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                                            ABSTRACT 

 

IMAGE GUIDED BLENDED NEAR NEIGHBOR 

INTERPOLATION               AND ITS APPLICATIONS IN OIL 

EXPLORATION 
 
 

A number of interpolation techniques exist that are designed to interpolate data that is 

sparse in nature over a field to the entire range. These include schemes such as 

Inverse-Distance Weighting (IDW), Kriging and others. The limitation to these 

schemes is that they depend only on the location and value of the sparse points. 

In some applications, however, the need for a guiding function that is dense in nature 

is felt. One application, which happens to be the one we are working on, is the 

guidance of well data (sparse) by seismic date (dense). This is needed because the 

location of wells alone is insufficient to determine the orientation of layers – the 

collected seismic data is needed to be able to “guide” the prediction of the layers. As a 

result, a new technique is needed to be able to meet these requirements. 

We propose a technique known as Image Guided Blended Near-Neighbour 

Interpolation, and aim to define it mathematically, as well as to introduce an 

algorithm for its fast computation. The properties of well data that can be interpolated 

include velocity, density, temperature, viscosity and others. 

This technique would not only have a computational advantage over existing methods 

but it would also lead to a reduction in time and cost giving it an edge over all 

previously known techniques.
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Chapter 1 INTRODUCTION 

1.1 Introduction 

This chapter provides an overview of the project, project motivation, project 

objectives and organization of the document. 

The project entails something like this. The seismic data is present in the form of a 

volume, which is dense, but not very accurate. Then there is well log data, which is 

accurate, but sparse. How can the well log data be interpolated that it honours the 

local structure present in the seismic volume? It turns out that there is a really simple 

way to do this. Nearest neighbour interpolation; what is in this method is that for 

every point in the seismic volume, the Euclidean distance in 3-D space to every well 

log point is calculated. Then simply the nearest neighbour’s value at this sample point 

is written here. Obviously if the implementation isn't efficient, even this naive brute 

force method will take forever.  

Uniformly sampled images are often used to interpolate other data acquired more 

sparsely with an entirely different mode of measurement. For example, downhole 

tools enable geophysical properties to be measured with high precision near boreholes 

that are scattered spatially, and less precise seismic images acquired at the earth’s 

surface are used to interpolate those properties at locations far away from the 

boreholes.  

Image-guided interpolation is designed specifically to enhance this process.  Most 

existing methods for interpolation require distances from points where data will be 

interpolated to nearby points where data are known.  

Image-guided interpolation requires non-Euclidean distances in metric tensor fields 
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that represent the coherence, orientations and shapes of features in images. This 

requirement leads to a new method for interpolating scattered data that is called 

blended neighbour interpolation. 

 

1.2 Motivation 

The motivation for implementation of image guided blended near neighbour 

interpolation is due to increasing need of the existence of an efficient algorithm that 

could provide correct whereabouts of the location of oil under the seismic layers. 

During the data-collection phase the well log and the seismic data is collected. Well 

log data is the one that is sparse in nature and seismic data is one that is dense in 

nature. The project has been provided by LMKR as a component of one their Geo 

Graphix department.  

The collection and provision of data is basically being done by them. After that by 

using this data, sparse data is interpolated over dense data. Since the preexisting 

techniques included near neighbour interpolation and interpolation by PDEs, which 

were not only computationally inefficient but their complexity used to increase with 

increasing number of points. 

The blended near neighbour interpolation was then thought of as an alternative to 

these time costing techniques. It not only would lead to reduction in complexity while 

working with large seismic data but also since the image guided blended near 

neighbour interpolation is to be used, the resultant seismic images would be easier to 

interpret than the unguided blended near neighbour interpolation.



 

3 

 

 

 

1.3 Objectives 

This section provides the details of the academic and application objectives of the 

project. The main goal is the design and implementation on Image Guided Blended 

Near-Neighbour interpolation in a computationally efficient manner on a variety of 

platforms including Octave, CPU (C#), GPU (CUDA), as well as FPGAs. It is 

intended to develop only a library that can be used in an existing software application, 

not a GUI, as the main purpose was the processing of data. 

 

 

1.3.1 Academic Objectives 
 

 

The primary objective was to Implementation of PDEs (Partial Differential Equations) 

for interpolation. Along with it implementation of numerical methods for solving 

partial differential equations was also one of the primary objectives. To port the 

solution of the PDEs and mathematical algorithms into machine implementation were 

the secondary objectives. . 

1.3.2 Application Objectives 
It provides more well-organized and proficient algorithm for interpolating sparse well 

log data over dense seismic data. The main applications include velocity modelling, 

fault detection and improved reconstruction of seismic images
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1.3.2.1 Velocity Modelling  

Velocity is a fundamental property of rocks that depends on density and elastic 

moduli. 

It varies laterally as well as vertically due to the physical-geologic variations of rocks. 

Velocities are determined less precisely from closely spaced seismic reflection data, 

while precise measurements are obtained from widely spaced boreholes. Velocities 

appear to be complex due to their various types and usage in processing and 

interpretation applications. Velocities are measured directly and more precisely by 

using borehole techniques such as sonic logs, check shots, and vertical seismic 

profiling. 

Although seismic is the main source of velocity distribution information for the whole 

survey area, borehole velocities at widely dispersed well points provide reliable 

correlation and control for calibrating the seismic velocities. The velocity model is 

then developed to understand the true nature of the seismic data. 

 

1.4 Block Diagram 

The basic block diagram of the project can be represented below. Here each block is 

explained and correlated to the corresponding block till reaches the final output. 
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GPU Version (CUDA) 

Test bed in Octave/MATLAB 

CPU Version (C#) 
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First of all the test development had been done in Octave/ MATLAB which is an open 

ware. After successful implementation in it, the single thread version is first 

developed in C# to check timing optimization, since a 3d version could not be 

implemented in MATLAB due to exorbitant amount of time it took (several hours), a 

more efficient parallel thread version is implemented in C# to speed up processing 

time. 

The velocity model as required by LMKR had to be a final algorithm developed at 

GPU having much more processing speed than the C# or other versions. 

 

1.5 Organization of Document 

 

 

Chapter 2 is about the literature review. Chapter 3 explains system modules 

particularly the hardware used in the project. Chapter 4 consists of detail discussion of 

the project design and the development stages. In Chapter 5 details of project testing 

and evaluation are given, also the project limitations are defined. Chapter 6 deals with 

future works and applications related to Implementation of image guided blended near 

neighbour interpolation. 

The codes cannot be disclosed on account of the non-disclosure agreement that has 

been signed with LMKR. In the end is bibliography. 
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Chapter 2 LITERATURE REVIEW 

2.1 Spatial Interpolation 

Interpolation is based on the assumption that spatially distributed objects are spatially 

correlated; in other words, things that are close together tend to have similar 

characteristics.  

There are two main groupings of interpolation techniques: deterministic and 

geostatistical. Deterministic interpolation techniques create surfaces from measured 

points, based on either the extent of similarity (inverse distance weighted) or the 

degree of smoothing (radial basis functions). Geostatistical interpolation techniques 

(kriging) utilize the statistical properties of the measured points. Geostatistical 

techniques quantify the spatial autocorrelation among measured points and account 

for the spatial configuration of the sample points around the prediction location. 

Deterministic interpolation techniques can be divided into two groups, global and 

local. Global techniques calculate predictions using the entire dataset. Local 

techniques calculate predictions from the measured points within neighbourhoods, 

which are smaller spatial areas within the larger study area. Geostatistical Analyst 

provides global polynomial as a global interpolator and inverse distance weighted, 

local polynomial, radial basis functions, kernel smoothing, and diffusion kernel as 

local interpolators. 

A deterministic interpolation can either force the resulting surface to pass through the 

data values or not. An interpolation technique that predicts a value that is identical to 

the measured value at a sampled location is known as an exact interpolator. An 

inexact interpolator predicts a value that is different from the measured value. 
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Spatial and spatial-temporal distributions of both physical and socioeconomic 

phenomena can be approximated by functions depending on location in a multi-

dimensional space, as multivariate scalar, vector, or tensor fields. Typical examples 

are elevations, climatic phenomena, soil properties, population densities, fluxes of 

matter, etc. Visualization, analysis, and modelling are usually based on a raster 

representation.  

Moreover, the phenomena can be measured using various methods (remote sensing, 

site sampling, etc.) leading to heterogeneous data sets with different digital 

representations and resolutions which need to be combined to create a single spatial 

model of the phenomenon under study. 

 

Figure 2-1: Simple discrete 2D interpolation. 

On left is point set data of known values. On the right is raster interpolated from these 

points.  

The following methods have been employed to have interpolation of 2D scattered 

data. 
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2.2 PDE Method for Interpolation 

 Partial differential equations (PDEs) have recently shown to be very promising for 

image interpolation and compression. 

The Delaunay triangulation of a set of points P in a plane is a non-overlapping 

triangulation such that no point in P lies in the circumcircle of any triangle. Delaunay 

triangulations are often used to construct meshes used in finite-element or finite-

volume numerical simulations of partial differential equations. 

For a set of points on the same line there is no Delaunay triangulation (the notion of 

triangulation is degenerate for this case). For four or more points on the same circle 

(e.g., the vertices of a rectangle) the Delaunay triangulation is not unique: each of the 

two possible triangulations that split the quadrangle into two triangles satisfies the 

"Delaunay condition", i.e., the requirement that the circumcircles of all triangles have 

empty interiors. 

    

Figure 2-2: Delaunay triangles and Delaunay triangulation. 
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2.2.1 Radial basis functions  

RBFs are means to approximate multivariable (also called multivariate) functions by 

linear combinations of terms based on a single univariate function. 

The structure of an RBF networks in its most basic form involves three entirely 

different layers 

 

Figure 2-3: Flow graph for radial basis functions. 

Their main features are: 

1. They are two-layer feed-forward networks. 

2. The training/learning is very fast. 

3. The networks are very good at interpolation 

But there are two serious problems with these exact interpolation networks: 

1. They perform poorly with noisy data 

2. They are not computationally efficient 

Sums of radial basis functions are typically used to approximate given functions. 

This approximation process can also be interpreted as a simple kind of neural 

network. RBFs are also used as a kernel in support vector classification. Radial Basis 

functions are used to interpolate scattered data in two or more dimensions. Several 

http://en.wikipedia.org/wiki/Function_approximation
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Radial_basis_function_kernel
http://en.wikipedia.org/wiki/Support_vector_machine


 

11 

 

applications in graphics, geophysics, and learning use interpolation methods based 

on RBFs.  

One issue with using the technique for large data sets is that direct solution of the 

interpolation problem for N points scales as O(N3) while a single evaluation of the 

radial basis function fit at a point itself requires O(N) operations.   

 

2.3 Natural Neighbour Interpolation 

Natural neighbour interpolation finds the closest subset of input samples to a 

query point and applies weights to them based on proportionate areas to interpolate a 

value. 

 

                        

Figure 2-4: Nearest neighbour interpolation. 

It is also known as Sibson or "area-stealing" interpolation. Its basic properties are that 

it's local, using only a subset of samples that surround a query point, and interpolated 

heights are guaranteed to be within the range of the samples used. It does not infer 
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trends and will not produce peaks, pits, ridges, or valleys that are not already 

represented by the input samples. The surface passes through the input samples and is 

smooth everywhere except at locations of the input samples. Break lines may be used, 

in the case of TIN to raster interpolation, to augment the surface, creating linear 

discontinuities where appropriate such as along roadsides and water bodies. It adapts 

locally to the structure of the input data, requiring no input from the user pertaining to 

search radius, sample count, or shape. It works equally well with regularly and 

irregularly distributed data. 

The natural neighbours of any point are those associated with neighbouring Voronoi 

(Thiessen) polygons. Initially, a Voronoi diagram is constructed of all the given 

points, represented by the olive-coloured polygons. A new Voronoi polygon, beige 

colour, is then created around the interpolation point (red star). The proportion of 

overlap between this new polygon and the initial polygons are then used as the 

weights. 

By comparison, a distance-based interpolator, such as inverse distance weighted 

(IDW), would assign similar weights to the northernmost point and to the north-

eastern point based on their similar distance from the interpolation point. Natural 

neighbour interpolation, however, assigns weights of 19.12% and 0.38%, 

respectively, which are based on the percentage of overlap. 

Nearest neighbour interpolation is well defined for only those points �⃑�  with a 

single nearest sample point �⃑�𝑘 . At points �⃑� that are equidistant from two or more 

sample points, the nearest neighbor interpolant 𝑝(�⃑�) is discontinuous and undefined. 
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Figure 2-5: Nearest neighbour and natural neighbour. 

2.4 Blending Nearest Neighbour 

Discrete approximation of the blending equation yields a large sparse system of 

equations that are best solved by an iterative method. The number of simple 

conjugate-gradient iterations required to converge to a solution is roughly 

proportional to the maximum distance d(�⃑�). For any dimension 𝑛 of points �⃑� ∈ ℝ𝑛, 

the computational complexity of discrete blended neighbour interpolation grows only 

linearly with distance. For sample points scattered at large distances, this linear 

dependence contrasts favourably with the quadratic dependence in 2D (or cubic 

dependence in 3D) for discrete natural neighbour interpolation 

The first step is to compute for all samples the distance to the nearest known sample 

and the value of that known sample. This first step produces a distance map and a 

nearest-neighbour interpolant. 

The second step is to blend (smooth) the nearest-neighbour interpolant, where the 

extent of smoothing varies spatially and is proportional to distances in the distance 

map. 
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In tensor-guided gridding, we replace distance with time. Time is a simple term for 

non-Euclidean distance measured in a metric-tensor field. So "nearest" now means 

nearest in time. In the first step we compute a time map by solving an eikonal 

equation with coefficients that may be both anisotropic and spatially varying. In the 

second step, we blend the nearest-neighbour interpolant with an anisotropic and 

spatially varying smoothing filter. 

The default tensor field is homogeneous and isotropic. In this special case, time is 

equivalent to distance, and tensor-guided gridding is similar to gridding with Sibson's 

natural neighbour interpolant. 

 

Figure 2-6: Blending nearest neighbour 
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2.5 Blending Nearest Neighbour using Tensor Fields: 

The tensor represents the coherence, orientation, and dimensionality of features in the 

image that will guide interpolation. Intuitively, this tensor field alters interpolation so 

that known sample values within spatially coherent image features are given more 

weight than values on opposite sides of such features or where the image is less 

coherent. For both images, we will compute the displayed tensor fields 𝐃(�⃑�) from a 

structure tensor field 𝐒(�⃑�).

 

Figure 2-7: Visual representation of structure tensors. 
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Assuming that an image is available, the accuracy of image-guided interpolation 

depends on the extent to which the property being interpolated is correlated with 

image features. If no such correlation exists, then a simpler and faster image-ignorant 

interpolation may be more accurate than image-guided interpolation with an irrelevant 

image. In this case, blended neighbour interpolation is an efficient alternative to 

discrete natural neighbour interpolation. In many contexts, however, an isotropic and 

constant tensor field is inappropriate. 

Even when a useful image is unavailable, it may still be possible to construct an 

anisotropic and inhomogeneous tensor field 𝐃(�⃑�) to guide interpolation. The 

proposed two-step process might more accurately be called tensor-guided blended 

neighbour interpolation, because it requires only the tensor field 𝐃(�⃑�), not the image. 

The tensor fields are derived from uniformly-sampled seismic images, and then 

interpolated scattered data on the same uniform sampling grid. In some applications, it 

may be desirable to interpolate scattered data with higher resolution, and nothing in 

the method prevents this. Image-guided blended neighbour interpolation requires only 

that we provide a tensor 𝐃 for all uniformly sampled locations �⃑� where we 

interpolate. 

The tensor fields used in image-guided blended neighbour interpolation are analogous 

to spatial correlation functions (variograms) used in kriging, a geostatistical 

interpolation method in which subsurface properties are modelled as random 

variables. But the interpolation methods are otherwise rather different. Where images 

have less resolution than desired for geo statistical modelling, blended neighbour 

interpolation might be used to provide image-guided trends for Kriging and other geo 
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statistical methods. In developing blended neighbour interpolation we retained most 

of the desirable features of natural neighbour interpolation, but we gave up locality. 

That is, the blended neighbour interpolant depends on all scattered known samples, 

even those that are very far way, as finite-difference approximations yield a sparse 

system of linear equations that we must solve simultaneously.  

In practice, the neighbourhood in blended neighbour interpolation is quite limited and 

errors in assuming a local region of influence for each known sample may be less than 

those due to the use of an iterative solver for the system of blending equations. 

In contrast, the cost of solving the blending equations with the simplest conjugate-

gradient method grows only linearly with distances or times to nearest known 

samples. The number of iterations required for such an iterative solver to converge 

depends in part on the accuracy required in the blended neighbour interpolant. The 

number of iterations might be reduced by the use of pre conditioners, including multi 

grid methods. 
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Figure 2-8: Input image with marked known points. 

 

Figure 2-9: Distance map. 
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Figure 2-10: Nearest neighbour interpolant. 

 
Figure 2-11: Blended nearest neighbour interpolant. 
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Blended neighbour interpolation of scattered data is similar to the classic method of 

natural neighbour interpolation, in that both methods smooth a nearest neighbour 

interpolant, and the extent of smoothing grows with distance to the nearest known 

sample point. The interpolants are similar but not identical, and the difference 

between the two methods lies in their smoothing filters. In blended neighbour 

interpolation a smoothing filter is implied by the solution of a partial differential 

equation. In natural neighbour interpolation the smoothing filter explicitly computes 

weighted sums of nearest neighbour sample values. When Euclidean distances are 

used, the weights in natural neighbour interpolation are simply the areas of polygons, 

and can be computed efficiently with suitable data structures. However, in non-

Euclidean metric tensor fields, these areas must be computed numerically, and for this 

case blended neighbour interpolation is an efficient alternative to natural neighbour 

interpolation. In image-guided interpolation we derive metric tensor fields from 

images, so that the blended neighbour interpolant conforms to image features, while 

retaining many of the attractive features of the natural neighbour interpolant. 

 
 
 

2.6 Chapter Summary 

 

In this chapter it is described in detail how interpolation is being done, its various 

forms and limitations to various forms. A step by step foundation is the made to form 

the final outcome why an image guided blended near neighbour interpolation is 

implemented. Along with it, it is established why a tensor guided blended near 

neighbour interpolation would be more reliable and easier to understand and follow. 
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Chapter 3 PROJECT MODULES 

3.1 Octave Implementation 

GNU Octave is a high-level interpreted language, primarily intended for numerical 

computations. It provides capabilities for the numerical solution of linear and 

nonlinear problems, and for performing other numerical experiments. It also provides 

extensive graphics capabilities for data visualization and manipulation. Octave is 

normally used through its interactive command line interface, but it can also be used 

to write non-interactive programs, primarily intended for numerical computations. 

GNU Octave is normally used through its interactive interface (CLI and GUI), but it 

can also be used to write non-interactive programs. 

 GNU Octave can do arithmetic for real, complex or integer-valued scalars and 

matrices, solve sets of nonlinear algebraic equations, integrate functions over finite 

and infinite intervals, and integrate systems of ordinary differential and differential-

algebraic equations. 

GNU Octave uses the GNU readline library to handle reading and editing input. By 

default, the line editing commands are similar to the cursor movement commands 

used by GNU Emacs, and a vi-style line editing interface is also available. At the end 

of each session, the command history is saved, so that commands entered during 

previous sessions are not lost. 

The GNU Octave distribution includes a 650+ page Texinfo manual. Access to the 

complete text of the manual is available via the doc command at the GNU Octave 

prompt. 
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Octave runs on various Unices—at least Linux and Solaris, Mac OS X, Windows and 

anything you can compile it on. Binary distributions exist at least for Debian, SUSE, 

Fedora and RedHat Linuxes (Intel and AMD CPUs, at least), for Mac OS X and 

Windows' 98, 2000, XP, Vista, and 7. 

Two and three dimensional plotting is fully supported using gnuplot and an 

experimental OpenGL backend. 

 

 

Figure 3-1: Interface for GNU Octave 

 

The underlying numerical solvers are currently standard Fortran ones like LAPACK, 

LINPACK, ODEPACK, the BLAS, etc., packaged in a library of C++ classes. If 

possible, the Fortran subroutines are compiled with the system's Fortran compiler, and 



 

23 

 

called directly from the C++ functions. If that's not possible, you can still compile 

Octave if you have the free Fortran to C translator f2c. 

Octave is also free software. The Octave language is quite similar to MATLAB so 

that most programs are easily portable. Octave was chosen as a test bed because of its 

wide range of available libraries and its inter-operability with MATLAB. It was only 

used for the 2-D model, but as the runtime was approximately 45 minutes, we didn’t 

implement the 3-D model. 

The version developed in Octave was very slow. It had a 45-minute runtime for a 

realistic seismic image with a resolution of  and  known sample files. 

This is slow.  

3.2 C# Version 

Visual C# is modern, high-level, multi-paradigm, general-purpose programming 

language for building apps using Visual Studio and the .NET Framework. C# is 

designed to be simple, powerful, type-safe, and object-oriented. The many 

innovations in C# enable rapid application development while retaining the 

expressiveness and elegance of C-style languages. 

The time-restrictive nature of the Octave implementation led us to develop an 

optimized version in C# (both 2-D and 3-D). A CPU version was created in C#, for 

both serial (single-threaded) and parallel (multi-threaded) CPUs. Optimizations such 

as garbage collection reduction, algorithm simplifications and reductions in the time 

required to traverse the data structures were applied to the initial implementation. For 

the multi-threaded version, spin-locks and wait-locks were applied to reduce waiting 

times. As a result, the time required to process the same image as was processed in 
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Octave was 2.3 seconds for the single-threaded and 781 milliseconds for the multi-

threaded version. Further optimisations are planned for reduction of the memory 

footprint, but the CPU version can be considered complete and fulfils the 

requirements set out by LMKR. 

For the 3-D version, all the optimisations outlined above were applied in parallel. We 

only tested the runtime for the multi-threaded version, which turned out to be 1 hour 

and 45 minutes for realistic sized data with known samples in excess of one thousand. 

3.3 GPU Version 

A graphics processing unit (GPU), also occasionally called visual processing 

unit (VPU), is a specialized electronic circuit designed to rapidly manipulate and alter 

memory to accelerate the creation of images in a frame buffer intended for output to a 

display. GPUs are used in embedded systems, mobile phones, personal 

computers, workstations, and game consoles. Modern GPUs are very efficient at 

manipulating computer graphics, and their highly parallel structure makes them more 

effective than general-purpose CPUs for algorithms where processing of large blocks 

of data is done in parallel. In a personal computer, a GPU can be present on a video 

card, or it can be on the motherboard  

 

 

Figure 3-2: Microchip with nVidia GPU for 

CUDA. 
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http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Video_card
http://en.wikipedia.org/wiki/Video_card
http://en.wikipedia.org/wiki/Motherboard
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CUDA (Compute Unified Device Architecture) is a parallel computing platform and 

programming model created by NVIDIA and implemented by the graphics processing 

units (GPUs) that they produce. CUDA gives program developers direct access to the 

virtual instruction set and memory of the parallel computational elements in CUDA 

GPUs. 

Using CUDA, the GPUs can be used for general purpose processing (i.e., not 

exclusively graphics); this approach is known as GPGPU 

 

 

 

Figure 3-3: CUDA Workflow 

 

http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/NVIDIA
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http://en.wikipedia.org/wiki/Graphics_processing_unit
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Chapter 4 DESIGN AND DEVELOPMENT 

This chapter entails the development of an interpolation algorithm that takes into 

account the structure of the seismic data. 

4.1 Input and Output 

4.1.1 Input 

 A number of of sample points are known. Value of the scalar field at those points 

is known. 

 A seismic image is provided with values known over the entire field over 

which to interpolate. 

 

4.1.2 Output 

 A scalar field with values defined by the sample points and structure 

defined by the structure tensor. 

 Tensor field calculation. 

The equations that are programmed are given as: 

 

4.1.2.1 Step 1 

 Solve 

 

 

for  

: The minimum traveltime from  to the nearest known sample point , and 
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: The value  corresponding to the sample point  nearest (in traveltime) to the 

point . [1] [2] 

4.1.2.2 Step 2 

 

for the blended neighbour interpolant . [3] [4] 

 

4.2 Tensor Field 

Tensors are geometric objects that describe linearity between vectors, scalars, and 

other tensors. Elementary examples of such relations include the dot product, 

the cross product, and linear maps. Vectors and scalars themselves are also tensors. A 

tensor can be represented as a multi-dimensional array of numerical values. 

The order (also degree) of a tensor is the dimensionality of the array needed to 

represent it, or equivalently, the number of indices needed to label a component of 

that array. For example, a linear map can be represented by a matrix, a 2-dimensional 

array, and therefore is a 2nd-order tensor. A vector can be represented as a 1-

dimensional array and is a 1st-order tensor. Scalars are single numbers and are thus 

0th-order tensors. 

 

http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Euclidean_vectors
http://en.wikipedia.org/wiki/Scalar_(mathematics)
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product
http://en.wikipedia.org/wiki/Linear_map
http://en.wikipedia.org/wiki/Array_data_structure#Multidimensional_arrays
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Figure 4-1: Visual representation of a tensor field. 

Cauchy stress tensor, a second-order tensor. The tensor's components, in a three-

dimensional Cartesian coordinate system, form the matrix 

 

                                        

 

whose columns are the stresses (forces per unit area) acting on the e1, e2, and e3 faces 

of the cube. 

Tensors are used to represent correspondences between sets of geometric vectors. For 

example, the Cauchy stress tensor T takes a direction v as input and produces the 

stress T(v) on the surface normal to this vector for output thus expressing a relationship 

between these two vectors, shown in the figure (right). 

http://en.wikipedia.org/wiki/Cauchy_stress_tensor
http://en.wikipedia.org/wiki/Euclidean_vector
http://en.wikipedia.org/wiki/Cauchy_stress_tensor
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Because they express a relationship between vectors, tensors themselves must 

be independent of a particular choice of coordinate system. Taking a 

coordinate basis or frame of reference and applying the tensor to it results in an 

organized multidimensional array representing the tensor in that basis, or frame of 

reference. 

In mathematics, physics, and engineering, a tensor field assigns a tensor to each point 

of a mathematical space (typically a Euclidean space or manifold). Tensor fields are 

used in differential geometry, algebraic geometry, general relativity, in the analysis 

of stress and strain in materials, and in numerous applications in the physical sciences 

and engineering. As a tensor is a generalization of a scalar (a pure number 

representing a value, like length) and a vector (a geometrical arrow in space), a tensor 

field is a generalization of a scalar field or vector field that assigns, respectively, a 

scalar or vector to each point of space. 

4.3 Fast Marching Algorithm 

Fast marching algorithm is employed in solution of the first equation. 

The Fast Marching Method solves the general static Hamilton-Jacobi equation, which 

applies in the case of a convex, non-negative speed function. Starting with an initial 

position for the front, the method systematically marches the front outwards one grid 

point at a time, relying on entropy-satisfying schemes to produce the correct viscosity 

solution. The main idea is exploit a fast heap-sort technique to systematically locate 

the proper grid point to update, so that one need never backtrack over previously 

evaluated grid points. The resulting technique sweeps through a grid of N total points 

http://en.wikipedia.org/wiki/Coordinate-free
http://en.wikipedia.org/wiki/Coordinate_system
http://en.wikipedia.org/wiki/Basis_of_a_vector_space
http://en.wikipedia.org/wiki/Frame_of_reference
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Tensor
http://en.wikipedia.org/wiki/Euclidean_space
http://en.wikipedia.org/wiki/Manifold
http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Algebraic_geometry
http://en.wikipedia.org/wiki/General_relativity
http://en.wikipedia.org/wiki/Stress_(physics)
http://en.wikipedia.org/wiki/Strain_tensor
http://en.wikipedia.org/wiki/Scalar_(physics)
http://en.wikipedia.org/wiki/Euclidean_vector
http://en.wikipedia.org/wiki/Scalar_field
http://en.wikipedia.org/wiki/Vector_field
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in N log N steps to obtain the evolving time position of the front as it propagates 

through the grid 

The Fast Marching Method makes use of stationary approach to the problem. At first 

glance, this sounds counter-intuitive; we are going to trade a moving boundary 

problem for one in which nothing moves at all! To see how this is done, imagine a 

grid laid down on top of the problem:  

                                          

Figure 4-2: Fast marching algorithm. 

 

 

Suppose that somebody is standing at each red grid point with a watch. When the 

front crosses each grid point, the person standing there writes down this crossing time 

T. This grid of crossing time values T(x,y) determines a function; at each grid point T, 

T(x,y) gives the time at which the front crosses the point (x,y).  

 

As an example, suppose the initial disturbance is a circle propagating outwards. The 

original region (the blue one on the left below) propagates outwards, crossing over 

each of the timing spots. The function T(x,y) gives a cone-shaped surface, which is 
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shown on the right. This surface has a great property; it intersects the xy 

plane exactly where the curve is initially. Better yet, at any height T the surface gives 

the set of points reached at time T. The surface on the right below is called the arrival 

time surface, because it gives the arrival time. 

 

Figure 4-3: Calculated time map and remaining points. 

How can this stationary surface be constructed? As a motivation, imagine scaffolding 

being erected around a house! One stands on one of the boards, puts a board above the 

head, and then moves to another board at the same level and put a board one level up. 

Once all the boards are placed at a given level, one then climbs up to the next level set 

repeat the process. The thing to remember is that the scaffolding is built from the 

ground up; each level must be completed before the next is begun. 

 

The Fast Marching Method imitates this process. Given the initial curve (shown in 
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red), stand on the lowest spot (which would be any point on the curve), and build a 

little bit of the surface that corresponds to the front moving with the speed F. Repeat 

the process over and over, always standing on the lowest spot of the scaffold, and 

building that little bit of the surface. When this process ends, the entire surface has 

been built. 

                      

Figure 4-4: Categorization of Fast Marching Algorithms. 

4.4 Block wise Conjugate Gradient Method 

In mathematics, the conjugate gradient method is an algorithm for 

the numerical solution of particular systems of linear equations, namely those whose 

matrix is symmetric and positive-definite. The conjugate gradient method is often 

implemented as an iterative algorithm, applicable to sparse systems that are too large 

to be handled by a direct implementation or other direct methods such as the Cholesky 

decomposition. Large sparse systems often arise when numerically solving partial 

differential equations or optimization problems. 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Numerical_solution
http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/Symmetric_matrix
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Sparse_matrix
http://en.wikipedia.org/wiki/Cholesky_decomposition
http://en.wikipedia.org/wiki/Cholesky_decomposition
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
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The conjugate gradient method can also be used to solve 

unconstrained optimization problems such as energy minimization 

Suppose we want to solve the following system of linear equations 

                        Ax = b 

for the vector x where the known n-by-

n matrix A is symmetric (i.e. AT = A), positive definite (i.e. xTAx > 0 for all non-

zero vectors x in Rn), and real, and b is known as well. 

We denote the unique solution of this system by  

 

The conjugate gradient method can theoretically be viewed as a direct method, as it 

produces the exact solution after a finite number of iterations, which is not larger than 

the size of the matrix, in the absence of round-off error. However, the conjugate 

gradient method is unstable with respect to even small perturbations, e.g., most 

directions are not in practice conjugate, and the exact solution is never obtained. 

Fortunately, the conjugate gradient method can be used as an iterative method as it 

provides monotonically improving approximations  to the exact solution, which 

may reach the required tolerance after a relatively small (compared to the problem 

size) number of iterations. The improvement is typically linear and its speed is 

determined by the condition number  of the system matrix : the larger 

is , the slower the improvement. 

 

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Energy_minimization
http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/Symmetric_matrix
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4.5 The Discrete (Practical) Version 

4.5.1 Step 1 (Fast Marching Algorithm for first equation) 
Step 1 is usually performed using a fast marching algorithm for each sample. Two 

“active lists” are used, the A-list and the B-list. The A-list stores samples being 

processed, and the B-list stores samples to be processed after the current list is 

complete: [5] 

 For each sample: 

 Sample marked as 0 travel time. 

 Add sample to A-list 

 Until A-list is empty 

o For each sample in A-list 

 Process sample 

 If converged 

 Add its neighbours to B-list if necessary 

 Else 

 Add sample itself to B-list 

o Copy B-list to A-list. 

When neighbours are checked, it only moves forward if the calculated traveltime for 

neighbours won’t exceed the already calculated minimum. 

4.5.2 Step 2 (Blockwise Conjugate Gradient Operations) 
 

Block-wise conjugate gradient iterations are used in step 2, using blocks of . 
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 While  and maximum iterations haven’t been exceeded 

o  

o  

o  

o  

o  

o  

o  

o  

o  

o  

 

4.6 Chapter Summary 

In this chapter the design and development stages of the project are explained in 
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detail, how the design of the algorithm include first the development of nearest 

neighbour interpolated image. Then time map is calculated which is used to blend the 

image to get the final blended output that will follow the original seismic image. 
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Chapter 5 ANALYSIS AND EVALUATION 

5.1 Project Testing and Validation 

This chapter demonstrates the performance analysis of algorithm developed for the 

project and also defines the project limitations. 

5.2 Methodology/Work Flow 

The algorithm starts off by computing the structure tensor 𝐒(�⃗�) for the given image or 

volume. 

5.2.1 Computing the Structure Tensor 

5.2.1.1 2-D Case 

If we set𝐼𝑥(�⃗�) = 𝑑 𝑑𝑥⁄ (𝐼), and 𝐼𝑦(�⃗�) = 𝑑 𝑑𝑦⁄ (𝐼), where 𝐼 is the input guiding image 

then the structure tensor 𝐒(�⃗�) is defined as 

𝐒(�⃗�) = [
𝐼𝑥

2(�⃗�)  𝐼𝑥𝐼𝑦(�⃗�)

𝐼𝑥𝐼𝑦(�⃗�) 𝐼𝑦
2(�⃗�)

]. 

Practically, for noisy discrete signals, different difference operators are used, such as 

Sobel, Gaussian, Canny or Deriche. In our tests, we used the Gaussian operator with a 

horizontal radius of 7 and a vertical radius of 3. 

5.2.1.2 3-D Case 

The 3-D case is similar. We set 𝐼𝑧(�⃗�) = 𝑑 𝑑𝑧⁄ (𝐼) and then 

𝐒(�⃗�) = [

𝐼𝑥
2(�⃗�)  𝐼𝑥𝐼𝑦(�⃗�) 𝐼𝑥𝐼𝑧(�⃗�)

𝐼𝑥𝐼𝑦(�⃗�) 𝐼𝑦
2(�⃗�) 𝐼𝑦𝐼𝑧(�⃗�)

𝐼𝑥𝐼𝑧(�⃗�) 𝐼𝑦𝐼𝑧(�⃗�) 𝐼𝑧
2(�⃗�)

]. 

The same considerations for practical computations also apply. 
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5.3 Computation of the Coherence and the Guiding Tensor 

The coherence of the image can be calculated by the following formula at every point: 

𝑐(�⃗�) =
𝑒1(�⃗�) − 𝑒2(�⃗�)

𝑒1(�⃗�) + 𝑒2(�⃗�)
 

Where 𝑒1(�⃗�) is the maximum eigenvalue of 𝐒(�⃗�) at every point and 𝑒2(�⃗�) is the next 

largest. This is a sort of “dominance metric” which checks how much 𝑒1(�⃗�) 

dominates over 𝑒2(�⃗�), i.e., how strongly the layer is oriented in the given direction. If 

the difference is large, it is strongly oriented in one direction. If it is small, it’s 

oriented weakly. This helps us detect faults, where the coherence is usually low. 

The guiding tensor 𝐃(�⃗�) is computed as 

𝐃(�⃗�) =
𝑠𝐒−1(�⃗�)

1 − 𝑐(�⃗�)
. 

This is the tensor used during the fast marching computations, with the scalar 𝑠 

normalizing the largest eigenvalue of the numerator to unity. During fast marching, 

this guiding tensor is used. However, during the conjugate gradient iterations, a 

different tensor is used: 

𝐃(�⃗�) = 𝑡2(�⃗�)�⃗�1(�⃗�)�⃗�1
𝑇(�⃗�) 

Where �⃗�1(�⃗�) is the eigenvector corresponding to the largest eigenvalue of 𝐒(�⃗�), and 

𝑡(�⃗�) is the traveltime computed during the fast marching process. 
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5.3.1 Fast Marching for Traveltime and Nearest Neighbour 

Computation 
The fast marching method has already been adequately described in section 4.5.1, 

however, here we present its flowcharts. 

Start

Set i = 0.

i < n? Yes
Process 

sample i in  
active list A

Active list B

Set i=i+1.

No

Copy active list B to 
active list A

Clear active list B

Active list A 
empy?

No

Yes

End

 

Figure 5-1: Processing a known sample. 
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Start

Get next 
estimate of 
traveltime

Sample 
converged?

No
Add sample to 

active list.
Yes

Has a boundary 
been reached?

No

Add 
unconverged 
neighbours to 
the active list.

End Yes

 

Figure 5-2: Processing a sample in an active list 

5.3.2 Conjugate Gradient Iterations 
Conjugate gradient iterations have also been covered in section 4.5.2, and as before, 

we present the flowchart here: 
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Start

Set r = b

Set q = Ax

Set r = r - Ax

Set delta = r^2

Set r_0 = epsilon * b

Is r < r_0? No Set alpha = r^2/d Ad Set x = x + alpha*d Set r = r – alpha*q Set deltaOld = delta Set delta = r^2
Set beta = delta/

deltaOld
Set d = r + beta*d

Yes

End

 

Figure 5-3: Conjugate-gradient iterations. 
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5.4 Results Explained 

5.4.1 Input 

 

Figure 5-4: The input image. 
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5.4.2 Output after First Step 

 
Figure 5-5: The nearest neighbour interpolant. 

5.4.3 Time Map 

     
Figure 5-6: The traveltime. 
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5.4.4 Blended Near Neighbour Output 

 
Figure 5-7: The blended output. 

 

 

5.5 Limitations 

The algorithm developed works perfectly fine with 3d volumetric data but for n-

dimensional data it takes more processing time as compared to the 3d one. 

5.6 Chapter Summary 

This chapter deals with the testing and evaluation of the algorithm after a test bed had 

been completed in MATLAB. The results compiled had been field tested by LMKR 

and found to be over 95 percent accurate. 
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Chapter 6             FUTURE ENHANCEMENTS AND CONCLUSION 

6.1 Development in this system 

There could still be modifications made to this algorithm to make the algorithm even 

more accurate and time efficient. For example, 

 The difference operator used for the calculation of the structure tensor could 

be changed to the Deriche operator for better results. 

 The algorithm could be implemented on FPGAs for real-time processing. 

 The mathematical representation of 𝐃(�⃗�) used in both steps could be tweaked 

for more accurate results. 

 The coherence metric used was the simple eigenvalue metric… We could, 

instead, use other, more advanced forms of the coherence metric, such as that 

used in [3].  

6.2 Conclusion 

The Image guided blended near neighbour interpolation can be used for a variety of 

purposes. The main one being the efficient interpolation of well log data to seismic 

data.
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