

DESIGN OF AN EYE GESTURE CONTROL SYSTEM

By

NC Hasnain Raza | NC Shaheer Cheema | NC Syed Ali Shehryar | NC Sheharyar Naseer

Submitted to the Faculty of Electrical Engineering, Military College of Signals, National

University of Sciences and Technology, Islamabad in partial fulfillment for the

requirements of a B.E Degree in Telecommunications Engineering

JUNE 2014

ABSTRACT

The project is aimed towards the design of an open-source generic eye-gesture control

system that can effectively track eye-movements and enable the user to perform actions

mapped to specific eye movements/gestures. It needs to be accurate and real-time, so that

the user is able to use it like other every-day devices with comfort. The Hardware for this

project has to be cheap so everyone can afford and use it, thus an Arduino Due Board

along with a modified Microsoft LifeCam HD-6000 is used. The project is designed such

that it can be ‘hooked up’ to any compatible software or machinery – for example it is

able to control the mouse cursor on a computer or operate a Robotic Arm, and can be

extended by enthusiasts to operate hospital on-call equipment for patients suffering from

diseases that render movements from the neck down ineffective. It should not be difficult

to operate and must be user friendly and allow for easy calibration so that everyone,

despite their limited technical knowledge or disability, is able to use it easily.

III

ACKNOWLEDGMENTS

We would like to offer our thanks to Lec. Moiz Ahmed Pirkani for his supportive

attitude, and complete guidance throughout the successful completion of the project, to

the well-respected faculty members of MCS for helping by sharing their experience and

steering the project in the right path.

IV

TABLE OF CONTENTS

1.1 Background/Motivation ... 7

1.2 Project Description ... 8

2. SCOPE, SPECIFICATIONS & DELIVERABLES OF THE PROJECT 11

3. LITERATURE REVIEW/BACKGROUND STUDY ... 13

3.1 Literature Review ... 13

3.2 Background Study .. 14

3.2.1 The Human Eye .. 14

3.2.2 Field of Vision .. 16

3.2.3 Eye Masculinization and Stabilization .. 17

3.2.4 Direction of Visual Attention .. 18

4. DESIGN AND DEVELOPMENT ... 20

4.1 Hardware .. 20

4.1.1 The Camera ... 20

4.1.2 Motor Driver ... 21

4.1.3 OWI Robotic Arm Edge 535 .. 23

4.2 Software ... 25

5. BOTTLENECKS AND ISSUES ... 29

6. PROJECT ANALYSIS & EVALUATION ... 30

7. RECOMMENDATIONS FOR FUTURE WORK... 35

7.1 Present Work .. 35

7.2 Potential Future Areas .. 35

7.2.1 Search Engine Optimization ... 35

7.2.2 Market Research and Advertising Testing .. 37

7.2.3 Usability Research .. 38

7.2.4 Gaze interaction and car assistant systems ... 38

7.3 Potential Future Areas Requiring Further Research .. 38

8. CONCLUSION .. 41

APPENDIX A– GLOSSARY .. 43

APPENDIX B – MAIN CODE and SCRIPTS .. 45

APPENDIX C – SETTING UP THE EQUIPMENT: ... 68

APPENDIX D – USER GUIDE .. 69

BIBLIOGRAPHY...71

V

TABLE OF FIGURES

Figure 1: Block Overview of the Designed System ... 9

Figure 2: The complete system overview .. 10

Figure 3: Structure of the Eye .. 15

Figure 4: Photo Receptors in the eye and visual acuity ... 16

Figure 5: Eye movement compensation ... 17

Figure 6: The camera PCB. 1 - Microphone, 2-switch, 3-LEDs.. 20

Figure 7: Camera with IR infra-red LEDs on perf-board .. 21

Figure 8: Circuit diagram of L293D and Arduino Due ... 22

Figure 9: 74HC595 pin configuration in relation to figure 4 ... 23

Figure 10: Worm drive gearbox ... 24

Figure 11: The OWI 535 robotic arm .. 24

Figure 12: Eye Tracking interface ... 26

Figure 13: Pupil detection process [Ref: 20] ... 27

Figure 14: SMD LEDs ... 29

Figure 15: the algorithm performing pupil detection ... 30

Figure 16: The Region of Interest .. 31

Figure 17: Gaze and pupil positions transmitted in real time .. 31

Figure 18: No gaze and eye positions transmitted during a blink .. 32

Figure 19: Timings of actions A through J for mouse control ... 33

Figure 20: Timings of actions A through J for eye control .. 33

Figure 21: The Arduino and the motor driver connected to the OWI 535 34

Figure 22: Eye Tracking result for transaction type query .. 36

Figure 23: Eye gaze results for informational query .. 37

Figure 24: Customer gazing upon a product, points of visual attention marked by eye tracker 37

file:///C:/Users/hasnain/Desktop/Thesis%20v5.docx%23_Toc389947841
file:///C:/Users/hasnain/Desktop/Thesis%20v5.docx%23_Toc389947843
file:///C:/Users/hasnain/Desktop/Thesis%20v5.docx%23_Toc389947844
file:///C:/Users/hasnain/Desktop/Thesis%20v5.docx%23_Toc389947845
file:///C:/Users/hasnain/Desktop/Thesis%20v5.docx%23_Toc389947846
file:///C:/Users/hasnain/Desktop/Thesis%20v5.docx%23_Toc389947848
file:///C:/Users/hasnain/Desktop/Thesis%20v5.docx%23_Toc389947852

7

1. INTRODUCTION

1.1 Background/Motivation

Due to the tremendous progress in computer technology in the last decades, the

capabilities of computers increased enormously and working with a computer became

a normal activity for nearly everybody. With all the possibilities a computer can offer,

humans and their interaction with computers are now a limiting factor. This gave rise

to a lot of research in the field of HCI (human computer interaction) aiming to make

interaction easier, more intuitive, and more efficient. Interaction with computers is not

limited to keyboards and printers anymore. Different kinds of pointing devices, touch-

sensitive surfaces, high-resolution displays, microphones, and speakers are normal

devices for computer interaction nowadays. There are new modalities for computer

interaction like speech interaction, input by gestures or by tangible objects with

sensors, the industry is also noting a trend in visual reality goggles that challenge that

bounds of HCI. Such systems typically use eye gaze as the sole input, but outside the

field of accessibility eye gaze can be combined with any other input modality.

Therefore, eye gaze could serve as an interaction method beyond the field of

accessibility [2], [3], [11].

The aim of our project was to explore new and improve upon existing avenues in eye

gaze tracking, particularly those which could help the physically disabled and enable

them to use computers and programmable control systems. Thus, such individuals

could still take on their responsibilities, improve the quality of their lives and

continue with their day to day tasks, often without the need for a helping hand. In

present times, most eye tracking systems employ the use of real-time video based

tracking of the pupil while employing infra-red principles for detection. We have

adopted the same technique as technological improvements have made the high-

definition, small, portable cameras readily available at low costs. These cameras can

easily be attached to a home-brewed head mount while keeping the overall weight of

the mount and the camera to several hundred grams.

Moore’s law has proved to be implementable to date as standard desktop and laptop

processors become more powerful with each passing day. A typical laptop processor

today is more powerful than the processor used by the super-computer of the past.

8

These computers today come with built-in high definition cameras which can be

exploited to present a field of view or world view against which the user’s eye

tracking movements can be compared. Modern powerful processors have allowed us

to process the real-time video stream for eye tracking, convert and forward the

necessary serial port control outputs to a microcontroller to be used with robotic

machinery, on nothing more than a simple laptop computer. The head based mounts,

which are necessary to provide freedom of movement to the user, are also video

based. They make use of a second camera, carefully positioned to track the user’s

pupil movements in real time and forward this information to the laptop where after

complex comparative calculations, useful outputs are produced.

Employing such techniques as mentioned above allowed us to exponentially reduce

the overall project costs and make our prototype cheaper than most commercially

available eye tracking devices and equipment. A considerable portion of people

affected with Amyotrophic lateral Sclerosis (ALS) [13],[15] or those paralyzed by

injury, are unable to use their computers for basic tasks such as sending/receiving

messages, browsing the internet or watching their favourite Netflix show. Even when

it comes to eating, they need the help of another individual to feed them. Through

previous research, it was concluded that eyes are an excellent candidate for ubiquitous

computing since they move anyway while interacting with computing machinery.

Using this underlying information in the eye movements could allow bringing the use

of computers back to such patients. Not only that, such information could be used to

produce necessary outputs for moving commercially available robotic machinery such

as the robotic arm to enable these patients to feed themselves, to physically enable

them and make them, once more, positively contributing members of the society.

1.2 Project Description

This project was undertaken to fulfil the requirements for our Bachelor’s degree at the

National University of Sciences & Technology, Military College of Signals. It

belongs to the field of HCI (Human Computer Interaction) and shows that by

improving upon existing open source frameworks utilized for the purpose of

Computer Vision and HCI, a cheap, eye tracking solution can be massively produced

for the benefit of disabled patients. Figure 1 gives an overview of the system model

and modules of the system.

9

Figure 1: Block Overview of the Designed System

The project prototype recognizes the user’s pupil and tracks it in real-time. This

“tracking” information can then be used by computers or micro-controllers to perform

various tasks, some of these tasks that the project aims to achieve is the use of the

eyes as a graphical drawing tool [14] and a means to communicate with robots so that

someone with a disability like say Amyotrophic Lateral Sclerosis can use to

communicate with hospital staff or “helper” robots.

On software-end, a program based on OpenCV [11] and Pupil Frameworks [16] has

been developed which consists of both front-end and back-end (low-level detection of

pupil) modules coded in python that will, with the help of infra-red illumination of the

eyes, track the pupil position of the eyes, and use this information to perform some of

the functions mentioned above.

Also, an Arduino Due board will be connected to the computer’s USB port (serial

over USB), where the output generated by the PC will be sent, the Arduino would

interpret the data and produce outputs accordingly on its Digital Pins, where a

connected robot like an arm or hospital machinery (bed switches, nurse alarms etc.)

can be interfaced and driven essentially via eye control. Controlling simple robots via

pupil movements is the proof of concept we’re trying to present as well as the

underlying motto of our final year project.

Figure 2 shows general flow of the project’s design. To summarize:

1. Pupil movements are detected and recorded by the modified camera at a

rate of 24 frames per second.

2. The low-level algorithm called the Structure from Motion (structure from

motion algorithm) is based on research done by Patera and Kassner in

MIT as well as by Drewes & Heiko who have concluded that the SFM

10

algorithm presents by far, one of the most efficient means of pupil

tracking.

3. The software we have programmed is based on OpenCV (standard

framework used for computer vision as well as human computer

interaction) and Pupil® framework. All in all, this program compares

frame by frame the position of the pupil and forms the basis for efficient

tracking.

4. The pupil positions are streamed by creating a local server on port 5000

via universal socket connections supported by the python programming

language.

5. Output is shown on the computer via mouse based-movements and click

gestures.

6. Furthermore, the screen is divided into imaginary quadrants. Each

quadrant corresponds to a different serial output. For example, if the

output in quadrant 1 is 1000, the output in quadrant 2 could be 1001. This

of course is a lay men’s example just for the sake of explanation. The

actual implementation is a lot more complex and discussed in detail in the

thesis.

7. These serial port outputs are exploited by the Arduino due microcontroller

and used to produce three-dimensional robotic arm motion.

Figure 2: The complete

system overview

11

2. SCOPE, SPECIFICATIONS & DELIVERABLES OF

THE PROJECT

The complete project design, as shown in the project description section as well as the

prototype, includes a headset or mount with a carefully positioned and modified high

definition web camera, an open-platform and easy to install software module

compatible with all linux/free-bsd operating systems and easily installed on all

modern laptops or desktop personal computers. The output modules include an

Arduino due microcontroller that acts as an interface between digital outputs from the

computer and the intelligible outputs to be transmitted to the robotic arm.

This project can be thought of as a holistic transition from the concept to design to

proof of concept. It consists of part research paper implementation and part working

with open-source community on designing and then building the prototype, all the

while ensuring that only open-source and cheap, readily available, commercially off

the shelf (COTS) products are used.

The design consists of the following major components:

1. A Microsoft Lifecam HD-6000 Camera with a visible light filter

2. 2x SMD Infra-red LEDs at 840nm emission with peak output power of

0.2mw/sr

3. A pair of glass frames

4. A laptop

5. An Arduino Due board (ARM Cortex M3)

6. The eye-tracking software

7. Transistors (to form an H-bridge)

8. A high current battery

9. 5x DC motors

10. A motor driver board

11. Steel frames and 3D Printed Camera Mount (Our own proprietary

design).

12. Connecting wires

12

Items 1 to 6 comprise of the main eye tracking product, the rest of the components

were used to build the external robotic modules (a robotic arm that is operated with

eye gestures).

13

3. LITERATURE REVIEW/BACKGROUND STUDY

3.1 Literature Review

With the invention of the computer in the middle of the last century there was also the

need of an interface for users. In the beginning experts used teletype to interface with

the computer. Due to the tremendous progress in computer technology in the last

decades, the capabilities of computers increased enormously and working with a

computer became a normal activity for nearly everybody. With all the possibilities a

computer can offer, humans and their interaction with computers are now a limiting

factor. This gave rise to a lot of research in the field of HCI (human computer

interaction) aiming to make interaction easier, more intuitive, and more efficient.

Interaction with computers is not limited to keyboards and printers anymore.

Different kinds of pointing devices, touch-sensitive surfaces, high-resolution displays,

microphones, and speakers are normal devices for computer interaction nowadays.

There are new modalities for computer interaction like speech interaction, input by

gestures or by tangible objects with sensors. A further input modality is eye gaze

which nowadays finds its application in accessibility systems. Such systems typically

use eye gaze as the sole input, but outside the field of accessibility eye gaze can be

combined with any other input modality.

A paper published by Drewes and Heiko [15] discusses basic methods and approach

to eye tracking. It in itself presents by far the most definitive introductory document

for students and researchers alike, wanting to experiment in the field of gaze gesture

based human computer interaction. Not only does it provide a historical overview, a

general introduction but it critically analyses all the algorithms developed to date for

eye tracking and which ones should be chosen for effective eye tracking. Amongst the

approaches discussed are means of using eye gaze as pointing device in combination

with a touch sensor for multimodal input and presents a method using a touch

sensitive mouse. The second approach examines people’s ability to perform gestures

with the eyes for computer input and the separation of gaze gestures from natural eye

movements. The third approach deals with the information inherent in the movement

of the eyes and its application to assist the user.

14

Though Drewes, Heiko (2010) presents a comprehensive overview, it was noted that

most algorithms needed further refinement as they took tedious and long-winded

approaches to calibration. A no-nonsense, agile approach was defined Schmidt,

Jochen [16] in using structure from motion algorithm for human computer interaction.

This was exploited by Kassner, Moritz Philipp, and William Rhoades Patera [17] in

using the same sfm (structure from motion) algorithm, optimizing it and extending its

use as an efficient algorithm for pupil tracking. In order to achieve this goal they

developed a framework by the name of PUPIL, to critically inquire the relationship

between a human subject and a space, to visualize this unique spatial experience, and

to enable its usage for gaze gesture tracking.

To understand the differences between various gaze gestures and to conclude upon

the use of pupil as the most effective part of the eye for tracking, Ashwash, Issa, Hu

and Marcotte [9] was extensively studied and together with Drewes, Heiko (2010),

provided an immense knowledge-base of the basics to help us get started with eye

gesture tracking.

It should be noted that eye tracking in highly lit environments lead to inaccurate

results and to overcome these inaccuracies, use of IR (infrared) illumination was

stressed by Zhu and Ji [2] to overcome these inaccuracies in variable lighting

conditions. They do this by analysing the color gradients of the ambient light via

photo-sensors. The hardware for this technique is expensive and is only set up within

a single environment, the system is not as flexible and mobile as a robust eye

detection module should be, but they do present really interesting conclusions, one

being that if the luminance inside your environment is relatively constant on a

gradient of light intensity, then eye tracking can be performed efficiently without

stutter.

3.2 Background Study

3.2.1 The Human Eye

The human eye uses a two lens system in a fluid called the vitreous humour to project

incoming rays of light from the world onto the retinal surface that is located at the

back of the eye. Figure 3 gives the structure of the human eye with the various aspects

labelled. On the retinal surface there is an area that is densely packed with cones in

proportion to rods. Once past the lens, the rays of light travel through the vitreous

humour and are cast on the retinal surface. The fovea is measured in angular diameter

15

of between 0.3 degrees and 2 degrees, or 1/4000th of the retinal surface area [8].This

area is called the fovea, and appears as a small yellow spot on the retinal surface. The

Retinal surface contains two types of photo receptors, rods and cones [16]. The fovea

is densely packed with cones, approximately 161,900 per square millimeter, allowing

for high resolution colour vision. The physiology of the retinal surface shows us that

here is only a small portion of our visual field that we can resolve in high resolution.

The remainder of the retina is not blind, as the distance increases from the fovea the

density of cones and optical acuity is greatly reduced [18].

The first optical element is the Cornea, to be precise, a thin layer of tear fluid that

covers the curved corneal surface. The surrounding area is populated by rods, densely

packed around the fovea. One function of the aperture is to control the amount of light

that passes into the lens, or camera. This aperture can change in size, growing larger –

dilation in low light conditions to allow more light, or smaller – constricting – to

allow less light.

The eye lens can change in shape, or deform in order to focus on light coming from

different depths. The retinal surface is covered with photoreceptor cells. But all this

response is done in face of a visible light stimulus. The project utilizes infra-red

illumination, which is invisible to the naked eye, hence the pupil doesn’t expand or

contract, neither does the lens focus this IR light on the nerve endings at the back of

the eye. Without this response from the eye, is IR illumination safe. A research paper

[18] highlights the health and safety risks associated with IR illumination of the eye,

and quotes 5mW as the safe upper limit. The SMD IR LEDs we employ use 0.2mW

Figure 3: Structure of the Eye

16

of power, and even that falls off rapidly with distance. Hence the project is safe to

operate and the user need not be concerned in light of health and safety.

3.2.2 Field of Vision

The human monocular field of vision, without eye movement, is one hundred and

sixty degrees in width and one hundred and seventy five degrees in height. While

this may seem like an incredibly large field of vision, this field of vision is not all

sharp and in colour. The visual angle foveal vision is only approximately one degree.

Figure 4 shows the resolution capabilities of the human eye as a function of foveal

cone density. As a practical example, the area that a human eye resolves in colour

and high resolution is approximately equivalent to the area of one’s thumbnail held

out at arm’s length. Due to this limitation we have to rotate our eyes in their sockets,

positioning the eye such that the area of interest in the world is projected onto the

fovea [17]. This movement called a saccade and is usually very fast, up to seven

hundred degrees per second and typically lasting for thirty milliseconds. The saccade

is a major motif of visual movements.

Figure 4: Photo Receptors in the eye and visual acuity

Not only is the retinal area of high acuity small, but the cones are also relatively slow.

The step response time for cones is approximately twenty milliseconds. For an image

to fully resolve with all its high frequency details, its projection on the fovea need to

be motionless. Any movement faster than three degrees per second would result in a

blurry image. During fast movements like a saccade the image would be blurred.

However, the visual system is blocked during saccades and therefore the brain does

17

not receive this useless information. During a saccade we are effectively blind. This

can be easily demonstrated by attempting to look in a mirror and observe your own

eyes moving.

Hence, saccades are undesirable for a tool that uses the eye for accurate and precise

pointer or machinery control. To counter saccades, we add dwell time in the click

activation of a mouse. This negates any random eye movements and only passes the

ones that are desirable for processing.

3.2.3 Eye Masculinization and Stabilization

For successful resolution of a detail, one’s gaze needs to rest on the area of interest,

this is called fixation another motif of eye movements. Fixations typically last for

three hundred milliseconds. During a fixation two powerful image stabilization

mechanisms keep the projection in place. Even if one object of interest moves

relative to the viewer, the image stays in place.

This stabilization is achieved by the vestibuloocular reflex (VOR) and the

optiokinetic reflex (OKR). Both reflexes actuate a three pairs of muscles that rotate

the eye around its three axis: the lateral rectus, the medial rectus, the inferior rectus,

the superior rectus, the inferior oblique, and the superior oblique. When the muscles

contract and their counterpart relaxes accordingly, the resulting torque moves the eye

in almost pure rotation. [18]

The eye can be rotated voluntarily to yaw and shift, allowing any part of the field of

view to be projected onto the fovea. Movement around the optical axis, rolling,

cannot be triggered voluntarily and is not very noticeable due to the rotational

Figure 5: Eye movement compensation

18

symmetry of the eye, but it is nonetheless frequently used by the compensatory

reflexes.

VOR is a reflex that compensates for rotation and translation of head movements.

These movements are sensed by the vestibular apparatus in the inner ear. Here the

inertia of a fluid is sensed by small hairs in the inner ear. Rotational and translational

change is then passed on to a short and very fast neuron network called the three

neuron arc that stimulates the eye muscles to compensate for the movement.

OKR is triggered by the assessment of change in the foveal image. As the projected

image starts to drift the angle and velocity of this change is measured and the eye

motor muscles are stimulated to compensate for this change. The processes used to

evaluate angle and magnitude of change is analogous to a process in computer vision

called optical flow.

3.2.4 Direction of Visual Attention

 Beyond these two reflexes, VOR and OKR, the visual system stimulates the eye

muscles to rotate in order to inspect areas of interest. The visual cognitive pathways

that control and decide what area in the field of vision to evaluate in greater detail is a

subject of ongoing inquiry. Current research suggest that two schemes can be used to

describe this behaviour. The first is typically called “bottom up control,” where

salient features determine what is to be attended to. The second is called “top down

control,” where attention is focused by a predetermined cognitive task [16].

In the bottom up control schemes, the area in our field of vision that is resolved in

foveal vision is not only uncontrollable by conscious thought, but it is also completely

opaque to it. Salient features of a scene prompt our visual system to saccade the gaze

point to this area of interest and fixate on it. An example for this is a sudden

movement in the peripheral vision or a contrasting detail like a blossom on a

background of green leaves.

 Top down control is controlled by high level motivations, like a verbal cue that lets

our visual system shift foveal vision towards areas that we deem as potentially

informative for the given visual task. This could for example be a search task: “find

the red bottle”, or a motor task like opening a drawer. This control scheme is very

interesting, but at the same time opaque to us as it implicates the combined

motivations of the viewer, their prior experience, training, and a myriad of other

19

influences. While neither the neurological implementation nor more detailed rules of

interaction are understood, it appears that both schemes are weighted into the decision

what to fixate upon next [16], [18], [19].

Having considered the workings of human-eye and how and why can gaze gestures be

used as modes of Human Computer Interaction, it should be noted that eye tracking is

not a new field. The emergence of Eye tracker is due to gaze motion research, starting

from 1879 [19], when Louis Emile Javal observed that reading does not involve a

smooth sweeping of the eyes along the text, as previously assumed, but a series of

short stops, called fixations and quick saccades. We visually see our environment

only through fixations. Brain actually combines visual images that we receive through

fixations. This discovery raised important questions about reading, which were

explored during the 1900s.

1930s – Eye tracking research characterize by a more applied research focus,

especially for experimental psychology.

1950s — Alfred L. Yarbus wrote about the relation between fixations and interest in

an object. Eye movements reflect the human thought processes; so the respondents’

thought may be followed to some extent from records of eye movements (the thought

accompanying the examination of the particular object). It is easy to determine from

these records which elements attract the observer's eye and, consequently, his

thought, in what order, and how often.

1970s — Eye tracking expanded rapidly marked by significant improvements in eye

movement recording systems facilitating increasingly accurate and easily obtained

measurements.

1980s — M. Just and P. Carpenter formulated the influential Strong eye-mind

Hypothesis, the hypothesis that here is no appreciable lag between what is fixated and

what is processed. The hypothesis is very often today taken for granted by beginning

eye tracker researchers.

20

4. DESIGN AND DEVELOPMENT

Considerable work has been done and all major project milestones have been crossed.

To report most of it, we have divided our work into Hardware & Software sections,

the bottlenecks and issues faced as well as the achieved results are also mentioned

below:

4.1 Hardware

4.1.1 The Camera

On the hardware side, the Microsoft Lifecam HD-6000 has been disassembled, it has

two blue LEDs that light whilst operation, they are an interference to our infra-red

light source so these have been removed and will be replaced by SMD (surface

mounted devices) LEDs that we ordered. For the time being we have attached a Perf-

Board containing low power LEDs with the camera PCB shown in figure 6.

Figure 6: The camera PCB. 1 -

Microphone, 2-switch, 3-LEDs

21

The perf-board modifications are shown in figure 7. The extraneous switches have

also been cut off, the lens has been unscrewed and the thin IR filter has been carefully

removed from the lens to allow IR light to pass through into the camera image sensor,

to block visible light, we have added two sheets of cut film negatives as make shift

visible light filters where the IR filter used to be and secured it with slight glue. The

camera autofocus was also a problem, since we do not want it focusing on random

facial features, the focus should ideally be set by physically (by changing the distance

between the two lenses, screwing or unscrewing them). So during re-assembly, the

metal contacts that give its motor power were rotated 180 degrees so that the motor

contacts never touch the power supply, hindering the autofocus from running.

Furthermore, two micro SMD infra-red LEDs Tanta mounting to a total of 0.4mW/Sr

of IR energy have been soldered directly on the circuit to serve its purpose as means

for redundancy as well to ensure fail-safe tracking of the pupil. To overcome health

issues, all the IR LEDs chosen certify ergonomically and are safe for long term use.

An alarming issue that surfaced was the over-heating of camera circuitry from

extraneous usage. Since we wanted the camera to be used for pupil tracking

consistently, often for longer durations, a custom-made heat sink was ordered through

OMNI Engineering INC, specific to the camera circuit dimensions and which was

MIL-STD-202 as well as RoHS- Reach compliant. Instead of using glue to attach the

heat sink, Thermal Conducting Paste was used. Both these measures helped in

dramatically reducing the circuit’s basal temperature and allowed worry-free use for

longer durations [11], [16].

4.1.2 Motor Driver

Figure 7: Camera with IR infra-red

LEDs on perf-board

22

Initially we were using a single servo motor with our Arduino, to check whether the

serial library of the Arduino works with enough accuracy so as to allow us to build a

robotic arm. We experienced that connecting a servo motor directly to the Arduino is

not suitable, so we designed a motor driver that could efficiently operate multiple

servo motors by being controlled via an Arduino. The figure below shows the

schematic for the L293D motor driver based board, along with the connection for the

Arduino Due board.

This ‘Motor Driver’ uses the L293D IC as its base and will act as a medium between

the Arduino and the “Servo Motors” of the OWI Robotic Arm. Multiple instances of

this circuit will be connected to each Servo Motor to effectively control them via our

host machine.

The figure below shows the 74hc595 shift register, whose binary output of 8 bits is

what actually optimizes the Arduino interface. Only 3 pins of the Arduino are used to

drive the motors and hence 3 pins of the Arduino are converted to an 8 bit output.

This is done via the use of serial commands, and latch on and off states. The latch is

shut off, the data is written to it in the “write mode”, the latch is locked and the data is

then transmitted to the output register where the serial data is represented in 8 bits.

The shift register based interface and its pin configuration with figure 4 are shown in

figure 9:

Figure 8: Circuit diagram of L293D and Arduino Due

23

Figure 9: 74HC595 pin configuration in relation to figure 4

4.1.3 OWI Robotic Arm Edge 535

Initially we set out to create our own robotic arm for this senior design project.

However, after timely consultations with the faculty at CARE University, as well as

at SEECS, NUST, we were advised to use a kit- based robotic arm instead. This

advice proved its worth when we found that not only was buying kit based arm

cheaper, but allowed up-to five degree freedom of motion and was again made of

composite materials instead of steel, which reduced its overall weight. After thorough

research, OWI 535 robotic arm was chosen as the most suited candidate.

The OWI 535 is a cheap robotic arm with a lifting capacity of 100g and 5 degrees of

freedom of motion. The Arm comprises of simple DC motors that are connected to

worm drive gearboxes. The low torque of the “worm” rod is translated into low speed

and high torque of the worm wheel inside this gearbox technique, hence the arm

moves slowly, with relatively good precision but the action time suffers as shown in

24

figure 10.

Hence, the arm is not meant as a real time prosthetic, just as a substitute in the critical

conditions mentioned in the initial paragraphs of the report. We also see that because

of this revelation, we needed the motor driver board because dc motors are inherently

not meant to be accurate and precise in their movement unlike Servos that feature

internal feedback mechanisms. The DC motor is an open loop system. To negate the

effects of this open loop system, OWI 535 will be modified by connecting

potentiometers to each arm joint and set to a

specific voltage.

Figure 11: The OWI 535 robotic arm

The voltage forms a reference which is to be achieved by the motion of the arm. For

example, if the pot is set to 3 volts, the arm will move until it achieves 3 volts. This

serves as an internal feedback mechanism that effectively converts the worm drive

DC motors to “Servos”. The actual signal voltage subtracted from the reference signal

set on the pot, forms the error signal, which the Arduino (the controller) aims to set to

zero.

Figure 10: Worm drive gearbox

25

The Arduino sketch sample has also been written, it requires the use of the adafruit’s

motor shield library which is specifically written for worm drive gear boxes. It

features a motor speed translated onto a scale of 0-255. The median value used mostly

is 100, but this can be modified in the sketch itself. A snippet of the sketch is shown

here, to give an idea of how the motor is read and interpreted, and the arm moved:

motor1.setSpeed(100); // set the speed to 100/255

motor1.run(FORWARD);

motor2.setSpeed(100); // set the speed to 100/255

motor2.run(FORWARD);

motor3.setSpeed(100); // set the speed to 100/255

motor3.run(FORWARD);

motor4.setSpeed(100); // set the speed to 100/255

motor4.run(FORWARD);

delay (1000);

motor1.setSpeed(0); // turn off motors

motor2.setSpeed(0);

motor3.setSpeed(0);

motor4.setSpeed(0);

// Now read the sensors to see how they changed

val0 = analogRead(0); // read the input pin 0

val1 = analogRead(1); // read the input pin 1

val2 = analogRead(2); // read the input pin 2

val3 = analogRead(3); // read the input pin 3

Serial.print("1 = "); // report the new readings

Serial.print(val0);

Serial.print(" 2 = ");

Serial.print(val1);

Serial.print(" 3 = ");

Serial.print(val2);

Serial.print(" 4 = ");

Serial.println(val3);

delay(100);

The code snippet above assumes that the reader knows about the Serial library

functions. The code snippet moves all the motors forward, and in effect, causes the

entire arm to lunge forward. Function definitions are not shown because their names

are self-explanatory for reasons of reading continuity, the final code is included in

Appendix B.

4.2 Software

We had been working in tandem with the Open Pupil community [16] on this open

source project and have made more than ten commits to their Git Repository. The

framework provided on their Git repo was compatible with Webcams only. We have

been successfully able to run the Pupil Framework after customizing it to work with

the Microsoft HD-Life 6000 Cam that we aim to use with our project. The code also

26

requires the addition of buttons so that the user can interact with robotic modules.

Looking at a button for 2 seconds or more triggers the action associated with that

button, that is, a signal is sent via the USB port (Serial over USB) to the Arduino

where the custom sketch uploaded on it interprets it and drives the module.

We have so far worked on two core modules namely, Main.py and Eye.py, two

computer to control system action modules namely that mouse.py and

gaze_arduino.py. This is in addition to 15 other modules we have programmed for

accurate pupil detection, for low-level algorithm implementation, for the front-end

and for the front-end to back-end coordination. We have also successfully debugged

some glitches that were present earlier in the software framework. These glitches, as

well as their solutions were sent to both the OpenCV and Pupil communities and is in

itself, a commendable feat by our group. The code, as it is right now is capable of

pupil detection under infra-red light [15]. The Framework was initially very

unresponsive. After hours of debugging, coding, optimization and calibrations, it is

now fully functional. It now continuously tracks all eye movements with little or no

issues. This also involved complete isolation of the world.py code and its severing

from the rest of the application framework since we do not require the tracking

feedback from the world camera.

Figure 12: Eye Tracking interface

Our steps consisted of first making sure the framework’s algorithm was able to detect

the pupil and give the required feedback. This involved adjusting the absolute zoom

27

and focus of the eye camera. Once that was done, we changed the mode to Camera

Tracking, to make the tracker more visible to the user and calibrate the user’s eyesight

mapped to what he’s looking at. This calibration technique is known as “Natural

Features”. This procedure involves the user to look at various positions on the screen

as marked as by himself. After this the Pupil Frameworks processes these inputs and

calibrates itself to better track eye movements by mapping an eye gaze position to

world feature. Once all of this was done, pointer control was established with the

user’s eye, along with a stare interface in the world cam window, enabling one to

send outputs to the serial port by staring at specific points on the interface [14], [15].

A second feature, to imitate and execute screen based ‘click’ notion was programmed

and added. This was based on the premise that once the pupil coordinates were

streamed, closing the eye altogether serves as an interrupt. If this interrupt is more

than 5 milliseconds in duration, it would serve as a click. A similar second delay acts

as the second click and if performed simultaneously, emulates the “double-click”.

This would not only enable computer usage, but is integral to the movement of

robotic arm via buttons as mentioned previously.

The pupil detection algorithm used in the framework works on the principle of infra-

red illumination of the eye and then edge detection followed by ellipse fitting to find a

suitable pupil candidate. The figure 13 below helps explain the entire process:

Figure 13: Pupil detection process [Ref: 20]

The edge detection (ED) algorithm works by identifying points in an image called

anchors, and joins these anchors using a smart routing procedure, meaning it literally

draws edges in an image, these edges are connected along a continuous pixel chain.

Then near circular segment search is carried out on the ED frame, which consists of

28

analysing the gradient of all the edges in the ED frame. Circular objects have a

relatively constant colour gradient compared to other shapes, hence, the edge

resulting in the least varying gradient is chosen to be processed by the arc extraction

method. If a circular edge is detected in the previous step, it is processed by the arc

extractor, if not, then the entire image is subjected to arc extraction. The process

basically tries to fit ellipses around the edges obtained from the edge segmentation

procedure, when an ellipse or ellipses (continuous pixel line) is/are found, then the

algorithm tends to reduce that number down to a single pupil candidate by drawing

arcs around the most complete ellipse obtained to counter occlusions and draw

accurate boundaries, finally, the pupil is shown as a completely detected ellipse, for

complete details on the algorithm along with the mathematical studies, please refer to

[20].

29

5. BOTTLENECKS AND ISSUES

SMD LEDs (figure 14) are not easily available in Pakistan so we had to order them

online and it’ll take some weeks to get here. So for the time being, we have attached a

perf-board containing low power LEDs. This has put a considerable strain on our

progress and has caused great inaccuracy in our results.

Another major issue was that of Auto-Focus. Today all cameras are bundled with

Hardware-based Auto-Focus, so during the eye-tracking procedure the camera tried to

adjust the auto-focus itself and disrupted our operation. We had to de-solder the

autofocus joints in the camera manually. Right now, we adjust the camera focus using

the in-app controls.

IR-Based Eye Tracking also involves removal of major part of the visible light

spectrum. In order to do that we initially used the dark magnetic disk that’s found

inside floppy disks but it blocked considerable portion of IR Light as well. We then

went with the Film Negatives that were used in Analogue Cameras. It was able to

remove visible light and allow sufficient IR Light to pass through.

A major issue was that of the Operating System to use for our project. Most of the

existing Eye-Tracking Projects were aimed at Microsoft Windows and Apple MacOS

X, and hence were closed, project-wise. We wanted to work on the Linux Platform so

that eye-tracking could be performed easily on devices of all architectures. Finding

the Pupil Framework was our answer to this issue because it was originally aimed at

the Linux Platform with the same ideologies.

Figure 14: SMD LEDs

30

Originally we were not able to perform calibration on our eye-tracking cameras, so

the accuracy of our results were very limited. We overcame this hurdle by contacting

the pupil community and different developers across the world.

6. PROJECT ANALYSIS & EVALUATION

We start by presenting results of the working contour detecting algorithm that works

by the principle of IR illumination, whereby infra-red light illuminates the pupil, and

causes the pupil to stand out as a dark circle. The pupil is detected via the algorithm

explained previously (see figure 13). Figure 16 below shows the algorithm

performing in our framework:

Figure 15: the algorithm performing pupil detection

Notice that the colour gradient on the right hand side of the screen has colour spikes

around the drawn ROI, but along the pupil, the gradient is flat (0). Also note that the

pupil min/max thresholds depicted on the bottom left hand of the screen are

parameters that determine how well the pupil will be detected and against the limit

thresholds. The ED algorithm demands these parameters to be set before running the

entire program to perform various actions as explained in the project abstract. It

should be noted however, we minimize processing time for the image and for pupil

detection by drawing a region of interest around the eye so that the algorithm works

only on that portion of the image, the ROI is shown on the next page.

31

The white borders define the region of interest for the algorithm to perform on, this

minimises the number of pupil candidates generated by the ellipse extractor since

other portions of the image may serve to only act as noise for the image.

Figure 16: The Region of Interest

Next up, we analyse the results of the pupil detection by running a tcp server via zmq

on port 5000. The framework transmits the pupil positions to this server after eye to

world cam mapping has been performed by the calibration routine, as can be seen in

the terminal window on the next page.

Figure 17: Gaze and pupil positions transmitted in real time

32

Also, note that during a blink, the transmitted co-ordinates are null, signifying the

absence of a pupil, this fact is exploited in the click gesture, which has been defined

in two ways. One where the user can perform a click by staring at a point for a couple

of seconds, or two, blink for an abnormal duration. The data transmitted during a

blink can be seen below:

Figure 18: No gaze and eye positions transmitted during a blink

The mouse control script (written in python) then interprets these co-ordinates and

moves the mouse accordingly whilst operational, the script is given in Appendix B.

Note that the smoothing factor is what reduces the jitteriness of the mouse, because

the eye is a faster input device compared to a mouse (hand), gaze changes rapidly

hence mouse control needs to be precise and non-jittery, here a test value of 0.5 is

used.

One major result that most of us were interested in was whether or not the eyes are a

feasible way of human computer interaction. After all glimpses and other random eye

movements add a lot off erroneous and jerky movements in the cursor control if

compared to the relatively smoother movements of the mouse. We see here first of all

that the project targets mostly ALS patients or patients with other physical disabilities

that render their bodies from the neck down paralyzed. To correct the eye jitter and

error, we add something known as “dwell time”, which simply refers to keep staring

at an interface button for a predetermined amount of time, and the button activates. It

is somewhat different from the point and click mechanism of the mouse. The usual

33

values of dwell time are specified as 4ms for very accurate gaze controllers, down to

about 50ms for inaccurate ones, for a dwell time of 4ms, we tested out different

actions, A through D, and noted down the time required to click an interface button,

to give us an idea of how well the interface may perform in the real world. The

histograms for mouse vs. eye control are shown below, please note that the readings

were taken for in ideal lighting conditions and may vary in other situations if pupil

detection is erroneous. This has been illustrated in figure 20.

Figure 19: Timings of actions A through J for mouse control

Figure 20: Timings of actions A through J for eye control

Do note that the results are rounded off to the nearest millisecond. We see that once

proficiency has been achieved, the user can perform the same tasks in approximately

the same amount of time as can be done with mouse. Although typing is one major

34

area where the eye pointer suffers, hence if using as a mode of communication, the

user can simply use a graphics tool to draw letters rather than typing them on with a

virtual keyboard which is a tedious task even for a mouse user. We also see that since

the project interface is highly customized towards control of a robotic arm, we negate

the issues faced with the loss of the use of a keyboard and provide a complete

interface that enables feasible operation of the arm, and in theory, any other

digital/Arduino compatible machinery. The OWI 535 was connected to the

Arduino/Eye control setup as explained above and simple test movement have been

performed, the image below shows the arm connected to the Arduino microcontroller

and the motor driver:

Figure 21: The Arduino and the motor driver connected to the OWI 535

A suitable form of control for the robotic arm is achieved by mounting the world

camera on the jaws of the gripper itself, thus enabling the user to stare at the world

cam window enabling them to look through the first person perspective of the robot,

moving it by the mouse control schemes shown above. For this specialized control,

the screen can be divided into different regions, when a user looks into a different

region, the arm moves in its corresponding direction. There are several modes of

control, it depends on the specific patients with which mode of control they are the

most comfortable.

35

7. RECOMMENDATIONS FOR FUTURE WORK

7.1 Present Work
Eye tracking has become an important field of research recently. Sony is working on

developing and incorporating eye tracker in their popular Playstation® platform. The

technology is being developed by SensoMotoric Instruments, a Berlin-based

developer, as part of its RED-oem platform and among other functions, it highlights

things you're looking at, from enlarging menu options to simply tracking and

responding to your interest.

Eye tracking has also been proposed for the PC, with companies like Tobii showing

off the technology at the 2012 version of the Consumer Electronics Show. The

technology lets users gaze at a desktop computer, tablet or laptop and use eye

movements to play a game or interact with applications on Microsoft's Windows 8

operating system. The device sends a pattern of infrared light to the user's eyes and

tracks its reflections. Unlike pointing a laser at your eye, it doesn't hurt. This

technology provides similar precision as touch. Oculus Rift is a virtual reality HCI

interface which is the brainchild of Kickstarter.com and relies on heavy user gaze data

to reposition the field of view to give the illusion of reality [12].

7.2 Potential Future Areas

7.2.1 Search Engine Optimization

Understanding user’s behaviour and expectations for web search can be very valuable

for site developers and web workers. While many SEO techniques rely on the actual

actions of the user, for example mouse clicks or query streams, eye tracking can give

us more detailed observations about how users actually interact with the information

in front of them [21].

The fact that the top search results get the most attention from users is self-evident.

But a study by Google backed up claims that strategies for scanning search results are

different for different task types. These two task types are defined as transactional and

informational. It means that you must understand which of these terms describes your

website before deciding on SEO and SEM activity. Eye-tracking result for a

transaction-oriented query has been shown in figure 22.

36

What these images present is rather bad news for informative websites. While

transaction oriented sites can afford to be further down the search listings,

information-oriented sites cannot. We can see that search engine optimization (SEO)

for websites and businesses can be done effectively by employing eye tracking based

information and data analytics. This potential area of research is being spear-headed

by Microsoft and Google.

Figure 22: Eye Tracking result for transaction type query

And for an information-oriented query [21]:

37

Figure 23: Eye gaze results for informational query

7.2.2 Market Research and Advertising Testing

The perhaps the biggest field in terms of money is the use of eye trackers for market

research. When designing posters for an advertisement campaign the marketing

research department likes to test the materials. They present the posters to potential

clients whose eyes are tracked to get answers to questions like “Did the person look at

the product?”, “How much time did the gaze spend on the company’s logo?” and so

on. With a portable eye tracker it is also possible to send people to a supermarket to

find out which products the people notice and how much influence the form or colour

or positioning of the product has on being noticed. An example is shown in figure 24

below:

Figure 24: Customer gazing upon a product, points of visual attention marked by eye

tracker

38

A commercial eye tracker scans and zeros in on which products the customer is

scanning and where on those products is his gaze concentrating. An example of a

dishwasher is shown in figure 18 with blue and pink markers showing where the

customer’s gaze concentrated and the radius of marker depicts the duration for which

the customer’s gaze was hooked on to that particular position. We can see the widest

markers and most markers in general are concentrated towards the product label and

this gives important information to manufacturers and advertisers alike that they

should make the labels visually appealing, among other customer behaviour

information, for example.

7.2.3 Usability Research

Another field of commercial interest is usability testing. The first use of eye trackers

was done for the American air force to find out the best positions for the controls in

an aircraft cockpit. When offering a new device to somebody whose eyes are tracked,

it is easy to see where the gaze moves in the expectation to find the control for

solving the given task.

7.2.4 Gaze interaction and car assistant systems

Future applications for eye-tracking technologies are gaze interaction for regular

users. A TV set could switch on by itself when somebody is looking at it. The car

industry does research in this field too, with the aim of developing assistant systems

for cars. For example, an eye tracker in the car could warn the driver when she or he

falls asleep while driving the car. This field of application for eye tracking is not yet

commercially available and needs further research.

7.3 Potential Future Areas Requiring Further Research
At the moment eye-tracker systems are available but they are not prepared for

working as an input device except for accessibility systems which do not bring benefit

to the regular users. Most eye trackers existing today serve the purpose of recording

and analyzing gaze data and the demand in this market is low compared to the

demand for input devices like mouse devices or webcams. Consequently, the prices

for eye trackers are still high, again compared to mouse devices or webcams.

The future of gaze-aware systems will depend on an application. The graphical user

interface was the application that pushed the mouse device from a special input

device for CAD (computer aided design) engineers to an input device for the masses.

39

Although it is possible to direct a graphical user interface solely with the keyboard

and without a mouse, in many cases even more efficiently, most people are not able to

operate such a system if the mouse is missing or not working. This is the reason for

the big success of the mouse device [4], [12]. There is no comparable application for

gaze-aware systems on the horizon that everybody wants to have and which does not

work well without eye tracker as it was the case for graphical user interface and

mouse.

An application that could have the potential to create a mass market for eye-tracking

technologies is a computer game. Computer games are a growing market and special

input devices for game stations fill the shops. An eye tracker for computer games

could come along as a head-mounted device, a headset with earphones and

microphone, which are commonly used for gaming already, and with two extra

cameras. One camera is mounted near the microphone and focuses on one eye and the

other camera next to one earphone with the same view as the eye. The camera at the

microphone tracks the eye and because it has a rigid connection with the head, head

movements do not influence it [3]. The camera at the earphone sees the display and

can calculate the head position from detecting the corners of the display or from

matching the known display content to the camera picture. The hardware for such an

eye tracker consists of a headset, two webcams and perhaps an infrared LED and all

together is available for less than 100 Euro or Dollars. The main costs are the

software development and the effort to make it a product. These costs are small per

piece if produced in high quantities. The reason why an eye tracker could be

successful in the market as input device for computer games lies in the speed. Eye-

tracking interaction is fast if the targets are not too small and if an extra input

modality is used. For a typical shooting game the targets are big enough in size and

the extra input modality is the fire button. While a saving of 300 milliseconds for a

pointing operation does not make much difference for a spreadsheet application or a

word processor, it makes a big difference for an action game. The excitement and

finally the level of adrenalin in the body are directly related to the speed of the game.

Research on eye tracker input in first person shooter games [19] could not (yet) show

an increase in performance compared to classical mouse input. This result is in

contradiction to the findings for the “hardware button” of Ware and Mikaelian [20]

where gaze positioning together with key input were significantly faster than a

classical mouse. As the computer game industry always searches for new ideas it is

40

only a question of time until cheap eye trackers for gaming will be in the shops. The

availability of cheap eye trackers will lead to the development of further applications

for such an eye tracker.

Attention sensors for mobile devices are a further possibility to introduce eye tracking

to the mass market. The costs for an attention sensor are negligible and the

manufacturers of mobile devices always look for new features to have an advantage

in the highly competitive market. Such an attention sensor in a mobile video viewer

can provide the functionality of pausing the video when not looking at it. It can also

provide a power-saving function by switching off the display when nobody is looking

at it. The careful use of energy is very important for mobile devices as the capacity of

the batteries is limited [1]. A laptop typically switches off the display after a certain

time without key or mouse input. This concept does not work when watching a video

as there is no input from the mouse or keyboard. The problem is also well known

from mobile MP3 players which try to solve the problem with a HOLD switch. While

it seems to be nearly impossible to detect whether somebody listens to audio content

an eye tracker can detect whether somebody is watching video content. A good

chance for eye tracking in the smaller high-end market is the trend to large displays.

Interaction with large displays or multiple monitor setups by a mouse has problems.

One problem is that people cannot find the mouse pointer on the large display area;

another problem is how to adjust the control-gain ratio for the mouse. A high gain

causes problems for the precision of the mouse movement as explained by Fitts’ law

while a low gain will lead to mouse movements which exceed the range of the hand.

Concepts like focus activation by gaze [5] or MAGIC pointing [2] and preferably

MAGIC touch can help. As large displays are still expensive, the cost for the eye-

tracking device does not contribute to the total costs too much. The MAGIC touch

principle also saves many hand movements and for this reason helps people who

suffer from RSI (repetitive strain injuries). As medical treatment is expensive an eye

tracker and a touch-sensitive mouse can be the cheaper alternative. All these visions

of gaze-aware systems could become reality within the next years and some probably

will.

Prophecies for longer periods are speculations. Nevertheless, it is clear that the

evolution of human-computer interfaces will lead to systems that are more ‘human’

and not to systems where the humans have to act like computers. As the eye gaze is

41

very important for the human-human interaction, it will definitely be very important

for the development of future human-computer interfaces.

8. CONCLUSION

As a final review, the project aims to deliver a low cost eye tracker that can produce

digital outputs interface-able to external TTL machinery that is mainly directed for

use by the physically disabled. The project highlights its software uses via the control

of a mouse, and its hardware uses via the control of an OWI 535 robotic arm edge.

The designed system is low cost and efficient, utilizing only an Arduino board, a

Motor driver, and SMD IR LEDs for eye illumination, software modules coded in

C++ and Python Programming language, running on a laptop to run a worm drive

based robotic arm. Problems that arise such as jittery eye movements and direction of

attention and pupil stability are negated by the use of large interface buttons with

dwell time even on a blink gesture, these strategies help eliminate sporadic

movements of the cursor and enable efficient control of the mouse and the external

hardware (in this case, the robotic arm). The project also highlights the outputs of the

contour detection algorithm used to detect the eye within specified min/max pupil

size thresholds and defined regions of interest with a colour spectrum showing up on

the side. The debug window provides insight into the detection of the pupil with a

histogram to hunt down bugs and jitter in the eye detection or eye to world mapping

processes. If required, spatial field of view history can also be drawn on the world

process, showing eye movements and where the user spends most of their time

looking at to tweak the interface or to just retrieve spatial attention data for the

purposes mentioned in the “future applications” section. Finally, we note that the

project is operable in variable environmental conditions, only a few tweaks in the

brightness and contrast setting need to be applied for it to maintain its robustness, this

is an impressive feat for such a low cost eye tracking system.

42

APPENDICES

43

APPENDIX A– GLOSSARY

Arduino – A development board armed with EEPROM Flash Memory bundled with

onboard Microprocessor that allows code to be burned to it again and again and is

capable of Analogue and Digital Communications

Arduino Due – A special edition of Arduino that uses an ARM Cortex M3 CPU

as Processor instead of the usual ATMEGA to provide better processing speed

DTMF Decoder – A dual tone multi-frequency decoder, it decode the

frequencies on a dial pad of phone and translates them to binary outputs of the

key number pressed

Edge Detection – A scheme whereby anchors are identified and connected along

a continuous pixel line to draw the edges in an image.

Ellipse Fitting – A scheme where an ellipse is detected by tracing the colour

gradient from the image edges. A smooth colour gradient identifies an ellipse.

Git – A famous Software Version Control system, used by developers to keep

track of application code and manage their versioning

GLFW3 – An Open Source, multi-platform library for creating windows with

OpenGL contexts and managing input and events

L293D – A special Motor Driver IC used to control Motors under a specific

power limit; used in small Motor Driver Circuits

Microsoft Lifecam HD-6000 – A USB web camera capable of 720p video

transmission and IR light detection with use of different focal length lenses

Motor Driver – A circuit that amplifies current whilst also reducing timing jitter

used for precision motor control

OpenFrameworks – It is a C++ Toolkit used for coding. It supports many libraries

like OpenGL, OpenCV and Quicktime, and can be easily used to build complex GUIs

44

OWI Robotic Arm – A DIY Robotic Arm, manufactured by OWI Robotics; used by

enthusiasts to utilize features of Robotic Arms without building them from scratch

Pupil – The Dark part of your eye which is actually responsible for eyesight

Pupil Framework – An eye-tracking software framework written in Python and C++

that can pinpoint eyesight on real-world objects

Servo Motor – A type of motor that works on Pulse Width Modulated (PWM) signals

to rotate to pre-specified positions.

SMD – Stands for “Surface Mounted Device”, used as SMD LEDs in the document;

very small LEDs that are directly soldered on the PCB as an IC

TTL – Transistor Logic (TTL) is a class of digital circuits built from bipolar junction

transistors (BJT) and resistors. It is called transistor logic because amplification and

gating are both done by transistors

Visible light Filter – A filter lens or IR written that blocks visible light

45

APPENDIX B – MAIN CODE and SCRIPTS

The main python code for the eye detection application is given below:

'''

(*)~---

Eye Detection and Tracking Application

NC Hasnain Raza | NC Shaheer Cheema | NC Ali Sheheryar | NC

Sheharyar Naseer

-----------------~(*)

'''

import sys, os,platform

from time import sleep

from ctypes import c_bool, c_int

if platform.system() == 'Darwin':

 from billiard import Process, Pipe,

Event,Queue,forking_enable,freeze_support

 from billiard.sharedctypes import RawValue, Value, Array

else:

 from multiprocessing import Process, Pipe, Event, Queue

 forking_enable = lambda x: x #dummy fn

 from multiprocessing import freeze_support

 from multiprocessing.sharedctypes import RawValue, Value,

Array

if getattr(sys, 'frozen', False):

 if platform.system() == 'Darwin':

 user_dir = os.path.expanduser('~/Desktop/pupil_settings')

 rec_dir =

os.path.expanduser('~/Desktop/pupil_recordings')

 version_file =

os.path.join(sys._MEIPASS,'_version_string_')

 else:

 # Specifiy user dirs.

 user_dir =

os.path.join(sys._MEIPASS.rsplit(os.path.sep,1)[0],"settings")

 rec_dir =

os.path.join(sys._MEIPASS.rsplit(os.path.sep,1)[0],"recordings")

 version_file =

os.path.join(sys._MEIPASS,'_version_string_')

else:

 # We are running in a normal Python environment.

 # Make all pupil shared_modules available to this Python

session.

 pupil_base_dir =

os.path.abspath(__file__).rsplit('pupil_src', 1)[0]

 sys.path.append(os.path.join(pupil_base_dir, 'pupil_src',

'shared_modules'))

 # Specifiy user dirs.

 rec_dir = os.path.join(pupil_base_dir,'recordings')

46

 user_dir = os.path.join(pupil_base_dir,'settings')

create folder for user settings, tmp data and a recordings

folder

if not os.path.isdir(user_dir):

 os.mkdir(user_dir)

if not os.path.isdir(rec_dir):

 os.mkdir(rec_dir)

import logging

Set up root logger for the main process before doing imports of

logged modules.

logger = logging.getLogger()

logger.setLevel(logging.DEBUG)

create file handler which logs even debug messages

fh =

logging.FileHandler(os.path.join(user_dir,'world.log'),mode='w')

fh.setLevel(logging.DEBUG)

create console handler with a higher log level

ch = logging.StreamHandler()

ch.setLevel(logging.WARNING)

create formatter and add it to the handlers

formatter = logging.Formatter('World Process: %(asctime)s -

%(name)s - %(levelname)s - %(message)s')

fh.setFormatter(formatter)

formatter = logging.Formatter('WORLD Process [%(levelname)s]

%(name)s : %(message)s')

ch.setFormatter(formatter)

add the handlers to the logger

logger.addHandler(fh)

logger.addHandler(ch)

mute OpenGL logger

logging.getLogger("OpenGL").propagate = False

logging.getLogger("OpenGL").addHandler(logging.NullHandler())

#if you pass any additional argument when calling this script.

The profiler will be used.

if len(sys.argv) >=2:

 from eye import eye_profiled as eye

 from world import world_profiled as world

else:

 from eye import eye

 from world import world

from methods import Temp

#get the current software version

if getattr(sys, 'frozen', False):

 with open(version_file) as f:

 version = f.read()

else:

 from git_version import get_tag_commit

 version = get_tag_commit()

def main():

47

 # To assign camera by name: put string(s) in list

 #eye_src = ["Microdia Sonix 1.3 MP Laptop Integrated Webcam"]

 #eye_src = ["Microsoft", "6000","Integrated Camera"]

 #world_src = ["Logitech Camera","(046d:081d)","C510","B525",

"C525","C615","C920","C930e"]

 # to assign cameras directly, using integers as demonstrated

below

 eye_src = 2

 world_src = 1

 # to use a pre-recorded video.

 # Use a string to specify the path to your video file as

demonstrated below

 # eye_src =

"/Users/mkassner/Pupil/datasets/eye2_fieldtest/eye 10.avi"

 # world_src =

"/Users/mkassner/Desktop/2014_01_21/000/world.avi"

 # Camera video size in pixels (width,height)

 eye_size = (640,360)

 world_size = (1280,720)

 # on MacOS we will not use os.fork, elsewhere this does

nothing.

 forking_enable(0)

 # Create and initialize IPC

 g_pool = Temp()

 g_pool.pupil_queue = Queue()

 g_pool.eye_rx, g_pool.eye_tx = Pipe(False)

 g_pool.quit = RawValue(c_bool,0)

 # make some constants avaiable

 g_pool.user_dir = user_dir

 g_pool.rec_dir = rec_dir

 g_pool.version = version

 g_pool.app = 'capture'

 # set up subprocesses

 p_eye = Process(target=eye, args=(g_pool,eye_src,eye_size))

 # Spawn subprocess:

 p_eye.start()

 if platform.system() == 'Linux':

 # We need to give the camera driver some time before

requesting another camera.

 sleep(0.5)

 world(g_pool,world_src,world_size)

 # Exit / clean-up

 p_eye.join()

if __name__ == '__main__':

 freeze_support()

 main()

48

Another code set of the actual Eye detection Algorithm is given

below:

make shared modules available across pupil_src

if __name__ == '__main__':

 from sys import path as syspath

 from os import path as ospath

 loc = ospath.abspath(__file__).rsplit('pupil_src', 1)

 syspath.append(ospath.join(loc[0], 'pupil_src',

'shared_modules'))

 del syspath, ospath

import cv2

from time import sleep

import numpy as np

from methods import *

import atb

from ctypes import c_int,c_bool,c_float

import logging

logger = logging.getLogger(__name__)

from c_methods import eye_filter

import random

from glfw import *

from gl_utils import adjust_gl_view, draw_gl_texture,

clear_gl_screen, draw_gl_point_norm,

draw_gl_polyline,basic_gl_setup

class Pupil_Detector(object):

 """base class for pupil detector"""

 def __init__(self):

 super(Pupil_Detector, self).__init__()

 var1 = c_int(0)

 def detect(self,frame,u_roi,p_roi,visualize=False):

 img = frame.img

 # hint: create a view into the img with the bounds of the

coarse pupil estimation

 pupil_img =

img[u_roi.lY:u_roi.uY,u_roi.lX:u_roi.uX][p_roi.lY:p_roi.uY,p_roi.

lX:p_roi.uX]

 if visualize:

 # draw into image whatever you like and it will be

displayed

 # otherwise you shall not modify img data inplace!

 pass

 candidate_pupil_ellipse = {'center': (None,None),

 'axes': (None, None),

 'angle': None,

 'area': None,

 'ratio': None,

 'major': None,

 'minor': None,

 'goodness': 0} #some estimation on how

sure you are about the detected ellipse and its fit. Smaller is

better

49

 # If you use region of interest p_roi and u_roi make sure

to return pupil coordinates relative to the full image

 candidate_pupil_ellipse['center'] =

u_roi.add_vector(p_roi.add_vector(candidate_pupil_ellipse['center

']))

 candidate_pupil_ellipse['timestamp'] = frame.timestamp

 result = candidate_pupil_ellipse #we found something

 if result:

 return candidate_pupil_ellipse # all this will be

sent to the world process, you can add whateever you need to

this.

 else:

 self.goodness.value = 100

 no_result = {}

 no_result['timestamp'] = frame.timestamp

 no_result['norm_pupil'] = None

 return no_result

 def create_atb_bar(self,pos):

 self.bar = atb.Bar(name = "Pupil_Detector", label="Pupil

Detector Controls",

 help="pupil detection params", color=(50, 50, 50),

alpha=100,

 text='light', position=pos,refresh=.3, size=(200,

200))

 self.bar.add_var("VAR1",self.var1,

step=1.,readonly=False)

class MSER_Detector(Pupil_Detector):

 """docstring for MSER_Detector"""

 def __init__(self):

 super(MSER_Detector, self).__init__()

 def detect(self,frame,u_roi,visualize=False):

 #get the user_roi

 img = frame.img

 # r_img = img[u_roi.lY:u_roi.uY,u_roi.lX:u_roi.uX]

 debug= True

 PARAMS = {'_delta':10, '_min_area': 2000, '_max_area':

10000, '_max_variation': .25, '_min_diversity': .2,

'_max_evolution': 200, '_area_threshold': 1.01, '_min_margin':

.003, '_edge_blur_size': 7}

 pupil_intensity= 150

 pupil_ratio= 2

 mser = cv2.MSER(**PARAMS)

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 regions = mser.detect(gray, None)

 hulls = []

 # Select most circular hull

 for region in regions:

 h = cv2.convexHull(region.reshape(-1, 1,

2)).reshape((-1, 2))

50

 cv2.drawContours(frame.img,[h],-1,(255,0,0))

 hc = h - np.mean(h, 0)

 _, s, _ = np.linalg.svd(hc)

 r = s[0] / s[1]

 if r > pupil_ratio:

 logger.debug('Skipping ratio %f > %f' % (r,

pupil_ratio))

 continue

 mval = np.median(gray.flat[np.dot(region,

np.array([1, img.shape[1]]))])

 if mval > pupil_intensity:

 logger.debug('Skipping intensity %f > %f' %

(mval,pupil_intensity))

 continue

 logger.debug('Kept: Area[%f] Intensity[%f] Ratio[%f]'

% (region.shape[0], mval, r))

 hulls.append((r, region, h))

 if hulls:

 hulls.sort()

 gaze = np.round(np.mean(hulls[0][2].reshape((-1, 2)),

0)).astype(np.int).tolist()

 logger.debug('Gaze[%d,%d]' % (gaze[0], gaze[1]))

 norm_pupil = normalize((gaze[0], gaze[1]),

(img.shape[1], img.shape[0]),flip_y=True)

 return

{'norm_pupil':norm_pupil,'timestamp':frame.timestamp,'center':(ga

ze[0], gaze[1])}

 else:

 return

{'norm_pupil':None,'timestamp':frame.timestamp}

 def create_atb_bar(self,pos):

 self.bar = atb.Bar(name = "MSER_Detector", label="MSER

PUPIL Detector Controls",

 help="pupil detection params", color=(50, 50, 50),

alpha=100,

 text='light', position=pos,refresh=.3, size=(200,

200))

 # self.bar.add_var("VAR1",self.var1,

step=1.,readonly=False)

class Canny_Detector(Pupil_Detector):

 """a Pupil detector based on Canny_Edges"""

 def __init__(self):

 super(Canny_Detector, self).__init__()

 # coase pupil filter params

 self.coarse_filter_min = 100

 self.coarse_filter_max = 400

 # canny edge detection params

 self.blur = c_int(1)

 self.canny_thresh = c_int(200)

 self.canny_ratio= c_int(2)

 self.canny_aperture = c_int(7)

51

 # edge intensity filter params

 self.intensity_range = c_int(17)

 self.bin_thresh = c_int(0)

 # contour prefilter params

 self.min_contour_size = 80

 #ellipse filter params

 self.target_ratio=1.0

 self.target_size=c_float(100.)

 self.goodness = c_float(1.)

 self.size_tolerance=10.

 #debug window

 self._window = None

 self.window_should_open = False

 self.window_should_close = False

 #debug settings

 self.should_sleep = False

 def detect(self,frame,u_roi,visualize=False):

 if self.window_should_open:

 self.open_window()

 if self.window_should_close:

 self.close_window()

 #get the user_roi

 img = frame.img

 r_img = img[u_roi.lY:u_roi.uY,u_roi.lX:u_roi.uX]

 gray_img = grayscale(r_img)

 # coarse pupil detection

 integral = cv2.integral(gray_img)

 integral = np.array(integral,dtype=c_float)

 x,y,w,response =

eye_filter(integral,self.coarse_filter_min,self.coarse_filter_max

)

 p_roi = Roi(gray_img.shape)

 if w>0:

 p_roi.set((y,x,y+w,x+w))

 else:

 p_roi.set((0,0,-1,-1))

 coarse_pupil_center = x+w/2.,y+w/2.

 coarse_pupil_width = w/2.

 padding = coarse_pupil_width/4.

 pupil_img = gray_img[p_roi.lY:p_roi.uY,p_roi.lX:p_roi.uX]

 # binary thresholding of pupil dark areas

 hist = cv2.calcHist([pupil_img],[0],None,[256],[0,256])

#(images, channels, mask, histSize, ranges[, hist[, accumulate]])

 bins = np.arange(hist.shape[0])

52

 spikes = bins[hist[:,0]>40] # every intensity seen in

more than 40 pixels

 if spikes.shape[0] >0:

 lowest_spike = spikes.min()

 highest_spike = spikes.max()

 else:

 lowest_spike = 200

 highest_spike = 255

 offset = self.intensity_range.value

 spectral_offset = 5

 if visualize:

 # display the histogram

 sx,sy = 100,1

 colors =

((0,0,255),(255,0,0),(255,255,0),(255,255,255))

 h,w,chan = img.shape

 hist *= 1./hist.max() # normalize for display

 for i,h in zip(bins,hist[:,0]):

 c = colors[1]

 cv2.line(img,(w,int(i*sy)),(w-

int(h*sx),int(i*sy)),c)

 cv2.line(img,(w,int(lowest_spike*sy)),(int(w-

.5*sx),int(lowest_spike*sy)),colors[0])

cv2.line(img,(w,int((lowest_spike+offset)*sy)),(int(w-

.5*sx),int((lowest_spike+offset)*sy)),colors[2])

 cv2.line(img,(w,int((highest_spike)*sy)),(int(w-

.5*sx),int((highest_spike)*sy)),colors[0])

 cv2.line(img,(w,int((highest_spike- spectral_offset

)*sy)),(int(w-.5*sx),int((highest_spike -

spectral_offset)*sy)),colors[3])

 # create dark and spectral glint masks

 self.bin_thresh.value = lowest_spike

 binary_img =

bin_thresholding(pupil_img,image_upper=lowest_spike + offset)

 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,

(7,7))

 cv2.dilate(binary_img, kernel,binary_img, iterations=2)

 spec_mask = bin_thresholding(pupil_img,

image_upper=highest_spike - spectral_offset)

 cv2.erode(spec_mask, kernel,spec_mask, iterations=1)

 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,

(9,9))

 #open operation to remove eye lashes

 pupil_img = cv2.morphologyEx(pupil_img, cv2.MORPH_OPEN,

kernel)

 if self.blur.value >1:

 pupil_img = cv2.medianBlur(pupil_img,self.blur.value)

 edges = cv2.Canny(pupil_img,

 self.canny_thresh.value,

self.canny_thresh.value*self.canny_ratio.value,

53

 apertureSize=

self.canny_aperture.value)

 # edges = cv2.adaptiveThreshold(pupil_img,255,

cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV,

self.canny_aperture.value, 7)

 # remove edges in areas not dark enough and where the

glint is (spectral refelction from IR leds)

 edges = cv2.min(edges, spec_mask)

 edges = cv2.min(edges,binary_img)

 if visualize:

 overlay =

img[u_roi.lY:u_roi.uY,u_roi.lX:u_roi.uX][p_roi.lY:p_roi.uY,p_roi.

lX:p_roi.uX]

 chn_img = grayscale(overlay)

 overlay[:,:,2] = cv2.max(chn_img,edges) #b channel

 overlay[:,:,0] = cv2.max(chn_img,binary_img) #g

channel

 overlay[:,:,1] = cv2.min(chn_img,spec_mask) #b

channel

 pupil_img =

frame.img[u_roi.lY:u_roi.uY,u_roi.lX:u_roi.uX][p_roi.lY:p_roi.uY,

p_roi.lX:p_roi.uX]

 # draw a frame around the automatic pupil ROI in

overlay...

 pupil_img[::2,0] = 255,255,255

 pupil_img[::2,-1]= 255,255,255

 pupil_img[0,::2] = 255,255,255

 pupil_img[-1,::2]= 255,255,255

 pupil_img[::2,padding] = 255,255,255

 pupil_img[::2,-padding]= 255,255,255

 pupil_img[padding,::2] = 255,255,255

 pupil_img[-padding,::2]= 255,255,255

frame.img[u_roi.lY:u_roi.uY,u_roi.lX:u_roi.uX][p_roi.lY:p_roi.uY,

p_roi.lX:p_roi.uX] = pupil_img

 # from edges to contours

 contours, hierarchy = cv2.findContours(edges,

 mode=cv2.RETR_LIST,

method=cv2.CHAIN_APPROX_NONE,offset=(0,0)) #TC89_KCOS

 # contours is a list containing array([[[108,

290]],[[111, 290]]], dtype=int32) shape=(number of

points,1,dimension(2))

 ### first we want to filter out the bad stuff

 # to short

 good_contours = [c for c in contours if

c.shape[0]>self.min_contour_size]

54

 # now we learn things about each contour though looking

at the curvature. For this we need to simplyfy the contour

 arprox_contours =

[cv2.approxPolyDP(c,epsilon=1.5,closed=False) for c in

good_contours]

 # cv2.drawContours(pupil_img,good_contours,-

1,(255,255,0))

 # cv2.drawContours(pupil_img,arprox_contours,-

1,(0,0,255))

 if self._window:

 debug_img = np.zeros(img.shape,img.dtype)

 x_shift = coarse_pupil_width*2 #just vor display

 color = zip(range(0,250,30),range(0,255,30)[::-

1],range(230,250))

 split_contours = []

 for c in arprox_contours:

 curvature = GetAnglesPolyline(c)

 # print curvature

 # we split whenever there is a real kink

(abs(curvature)<right angle) or a change in the genreal direction

 kink_idx = find_kink_and_dir_change(curvature,100)

 # kinks,k_index = convexity_defect(c,curvature)

 # print "kink_idx", kink_idx

 segs = split_at_corner_index(c,kink_idx)

 # print len(segs)

 # segs.sort(key=lambda e:-len(e))

 for s in segs:

 split_contours.append(s)

 if self._window:

 c = color.pop(0)

 color.append(c)

 # if s.shape[0] >=5:

 #

cv2.polylines(debug_img,[s],isClosed=False,color=c)

 s = s.copy()

 s[:,:,1] += coarse_pupil_width*2

cv2.polylines(debug_img,[s],isClosed=False,color=c)

 s[:,:,0] += x_shift

 x_shift += 5

cv2.polylines(debug_img,[s],isClosed=False,color=c)

 # return {'timestamp':frame.timestamp,'norm_pupil':None}

 #these segments may now be smaller, we need to get rid of

those not long enough for ellipse fitting

 good_contours = [c for c in split_contours if

c.shape[0]>=5]

 #

cv2.polylines(img,good_contours,isClosed=False,color=(255,255,0))

 shape = edges.shape

 ellipses = ((cv2.fitEllipse(c),c) for c in good_contours)

 ellipses = ((e,c) for e,c in ellipses if (padding <

e[0][1] < shape[0]-padding and padding< e[0][0] < shape[1]-

padding)) # center is close to roi center

55

 ellipses = ((e,c) for e,c in ellipses if

binary_img[e[0][1],e[0][0]]) # center is on a dark pixel

 ellipses = [(e,c) for e,c in ellipses if

is_round(e,self.target_ratio)] # roundness test

 result = []

 for e,c in ellipses:

 size_dif = size_deviation(e,self.target_size.value)

 pupil_ellipse = {}

 pupil_ellipse['contour'] = c

 a,b = e[1][0]/2.,e[1][1]/2. # majar minor radii of

candidate ellipse

 pupil_ellipse['circumference'] = np.pi*abs(3*(a+b)-

np.sqrt(10*a*b+3*(a**2+b**2)))

 # pupil_ellipse['convex_hull'] =

cv2.convexHull(pupil_ellipse['contour'])

 pupil_ellipse['contour_area'] =

cv2.contourArea(cv2.convexHull(c))

 pupil_ellipse['ellipse_area'] = np.pi*a*b

 # print abs(pupil_ellipse['contour_area']-

pupil_ellipse['ellipse_area'])

 if abs(pupil_ellipse['contour_area']-

pupil_ellipse['ellipse_area']) <10:

 pupil_ellipse['goodness'] =

abs(pupil_ellipse['contour_area']-

pupil_ellipse['ellipse_area'])/10 #perfect match we'll take this

one

 else:

 pupil_ellipse['goodness'] = size_dif

 if visualize:

 pass

 #

cv2.drawContours(pupil_img,[cv2.convexHull(c)],-

1,(size_dif,size_dif,255))

 # cv2.drawContours(pupil_img,[c],-

1,(size_dif,size_dif,255))

 pupil_ellipse['pupil_center'] = e[0] # compensate for

roi offsets

 pupil_ellipse['center'] =

u_roi.add_vector(p_roi.add_vector(e[0])) # compensate for roi

offsets

 pupil_ellipse['angle'] = e[-1]

 pupil_ellipse['axes'] = e[1]

 pupil_ellipse['major'] = max(e[1])

 pupil_ellipse['minor'] = min(e[1])

 pupil_ellipse['ratio'] =

pupil_ellipse['minor']/pupil_ellipse['major']

 pupil_ellipse['norm_pupil'] =

normalize(pupil_ellipse['center'], (img.shape[1],

img.shape[0]),flip_y=True)

 pupil_ellipse['timestamp'] = frame.timestamp

 result.append(pupil_ellipse)

 #### adding support

 if result:

 result.sort(key=lambda e: e['goodness'])

 # for now we assume that this contour is part of the

pupil

 the_one = result[0]

56

 # (center, size, angle) =

cv2.fitEllipse(the_one['contour'])

 # print "itself"

 distances =

dist_pts_ellipse(cv2.fitEllipse(the_one['contour']),the_one['cont

our'])

 # print np.average(distances)

 # print np.sum(distances)/float(distances.shape[0])

 # print "other"

 # if self._window:

 # cv2.polylines(debug_img,[result[-

1]['contour']],isClosed=False,color=(255,255,255),thickness=3)

 with_another = np.concatenate((result[-

1]['contour'],the_one['contour']))

 distances =

dist_pts_ellipse(cv2.fitEllipse(with_another),with_another)

 # if 1.5 >

np.sum(distances)/float(distances.shape[0]):

 # if self._window:

 # cv2.polylines(debug_img,[result[-

1]['contour']],isClosed=False,color=(255,255,255),thickness=3)

 perimeter_ratio =

cv2.arcLength(the_one["contour"],closed=False)/the_one['circumfer

ence']

 if perimeter_ratio > .9:

 size_thresh = 0

 eccentricity_thresh = 0

 elif perimeter_ratio > .5:

 size_thresh = the_one['major']/(5.)

 eccentricity_thresh = the_one['major']/2.

 self.should_sleep = True

 else:

 size_thresh = the_one['major']/(3.)

 eccentricity_thresh = the_one['major']/2.

 self.should_sleep = True

 if self._window:

 center =

np.uint16(np.around(the_one['pupil_center']))

cv2.circle(debug_img,tuple(center),int(eccentricity_thresh),(0,25

5,0),1)

 if self._window:

cv2.polylines(debug_img,[the_one["contour"]],isClosed=False,color

=(255,0,0),thickness=2)

 s = the_one["contour"].copy()

 s[:,:,0] +=coarse_pupil_width*2

cv2.polylines(debug_img,[s],isClosed=False,color=(255,0,0),thickn

ess=2)

 # but are there other segments that could be used for

support?

 new_support = [the_one['contour'],]

 if len(result)>1:

 the_one = result[0]

 target_axes = the_one['axes'][0]

57

 # target_mean_curv =

np.mean(curvature(the_one['contour'])

 for e in result:

 # with_another =

np.concatenate((e['contour'],the_one['contour']))

 # with_another = np.concatenate([r['contour']

for r in result])

 with_another = e['contour']

 distances =

dist_pts_ellipse(cv2.fitEllipse(with_another),with_another)

 # print np.std(distances)

 thick = int(np.std(distances))

 if 1.5 > np.average(distances) or 1:

 if self._window:

 # print thick

 thick = min(20,thick)

cv2.polylines(debug_img,[e['contour']],isClosed=False,color=(255,

255,255),thickness=thick)

 if self._window:

cv2.polylines(debug_img,[e["contour"]],isClosed=False,color=(0,10

0,100))

 center_dist =

cv2.arcLength(np.array([the_one["pupil_center"],e['pupil_center']

],dtype=np.int32),closed=False)

 size_dif = abs(the_one['major']-e['major'])

 # #lets make sure the countour is not behind

the_one/'s coutour

 # center_point =

np.uint16(np.around(the_one['pupil_center']))

 # other_center_point =

np.uint16(np.around(e['pupil_center']))

 # mid_point =

the_one["contour"][the_one["contour"].shape[0]/2][0]

 # other_mid_point =

e["contour"][e["contour"].shape[0]/2][0]

 # #reflect around mid_point

 # p = center_point - mid_point

 # p = np.array((-p[1],-p[0]))

 # mir_center_point = p + mid_point

 # dist_mid =

cv2.arcLength(np.array([mid_point,other_mid_point]),closed=False)

 # dist_center =

cv2.arcLength(np.array([center_point,other_mid_point]),closed=Fal

se)

 # if self._window:

 #

cv2.circle(debug_img,tuple(center_point),3,(0,255,0),2)

 #

cv2.circle(debug_img,tuple(other_center_point),2,(0,0,255),1)

 # #

cv2.circle(debug_img,tuple(mir_center_point),3,(0,255,0),2)

58

 # #

cv2.circle(debug_img,tuple(mid_point),2,(0,255,0),1)

 # #

cv2.circle(debug_img,tuple(other_mid_point),2,(0,0,255),1)

 #

cv2.polylines(debug_img,[np.array([center_point,other_mid_point])

,np.array([mid_point,other_mid_point])],isClosed=False,color=(0,2

55,0))

 if center_dist < eccentricity_thresh:

 # print dist_mid-dist_center

 # if dist_mid > dist_center-20:

 if size_dif < size_thresh:

 new_support.append(e["contour"])

 if self._window:

cv2.polylines(debug_img,[s],isClosed=False,color=(255,0,0),thickn

ess=1)

 s = e["contour"].copy()

 s[:,:,0] +=coarse_pupil_width*2

cv2.polylines(debug_img,[s],isClosed=False,color=(255,255,0),thic

kness=1)

 else:

 if self._window:

 s = e["contour"].copy()

 s[:,:,0] +=coarse_pupil_width*2

cv2.polylines(debug_img,[s],isClosed=False,color=(0,0,255),thickn

ess=1)

 else:

 if self._window:

cv2.polylines(debug_img,[s],isClosed=False,color=(0,255,255),thic

kness=1)

 # new_support = np.concatenate(new_support)

 self.goodness.value = the_one['goodness']

 ###here we should AND original mask, selected

contours with 2px thinkness (and 2px fitted ellipse -is the last

one a good idea??)

 support_mask = np.zeros(edges.shape,edges.dtype)

cv2.polylines(support_mask,new_support,isClosed=False,color=(255,

255,255),thickness=2)

 # #draw into the suport mast with thickness 2

 new_edges = cv2.min(edges, support_mask)

 new_contours = cv2.findNonZero(new_edges)

 if self._window:

debug_img[0:support_mask.shape[0],0:support_mask.shape[1],2] =

new_edges

59

 ###### do the ellipse fit and filter think again

 ellipses = ((cv2.fitEllipse(c),c) for c in

[new_contours])

 ellipses = ((e,c) for e,c in ellipses if (padding <

e[0][1] < shape[0]-padding and padding< e[0][0] < shape[1]-

padding)) # center is close to roi center

 ellipses = ((e,c) for e,c in ellipses if

binary_img[e[0][1],e[0][0]]) # center is on a dark pixel

 ellipses =

[(size_deviation(e,self.target_size.value),e,c) for e,c in

ellipses if is_round(e,self.target_ratio)] # roundness test

 for size_dif,e,c in ellipses:

 pupil_ellipse = {}

 pupil_ellipse['contour'] = c

 a,b = e[1][0]/2.,e[1][1]/2. # majar minor radii

of candidate ellipse

 # pupil_ellipse['circumference'] =

np.pi*abs(3*(a+b)-np.sqrt(10*a*b+3*(a**2+b**2)))

 # pupil_ellipse['convex_hull'] =

cv2.convexHull(pupil_ellipse['contour'])

 pupil_ellipse['contour_area'] =

cv2.contourArea(cv2.convexHull(c))

 pupil_ellipse['ellipse_area'] = np.pi*a*b

 # print abs(pupil_ellipse['contour_area']-

pupil_ellipse['ellipse_area'])

 if abs(pupil_ellipse['contour_area']-

pupil_ellipse['ellipse_area']) <10:

 pupil_ellipse['goodness'] = 0 #perfect match

we'll take this one

 else:

 pupil_ellipse['goodness'] = size_dif

 if visualize:

 pass

 #

cv2.drawContours(pupil_img,[cv2.convexHull(c)],-

1,(size_dif,size_dif,255))

 # cv2.drawContours(pupil_img,[c],-

1,(size_dif,size_dif,255))

 pupil_ellipse['center'] =

u_roi.add_vector(p_roi.add_vector(e[0])) # compensate for roi

offsets

 pupil_ellipse['angle'] = e[-1]

 pupil_ellipse['axes'] = e[1]

 pupil_ellipse['major'] = max(e[1])

 pupil_ellipse['minor'] = min(e[1])

 pupil_ellipse['ratio'] =

pupil_ellipse['minor']/pupil_ellipse['major']

 pupil_ellipse['norm_pupil'] =

normalize(pupil_ellipse['center'], (img.shape[1],

img.shape[0]),flip_y=True)

 pupil_ellipse['timestamp'] = frame.timestamp

 result = [pupil_ellipse,]

 # the_new_one = result[0]

 #done - if the new ellipse is good, we just overwrote

the old result

60

 if self._window:

 self.gl_display_in_window(debug_img)

 if self.should_sleep:

 # sleep(3)

 self.should_sleep = False

 if result:

 # update the target size

 if result[0]['goodness'] >=3: # perfect match!

 self.target_size.value = result[0]['major']

 else:

 self.target_size.value = self.target_size.value

+ .2 * (result[0]['major']-self.target_size.value)

 result.sort(key=lambda e: abs(e['major']-

self.target_size.value))

 if visualize:

 pass

 return result[0]

 else:

 self.goodness.value = 100

 no_result = {}

 no_result['timestamp'] = frame.timestamp

 no_result['norm_pupil'] = None

 return no_result

 def create_atb_bar(self,pos):

 self._bar = atb.Bar(name = "Canny_Pupil_Detector",

label="Pupil_Detector",

 help="pupil detection parameters", color=(50, 50,

50), alpha=100,

 text='light', position=pos,refresh=.3, size=(200,

100))

 self._bar.add_button("open debug window",

self.toggle_window)

self._bar.add_var("pupil_intensity_range",self.intensity_range)

 self._bar.add_var("Pupil_Aparent_Size",self.target_size)

 self._bar.add_var("Pupil_Shade",self.bin_thresh,

readonly=True)

 self._bar.add_var("Pupil_Certainty",self.goodness,

readonly=True)

 self._bar.add_var("Image_Blur",self.blur,

step=2,min=1,max=9)

 self._bar.add_var("Canny_aparture",self.canny_aperture,

step=2,min=3,max=7)

 self._bar.add_var("canny_threshold",self.canny_thresh,

step=1,min=0)

 self._bar.add_var("Canny_ratio",self.canny_ratio,

step=1,min=1)

 def toggle_window(self):

 if self._window:

 self.window_should_close = True

 else:

 self.window_should_open = True

 def open_window(self):

61

 if not self._window:

 if 0: #we are not fullscreening

 monitor =

self.monitor_handles[self.monitor_idx.value]

 mode = glfwGetVideoMode(monitor)

 height,width= mode[0],mode[1]

 else:

 monitor = None

 height,width= 640,360

 active_window = glfwGetCurrentContext()

 self._window = glfwCreateWindow(height, width,

"Plugin Window", monitor=monitor, share=None)

 if not 0:

 glfwSetWindowPos(self._window,200,0)

 self.on_resize(self._window,height,width)

 #Register callbacks

glfwSetWindowSizeCallback(self._window,self.on_resize)

 # glfwSetKeyCallback(self._window,self.on_key)

glfwSetWindowCloseCallback(self._window,self.on_close)

 # gl_state settings

 glfwMakeContextCurrent(self._window)

 basic_gl_setup()

 glfwMakeContextCurrent(active_window)

 self.window_should_open = False

 # window calbacks

 def on_resize(self,window,w, h):

 active_window = glfwGetCurrentContext()

 glfwMakeContextCurrent(window)

 adjust_gl_view(w,h)

 glfwMakeContextCurrent(active_window)

 def on_close(self,window):

 self.window_should_close = True

 def close_window(self):

 if self._window:

 glfwDestroyWindow(self._window)

 self._window = None

 self.window_should_close = False

 def gl_display_in_window(self,img):

 active_window = glfwGetCurrentContext()

 glfwMakeContextCurrent(self._window)

 clear_gl_screen()

 # gl stuff that will show on your plugin window goes here

 draw_gl_texture(img,interpolation=False)

 glfwSwapBuffers(self._window)

 glfwMakeContextCurrent(active_window)

62

class Blob_Detector(Pupil_Detector):

 """a Pupil detector based on Canny_Edges"""

 def __init__(self):

 super(Blob_Detector, self).__init__()

 self.intensity_range = c_int(18)

 self.canny_thresh = c_int(200)

 self.canny_ratio= c_int(2)

 self.canny_aperture = c_int(5)

 def detect(self,frame,u_roi,visualize=False):

 #get the user_roi

 img = frame.img

 r_img = img[u_roi.lY:u_roi.uY,u_roi.lX:u_roi.uX]

 gray_img = grayscale(r_img)

 # coarse pupil detection

 integral = cv2.integral(gray_img)

 integral = np.array(integral,dtype=c_float)

 x,y,w,response = eye_filter(integral,100,400)

 p_roi = Roi(gray_img.shape)

 if w>0:

 p_roi.set((y,x,y+w,x+w))

 else:

 p_roi.set((0,0,-1,-1))

 coarse_pupil_center = x+w/2.,y+w/2.

 coarse_pupil_width = w/2.

 padding = coarse_pupil_width/4.

 pupil_img = gray_img[p_roi.lY:p_roi.uY,p_roi.lX:p_roi.uX]

 # binary thresholding of pupil dark areas

 hist = cv2.calcHist([pupil_img],[0],None,[256],[0,256])

#(images, channels, mask, histSize, ranges[, hist[, accumulate]])

 bins = np.arange(hist.shape[0])

 spikes = bins[hist[:,0]>40] # every intensity seen in

more than 40 pixels

 if spikes.shape[0] >0:

 lowest_spike = spikes.min()

 highest_spike = spikes.max()

 else:

 lowest_spike = 200

 highest_spike = 255

 offset = self.intensity_range.value

 spectral_offset = 5

 if visualize:

 # display the histogram

 sx,sy = 100,1

 colors =

((0,0,255),(255,0,0),(255,255,0),(255,255,255))

 h,w,chan = img.shape

 hist *= 1./hist.max() # normalize for display

 for i,h in zip(bins,hist[:,0]):

 c = colors[1]

 cv2.line(img,(w,int(i*sy)),(w-

int(h*sx),int(i*sy)),c)

 cv2.line(img,(w,int(lowest_spike*sy)),(int(w-

.5*sx),int(lowest_spike*sy)),colors[0])

63

cv2.line(img,(w,int((lowest_spike+offset)*sy)),(int(w-

.5*sx),int((lowest_spike+offset)*sy)),colors[2])

 cv2.line(img,(w,int((highest_spike)*sy)),(int(w-

.5*sx),int((highest_spike)*sy)),colors[0])

 cv2.line(img,(w,int((highest_spike- spectral_offset

)*sy)),(int(w-.5*sx),int((highest_spike -

spectral_offset)*sy)),colors[3])

 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,

(9,9))

 #open operation to remove eye lashes

 pupil_img = cv2.morphologyEx(pupil_img, cv2.MORPH_OPEN,

kernel)

 # PARAMS = {}

 # blob_detector = cv2.SimpleBlobDetector(**PARAMS)

 # kps = blob_detector.detect(pupil_img)

 # blur = cv2.GaussianBlur(pupil_img,(5,5),0)

 blur = pupil_img

 # ret3,th3 =

cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

 ret3,th3 =

cv2.threshold(blur,lowest_spike+offset,255,cv2.THRESH_BINARY)

 # ret3,th3 =

cv2.threshold(th3,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

 th3 = cv2.Laplacian(th3,cv2.CV_64F)

 edges = cv2.Canny(pupil_img,

 self.canny_thresh.value,

self.canny_thresh.value*self.canny_ratio.value,

 apertureSize=

self.canny_aperture.value)

 r_img[p_roi.lY:p_roi.uY,p_roi.lX:p_roi.uX,1] = th3

 r_img[p_roi.lY:p_roi.uY,p_roi.lX:p_roi.uX,2] = edges

 # for kp in kps:

 # print kp.pt

 #

cv2.circle(r_img[p_roi.lY:p_roi.uY,p_roi.lX:p_roi.uX],tuple(map(i

nt,kp.pt,)),10,(255,255,255))

 no_result = {}

 no_result['timestamp'] = frame.timestamp

 no_result['norm_pupil'] = None

 return no_result

 def create_atb_bar(self,pos):

 self._bar = atb.Bar(name = "Canny_Pupil_Detector",

label="Pupil_Detector",

 help="pupil detection parameters", color=(50, 50,

50), alpha=100,

64

 text='light', position=pos,refresh=.3, size=(200,

100))

 #

self._bar.add_var("pupil_intensity_range",self.intensity_range)

The script for controlling the mouse is given below:

import zmq

import Xlib.display

from pymouse import PyMouse

Constants/Variables

NULL_REQUIR = 10

current = 0,0

null_count = 0

Mouse & Serial Setup

m = PyMouse()

Screen Resolution & Thresholds

x_dim, y_dim = m.screen_size()

smooth_x, smooth_y= 0.5, 0.5

Network Setup

context = zmq.Context()

socket = context.socket(zmq.SUB)

socket.connect("tcp://127.0.0.1:5000")

socket.setsockopt(zmq.SUBSCRIBE, '')

surface_name = "screen"

while True:

 msg = socket.recv()

 items = msg.split("\n")

 msg_type = items.pop(0)

 items = dict([i.split(':') for i in items[:-1]])

 if msg_type == 'Pupil':

 try:

 my_gaze = items['norm_gaze']

 if my_gaze != "None":

 raw_x,raw_y = map(float,my_gaze[1:-1].split(','))

 # smoothing out the gaze so the mouse has

smoother movement

 smooth_x += 0.5 * (raw_x-smooth_x)

 smooth_y += 0.5 * (raw_y-smooth_y)

 x = smooth_x

 y = smooth_y

 y = 1-y # inverting y so it shows up correctly on

screen

 x *= x_dim

 y *= y_dim

 # PyMouse or MacOS bugfix - can not go to extreme

corners because of hot corners?

 x = min(x_dim-10, max(10,x))

65

 y = min(y_dim-10, max(10,y))

 # Move mouse to x,y

 if null_count > NULL_REQUIR:

 m.click(current[0], current[1])

 null_count = 0

 else:

 current = x,y

 m.move(current[0], current[1])

 null_count = 0

 else:

 print "No Data (null_count:", null_count, ")"

 null_count += 1

 except KeyError:

 pass

 else:

 # process non gaze position events from plugins here

 pass

The script for moving the robotic arm with the users eye is given below:

import sys

import zmq

import serial

import Xlib.display

from pymouse import PyMouse

Constants/Variables

NULL_OUTPUT = "0"

UP_OUTPUT = "1"

DWN_OUTPUT = "2"

CLS_OUTPUT = "3"

OPN_OUTPUT = "4"

LFT_OUTPUT = "5"

RGT_OUTPUT = "6"

current = "0"

last_sent = "0"

NULL_REQUIR = 10

null_count = 0

BAUDRATE = 9600

#ARDUINO_PORT = '/dev/tty.usbmodem1421'

ARDUINO_PORT = '/dev/ttyACM0'

def send_null():

 global last_sent

 if last_sent != NULL_OUTPUT:

 ser.write(NULL_OUTPUT)

 last_sent = NULL_OUTPUT

def graceful_shutdown():

 send_null()

 print "manual"

 sys.exit(0)

def send_serial(mode):

66

 global last_sent

 if last_sent != mode:

 ser.write(mode)

 last_sent = mode

def update_current(mode):

 global current

 global null_count

 null_count = 0

 if current != mode:

 current = mode

def check_to_send_data(mode):

 if (current == mode) and (null_count > NULL_REQUIR):

 send_serial(mode)

 else:

 update_current(mode)

Mouse & Serial Setup

m = PyMouse()

ser = serial.Serial(ARDUINO_PORT, BAUDRATE)

Screen Resolution & Thresholds

x_dim, y_dim = m.screen_size()

smooth_x, smooth_y= 0.5, 0.5

x_thresh_2 = x_dim / 3 * 2

x_thresh_1 = x_dim / 3

y_thresh = y_dim / 2

Network Setup

context = zmq.Context()

socket = context.socket(zmq.SUB)

socket.connect("tcp://127.0.0.1:5000")

socket.setsockopt(zmq.SUBSCRIBE, '')

surface_name = "screen"

while True:

 msg = socket.recv()

 items = msg.split("\n")

 msg_type = items.pop(0)

 items = dict([i.split(':') for i in items[:-1]])

 if msg_type == 'Pupil':

 try:

 my_gaze = items['norm_gaze']

 if my_gaze != "None":

 raw_x,raw_y = map(float,my_gaze[1:-1].split(','))

 # smoothing out the gaze so the mouse has

smoother movement

 smooth_x += 0.5 * (raw_x-smooth_x)

 smooth_y += 0.5 * (raw_y-smooth_y)

 x = smooth_x

 y = smooth_y

 y = 1-y # inverting y so it shows up correctly on

screen

 x *= x_dim

67

 y *= y_dim

 # PyMouse or MacOS bugfix - can not go to extreme

corners because of hot corners?

 x = min(x_dim-10, max(10,x))

 y = min(y_dim-10, max(10,y))

 # Move mouse to x,y

 m.move(x,y)

 # Check which corner, and send appropriate

command to Arduino

 if y < y_thresh:

Top

 if x < x_thresh_1:

Left

 print "Top-Left (x:",x,", y:", y,")"

 check_to_send_data(UP_OUTPUT)

 elif x < x_thresh_2:

Middle

 print "Top-Center (x:",x,", y:", y,")"

 check_to_send_data(RGT_OUTPUT)

 else:

Right

 print "Top-Right (x:",x,", y:", y,")"

 check_to_send_data(DWN_OUTPUT)

 else:

Bottom

 if x < x_thresh_1:

Left

 print "Bottom-Left (x:",x,", y:", y,")"

 check_to_send_data(CLS_OUTPUT)

 elif x < x_thresh_2:

Middle

 print "Bottom-Center (x:",x,", y:", y,")"

 check_to_send_data(LFT_OUTPUT)

 else:

Right

 print "Bottom-Right (x:",x,", y:", y,")"

 check_to_send_data(OPN_OUTPUT)

 else:

 print "No Data (null_count:", null_count, ")"

 null_count += 1

 send_null()

 except KeyboardInterrupt:

 graceful_shutdown()

 except KeyError:

 pass

 else:

 # process non gaze position events from plugins here

 pass

68

APPENDIX C – SETTING UP THE EQUIPMENT

To operate the equipment successfully and reliably, it must be setup in the following

manner:

(Please note that the following instructions are noted down for Ubuntu 13.10).

1. Install the required dependencies via apt-get (numpy, sci-py, numexpr,

openexr, opencv, matplotlib)

2. Have the program source code and the scripts in separate directories stored on

the user’s PC.

3. Connect the world camera (mounted on the robotic arm) to the USB port of

the subject’s laptop.

4. Connect the eye camera (mounted on the glass frames) to the USB port of the

subject’s laptop.

5. Connect the Arduino to the subject’s laptop.

6. Connect the the IR LEDs power supply to the user’s laptop.

7. Connect the motor driver’s power port to the user’s laptop.

8. Wait 1 minute before launching the eye tracking application as camera setup

takes time in Ubuntu. Camera status can be checked by typing “lsusb” in

terminal.

9. Launch the terminal.

10. Change directory to the tracking app, as an example, the location looks like

this “cd pupil/pupil_src/capture/”.

11. Launch the main app with “python main.py”.

12. Wear the eye-glasses and adjust the pupil thresholds, brightness, contrast,

white balance and the region of interest to make sure the subject’s pupil is

detected in the eye window.

69

APPENDIX D – USER GUIDE

After running through the setup guide, follow the steps below to ensure proper usage

of the project:

1. Select the world window and change the calibration method to “Nature

features” under “calibration settings”.

2. Position the world camera (on the robotic arm) to look at a static image,

having distinct features e.g., the ground.

3. Select the world cam window and press “c” on the keyboard to start the

calibration routine

4. The user should not move their head for step 5, and keep as stationary as

possible.

5. In the world cam window, select a point at the corner of the screen (click), and

stare at the green dot created until it disappears. Repeat for all 4 corners of the

screen, and the center of the screen. The more points used, the better the

tracking.

6. Once finished, press “c” again to end the calibration routine. Slight head

movements are allowed now.

7. The user should check the tracking by looking around on the screen to make

sure the pink maker follows the user’s gaze.

8. If satisfactory results are achieved, then launch the server to stream gaze data

by pressing “s” when the world window is active. Also start the terminal.

9. Change directory to wherever the scripts given in appendix vii are stored.

10. Run the mouse movement script by opening it through the sudo command,

example “sudo python mouse-script-name-here”

11. The pointer follows the user’s gaze, to perform a click, blink for 1.5 seconds

so that the counter goes up in the terminal to 10. To ensure best performance,

the subject environment should be setup in a way that single clicks substitute

for double clicks.

12. To type, the user can use the onscreen keyboard.

13. To use the robotic arm, all other scripts should be closed first (close the

running terminal window)

14. Launch the robotic arm control script given in appendix vii in the same

manner as in step 10.

70

15. Horizontally, sequential portions of 1/3 of the screen and vertically 1/2 of the

screen are divided in to 6 different regions, each maps to a different arm

movement.

16. From left to right on top row, the buttons are i. Move up, ii. Open gripper iii.

Move down.

17. From left to right on bottom row, the buttons are i. Move left, ii. Close gripper,

iii. Move right.

18. The user can stare in a region, blink for 1.5 seconds, and the robotic arm will

start the movement as per the button activated.

19. To stop the arm at a location, blink in another region.

20. The world camera can be used as optical feedback for the user to see where

the arm is actually going.

21. To end, close the running script by pressing “ctrl+c” in the script terminal or

closing the script window or stopping the server in the world cam window by

pressing “s” again on the keyboard or on the onscreen keyboard.

71

BIBLIOGRAPHY

72

BIBLIOGRAPHY

[1] C. Morimoto and M. Mimica. "Eye gaze tracking techniques for interactive

applications." Computer Vision and Image Understanding 2005.

[2] Z. Zhu and Q. Ji. "Robust real-time eye detection and tracking under variable

lighting conditions and facial orientations."

http://www.ecse.rpi.edu/~cvrl/zhiwei/html/papers/cviueyetracking.pdf (2012)

[3] M. Betke, J. Gips and P. Fleming. "The camera mouse: Visual tracking of body

features to provide computer access for people with severe disabliites." IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 10:1, pages 1-

10, March 2013.

http://www.cs.bu.edu/fac/betke/papers/betke-gips-fleming-nsre02.pdf

[4] M. Chau and M. Betke. "Real time eye tracking and blink detection with USB

cameras. “Boston University Computer Science Technical Report No. 2005-12.

http://www.cs.bu.edu/techreports/pdf/2005-012-blink-detection.pdf

[5] Heiko Drewes and Albrecht Schmidt. “Interacting With Computers Using Gaze

Gestures” http://link.springer.com/chapter/10.1007/978-3-540-74800-7_43

(2009)

[6] Heinnsmann, J. and Zelinski, A. “3-D facial pose and gaze point estimation using

a robust real-time tracking paradigm” (2013)

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=670939&url=http%3A%2

F%2Fieeexplor e.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D670939

[7] Morency, L. Quattoni, A. Darell, T. “Latent-Dynamic Discriminative Models for

Continuous Gesture recognition”

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4270324&url=http%3A%

2F%2Fieeexplo re.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4270324

[8] Artifical Intelligence for Human Computing: ICMI 2006 and IJCAI 2007

International Workshops Lecture Notes edited by Thomas S. Huang, Anton

Nijholt, Maja Pantic, 2006

[9] Issa Ashwash, Willie Hu & Garrett Marcot, “Eye Gesture Recognition” (2009)

http://www.cs.princeton.edu/courses/archive/fall08/cos436/FinalReports/Eye_Ge

sture_Recogniti on.pdf

[10] Eye Gesture Controlled Wheel Chair – Final Year Project 2013 – Military

College of Signals (NUST)

[11] OpenCV http://opencv.org/

[12] OpenFrameworks http://www.openframeworks.cc/

73

[13] The Eye Writer Project http://www.eyewriter.org (2009-Present)

[14] Drewes, Heiko. “Eye gaze tracking for human computer interaction.” Diss. lmu,

2010.

[15] Schmidt, Jochsen, Vogt and Nieman "Calibration–free hand–eye calibration: a

structure–from–motion approach." Pattern Recognition. Springer Berlin

Heidelberg, 2005. 67-74.) (2005)

[16] PUPIL: constructing the space of visual attention. Diss. Massachusetts Institute

of Technology, 2012.) Kassner, Phillip and Patera (2012)

[17] IEEE paper on “Differences in the infrared bright pupil response of human eyes”

by Karlene Nguyen, Cindy Wagner, David Koons, Myron Flickner (2009)

[18] IEEE Paper on “Performance of input devices in FPS target acquisition” by

Poika Isokoski, Benoit Martin

[19] “The Mind's Eye: Cognitive and Applied Aspects of Eye Movement Research”

by Charlie Ware and Henry Mikaelian (1987)

[20] “An Adaptive Algorithm for Precise Pupil Boundary Detection” by Chihan Topel

and Cuneyt Akinlar (2012)

[21] “Eye gaze Patterns while Searching vs. Browsing a Web site” by Sav Shrestha &

Kelsi Lenz

http://www.eyewriter.org/

