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ABSTRACT 
 

 H.264 is the latest video coding standard which is a result of the Joint venture of 

ITU – T and ISO. H.264 has been developed with the aim to provide greater compression 

as compared to its predecessors without compromising the video quality. H.264 

incorporates error resilience to provide superior video quality over IP networks, as the 

primary utilization of the standard is in video conferencing applications. 

 Video conferencing solutions are mostly developed as embedded systems which 

employ the computational power of the DSP processor and its peripherals to achieve the 

objective. However, DSP processors have VLIW architectures and limited processing 

power, creating a hindrance in an effective implementation of the H.264 codec on the 

DSP. 

 The aim of our project was to Port and Optimize the H.264 video Decoder on the 

Trimedia TM – 1300 processor. The target optimization level was placed at 8 fps, which 

is the frame rate in most web based video applications. The optimization achieved in the 

end of the project was around 6 fps.  

 The major modules of the decoder were targeted in the optimization. The modules 

of Variable Length Decoding (VLD), Inverse Discrete Cosine Transform (IDCT) and 

Motion Compensation (MC) were optimized. The optimizations were carried out by 

developing new and efficient, compliant, algorithms for the modules, keeping into 

perspective the VLIW architecture of the DSP. The implementations involve the effective 

use of the processor’s Custom Ops, hence fully utilizing the processing power of the 

DSP. The optimizations were carried out for the baseline H.264 decoder. A video 

rendering driver was also developed to display the decoder output on a TV. 

 The overall increase in the efficiency of the decoder after optimizations is 

enormous, i.e. from 0.33 fps to 6 fps giving overall increase in the speed of 1800%. The 

decoder now is capable to be used in web based video applications, hence achieving the 

aim of the project. 
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2.1 INTRODUCTION TO VIDEO CODING 
2.1.1 WHY IS VIDEO COMPRESSION NEEDED? 
Video signals are coded to achieve compression. Compression makes it easier for the 

video signal to be stored as the memory space it takes becomes smaller. It also becomes 

convenient for the signal to be transmitted over a transmission channel for Real-Time 

Video Conferencing and other Multimedia Applications.  

 To further explain what has been said above, we start with the analog video 

signal. The analog video signal is mostly the source of a digital video signal as the most 

common video signal today, is still in the analog form. 

 The analog signal contains two half pictures which are interlaced on display. The 

first field contains the even lines while the other one contains the odd lines. Because of 

this fact, the field rate is twice the frame rate. The PAL video signal contains 25 frames 

per second or 50 fields per second. In the computer environment, the interlacing is not 

mostly used today. 

 The CCIR recommendation 601 defines the standard for the TV industry and the 

conversion to a digital format is defined in the CCIR-656 recommendation. This digital 

signal contains the following resolution.  

 

TV System Active pixels Active lines Frame rate (Hz) 

PAL 720 576 25 

NTSC 720 480 19.97 

Table 2.1 Different Video Signal Resolutions 

The full resolution of a PAL video signal is 720×576=414,720 pixels for one 

picture. For true color, 24 bits per pixel are needed. Therefore 720×576×24/8=1,244,160 

bytes are needed for encoding one picture. The PAL video signal contains 25 frames per 

second. Hence in order to encode one second of a video, 31,104,000 bytes are needed. 

Therefore, we require a bit rate of around 249Mbits per second. 
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 Similarly, in order to store a ninety minutes movie, around 156 GBytes are 

required. This huge bit-rate cannot be handled by the computer systems being used today. 

To develop affordable systems for the consumer market, date compression is required.     

2.1.2 ALGORITHMS USED FOR VIDEO COMPRESSION 
Currently available picture and video compression standards use similar algorithms to 

code the pictures. There are several algorithms combined to achieve efficient 

compression. These algorithms are as follows. 

2.1.2.1 LOSSLESS AND LOSSY COMPRESSION 

Compression techniques are classified into two categories, lossless and lossy approaches. 

Lossless techniques are capable of recovering the original data perfectly. These 

algorithms are used in the applications where the perfect recovery of data is essential. 

 Lossy techniques involve algorithms which recover data similar to the original 

one. These techniques provide higher compression ratios. Hence these techniques are 

more often applied in the image and video compression. 

 A video sequence contains two kinds of redundancies, spatial and temporal. 

Spatial redundancy occurs because neighboring pixels in each individual picture are 

related. The pixels in the consecutive frames are also correlated, which leads to 

substantial temporal redundancy. For any compression algorithm to be effective, it must 

exploit these redundancies.  

 The lossy compression algorithms make use of the anatomical characteristics of 

the human eye. A picture contains some information which is not necessary for its 

quality. The human system does not treat all the visual information with equal sensitivity. 

For example the eye is more sensitive for changes in luminance than in chrominance. For 

this reason it is sufficient to transmit only one chrominance pixel U and V for four 

luminance pixels Y. This indicates that four adjacent pixels have the same color 

information but different brightness levels on the display screen. 

 The human eye is also less sensitive to high frequencies. So it is better to send the 

lower frequencies more exactly than the higher frequencies.[1] 
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2.1.2.2 TRANSFORMATION FROM SPATIAL DOMAN TO TIME DOMAIN 

The standardized video or image compression techniques use a transformation from the 

spatial domain to the time domain. This transformation enables the exploitation of the 

spatial correlation of the pixels by converting them into a set of independent coefficients. 

This transformation is done on a block basis. The pixels are divided into 8×8 pixel 

blocks. These blocks are transformed into frequency domain using Discrete Cosine 

Transform (DCT). DCT is preferred over other transform techniques mainly because the 

coefficients are in the real domain. 

 The forward 2-D DCT and the inverse 2-D IDCT are defined as: 

DCT 

 F(u,v)=1/4*C(u)*C(v)* ]**4/)1*2[cos(*]**4/)1*2[cos(*),(
7

0

7

0
ππ vkujkjf

j k
++∑∑

= =
 

IDCT 

F(j,k)=1/4∑∑
= =

7

0

7

0u v
C(u)*C(v)* ]**4/)1*2[cos(*]**4/)1*2[cos(*),( ππ vkujvuF ++  

With 

C(w)=1/ 2  with w=0 and  

C(w)=1 for any other value of w 

F(u,v)   is the transformed pixel block in the frequency domain. 

  The result of the DCT is an 8×8 matrix with the frequency coefficients. In the 

value at the upper left corner F(0,0) is called the DC coefficient. The other coefficients 

are called the AC coefficients as they represent the frequency which the pixel block 

contains. The frequency increases from the right to the bottom. 

 Normally a picture contains many low frequency components. This means that the 

coefficients are concentrated in the upper left corner of the matrix. 

2.1.2.3 QUANTIZATION 

Quantization is a process used to reduce the precision of the DCT coefficients. The 

quantization is done by a division of the integer DCT coefficients by integer quantization 

values. The quantization values are chosen so as to minimize the distortion in the 

reconstructed pictures using the anatomical characteristics of the human eye. 
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 The result of the quantization of higher frequencies is mostly zero; therefore all 

the values are not required to be transmitted. Hence compression is achieved.   

2.1.2.4 RUNLENGTH AND HUFFMAN CODING 

After the quantization, the matrix contains many zero coefficients particularly in the high 

frequency part. These can be coded with the help of Run Length coding efficiently. The 

rum length coding counts the number of zeros unless a non zero number appears. Then 

one pair of numbers is generated. The first value of the pair is the count of the zero 

coefficients and the second value is the value of the coefficient which is not zero. For 

example the run level code (5,20) represents the following values:          0 0 0 0 0 20. 

 

Figure 2.1 Zig-zag scan way 

As shown in the above figure the “zig-zag scan” orders the DCT coefficients in 

ascending order of the spatial frequencies. The frequency increases from left to right and 

top to bottom. The run length coding is a form of lossless compression. After the run 

length coding, each run length couple is coded by entropy coding. Entropy coding is also 

called as “variable length coding” or Huffman coding. 

 For variable length coding, the appearance probability Ps of each run length 

couple is investigated. The run length with the largest probability of occurrence is coded 

with the shortest code and vice versa to achieve compression. 

 The optimum code length for a symbol Ls is given by; 

 Ls = log2 (1/Ps) 
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And the entropy, which is simply the average number of bits per symbol, is given by; 
  entropy = ∑

s
Pslog2 (1/Ps) 

 The Huffman codes are constructed by pairing two symbols with the lowest 

probability combining them to a branch of a tree as shown in the figure. The branches of 

the tree are assigned codes 1 and 0. The tree is developed until every branch is covered. 

The Huffman code is created by concatenating the bits of the branches, starting from the 

root in the other direction. 

 The following example shows the results of the transformation to the frequency 

domain, the quantization and the run length coding. 
***************************     8×8 pixel block    ***************************** 

130 125 133 136 139 149 135 137 

119 132 150 150 135 128 124 122 

135 136 127 120 122 117 133 137 

88 106 133 138 140 134 126 104 

142 151 142 134 116 120 125 140 

120 113 118 148 165 149 147 130 

129 139 141 127 124 120 129 150 

132 126 122 121 134 147 157 149 

 

Table 2..2(a) Original 8x8 Pixel Block 

DCT RESULTS: 
1056 -20 -16 -9 -3 1 -2 3 

-10 18 -20 -6 -3 2 6 -3 

22 -14 17 9 0 -1 7 0 

20 1 -12 6 11 -1 3 -5 

-3 -8 0 8 -10 2 6 -4 

-18 -12 -9 0 -1 -4 3 5 

9 -25 6 31 8 3 -7 3 

8 30 60 -1 0 -9 2 -5 

Table 1.2(b) Frequency Domain Coefficients 

 

 

QUANTIZED RESULTS: 
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132 -1 -1 0 0 0 0 0 

-1 1 -1 0 0 0 0 0 

1 -1 1 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

-1 0 0 0 0 0 0 0 

0 -1 0 1 0 0 0 0 

0 1 2 0 0 0 0 0 

 

Table 2.2(c) Frequency Coefficients after Quantization 

RESULTS OF RUN LENGTH CODING: 

 

(0,132)  (0,-1)  (0,-1)  (0,1)  (0,1)  (0,-1)  (1,-1)  (0,-1)  (0,1)  (2,1)  (7,-1)  (13,-1)  (1,1)  (10,1)  (0,2) 

 

********************************************************************* 

These run length couples are coded using Huffman coding. This example shows this 

algorithm with the previously calculated symbol probabilities.  

  

Run Level code Count Probability( Ps ) Code 

0,-1 4 0.266 1 

0,1 3 0.200 01 

0,132 1 0.066 00111 

0,2 1 0.066 00110 

1,1 1 0.066 00101 

1,-1 1 0.066 00100 

2,1 1 0.066 00011 

7,-1 1 0.066 00010 

10,1 1 0.066 00001 

13,-1 1 0.066 00000 

Table 2.3 Huffman code for given probabilities 
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For the above data, the Huffman code can be developed by the following tree: 

 

 

Figure 2.2 Huffman Coding 

The run length couples are coded as follows: 

00111    1    1    01    01    1    00011    00010    00000    00101    00001    00110      (50 

bits) 

 This example shows a compression factor of 512/50 =10.24. 

2.1.2.5 SPECIAL ALGORITHM FOR ENCODING A VIDEO SEQUENCE 

All the algorithms that have been discussed are applied on each frame and are used in the 

JPEG. But we have other algorithms that shall compress video sequences and not only 

single pictures like JPEG.  
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 There is only a very small difference between the consecutive frames in a video 

sequence. This temporal redundancy is exploited by a technique called motion 

compensation based on prediction. Since frames are closely related, it can be assumed 

that a current picture can be modeled as a translation of a previous picture. The picture is 

divided into macroblocks of 16×16 pixels. The motion compensation delivers a motion 

vector to a macroblock which closely matches the previous macroblock. The difference 

between the macroblocks is coded using the DCT, quantization, run length and variable 

length   

 The motion vectors of neighboring macroblocks are mostly similar, so the DPCM 

coding results in a shorter code. 

 In this section, only an overview of these video coding algorithms has been given. 

The complete detail of these algorithms will follow later on. 

2.1.3 VIDEO CODING STANDARDS 
2.1.3.1 MOTION JPEG  

Motion JPEG is not an official standard. It simply means that each frame of a video 

sequence is coded using the JPEG standard and the JPEG encoder and decoder work in 

real time. 

2.1.3.2 MPEG – 1 

For the compression of real time video signals, ISO named a committee called Motion 

Picture Expert Group (MPEG). There first standard was released in 1993 called MPEG 1. 

The purpose of MPEG 1 is that a video signal and its associated audio can be compressed 

to a bit rate of 1.5 Mbits per second with an acceptable quality. 

MPEG compresses the frames in three different ways. 

• I Frames: These are independently compressed just like the JPEG 

standard. 

• P Frames: These are compressed with reference to the previous frame. 

• B Frames: These are compressed with reference to both previous and next 

frame. 
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2.1.3.3 MPEG –2 

MPEG 2 was released in1994 and is a development to MPEG 1. It was developed for the 

digital television broadcasting. It is intended for higher data rates, larger picture sizes and 

interlaced frames. This standard is also able to use three different color formats which are 

4:4:4, 4:2:2 and 4:2:0. 
 This standard has backward compatibility with MPEG-1. It means that the MPEG 

2 decoder can decode MPEG 1 data streams. 

 MPEG 2 also has the provision of secure data transfer. A fast encryption 

algorithm is described in the standard. Any unauthorized modification can thus be 

discovered. 

 The MPEG 3 standard was targeted towards HDTV. But these features were 

already included in the MPEG 2 standard. Hence, the MPEG 3 standard was altogether 

dropped and the next standard was MPEG 4.[2] 
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2.2 INTRODUCTION TO OPTIMIZATION 
2.2.1 OVERVIEW 
The following Flowchart gives a high level diagram of the complete optimization 

process. 

 

Figure 2.4 Overview of Optimization Process 
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In practice, optimization is an incremental and subjective process that follows this 

general flow:  

Measure: Different methods and tools are used to measure the current performance of 

the code as it executes. Then the most significant problem areas are identified where most 

of the resources are being utilized.   

Evaluate: Then the problem areas are evaluated in detail to determine the best method of 

addressing it. 

Apply: Then one of the optimization techniques is applied to improve the performance.  

Test: Then answers after each code modification are checked to avoid regression. The 

performance of the modified code is determined to determine as to whether any 

improvement has in fact taken place. 

Repeat: Then the above steps are repeated until the required results are obtained.[1]   

Optimization is an iterative process that requires a lot of recompilation and retesting and 

has no fixed end point. The first step in optimizing a program is to evaluate its overall 

performance. This allows you to decide where to focus optimization efforts. 

When you compile and execute a program, it typically will be dominated by one of the 

following activities:  

• Memory management 

• Input/output (I/O) processing 

• Processor computation 

A program is considered to be memory bound, I/O bound, or processor bound when 

its performance is limited by problems with the dominant activity. Use the procedures 

described in this chapter to help identify these problems. 
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When program performance is limited by memory allocation issues, the program 

is considered memory bound. 

If a program spends most of its time performing input/output(I/O), it is considered I/O 

bound and I/O optimization can offer significant savings in elapsed time. 

If the code spends most of its time performing processor calculations, it is considered 

processor bound. If your code is neither memory bound nor I/O bound, then it must be 

processor bound and then the focus should be on improving single-processor 

performance. 

[1] Optimizing Applications on the Cray X1TM System - S-2315-51 

 Now we discuss one by one different techniques of optimization. 

2.2.2 HAND TUNING OPTIMIZATIONS 
 There are a number of reasons why a compiler cant perform optimization itself. 

Sometimes the compiler won't perform optimizations even though it can. The compiler 

assigns a higher priority to producing consistent and correct code, than optimizing 

performance.  

Sometimes a potential compiler optimization could result in errors: (A + B) + C 

does not always equal A + (B + C). Certain optimizations can re-associate floating point 

operations and potentially accumulate into significant errors. The difference is usually 

small as shown in the following example. Finite precision floating-point numbers do not 

always associate. 

 

(A + B) + C        A + (B + C) 

 

3.483986447771696 3.483986447771695 

4.467320344550364 4.467320344550365 

^ 

| 

--- 15th decimal place 

http://www.cray.com/craydoc/manuals/S-2315-51/html-S-2315-51/S-2315-51-toc.html
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Sometimes the difference is huge: Finite floating-point exponents can lead to 

"Catastrophic Cancellation" shown in the following example. 

 

Result of the original loop is 0.000000 

Result of the interchanged loop is 143166118.018429 

 

In cases where the compiler can't or won't perform optimizations, or when it produces 

incorrect results, hand-tuning becomes necessary.  

The remainder of this tutorial concerns "hand tuning" optimization techniques in the 

areas of:  

• Arrays and memory management  

• Loops  

• Arithmetic operations  

• I/O  

 

2.2.2.1 MEMORY CONSIDERATIONS 

2.2.2.1.1 MEMORY HEIRARCHY 

Many optimizations target efficient use of memory resources. Understanding memory 

related factors is highly useful in understanding optimization techniques. Two aspects of 

memory that are critical to understanding optimization are: 

The Memory Hierarchy, which involves the different physical "layers" of memory and 

their different characteristics, and the Spatial and Temporal Locality involving the 

program characteristics which will improve your code performance.  
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Most computer architectures share a similar memory structure. Memory is organized 

within a hierarchy with the fastest, smallest, most expensive memory components at the 

top, and the slowest, largest, least expensive components at the bottom.  

The Memory Hierarchy is necessary because the main memory is about 50 times too slow 

to keep up with the CPU. Now we discuss each component in the memory hierarchy in 

detail. 

 

 
 

 

 

Figure 2.5 Memory Hierarchy 

a) CPU 

The Central Processor Unit is where the execution of computer instructions takes place. 

Modern CPUs usually contain several different functional components, such as floating 

point units, fixed point (integer) units, branch control units, etc.  

b) REGISTER  

Registers are the memory units with immediate access by the CPU. Registers comprise 

the fastest and smallest level of the memory hierarchy. These are usually four to eight 

bytes in size and less than 100 in number.  
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c) CACHE 

Cache is a very fast, but small, area of memory. Cache is typically measured in kilo or 

mega bytes and may also be subdivided into layers (L1, L2). CPU access to data in cache 

usually requires only a single CPU cycle. Cache is usually organized into "lines", with 

each line being measured in bytes (32, 64, 128, 256...)  

d) MAIN MEMORY  

Main Memory is much larger than cache. It is usually measured in mega or gigabytes. 

However, access to main memory is usually an order of magnitude slower than cache, 

being measure in tens of cycles. Main memory is organized into "pages" (4096 bytes on 

the SP).  

e) DISK (Virtual Memory)  

Disk is usually several orders of magnitude slower and larger than main memory. 

Accessing data on disk can cost 100,000s of cycles.  

f) MASS STORAGE (Tape)  

Mass storage is virtually unlimited in size. Access to data on tape is measured in a very 

large amount of time compared to main memory.  

 

2.2.2.1.2 EFFICIENT MEMORY USE 

Programs should be designed so that a high percentage of accesses are made to the higher 

levels of memory. To accomplish this, the programmer should strive for two important 

program characteristics:  

a) Spatial Locality: If location X in memory is currently being accessed, it is likely that a 

location near X will be accessed next.  

b) Temporal Locality: If location X in memory is currently being accessed, it is likely 

that location X will soon be accessed again.  

Taking advantage of spatial and temporal locality translates will minimize cache 

misses, TLB misses, and page faults through data reuse. 
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2.2.2.2 ARRAY AND MEMORY MANAGEMENT OPTIMIZATIONS 

2.2.2.2.1 STRIDE MINIMIZATION 

In a loop, stride is defined as the distance between successively accessed elements of a 

matrix in successive iterations of the loop. Processing matrices with minimal stride takes 

advantage of spatial locality. 

 

FIGURE 2.6 Array Allocation in C 

 When any element is referenced, and needs to be brought into cache from memory, an 

entire cache line worth of data is brought with it. Small stride exploits the extra data 

brought in with the cache line, since the next data to be processed is already in cache. 

Large stride does not exploit the extra data brought in with the cache line, and in fact, 

may require a new cache line to be loaded for each element accessed. To ensure minimal 

stride in C, the innermost loop's induction variable should be the rightmost array 

subscript.  

2.2.2.2.2 ARRAY PADDING 

Array Padding is a technique that can be used to reduce cache misses due to set 

associativity in arrays that are sized by a power of two. To pad an array, simply increase 

the last dimension in C/C++. The optimal amount to pad varies, but should be at least the 

number of elements that fit in one line of cache.  
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2.2.2.3 LOOP OPTIMIZATIONS 

2.2.2.3.1 LOOP FUSION 

Loop Fusion involves the merging of the statements in several loops into a single loop. In 

this way, the loop overheads are reduced, better instruction overlap is allowed and Cache 

misses can be decreased if both loops reference the same array. But the disadvantage is 

that it has the potential to increase cache misses due to cache set associativity effects 

when the fused loops contain references to multiple arrays and the starting elements of 

those arrays map to the same cache line and when the fused loops access arrays that take 

up a large portion of cache.[3] 

 

2.2.2.3.2 INVARIANT IF CODING FLOATING  

The IF statements that do not change from iteration to iteration should be moved out of 

the loop. The compiler can usually detect and perform this optimization except when; 

• The loops contain calls to procedures and the compiler is pessimistic about 

aliasing. 

• And also when Variable-bounded loops that may never get entered.  

• Complex loops where the invariance can not be determined by the compiler.   

2.2.2.3.3 LOOP DEFACTORIZATION 

Loops involving multiplication by a constant can be rewritten so that the multiplication 

takes place outside the loop. The defactorized loop allows the power processor to perform 

a single FMA instruction. For more complex loops, defactorizing should target balancing 

additions and multiplications to provide the floating point unit with a stream of FMA's.  

2.2.2.3.4 LOOP UNROLLING 

This technique is used where a loop runs for a known number of times. By using this 

technique, the compiler does not have to check the loop condition again and again and the 
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number of operations for a loop is significantly decreased, hence achieving optimization. 

Also, data dependence delays can be reduced or eliminated. Loop overheads may be 

reduced.  

2.2.3 INPUT/OUTPUT OPTIMIZATIONS 

Most of the previously discussed optimizations will be of little benefit if your program is 

I/O bound. I/O slows down your program because:  

• I/O is to the order of magnitude slower than internal memory accesses  

• I/O routines consume CPU cycles themselves  

Therefore, all unnecessary I/O should be eliminated. All I/O statements should be moved 

outside the loops. Unformatted binary should be used wherever possible because: 

• Formatted I/O requires that library calls be made to convert the binary 

representation to human readable format and then converted back again to binary 

format when the processor must process the data.  

• Formatted I/O can also result in lost precision and rounding errors.  

• Binary data is smaller - requires less physical I/O time to process and less disk 

space to store. 

Also the data should be accessed from the memory. All the data should be read from 

the memory before the program starts. [4] 
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3.1 INTRODUCTION AND BACKGROUND 

H.264, also known as “MPEG-4 part 10” is a high compression video codec standard. It a  

standard which has been jointly developed by the International Telecommunication 

Union(ITU) Video Coding Experts group and the International Standards Organization 

(ISO) Moving Picture Expert Group. The main goals of the H.264/AVC standardization 

effort have been enhanced compression performance and provision of a "network-

friendly" video representation addressing "conversational" i.e real-time applications for 

example video conferencing and "non-conversational" applications like storage, 

broadcast, and streaming of video. H.264 has achieved a significant improvement in rate-

distortion efficiency relative to existing standards [1].  

 Broadcast television and home entertainment have been revolutionized by the 

advent of digital TV and DVD-video. These applications and many more were made 

possible by the standardization of video compression technology. The next standard in 

the MPEG series, MPEG4, is enabling a new generation of internet-based video 

applications whilst the ITU-T H.263 standard for video compression is now widely used 

in videoconferencing systems. 

MPEG4 (Visual) and H.263 are standards that are based on video compression 

(“video coding”) technology from circa. 1995. The groups responsible for these 

standards, the Motion Picture Experts Group and the Video Coding Experts Group 

(MPEG and VCEG) are in the final stages of developing a new standard that promises to 

significantly outperform MPEG4 and H.263, providing better compression of video 

images together with a range of features supporting high-quality, low-bitrate streaming 

video. The history of the new standard, “Advanced Video Coding” (AVC), goes back at 

least 7 years. 

After finalizing the original H.263 standard for video-telephony in 1995, the ITU-

T Video Coding Experts Group (VCEG) started work on two further development areas: 

a “short-term” effort to add extra features to H.263 (resulting in Version 2 of the 

standard) and a “long-term” effort to develop a new standard for low bit rate visual 

communications. The long-term effort led to the draft “H.26L” standard, offering 

significantly better video compression efficiency than previous ITU-T standards. In 2001, 
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the ISO Motion Picture Experts Group (MPEG) recognized the potential benefits of 

H.26L and the Joint Video Team (JVT) was formed, including experts from MPEG and 

VCEG. JVT’s main task is to develop the draft H.26L “model” into a full International 

Standard. In fact, the outcome will be two identical) standards: ISO MPEG4 Part 10 of 

MPEG4 and ITU-T H.264. The “official” title of the new standard is Advanced Video 

Coding (AVC); however, it is widely known by its old working title, H.26L and by its 

ITU document number, H.264 [5]. 

 

3.2 H.264 CODEC 
Following are some of the main features that make H.264 superior over some of the 

previous video coding standards. 

Quarter-sample-accurate motion compensation: H.264 codec uses quarter-sample-

accurate motion compensation as in H.263 with further enhancements and reduced 

complexity. 

Display order and referencing independency: The decoder may choose the most 

efficient way of displaying pictures for motion compensation referencing improving 

overall performance. 

Weighted prediction: Motion-compensated prediction signal may be weighted and offset 

by the encoder, improving performance in scenes containing fades. 

Small block-size transform: H.264 is based primarily on 4x4 transform, which positively 

influences the quality of certain scenes. 

Hierarchical block-size: Even though the default block-size transform is 4x4, the 

standard is flexible enough for bigger block-size transforms, such as 8x8 or 16x16, for 

improved performance in certain scenes. 

Short word-length transform: H.264 reduces computation complexity requiring only 16-

bit processing. 

Exact-match inverse transform: As opposed to most previous standards, all decoders 

processing video stream encoded using H.264 will produce exactly the same picture. 

Arithmetic and context-adaptive entropy coding: H.264 codec uses advanced entropy 

coding methods improving overall performance.  
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Parameter set structure: The separation and of the parameter set structure from the 

remaining data and special handling makes it less prone to information loss. 

In common with earlier standards (such as MPEG1, MPEG2 and MPEG4), the 

H.264 draft standard does not explicitly define a CODEC (encoder / decoder pair). 

Rather, the standard defines the syntax of an encoded video bit-stream together with the 

method of decoding this bit-stream. In practice, however, a compliant encoder and 

decoder are likely to include the functional elements shown in Figure and Figure 2-2. 

Whilst the functions shown in these Figures are likely to be necessary for compliance, 

there is scope for considerable variation in the structure of the CODEC. The basic 

functional elements (prediction, transform, quantization, entropy encoding) are little 

different from previous standards (MPEG1, MPEG2, MPEG4, H.261, H.263); the 

important changes in H.264 occur in the details of each functional element. The Encoder 

(Figure 2-1) includes two dataflow paths, a “forward” path (left to right, shown in blue) 

and a “reconstruction” path (right to left, shown in magenta). The dataflow path in the 

Decoder (Figure 2-2) is shown from right to left to illustrate the similarities between 

Encoder and Decoder. 

3.2.1 H.264 ENCODER (forward path) 
An input frame Fn is presented for encoding. The frame is processed in units of a 

macroblock (corresponding to 16x16 pixels in the original image). Each macroblock is 

encoded in intra or inter mode. In either case, a prediction macroblock P is formed 

based on a reconstructed frame. In Intra mode, P is formed from samples in the current 

frame n that have previously encoded, decoded and reconstructed (uF’n in the Figures; 

note that the unfiltered samples are used to form P). In Inter mode, P is formed by 

motion-compensated prediction from one or more reference frame(s). In the Figure, the 

reference frame is shown as the previous encoded frame F’n-1; however, the prediction 

for each macroblock may be formed from one or two past or future frames (in time order) 

that have already been encoded and reconstructed. 
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Figure 2.1 Encoder 

 

The prediction P is subtracted from the current macroblock to produce a residual or 

difference macroblock Dn. This is transformed (using a block transform) and quantized to 

give X, a set of quantized transform coefficients. These coefficients are re-ordered and 

entropy encoded. The entropy encoded coefficients, together with side information 

required to decode the macroblock (such as the macroblock prediction mode, quantizer 

step size, motion vector information describing how the macroblock was motion-

compensated, etc) form the compressed bitstream. This is passed to a Network 

Abstraction Layer (NAL) for transmission or storage. 

3.2.2 H.264 ENCODER (reconstruction path) 
The quantized macroblock coefficients X are decoded in order to reconstruct a frame for 

encoding of further macroblocks. The coefficients X are re-scaled (Q-1) and inverse 

transformed (T-1) to produce a difference macroblock Dn’. This is not identical to the 

original difference macroblock Dn; the quantization process introduces losses and so Dn’ 

is a distorted version of Dn. The prediction macroblock P is added to Dn’ to create a 

reconstructed macroblock uF’n (a distorted version of the original macroblock). A filter is 
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applied to reduce the effects of blocking distortion and reconstructed reference frame is 

created from a series of macroblocks F’n. 

3.2.3 H.264 DECODER 
The decoder receives a compressed bitstream from the NAL. The data elements are 

entropy decoded and reordered to produce a set of quantized coefficients X. These are 

rescaled and inverse transformed to give Dn’ (this identical to the Dn’ shown in the 

Encoder). Using the header information decoded from the bitstream, the decoder creates a 

prediction macroblock P, identical to the original prediction P formed in the encoder. P is 

added to Dn’ to produce uF’n which this is filtered to create the decoded macroblock F’n.  

 

Figure 2.2 H.264 Decoder 

  

It should be clear from the Figures and from the discussion above that the purpose 

of the reconstruction path in the encoder is to ensure that both encoder and decoder use 

identical reference frames to create the prediction P. If this is not the case, then the 

predictions P in encoder and decoder will not be identical, leading to an increasing error 

or “drift” between the encoder and decoder.[6] 
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4.1 INTRODUCTION 
TM1300 is a media processor for high-performance multimedia applications that deal 

with high-quality video and audio. These applications can range from low-cost, dedicated 

systems such as video phones, video editing, digital television, security systems or set-top 

boxes to reprogrammable, multipurpose plug-in cards for personal computers. TM1300 

easily implements popular multimedia standards such as MPEG-1 and MPEG-2, but its 

orientation around a powerful general-purpose CPU (called the DSPCPU) makes it 

capable of implementing a variety of multimedia algorithms, both open and proprietary. 

TM1300 is also easily configured in multiple processor configurations for very high-end 

applications.  

4.2 TRIMEDIA VLIW ARCHITECTURE 
TriMedia’s DSPCPU family delivers exceptional performance and high-level language 

programmability for multimedia applications through the use of its VLIW (very long 

instruction word) architecture. TriMedia’s VLIW architecture combines innovations in 

compiler and software design with advances in logic design. Rather than supporting only 

general purpose code as other vendors do, TriMedia’s VLIW architecture supports 

multimedia-specific code that takes full advantage of the architecture. 

This code (along with a C/C++ compiler, Debugger, and other tools) is supplied 

to you in the form of application libraries as part of the TriMedia Software Development 

Environment (SDE). 

4.2.1 OVERVIEW  
The TriMedia architecture is based on a three-level hierarchy of operators: 

• Instructions 

• Operations 

• RISC operations 

One instruction may contain five operations. Each operation may execute multiple 

arithmetic operations.  
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Figure 4.1 Operationd In A Clock Cycle 

 

An example of one such operation is the command ifir(a,b). This command 

contains a total of three arithmetic operations: two multiplications and one addition (aHI * 

aLO + bHI * bLO). Up to five operations including two ifir commands can be issued in 

each machine cycle. 

The ability of TriMedia’s VLIW architecture to execute multiple operations in 

parallel gives it a big advantage over traditional RISC and CISC architectures found in 

current mass-market microprocessors. 

4.2.2 FUNCTIONAL UNIT ASSIGNMENT 
Although the VLIW architecture allows for five operations to be executed per instruction, 

most operations cannot use just any of the slots because each functional unit of the 

TriMedia CPU is assigned to specific issue slots in a TriMedia VLIW instruction. Table 1 

gives the functional unit assignments. 

Because of the number of available functional units and their assignment, some 

operations may have to wait for one or more cycles before they are executed. This means 

that in some cases not all issue slots are used. Good use of issue slots is one of the 

purposes for software code optimization. 
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Table 4.1 Functional Unit Assignments 

 

4.3 ADVANTAGES OF VLIW ARCHITECTURE 
The beginning instruction set architecture (the processor programming model) must be 

distinguished from implementation (the physical chip and its characteristics). VLIW 

microprocessors and superscalar implementations of traditional instruction sets share 

some characteristics such as multiple execution units and the ability to execute multiple 

operations simultaneously. 

The techniques used to achieve high performance are different because the 

parallelism is explicit in VLIW instructions, but must be discovered by hardware at run 

time by superscalar processors. VLIW implementations are simpler for very high 

performance. Just as RISC architectures permit simpler, cheaper high-performance 

implementations than do ClSC architectures, VLIW architectures are simpler and cheaper 

than RlSC architectures because of hardware simplifications. However, they require more 

compiler support. 
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The TriMedia VLIW architecture optimizes parallelism at compile time using its 

sophisticated compilation system. This makes the core less complicated (and feasible) 

and does not require specialized scheduling hardware at run-time. As a result, the 

TriMedia processors have much simpler control logic than other parallel designs and can 

run at higher clock speeds. 

4.4 PERFORMANCE 
The best performance measurement is actual application measurement. Experience shows 

that complex DSP algorithms ported to TriMedia take between 1.0 and 0.5 times the 

number of instruction cycles as on other Digital Signal Processors. However, while these 

algorithms are optimized in C for TriMedia, DSPs are traditionally optimized in assembly 

language. 

In some algorithms, very high peak performance can be achieved. This is one of 

the keys to the optimization of the MPEG decoding algorithm. Because as many as 4 

“RISC” operations can be performed in one TM operation, and because up to five TM 

operations can be executed at the cycle rate of 100 MHz, peak execution rates of 500 

million operations per second are possible. 

The mixture of programmability in C and efficient signal processing loops makes 

Tri- Media particularly suited for the complex signal processing required by today’s 

multimedia. 

4.5 TRIMEDIA SOFTWARE STREAMING ARCHITECTURE 
In a software-driven system like TriMedia, it is important that the authors of diverse 

components agree upon some ground rules governing the connections between 

components. This set of rules has been made available in the TriMedia Software 

Streaming Architecture (TSSA).  

The TSSA: 

• Defines formats and data structures to describe common multimedia data types. 

• Defines procedures to start up and shut down components. 

• Defines a method of connection between data sources and data sinks. 

• Describes rules to determine who owns memory allocated by components. 

 



CHAPTER 4  AN OVERVIEW OF TRIMEDIA TM 1300 

 33 

4.6 TRIMEDIA HARDWARE COMPONENTS 
This section describes the hardware components of the TriMedia system: 

• The TriMedia Processor 

• The TriMedia Board 

4.6.1 THE TRIMEDIA PROCESSOR 

The TriMedia processor can be used as a stand-alone processor, as a coprocessor to a 

more traditional CPU, or as one of a group of TriMedia chips arranged in a multi-

processing configuration. The 32-bit variants of the TriMedia processor have a number of 

special features that help to accelerate target applications. Their DMA-driven I/O units 

operate independently to format data. Peripheral units are included for video in/out and 

audio in/out. Additionally, independent DMA driven coprocessors are available to 

perform key multimedia operations. 

For example, the image coprocessor copies images from the synchronous DRAM 

(SDRAM) to the host’s video frame buffer while simultaneously performing scaling and 

color space conversion. A peripheral block for Variable Length Decoding (VLD) assists 

in the decompression of MPEG-1 and MPEG-2 data streams. 

 

Figure 4.2 TriMedia Block Diagram 
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4.6.2 TRIMEDIA BOARD 

The TriMedia board allows Windows 95, Windows NT, and Macintosh platforms to take 

advantage of the TriMedia processor. The TriMedia board is installed in an available PCI 

slot in the target platform. 

The TriMedia SDE includes a board support package (BSP) that functions as a 

driver interface for the TriMedia board. If you create your own board, you will have to 

create your own BSP. 

The BSP enables you to run all the TriMedia examples that come with the 

TriMedia SDE. 

 

Figure 4.3 The TriMedia Iref Boards And Ports 

 

 

4.6.3 TRIMEDIA SOFTWARE COMPONENTS 

The TriMedia processor is supported by a robust, open TriMedia Software Development 

Environment (SDE) that speeds creation of highly optimized multimedia applications 

entirely in the C and C++ programming languages. The TriMedia SDE provides a 

comprehensive suite of multimedia libraries and system software tools to compile and  
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Figure 4.4 TriMedia Software Components 

 

debug multimedia applications, analyze and optimize performance, and simulate 

execution on the TriMedia processor.[7] 
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In this chapter, we shall discuss the methods with the help of which the optimization 

process was carried out. All the previous chapters were meant to provide the reader with 

a strong knowledge base to understand the complex procedures carried out. These 

procedures are discussed in detail in this chapter. This chapter has been written in such a 

way that first, the method of implementation of a certain block is given. After that, the 

methodology that has been followed by us to achieve optimization has been discussed. 

 

5.1 OPTIMIZATION OF VLD 
5.1.1 VARIABLE LENGTH DECODING IN H.264 
 In H.264, above the slice layer, syntax elements are coded as fixed or variable 

length binary codes. At the slice layer and below, elements are coded using either 

variable-length codes (VLCs) or context-adaptive arithmetic coding (CABAC) depending 

on the entropy encoding mode. However, we shall limit our discussion to VLCs. 

5.1.2 VARIABLE LENGTH CODING (VLC) 
 When entropy_coding_mode is set to 0, residual block data is coded using a 

context-adaptive variable length coding (CAVLC) scheme. This is the method used to 

encode residual, zig-zag ordered 4x4 (and 2x2) blocks of transform coefficients. CAVLC 

is designed to take advantage of several characteristics of quantized 4x4 blocks: 

1. After prediction, transformation and quantization blocks are typically sparse 

(containing mostly zeros). CAVLC uses run-level coding to compactly represent strings 

of zeros. 

2. The highest non-zero coefficients after the zig-zag scan are often sequences of +/-1. 

CAVLC signals the number of high-frequency +/-1 coefficients (“Trailing 1s” or “T1s”) 

in a compact way. 

3. The number of non-zero coefficients in neighboring blocks is correlated. The number 

of coefficients is encoded using a look-up; the choice of look-up table depends on the 

number of non-zero coefficients in neighboring blocks. 

4. The level (magnitude) of non-zero coefficients tends to be higher at the start of the 

reordered array (near the DC coefficient) and lower towards the higher frequencies. 
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CAVLC takes advantage of this by adapting the choice of VLC look-up table for the 

“level” parameter depending on recently-coded level magnitudes. 

CAVLC encoding of a block of transform coefficients proceeds as follows. 

 5.1.2.1 PARSING PROCESS FOR TOTAL NUMBER OF TRANSFORM 

COEFFICIENT LEVELS AND TRAILING ONES 

 Inputs to this process are bits from slice data, a maximum number of non-zero 

transform coefficient levels maxNumCoeff, the luma block index luma4x4BlkIdx or the 

chroma block index chroma4x4BlkIdx of the current block of transform. 

Outputs of this process are TotalCoeff( coeff_token ) and TrailingOnes( coeff_token ). 

The syntax element coeff_token is decoded using one of the five VLCs specified 

in five right-most columns of Table A (See Appendix). Each VLC specifies both 

TotalCoeff( coeff_token ) and TrailingOnes( coeff_token ) for a given codeword 

coeff_token. The choice of table depends on the number of non-zero coefficients in upper 

and left-hand previously coded blocks NU and NL. A parameter N is calculated as 

follows: 

 

If blocks U and L are available (i.e. in the same coded slice), nC = (NU + NL)/2. If 

only block U is available, nC =NU; if only block L is available, nC =NL; if neither is 

available, nC =0. 

 nC selects the look-up table and in this way the choice of VLC adapts depending 

on the number of coded coefficients in neighbouring blocks (context adaptive). Num-

VLC0 is “biased” towards small numbers of coefficients; low values of TotalCoeffs (0 

and 1) are assigned particularly short codes and high values of TotalCoeff particularly 

long codes. Num-VLC1 is biased towards medium numbers of coefficients (TotalCoeff 

values around 2 – 4 are assigned relatively short codes), Num-VLC2 is biased towards 

higher numbers of coefficients and FLC assigns a fixed 6-bit code to every value of 

TotalCoeff. 

5.1.2.2 PARSING PROCESS FOR LEVEL INFORMATION 

 Inputs to this process are bits from slice data, the number of non-zero transform 

coefficient levels TotalCoeff( coeff_token ), and the number of trailing one transform 

coefficient levels TrailingOnes( coeff_token ). 
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Output of this process is a list with name level containing transform coefficient levels. 

 Initially an index i is set equal to 0. Then the following procedure is iteratively 

applied TrailingOnes( coeff_token ) times to decode the trailing one transform coefficient 

levels (if any): 

• A 1-bit syntax element trailing_ones_sign_flag is decoded and evaluated as 

follows. 

• If trailing_ones_sign_flag is equal to 0, the value +1 is assigned to level[ i ]. 

• Otherwise (trailing_ones_sign_flag is equal to 1), the value -1 is assigned to level[ 

i ]. 

• The index i is incremented by 1. 

 Following the decoding of the trailing one transform coefficient levels, a variable 

suffixLength is initialised as follows. 

• If TotalCoeff( coeff_token ) is larger than 10 and TrailingOnes( coeff_token ) is 

less than 3, suffixLength is set equal to 1. 

• Otherwise (TotalCoeff( coeff_token ) is less than or equal to 10 or TrailingOnes( 

coeff_token ) is equal to 3), suffixLength is set equal to 0. 

The following procedure is then applied iteratively ( TotalCoeff( coeff_token ) – 

TrailingOnes( coeff_token ) ) times to decode the remaining levels (if any): 

• The syntax element level_prefix is decoded using the VLC specified in Tables 

(See Appendix). 

• The variable levelSuffixSize is set equal to the variable suffixLength with the 

exception of the following two cases. 

• When level_prefix is equal to 14 and suffixLength is equal to 0, levelSuffixSize is 

set equal to 4. 

• When level_prefix is equal to 15, levelSuffixSize is set equal to 12. 

The syntax element level_suffix is decoded as follows. 

• If levelSuffixSize is greater than 0, the syntax element level_suffix is decoded as 

unsigned integer representation u(v) with levelSuffixSize bits. 

• Otherwise (levelSuffixSize is equal to 0), the syntax element level_suffix shall be 

inferred to be equal to 0. 

• A variable levelCode is set equal to (level_prefix << suffixLength) + level_suffix. 
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• When level_prefix is equal to 15 and suffixLength is equal to 0, levelCode is 

incremented by 15. 

• When the index i is equal to TrailingOnes( coeff_token ) and TrailingOnes( 

coeff_token ) is smaller than 3, levelCode is incremented by 2. 

The variable level[ i ] is derived as follows. 

- If levelCode is an even number, the value ( levelCode + 2 ) >> 1 is assigned to level[ i ]. 

• Otherwise, the value ( -levelCode – 1) >> 1 is assigned to level[ i ]. 

• When suffixLength is equal to 0, suffixLength is set equal to 1. 

• When the absolute value of level[ i ] is larger than ( 3 << ( suffixLength – 1 ) ) 

and suffixLength is less than 6, suffixLength is incremented by 1. 

• The index i is incremented by 1. 

5.1.2.3 PARSING PROCESS FOR RUN INFORMATION 

 Inputs to this process are bits from slice data, the number of non-zero transform 

coefficient levels TotalCoeff( coeff_token ), and the maximum number of non-zero 

transform coefficient levels maxNumCoeff. 

Output of this process is a list of runs of zero transform coefficient levels preceding non-

zero transform coefficient levels called run.Initially, an index i is set equal to 0. 

The variable zerosLeft is derived as follows. 

• If the number of non-zero transform coefficient levels TotalCoeff( coeff_token ) 

is equal to the maximum number of non-zero transform coefficient levels 

maxNumCoeff, a variable zerosLeft is set equal to 0. 

• Otherwise (the number of non-zero transform coefficient levels TotalCoeff( 

coeff_token ) is less than the maximum number of non-zero transform coefficient 

levels maxNumCoeff), total_zeros is decoded and zerosLeft is set equal to its 

value. 

The VLC used to decode total_zeros is derived as follows: 

• If maxNumCoeff is equal to 4 one of the VLCs specified in Table D (See 

Appendix) is used. 

• Otherwise (maxNumCoeff is not equal to 4), VLCs from Table 9-7 and Table 9-8 

(See Appendix) are used. 
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The following procedure is then applied iteratively ( TotalCoeff( coeff_token ) – 1 ) 

times: 

The variable run[ i ] is derived as follows. 

• If zerosLeft is larger than zero, a value run_before is decoded based on Table 9-

10 (See Appendix) and zerosLeft. run[ i ] is set equal to run_before. 

• Otherwise (zerosLeft is equal to 0), run[ i ] is set equal to 0. 

• The value of run[ i ] is subtracted from zerosLeft and the result assigned to 

zerosLeft. The result of the subtraction shall be larger than or equal to 0. 

- The index i is incremented by 1. 

 Finally the value of zerosLeft is assigned to run[ i ]. 

5.1.3 IMPLEMENTATION OF VLD IN REFERENCE DECODER 
 We shall now discuss the implementation of VLD and its sub modules in the 

reference decoder. The basic algorithm used by the decoder in the implementation of all 

the implementations is the same. 

5.1.3.1 CALCULATION FOR TOTAL NUMBER OF TRANSFORM 

COEFFICIENT LEVELS AND TRAILING ONES 

 The process takes bits from slice data and the presence or absence of 

neighbouring blocks in the form of variable ‘vlcnum’ as input. The vlcnum value 

corresponds to the table to be used for decoding. The code book given in Table A (See 

Appendix) is hard coded in the form of two tables. One holds the length of each code and 

the other holds the numerical value of each code. These values are such placed in the two 

dimensional array that the column of the element in the array gives the value of Total 

Coefficients and the row gives the value of Trailing Ones. The flow chart of the 

implementation is given below. 
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Figure 5.1 FlowChart for the calculation of Trailing Ones and Total Coefficients in Reference 

Decoder. 
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 The case vlcnum = 3, is taken as a special case as it is the case of fixed length 

code. It reads six bits from the slice data. The values of Total Coeffs and Trailing ones 

are calculated as follows: 

 

   Trailing Ones = code & 3; 

   Total Coeffs = (code >> 2); 

    if (!Trailing Ones && Total Coeffs == 3) 

     Total Coeffs = 0; 

    else 

                Trailing Ones++; 

 

 If vlcnum is not equal to 3, i.e. it is either 0 or1 or 2, then it iteratively searches 

for a match between the values of the table and the bits read from the stream. Once a 

match is found it returns 0 and exits from the loops. If it parses the entire table and no 

match is found it returns -1 indicating error. 

 

5.1.3.2 CALCULATION OF TOTAL ZERO COEFFICIENTS 

 The process takes bits from slice data and the value of Total Coeffs in the form of 

variable ‘vlcnum’ as input. The algorithm and method of implementation is the same to 

that of the Trailing Ones and Total Coeffs calculations. The only difference is that the 

tables used for the calculation of Total Zeros are different from the tables of Trailing 

Ones and Total Coeffs. Total Zeros are calculated using Tables B and C (See Appendix). 

These tables are hard coded in a similar fashion as the Trailing Ones table. The flow chart 

or the remaining algorithm is exactly the same as for Total Coeffs and Trailing Ones. The 

difference is that only one value is extracted i.e. of Total Zeros instead of two values. 

And vlcnum = 3, is not treated as a special case and the same procedure is followed as for 

the other cases. 

5.1.3.3. CALCULATION OF RUN INFORMATION  

 The run information process takes the same inputs as the Total Zeros calculation 

process. The output is the list of run of zero coefficient levels preceding the non zero 
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coefficient levels. The table used in the process is Table 9.10 (See Appendix). This table 

is hard coded and used in the same algorithm used by the previous two processes. The 

process is overall completely similar to the previous process. 

 

5.1.4 IMPLEMENTATION OF VLD FOR TM – 1300 
5.1.4.1 OPTIMIZATION OF TRAILING ONES AND TOTAL 

COEFFS FOR THE CAVLC 
5.1.4.1.1 TABLE GENERATION 

 The process used in determining the values of Trailing Ones and Total Coeffs has 

substantial loads due to repetitive checking. An alternate approach was used in which all 

the tables were self generated instead of hard coding them. The tables were generated on 

the basis of two properties of the code words. 

1. Leading Zeros of each code word 

2. The three binary values after the ‘1’ following the leading zeros 

The first Three Tables were generated on the basis of the above two mentioned 

parameters such that the leading zeros corresponded to the table row and the value after 

the ‘1’ corresponded to the column of the table. 

The value of Total Coeffs and Trailing Ones corresponding to each table element is 

determined by running the original reference decoder code which checks each element 

value and length with the hard coded table value and length. 

Once the match is found four types of information is packed into the int type table 

element each occupying 8 bits of the 32-bit integer. 

1. The value of Total Coeffs is stored in the first 8 bits. 

2. The value of Trailing Ones is stored in the next 8 bits i.e. from bit 8 to 15. 

3. The length of the code word is stored from bits 16 to 23. 

4. The last 8 bits are used as a check and hold zero if the code exists. If the code 

doesnot exist it holds FF. This check is necessary since many of the combinations 

generated in the table donot exist i.e. are defined as legitimate code words in the 

code book given in the standard. 
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Error Byte Length of Code 

Word 

Trailing Ones Total Coeffs 

31                             23                                 15                                  7                                0 
Table 5.1 Information in each Table Element                               

The load of table generation is only once in the whole execution of the code. 

These code tables are generated at the very start of the execution of the decoder. So it has 

no effect on the decoding speed of the decoder. It is just considered as an initialization 

step. So it basically is considered as a no load operation. 

5.1.4.1.2 IMPLEMENTATION 

The decoding of the trailing ones is carried out by calling the same function as was in the 

reference code. If vlcnum==3 i.e. nC>=8 then the values are calculated in a similar 

fashion as was in the reference decoder. Same also applies for the chroma case. 

 In case vlcnum==0, 1 or 2, then the function: 

 readSyntaxElement_TrailingOnes(sym,dP,temp_code); 

is called with varying argument of temp_code, which corresponds to its respective 

generated table. 

16 bits are read from the stream by ShowBits. 

5.1.4.1.3 CALCULATION OF LEADING ZEROS 

The number of Leading Zeros in the 16 bits read and the value after ‘1’ has to be found in 

order to determine the position of the table element needed to be read. 

 IEEE 754 Standard deals with the Floating Point numbers representation in 

computers. The method of storage of floating point numbers defined in this standard can 

be greatly used to our advantage to determine the Leading Zeros and the value of 

numbers after ‘1’ terming them as mantissa.  

5.1.4.1.4 IEEE 754 FLOATING POINT STANDARD 

 IEEE floating point numbers have three basic components: the sign, the exponent, 

and the mantissa. The mantissa is composed of the fraction and an implicit leading digit 

(explained below). The exponent base is implicit and need not be stored.  
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The following figure shows the layout for a single (32-bit) and double (64-bit) 

precision floating-point values. The number of bits for each field are shown (bit ranges 

are in square brackets):  

 

 Sign Exponent Fraction Bias 

Single Precision 1 [31] 8 [30-23] 23 [22-00] 127 

Double Precision 1 [63] 11 [62-52] 52 [51-00] 1023 

Table 5.2 Layout For A Single And Double Precision Floating-Point Values 

• The Sign Bit 

 The sign bit is as simple as it gets. 0 denotes a positive number; 1 denotes a 

negative number. Flipping the value of this bit flips the sign of the number.  

• The Exponent 

 The exponent field needs to represent both positive and negative exponents. To do 

this, a ‘bias’ is added to the actual exponent in order to get the stored exponent. For IEEE 

single-precision floats, this value is 127. Thus, an exponent of zero means that 127 is 

stored in the exponent field. A stored value of 200 indicates an exponent of (200-127), or 

73.  

• The Mantissa 

 The mantissa, also known as the ‘significand’, represents the precision bits of the 

number. It is composed of an implicit leading bit and the fraction bits.  

 To find out the value of the implicit leading bit, consider that any number can be 

expressed in scientific notation in many different ways. For example, the number five can 

be represented as any of these:  

        5.00 x 100 

        0.05 x 102 

        5000 x 10-3 

In order to maximize the quantity of representable numbers, floating-point numbers are 

typically stored in normalized form. This basically puts the radix point after the first 

non-zero digit. In normalized form, five is represented as 5.0 x 100. A nice little 
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optimization is available to us in base two, since the only possible non-zero digit is 1. 

Thus, we can just assume a leading digit of 1, and don't need to represent it explicitly. As 

a result, the mantissa has effectively 24 bits of resolution, by way of 23 fraction bits.  

So, to sum up:  

1. The sign bit is 0 for positive, 1 for negative.  

2. The exponent's base is two.  

3. The exponent field contains 127 plus the true exponent for single-precision. 

4. The first bit of the mantissa is typically assumed to be 1.f, where f is the field of 

fraction bits.  

Now since the value of exponential gives the number of digits following the most 

significant number so if we substract that value from the total length of the float we will 

get the leading zeros. 

So in the code it is calculated as: 

 

  Out=142-((0x7F800000&(*pival))>>23); 

The value is subtracted from 142 because of being weighted by 127 and the value 

passed to the function is aligned to the 16th bit rather than the 32nd bit. It means that the 

most significant 16 bits do not contain any info. 

   127 + 15 = 142 

The value of mantissa gives the value of the three bits following ‘1’.The value is 

simply obtained as: 

  cx = (*iptr & 0x007FFFFF)>>20; 

Now since the Leading zeros and cx have been determined they are used to 

retrieve data from the table element corresponding to the position equivalent to their 

values. The process is shown in the flow chart given below: 
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Figure 5.2 Flow Chart of Trailing Ones And Total Coefficients (Own Implementation) 

 

5.1.4.5 CALCULATION OF TOTAL ZERO COEFFICIENTS 

The inputs are the bits from the slice data and TotalCoeffs value. The output is the 

number of Total Zero Coefficients. 

 The value of Total Coeffs in the standard vary from 1 – 15, however in the code 

the value varies from 0 – 14. It is important to clarify it here as the value Total Coeffs 

determines the table to be selected of the code book given in Tables B and C (See 

Appendix). So in the algorithm, if the value of Total Coeffs is 0, it will correspond to 

table 1 of Table B. Different procedures are followed for the calculation of Total Zeros 

for different values of Total Coeffs. Hence decision is made on the value of Total Coeffs. 

This is clear in the Flow Chart given below: 
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Figure 5.3 Calculations of Total Zeros for Different Values of Total Coefficients 
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 If the value of Total Coeffs is equal to zero, then the decoder reads 9 bits from the 

stream. It then finds the leading zero bits using the same process used in the calculation 

of Leading Zeros for Total Coeffs and Trailing Ones.  

Now to understand the method of calculating the Total Zeros value lets consider a 

code as an example. 

 

   e.g   code = 0000010 

 

  Leading zero bits =5  Bit after 1st one = 0 

 

 So output is   Zeros Left = (2 * leading zero bits) - bit after 1st one    

        =  2*5 +0 = 10 

 

 

 A special check is placed for the last value of zeros left i.e 15. As it has no bit 

after 1st one so the value calculated may exceed 15. Hence a clipping macro is called 

which clips the values greater than 15 to 15. 

If the value of Total Coeffs in not equal to 0, then it checks if it is equal to 12. If 

the condition is satisfied it reads 3 bits from the bitstream. It then checks if the numerical 

value the three bits read is greater than 1 or not. If the condition is satisfied it calculates 

the value Total Zeros as follows: 

Total Zeros   = 3 – (code>>2) 

 

Now, the values given in Table C for this case are:  000, 001, 1xx, 01x 

 So in the above case we are considering 3rd and 4th values. Shifting them left by 2, 

gives values 1 and 0 respectively from 3rd and 4th. Subtracting these values from 3 simply 

gives the value of Zeros left. If the numerical value of the 3 bits is not greater than one, 

the value of Total Zeros is simply the numerical value of the 3 bits. 

 If the value of Total Coeffs is neither 0 nor 12, we check if it is equal to 13. If the 

condition is true we read two bits from the stream. The code read is clipped to the value 

of ‘2’. The value obtained after clipping is simply the value of Total Zeros. 
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 If the value of Total Coeffs does not satisfy the above if statement we check if it 

is equal to 14. If the condition is true, only one bit is read from the stream. The bit read is 

the value of Total Zeros.  

If the Total Coeffs fails all the above conditions, then we deal all the other cases 

on the basis of the same algorithm. 

 An array showbitlen is passed through the function which contains the maximum 

length of a code in each table. The max length value of each table is placed in the array at 

the same position as corresponding to the table no. e.g For table No 5 of the standard the 

length can be accessed as showbitlen[4]. Bits equal to the value given in the array for 

each table are read from the stream. 

Now the table for each given input is mathematically divided into two, i.e. if the 

code value read is bigger than a certain value it is calculated in one way and if not it is 

calculated in another way. 

The bench mark values which decide whether it is to be calculated by 1st or 2nd are 

also defined in an array in a similar way as the max length for each table. 

 These values are defined in the array outcheck[ ]. 

Now 

If ( code > outcheck [ Total Coeffs ] 

 out  = code >> outcheck1[Total Coeffs ] 

 

outcheck1 is also an array very much similar to outcheck which defines the amount each 

value of code for a particular table is to right shifted. 

Then the value of the Total Zeros is obtained as follows: 

 

  Total Zeros = Big table [ Total Coeffs  –1 ] [ 0] [out ] 

 

Big table is a self defined table of dimensions 11 x 2 x 16. 

 

11 = number of tables 

2 = upper or lower part of the table. 0 for code>outcheck[] and 1 for less. 

16 = code can have values from 0 to 15. 
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The value at a particular point in the array ‘Big table’ specifies the value of Total Zeros 

for that value of code. e.g. 

In Table 4 (Total Coeffs = 0 to 14) code =3  (011xx) corresponds to Total Zeros 

of 7. 

Now as it is right shifted by 1 so code = 011x i.e 0110 or 0111 (6 or 7) 

So Big table[4][0][6] =7  or Big table[4][0][7] =7  

 

5.1.4.6 CALCULATION OF RUN INFORMATION 

The process takes value of Total Zeros from the previous decoding step as input along 

with the slice data bitstream. The output of this process is a list of run of zero transform 

coefficient levels preceding non zero transform coefficient levels called run. 

 The tables corresponding to each of the Total Zeros values are given in Table D 

(See Appendix). The Total Zeros value obtained as input is incremented by 1 as it can be 

seen from the table that values of Total Zeros start from 1. 

 The implementation of the calculation of the Run information is shown in the 

Flow chart below. 
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Figure 5.4 FlowChart of Own Implementation of Run Information  
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 The Total Zeros value obtained from the previous step determines the table to be 

used. First we check if Total Zeros value is equal to 1. If the condition is true then it reads 

1 bit from the bitstream. The complement of the bit read gives the run information. 

 If the above if statement is false, then it is checked if the value of Total Zeros is 

less than 4. If it is less than 4, the decoder reads 2 bits from the stream. The value of the 

run is obtained as: 

    Run = Total Zeros – the 2 bits read  

If both the above conditions fail, it checks if the value of Total Zeros is less than 

7, if the condition is satisfied 3 bits are read from the stream. 

Two tables namely Table Run and Table RunLen of sizes 3x8 are predefined. The 

first one contains the values of ‘run’ while the 2nd one contains the length of the code 

corresponding to that run information. 

The value of Run is obtained as follows: 

  

Run Before = Table Run [Total Zeros – 4] [3 bits read] 

 

 If all the above conditions fail, then we read 11 bits from the stream. If the value 

of the 11 bits read is greater than 255, the value of run is calculated as: 

 

  Run  = 7 – ( 11 bits Read >> 8 ) 

 

 If the value of 11 bits read is less than 255, leading zero bits are found for the 

eleven bits read. The Run information is found as: 

 

   Run Before = leading Zero Bits +4 

 

5.1.5 RESULTS OF OPTIMIZATION 
The original algorithm used nested for loops to find the values from the code book in 

each process. The nested for loops resulted in the breaking of the decision tree and results 

in enormous loads. Our approach of implementation focused on the decrease in the 
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breaking of decision trees and fast approaches to reach to the results. This resulted in 

substantial decrease in loads on the processor. Originally the process of VLD was taking 

15 Mega Cycles. After the optimization of algorithms the load was reduced to 3 Mega 

Cycles resulting in an enormous decrease of 500 %. 

 

 

 

 

 

 

 

 

 

 

 

 
5.2 OPTIMIZATION OF MOTION COMPENSATION 
5.2.1 MOTION COMPENSATION OF LUMINANCE IN H.264 

H.264 supports motion compensation block sizes ranging from 16x16 to 4x4 

luminance samples with many options between the two. The luminance component of 

each macroblock (16x16 samples) may be split up in 4 ways as shown in Figure 5.5: 

16x16, 16x8, 8x16 or 8x8. Each of the sub-divided regions is a macroblock partition. If 

the 8x8 mode is chosen, each of the four 8x8 macroblock partitions within the 

macroblock may be split in a further 4 ways as shown in Figure 5.5: 8x8, 8x4, 4x8 or 4x4 

(known as macroblock sub-partitions). 
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Figure 5.5(a) Macroblock partitions 16x16, 8x16, 16x8, 8x8 

 
 

 

Figure 5.5(b) Macroblock sub-partitions 8x8, 4x8, 8x4, 4x4 

Each partition in an inter-coded macroblock is predicted from an area of the same size in 

a reference picture. The offset between the two areas (the motion vector) has ¼-pixel 

resolution. The luma samples at sub-pixel positions do not exist in the reference picture 

and so it is necessary to create them using interpolation from nearby image samples. The 

sub-pixel samples at half-pixel positions are generated first and are interpolated from 

neighbouring integer-pixel samples using a 6-tap Finite Impulse Response filter. This 

means that each half-pixel sample is a weighted sum of 6 neighbouring integer samples. 

Once all the half-pixel samples are available, each quarter-pixel sample is produced using 

bilinear interpolation between neighbouring half- or integer-pixel samples. 

5.2.1.1 LUMA SAMPLE INTERPOLATION PROCESS 

Interpolation takes following parameters as input. 

• A luma location in full-sample units ( xIntL, yIntL ), 

• A luma location offset in fractional-sample units ( xFracL, yFracL ),and      

• The luma sample array of the selected reference picture refPicLXL 

Output of this process is a predicted luma sample value predPartLXL[ xL, yL ]. 
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Figure 5.6 Integer samples (shaded blocks with upper case letters) and fractional sample positions 
(unshaded blocks with lower case letters) for quarter sample luma interpolation 

 In Figure 5.6, the positions labelled with upper-case letters within shaded blocks 

represent luma samples at full-sample locations inside the given two-dimensional array 

refPicLXL of luma samples. These samples may be used for generating the predicted 

luma sample value predPartLXL[ xL, yL ]. The locations ( xZL, yZL ) for each of the 

corresponding luma samples Z, where Z may be A, B, C, D, E, F, G, H, I, J, K, L, M, N, 

P, Q, R, S, T, or U, inside the given array refPicLXL of luma samples are derived as 

follows: 

xZL = Clip3( 0, PicWidthInSamples – 1, xIntL + xDZL ) 

yZL = Clip3( 0, PicHeightInSamples – 1, yIntL + yDZL )      

Table 8-10 specifies ( xDZL, yDZL ) for different replacements of Z. 

 

 

 
Table 5.3 Differential full-sample luma locations 
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Given the luma samples ‘A’ to ‘U’ at full-sample locations ( xAL, yAL ) to ( xUL, yUL 

), the luma samples ‘a’ to ‘s’ at fractional sample positions are derived by the following 

rules. The luma prediction values at half sample positions are derived by applying a 6-tap 

filter with tap values ( 1, -5, 20, 20, -5, 1 ). The luma prediction values at quarter sample 

positions are derived by averaging samples at full and half sample positions. The process 

for each fractional position is described below. 

• The samples at half sample positions labelled b is derived by first calculating 

intermediate values denoted as b1 by applying the 6-tap filter to the nearest integer 

position samples in the horizontal direction. The samples at half sample positions 

labelled h is derived by first calculating intermediate values denoted as h1 by 

applying the 6- tap filter to the nearest integer position samples in the vertical 

direction: 

b1 = ( E – 5 * F + 20 * G + 20 * H – 5 * I + J )  

h1 = ( A – 5 * C + 20 * G + 20 * M – 5 * R + T )  

 

The final prediction values b and h are derived using: 

b = Clip1( ( b1 + 16 ) >> 5 )  

h = Clip1( ( h1 + 16 ) >> 5 )  

 

• The samples at half sample position labelled as j is derived by first calculating 

intermediate value denoted as j1 by applying the 6-tap filter to the intermediate 

values of the closest half sample positions in either the horizontal or vertical direction 

because these yield an equal result. 

j1 = cc – 5 * dd + 20 * h1 + 20 * m1 – 5 * ee + ff, or 

j1 = aa – 5 * bb + 20 * b1 + 20 * s1 – 5 * gg + hh  

 

where intermediate values denoted as aa, bb, gg, s1 and hh are derived by applying the 

6-tap filter horizontally in the same manner as the derivation of b1 and intermediate 

values denoted as cc, dd, ee, m1 and ff are derived by applying the 6-tap filter vertically 

in the same manner as the derivation of h1. The final prediction value j is derived using: 
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j = Clip1( ( j1 + 512 ) >> 10 )  

• The final prediction values s and m are derived from s1 and m1 in the same manner 

as the derivation of b and h, as given by: 

s = Clip1( ( s1 + 16 ) >> 5 )  

m = Clip1( ( m1 + 16 ) >> 5 )  

 

• The samples at quarter sample positions labelled as a, c, d, n, f, i, k, and q are derived 

by averaging with upward rounding of the two nearest samples at integer and half 

sample positions using: 

a = ( G + b + 1 ) >> 1  

c = ( H + b + 1 ) >> 1  

d = ( G + h + 1 ) >> 1  

n = ( M + h + 1 ) >> 1  

f = ( b + j + 1 ) >> 1  

i = ( h + j + 1 ) >> 1  

k = ( j + m + 1 ) >> 1  

q = ( j + s + 1 ) >> 1.  

 

• The samples at quarter sample positions labelled as e, g, p, and r are derived by 

averaging with upward rounding of the two nearest samples at half sample positions 

in the diagonal direction using 

e = ( b + h + 1 ) >> 1  

g = ( b + m + 1 ) >> 1  

p = ( h + s + 1 ) >> 1  

r = ( m + s + 1 ) >> 1.  

 

The luma location offset in fractional-sample units ( xFracL, yFracL ) specifies which of 

the generated luma samples at full-sample and fractional-sample locations is assigned to 

the predicted luma sample value predPartLXL[ xL, yL ]. This assignment is done 

according to Table 8-11. The value of predPartLXL[ xL, yL ] shall be the output. 
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Table 5.4 Assignment of the luma prediction sample 

 
 
5.2.1.2 IMPLEMENTATION OF LUMA MC IN REFERENCE DECODER 

The decoder takes the position of the starting pixel of the block as input. The values are 

scaled by a factor of 4, so the subpixel positions also from integer values. 

The inputs as defined in the standard are calculated as follows: 

 

 xInt = xL&0x3 

 yInt = yL&0x3 

 xFrac = (xL – xInt) / 4  

 yFrac = (yL – yInt) / 4   

The implementation of the reference decoder is shown in the flow chart. 
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Figure 5.7 Flow Chart of Reference Decoder Motion Compensation 

 The decoder first checks for the full pel case. If the condition is satisfied then it 

just reads the required block from the buffer and exists. If it is false then it checks the 

condition for half sample case i.e. (b sample). If it is true it calculates the values of the 

entire block by applying the filter to find the value of each pixel. Then it goes ahead to 

check if it is just the b case or do a or c also need to be calculated. After that it exists 

from the loop. If the b condition was false it checks for h and if its true for d or n. If h is 

also false it checks for j and further its interdependent cases. Finally if all the above cases 

are false it calculates the respective blocks needed for e, g, p and r and calculates their 

values. 
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5.2.1.3 FLAWS IN THE ALGORITHM 

 The above discussed algorithm has some serious flaws in terms of resource and 

memory utilization.  

1. There are a lot ‘if’ statements which result in the breaking of decision tree.  

2. The memory access is highly inefficient and the same buffer location is accessed 

repeatedly for different operations.  

3. Another flaw which is considered as a part of the calculation of sub luma 

interpolation positions is that the algorithm checks each pixel if it is inside the 

frame i.e. the motion vector is pointing outside the frame. Due to which it has to 

applying clipping to the pixel coordinates every time it reads from the frame 

buffer. 

 

5.2.2 IMPLEMENTATION OF LUMA MC FOR TM – 1300 
5.2.2.1 THE CONCEPT OF PRE COMPUTATION 

In all of the cases of subpixel motion compensation except for the full pel case, b, h or j 

are needed; either as a final result or as an intermediate value for final calculations. Now 

for the calculation of b for a 4x4 block, a 9x4 block i.e. (56 pixels) needs to read. Now if 

two 4x4 blocks exist side by side as shown in the figure 5.8, so the above algorithm 

would read two 9x4 blocks i.e. ( 112 pixels) out which only 4 pixels would be new. 
 
84 84 83 84 82 80 75 70 64 65 
 
84 84 82 81 76 72 67 67 70 68 
 
84 84 82 80 72 69 66 65 62 67 
 
65 78 87 79 71 69 67 65 68 66 
 
76 69 71 74 70 68 67 66 68 67 
 
79 68 66 67 69 68 68 67 68 68 
 
68 70 65 54 68 68 68 69 68 68 
 
73 71 66 66 67 68 69 69 69 69 
 
                                                           Figure 5.8 

     Block 1 Block 2 
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This results in very heavy loads on the processor. As each memory operations needs 3 

cycles, so 112 pixels would need 112 * 3 = 336 cycles. Out of these 336 cycles 156 

cycles are those pixels which are being read again. So basically we are wasting 156 

cycles. 

5.2.2.2 STATISTICAL OCCURRENCE OF ALL SUBPIXEL CASES 

 The ratio of the occurrences of various subpixel cases was analyzed over a 

number of streams, with motion compensation either at 16x16 i.e. (macroblock level) or 

4x4 (block level). The results are shown below. 

Statistical Analysis of 4x4 MC 
(Mobile_cif.26l)
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Figure 5.9 Statistical Analysis of 4x4 Motion Compensation 
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Figure 5.10 Statistical Analysis for 16x16 Motion Compensation 
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 From the graph we see very high ratios of b, h and j in the 4x4 block motion 

compensation case as these are also used in other cases. The full pel case occurrence is 

not very often. In the 16x16 macroblock motion compensation the occurrence of full pel 

case is very frequent but still b, h and j are substantial. Furthermore the graphs also make 

it clear that the occurrence of intra blocks in inter frames is very rare and most of the 

blocks would have to predicted from previous frame. 

 On the basis of the above results we conclude that if pre-compute all the values of 

b, h and j it can result in the substantial reduction of load. This will avoid re-accessing 

the same memory locations. It will also decrease the breaking of the decision tree and the 

algorithm would be greatly simplified. 

5.2.2.3 EDGE CREATION AROUND IMAGES 

 Whenever the motion vector is pointed out of the frame it is basically pointing at 

a data which does not exist, but would have had a particular value if it would have 

existed. The value is that which needs to be predicted. In order to avoid erroneous 

memory access the algorithm has inculcate clipping for memory access operation so that 

it does not access the wrong memory location. So due to clipping no matter how much 

the motion vector points out of the picture, the code will always read the memory at the 

edge of the picture. 

 Clipping has huge loads as two clipping operations are being executed for each 

memory access into the picture buffer. This has substantial load on the processor and 

results in the slowness of the operation. 

 To avoid the loads of clipping an edge or border in created around the picture in 

the memory buffer. The width of the edge is set equal to 16 pixels which correspond to 

the macroblock width. The 16 pixel border is of the same values that of the pixel on the 

edge of the actual image. This is illustrated in the pictures below. 

 



CHAPTER 5  OPTIMIZATION 

  66 

 

Figure 5.11(a) Image with No Borders 

 
 

 
Figure 5.11(b) Image with 16 Pixel Edges on Each Side 
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The above picture clearly shows the border created around the image. This simple 

technique results in a remarkable decrease of load on the processor. 

5.2.2.4 IMPLEMENTATION 

5.2.2.4.1 PRE-COMPUTE 

 The first step in the implementation of the above discussed concepts is the 

creation of the borders of the original image data. This is done by copying the entire 

image data in another image and borders are created by extending the pixels at the edges. 

• Calculation of ‘b’ 

 Once the border has been created, we calculate b for the entire image. The value 

of b is calculated on block to block basis, i.e. one iteration results in 16 b value pixels or 

in other words a 4x4 block. The data is read using an integer pointer. Basically 4 integer 

pointer hold the 4x4 data. 
67 66 68 67 Int* 1 

79 68 66 67 Int* 2 

68 70 65 54 Int* 3 

73 71 66 66 Int* 4 

Figure 5.12 Data of a 4x4 block in 4 int* 

 Now the data needed for the calculation of b half samples for a 4x4 block is a 

block of 9x4. As we use integer pointers to read data, we read data equal to 12x4.This 

data is sent to a macro named filter. 

 The algorithm of the macro filter is developed to calculate the b half sample 

values of a single row of a 4x4 block in a single iteration. The filter is based on Trimedia 

custom op IFIR8UI (arg1, arg2), which byte wise multiply arg1 with arg2 and take there 

sum. 

 

Figure 5.13 Operation of IFIR8UI Custom Op 
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The filter weights are defined as pre-processor directives and are shifted to satisfy 

each case as follows: 

  #define one 1616FB01 

  #define two 000001FB 

  #define three 16FB0100 

  #define four 0001FB16  and so on….. 

These values are byte wise multiplied by the image data resulting in the b half sample 

value. 

 Value =  IFIR8UI (one, int1) + IFIR8UI (two, int2) 

 b = (Value+16) / 32 

This process is repeated until all the values of b half sample are calculated. 

 

Figure 5.14 Image composed of all ‘b’ half samples of an image 

• Calculation of ‘h’ 

For the calculation of h, we need to apply the filter vertically on the data. Now data 

cannot be accessed vertically using integer pointer. This can be a serious drawback to the 

implementation. To overcome it we take the Transpose of each 4x4 block of the entire 

image. 
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Figure 5.15 8x8 data outlined box corresponding to a 4x4 Block 

 

The transpose of a 4x4 block involve 12 operations. He process is illustrated in the figure 

below. 

 

84 84 83 84 82 80 75 70 

84 84 83 83 81 77 72 71 

84 84 82 81 76 72 67 67 

84 84 82 80 72 69 66 65 

65 78 87 79 71 69 67 65 

76 69 71 74 70 68 67 66 

79 68 66 67 69 68 68 67 

68 70 65 54 68 68 68 69 

Figure 5.16 Transposed 8x8 block on 4x4 basis Inset 4x4 block transposed 

84 84 84 84 82 81 76 72 

84 84 84 84 80 77 72 69 

83 83 82 82 75 72 67 66 

84 83 81 80 70 71 67 65 

65 76 79 68 71 70 69 68 

78 69 68 70 69 68 68 68 

87 71 66 65 67 67 68 68 

79 74 67 54 65 66 67 69 
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Figure 5.17 Transpose of 4x4 block 

Once the data has been transposed, we read data for the first column from 0th row, 

4th row and 8th row. The values we get from filter are the four values of the first column 

of the block. The hardware architecture of Trimedia is such designed that accessing the 

memory locations in rows has less load as compared to jumping to whole stride. Keeping 

this in view we read the next 4 bytes on the same row. The values returned are the four 

values of the first column of the next block. Once the end of the row is reached, the 

pointers start accessing data from the below it, for the case being discussed these would 

be 1st, 5th and 9th. This will give data of 2nd column of each block. This process is 

continued until the 1st pointer reaches the end of the 3rd row. When this is done the 1st 

pointer jumps to the 12th row and so on. This process is continued until we get the full 

image composed of h half samples. 

 

 

 

Figure 5.18 Image composed of all ‘h’ samples values of an image 
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• Calculation of j 

 The subpixel values of j, are calculated in the same as way as the values of h. The 

j is calculated by applying filter to the b subpixel data. The procedure followed is 

completely similar to that of the calculation of h. The image completely constructed of j 

values is shown in the figure below. 

 

Figure 5.19 Image composed of all ‘h’ samples values of an image 

 

• Flaw in the calculation of j 

 The implementation of j deviates from that of the standard which results in 

discrepancies in the calculated values. According to the standard, j can be calculated 

from either b1 or h1 i.e. the values of b or h that have not been rounded, averaged and 

clipped. The values obtained from filter which is just the sum of products may be a 

negative number. As it is clipped so it becomes zero. When j is calculated from these 

values it results in erroneous result. Furthermore, the rounding and averaging also 

introduces a discrepancy of +-1 in the final result.   

 The ratio of occurrence of these errors is around 20%. However, they do not have 

substantial effect on the quality of image for smaller number of frames. The effects 
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become visible if all frames of the stream are P except for 1st and that too after 150 to 200 

frames. In normal streams it is usual practice to send an I frame after around 100 to 150 

frames. So they effect of this discrepancy becomes negligible. 

5.2.2.4.2 GETBLOCK 

 The implementation of motion compensation becomes very simple after the pre-

computation of b, h and j. All the motion compensation cases are divided int two 

categories i.e. the ones that do not need further calculation and those who do. Full pel, b, 

h and j are those cases which do not need further calculation and there data can read 

directly from there respective buffers.  

 Now we need to read data from different buffers in different cases. The address of 

the buffers needed for each case is stored in a number of arrays. For the first case in 

which no further calculation is involved only one buffer is needed for each case. The 

address of the different buffers needed in each of the four cases is stored at a position 

calculated by the formula: 

   Value = yFrac<<2 + xFrac 

 So, the values for full pel, b, h and j would correspond to 0, 2, 8 and 10. 

Accessing the array ptr at these locations would give the starting address of their 

respective buffers. 

5.2.2.4.3 BYTE ALIGNMENT 

Once we get the starting address of the buffer, we access data using int*. Now int*’s can 

only access data from memory location addresses divisible by 4. As the buffers are char 

buffers, and the motion vector can point at any location so this creates a problem. In order 

to access data properly we need to make it byte aligned. So we read data from the address 

before the desired address that is divisible by 4. We also calculate a parameter called 

shift which give the value by which the data has to be shifted to get the desired value.  

   Shift = xFrac&0x3 

Now as we have to access a 4x4 block, we read a block of size 8x4. The desired data is 

extracted from two int* which hold 8 values of a row. This is done as follows: 

   ans=((*one<<shift)&(*two>>(4-shift))); 

 The value we get ans are the required four values of a row of a block. 
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  one      two 

  84 84 83 84   82 80 75 70 
 

    83 84 82 80 

     ans 

Figure 5.20 Byte Alignment for a case where shift = 2 

 

 After byte alignment the data is simply given as output. For the other cases data 

needs to be read from two buffers. So, two arrays hold the addresses of the required 

buffers at their respective positions. Once the data has been read using the above 

procedure, the two 4x4 block values are added and averaged on a pixel by pixel basis. 

This operation is implemented using the custom op QUADAVG (arg1, arg2). The 

operation of QUADAVG is shown in the figure 5.21 below. 

 

Figure 5.21 Custom Operation QUADAVG 

 

The result is the output of the function. The flowchart of the above discussed 

process is given below: 



CHAPTER 5  OPTIMIZATION 

  74 

 

Figure 5.22 Flowchart of implementation on TM 1300 
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5.2.3 RESULTS OF OPTIMIZATION 
 There was a substantial decrease in the overall loads of the process of motion 

compensation. Initially the whole process was taking around 24 Mega Cycles per frame. 

After optimization it was reduced to around 5 Mega Cycles which is almost 5 times 

improvement in the processing speed. 

 
F Unoptimized Getbloc PRECOMP Total 

Optimized 
1 0 0 2.6 2.6 

2 23.112 2.718 2.599 5.317 

3 23.422 2.705 2.6 5.305 

4 23.744 2.815 2.595 5.41 

5 24.637 2.823 2.598 5.421 

6 22.252 2.781 2.611 5.392 

7 24.646 2.836 2.598 5.434 

8 23.915 2.736 2.603 5.339 

9 23.876 2.818 2.601 5.419 

10 24.506 2.818 2.599 5.417 

11 24.498 2.778 2.597 5.375 

12 23.761 2.829 2.599 5.428 

13 24.012 2.781 2.612 5.393 

14 22.742 2.811 2.597 5.408 

15 25.193 2.795 2.599 5.394 

16 23.985 2.818 2.596 5.414 

17 25.228 2.789 2.6 5.389 

Figure 5.23 Before and After Optimizing Motion Compensation Luma 

 

 

Figure 5.24 Optimization of Motion Compensation of Luma 
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Figure 5.25 Optimization of Motion Compensation of Luma 

 

5.3 OPTIMIZATION OF MOTION COMPENSATION OF 

CHROMA 
5.3.1 MOTION COMPENSATION OF CHROMINANCE IN H.264 
 The resolution of each chroma component in a macroblock (Cr and Cb) is half 

that of the luminance (luma) component. Each chroma block is partitioned in the same 

way as the luma component, except that the partition sizes have exactly half the 

horizontal and vertical resolution (an 8x16 partition in luma corresponds to a 4x8 

partition in chroma; an 8x4 partition in luma corresponds to 4x2 in chroma; and so on). 

The horizontal and vertical components of each motion vector (one per partition) are 

halved when applied to the chroma blocks. 

 The Motion Compensation of a chroma pixel goes upto 1/8th of a pixel, in 

correspondence with ¼ of the luma component. The interpolation of the chroma pixel is 
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carried out by taking the weighted sum of the pixel itself and the three neighbouring 

pixels. 

 Inputs to this process are similar to that of Luma case which are: 

1. A chroma location in full-sample units ( xIntC, yIntC ), 

2. A chroma location offset in fractional-sample units ( xFracC, yFracC ), and 

3. Chroma component samples from the selected reference picture refPicLXC. 

Output of this process is a predicted chroma sample value predPartLXC[ xC, yC ]. 

In Figure 5.26, the positions labelled with A, B, C, and D represent chroma 

samples at full-sample locations inside the given two-dimensional array refPicLXC of 

chroma samples. 

 

 

Figure 5.26 Fractional sample position dependent variables in chroma interpolation and surrounding 
integer position samples A, B, C, and D. 

 

 

These samples may be used for generating the predicted chroma sample value 

predPartLXC[ xC, yC ]. 

xAC = Clip3( 0, PicWidthInSamplesC – 1, xIntC )  

xBC = Clip3( 0, PicWidthInSamplesC – 1, xIntC + 1 )  

xCC = Clip3( 0, PicWidthInSamplesC – 1, xIntC )  

xDC = Clip3( 0, PicWidthInSamplesC – 1, xIntC + 1 )  

yAC = Clip3( 0, PicHeightInSamplesC – 1, yIntC )  

yBC = Clip3( 0, PicHeightInSamplesC – 1, yIntC )  

yCC = Clip3( 0, PicHeightInSamplesC – 1, yIntC + 1 )  

yDC = Clip3( 0, PicHeightInSamplesC – 1, yIntC + 1 )  
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Given the chroma samples A, B, C, and D at full-sample locations, the predicted chroma 

sample value predPartLXC[ xC, yC ] is derived as follows: 

 

predPartLXC[ xC, yC ] = ( ( 8 – xFracC ) * ( 8 – yFracC ) * A + xFracC * ( 8 – yFracC ) 

* B + ( 8 – xFracC ) * yFracC * C + xFracC * yFracC * D + 32 ) >> 6  

 

5.3.2 IMPLEMENTATION OF MC CHROMA IN REFERENCE 

DECODER 
 Interpolation of Chroma samples in the reference decoder is implemented on pixel 

calculation basis. The decoder calculates the value of one subpixel in a single iteration. 

Thus, the calculations for a complete macroblock would require 64 iterations (8* 8 = 64). 

In each iteration, it checks if the motion vector is not pointing out of the picture so it has 

to apply clipping to all the four memory access. It also calculates the weights of filter 

coefficients in every iteration. This results in a large amount of load on the processor. 

The flow chart of the process is given below. 

     

Figure 5.27 Implementation in Reference Decoder 
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5.3.3 IMPLEMENTATION OF CHROMA MC FOR TM – 1300 
5.3.3.1 IMPLEMENTATION 
The implementation of the chroma motion compensation uses the same concepts and 

ideas as for the luma case. Edges are created around the chroma portion of the image i.e. 

both for Cb and Cr. As there are no fixed weights of the filter coefficients therefore the 

concept of pre-computation cannot be applied here. 

 As currently we are only dealing with the 16x16 macroblock case of Motion 

Estimation at our encoder so instead of calculating the prediction values on pixel basis we 

carry out our calculation at 4x4 block basis. A 4x4 chroma block corresponds to a 8x8 

Luma block. The limit is set at 8x8 and not 16x16 in terms of Luma because the output 

from the motion compensation is passed to IDCT. IDCT has a bottle neck and it operates 

at 4x4 blocks. So a 4x4 chroma just satisfies the requirement. We could have carried our 

calculations on an 8x8 block case but the bottle neck would have come at IDCT.  

 To calculate the interpolated values of the pixels at 4x4 block level we need actual 

image block size of 5x5. We read an 8x5 block using int*’s. An 8x5 block is read instead 

of a 5x5 block because we cannot read five bytes using int*’s. Furthermore it is helpful as 

we need to carry byte alignment of the read due to similar reasons as in case of Luma 

motion compensation.  

 The weighted coefficients of the filter are calculated and all the four values are 

packed in an integer. To calculate the value of one pixel we need its value along with 

three neighboring pixels. Now these pixels are not in one integer. So these have to be 

packed in one integer to make operations simple. 

 Different techniques are used for each column of pixels in a block. For the first 

column we use the custom op PACK16LSB (arg1, arg2). The custom op packs the Least 

Significant 16 bits of the two integers. 

 

Figure 5.28 Packing of 16 LSB’s of the two integers 
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 The least significant bits are packed for the first column due to endian invert i.e. 

we are using the little endian scheme for our code. The code is as follows: 

   one=PACK16LSB(b,a); 

 

 For column 2, the data is aligned as: 

   int one1,two2,sort=0; 

   one1=FUNSHIFT1(a,sort); 

   two2=FUNSHIFT1(b,sort); 

   one=PACK16MSB(two2,one1); 

 Only the data to be used is moved to most significant 16 bits and the rest is 

discarded. It is then packed to achieve the result. For column 3, a procedure similar to 

column 1 is used except most significant 16 bits are packed. For column 4, the procedure 

is similar to column 2, except the shift is of 3 i.e. FUNSHIFT3 (arg1, arg2) is used. 

 To apply the filter we use the custom op IFIR8UI which gives the byte wise 

product of the coefficients and pixel values and finally sums them up. 

 Finally each interpolated pixel value is rounded and averaged. The overall effect 

of this process is a great reduction of the overall loads of the operations due no breaking 

of decision trees due to excessive nested loops.  

Flow Chart of our implementation of Motion Compensation for Chroma is given below: 

 

 

Figure 5.29 Implementation of Motion Compensation of Chroma on TM 1300 
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5.3.4 OPTIMIZATION RESULTS 
The result of this optimization was a remarkable decrease in the loads of this process. 

Initially the loads of the chroma interpolation were around 17 Mega Cycles per frame. 

After optimization these were reduced to around 2.5 Mega Cycles. Hence, there was a 

680% improvement in the processing speed of the chroma motion compensation. 

 
Frame 

No. 

Unoptimized Optimized 

1 9.963 0 

2 17.462 2.452 

3 17.371 2.446 

4 17.533 2.481 

5 17.534 2.501 

6 17.544 2.501 

7 17.583 2.527 

8 17.469 2.484 

9 17.508 2.504 

10 17.576 2.504 

11 17.534 2.502 

12 17.532 2.507 

13 17.515 2.51 

14 17.568 2.517 

15 17.516 2.494 

16 17.555 2.528 

17 17.486 2.5 

Table 5.5 Before and After Optimizing Motion Compensation Chroma 

 
 

 

Figure 5.30 Optimization of Motion Compensation of Chroma 
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5.4 OPTIMIZATION OF IDCT 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The portion in gray was implemented in the function itrans().A4x4 DCT of an input array 

A is given by: 

Y = TATT 

The input coefficients passed in the function are already transposed. Thus: 

Y = TA T TT  or 

Y = T(TA) T 

Its implementation is carried out by determining the intermediate values Y1 and then 

calculating the final result Y. 

STEP 1: 

Y1 = TA 

 
 
 
 
 
        =  
 
 
 
 
 

 
MC 

 
ITX 

Rounding 
& 

Clipping 

16 bit MC Data  

Coefficients 
(16 bit) 

Unsigned char 
(8 bit) 

Reconstructed 
Image 

16 bit Data 

y100 y101 y102 y103 
 
y110 y111 y112 y113 
 
y120 y121 y122 y123 
 
y130 y131 y132 y133 

1 0 1 0 
 
1 0 -1 0 
 
0 0.5 0 -1 
 

0 1 0 0.5 

a0 b0 c0 d0 
 
a1 b1 c1 d1 
 
a2 b2 c2 d2 
 

a3 b3 c3 d3 

Figure 5.31 Block Diagram of a portion of an H264 Decoder 
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    = 
 
 
 
 
STEP 2: 
 
Y=TY1

T 
 
 
 
 
 
        =  
 
 
 
 
 
 
 
 
   = 
 
 
 
 
Inverse transform is applied sequentially on all four columns and then the rows of the 

input 4x4 block. Both step 1 and step 2 and performed for one 1D transform. 

1D transforms are supposed to be applied in the following 2 steps. 

 
 
 
 
 
 
 
 
 
   Vertical    Horizontal 
 

a0 + a2 b0 + b2 c0 + c2 d0 + d2 
 
a0 – a2 b0 – b2 c0 - c2 d0 - d2 
 
a1/2 – a3 b1/2 – b3 c1/2 – c3 d1/2 – d3 
 

a1 + a3/2 b1 + b3/2 c1 + c3/2 d1 + d3/2 

  

y00 y101 y102 y103 
 
y10 y111 y112 y113 
 
y20 y121 y122 y123 
 
y30 y131 y132 y133 

1 0 1 0 
 
1 0 -1 0 
 
0 0.5 0 -1 
 

0 1 0 0.5 

y100 y110 y120 y130 
 
y101 y111 y121 y131 
 
y102 y112 y122 y132 
 
y103 y113 y123 y133 

y100 + y102 y100 + y102 y100 + y102 y100 + y102 
 
y100 – y102 y100 – y102 y100 – y102 y100 – y102 
 
y101/2 – y103 y101/2 – y103 y101/2 – y103 y101/2 – y103 
 

y101 + y103/2 y101 + y103/2 y101 + y103/2 y101 + y103/2 
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Direct Implementation: 

 
#define H264trans1D(sa,sb,sc,sd)\ 
{\ 
unsigned short se,sf,sg,sh;\ 
    se=sa+sc;\                //STEP 1 
    sf=sa-sc;\ 
    sg=(sb>>1)-sd;\ 
    sh=sb+(sd>>1);\ 
\ 
    sa=se+sh;\                //STEP 2 
    sb=sf+sg;\ 
    sc=sf-sg;\ 
    sd=se-sh;\ 
} 
 
// executed 8 times (4 columns & 4 rows) for complete 
// 4x4 block transformation 
 

 
 
5.4.1 OUR IMPLEMENTATION 
As the input data is in shorts, we pack the shorts into integers and apply the transform on 

two columns at a time, rather than the above process, and then repeat the procedure for 

the remaining two columns. The columns ‘a’ and ‘b’ are combined as ‘ab’ and ‘c’ and ‘d’ 

are combined as ‘cd’ 

The above equations in the form of integers become: 

STEP 1: 

 
 
 
 
 
        =  
 
 
 
 
 
 
 
 

y100 y101 
 
y110 y111 
 
y120 y121 
 
y130 y131 

1 0 1 0 
 
1 0 -1 0 
 
0 0.5 0 -1 
 

0 1 0 0.5 

ab0 cd0 
 
ab1 cd1 
 
ab2 cd2 
 

ab3 cd3 

ab0 + ab2  cd0 + cd2 
 
ab0 – ab2  cd0 - cd2 
 
ab1/2 – ab3 cd1/2 – cd3 
 

ab1 + ab3/2 cd1 + cd3/2 
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                                          = 
STEP 2: 
 
 
 
 
        =  
 
 
 
 
 
 
 
 
 = 
 
 
 
 
 
The shorts packed into integers are added, subtracted and shifted using DSPIDUAL 

functions, discussed in the end of this chapter, which process the 16LSBs and 16MSBs of 

an integer individually. 

 
Code Ref: 

 
#define H264trans1D(sa,sb,sc,sd)\ 
{\ 
unsigned int se,sf,sg,sh;\ 
    se=DSPIDUALADD(sa,sc);\           //STEP 1 
    sf=DSPIDUALSUB(sa,sc);\ 
    sg=DSPIDUALSUB(DUALASR(sb,1),sd);\ 
    sh=DSPIDUALADD(sb,DUALASR(sd,1));\ 
\ 
    sa=DSPIDUALADD(se,sh);\           //STEP 2 
    sb=DSPIDUALADD(sf,sg);\ 
    sc=DSPIDUALSUB(sf,sg);\ 
    sd=DSPIDUALSUB(se,sh);\ 
} 
 
// executed 4 times for a complete 4x4 block 
// transformation. Half processing than the 
// previous method. 
 

y00 y101  
 
y10 y111  
 
y20 y121  
 
y30 y131  

1 0 1 0 
 
1 0 -1 0 
 
0 0.5 0 -1 
 

0 1 0 0.5 

y100 y110  
 
y101 y111  
 
y102 y112  
 
y103 y113  

y100 + y102 y100 + y102 
 
y100 – y102 y100 – y102 
 
y101/2 – y103 y101/2 – y103 
 

y101 + y103/2 y101 + y103/2 
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After applying the process on the columns, the same process is then applied on all the 

four rows of the resulting matrix after transposing it. Transpose is taken by individually 

taking four 2x2 transposes using the PACKLSB and PACKMSB custom operations  of 

TM1300 (discussed in the end of this chapter) and moving the results to their proper 

registers. 

 
 
 
 
 
 
 
 
 Vertical Horizontal 
 
Code Ref: 

 
  H264trans1D(ab1,ab2,ab3,ab4);      //vertical 
  H264trans1D(cd1,cd2,cd3,cd4); 
 
  Transpose2x2(ab1,ab2,sab1,sab2);   //transposition 
  Transpose2x2(ab3,ab4,sab3,sab4); 
  Transpose2x2(cd1,cd2,scd1,scd2); 
  Transpose2x2(cd3,cd4,scd3,scd4); 
 
 
  H264trans1D(sab1,sab2,scd1,scd2);  //horizontal 
  H264trans1D(sab3,sab4,scd3,scd4); 
 

 
 
5.4.1.1 RECONSTRUCTION 
 
Reconstructed sample values (section 8.6.1.1) have to be calculated using the result of the 

inverse transform and the predicted block. 

 

Inputs:  

• Index of the 4x4 inverse transformed block. 

• Inter prediction samples for the current macroblock. 

• Prediction residual transform coefficient levels. 
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Output:Decoded samples of the current macroblock prior to the deblocking filter 

process. 

A 4x4 block is picked from the 16x16 block of scaled predicted values. For this, 

the predicted values are picked up using a 1 dimensional pointer initially pointing at the 

offset value of the predicted 16x16 array and later by giving the suitable increments to 

access the subsequent elements of the required 4x4 block.  

Predicted values are required to be scaled up by a factor of 64. This is done by 

using the custom operation DSPIDUALMUL(a,b) of TM1300. This custom operation 

basically multiplies the 16 LSBs and the 16 MSBs of an integer ‘a’ with the 16 LSBs and 

the 16 MSBs of integer ‘b’ respectively. Thus scaling our 2 shorts of 16 bits in one 

operation. Multiplication with 0x00000040 is equivalent to scaling up by 64. 

 
Code reference: 

 
DSPIDUALMUL(mab,0x00400040); 

 
 
Where mab is an integer value, which holds two motion compensated shorts of a 4x4 

array which are scaled up by 64 by individual multiplication with 16bit 0x0040. 

 

The corresponding 16 LSBs and 16MSBs of the scaled predicted values, the LevelScale 

(explained in the equation 8-254 in the standard) and the inverse transformed values are 

added by the using the custom operation DSPIDUALADD(a,b). 

Code reference: 
 

DSPIDUALADD(DSPIDUALADD(y00,RESULT),0x00200020) 
 

 

*Where RESULT is the scaled motion compensated values calculated from the previous 

code reference and y00 is transformed values. 

In accordance with equation 8-287 of the standard, the computed value is shifted to right 

by 6 bits and then clipped in the range of 0-255 

The scaling down is done by using the custom operation DUALASR(a,b) that shifts the 

16 MSBs and 16 LSBs of an integer ‘a’ by ‘b’ bits individually. 
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The clipping is achieved by the custom operation DUALUCLIPI(a,b) that clips the 16 

MSBs and 16 LSBs in the range of 0-255 individually. 

 

Code reference: 

 
DUALUCLIPI(DUALASR(RESULT2,6),255); 

 
 
(Where RESULT2 is the sum calculated in the previous code reference.) 

 

This gives us the unsigned character array of reconstructed block prior to the deblocking 

filter and completes the inverse transformation and the reconstruction process. 

5.4.1.2 CUSTOM OPERATIONS USED 
The custom operations of the TriMedia processor that have been used in the optimization 

of the Inverse Discrete Cosine Transform are Dspidualadd, Dspidualsub, Dspidualmul, 

Pack16msb,Pack16lsb, Dualuclipi and Dualasr. The details of these custom operations 

can be viewed in the appendix. 

5.4.1.3 RESULTS 

The following graphs show the obtained results after the optimization of Inverse DCT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.31 Before and After the Stand Alone Implementation of IDCT 
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6.1 INTRODUCTION TO DISPLAY DRIVERS 
The image after decoding is in raw YUV 4:2:0 format. It can either be stored to the hard 

disk or it can be sent to a rendering device such as a television or monitor. The YUV data 

decoded, by the decoder, does not have the necessary information, required by the CCIR 

656 standard, to be displayed on the television. In order to convert data to the desired 

format, an on board chip, SAA-7125 is used along with the TriMedia processor. The 

software module built to use the SAA-7125 chip is called a video out driver. The onboard 

device is initialized once at startup and is then used to display the decoded image on the 

television. This chapter will shed light on the basic operation of the television scanning 

and the working of the video out driver. 
Images on a television screen are made up of pixels present in horizontal lines. An 

image is formed by the electron gun moving horizontally from left to right and top to 

bottom one line after another. Hence an electron gun moves both from left to right as well 

as from top to bottom. It simply means that images seen on a television screen are made 

by an electron gun moving from the top left corner of the screen to the bottom right 

corner. Another important fact is that one image as seen on the television is not created in 

a single scan of the electron gun, from the top left corner to the bottom right corner, but 

by two such scans. Each of these scans is called a field. Hence we can say that two fields 

scanned by the electron gun form a frame of video or an image. Let us consider that a 

television screen has ten lines then in the first scan the gun would scan odd numbered 

lines namely 1,3,5,7,9 and in the second scan even numbered lines 2,4,6,8,10, thus 

completing one frame. Such an image, formed from the combination of two fields, is 

called an interlaced image. It also implies that the field rate is always twice the frame 

rate. If we have a frame rate of 20 frames per second, the field rate would be 40 fields per 

second and the video will give the same effect of that of 40 frames per second.An 

illustrated example of an interlaced image is shown in figure 6.1 below: 
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Figure 6.1 An Interlaced Image Scan Pattern 

6.2 DEVELOPMENT OF DISPLAY FOR TELEVISION 
  In order to display this data on a television the CCIR 656 standard was defined. 

The standard defines that for PAL standard the number of pixels and lines is 720 x 525 

and incase of NTSC is 720 x 480. The standard defines that each line is to be preceded by 

a SAV (Start Active Video) and the completion of a single line is to be followed by an 

EAV (End Active Video) code. The advantage of using SAA-7125 is that once it is 

initialized it adds the SAV and EAV information to the video frames itself.  

6.3 STEPS  
In order to make the SAA-7125 work properly a device driver or in other words a video 

out driver, software module, needs to be created. The device driver consists of two parts 

one part is concerned with the proper initialization of the video out unit SAA-7125 and 

the other part is concerned with the working. The two parts can be defined by four 

distinct steps: 

 

STEP1 – Open up an instance of the video out driver. 

STEP2 – Setup up an instance of the video out driver. 

STEP3 – Setup the video settings for the video out driver. 

STEP4 – Start the video out driver. 
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The first three steps are part of the initialization process and the final step is related to the 

working of the video out driver. 

6.3.1 INITIALIZATION PROCESS FOR VIDEO DRIVER 
In the first step we initialize an instance of the video out driver. This is done by opening 

an instance of the video out driver using the device library api  

6.3.1.1 STEP 1 

voOpen( ) 

This function checks if there is a video out driver unit attached to the TriMedia processor 

and in case of success returns an instance of the video out driver. 

6.3.1.2 STEP 2 

In the second step we initialize an instance of the video out driver. This is done by calling 

the device library api function  

voInstanceSetup( ) and passing the voInstanceSetup_t structure to the function 

The voInstanceSetup structure consists of the following fields: 

 

typedef struct voInstanceSetup_t 

{ 

Bool     hbeEnable; 

Bool     underrunEnable; 

UInt32    ddsFrequency; 

intPriority_t    interruptPriority; 

void     (*isr)(void); 

tmVideoAnalogStandard_t  videoStandard; 

tmVideoAnalogAdapter_t  adapterType; 

} 

voInstanceSetup_t, *pvoInstanceSetup_t; 

 

hbeEnable True enables interrupts for highway bandwidth errors. 

underrunEnable True enables interrupts when an under-run occurs. 

ddsFrequency Frequency, in Hertz, to be set to 27000000 for TriMedia . 

interruptPriority VO interrupt priority. 
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 isr Pointer to the interrupt service routine. 

videoStandard Video standard to which the video-out decoder on the board must be  

   programmed. NTSC or PAL. 

adapterType The adaptor type (either CVBS and Svideo) 

 

This structure is used as the common initializing structure for all video-out modes of 

operation, including YUV images and raw data streaming modes. It is passed to the 

voInstanceSetup function to perform an initial setup of the video-out peripheral. 

 

The setting used by us are  

hbeEnable   = True 

underrunEnable  = True 

ddsFrequency  = 27000000 

interruptPriority  = intPRIO_3 (Medium Priority) 

 isr    = voTestISR (Function name to be called to process isr) 

videoStandard  = NTSC / PAL (depending upon the height of the image) 

adapterType   = None (This means video is output on both the CVBS and SVideo  

   Connectors 

6.3.1.3 STEP 3 

In the third step we define the YUV settings for the video out driver. This is done with 

the following device library api function  

voYUVSetup ( ) and passing the voYUVSetup_t  structure to the function. 

The voYUVSetup_t  structure consists of the following fields 

 

typedef struct voYUVSetup_t 

{ 

Bool    buf1emptyEnable; 

Bool    yThresholdEnable; 

voYUVModes_t  mode; 

UInt    imageVertOffset, imageHorzOffset; 

UInt    imageWidth, imageHeight; 
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UInt    yThreshold; 

UInt    yStride, uStride, vStride; 

Pointer   yBase, uBase, vBase; 

} 

 voYUVSetup_t, *pvoYUVSetup_t; 

 

buf1emptyEnable True enables interrupt when buffer 1 is empty. 

yThresholdEnable True enables Y threshold interrupt. 

mode The image mode of operation. vo420_UNSCALED,  

vo422_COSITED_UNSCALED, vo420_SCALED to name a few. 

imageVertOffset, imageHorzOffset Vertical and horizontal start of the upper left corner 

of the output. 

imageWidth, imageHeight Image width and height in samples. 

yThreshold When the yThresholdEnable flag is true, an interrupt will be generated when  

the line counter reaches this value. 

yStride, uStride, vStride Number of bytes from the start of one line to the start of the  

next line. The values depend on the YUV image mode. 

yBase, uBase, vBase Pointers to the start of the YUV data.  

 

The structure is passed to the voYUVSetup function to set up the video-out peripheral in 

image mode. 

 

The setting that have been used are;  

buf1emptyEnable  = True  

yThresholdEnable  = False 

mode   =.vo420_UNSCALED,  

imageVertOffset = 120  

imageHorzOffset  = 176 

imageWidth   = 352 

imageHeight   = 240 / 288 ( Depending on the height of the image) 

yThreshold   = False 
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yStride  = 704 

uStride  = 352 

vStride  = 352 

yBase, uBase, vBase = Pointers to the start of the YUV data. These are the buffer  

pointers that are used by the video out unit to display the data on the television. 

 

 

Now the video out driver is initialized and ready to be started.  

6.3.2 WORKING OF VIDEO DRIVER 
6.3.2.1 STEP 4 

In the fourth step we start the video out driver. This is done using the device library api 

function 

voStart( ) 

This function starts the video out driver unit attached to the TriMedia processor and waits 

for interrupts to occur. Each interrupt that occurs sets a pre-defined flag in the MMIO 

registers (Memory Mapped Device Registers) of the TriMedia processor. Each flag 

represents a different interrupt and after checking these flags the appropriate function can 

be called to handle this interrupt. The video out driver runs on this principle. 

 

Once the driver starts running interrupts occur. These interrupts are processed in the 

voTestISR function. This function handles the following interrupts in this video out 

driver: 

        voAckYTR_ACK( ) 

        voAckURUN_ACK( ) 

        voAckHBE_ACK( ) 

        voAckBFR2_ACK( ) 

        voAckBFR1_ACK( ) 

 

 

An acknowledge means that the interrupt has been handled or processed by the video out 

driver and reset the MMIO register. In this driver we only process the case of   
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voAckBFR1_ACK( ). Incase of any other interrupt the interrupt is acknowledged but no 

action is taken against it. 

 

We check the status of the video out status buffer. If the status is VO_BUF1EMPTY then 

this means that the previous buffer containing the video image has been displayed and the 

video driver is waiting for a new image. Incase if the new image is not available the video 

out driver is repeatedly going to display the same image. If the status is 

VO_BUF1EMPTY then check if the field last displayed is the first (odd field) or second 

(even field). If the field is the first field then don’t change the image. Keep the old data 

pointers and wait till the second field is displayed by the driver. This is necessary because 

both fields combined together would form the complete image. If the buffer is changed 

after only one field is rendered then this would result in an image in which we would see 

an image with alternate black lines. If the field displayed is the second field then get a 

new image, as implemented in the driver it means acquire new pointers for the image. 

Now that we have the new image we can start all over displaying the first field and then 

the second field.  

 

In this version of the decoder we only decode CIF (352 x 288) / SIF (352 x 240) size 

images. The buffers allocated to hold the image to display are however 704 x 480 size 

buffers. This means that a small image of 352 x 288/240 can placed anywhere in the 

buffer of dimension 704 x 480. Using the imageHorzOffset and imageVertOffset we 

can place the image as we choose. We also set the stride of the image to two times 352, 

704. This means that the image is going to be placed in the 704 x 480 size buffer line 

after line. This means that the driver is going to display the first line of the image and 

then the third line and not the second. After the third line fifth, seventh, ninth and so on, 

only odd lines. This happens because of the interlaced nature of the video out unit. Thus 

it would first display one field. Next the interrupt occurs indicating that the first field has 

been displayed and the second field is to be displayed. Since we don’t change the buffer 

the video out unit starts reading and displaying the even lines of the image. In this way 

the whole image, both even and odd lines, is displayed on the television screen. 
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CONCLUSION 
 

 The aim of the project was to optimize the H.264 video Decoder to a level that it 

could support web based video applications. These applications normally send video 

streams at 6 to 8 fps. After optimizing the H.264 video decoder we were able to decode 

the streams at 6 fps, hence achieving the benchmark frame rate for web based video 

applications. 

 In our project we targeted the computationally intensive modules of H.264 

namely Variable Length Decoding (VLD), Inverse Discrete Cosine Transform (IDCT) 

and Motion Compensation (MC). Also apart from developing new and more efficient 

algorithms for these modules we also carried out small level optimization by improving 

the memory access procedures. The code was also restructured and various operations 

were related with the Custom Ops of the DSP to fully utilize the processing capabilities 

of the process. 

 The project provided us the opportunity to understand the various processes 

involved in the optimization of a code. The code restructuring is an essential part of the 

optimization process which was a new idea to us. The process of modifying existing 

algorithms and developing more efficient algorithms was completely new experience for 

us. 

 There is still room for improvement and further optimizations can be made to De-

blocking filter, Intra Prediction, initialization processes and memory management issues. 

This project can be used as a base to further work on the optimization of H.264 as a 

future project or to develop a streaming video web application.  
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Appendix A 
 
 

 
 

Table A. coeff_token mapping to Total Coeff (coeff_token) and Trailing Ones (coeff_token) 

 



 

 
Table B. Total_Zero Tables For 4x4 Blocks With Total Coeff (Coeff_Token) 1 To 7 

 
 
 
 
 

 
Table C. Total_Zeros Tables For 4x4 Blocks With Total Coeff (Coeff_Token) 8 To 15 



 
Table D Tables for run_before 
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