input clock edge occurs. When the input clock edge occurs, the

output of the left-hand flip-flop is clocked into the right-hand flip-flop, the

previous input bit is clocked into the left-hand flip-flop, and a new input

bit becomes available. Then the outputs of the upper and lower modulo-

two adders become stable. The output selector (SEL A/B block) cycles

through two states-in the first state, it selects and outputs the output of

the upper modulo-two adder; in the second state, it selects and outputs

the output of the lower modulo-two adder.

The encoder shown above encodes the K = 3, (7, 5) convolutional

code. The octal numbers 7 and 5 represent the code generator

polynomials, which when read in binary (1112 and 1012) correspond to

the shift register connections to the upper and lower modulo-two adders,

respectively. This code has been determined to be the "best" code for

rate 1/2, K = 3. It is the code I will use for the remaining discussion and

examples, for reasons that will become readily apparent when we get

into the Viterbi decoder algorithm.

Let's look at an example input data stream, and the corresponding

output data stream:

Let the input sequence be 0101110010100012.

Assume that the outputs of both of the flip-flops in the shift register

are initially cleared, i.e. their outputs are zeroes. The first clock cycle

makes the first input bit, a zero, available to the encoder. The flip-flop

outputs are both zeroes. The inputs to the modulo-two adders are all

zeroes, so the output of the encoder is 002.

The second clock cycle makes the second input bit available to the

encoder. The left-hand flip-flop clocks in the previous bit, which was a

zero, and the right-hand flip-flop clocks in the zero output by the left-

hand flip-flop. The inputs to the top modulo-two adder are 1002, so the

output is a one. The inputs to the bottom modulo-two adder are 102, so

the output is also a one. So the encoder outputs 112 for the channel

symbols.

The third clock cycle makes the third input bit, a zero, available to

the encoder. The left-hand flip-flop clocks in the previous bit, which was

a one, and the right-hand flip-flop clocks in the zero from two bit-times

ago. The inputs to the top modulo-two adder are 0102, so the output is a

one. The inputs to the bottom modulo-two adder are 002, so the output is

zero. So the encoder outputs 102 for the channel symbols.

And so on. The timing diagram shown below illustrates the process:

 Figure 2.6 Clock cycle examples

After all of the inputs have been presented to the encoder, the output

sequence will be:

00 11 10 00 01 10 01 11 11 10 00 10 11 00 112.

Notice that encoder outputs are paired the first bit in each pair is

the output of the upper modulo-two adder; the second bit in each pair is

the output of the lower modulo-two adder.

You can see from the structure of the rate 1/2 K = 3 convolutional

encoder and from the example given above that each input bit has an

effect on three successive pairs of output symbols. That is an extremely

important point and that is what gives the convolutional code its error-

correcting power. The reason why will become evident when we get into

the Viterbi decoder algorithm.

Now if we are only going to send the 15 data bits given above, in

order for the last bit to affect three pairs of output symbols, we need to

output two more pairs of symbols. This is accomplished in our example

encoder by clocking the convolutional encoder flip-flops two (= m) more

times, while holding the input at zero. This is called "flushing" the

encoder, and results in two more pairs of output symbols. The final

binary output of the encoder is thus 00 11 10 00 01 10 01 11 11 10 00

10 11 00 11 10 112. If we don't perform the flushing operation, the last m

bits of the message have less error-correction capability than the first

through (m - 1)th bits had. This is a pretty important thing to remember if

you're going to use this FEC technique in a burst-mode environment.

So's the step of clearing the shift register at the beginning of each burst.

The encoder must start in a known state and end in a known state for

the decoder to be able to reconstruct the input data sequence properly.

Now, let's look at the encoder from another perspective. You can

think of the encoder as a simple state machine. The example encoder

has two bits of memory, so there are four possible states. Let's give the

left-hand flip-flop a binary weight of 21, and the right-hand flip-flop a

binary weight of 20. Initially, the encoder is in the all-zeroes state. If the

first input bit is a zero, the encoder stays in the all zeroes state at the

next clock edge. But if the input bit is a one, the encoder transitions to

the 102 state at the next clock edge. Then, if the next input bit is zero,

the encoder transitions to the 012 state, otherwise, it transitions to the

112 state. The following table gives the next state given the current state

and the input, with the states given in binary:

 Next State, if

Current
State

Input = 0: Input = 1:

00 00 10

01 00 10

10 01 11

11 01 11

Table 2.2 Next state table

The above table is often called a state transition table. We'll refer to

it as the next state table. Now let us look at a table that lists the channel

output symbols, given the current state and the input data, which we'll

refer to as the output table:

 Output Symbols, if

Current
State

Input = 0: Input = 1:

00 00 11

01 11 00

10 10 01

11 01 10

Table 2.3 out put table

You should now see that with these two tables, you can completely

describe the behavior of the example rate 1/2, K = 3 convolutional

encoder. Note that both of these tables have 2(K - 1) rows, and 2k

columns, where K is the constraint length and k is the number of bits

input to the encoder for each cycle. These two tables will come in handy

when we start discussing the Viterbi decoder algorithm.

2.3.2 Mapping the Channel Symbols to Signal Levels

Mapping the one/zero output of the convolutional encoder onto an

antipodal baseband signaling scheme is simply a matter of translating

zeroes to +1s and ones to -1s. This can be accomplished by performing

the operation y = 1 - 2x on each convolutional encoder output symbol.

2.3.3 Adding Noise to the Transmitted Symbols

Adding noise to the transmitted channel symbols produced by the

convolutional encoder involves generating Gaussian random numbers,

scaling the numbers according to the desired energy per symbol to noise

density ratio, Es/N 0, and adding the scaled Gaussian random numbers

to the channel symbol values.

For the uncoded channel, Es/N0 = Eb/N 0, since there is one

channel symbol per bit. However, for the coded channel, Es/N0 = Eb/N0

+ 10log10(k/n). For example, for rate 1/2 coding, E s/N0 = Eb/N0 +

10log10(1/2) = Eb/N0 - 3.01 dB. Similarly, for rate 2/3 coding, Es/N0 =

Eb/N0 + 10log10 (2/3) = Eb/N0 - 1.76 dB.

The Gaussian random number generator is the only interesting part

of this task. C only provides a uniform random number generator, rand().

In order to obtain Gaussian random numbers, we take advantage of

relationships between uniform, Rayleigh, and Gaussian distributions:

Given a uniform random variable U, a Rayleigh random variable R

can be obtained by:

 (2.1)

where is the variance of the Rayleigh random variable, and given R

and a second uniform random variable V, two Gaussian random

variables G and H can be obtained by

 G = R cos V and H = R sin V. (2.2)

In the AWGN channel, the signal is corrupted by additive noise,

n(t), which has the power spectrum No/2 watts/Hz. The variance of

this noise is equal to . If we set the energy per symbol Es equal to

1, then . So .

2.3.4 Performing Viterbi Decoding

The single most important concept to aid in understanding the

Viterbi algorithm is the trellis diagram. The figure below shows the trellis

diagram for our example rate 1/2 K = 3 convolutional encoder, for a 15-

bit message:

Figure 2.7 trellis diagram

The four possible states of the encoder are depicted as four rows of

horizontal dots. There is one column of four dots for the initial state of

the encoder and one for each time instant during the message. For a 15-

bit message with two encoder memory flushing bits, there are 17 time

instants in addition to t = 0, which represents the initial condition of the

encoder. The solid lines connecting dots in the diagram represent state

transitions when the input bit is a one. The dotted lines represent state

transitions when the input bit is a zero. Notice the correspondence

between the arrows in the trellis diagram and the state transition table

discussed above. Also notice that since the initial condition of the

encoder is State 002, and the two memory flushing bits are zeroes, the

arrows start out at State 002 and end up at the same state.

The following diagram shows the states of the trellis that are

actually reached during the encoding of our example 15-bit message:

Figure 2.8 states of trellis

The encoder input bits and output symbols are shown at the bottom

of the diagram. Notice the correspondence between the encoder output

symbols and the output table discussed above. Let's look at that in more

detail, using the expanded version of the transition between one time

instant to the next shown below:

Figure 2.9 state transition and outputs of encoder

The two-bit numbers labeling the lines are the corresponding

convolutional encoder channel symbol outputs. Remember that dotted

lines represent cases where the encoder input is a zero, and solid lines

represent cases where the encoder input is a one. (In the figure above,

the two-bit binary numbers labeling dotted lines are on the left, and the

two-bit binary numbers labeling solid lines are on the right.)

We have used hard-decision symbol inputs to keep things simple.

Suppose we receive the above encoded message with a couple of bit

errors:

Figure (2.10) trellis diagram of received message

Each time we receive a pair of channel symbols, we're going to

compute a metric to measure the "distance" between what we received

and all of the possible channel symbol pairs we could have received.

Going from t = 0 to t = 1, there are only two possible channel symbol

pairs we could have received: 002, and 112. That's because we know

the convolutional encoder was initialized to the all-zeroes state, and

given one input bit = one or zero, there are only two states we could

transition to and two possible outputs of the encoder. These possible

outputs of the encoder are 00 2 and 112.

The metric we're going to use for now is the Hamming distance

between the received channel symbol pair and the possible channel

symbol pairs. The Hamming distance is computed by simply counting

how many bits are different between the received channel symbol pair

and the possible channel symbol pairs. The results can only be zero,

one, or two. The Hamming distance (or other metric) values we compute

at each time instant for the paths between the states at the previous time

instant and the states at the current time instant are called branch

metrics. For the first time instant, we're going to save these results as

"accumulated error metric" values, associated with states. For the

second time instant on, the accumulated error metrics will be computed

by adding the previous accumulated error metrics to the current branch

metrics.

At t = 1, we received 002. The only possible channel symbol pairs

we could have received are 002 and 112. The Hamming distance

between 002 and 002 is zero. The Hamming distance between 002 and

112 is two. Therefore, the branch metric value for the branch from State

002 to State 002 is zero, and for the branch from State 002 to State 102

it's two. Since the previous accumulated error metric values are equal to

zero, the accumulated metric values for State 002 and for State 102 are

equal to the branch metric values. The accumulated error metric values

for the other two states are undefined. The figure below illustrates the

results at t = 1:

Figure 2.11 metric calculation at t=1

Note that the solid lines between states at t = 1 and the state at t

= 0 illustrate the predecessor-successor relationship between the states

at t = 1 and the state at t = 0 respectively. This information is shown

graphically in the figure, but is stored numerically in the actual

implementation. To be more specific, or maybe clear is a better word, at

each time instant t, we will store the number of the predecessor state

that led to each of the current states at t.

 At t = 2. We received a 112 channel symbol pair. The possible

channel symbol pairs we could have received in going from t = 1 to t = 2

are 002 going from State 002 to State 002, 112 going from State 002 to

State 102, 102 going from State 102 to State 01 2, and 012 going from

State 102 to State 11 2. The Hamming distance between 002 and 112 is

two, between 112 and 112 is zero, and between 10 2 or 012 and 112 is

one. We add these branch metric values to the previous accumulated

error metric values associated with each state that we came from to get

to the current states. At t = 1, we could only be at State 002 or State 102.

The accumulated error metric values associated with those states were

0 and 2 respectively. The figure below shows the calculation of the

accumulated error metric associated with each state, at t = 2.

Figure2.12 metric calculation at t=2

That's all the computation for t = 2. What we carry forward to t = 3

will be the accumulated error metrics for each state, and the

predecessor states for each of the four states at t = 2, corresponding to

the state relationships shown by the solid lines in the illustration of the

trellis.

Now look at the figure for t = 3. Things get a bit more complicated

here, since there are now two different ways that we could get from each

of the four states that were valid at t = 2 to the four states that are valid

at t = 3. So how do we handle that? The answer is, we compare the

accumulated error metrics associated with each branch, and discard the

larger one of each pair of branches leading into a given state. If the

members of a pair of accumulated error metrics going into a particular

state are equal, we just save that value. The other thing that's affected is

the predecessor-successor history we're keeping. For each state, the

predecessor that survives is the one with the lower branch metric. If the

two accumulated error metrics are equal, some people use a fair coin

toss to choose the surviving predecessor state. Others simply pick one

of them consistently, i.e. the upper branch or the lower branch. It

probably doesn't matter which method you use. The operation of adding

the previous accumulated error metrics to the new branch metrics,

comparing the results, and selecting the smaller (smallest) accumulated

error metric to be retained for the next time instant is called the add-

compare-select operation. The figure below shows the results of

processing t = 3:

Figure2.13 metric calculation at t=3

Note that the third channel symbol pair we received had a one-

symbol error. The smallest accumulated error metric is a one, and there

are two of these.

Let's see what happens now at t = 4. The processing is the same

as it was for t = 3. The results are shown in the figure:

Figure (2.14) metric calculation at t=4

Notice that at t = 4, the path through the trellis of the actual transmitted

message, shown in bold, is again associated with the smallest

accumulated error metric. Let's look at t = 5:

Figure (2.15) metric calculation at t=5

At t = 5, the path through the trellis corresponding to the actual

message, shown in bold, is still associated with the smallest

accumulated error metric. This is the thing that the Viterbi decoder

exploits to recover the original message.

Perhaps you're getting tired of stepping through the trellis. I know I am.

Let's skip to the end.

At t = 17, the trellis looks like this, with the clutter of the intermediate

state history removed:

Figure 2.16 Final trellis

The decoding process begins with building the accumulated error

metric for some number of received channel symbol pairs, and the

history of what states preceded the states at each time instant t with the

smallest accumulated error metric. Once this information is built up, the

Viterbi decoder is ready to recreate the sequence of bits that were input

to the convolutional encoder when the message was encoded for

transmission. This is accomplished by the following steps:

• First, select the state having the smallest accumulated error

metric and save the state number of that state.

• Iteratively perform the following step until the beginning of the

trellis is reached: Working backward through the state history

table, for the selected state, select a new state which is listed in

the state history table as being the predecessor to that state.

Save the state number of each selected state. This step is called

traceback.

• Now work forward through the list of selected states saved in the

previous steps. Look up what input bit corresponds to a transition

from each predecessor state to its successor state. That is the bit

that must have been encoded by the convolutional encoder.

The following table shows the accumulated metric for the full 15-bit

(plus two flushing bits) example message at each time t:

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

State
002

 0 2 3 3 3 3 4 1 3 4 3 3 2 2 4 5 2

State
012

 3 1 2 2 3 1 4 4 1 4 2 3 4 4 2

State
102

 2 0 2 1 3 3 4 3 1 4 1 4 3 3 2

State
112

 3 1 2 1 1 3 4 4 3 4 2 3 4 4

Table 2.4 Accumulated Metric table

It is interesting to note that for this hard-decision-input Viterbi

decoder example, the smallest accumulated error metric in the final state

indicates how many channel symbol errors occurred.

The following state history table shows the surviving predecessor

states for each state at each time t:

 t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

State
002

0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1

State
012

0 0 2 2 3 3 2 3 3 2 2 3 2 3 2 2 2 0

State
102

0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0

State
112

0 0 2 2 3 2 3 2 3 2 2 3 2 3 2 2 0 0

Table 2.5 State History Table

The following table shows the states selected when tracing the path

back through the survivor state table shown above:

 Table 2.6 Trace back table

Using a table that maps state transitions to the inputs that caused

them, we can now recreate the original message. Here is what this table

looks like for our example rate 1/2 K = 3 convolutional code:

 Input was, Given Next State =

Current State 002 = 0 012 = 1 102 = 2 112 = 3

002 = 0 0 x 1 x

012 = 1 0 x 1 x

102 = 2 x 0 x 1

112 = 3 x 0 x 1

 t
=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 0 0 2 1 2 3 3 1 0 2 1 2 1 0 0 2 1 0

Table 2.7 Next State Table

Note: In the above table, x denotes an impossible transition from one

state to another state.

So now we have all the tools required to recreate the original message

from the message we received:

 t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1

Table 2.8 Decoded bits table

The two flushing bits are discarded.

Here's an insight into how the traceback algorithm eventually finds

its way onto the right path even if it started out choosing the wrong initial

state. This could happen if more than one state had the smallest

accumulated error metric, for example. I'll use the figure for the trellis at t

= 3 again to illustrate this point:

Figure 2.17 Metric calculation at t=3

See how at t = 3, both States 012 and 112 had an accumulated error

metric of 1. The correct path goes to State 012 -notice that the bold line

showing the actual message path goes into this state. But suppose we

choose State 112 to start our traceback. The predecessor state for State

112 , which is State 102 , is the same as the predecessor state for State

012! This is because at t = 2, State 102 had the smallest accumulated

error metric. So after a false start, we are almost immediately back on

the correct path.

For the example 15-bit message, we built the trellis up for the entire

message before starting traceback. For longer messages, or continuous

data, this is neither practical or desirable, due to memory constraints and

decoder delay. Research has shown that a traceback depth of K x 5 is

sufficient for Viterbi decoding with the type of codes we have been

discussing. Any deeper traceback increases decoding delay and

decoder memory requirements, while not significantly improving the

performance of the decoder. The exception is punctured codes, which I'll

describe later. They require deeper traceback to reach their final

performance limits.

To implement a Viterbi decoder in software, the first step is to build

some data structures around which the decoder algorithm will be

implemented. These data structures are best implemented as arrays.

The primary six arrays that we need for the Viterbi decoder are as

follows:

• A copy of the convolutional encoder next state table, the state

transition table of the encoder. The dimensions of this table (rows

x columns) are 2(K - 1) x 2k. This array needs to be initialized before

starting the decoding process.

• A copy of the convolutional encoder output table. The dimensions

of this table are 2(K - 1) x 2k. This array needs to be initialized

before starting the decoding process.

• An array (table) showing for each convolutional encoder current

state and next state, what input value (0 or 1) would produce the

next state, given the current state. We'll call this array the input

table. Its dimensions are 2(K - 1) x 2(K - 1). This array needs to be

initialized before starting the decoding process.

• An array to store state predecessor history for each encoder state

for up to K x 5 + 1 received channel symbol pairs. We'll call this

table the state history table. The dimensions of this array are 2 (K - 1)

x (K x 5 + 1). This array does not need to be initialized before

starting the decoding process.

An array to store the accumulated error metrics for each state

computed using the add-compare-select operation. This array will be

called the accumulated error metric array. The dimensions of this array are 2

(K - 1) x 2. This array does not need to be initialized before starting the

decoding process.

An array to store a list of states determined during traceback (term to

be explained below). It is called the state sequence array. The dimensions

of this array are (K x 5) + 1. This array does not need to be initialized

before starting the decoding process.

Puncturing is a common way of achieving higher code rates, i.e.

larger ratios of k to n. Punctured codes are created by first encoding

data using a rate 1/n encoder and then deleting some of the channel

symbols at the output of the encoder. The process of deleting some of

the channel output symbols is called puncturing. For example, to create

a rate 3/4 code from the rate 1/2 code described, one would simply

delete channel symbols in accordance to the following pattern,

1 0 1

1 1 0

Table (2.9) puncturing pattern

Where a one indicates that a channel symbol is to be transmitted,

and a zero indicates that a channel symbol is to be deleted. To see how

this make the rate be 3/4, think of each column of the above table as

corresponding to a bit input to the encoder, and each one in the table as

corresponding to an output channel symbol. There are three columns in

the table, and four ones. You can even create a rate 2/3 code using a

rate 1/2 encoder with the following puncturing pattern:

1 1

1 0

Table (2.10) puncturing pattern for K=2/3

Which has two columns and three ones.

To decode a punctured code, one must substitute null symbols for

the deleted symbols at the input to the Viterbi decoder. Null symbols can

be symbols quantized to levels corresponding to weak ones or weak

zeroes, or better, can be special flag symbols that when processed by

the ACS circuits in the decoder, result in no change to the accumulated

error metric from the previous state.

Chapter 3

 Channel Coding (Part 2)

3.1 Concatenated Coding

Concatenated coding is illustrated in Figure 3.1. Here we see the

information frame illustrated as a square - assuming block interleaving -

and we see the parity from the vertical encoding and the parity from the

horizontal encoding. For serial concatenation the parity bits from one of

the constituent codes are encoded with the second code and we have

parity of parity. If the codes are working in parallel, we do not have this

additional parity. The idea of concatenated coding fits well with

Shannon’s channel coding theorem, stating that as long as we stay on

the right side of the channel capacity we can correct everything - if the

code is long enough. This also means that if the code is very long, it

does not have to be optimal. The length in itself gives good error

correcting capabilities, and concatenated coding is just a way of

constructing - and especially decoding - very long codes.

Figure 3.1 Concatenated coding

There are many papers discussing the Turbo codes . The first one

is related to the Maximum A Posteriori (MAP) decoding algorithm for

convolutional codes which was proposed in 1974 by Bahl et al., but

initially received very little attention because of its increased complexity

over alternative convolutional decoder for a minimal advantage in bit

error rate (BER) performance. Recently, however, an iterative decoder

developed by Berrou et al. in 1993 has enjoyed renewed and greatly

increased attention. They considered the iterative decoding of two

Recursive Systematic Convolutional (RSC) codes concatenated in

parallel through a non-uniform interleaver. For decoding the component

codes they used a Soft Input/Soft Output (SISO) decoder based on the

MAP algorithm. Since then, researchers around the world have

investigated the performance and design of Turbo codes. Both serial and

parallel concatenated convolutional codes have been studied. The

interleaver patterns with high performance also have been evaluated. In

iterative decoding, several decoding algorithms have been used,

including the optimal MAP symbol estimation and its simplification called

the max-log-MAP algorithm (Additive MAP Algorithm) and . A further

simplification of log MAP is offered by the modified soft-output Viterbi

algorithm (SOVA) which works in a sliding-window SISO decoding

algorithm.

This thesis evaluates the BER performance of Turbo codes

Additive White Gaussian Noise (AWGN) and slow fading channels. In

addition, this thesis presents more accurate approximation in the

modified Turbo code decoding algorithm under slow Rayleigh fading

channel and corrects the error in the decoding algorithm under AWGN

channel presented in.

3.2 TURBO ENCODER
In this chapter, a system model of Turbo code is introduced and is briefly discussed, then focus on a

general Turbo encoder which consists of the RSC encoder, interleaver, and puncturing.

3.2.1 Turbo code system model
Figure 3.2 shows the basic elements of a communication system

with Turbo code. The source generates an information sequence of N

symbols with a constant a priori probability distribution)(uuP k = . The ku

denotes the trasmitted symbol at time k with value (0, 1), i.e., }1,0{∈ku .

The ku is encoded by two RSC encoders whose trellis states start at

state)(0 is , e.g.)1(0s , and terminal at the final state)1()(Nk sis = , which

the final state returns to the starting state for encoding the next

information block. k and i denote time index and state index,

respectively. The encoder generates a sequence of N output coded

symbols Nc . The trellis state structure is supposed to be known at the

receiver side. }',,' ,',,, ,{ 3221 q
kkk

q
kkkk ccccccc = represents one coded

symbol at time k with a length of 2q-1, where q
kkk ccc ,, , 21  are generated

by the first RSC encoder, and q
kkk ccc ',,' ,' 32  are generated by the

second RSC encoder. Each element l
kc is binary signal, i.e.,

qlcl
k ,,1},1,1{ =−∈ . After modulation, the coded symbols are mapped

one by one into transmitted signals kx .

}',,x',x',,, x,{ ,,3,2,,2,1 pq
k

p
k

p
k

pq
k

p
k

s
kk xxxx = represents the transmitted

codeword at time k. s
kx ,1 and pq

k
p

k
p

k
pq

k
p

k
p

k xx ,,3,2,,3,2 ',, x',x',,, x,x  are the

systematic bit and the parity check bits for the kth symbl, respectively.

The signal kx is transmitted over the stationary memoryless channel. At

the destination, the decoder will evaluate the demodulator output y

based on the statistic characteristic of the channel, i.e., the conditional

probability density function (pdf) of ky ,]/()/(cCyYpcyp kk ==∆ ,

}',,y',,,y ,{ ,,2,,2,1 pq
k

p
k

pq
k

p
k

s
kk yyyy = represents the received symbol at

time k, and then make a decision.

Figure (3.2) Block Diagram of Turbo Code System

3.2.2 General Turbo code encoder
 A general Turbo encoder is shown in Figure 3.3. The Turbo code encoder employs two identical

systematic recursive convolutional encoders connected in parallel with an interleaver (the “Turbo interleaver”)

preceding the second recursive convolutional encoder. The two recursive convolutional encoders are called

the constituent encoders of the Turbo encoder. The information bits are encoded by both RSC encoders. The

first encoder operates on the input bits in their original order, while the second encoder operates on the input

bits as permuted by the Turbo interleaver. If the input symbol is of length 1 and output symbol size is R, then

the encoder is of code rate rc=1/R. The information bits are always transmitted across the channel.

Depending on the code rate desired, the parity bits from the two constituent encoders are punctured before

transmission. The tail bits will be added at the end of the transmitted frame.

 Figure (3.3) General Turbo encoder

3.2.2.1 RSC encoder

Figure 3.4 shows a complete RSC encoder used in Turbo encoder. ku is

an input information bit, kc is the coded output symbol which is

represented by }, ,{ 321
kkkk cccc = . The system constraint length K is 4. The

generator connection matrix is 







++

+++
++

++
= 32

32

32

3

1
1 ,

1
1 ,1)(

DD
DDD

DD
DDDG

or [1, 15/13, 17/13] in octal. Its trellis states are shown in figure 2.3.2.

A systematic convolution code is generated by passing the information

sequences to be transmitted through a linear finite-state shift register.

The input data to the encoder is shifted into the register. Hence

codewords are generated. The encoder is defined by a set of generator

polynomials 







=

)(
)(

 , ,
)(
)(,

)(
)(,1)(21

Dg
Dg

Dg
Dg

Dg
DgDG

b

m

bb

 and memory size M of

the shift register (or the convolutional constraint length K which is equal

to M+1). gm(D) is the mth forward generator and gb(D) is the feed back

generator. The information bits are passed into the encoder frame by

frame. The shift register starts at initialized state and end at the initial

state. To ensure this happens, extra bits are needed to flush the

memory, which are called encoder tail bits. For example, switch SW

connects to up when data is inputted, down when tail bit is inputted. If

the encoder has code rate 1/3, it maps N data bits to 3N coded bits plus

3M tail bits. The received frame for N bit data will have 3N+3M coded

bits.

 Figure (3.4) A RSC Turbo Encoder with generator

--

 Figure 3.5 An 8 trellis states under a RSC encoder

3.2.2.2 Interleaver

 A burst of errors is defined as a sequence of bit errors. The method

of interleaver has proved to increase the reliability in the burst error

channel. In Turbo code, the structure of interleaver has been carefully

chosen. It allows that input sequences for which one encoder produces

low weight codewords will usually cause the other encoder to produce

high weight codewords. Although the constituent codes are individually

weak, the combination is surprisingly powerful. The resulting code has

features similar to a “random” block code with Z information bits.

3.2.2.3 Trellis Termination
After encoding block of input data encoder is required to be drawn in

state zero. Knowing the final state helps decoder to perform decoding

process successfully. Extra bits are inputted to decoder to draw encoder

to zero state. These bits are called trellis terminating bits.

3.2.2.4 Output puncturing
The role of Turbo code puncturing is to periodically delete selected

bits to reduce coding overhead. In Turbo code, the systematic bits c1 in

constituent encoder 1 are always transmitted for the non-tail bits, the

systematic bits 1'c in constituent encoder 2 are always punctured for the

non-tail bits. Other puncturing patterns depend on the code rate selected

.

3.3 Interleavers for Turbo Encoder

The interleaver design is a key factor which determines the good

performance of a turbo code. Some interleaver types used in turbo

codes are presented in the following sections.

3.3.1 “Row–Column” interleaver

The simplest interleaver is a memory in which data is written row–

wise and read column–wise. This is called a “row–column” interleaver

and belongs to the class of “block” interleavers. For example, data is

written as shown in Table below 3.1

Table 3.1 row column interleaver

The interleaving process consists in reading data as shown in Table 3.2

Table 3.2 output of row column interleaver

A few interesting constructions for other block interleavers are given

below.

3.3.2 “Helical” interleaver

A “helical” interleaver writes data row–wise as in Table 3.1 but

reads data diagonal–wise as shown in Table 3.3

Table 3.3 helical interleaver

3.3.3 “Odd–even” interleaver
We found that for a rate half encoder as, a particular type of

interleaver called “odd–even”, gives significant improvements when used

in a turbo encoder design. Let us assume that we have a random

sequence of binary data input to a rate one half systematic encoder and

we store only the odd–positioned coded bits, as shown in Table 3.4

Table 3.4 odd-even interleaver

If we were now to interleave the same sequence of binary data in a

pseudo–random order, encode it and store the even–positioned coded

bits, the result would be as in Table

 Table 3.5 odd-even interleaver

The data which is actually sent through the channel is shown in

Table 3.6; the original sequence of information bits xi, i = 1,... 15 as in

Table 3.4 and a multiplexed sequence of the odd– and even–positioned

coded bits from Tables 3.4 and 3.5.

Table 3.6 output of odd even interleaver

In Table 3.4 all the odd–positioned information bits have their own

coded bit. Due to the pseudo–random way of interleaving, some of the

coded bits stored in Table 3.4 can be for even–positioned information

bits and some for odd–positioned information bits. This means that some

of the information bits will have two coded bits associated with them and

others will have no coded bit associated with them. Thus, the coding

power is not uniformly distributed across all the bits. So for errors which

affect information bits not associated with any coded bit the decoder will

perform worse in both dimensions.

An example of an “odd–even” type of interleaver is a block

interleaver with an odd number of rows and an odd number of columns

as in Table 3.7 in which we store row–wise the sequence of random

data.

Table 3.7 odd even interleaver

 We produce the coded bits and store only the odd–positioned

coded bits as in Table 3.4. Now we read column–wise, encode and store

the even–positioned coded bits as in Table 3.8

Table 3.8 odd-even interleaver

In Table 3.8 all the even–positioned information bits have their own

coded bit present and in table 3.4 all the odd information bits have their

own coded bit present as well. When we multiplex the coded bits from

both Table 3.4 and Table 3.8 we produce the coded sequence as in

Table 3.9. This means that each of the information bits will have its own

associate coded bit associated with it. Thus the coding power is now

uniformly distributed.

Table 3.9 odd-even interleaver

3.3.4“Simile” interleaver
In Section 3.3 we introduced an “odd–even” type of interleaver

where each information bit is associated with one and only one coded

bit. In this way the correction capability of the code is uniformly

distributed over all information bits. We now impose another restriction

on the interleaver design: after encoding both sequences of information

bits, (the original and the interleaved one), the state of both encoders of

the turbo code are to be the same. This allows only one “tail” to be

appended to the information bits, which drives both encoders to the

same zero state. This is why we called it a ‘‘simile” type of interleaver

The idea behind the simile interleaver is that the whole block of N

information bits can be divided in _ + 1 sequences, where _ is the

memory length of the code. For _ = 2, we get:

Sequence 0 = {dk | k mod __ + 1) = 0}

Sequence 1 = {dk | k mod __ + 1) = 1}

Sequence 2 = {dk | k mod __ + 1) = 2}

For example, consider the particular four state encoder shown in

Figure 3.7

Figure 3.7 Four state RSC encoder

For a given N, the final state of the encoder represented by the

state of the two D flip–flops will be a combination of the above

sequences as shown in Table

Table 3.10 state table of RSC encoder

The important conclusion is that from the point of view of the final

encoder state, the order of the individual bits in each sequence does not

matter, as long as they belong to the same sequence. The simile

interleaver has to perform the interleaving of the bits within each

particular sequence in order to drive the encoder to the same state as

that which occurs without interleaving.

Since both encoders end in the same state, we need only one tail

to drive both encoders to state zero at the same time. The above

interleaver types can be combined in a single interleaver. An example of

a “simile odd–even” block helical interleaver that can be used with the

four state RSC encoder given in Figure 3.7 is shown in Table3.12.

Table 3.11 odd even simile interleaver

 Part of the interleaved sequence is shown in Table

Table 3.12 interleaved sequence

3.4 Turbo code decoding algorithm under AWGN channel

AWGN channel model is a simple and common channel model in a

communication system. It is easier to be studied. In this section, a Turbo

code decoding algorithm under AWGN channel will be discussed. Figure

3.8 shows a block diagram of a Turbo decoder.

Figure3.8 Block Diagram of Turbo decoder

A log ratio of the posteriori probability of uk conditioned on the received

signal y is defined as

 







=
=

∆
)/0(
)/1(

log)(
1

1
N

k

N
k

k yuP
yuP

uL (3-1)

The decoding decision of ku~ is made based on the sign of L(uk), i.e.,

 [])(~
kk uLsignu = . (3-2)

L(uk) is computed by three terms which are L_apriori, L_channel , and

Le(uk). L_apriori is a priori information based on the input bit uk at time k.

It is provided by the previous decoder. L_channel is the received

systematic bit at time k, referring to Appendix A for details.

 []
),'()(~)'(~

),'()(~)'(~

log)()(
1

1
,1

ssss

ssss
yLcuLuL

e
kk

u
k

e
kk

u
k

s
kk

e
k γβα

γβα

⋅⋅

⋅⋅
+⋅+=

∑
∑

−

+

−

−

)(__ k
e uLchannelLaprioriL ++= , (3-3)

Where L_ aprior and L_channel denote)(k
e uL and s

kyLc ,1⋅ respectively.

∑
+u

) (is the summation over all the possible transition branch pair (sk-1,

sk) at time k given input uk=1 and ∑
−u

) (is the summation over all the

possible transition branch pair (sk-1, sk) at time k given input uk=0. Lc is

the channel reliable factor, its computation is given as the following,

p

bSNRALc _4 ⋅⋅
= , (3-4)

where A=1 for AWGN channel, SNR_b is the uncoded bit-energy-to-

noise-ratio (
0N

Eb), p denotes 1/rc, rc is code rate of the Turbo encoder.

Le(uk) is an extrinsic information based on all parity and systematic

information except the systematic value at time k. It can be passed on to

a subsequent decoder. It is computed using the following equations:

)(~),'()'(~

)(~),'()'(~

log)(
1

1

ssss

ssss
uL

k
e
k

u
k

k
e
k

u
k

k
e

βγα

βγα

⋅⋅

⋅⋅
∆

∑
∑

−

+

−

−

, (3-5)

 where

 













 ⋅⋅⋅= ∑

=

q

i

i
k

pi
k cyLcss

2

,e

2
1exp),'(γ . (3-6)

)'(~),(~
1 ss kk −βα can be computed recursively with initial conditions

described below:

.
 0

1s if 1
)(~

,
),'()'(~

),'()'(~

)(~

0

'
1

'
1



 =

=

⋅

⋅
=

∑∑
∑

−

−

otherwise
s

sss

sss
s

s s
kk

s
kk

k

α

γα

γα
α

 (3-7)

.
otherwise 0

1s if 1~

,
),'()'(~

),'()(~

)'(~

'
12

1



 =

=

⋅

⋅
=

∑∑
∑

−−
−

N

s s
kk

s
kk

k sss

sss
s

β

γα

γβ
β

 (3-8)















 ⋅⋅⋅



 ⋅⋅⋅+⋅⋅∝ ∑

=

q

i

i
k

pi
kk

s
kkk

e
k cyLccyLcuuLss

2

,1,1

2
1exp

2
1)(

2
1exp),'(γ . (3-9)

For example, at any given iteration, decoder 1)(1 kuL is computed as

)()()(1221
,1

1 k
e

k
es

kk uLuLyLcuL ++⋅= , (3-10)

])(sign[L~
1 kk uu = ,

Where)(1 kuL is given in equation (3-3).)(21 k
e uL is extrinsic information

for decoder 1 derived from decoder 2, and)(12 k
e uL is the third term in

equation (3-3) which is used as the extrinsic information for decoder 2

derived from decoder 1. The decoders are sharing the information with

each other. The value of L1(uk) decides the degree of the reliability of

ku~ .

CHAPTER 4

MODULATION, MATCH FILTERING

AND PULSE SHAPING

 Many information bearing signals are transmitted by some type of carrier

modulation. The channel over which the signal is transmitted is limited in

bandwidth to an interval of frequencies centered about the carrier, as in double

sideband modulation Signals and channel which satisfy the condition that their

bandwidth is much smaller than the carrier frequency are termed narrow

bandpass signals and channels. The modulation performed at the transmitting

end of the communication system to generate the bandpass signal and the

modulation performed at the receiving end to recover the digital information

involves the frequency translations. With no loss in generality and mathematical

convenience, it is desirable to reduce all the bandpass signals and channels to

equivalent lowpass signals and channels [8]. This leads to the complex envelop

representation of real bandpass signals.

4.1 COMPLEX ENVELOP REPRESENTATION

 The real-valued signal x(t) is a passband signal when its nonzero Fourier

transform is near cω , as in Figure 4.1. Passband signals never have DC content,

so X(0) = 0. A carrier modulated signal is any passband signal that can be written

in the following form

))(cos()()(tttatx c θω += (4.1)

where a(t) is the time-varying amplitude or envelope of the modulated signal and

θ(t) is the time-varying phase. cω is called the carrier frequency (in radians/sec).

The carrier frequency cω is chosen sufficiently large compared with the amplitude

and phase variations of a(t) so that the power spectral density does not have

significant energy at ω = 0. See Figure 4.1, wherein the spectrum of X(ω) is

concentrated in the passband highlow ωωω << . In digital communication, x(t) is

equivalently written in quadrature form using the trigonometric identity

cos(u + v) = cos(u) cos(v) – sin(u) sin(v), leading to a quadrature decomposition. The

quadrature decomposition of a carrier modulated signal is

)sin()cos()()(txttxtx cQcI ωω −= (4.2)

Figure 4.1: Fourier spectrum of Bandpass signal

where))(cos()()(ttatxI θ= is the time-varying inphase component of the

modulated signal, and))(sin()()(ttatxQ θ= is the time-varying quadrature

component. Relationships determining a(t), θ(t) from)()(txtx QI − are

)()()(22 txtxta QI += (4.3)









= −

)(
)(

tan)(1

tx
tx

t
I

Qθ (4.4)

In equation 4.4, the inverse tangent is taken with the polarities of the numerator

and denominator independently known, so there is no quadrant ambiguity in

computing θ(t). In passband processing and analysis, the objective is to eliminate

explicit consideration of the carrier frequency cω and directly analyze systems

using only the inphase and quadrature components. These inphase and

quadrature components can be combined into a two-dimensional vector, or into

an equivalent complex signal. By convention, a graph of a quadrature-modulated

signal plots the inphase component along the real axis and the quadrature

component along the imaginary axis as shown in figure 4.2. The resultant

complex vector)(txbb is known as the complex baseband-equivalent signal. The

complex baseband-equivalent signal for x(t) in equation 4.1 is

)()()(txjtxtx QIbb += (4.5)

Figure 4.2: Decomposition of baseband-equivalent signal.

 The baseband-equivalent signal expression no longer explicitly contains the

carrier frequency cω Another complex representation that does explicitly contain

cω is the analytic equivalent signal for x(t). The analytic-equivalent signal for x(t)

in equation 4.1 is
tj

bbA
Cetxtx ω)()(= (4.6)

The original real-valued passband signal x(t) is the real part of the analytic

equivalent signal

[])()(txtx Aℜ= (4.7)

The Hilbert transform of x(t), denoted by)(tx , is the imaginary part of the analytic

signal as

[])()(txtx Aℑ= (4.8)

Finally, the inphase component)(txI and the quadrature component)(txQ can

be expressed using the signal x(t) and its Hilbert transform)(tx as (using

tj
AQIbb

Cetxtxjtxtx ω)()()()(=+= :

)sin()()cos()()(ttxttxtx ccI ωω += (4.9)

)sin()()cos()()(ttxttxtx ccQ ωω −= (4.10)

4.1.2 Spectrum of Analytic and Baseband-Equivalent Signals

 Using equations 4.7 and 4.8 the analytic signal is represented as shown in

figure 4.3

)()()(txjtxtx QIA += (4.11)

Taking the Fourier Transform of both sides of equation 4.11 yields

[]









<
==

>
=

+=

00
00)0(

0)(2
)()sgn(1)(

ω
ω

ωω
ωωω

X
X

XX A

 (4.12)

Figure 4.3: Complex baseband signal recovery from real passband signal

 The analytic equivalent signal,)(tx A , contains only the positive frequencies of

x(t) and is identically zero for negative frequencies. The Fourier transform X(ω) of

the real signal x(t) has two symmetry properties. The real part [])(ωXℜ is even

inω , while the imaginary part [])(ωXℑ is odd inω . Knowledge of only the non-

negative frequencies of X(ω), such as are supplied by the analytic signal, is

sufficient for reconstruction of X(ω). Thus, one confirms that the analytic signal

)(tx

)(tx A is truly equivalent to the original signal x(t). Using equation 4.6, the Fourier

transform of the baseband equivalent signal is simply the Fourier transform of the

analytic signal translated in frequencyω . Thus

)()(cbbA XwX ωω −= (4.13)

)()(cAbb XwX ωω += (4.14)

 Use of equations 4.6 and 4.7 allows reconstruction of the signal x(t) from the

baseband equivalent signal)(txbb and the carrier frequency cω . The baseband

equivalent signal, in general, may be complex-valued, and thus as shown in

figure 4.4 the spectrum of)(txbb may be asymmetric about the originω = 0

Figure 4.4: Baseband signal spectrum.

4.1.2 Generation of the baseband equivalent
 To generate the baseband equivalent of a signal, the structure in figure 4.3 is

used, where the second complex multiply simply is 4 real multiplies using Euler’s

formula)sin()cos(tjte cc
tj C ωωω += . The first multiply by j alone is, of course,

symbolic and simply means that the receiver processing views the signal on that

path as the imaginary part in complex arithmetic.

4.2 DIGITAL BANDPASS MODULATION
 Digital modulation is the process by which digital symbols are transformed into

waveforms that are compatible with the characteristics of the channel and

demodulation is the reverse process of again recovering the original message. In

the case of baseband modulation, these waveforms usually take the form of

shaped pulses. But in the case of bandpass modulation the shaped pulses

modulate a sinusoid called a carrier wave, or simply a carrier; for radio

transmission the carrier is converted to an electromagnetic (EM) field for

propagation to the desired destination [14].

 The modulating process transforms the low frequency baseband signal to a

bandpass signal around a carrier frequency as sketched in figure 4.5. The

bandpass signal is the one actually transmitted to the receiver where the

demodulator reconstructs the low-frequency baseband message.

Figure 4.5: Power spectra for signals in the modulation and demodulation processes.

Bandpass modulation (either analog or digital) is the process by which an

information signal is converted to a sinusoidal waveform; for digital modulation,

such a sinusoid of duration T is referred to as a digital symbol. The sinusoid has

just three features that can be used to distinguish it from other sinusoids:

amplitude, frequency, and phase. Thus bandpass modulation can be defined as

the process whereby the amplitude, frequency, or phase of an RF carrier, or a

combination of them, is varied in accordance with the information to be

transmitted. The general form of the carrier wave is

)(cos)()(ttAts θ= (4.15)

where A(t) is the time-varying amplitude and θ(t) is the time-varying angle. It is

convenient to write

)()(ttt O φωθ += (4.16)

so that

[])(cos)(((tttAts φωο += (4.17)

Where WO is the radian frequency of the carrier and φ(t) is the phase. The terms f

and ω will each be used to denote frequency. When f is used, frequency in hertz

is intended; when ω is used, frequency in radians per second is intended. The

two frequency parameters are related by ω = 2π f.

4.2.1 Phase Shift Keying
 Under phase-shift keying (PSK), the information bits determine the phase of a

carrier, which takes values from a discrete set in accordance with the information

bits. The general form of PSK signals is given by

MiTttt
T
Ets ici ,,2,1,0)cos(2)(=≤≤+= θω (4.18)

where the phase term, θi , will have M discrete values, typically given by

Mi
M

i
i ,,2,1

2
==

π
θ (4.19)

∫=
T

dttsE
0

2
0)((4.20)

is the signal energy (the same for all signals). We will assume that the signal is

bipolar rectangular pulse of duration T until the discussion about pulse shaping.

Equation 4.18 can be re-written in a slightly different form as

[])()sin()()cos(

)2sin(2)sin()2cos(2)cos()(

21 ttE

t
T

t
T

Ets

ii

cicii

φθφθ

πωθπωθ

−=









−= (4.21)

where)(1 tφ and)(2 tφ are easily seen to be orthonormal. Thus, PSK signals are

points in a two-dimensional space spanned by)(1 tφ and)(2 tφ [14].

4.2.2 QPSK Transmitter
 For the binary PSK M = 2 this means that modulating data signal shifts the

phase of the waveform)(tsi to one of the two states either zero or π . Similarly

for quadriphase or quadrature shift keying M = 4 and the waveform)(tsi shifts the

phase to one of 4 pahses separated by π/4. The constellation diagram for QPSK

signal using relation in equation 4.21 is shown in figure 4.6.

Figure 4.6: QPSK Constellation diagram

 The illustrated constellation mapping in figure 6, known as Gray coding, has the

property that adjacent signals are assigned binary sequences that differ in only

one bit. This is desirable in practice, because, when a detection error is made, it

is more likely to be to a signal adjacent to the transmitted signal. Then Gray

coding results in a single bit error for the most likely signal errors. QPSK is also a

real bandpass signal and using the complex baseband envelop representation of

real bandpass signals the baseband representation of QPSK is
tj

AQIbb
Cetstsjtsts ω)()()()(=+= (4.22)

where

)sin()()cos()()(ttsttsts ccI ωω +=

)sin()()cos()()(ttsttsts ccQ ωω +=

are the inphase and quadrature phase components of)(ts i . The relation

between)(ts i and)(ts bb is given as

[] [])()()(tsetsts A
tj

bbi
c ℜ=ℜ= ω (4.23)

Using the above relation the QPSK constellation using the complex baseband

representation is redrawn in figure 4.7.

Figure 4.7: QPSK Constellation diagram for complex baseband representation.

 Now using the complex baseband representation the QPSK transmitter is

drawn in figure 4.8. QPSK lookup table in figure 4.8 is simply the assignment of

one phase to each of four symbols. Transmit filter is a filter which shapes the

bitstream to a waveform. After constellation mapping we are having only phase

as shown in table below. It is the transmit filter which convert them in a waveform

We will discuss it later.
Table 4.1: QPSK lookup table

Figure 4.8: QPSK Transmitter

Symbol Phase

00 4/πje

01 4/πje−

10 4/3πje

11 4/3π−je

To recover the analytic signal from the received real QPSK signal same

approach is used which is described in figure 4.3.

4.2.3 QPSK Detection

 There are two approaches for detection of any modulated signal. One is called

coherent detection and other is called non-coherent detection. When the receiver

exploits knowledge of the carrier's phase to detect the signals, the process is

called coherent detection; when the receiver does not utilize such phase

reference information, the process is called no coherent detection. In ideal

coherent detection, there is available at the receiver a prototype of each possible

arriving signal. These prototype waveforms attempt to duplicate the transmitted

signal set in every respect, even RF phase. The receiver is then said to be phase

locked with the incoming signal. While for non-coherent detection the there is no

need for the receiver to be phase locked with the transmitter because the phase

information is provided to the receiver by differentially encoding the symbols at

the receiver. Thus the receiver design is simplified.

 We are not using the differential encoding, so we will only discuss the coherent

detection. In coherent detection the receiver has the decision regions as shown

in figure 4.9.

Figure 4.9: Decision regions for QPSK signal

If the symbol is in region 1 then the receiver makes the decision that it is 00 and

so on. The receiver structure is shown in figure 4.10. After recovering the

complex baseband signal from the real received signal we have to determine

only the phase and according to that phase we have to select that particular

region in which phase is lying. After selecting the region the only job left is to

recover the two bits which conveyed by the phase using the same lookup table

as shown before. We will discuss the receive filter later.

Figure 4.10: QPSK Receiver structure

 So far we have explained complex envelop representation of bandpass signals

and QPSK modulation/demodulation. From now on we will not use the receiver

structure explained above but only the complex baseband part will be used. The

frequency translation part will be removed because it the same for all. The

baseband receiver structure is given in figure 4.11.

Figure 4.11: Baseband model for QPSK communication system

4.3 DETECTION IN ADDITIVE WHITE GAUSSIAN NOISE (AWGN)

4.3.1 Additive White Gaussian Noise
 So far we have assuming the ideal channel because we are receiving the same

signal which we are transmitting. But this will never happen in practice. There are

many sources of noise which corrupt the transmitted signal like galaxy and

atmospheric noise, switching transients, interfering signals from other sources

and many many more sources. With proper precautions much of the noise and

interference entering the receiver can be reduced or even eliminated. However

there is one noise source that cannot be eliminated and that is the noise caused

by the thermal motion of electrons in any conducting media. This motion

produces thermal noise in amplifiers and circuits and corrupts the signal.

 The noise can be thought as a random process. Any random process can be

modelled statistically using normal or Gaussian. An important case of a random

signal is the case where the autocorrelation function is a dirac delta function

which has zero value everywhere except when τ = 0. In other words, the case

where



 =

=
elsewhere
forN

Rx 0
0

)(0 τ
τ (4.24)

where Rx(τ) is the auto-correlation function of a random variable x(t) and N0 is any

constant. The auto-correlation at τ = 0 is also called the power of the signal. The

Fourier transform of auto-correlation function is called as the power spectral

density and power spectral density for noise is

2
)()(0N

deRS j
xx == ∫

∞

∞−

− ττω τω (4.25)

In this special case where the autocorrelation is a “spike” the Fourier transform

results in a constant frequency spectrum as shown in figure 4.12. This is in fact a

description of white noise, which be thought of both as having power at all

frequencies in the spectrum, and being completely uncorrelated with itself at any

time except the present (τ = 0). This latter interpretation is what leads white noise

signals to be called independent. Any sample of the signal at one time is

completely independent (uncorrelated) from a sample at any other time. While

impossible to achieve or see in practice (no system can exhibit infinite energy

throughout an infinite spectrum), white noise is an important building block for

design and analysis. Often random signals can be modeled as filtered or shaped

white noise. Literally this means that one could filter the output of a (hypothetical)

white noise source to achieve a non-white or colored noise source that is both

band-limited in the frequency domain, and more correlated in the time domain.

Figure 4.12: White noise shown in both the time (left) and frequency domain (right).

From above it is clear why thermal noise is called Additive white Gaussian noise

(AWGN). Additive because it adds in the signal not multiplies. White because it

has the same power for all the frequencies. Gaussian because it can be

modelled using Gaussian or normal distribution and power for any normally

distributed random variable is 2
0σ , where 2

0σ is the variance of the random

variable.

4.3.2 SNR Maximization with a Matched Filter
 SNR is a good measure for a system’s performance, describing the ratio of

signal power (message) to unwanted noise power. The SNR at the output of a

filter is defined as the ratio of the modulated signal’s energy to the mean-square

value of the noise. The SNR can be defined for both continuous- and discrete-

time processes; the discrete SNR is SNR of the samples of the received and

filtered waveform. A matched filter is a linear filter designed to provide the

maximum signal-to-noise power ratio at its output for a given transmitted symbol

waveform. It is called match filter because it impulse response exactly matches

with the impulse response of the transmitted signal1 [14]. It will be proved now.

 Consider that a known signal s(t) plus AWGN n(t) is the input to a linear, time-

invariant (receiving) filter followed by a sampler, as shown in Figure 4.13.

Actually the receive filter is replaced with match filter. At time t = T, the sampler

output z(T) consists of a signal component ai and a noise component n0 .

z (T) = ai + n0 (4.26)

 The variance of the output noise (average noise power) is denoted by 2
0σ , so

that the ratio of the instantaneous signal power to average noise power. (S/N)T. at

time t = T, out of the sampler in step 1, is

 2

2

O

i

T

a
N
S

σ
=






 (4.27)

Figure 4.13: QPSK receiver with sampler at symbol rate T and match filter

 We wish to find the filter transfer function Ho(f) that maximizes equation 4.27.

We can express the signal ai(t) at the filter output in terms of the filter transfer

function H(f) (before optimization) and the Fourier transform of the input signal,

 ∫
∞

∞−

= dfefSfHta Tfj
i

π2)()()((4.28)

 where S(f) is the Fourier transform of the input signal, S(t). If the two-sided

power spectra} density of the input noise is No/2 watts/hertz, then, we can

express the output noise power as

 dffH
N o

o

2
2)(

2 ∫
∞

∞−

=σ (4.29)

We then combine equations 4.27 to 4.29 to express (S/N)T. as follows

∫

∫
∞

∞−

∞

∞−=







dffHN

dfefSfH

N
S

O

Tfj

T 2

2

2

)(
2

)()(π

 (4.30)

We next find that value of H(f) = Ho(f) for which the maximum (S/N)T is achieved,

by using Schwarz's inequality. One form of the inequality can be stated as

 dxxfdxxfdxxfxf i

2

2

2

1

2

2)()()()(∫∫∫
∞

∞−

∞

∞−

∞

∞−

≤ (4.31)

The equality holds if f1(x) = kf*2(x) where k is an arbitrary constant and * indicates

complex conjugate. If we identify H(f) with f1(x) and S(f) eTfj2 with f2(x), then

 dffSdffHdfefSfH Tfj
2

2
2

2)()()()(∫∫∫
∞

∞−

∞

∞−

∞

∞−

≤π (4.32)

Substituting into Equation 4.30 yields

 dffS
NN

S

OT 2

)(2
∫
∞

∞−

≤





 (4.33)

Where the energy E of the input signal S(t) is

 dffSE
2

)(∫
∞

∞−

= (4.34)

Thus, the maximum output (S/N)T depends on the input signal energy and the

power spectral density of the noise, not on the particular shape of the waveform

that is used. The equality in Equation 4.33 holds only if the optimum filter transfer

function HO(f) is employed, such that

 Tfj
O efkSfHfH π2)(*)()(−== (4.35)

 { }TfjefkSth π21)(*)(−−ℑ= (4.36)

Since S(t) is a real-valued signal, we can write,







 ≤≤−

=
elsewhere

TttTks
th

0
0)(

)((4.37)

Thus, the impulse response of a filter that produces the maximum output signal-

to-noise ratio is the mirror image of the message signal s(t), delayed by the

symbol time duration T. Note that the delay of T seconds makes Equation 4.37

causal; that is, the delay of T seconds makes h(t) a function of positive time in the

interval 0 < t < T as shown in figure 4.14. Without the delay of T seconds, the

response s(–t) is unrealizable because it describes a response as a function of

negative time.

Figure 4.14: Impulse responses of received signal and match filter

 The above mathematical discussion proves that if the impulse responses of the

received signal and the match filter are mirror images of each other then at t=T

the SNR is maximized. Actually the convolution with itself is a process of

integration. By match filtering we are actually integrating the received signal.

AWGN is a zero mean random variable. By averaging we are trying to force it to

zero. It can be verified that as T approaches ∞ the noise averaged to zero.

The QPSK receiver with match filter can be redrawn in figure 4.15.

Figure 4.15: QPSK receiver with match filter

4.4 INTERSYMBOL INTERFERENCE AND PULSE SHAPING
 The spreading and smearing of symbols such that the energy from one symbol

effects the next ones in such a way that the received signal has a higher

probability of being interpreted incorrectly is called inter symbol interference (ISI).

 Let’s assume that the transmit filter has a impulse response of a rectangular

pulse as shown. We know that the frequency response of rectangular pulse is a

sinc function which is from [∞∞− ,]. This means that it has infinite bandwidth

which is not the requirement and also the rectangular pulse is not possible to

design practically.

Figure 4.16: Time and frequency response of rectangular pulse

 Another solution is that we used the sinc in time domain because it has a gate

function in frequency domain which has very pleasant from bandwidth

requirement. But the problem is that the impulse response of one pulse has

infinite length. But the sinc pulse is passing through zero after every multiple of T

as shown above. Now if we transmit the successive pulses such that a pulse has

its max peak value when the others are passing through zero. In this case we

may have ISI at the other time but this will ensure that there is no ISI at the

multiples of symbol interval as shown in figure 4.16.

Sinc pulse has problem that it is also impractical to design and also it has infinite

impulse response. A single pulse is affecting all the pulses before or after it.

Slight misadjustment in time will result in effecting all the pulses.

Figure 4.17: pulse shaping using sinc.

Nyquist offered ways to build (realizable) shapes that had the same good

qualities as the sinc pulse and less of the disadvantages. One class of pulses he

proposed are called the raised cosine pulses. They are really a modification of

the sinc pulse. Where the sinc pulse has a bandwidth of W, which is given as

W = 1 / 2T (4.38)

The raised cosine pulses have an adjustable bandwidth which can be varied from

W to 2W. We want to get as close to W, which is called the Nyquist bandwidth, as

possible with a reasonable amount of power. The factor α related the achieved

bandwidth to the ideal bandwidth W as

0

1
W
W

−=α
 (4.39)

 where W is Nyquist bandwidth, and W0 is the utilized bandwidth.

 The factor α is called the roll-of factor. It indicates how much bandwidth is being

used over the ideal bandwidth. Smaller this factor, the more efficient will be the

scheme. The percentage over the minimum required W is called the excess

bandwidth. It is 100% for roll-off of 1.0 and 50% for roll-off of 50%. The alternate

way to express the utilized bandwidth is.

sRW)1(0 α+=
 (4.40)

Typical roll-off values used for wireless communications range from 2 to 4.

Obviously we want to use as small a roll-off as possible, since this gives the

smallest bandwidth. Here is how the class of raised cosine pulse is defined in

time domain.

2)/2(1
)2cos(

2
)/2sin(

)(
πα

απ
π
π

t
t

t
Tt

th s

−
=

 (4.40)

The first part is the sinc pulse. The second part is a cosine correction applied to

the sinc pulse to make it behave better. The sinc pulse insures that the function

transitions at integer multiples of symbol rate which makes it easy to extract

timing information of the signal. The cosine part works to reduce the excursion in

between the sampling instants. The bandwidth is now adjustable. It can be any

where from 1/2 Rs to Rs. It is greater than the Nyquist bandwidth by a factor

(1+ α). For α = 0, the above equation reduces to the sinc pulse, and for α = 1, the

equation becomes that of a pure square pulse.

Figure 4.18: Impulse responses of raised cosine filter with 1,5.0,0=α

In frequency domain, the relationship is given by

 (2.41)

 Why do they call it raised cosine? Because the above response has a cosine

function in the frequency domain, although other many other trigonometric

representations of this equation that do not have the cosine-squared term, so it is

not always clear why these are called raised cosine.

 The frequency response looks somewhat like a square pulse as we would

expect. A range of bandwidths are possible depending on the chosen α. The

bandwidth can be anywhere from 1/2 Rs (this term same as W, the Nyquist

bandwidth) for the sinc pulse to Rs for the square pulse. The bandwidth utilized is

greater than the Nyquist bandwidth by a factor (1 + α). For α = 1 the above

equation reduces to the sinc pulse, and for α = 1 the equation becomes that of a

pure square pulse.

Figure 4.19: Frequency responses of raised cosine filter with 1,5.0,0=α

 To implement the raised cosine response, we split the filtering in two parts to

create a matched set. When we split the raised cosine filtering in two parts, each

()

()
s

s

ss

s

s

T

T
ffor

f
T

for
T

f
T

T
ffor

fH
2

)1(

2
)1(0

2
)1(

2
1

2
cos

2
11

)(2 α

α

αα
α

π

α

+















+
>

≤≤
−
















 −
−

−
≤

=

part is called the root-raised cosine. In frequency domain, we take the square

root of the frequency response hence the name root-raised cosine.

 Yes, the whole raised cosine can be applied at once at the transmitter but in

practice it has been found that concatenating two filters each with a root raised

cosine response (called split-filtering) works better.

The root raised cosine shaping of pulses is also called baseband filtering. The

frequency response of the root raised cosine is given by

()

()
s

s

ss

s

s

T

T
ffor

f
T

for
T

f
T

T
ffor

fH
2

)1(

2
)1(0

2
)1(

2
1

2
cos

2
11

)(α

α

αα
α

π

α

+















+
>

≤≤
−
















 −
−

−
≤

=

 (4.42)

Compare the impulse response of the root raised filter to that of the raised

cosine. We do not see much of a difference except that there is a little bit more

excursion in the root-raised cosine response. The time domain function is of

course NOT the square root. The root part applies to frequency domain

Figure 4.20: Frequency responses of raised cosine and rootraised cosine filters

 By splitting the raised cosine into two rootraised cosine filter we are achieving

two things. First is that by doing so we are forcing the ISI to zero at the receiver.

There is ISI when we are transmitting but there is no ISI at the receiver. Second

is match filtering because the impulse response of transmit and receiver filters

are exactly matched. This will give us the highest SNR point at the symbol

interval. Now the final baseband communication system is given below. Two wire

connections are for complex data.

Figure 4.21: Baseband model of QPSK communication system

4.5 DISCRETE TIME MODEL OF COMMUNICATION SYSTEM
 So far we have explained discrete partial analog communication system. In

figure 4.20 the only analog portion is raised cosine filter. If we realize it in discrete

time the complete system will become digital. We have already explained the

upsampling using interpolation in a previous chapter. We know that the raised

cosine filter requires the excess bandwidth. So in order to filter the QPSK symbol

we have to upsample by at least factor of 2 because the maximum excess

bandwidth is equal to the Nyquist bandwidth. The upsampling is done by the

insertion of M–1 zeros in between the QPSK symbol stream and then

interpolation is done by the digital raised cosine filter. If we are sampling by a

factor of M then we will say that we have M samples per symbol. At the receiver

we have to downsample by a factor of M in order to recover the QPSK symbol

stream. The complete discrete time model is given below

Figure 4.22: Discrete time baseband model of QPSK communication system

4.6 SIMULATION RESULTS
 A simulation is run for QPSK modulation and pulse shaping using raised cosine

pulse shaping. The constellation diagram for QPSK symbols at transmitter is

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 4.23: QPSK Constellation diagram at transmitter

QPSK constellation diagram after the coherent detection at the receiver is

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 4.24: QPSK Constellation diagram at receiver

Raised cosine filter is splitted into root raised cosine filters at transmitter and

receiver for match filtering and pulse shaping. 10 samples per symbol are chosen

for convenience in plotting and the length of filters is 101. The impulse response

of the raised cosine and root raised cosine filters are shown in figures.

0 10 20 30 40 50 60 70 80 90 100

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.25: Impulse response of root raised cosine pulse

From the above figure you can see that impulse response is not passing through

zero crossings at symbol intervals (multiples of 10)

-50 -40 -30 -20 -10 0 10 20 30 40 50

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.26: Impulse response of root raised cosine pulse

In the above the impulse response is passing through zero crossings at symbol

intervals and this guarantees the zero ISI at symbol intervals.

In the following two figures the eye-diagram at transmitter and receiver is plotted

and from these figures it is clear that there is ISI at the transmitter after filtering

using root raised cosine filter but the ISI is removed at the receiver after root

raised cosine filtering because both of them collectively make a raised cosine

filter.

5 10 15 20 25 30

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.27: Eye diagram at transmitter (there is ISI)

5 10 15 20 25 30

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.28: Eye diagram at receive (no ISI)

CHAPTER 5

 WIRELESS CHANNEL MODELING

 5.1 INTRODUCTION

Small scale fading is used to describe the rapid fluctuations of the amplitudes

, phases or multipath delays of the radio signal over a short period of time or travel

distance , so that large –scale path loss effects may be ignored . Fading is caused

by the interference between two or more versions of transmitted signal arrive at the

receiver antenna at slightly different times. These waves, called multipath waves,

combine at the receiver antenna to give a resultant signals which can vary widely

in amplitude and phase , depending on the distributions of the intensity and relative

propagation time of the waves and the bandwidth of the transmitted signal.

5.2 Small Scale Multipath Propagation
 Multipath in the radio channel creates small scale fading effects.

The most important effects are

 Rapid changes in signal strength over a small travel distance or time interval.

 Random frequency modulation due to varying Doppler Shifts on different

multipath signals.

 Time dispersion (Echoes) caused by the multipath propagation delays

 In urban areas , fading occurs because of the height of the mobile

antennas are well below the height of surroundings structures , so there is no

single line of sight path to the base station. Even when line of sight exists,

multipath still occurs due to reflections from the ground and surrounding

structure. The incoming radio waves arrive from different from different directions

with different propagation delays. The signal received by the mobile at any point

in the space may consist of a large number of plane waves having randomly

distributed amplitudes, phases and angles of arrival. These multipath

components combine vectorially at the receiver antenna and can cause the

signal received by the mobile to distort or fade. Even when the mobile is

stationary, and received signal may fade due to movement of surroundings

objects in the radio channel.

5.1.1 Factors effecting small scale fading

 Many physical factors in the radio propagation channel influence small

scale fading.

These include the following.

5.1.1.1 MultiPath Propagation

 The presence of the reflecting objects and scatterers in the channel

creates a constantly changing environment that dissipates the signal energy in

the amplitude, phase and time. These effects results in amplitude versions of the

transmitted signal that arrive at receiving antenna , displaced with respect to one

another in time and spatial orientation. The random phase and amplitudes of the

different multipath components cause fluctuation in the signal strength, thereby

including small scale fading, signal distortion, or both.

5.1.1.2 Speed of Mobile

 The relative motion between baseband signal and mobile results in

random frequency modulation due to different Doppler shift on each multipath

component. Doppler shift would be positive and negative depending on whether

the mobile receiver is moving toward or away from the base station.

5.1.1.3 Speed of surrounding objects
 If objects in the radio channel are in random motion, they induce a time

varying Doppler shift on multipath components. If the surroundings objects move

at a greater rate than mobile , then this effect dominates the small scale fading

otherwise , motion of the surroundings objects may be ignored , only speed of

mobile need be considered. The coherence time defines the STATICNESS of the

channel and is directly impacted by the Doppler shift.

 5.1.1.4 The Transmission bandwidth of the signal
If the transmitted radio signal bandwidth is greater than bandwidth of the

multipath channel, the received signal will be distorted, but the received signal

strength will not fade much over a local area.

5.2 Parameters of mobile multipath channels
 Many multiptah channels are derived from the power delay profile. Power

delay profile are generally represented as plots of relative received power as

function of excess delay with respect to a fixed time delay reference. Power

delay profiles are found by averaging instantaneous power delay

measurements over a local area in order to determine an average small scale

power delay profile.

5.2.1 Time and Frequency dispersion parameters
 In order compare different multipath channels and to develop some

general design guidelines for wireless systems, parameters which grossly

quantify the multipath channel are used.

5.2.1.1 Delay spread
The Mean excess delay, rms delay spread and excess delay spread

are multipath channel parameters that can be determined from a power delay

profile. These delays are measured relative to the first detectable signal

arriving at the receiver at To=0. The maximum excess delay (X db) of the

power delay profile is defined to be a time delay during which multipath

energy falls to X db below the maximum. In other words, excess delay is

defined is Tx- To. Where To is 1st arriving signals and Tx is the maximum

delay at which mulitpath energy falls to X db of the strongest arriving

multipath signal. The maximum excess excess delay (X db) defines the

temporal extent of the multipath that is above a particular threshold.

 5.2.1.2 Coherence Bandwidth
 While the delay spread is natural phenomenon caused by reflected

and scattered propagation paths in the radio channel, the Coherence

bandwidth Bc, is a defined relation derived from the rms delay spread.

Coherence bandwidth is statistical measure of the range of frequencies over

which the channel can be considered “FLAT” i.e. a channel which passes all

spectral components with approximately equal gain and linear phase. In other

words coherence bandwidth is range of frequencies over which two frequency

components have a strong potential for amplitude correlation. Two sinusoids

with frequency separation greater than Bc are treated differently by the

channel.

5.2.1.3 Doppler spread
 Delay spread and coherence bandwidth is parameters which

describe the time dispersive nature of the channel in a local area. However,

they don’t offer information about varying nature of channel caused by

either relative motion between mobile and base station or by movement of

objects in the channel in the small scale region.

 Doppler spread is measure of spectral broadening caused by the time

rate of change of the mobile radio channel and defined as the range of

frequencies over which the received Doppler spectrum is essentially non

zero. When a pure sinusoidal tone of frequency Fc is transmitted in the range

Fc-Fd to Fc+Fd, where Fd is Doppler shift. The amount of spectral

broadening depends upon Fd which is function of relative velocity of the

mobile and the angle of motion of the mobile and direction of arrival of the

scattered waves.

5.2.1.4 Coherence time

Coherence time Tc , time domain dual of Doppler spread and used

to characterize the time varying nature of the frequency dispersiveness of

the channel in the time domain .The Doppler spread and coherence time

are inversely proportional to one another.

Coherence time is actually a statistical measure of the time duration

over which the channel impulse response is invariant and quantifies the

similarity of the channel response at different times. The definition of

coherence time implies that two signals arriving with a time separation

greater than Tc are effected differently by the channel.

5.3 Types of small scale fading
 Types of fading experienced by signal propagation through a

mobile radio channel depends on the nature of the transmitted signal with

respect to the characteristic of the channel. Depending on the relation

between the signal parameters and the channel parameters and the

channel parameters, different transmitted signals will go under different

fading. The time dispersion and frequency dispersion mechanism in a

mobile radio channel lead to four possible distinct effects.

 Mulipath delay spread leads to time dispersion and frequency

selective fading.

Doppler spread leads to frequency dispersion and time selective

fading. The tow propagation mechanisms are independent of each other.

5.3.1 Fading Effects due to Multipath Time Delay spread
 Time dispersion due to multipath causes the transmitted signal to

undergo either flat or frequency selective fading.

5.3.1.1 FLAT FADING
 If the mobile radio channel has a constant gain and linear

response over a bandwidth which is greater than bandwidth of transmitted

signal, then the receive signal will go under flat fading. In flat fading, the

multipath structure of the channel is such that spectral characteristics of the

transmitted signal are preserved at the receiver . However the strength of

received signal changes with time, due to fluctuations in the gain of channel

caused by multipath.

 Flat fading channels are also known as amplitude varying channels

and are sometimes referred to as narrowband channels, since bandwidth

applied to signal s narrow as compared to channel flat fading bandwidth.

Typical flat channels cause deep fades and they require 20 or 30 db more

transmitted power to achieve low bit error rates during times of deep fades

as compared to system operating over non-fading channels. The distribution

of most common amplitude distributions is Rayleigh distribution. The

Rayleigh flat fading channel model assumes that channel induces amplitude

which varies in time according to Rayleigh distribution.

 Mathematically,

 Bs << Bc or Ts >>Delay spread (5.1)

Ts is reciprocal of bandwidth or symbol period and Bs is bandwidth.

Bc is coherence bandwidth.

5.3.1.2 Frequency selective Fading
 If the channel passes a constant-gain and linear phase response

over a bandwidth that is smaller than the bandwidth of transmitted signal,

then channel creates frequency selective fading on the received signal.

Under such conditions, the channel impulse response has a multipath delay

spread which is greater than the reciprocal bandwidth of the transmitted

message waveform. When this occurs, the received signal includes multiple

version of transmitted waveform which are attenuated and delayed in time,

and hence the received signal is distorted.

Frequency selective fading is due to time dispersion of the

transmitted symbols within the channel. Thus the channel induces

Intersymbol Interference (ISI). Viewed in the frequency domain, certain

frequency components in the received signal spectrum have greater gains

than others.

 Frequency selective fading channels are much more difficult to

model than flat fading channels since each multipath signal must be

modeled and the channel must be considered to be a linear filter. Fir such

model or fading the spectrum S(f) of the transmitted signal has a bandwidth

which is greater than coherence bandwidth Bc of the channel. Viewed from

frequency domain, the channel becomes frequency selective, where the

gain is different for different frequency components. Frequency selective

fading is caused by multipath delays which approach or exceed the symbol

period of the transmitted symbol. Frequency selective fading channels are

also known as wideband channels since the bandwidth of signal S(t) is

greater than bandwidth of channel impulse response. As time varies, the

channel varies in gain and phase across the spectrum of S(t), resulting in

time varying distortion in the received signal r(t). To summarize, a signal

undergoes frequency selective fading if

 Bs >> Bc or Ts<< Delay spread (5.2)

Ts is symbol period. And Bc coherence bandwidth.

A common rule of thumb is that a channel is Flat fading if Ts >= 10*(Delay
spread) and Frequency selective if Ts<10*(Delay spread)

5.3.2 Fading Effects due to Multipath Time Doppler spread

Depending upon how rapidly the transmitted baseband signal

changes as compared to the rate of change of the channel, a channel mat

be classified either as a Fast Fading or Slow Fading.

5.3.2.1 Fast Fading
 In this fading, the channel impulse response changes rapidly within

the symbol duration. That is, the coherence time of the channel is smaller

than the symbol period of the transmitted signal. This causes frequency

dispersion due to Doppler spreading, which leads to signal distortion.

Viewed in the frequency domain, signal distortion due to fast fading

increases with increasing Doppler spread relative to bandwidth of the

transmitted signal. Therefore, signal undergoes fast fading if,

 Ts > Tc or Bs < Bd (5.3)
 Fast fading only deals with rate of change of channel due to

motion. In the case of the flat fading channel, we can approximate the

impulse response to be simply a delta function. Hence, a FLAT FADING,

FAST FADING channel is channel in which amplitude of the delta function

varies faster than the rate of change of the transmitted baseband signal. In

the case of a FREQUENCY SELECTIVE, FAST FADING channel, the

amplitudes, phases and time delays of any one of the multipath

components vary faster than the rate of change of transmitted signal. In

practice, fast fading only occurs for very low data rates.

5.3.2.2 Slow Fading
 In slow fading channel, the channel impulse response changes at a

rate much slower than the transmitted baseband signal S (t). In this case,

the channel may be assumed to be static over several reciprocal bandwidth

intervals. In the frequency domain, this implies that the Doppler spread of

the channel is much less than the bandwidth of the baseband signals.

Therefore the signal goes undergoes slow fading if

 Ts << Tc and Bs >> Bd (5.4)

It should be clear that velocity of the mobile and the baseband signaling

determines whether a signal undergoes fast fading or slow fading.

5.4 Rayleigh Fading Envelope Generation

The generation of Rayleigh Fading envelopes follows from the basic fact that

the envelope of a complex Gaussian process (with independent real and

imaginary parts) has a Raleigh distribution. The general method to generate a

Rayleigh Fading envelope is illustrated in fig (3).

Figure 5.1 Rayleigh Fading Generation at Baseband

The Spectral Shaping filter is needed to introduce a desired amount of

correlation into the Gaussian samples that produce the Rayleigh distribution. In

case of Mobile Communication Systems where Rayleigh fading has to be

generated for a particular speed of the mobile,the spectral shaping filter takes the

form of a Doppler Filter with the maximum Doppler spread specified by the

Mobile Speed (Clarke/Gans Model).

If Ig(n) and Qg(n) represent the in-phase and quadrature phase

components of the complex Gaussian process (after spectral shaping), the

Rayleigh fading envelope can be generated as,

 (5.5)

 5.4.1 Spectral Shaping Filter
The Spectral Shaping filter is usually specified in terms of its

Autocorrelation function or Power Spectral density. When a Power Spectral

Density is specified, the colored Gaussian samples can be generated by passing

the white Gaussian Noise samples through a filter whose transfer function H(f)

can be obtained by solving,

 (5.6)

Where, Sxx(f) is the power spectral density of the filter. The digital

implementation of H (f) can be done either using FFT Techniques or FIR/IIR

filtering depending on the situation and form of H (f) obtained.

In the given problem, the PSD can be obtained taking the Fourier transform of

the specified autocorrelation as,

 (5.7)

Further, the H(f) can be obtained from the power spectral density as,

 (5.8)

The digital implementation of the above transfer function can be done in a

plethora of ways. But the best (and the most relevant) method is the IIR

implementation of the above Filter using AR models. Even then, a choice has to

be made between IIR filter synthesizing techniques such bilinear, impulse-

invariance, backward/forward di_erence methods etc.

Since the filter has a simple one-pole type transfer functions, it is much better to

use impulse invariance rather then other techniques. Proceeding further, the

impulse response of the digital filter is obtained as,

 (5.9)

Where T represents the sampling duration. In our case, because of the slow

fading assumption, We have to generate one Rayleigh fading envelope sample

per symbol (i.e., 8000 Samples per second). This works to to a sampling duration

of T = 0.125ms. Thus we get,

 (5.10)

This converts to the simple differential equation,

 (5.11)

5.4.2 Simulated Envelope.
The simulated Rayleigh fading envelope at baseband is shown in fig (5.2)

Figure 5.2 Rayleigh Noise Envelopes

5.4.3 Fade Power Adjustment.
Suppose we require a specified average fade power P, Given the

generated fading samples , we can generate the fading samples with the

given average fade power P using the transformation,

 (5.11)

5.4.4 Passing a Signal through Rayleigh Fading
 Let us say we have a Simple Sine wave, The Figure is given below

Figure 5.3 Simple Sine wave

After passing this Sine wave, when it goes under some Rayleigh Fading, the

result is shown in the figure

Figure 5.4 Sine wave after passing through Rayleigh Fading

CHAPTER 6

ADAPTIVE FILTERS

6.1 ADAPTIVE FILTERS
 The design of a Weiner filter requires a priori information about the statistics of

the data to be processed. The filter is optimum only when the statistical

characteristics of the input data match the priori information on which the design

of the filter is based. When this information is not known completely, however, it

may not possible to design the wiener filter or else the design may no longer be

optimum. A straightforward approach that we may use in such situation is the

“estimate and plug” procedure. This is a two-stage process whereby the filters

first “estimate” the statistical parameters of the relevant signals and then “plug”

the results so obtained into a nonrecursive formula for computing the filter

parameters. For real-time operation, this procedure has the disadvantage of

requiring excessively elaborated & costly hardware. To mitigate this limitation, we

may use adaptive filter.

6.4 WIENER FILTER THEORY
 We will explain the Weiner filter theory using its application in adaptive channel

equalization. The equalizer considered here is known as the MMSE linear

equalizer.

 Let us assume that Weiner filter is a FIR filter with 2K+1 coefficients

,,,,, 21 KKKK cccc +−+−− (6.1)

The input to the filter is the received signal r(n) and the output signal is

∑
−=

−=
K

Kk
k knrcns)()(ˆ (6.2)

The filter coefficients are chosen to minimize the mean square value of the

)(ˆ)()(nsnsn −=ε (6.3)

where s(n) is the transmitted symbol and)(ˆ ns is the its estimate(see figure 6.1).

Note that after equalization, there will still be residual ISI. On top of that, there is

an additive Gaussian noise term. The MMSE equalizer minimizes the combined

residual ISI plus noise power. The non-casuality in the mathematical description

of the MMSE equalizer translates into a decision delay in the actual

implementation (see figure 6.1). The delay is due to the filtering with channel filter

and equalizer filter.

Figure 6.1: The Weiner filter(C(n)) configuration for equalization

To obtain the filter coefficients of the equalizer filter, we first express all signals

involved in matrix form. Specifically, let



















−

−+
+

=

)(

)1(
)(

)(

Knr

Knr
Knr

n


R (6.4)

be the received vector at time n and

],,,,[21 KKKK cccc +−+−−=C (6.5)

be a general transversal (i.e. FIR) equalizer. By substituting for the matrix

notation into equation 6.2, it is possible to represent the estimated error signal by

equation 6.6 below. The equalizer output at time n is thus

)()(ˆ nns CR= (6.6)

 and instantaneous squared error of the signal can be found by squaring

equation 6.6 such that it can be represented as the following equation:

() ()
()()

TTTT

TTTT

TT

nnnnsnns
nnnnsnnsns

nnsnns
nnsnsnsn

CRCRRCCR
CRCRRCCR

RCCR
CR

)()()()()()(
)()()()()()()(

)()()()(
)()()(ˆ)()(

2

2

222

+−−=

+−−=

−−=

−=−=

σ

ε

 (6.7)

where 2σ is the variance of s(n) because s(n) has a zero mean, i.e.,

()222)()(xExE −=σ . Also assuming s(n) a bipolar signal (BPSK or QPSK) with

values ±1 then we can say 2σ =1. Mean square error (MSE),γ , is defined by the

“expectation” of the squared error, from equation 6.7. Hence the MSE can be

represented by equation 6.8.

[] [] [] []
[] [] []

T
RR

T
ss

T
RR

T
sRRs

TTTT

TTTT

nnEnnsEnnsE
nnEnnsEnnsEnE

CCUCu
CCUCuCu

CRRCCRRC
CRCRRCCR

+−=

+−−=

+−−=

+−−==

21

1
)()()()()()(1
)()()()()()(1)(2εγ

 (6.8)

where

[] T
Rs

T
sR nnsE uRu ==)()((6.9)

is the 2K+1 length cross correlation vector between s(n) and the received vector

R(n), and

 It is clear from this expression that the mean square error γ is a quadratic

function of the weight vector C (filter coefficients). That is, when Equation 6.8 is

expanded, the elements of C will appear in the first and second order only. This

is valid when the input components and desired response inputs are wide-sense

stationary stochastic (random) variables .

6.5 PERFORMANCE SURFACE

 A portion of a typical two-dimensional MSE function is illustrated in figure 6.2.

The vertical axis represents the mean square error and the two horizontal axes

represent the values of two filter coefficients. The quadratic error function, or

performance surface, can be used to determine the optimum weight vector optC

(or Wiener filter coefficients). With a quadratic performance function there is only

one global optimum; no local minima exist. The shape of the function would be

hyper-parabolic if there were more than two weights.

Many adaptive processes that cause the weight vector to search for the minimum

of the performance surface do so by the gradient method [11]. The gradient of

the mean square error of the performance surface, designated∇ , can be

obtained by differentiating equation 6.8 with respect to each component of the

weight vector.









∂
∂

∂
∂

∂
∂

=
∂
∂

=∇
+−− KKK ccc

γγγγ ,,,
1


C

 (6.12)

Figure 6.2: A two dimensional error performance surface

() ()

()[]
[] []

CUu
CRRR

RCR

CR
C

CR

CC

RRsR

TT

T

nnEnnsE
nnnsE

nnsnnsE

nnEnE

22
)()(2)()(2

)()()(2

)()()()(2

)()(2)(2

+−=
+−=

−−=





 −

∂
∂

−=







∂
∂

=







∂

∂
=∇

ε
ε

ε

 (6.13)

 The gradient vector is the tangent of the N-dimensional surface γ at the point

optC When the gradient vector is zero, the surface γ reaches its lowest value

and hence the mean square error will be minimized. The point in the N-

dimensional space where this occurs is. Therefore, setting equation 6.13 to zero

we get

optRRsR CUu 220 +−=

1−= RRsRopt UuC (6.14)

and corresponding MSE is

T
sRRRsR

T
optRRopt

T
optsR

uUu

CUCCu
1

min

1

21
−−=

+−=γ
 (6.15)

 This equation is known as the Wiener-Hopf equation in matrix form, and the

filter given by optC in equation 6.14 is the Wiener filter. However, in practice it is

not usual to evaluate. In addition, optC has to be calculated repeatedly for non-

stationary signals and this can be computationally intensive because it requires

matrix inversions. But another question is how to determine the values of sRu and

RRU in case of channel equalization.

6.6 STEEPEST DESCENT ALGORITHM
 In practice it is not usual to calculate the optimum filter optC using equation 14

directly. The problem is that the evaluation of 1−
RRU involves the inversion of a

matrix of dimension 2K+1 by 2K+1 which is computationally very complex.

Furthermore, if the channel statistics are non-stationary, which is quite often the

case, then the calculation has to be undertaken periodically in order to track the

changing conditions. An alternative method of calculation is therefore the

steepest descent algorithm. In this method the weights are adjusted iteratively in

the direction of the gradient. Let C(n) be the estimate of optC at discrete-time (or

iteration index) n. Then based on C(n), we can obtain

[]RRsr nn UCu)(2)(−−=∇ (6.25)

The gradient vector of the error surface γ at C(n) ; see the equation 6.13 Based

C(n) and)(n∇ , we obtain the next estimate of optC according to

[]
[] srRR

RRsr

n
nn

nnn

uUIC
UCuC

CC

µµ
µ

µ

+−=
−+=

∇−=+

)(
)()(

)(
2

)()1(

 (6.26)

where µ is the step size of this iterative procedure, and I is an identity matrix of

2K+1 by 2K+1 . Basically, the method of steepest descent is based on the idea

that we can reach the global minimum by searching in the opposite direction as

indicated by the gradient vector (slope) at the current estimate; see the scalar

case below as an example.

Figure 6.3: Operation of steepest descent algorithm.

6.7 THE LMS ALGORITHM
 While the steepest descent method is able to determine the optimal equalizer

coefficients without performing any matrix inversion, its operation is still based on

the assumption that the channel parameters the correlation vector sRu and the

covariance matrix RRU known to the receiver. Recall that the receiver uses these

parameters to compute the gradient vector)(n∇ required for updating the the

equalizer coefficients. In the LMS algorithm, the gradient vector is replaced by its

estimate. Let us consider the correlation of the received vector R(n) (see

equation 6.4) with the equalization error

)()()(ˆ)()(nnsnsnsn CR−=−=ε (6.47)

for the equalizer C. The result is

[]
[]
[] []

RRsR

TT

TT

T
R

nnEnnE
nnnnE

nnE

CUu
RCRR

RCRR
Rw

−=
−=

−=

=

)()()()(
)()()()(

)()(

ε

ε

εε

 (6.48)

Now, if we evaluate this correlation vector at C = C(n) , then we obtain

)(
2
1)()(nn RRsRnR ∇−=−== UCuw CCε (6.49)

where)(n∇ is the gradient vector at the point C = C(n) of the error surface γ . To

simply put, the updating equation in the steepest descent method can be

rewritten as

[]TnnEn

nnn

)()()(

)(
2

)()1(

RC

CC

ε

µ

+=

∇−=+
 (6.50)

The LMS algorithm is obtained by removing the average operator in the above

equation, i.e.

[]
[] T

T

nnsnsn
nnEnn

)()(ˆ)()(
)()()()1(
RC

RCC
−+=

+=+ ε
 (6.51)

 In other word, the LMS algorithm uses a noisy estimate of the true gradient in updating

the filter coefficients.

CHAPTER 7

CHANNEL EQUALIZATION

7.1 INTRODUCTION
 Communication channels are susceptible to Intersymbol Interference (ISI).

Without channel equalization, the utilization of the channel bandwidth becomes

inefficient. Channel equalization is a process of compensating for the effects

caused by a band-limited channel, hence enabling higher data rates.

Equalization describes a set of operations intended to eliminate ISI and the

effects of multipath propagation in communication channels. One can define an

equalizer as

“An equalizer is a device that compensates for unwanted channel effects and

provides the receiver with a sequence of samples with acceptable levels of ISI”.

 These disruptive effects are due to the dispersive transmission medium (e.g.

telephone cables) and the multipath effects in the radio channel. A typical

communication system is depicted in figure 7.1 where the equalizer is

incorporated within the receiver while the channel introduces intersymbol

interference. The transfer function of the equalizer is an estimate of the direct

inverse of the channel transfer function. To transmit high speed data over a

bandlimited channel, the frequency response of the channel is usually not known

with sufficient precision to design an optimum match filter. The equalizer is,

therefore, designed to be adaptive to the channel variation. The configuration of

an adaptive linear equalizer is depicted in figure 7.2. Based on the observed

channel output, an adaptive algorithm recursively updates the equalizer to

reconstruct the output signal.

Figure 7.1: A typical communication system.

Figure 7.2: A simple linear channel equalizer configuration.

 Equalization does not mean that all the channel distortions are completely

removed but its job is to provide the receiver enough information which is

necessary to make a decision.

7.2 ISI DUE TO MULTIPATH EFFECTS
 In a wireless radio channel, the ISI is caused by the multipath effects when the

multipath spread as explained previously is greater than the symbol interval.

Multipath effects describe the situation in which there are several propagation

paths from transmitter to receiver. Most commonly, this results when there are

reflected signals detected at the receiver following the direct path. The multipath

phenomenon can be modeled by an FIR system (see chapter 3). The center tap

represents the direct path, while the succeeding tap weights represent the

amplitudes, delays, and phases of the reflected paths. For simple examples, see

the two cases described in Figure 7.3 and Figure 7.4.
 Figure 7.3(a) shows the time response of an ideal transmission path, which is a

δ function. Such a channel exerts no spectral distortion or delayed signals. Figure

7.3(b) shows the spectral response of such a system. Note that the frequency

magnitude response is perfectly flat, as indicated by the solid horizontal line.

Figure 7.3: (a) Impulse response and (b) frequency response of ideal single path channel

Figure 7.4(a) shows the time response of a system that contains a single

multipath channel [8]. The first nonzero sample of the response represents the

direct path, while the second represents a delayed path to the receiver. In this

instance, the pulses are identical in amplitude and phase and are separated by

ten sample intervals.

Figure 7.4: (a) Time response and (b) frequency response of two path wireless channel

Notice in Figure 7.4(b) that the magnitude response exhibits t0/2 nulls, where t0

represents the sample delay. Even though you are effectively adding two

identical flat spectra (as shown in Figure 7.3(b)) the time delay results in a phase

delay in the spectral domain. This phase delay results in nulls where the two

signals are of equal amplitude but opposite phase. Obviously, multipath effects

can have major effects on the system spectral response, thereby providing

another justification for channel equalization

 Now it is time to represent it mathematically what we all said so far. Suppose

that a channel model (see figure 7.5) is used to describe the distortion effect and

it is given as a sum of weighted time delayed discrete-time channel impulse

responses, H(z):

+++== −−−∑ 2
2

1
10)(zhzhhzhzH i

i
i (7.1)

 The coefficients hi represent the strength of the dispersion and the multipath

delay. For FIR modelled channel, the output from the channel can be written as:

∑
−

=

+−=
1

0
)()()(

L

i
i knikuhky (7.2)

Where y (k) is the input to the equalizer (received signal after passing through

channel) which is simply the convolution of hi and u (k). u(k) is the transmitted

sequence, hi is the channel impulse response, n(k) represents additive white

Gaussian noise (AWGN) added to the channel and L represents the length of the

channel impulse response. Equation (7.2) shows that the transmitted symbol u (k)

is affected by the weighted delay symbols of u(k-i), thus causing intersymbol

interference.

Figure 7.5: A multipath wireless channel model.

7.3 COMMUNICATION SYSTEM MODEL WITH EQUALIZER

7.3.1 Continuous-time Model
 For our communication system which is employing a linear modulation, QPSK,

through a dispersive channel, the whole system can be described the conceptual

model in Figure 7.7, in which the sequence of information symbols is denoted by

}{ kI and)(),(fHfH CT and)(fH R are the transfer functions of the transmission

(root raised cosine pulse-shaping) filter, the dispersive channel and the receiving

filter, respectively. The Nyquist condition for no ISI developed in previous chapter

can be easily generalized to the above communication system. Letting

)()()()(fHfHfHfX RCT= the condition for no ISI is that the folded

spectrum)(fX , is constant for all frequencies, i.e.

∑
∞

−∞=

=−
n

T
T
nfX)((7.3)

Figure 7.7: Continuous-time communication model over a multipath dispersive channel

One method to achieve the Nyquist condition is to fix the receiving filter to be the

matched filter, i.e. set)()()(fHfHfH CTR
∗∗= , and choose the transmission

filter so that (7.5) is satisfied. This is the Nyquist pulse design method described

in previous chapter. The major disadvantage of this pulse shaping method is that

it is in general difficult to construct the appropriate analog filters for)(fHT and

)(fH R in practice. Moreover, we have to know the channel response)(fH C in

advance to construct the transmission and receiving filters.

 An alternative method is to fix the transmission filter4 and choose the receiving

filter)(fH R to satisfy the condition in (7.3). As for the previous method, it is also

difficult to build the appropriate analog filter)(fH R to eliminate ISI. However,

notice that what we want eventually are the samples at intervals T at the receiver.

Therefore, we may choose to build a simpler (practical) filter)(fH R , take

samples at intervals T, and put a digital filter, called equalizer, at the output to

eliminate ISI as shown below in Figure 7.7. This approach to remove ISI is

usually known as equalization. The main advantage of this approach is that a

digital filter is easy to build and is easy to alter for different equalization schemes,

as well as to fit different channel conditions.

Figure 7.7: Communication system with equalizer

7.3.2 Equivalent discrete-time model
 Our goal is to design the equalizer which can remove (or suppress) ISI. To do

so, we translate the continuous-time communication system model in Figure 7.7

to an equivalent discrete-time model that is easier to work with. The following

steps describe the translation process:

• Instead of considering AWGN being added before the receiving filter)(fH R ,

we can consider an equivalent colored Gaussian noise being added after)(fH R

when we analyze the system. The equivalent colored noise is the output of

)(fH R due to AWGN. The resulting model is shown in Figure 7.8.

• We input a bit or a symbol to the communication system every T seconds,

and get back a sample at the output of the sampler every T seconds. Therefore,

we can represent the communication system in Figure 7.8 from the information

source to the sampler as a digital filter.

Figure 7.8: Equivalent communication system with colored Gaussian noise

Since)(),(fHfH CT and)(fH R are LTI filters, they can be combined and

represented by an equivalent digital LTI filter. Denote its transfer function by H(z)

and its impulse response by ∞
−∞=kkh }{ . The result is the discrete time-linear filter

model shown in Figure 7.9, in which the output sequence }{ kI ′ is given by

∑

∑

≠
−

−

++=

+=′

kj
kjkkk

j
kjkkk

nhIhI

nhII

0

 (7.4)

In general, hj ≠ 0 for some j ≠ 0. Therefore, ISI is present. Notice that the noise sequence

}{ kn consists of samples of the colored Gaussian noise (AWGN filtered by)(fH R), and

is not white in general.

Figure 7.9: Equivalent discrete-time communication system model with colored noise

• Usually, the equalizer consists of two parts, namely, a noise-whitening digital

filter)(zHW and an equalizing circuit that equalizes the noise-whitened output as

shown in Figure 7.9. The effect of)(zHW is to “whiten” the noise sequence so

that the noise samples are uncorrelated. Notice that)(zHW depends only

on)(fH R , and can be determined a prior according to our choice of)(fH R . At

the output of)(zHW , the noise sequence is white. Therefore, equivalently, we

can consider the equivalent discrete-time model shown in Figure 7.11, in which

}{ kn is an AWGN sequence.

Figure 7.10: Typical equalizer

• Let)()()(zHzHzG W= . The communication system from the information

source to the output of the noise whitening filter can now be represented by the

discrete-time white-noise linear filter model in Figure 7.12. The output sequence

}~{ kI is given by:

∑

∑

≠
−

−

++=

+=

kj
kjkkk

j
kjkkk

ngIgI

ngII

0

~

 (7.5)

Where }{ kg is the impulse response corresponding to the transfer function G(z),

and }{ kn is an AWGN sequence. We will work with this discrete-time model in all

the following sections.

Figure 7.11: Equivalent discrete-time communication system model with white noise

Figure 7.12: Equivalent discrete-time white-noise linear filter model

 Finally, the equalizing circuit (we simply call it the equalizer from now on)

attempts to remove ISI from the output of G(z). The focus of our coming

discussion is the design of this equalizer. Suppose that the equalizer is also an

LTI filter with transfer function)(zH E and corresponding impulse response }{ Ejh .

Then the output of the equalizer is given by

∑ −=
j

Ejjkk hII ~ˆ (7.6)

Ideally kÎ contains only contributions from the current symbol Ik and the AWGN

sequence with small variance.

7.4 CLASSIFICATION OF EQUALIZERS
 Equalizers are classified into two main classes. Linear Equalizers Non-linear

Equalizers

Linear equalizers (LE) only have feedback from linear devices and can be

implemented as a simple FIR filter (transversal filter)also called linear transversal

equalizer (LTE). They are easy to implement cheap, suboptimal performance,

high BER they have problem like enhances noise and bad for channels with

spectral nulls as we will see shortly. They can also be implemented as lattice

filter to achieve numerical stability and fast convergence but they are more

complicated to implement.

 Non-linear equalizers (NLE) have feedback from non-linear devices (i.e.

quantizer) and they have better performance than linear equalizers like fine with

spectral nulls and also fine with large distortion.

 Decision Feedback Equalizers (DFE) are non linear equalizers. They are more

complex than a linear transversal equalizer. They have both feed forward and

feedback filters. They are cheap, better performance than LTE and they can

equalize severely distorted channels & handle spectral nulls.

 Maximum Likelihood Symbol Detection (MLSD) is also included in the class of

non linear equalizers. They have optimal performance at the cost of high cost &

exponential computational complexity. They use trellis approach with probability

methods and Viterbi algorithm.

 Maximum Likelihood Sequence Estimation (MLSE) is another category of non

linear equalizers. Like MLSD they also have optimal performance. They are

different from MLSD because ML applied to sequences rather than symbols.

They are often too computationally complex to implement in a mobile receiver.

 In figure 7.13 types of equalizers, their structures and the algorithm for learning

channel environment is given.

Figure 7.13: Classification of equalizers

 Non-linear equalization is important in providing optimum performance for ill-

conditioned channels that non-linear techniques require more computation and

controls. However, in order the study the gradient descent-based adaptive

algorithms’ performance, the linear equalizer is more appropriate. Table 7.1 also

gives some performance, computation complexity and implementation cost

measures of the equalizers.

Table 7.1: Cost, performance and complexity analysis of equalizers

Equalization System Complexity Cost Performance

Linear Transversal Equalizer Low Cheap Suboptimal

Decision Feedback Equalizer Medium Average Suboptimal

Maximum Likelihood Sequenc

Estimation
High High Optimal

Maximum Likelihood

Symbol Detection
High High Optimal

 7.5 MMSE EQUALIZER
 The zero-forcing equalizer, although removes ISI, may not give the best error

performance for the communication system because it does not take into account

noises in the system. A different equalizer that takes noises into account is the

minimum mean square error (MMSE) equalizer. It is based on the mean square

error (MSE) criterion. Before going into the mathematics of MMSE we want to

clear that the detail derivation for minimizing the MSE and reaching the Weiner

solution can be found from the previous chapter on adaptive filters. Here only the

necessary steps are repeated.

 Without knowing the values of the information symbols kI beforehand, we

model each symbol kI as a random variable. Assume that the information

sequence }{ kI is WSS. We choose a linear equalizer)(zH E to minimize the

MSE between the original information symbols kI and the output of the

equalizer kÎ :

])ˆ[(][22
kkk IIEeEMSE −== (7.7)

 Let us employ the FIR filter of order 2L+1 shown in Figure 7.14 as the

equalizer. We note that a delay of L symbols is incurred at the output of the FIR

filter. Then

])ˆ[(

])~[(

2

2
,

E
T

kk

L

Lj
jEjkk

IE

hIIEMSE

hI−=

−= ∑
−=

−
 (7.8)

where
T

LkLkk II]ˆ,,ˆ[ˆ
−+= I (7.9)

T
LELEE hh],,[,, −=h (7.10)

Figure 7.14: FIR Filter as a MMSE Equalizer

We want to minimize MSE by suitable choices of LELE hh ,, ,,− . Differentiating

with respect to each jEh , and setting the result to zero, we get

0)]~(~[=− E
T

kkk IE hII (7.11)

Rearranging we get

dhR =E (7.12)

Where

]~~[T
kkE IIR = (7.13)

]~~[kkIE Id = (7.14)

 If R and d are available, then the MMSE equalizer can be found by solving the

linear matrix equation 7.12. It can be shown that the signal-to-noise ratio at the

output of the MMSE equalizer is better than that of the zero-forcing equalizer.

 The linear MMSE equalizer can also be found iteratively. First, notice that the

MSE is a quadratic function of equalizer filter taps hE. The gradient of the MSE

with respect to hE gives the direction to change hE for the largest increase of the

MSE. In our notation, the gradient is)(2 ERhd −− . To decrease the MSE, we can

update hE in the direction opposite to the gradient. This is the steepest descent

algorithm: At the kth step, the vector hE(k) is updated as

))1(()1()(−−+−= kkk EEE Rhdhh µ (7.15)

where μ is a small positive constant that controls the rate of convergence to the

optimal solution. Once again we are repeating that all this mathematics is done in

the previous chapter.

 In many applications, we do not know R and d in advance. However, the

transmitter can transmit a training sequence that is known a priori by the

receiver. With a training sequence, the receiver can estimate R and d.

Alternatively, with a training sequence, we can replace R and d at each step in

the steepest descent algorithm by the rough estimates T
kk II ~~ and kkI I~~ ,

respectively. The algorithm becomes:

kE
T

kkEE kIkk IhIhh ~)]1(~[)1()(−−+−= µ (7.16)

This is a stochastic steepest descent algorithm called the least mean square

(LMS) algorithm.

 The beauty of the approach is that the only parameter to be adjusted is the

adaptation step size μ. Through an iterative process, explained above, all filter

tap weights are adjusted during each sample period in the training sequence.

Eventually, the filter will reach a configuration that minimizes the mean square

error between the equalized signal and the stored reference. As might be

expected, the choice of μ involves a tradeoff between rapid convergence and

residual steady-state error. A too-large setting for μ can result in a system that

converges rapidly on start-up, but then chops around the optimal coefficient

settings at steady state.

 The LMS equalizer can also be shown to have better noise performance than

the ZFE. Heuristically, the ZFE calculates coefficients based upon the received

samples of one training signal. Since the captured data will always contain some

noise, the calculated coefficients will be noisy (noise in / noise out). On the other

hand, the LMS algorithm gradually adapts a filter based on many cycles of the

training signal. If the noise is zero mean and is averaged over time, its effect will

be minimized (noise integrates to 0).

	3.2 TURBO ENCODER
	3.2.1 Turbo code system model
	3.2.2.3 Trellis Termination
	3.2.2.4 Output puncturing
	3.3 Interleavers for Turbo Encoder
	3.3.1 “Row–Column” interleaver

